Abstract: In Newtonian physics, it is possible to establish static equilibrium in a system of charged point masses if the ratio of their mass to their charge is the same for each point mass. Surprisingly, this situation can occur in general relativity for black holes, too. The general case of such a system was first described independently by Majumdar and Papapetrou in 1947. This work examines a special case involving two charged black holes, studies its electrogeodesics, and compares the solution to Newtonian physics. We also summarize an analogous situation in a dynamic spacetime, which was described by Kastor and Traschen in 1992, and we compare it to the static version.