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1. Introduction

The aim of this project is to use pattern structures, which is an extension of
Formal Concept Analysis, to mine discourse representation structures in medical
text. We believe that applying these data mining techniques to discourse repre-
sentations can aid experts in extracting new knowledge from medical documents,
as well as improving document selection or summarization methods.

Text mining is the process of extracting useful information and knowledge
from natural language text, and it combines several important fields of study
including machine learning, statistics, pattern recognition, and information re-
trieval [Hotho et al. 2005]. It can be used to select certain documents from a
collection, summarize them, perform clustering, or perform sentiment analysis,
all based on the content of the text. Common uses of text mining can be found in
varying fields, whether you look at marketing experts using sentiment analysis to
determine the public opinion on a product [Melville et al., 2009], or medical ex-
perts attempting to discover new treatment options by combining links between
substances, biological processes, and diseases found in separate articles [Swanson,

1990).

Most text mining applications view a document simply as a bag-of-words, from
which key words can be extracted and used to guide the process of clustering,
summarization, or other analysis. These methods can involve some degree of
preprocessing in the form of filtering, lemmatization, stemming, part-of-speech
tagging, or word sense disambiguation [Hotho et al., |2005]. Such preprocessing
methods can provide extra information to guide and enhance the text mining pro-
cess, but it still adheres to the bag-of-words point of view. To move beyond this
viewpoint, one has to go beyond lexical, morphological, or semantic treatments
of natural language into the domain of discourse.

Discourse is the study of meaning applied to phrases, sentences, or larger pieces
of text. Instead of placing the focus on the meaning of an utterance, it attempts
to model relationships between larger text units and how they affect each others’
meaning. Looking at discourse of a natural language can generate new informa-
tion which would not be directly extractable from the meaning of the individual
utterances in the text. Example shows a sentence from a medical article
about hereditary hemorrhagic telangiectasia (HHT)E] This particular sentence
lists some symptoms which were frequent in the population of their study, as well
as some symptoms which were infrequent. If it were analyzed from a bag-of-words
perspective, one could match the words of the sentence to a medical thesaurus,
which could provide the additional information that epistaxis, pulmonary AVM,
GI bleeding, and symptomatic liver VM are symptoms or medical procedures,
and that HHT is a disease. This would lead to the conclusion that all of these
terms are somehow related, but it is impossible to extract the type of the relation
without taking discourse into account.

'http://www.ncbi.nlm.nih.gov/pubmed/22991266
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Example 1.0.1

a. Recurrent epistaxis and pulmonary AVM were frequent in our study population,
whereas HHT-related GI bleeding and symptomatic liver VM were infrequent, for
all HHT genes.

b. Recurrent epistazis and pulmonary AVM were frequent in our study population,
c. whereas HHT-related GI bleeding and symptomatic liver VM were infrequent,
for all HHT genes.

When taking into account the discourse of example sentence [1.0.1j, one can
arrive at the conclusion that the sentence can be split as shown in Example
and [1.0.1f, and that there is in fact contrast between the two parts. Part
b lists the symptoms or medical procedures which are frequent, whereas part ¢
lists the ones which are infrequent. Creating a complete discourse representation
would contribute even more detailed information than just the fact that there
is a contrast between the two lists, such as that both lists relate to the disease
HTT, one positively and one negatively. This is relatively crucial information
if one were to attempt summarizing a bunch of medical articles based on their
content, since the summary would need to list the frequent symptoms and not
the infrequent ones.

The relative complexity of discourse-annotated data, especially in combination
with additional annotations from ontologies, means that one needs a data mining
algorithm which can handle complex data and is suitable for text mining. One
such data mining process is Formal Concept Analysis, which shows great promise
for handling various text mining situations, including the use of ontologies and
other annotations |[Carpineto and Romano|, [2005] |Priss, 2005]. It is a mathemati-
cal theory which builds concept lattices based on sets of objects and descriptions.
The inherent specialization/generalization structure of lattices means the method
is naturally suitable for handling other hierarchical components like ontologies.
Furthermore it can combine a variety of features, not necessarily of the same
data type (e.g. some of your attributes can be numerical, others can be sets, and
still others can be textual) through an extension called pattern structures. This
feature should ensure that Formal Concept Analysis is flexible enough to handle
textual data at a discourse level.

As far as we know, there has been no attempt at text mining which takes
discourse into account, so far. Hence the aim of this project is to make a start
in applying text mining to discourse data, using Formal Concept Analysis as a
basis; to see if this approach to text mining shows promise, and to find the possible
pitfalls. Our experiments use medical articles for textual data, since there are
large sources available online such as PubMed?, and the medical domain could
benefit greatly from text mining approaches. Tools which could automatically
summarize a collection of articles about a disease, or find new links between
different articles leading to new knowledge, could certainly make life easier for
both patients and professionals.

We start by describing discourse structures in more detail, as well as providing
an explanation of Formal Concept Analysis and its features in Chapter 2l Chap-

Zhttp://www.ncbi.nlm.nih.gov/pubmed
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ter [3] gives an overview of the data collection process, and Chapter [ describes
how the data is annotated with discourse features, including an evaluation of
the annotation results. Finally the application of Formal Concept Analysis and
pattern structures to the discourse-annotated data is shown in Chapter



2. Background

Whenever one aims to combine two very different fields of research, in this case
semantics of natural language and Knowledge Discovery in Databases (KDD), it
is important to first understand each field separately. Hence this chapter aims to
give a general description of each field, as well as providing references to other
materials containing more detailed explanations. Section |2.1| describes the aim of
formal semantics and how it can be applied mathematically, through the intro-
duction of several different discourse theories. Section gives a brief overview
of KDD, as well as describing one important method for knowledge discovery:
Formal Concept Analysis.

2.1 Discourse representation

There are many different sub-fields within linguistics, including phonology, mor-
phology, syntax, semantics, and pragmatics to name a few. Phonologists study
the sounds of language, including phonemes, syllables, rhythm, and even ges-
tures. Morphology is the analysis of linguistic units such as parts of speech,
intonation, and stress. Syntax is the study of sentence structure, which cul-
minates in attempts to form rules which govern the structure of a particular
language. Semantics on the other hand is the study of meaning, often with a
focus on separate utterances. Finally, pragmatics studies language meaning in
a larger context, taking into account world knowledge, environment, and other
factors which could influence language use. Our purpose, to represent meaning in
medical text, means we will mostly focus on the last two sub-fields of semantics
and pragmatics.

The study of semantics can be applied to relations between symbols, relations
between words in a sentence, or relations between phrases in a sentence. Once one
moves beyond that, to a level where the study focuses on relations between full
sentences or even whole texts, it will be referred to as discourse analysis. Example
shows a case of discourse using two sentences, taken from an article about
Duchenne muscular dystrophy] One element of discourse representation is the
extraction of discourse relations, which describe the relationship between two text
segments. For example, there is a contrast relation between the two sentences in
the example: one refers to a situation without a specific treatment, whereas the
other describes the situation with that treatment.

Example 2.1.1

Without such treatment the children would die between the ages of 14 - 18 years
as a result of severe respiratory complications such as pneumonia. With their
respiratory problems resolved, however, the patients could enjoy a life extended by
a number of years, with cardiomyopathies then becoming the life-limiting factor.

'http://www.ncbi.nlm.nih.gov/pubmed/23620648
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Discourse relations can also be found within the sentences. There is a causal
relation between two segments of the first sentence from Example[2.1.1] because it
states that the death of children without treatment is caused by severe repiratory
complications. In Example we use square brackets to show how the sentence
would be split based on this causal relation. So far we have seen the contrast and
the cause relation, but there are several more types which often occur in text,
including relations which illustrate a temporal progression between text units.

Example 2.1.2
[Without such treatment the children would die between the ages of 14 - 18 years
/[ as a result of severe respiratory complications such as pneumonia.]

Extracting discourse representations from natural language text is not easy.
There are many problems which need to be resolved before the representation
is complete. Example shows one example of such a problem: anaphora
resolution, where pronouns (or other references) need to be linked to their an-
tecedent. In this case one needs to link such treatment with some treatment
option mentioned in previous sentences of the article, and the word their in the
second sentence needs to be linked with the children from the first sentence as its
antecedent (similarly for the patients in the second sentence).

Representing the semantics of discourse brings along many other difficulties,
including presuppositions, modal subordination, and donkey sentences (part of
anaphora resolution). For a description of these phenomena, see [Amblard and
Pogodalla, 2014]. There are many theories concerning the structure and mech-
anisms of semantics and discourse in natural language. Ideally we would like
to extract a complete discourse structure which is more complete than only ex-
tracting the discourse relations. Therefore we will provide a brief overview of
several of theories, focusing on the shift from static semantics to more dynamic
representations, as detailed in a paper by [Amblard and Pogodallal, 2014].

2.1.1 Montague Semantics

When referring to 'static’ semantics, we in fact mean Montague semantics. Richard
Montague developed this approach based on the idea that natural languages can
be treated with the same mechanisms as formal languages.

“There is in my opinion no important theoretical difference between
natural languages and the artificial languages of logicians; indeed, 1
consider it possible to comprehend the syntax and semantics of both
kinds of languages within a single natural and mathematically precise
theory.” -Richard Montague [Montague, 1974c]

The main mechanism used by Montague for analyzing semantics is first-order
logic, where a sentence or phrase can be represented as a logical formula. These
formulas are built on the principle of compositionality, that is to say, the meaning
of a complex expression can be built up from the meaning of its parts. Hence, one
starts by assigning logical representations to words, and the rest of the formula
is built based on the syntax of the sentence. Example shows the logical



representations of a few sentences varying in complexity.

Example 2.1.3

a. John loves Mary: love(john, mary)

b. Every man eats: Yx man(x) — eat(z)

c. If John owns a donkey, he is rich: (3x.donkey(x) A owns(John,x)) =
rich(John))

Interpretation of these logical formulas is based on model-theoretic semantics
and truth-conditional semantics. The first is a popular approach to semantics
by Alfred Tarski, using models to represent 'worlds’, and the second is mainly
associated with Donald Davidson, equating semantics with truth conditions. In
this approach, terms in logical formulas can be mapped to individuals (assuming
that we have some universe or vocabulary of individuals), with different mappings
resulting in different models. Propositions can be evaluated as being true or false,
relative to the model. So if you consider the meaning of John loves Mary, with
respect to a certain model, then it is true only if John and Mary are entities in
the universe and if John does in fact love Mary.

Montague semantics can effectively handle quantification, definite articles, am-
biguity, and the various parts of speech such as adjectives and adverbs. For more
detailed reading about the inner workings of this theory, see the three funda-
mental papers written by Montague [Montague, [1974alclb]. However, the theory
also has a few shortcomings, some of which can be illustrated through the use of

donkey sentences like in Example [2.1.4]

Example 2.1.4

If John owns a donkey, he beats it.

a. (Jx.donkey(x) A owns(John,x)) = beats(John, x)
b. (Vx.(donkey(x) A owns(John,x)) = beats(John,x))

The logical formula in is what you would expect from the sentence
according to the compositionality principle, because its structure is similar to the
sentence in [2.1.3k. However there are two problems with this formula, first that
the last occurrence of x does not fall under the scope of the quantification, and

second that we would normally expect a different quantification in the first place.
Hence the second formula, [2.1.4p, is what we would actually like to see.

Problems with donkey sentences, as well as other issues encountered by Mon-
tague semantics, can be solved by moving on to a dynamic approach to semantics.
The next few theories we describe all belong to this category, and eventually lead
to Segmented Discourse Representation Theory [Asher and Lascarides, 2003].

2.1.2 Discourse Representation Theory and Dynamic Pred-
icate Logic

Originally developed by Hans Kamp, Discourse Representation Theory (DRT)
introduces the key concept of a context. This forms a dynamic element, because
sentences are not only interpreted on the basis of the context, but they can also



change the context. In basic terms, the context keeps track of items (usually noun
phrases) introduced in earlier sentences, so they become available for anaphora
resolution in subsequent sentences. A detailed description of DRT, including
discussions on recent developments and issues, is provided by [van Eijck and
Kamp), [1997]. Example [2.1.5]is taken from this same paper, and shows how the
theory applies to a basic example.

Example 2.1.5

A man entered. He smiled.
ry
man x
entered x
y=ux
smiled y

In terms of logical formulas, the discourse presented in Example can
be expressed as Jz(man(x) A entered(x) A smiled(z)). However, in order to
properly represent the addition of context, DRT introduces a new representation
called Discourse Representation Structure (DRS), which can be viewed as the
table shown in the example. The top-most box shows the elements currently
in the context, accessible to subsequent sentences, and the bottom box shows
the knowledge already built up from previous sentences. In this case the =
indicates equality between the two reference markers. This model can be applied
to new sentences, which have access to the variables x and y, but new sentences
can also update the model by placing new variables in the context and adding
restrictions/knowledge about the variables to the model. Example , from
[Amblard and Pogodallaj, [2014], shows how the DRSs of two sentences combine
to form one DRS.

Example 2.1.6
A man walked in. Another man followed him.

Ty 2
Yz man
x man y walked an
man x |y =7 =| many
walked_in x z =7 Yy =z
followed y, z z=x
followed y, z

DRT works just as well as Montague semantics for quantification, modal sub-
ordination, and other linguistic phenomena. Depending on the structure of the
discourse, a DRS can contain another DRS, making one context available to con-
secutive sentences and another context unavailable. For details about how DRT
handles different linguistic features, see [van Eijck and Kamp) [1997]. There is
one downside to DRT, as pointed out by [Groenendijk and Stokhof, 1991] and
summarized by [Amblard and Pogodallal 2014], namely that it does not always
adhere to the compositionality principle. Although this principle causes issues
with donkey sentences in Montague semantics, it is possible to solve these prob-
lems without breaking the principle itself, as shown by Dynamic Predicate Logic
(DPL).



DPL was developed by [Groenendijk and Stokhof, 1991], with the aim of es-
tablishing a discourse theory which is empirically equivalent to previous theories,
without discarding the compositionality principle. They compare it to program-
ming languages, in that it works like transitions between machine states (assign-
ments of items to variables). Furthermore, it goes back to a representation in
first-order predicate logic, like in Montague semantics.

Example 2.1.7
A man entered. He smiled.

{{(g, h)|h[z]g A man(h(x)) A entered(h(x)) A smiled(h(x))}

Example [2.1.7] shows how the theory can be applied to simple discourse. The
pair g and h are states (assignments) such that they form the interpretation of
a program, where an input of state g can result in state h. The first condition
h|x]g means that the two states can differ at most in the assignment of variable .
Consider now the discourse in Example and a universe where Mary, John,
and Bill have all entered a room. Furthermore, consider a situation where state g
is the input state before the above two sentences are seen, k is the state after the
first sentence is seen, and h is the final output state after both sentences. Then
we can see that man(k(z)) and entered(k(xz)) must hold, meaning the state k
(and by extension state h) can only assign John or Bill to variable x.

Dynamic Predicate Logic can deal with all the same linguistic phenomena
that the previously described theories can handle, all without breaking the com-
positionality principle. However it does have some downfalls, one of which is
the destructive assignment problem, which means that the last assignment of a
variable in a program hides any previous assignments to that variable. This is
a common problem in imperative programming languages, the paradigm which
provided some of the inspiration for this theorem.

2.1.3 Segmented Discourse Representation Theory

So far we’ve seen simple examples of discourse which were all linear in structure,
but this is not always the case. Therefore, Segmented Discourse Representation
Theory (SDRT') aims to model the semantics of sentences within the structure of
the discourse. It was developed by |Asher and Lascarides, [2003| as an extension of
DRT, but it can be combined with other discourse representation theories [Asher
and Pogodallal, 2011]. In order to define the structure of the discourse, SDRT
relies on discourse relations which describe the relation between two text segments
(or sentences in this case). Asher and Lascarides define two discourse relations for
dealing with this particular example: Narration and Elaboration. A Narration
relation between two sentences means there is a temporal progression from one
sentence to the other, which can be viewed as a type of coordination, whereas an
Elaboration relation means the second sentence adds more information to what
was stated in the first sentence, viewed as a subordination. These relations are
used within the framework of Example [2.1.8] taken from [Asher and Lascarides)
2003].



Example 2.1.8

m Maz had a great evening last night.
mo He had a great meal.

w3 He ate salmon.

w4 He devoured lots of cheese.

s He then won a dancing competition.
*re It was a beautiful pink.

TR AN &8

When reading through the discourse in this example, the last sentence clearly
feels out of place because It refers to the salmon which was introduced to the
context three sentences earlier. In regular DRT this sentence would be accepted,
but in SDRT this type of situation will be rejected for being ungrammatical. The
relationship between discourse types is further illustrated in Figure [2.1]

Figure 2.1: Discourse structure using discourse relations Narration and Elabora-
tion

The figure shows how the sentences in the example discourse are connected by
the two discourse relations, for example there is an Elaboration relation between
Maz had a great evening last night and He had a great meal, also represented
as Elaboration(m, 7). All of the downward facing arrows represent such an
Elaboration, whereas all of the horizontal arrows represent a Narration relation,
for example Narration(ns, ;) between the sentences He ate salmon and He
devoured lots of cheese. Now, the Right Frontier Constraint (RFC) is the key
principle used in SDRT to ensure that the addition of sentence 7g is ungram-
matical. RFC restricts the points in the structure where a new sentence can be
attached, by only allowing new attachments to the last sentence and every sen-
tence for which it is a subordinate. In this case it restricts the possible points
where g can be attached to sentences 7y, 74, and m5. None of these options will
allow the anaphora resolution algorithm to find a sensible antecedent to It in [t
was a beautiful pink, which results in the sentence being correctly rejected from
this discourse.

2.1.4 Discourse Relation Algebra
There is one more advancement to SDRT based on discourse relations, which was

introduced by |Rozel |2011], who described a method for building inference rules
for discourse relations. The aim is that these inference rules can be used to deduce
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the complete set of relations of a text (i.e. the discourse closure). Essentially,
it forms an algebra, where one can abstract over the known discourse relations
to infer more relations until every possible relation has been found. It could be
useful for merging discourse annotations done by different annotators, possibly
referring to different discourse theories. Roze used a simple example to illustrate
the basic idea, repeated here as Example 2.1.9]

Example 2.1.9

a. m It has rained a lot today.
b. w9 So John cooked.

c. m3 He made a pie.

Consider the situation where an annotator marks the relations Result(my, m)
and FElaboration(my, w3). This would be a correct annotation, but it would not
be entirely complete. It is possible to formulate an inference rule of the form
Result(my, my) A Elaboration(my, m3) — Result(my,m3), whose result could then
be added to the annotation to make it complete. Roze builds several such rules
and describes the process for doing so, although the set of rules is currently far
from complete. Still, this method is a promising option for possibly completing
future discourse-annotated corpora.

Automatically extracting discourse structures and sentence semantics based
on SDRT and any of the other theories described so far is still a difficult task.
However it is clear that applying such a structure to texts would be ideal for
analyzing data and extracting even more information. Indeed one application
which could benefit greatly from these theories is automatic summarization of
(medical) articles. If these methods are applied to a large number of articles and
texts, it becomes impossible to analyze manually, and they need to be linked to
knowledge discovery methods for further analysis. Therefore the next section will
provide a short summary of such methods.

2.2 Knowledge Discovery in Databases

Knowledge discovery in databases (KDD) is the process of extracting knowledge
from a large set of data. Traditionally, data was evaluated manually by experts
in a certain domain, but the amount of data being stored these days has far
exceeded our analysis capabilities. From thousands of satellite images which
need to be scrutinized for new celestial objects, to databases filled with individual
customer purchases which need to be analyzed for new trends in spending, KDD
is applicable to many different fields. It aims to develop tools and theories for
automatically extracting knowledge from a huge database, which can then be
evaluated by the human experts.

[Fayyad et al., |1996] describe KDD as a process which encompasses all the
steps required to apply the actual extraction algorithms (also called data mining),
including data preparation and evaluation. They use Figure to illustrate
the five basic steps, starting with initial, unstructured data usually stored in a
database. The first step, selection, consists of deciding which data sources to

11



us, if there are multiple sources available, and possibly using a selection criterion
to cut down on the number of data instances which will be analyzed. This
results in sets of target data for use in the second step called preprocessing.
It can consist of cleaning the data by removing noise, filling in missing data, or
combining data from different sources, finally resulting in preprocessed data for
the third step. Transformation refers to formatting the data so it can serve as
input to a data mining algorithm. Sometimes this step requires data reduction
or simplification of some kind for the algorithm to be applicable. The fourth
step is the data mining itself, the application of some algorithm which attempts
to extract patterns or other information from the data. Any machine learning
algorithms can be used in this step, depending on the goal of the extraction.
Common examples include classification or clustering algorithms. Patterns which
are outputted by the algorithm need to then be interpreted and evaluated
in the final step, usually by experts in the domain of interest, to extract the
useful knowledge which can be gained from them. The final step often includes
visualization of some kind, to make the evaluation easier for human experts.

Interpretation /
Evaluation
‘ Data Mining '

m .
AN Transformed

Preprocessed Data Data

Transformation

Preprocessing

Figure 2.2: The five steps of knowledge discovery in databases (KDD)
Source: |Fayyad et al.| [1996]

Notice that the KDD process is a recursive one. It is normal to evaluate the
results at each stage of the process, and to go back to an earlier stage for applying
improvements. One interesting algorithm which can be applied during the fourth
step of the KDD process is Formal Concept Analysis (FCA), which can handle
complex data by mathematically defining concepts. Section [2.2.1] will provide
a brief overview of FCA with examples, and in Section [2.2.2] we will outline an
extension of FCA called pattern structures which allow us to apply the methods
to complex data.

2.2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical theory for the analysis of data
which is based on the notion of formal concepts, forming a concept lattice. Formal
concepts are defined as units which have an extent and an intent. The extent
is a set of objects, the instances of the concept, whereas the intent is a set of
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attributes, forming a description which is common to all the instances. A lattice
structure can organize the concepts based on relations between the extents and
intents, showing how some concepts generalize over others. The lattice also serves
as a useful visualization tool which domain experts can use to extract knowledge.
Here we will provide only the basic definitions of FCA; a detailed description with
proofs can be found in [Ganter et al., [1997].

FCA starts with a formal context K = (G, M, ), where G is a set of ob-
jects, M is a set of attributes, and I is a binary relation between the two sets.
Hence, gIm means the object g has attribute m. A simple example of a for-
mal context in the medical domain, is shown in Table 2.1, Here, the set of
objects is G = {breastCancer, asthma,lungCancer} and the set of attributes is
M = {isCancer, requiresInhaler, caused BySmoking, foundInAdults}. A cross
in the table indicates that gIm, whereas an empty cell shows that there is no
relation between that particular object-attribute pair. This particular example
is very simplified, since patients with asthma do not always require an inhaler,
and smoking is only one of the many possible causes for both asthma and lung
cancer, but it shows the basic idea.

isCancer requiresInhaler causedBySmoking foundInAdults
breastCancer X X
asthma X X X
lungCancer X X X

Table 2.1: Simple formal context

To create formal concepts from a formal context, we need derivation operators.
There are two such operators, both represented by prime ('), one for a set of
concepts and one for a set of attributes. Consider a set of objects A C G, then
A’ defines the set of attributes which are shared by all objects in A, defined as
A'={m € M| gImVg € A}. Similarly, consider a set of attributes B C M, such
that B’ defines the set of objects that carry all the attributes in the set, formally
defined as B’ = {g € G| gIm ¥m € B}. Example shows how the derivation
operators can be applied to the formal context in Table [2.1] The first case shows
that when you consider the set of objects containing only asthma, the derivation
operator returns the set of all attributes which apply to that object. Of course
the operator can be applied to a larger set, as shown in the second case where
the set of objects contains both breastCancer and lungCancer. In that case the
operator returns the set of attributes which both of the objects share. The third
case shows the derivation operator applied to a set of attributes, returning the set
of objects to they apply. And finally the fourth case illustrates that the derivation
operator can return an empty set, since there isn’t a single object which both is
a cancer and requires an inhaler.

Example 2.2.1

. {asthma} = {requiresInhaler, caused BySmoking, foundInAdults}
b. {breatCancer,lungCancer} = {isCancer, foundInAdults}

c. {requiresInhaler} = {asthma}

d. {isCancer,requiresInhaler} = {}

s
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Not all of the pairs of sets shown in Example can form formal con-
cepts. Similar to the examples above, a formal concept is a pair of sets (A, B)
where A C G and B C M. However one important restriction on formal con-
cepts is that A’ = B and B’ = A; when this restriction holds, you have a for-
mal concept (A, B) where A is called the extent and B is called the intent.
Based on the definition, it should be clear that the two sets shown in Example
do not form a formal concept, because {requiresInhaler} = {asthma}
but {asthma}’ = {requiresInhaler,caused BySmoking, foundInAdults}. No-
tice that the first two examples do indeed form formal concepts. The double
prime (") operator is a closure operator, and can therefore be used to find closed
sets of concept extents and concept intents. It is illustrated using Example
below:

{requiresInhaler} = {asthma}

{asthma}' = {requiresInhaler, caused BySmoking, foundInAdults}
{requiresInhaler}’ = {requiresInhaler, caused BySmoking, foundInAdults}
The complete set of formal concepts belonging to a formal context is denoted

by B(G, M, I), in contrast to the concept lattice, which is denoted by B(G, M, I).
To build the concept lattice, one needs to define a partial order on formal concepts:

(A1, B1) < (A2, By) & A1 C Ay
which is equivalent to
(Ab Bl) (Ag, BQ) = Bz C Bl

Hence the formal concept (Aj, By) is the sub-concept of (As, Bs), or reversely,
the latter is the super-concept of the former. This partial order can be illustrated
with an example from our medical formal context:

({asthma}, {requiresInhaler, caused BySmoking, foundInAdults})
< ({breastCancer, asthma, lungCancer}, { foundInAdults})

By introducing this partial ordering, concepts can now be organized in a con-
cept lattice. A complete lattice is a lattice where for any two concepts, the
greatest lower bound (infimum) and the least upper bound (supremum) always
exist. In the case of a join-semi-lattice, only the supremum is defined for any two
elements, and in the case of a meet-semi-lattice, only the infimum is defined for
any two elements. In the case of concepts, the infimum and supremum are based
on the double prime closure operator:

- (e ()

teT teT teT

- ((02) 09

teT teT teT
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There are several tools available for performing FCA; in this case we used the
Galiciaf| tool to build the concept lattice of our small medical example as shown
in Figure Each node of the lattice is a formal concept, and each edge shows a
partial order relation between two concepts. Every node is labeled with its intent
(I) and its extent (E). Notice that the top node has an extent which contains all of
the objects in the context, whereas the bottom node has an intent which contains
all of the attributes. The lattice demonstrates a generalization/specialization
between concepts: consider concept 2 as an example, which has an intent of
{foundInAdults,isCancer} and an extent of {breastCancer,lungCancer}. Any
concept it is linked to which takes its place above concept 2 in the lattice is a
generalization, which is only concept 0 in this example. In contrast, any concept
which concept 2 links to and which is placed lower in the concept lattice is a
specialization, which here includes concepts 4 and 5.

¥ |={foundinAdults}
¥ E={asthma, breastCancer, lungCancer}

¥ |={causedBySmoking, foundlnAdults}

¥ E={asthma, lungCancer} ¥ |={foundInAdults, isCancer}
¥ E={breastCancer, lungCancer}

¥ |={causedBySmaking, foundinAdults, isCancer}
/ ¥ E={lungCancer}

3

¥ |={causedBySmoking, foundlnAdults, requiresinhaler}
¥ E={asthma}

5

¥ |={causedBySmoking, foundinAdults, isCancer, requiresinhaler}
¥E={}

Figure 2.3: Simple lattice of our medical formal context

There are a few extensions to basic FCA, such as Relational Concept Analysis
(RCA) and pattern structures. The former serves to model relationships between
objects of FCA. Consider a situation where there are two formal contexts: one
which features different hospitals and their facilities, and one which features pa-
tients with details about their symptoms. Using RCA it becomes possible to
define a mostSuitable relation between the objects of both formal contexts (hos-
pitals and patients) regarding which hospital has the most suitable facilities for a
patient with certain symptoms. Pattern structures, on the other hand, allow us to
apply FCA to complex data which cannot be modeled in a binary context. Since
we aim to work with discourse in medical text, the pattern structures extension
is most relevant in this case and will be described in more detail in section 2.2.2

?http://www.iro.umontreal.ca/~galicia/
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2.2.2 Pattern Structures

For many-valued data it is possible to apply a range of scaling procedures to
transform data into a binary context, such as nominal, ordinal, or interordinal
scaling. However these scaling methods often result in massive contexts, and
limiting the size of the context would result in loss of information. Pattern
structures avoid this build-up of attributes by working directly with the original
complex data. They can be applied to multi-valued data [Kaytoue et al., [2011],
data in the form of graphs |[Kuznetsov, [1999], and indeed textual data [Coulet
et all 2013]. The key idea of pattern structures for handling complex data, is that
one must be able to compare the data descriptions. More specifically, it must be
possible to define a similarity operator which enables ordering the descriptions in
the form of a semi-lattice. It is then possible to build a concept lattice directly
from the complex data descriptions without any loss of information.

Let us assume a set of objects G and a set of their descriptions D (which we
will call patterns). The set of patterns D varies from the set of attributes M
which is used in basic FCA, in that the patterns are more complex (they can
be sets, intervals, graphs, or other formats). Next, there has to be a meet-semi-
lattice (D, M) which provides an order for the patterns. In basic FCA, where
M is a set of attributes, this order is defined by the set-intersection operator
N. This means that when you have several sets of attributes, each describing
one or more objects, these sets can be ordered in a meet-semi-lattice such that
more specific elements of the lattice are subsets of the more general elements. For
complex patterns where the intersection operator does not suffice, one must define
a different similarity relation between the patterns, such that cC d < c¢Md = ¢,
where ¢,d C D and M is the similarity operator which will be used to describe
the similarity between patterns according to a semi-lattice.

Given the definition of the similarity operators, based on the type of pat-
terns which are being used, the whole pattern structure can be represented as
(G,(D,m),0). Comparing this to the original definition of a formal context in
FCA, which was (G, M, I), it is clear that G still represents a set of objects like it
did before, the set of attributes M has been replaced with a meet-semi-lattice of
patterns (D, 1), and the binary relation I has been changed to a mapping from
objects to their patterns: 6 : G — D. To create formal concepts from pattern
structures it is also necessary to define new derivation operators. Again there are
two operators, both represented by the box symbol, one which applies to a set of
objects, and one which applies to a pattern. The first operator returns the most
general pattern which describes all of the objects in set A, whereas the second
operator returns the set of objects which can be described by pattern d. Like
in simple FCA, applying the derivation operator twice gives the closure operator

(.)DD'
AP =T 46(9)

geA

d” = {g € G|d € 5(9)}

As in basic FCA, the derivation operators can be used to form formal con-
cept pairs (called pattern concepts in the case of pattern structures). A pattern
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concept is of the form (A,d) where A C G, d € D, A” = d, and A = d".
In this case, A is called the pattern extent while d is called the pattern intent.
These pattern concepts can be organized into a concept lattice just as before. We
will now illustrate the idea of pattern structures using an example from |Coulet
et al. 2013], who also applies them to textual data in the medical domain. For
more detailed theoretical information about pattern structures, see [Ganter and

Kuznetsov, 2001].

In [Coulet et al., 2013], they compare documents describing medical drugs
based on annotations from the National Cancer Institute (NCI) Thesaurus [
The annotations form the descriptions of each document, which is too complex
for a binary context and therefore requires pattern structures to handle it within a
FCA framework. The NCI Thesaurus is in fact an ontology, where the terms are
organized in a tree-like structure of specialization/generalization. Furthermore
terms from the thesaurus map to a semantic type from the Semantic Network
of the Unified Medical Language System (UMLS) Metathesaurug, which is also
an ontology in the form of a tree-like structure. An expert can choose categories
from the Semantic Network according to the information (s)he is interested in.
Then each document is scanned for terms which appear in the NCI Thesaurus
and belong to one of the semantic categories chosen by the expert. In the ex-
ample described in [Coulet et al., 2013] there are four semantic categories, but
we will simplify their example to two semantic categories: Disease or Syndrome,
and Molecular Function. Table shows the (adapted) formal context. The
two attribute columns each correspond to a semantic type chosen by an expert.
Rows are documents describing a certain drug. Each cell shows the set of terms
found in the document, which are described by the NCI Thesaurus and belong
to the semantic category of the particular column. So the document describ-
ing Drugl contains mentions of tuberculosis and bacterial infection, which are
terms belonging to the thesaurus and correspond to the semantic type Disease or
Syndrome.

Disease of Syndrome Molecular Function
Drugl {Tuberculosis, Bacterial Infection} {Protein_Synthesis}
Drug2 {Bacterial Infection} {Protein_Synthesis}
Drug3 {Tuberculosis, Bacterial Infection} {}
Drug4 {Tuberculosis} {Protein_Synthesis}
Drugb5 {Tuberculosis, Bacterial Infection} {}

Table 2.2: Adapted formal context example in medical domain
Source: Adaptation from |Coulet et al.| [2015]

Each row from Table forms a pattern describing the document in question.
So the document which describes Drug2 has a description:

{Bacterial_In fection}{ Protein_Synthesis}

3http://ncit.nci.nih.gov/
Yhttp://www.nlm.nih.gov/research/umls/
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Every document in the set of objects can be described with this pattern of two
sets of terms. Therefore the set of objects G and the set of patterns D for this
example are:

G = {Drugl, Drug2, Drug3, Drug4, Drugb}

D = {{Tuberculosis, Bacterial _In fection}{ Protein_Synthesis},
{Bacterial_Infection}{Protein_Synthesis},
{Tuberculosis, Bacterial _Infection}{},
{Tuberculosis}{ Protein_Synthesis}}

So to apply pattern structures, there needs to be a similarity operator, which
is where the ontology structure comes in. Figure shows a small part of the
NCI Thesaurus ontology which is relevant to this example; again adapted from
[Coulet et al., 2013]. The tree shows how the terms found in the text can be
ordered, and it includes terms which were not found in the text but are present
in the ontology (like Mycobacterial Infection in this case). Semantic types of each
term are shown for reference, but are not part of the ontology.

Bacterial_Infection

7

Mycobacterial_Inf éction

f

~ Protein_Synthesis
Tuberculosis :

Semantic types
“+{- Molecular Function

woeniif Disease or Syndrome

Figure 2.4: Small part of the NCI Thesaurus ontology
Source: Adaptation from|Coulet et al.| (2015]

The authors define the similarity operator as being the convex hull, which is
the smallest convex set of the set of terms it is applied to. Convex set refers
to the set which includes the initial terms and every term between them and
their least common subsumer (the most specific term which subsumes all initial
terms). Consider the set {Tuberculosis, Bacterial_Infection}; in this case the
least common subsumer is Bacterial_Infection because it is the most specific
term which subsumes both terms. The top node T' also subsumes both terms,
but it is less specific than Bacterial _Infection. Since the convex hull is the set
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of initial terms, the least common subsumer, and everything in between it will

be:

Conv({Tuberculosis, Bacterial_Infection}) =

{Tuberculosis, Mycobacterial _In fection, Bacterial _Infection}

In this case the set of patterns is small enough that it is possible to draw the
whole meet-semi-lattice formed by the similarity operator. It is shown in Figure
2.5 and is also an adapted version of a similar image from [Coulet et all, 2013].
From this image it is possible to see every combination of patterns and how they
would be ordered.

<{Bacterial_Infection, Mvcobacterial_Infection, Tuberculosis]

. |
{Protein_Synthesis}>

(1 . o - N\ s

f {Tubercu losig} <{Bacterial_Infection} {Bacterial/ Infection, Tuberculosis}
(Prerfa . - | J ' |
{Protein_Synthesisi> {Protein_Synthesis}> \ 0 |

Figure 2.5: Meet-semi-lattice of all patterns from working example
Source: Adaptation from |Coulet et al| [2015]

Before now, we have not described how to construct the actual formal (or
pattern) concepts which form the lattice. There are several algorithms available
for achieving this, but one of the more popular ones is the CloseByOne algorithm
by [Kuznetsov, (1993], which is modified slightly for use in pattern structures and
used in both |[Kaytoue et al., [2011] and [Coulet et al.) 2013]. The algorithm
creates concepts from the bottom up, starting with concepts which have the
smallest extents. Every time it generates a new concept, it expands upon that
concept by adding one more object to the extent (determined by a linear order of
the objects) and it then applies the closure operator to generate another closed
concept. Intents are computed by intersecting the intent of the original concept
with the pattern of the added object. Repeating this process recursively produces
all of the closed concepts. To prevent generating identical concepts there is usually
an auxiliary data structure storing existing concepts. However look-ups in such
a data structure can be expensive, so there is also a canonicity test to determine
if the concept is completely new or if it could have been generated before and
is worth looking up. Consider A to be the extent of the old concept and C' to
be the extent of the new concept we want to generate; C' is larger by one object
g. If there exists another object h which appears before g in the linear order of
objects, and which generates exactly the same set C' when it is added to the set
A, then it fails the canonicity test and the algorithm backtracks.
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A few simple modifications are necessary to apply the CloseByOne algorithm
on pattern structures. First, the original derivation operator needs to be replaced
with the one defined for the pattern structure (shown in blue in the pseudo
code). Second, one must also replace the intersection operator with the similarity
operator which applies to the pattern structure (shown in red in the pseudo code).
The pseudocode for this modified algorithm, as defined by |Coulet et al., [2013],
is shown in Algorithm [1] and 2] Besides those two minor changes, the process is
exactly as described above and has the same time complexity of O(|G|?|D||L|)
where G is still the set of objects, D is the set of patterns, and L is the set of
concepts.

Algorithm 1 CloseByOne Algorithm
L=o > L is the concept set.
for each g € G do

process({g}, g, (977, 9"))
end for

Algorithm 2 process(A, g, (C,D))
if {hlh € C\ A and h < g} = @ then
L=LuU{(C,D)}
for each f e {hlhe G\C and g <h} do
Z=Cu{f)
Y = D)
X =Y"
process(Z, f,(X,Y))
end for
end if

CloseByOne results in a list of closed concepts, which can be organized in
a lattice structure like Fig [2.3} for an expert to evaluate and use in knowledge
extraction. The ability of pattern structures to handle complex data, makes it
a favorable choice for our aim of mining textual data by taking into account
discourse structure. The only restriction on the type of data which pattern struc-
tures can handle is that it must be possible to define a similarity operator on the
pattern descriptions for establishing an order.
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3. Data collection

A successful combination of Kowledge Discovery in Databases (KDD) and Natural
Language Processing (NLP) could be applied to helping medical experts discover
new knowledge about rare diseases through the analysis of existing articles. For
this reason we aim to use medical text in our experiments, although we do not
limit ourselves to rare diseases only.

3.1 Types of text

PubMedH is a service which provides free access to a large database of scientific
articles, case reports, and other texts concerning a large number of diseases and
ailments. It is made accessible by the US National Library of MedicineEl, and con-
tains mostly content in English, although there are a few articles present in other
languages. Figure [3.1 shows a screenshot of a PubMed article about fibromuscu-
lar dysplasia, which is a typical example of what we use for this research. There
is a tool available to download a large number of article abstracts automatically,

but the full-text articles need to be accessed manually.

Cases J. 2009; 2: 8881.
Published online Sep 14, 2009. doi: 10.4076/1757-1626-2-8381

PMCID. PMC2827089

Renal artery rupture following cutting balloon angioplasty for fibromuscular
dysplasia: a case report

Elias N Brountzos,"™ Nikolaos Ptonis, Helen Triantaryiiai,? lrene Panagiotou,' Themistokiis N Spyrigopoulos,*
Evangelos P M\siakos,3 and Alexios Kelekis!

Author information » Article notes » Copyright and License information »-

This article has been cited by other articles in PMC.

Abstract Go to:

Related citations in PubMed =
Rupture of the renal artery after cutting balloon angioplasty in a
young woman with fibromuscu [Cardiovasc Intervent Radiol. 2005]
Angioplasty for non-arteriosclerotic renal artery stenosis: the
efficacy of cutting balloon ang [Cardiovasc Intervent Radiol. 2007]
Treatment of reoccurring instent restenosis following
reintervention after stent-suppo [Catheter Cardiovasc Interv. 2007]
[Percutaneous revascularization of renal artery stenosis. Balloon
angioplasty vs. stent implantation]. [Radiologe. 1999]

Treatment of renal artery fibromuscular dysplasia.
[Tech Vasc Interv Radiol. 2010]

See reviews.
Introduction See all..
Angioplasty with the use of cutting balloons has been suggested by some case reports and small series for the
treatment of renal artery stenoses that are resistant to conventional balloon catheters. Based on this limited Cited by other articles in PMC =

experience, the use of this technology has been suggested as safe. Herein, we report a renal artery rupture

Cutting balloon angioplasty of renal artery lesions resistant to conventional balloon angioplasty should not be
considered as safe as previously thought. When proceeding with such a procedure, a stent graft should be
available for immediate use.

Introduction Go to:

Renal artery stenoses are the cause of hypertension in only 1% to 5% of the hypertensive patients. While
atherosclerotic occlusive lesions consist the majority of renal artery lesions, the most common cause of renal
artery lesions in young individuals is fibromuscular dysplasia (FMD). The most common type of FMD is
medial fibroplasia, while intimal and perimedial FMD are less common [1,2].

A Rare and Serious Unforeseen Complication of Cutting Balloon

following angioplasty with a cutting balloon. The complication was salvaged with a stent graft. Analopiasty [Gase Reports In Cardiology. 2014
Seeall.
Case presentation
A 30-year-old white female patient with resistant hypertension caused by a severe renal artery stenosis Links E
atributed to fibromuscular dysplasia, was submitted to conventional balloon angioplasty without success. MedGen
1 Dilatation of the lesion with a cutting balloon resulted in arterial rupture, with concomitant retroperitoneal PubMed
& hematoma.
2
N Conclusion Recent Activity =
Tum Off Clear

E Renal artery rupture following cutting balloon angioplasty for
fibromuscular dys... PMC

Renal artery rupture following cutting balloon angioplasty for
fibromuscular dys... PubMed
fibromuscular dysplasia AND renal artery rupture (45)

PubMe:
breast cancer AND pubmed pmc local[sb] AND
loprovpmec[sb] (39954) PubMe
breast cancer (280535)
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Figure 3.1: Screenshot example of a PubMed article
Source: hitp://www.ncbi.nlm.nih.gov/pmce/articles/PMC2827089/

1
2
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For this reason we do a preliminary evaluation to determine how many dis-
course relations can be extracted from a collection of abstracts as opposed to a
collection of full-text articles and case reports. The details of discourse relation
extraction are presented in Chapter [4} but it is important to know that the more
discourse relations are extracted, the more complete our representation of the
discourse of an article is. Our first preliminary corpus consists of 162 abstracts
from articles about hereditary hemorrhagic telangiectasia, which results in a to-
tal of 1474 sentences. The full-text corpus consists of 10 articles about the same
disease, resulting in a total of 1692 sentences. As expected, the full-text articles
do yield more discourse relations relative to the number of sentences, in fact the
full-text corpus contains at least 7% more relations than the abstract corpus. So
despite the extra manual work required in the absence of a simple download tool,
we choose to build our corpus using full-text articles and case reports.

Most of the data on PubMed comes in the form of articles or case reports.
Both types of text contain a lot of discourse information which can be extract-
ed. Case reports usually report the medical experience of one or two patients,
therefore yielding a lot of temporal relations as the text describes changes in
their situation over a period of time. Medical articles usually describe a piece of
research regarding specific treatments, the presence of certain genes, or the preva-
lence of a disease among a demographic group. These types of articles contain a
lot of information about causal relationships between drugs, genes, demographic
groups, and disease. Condition relations are also prevalent, concerning the types
of situations which caused a patient’s condition to improve or worsen. Other arti-
cles provide a historical account of how treatments and attitudes towards disease
changed over time. Naturally this is another source of temporal relations, and
also provides a lot of contrast relations between different situations in varying
time periods.

Although there is a lot of discourse structure present in medical articles, there
are also disadvantages due to its relative complexity. If one wants to apply any
type of parsing, named entity recognition, stemming, or other preprocessing tool,
it is usually necessary to find one specifically trained for medical data. The
terminology is so different from standard news articles that most of the popular
tools work very badly. Fortunately, although the terminology is complex, the
sentence length is at an average 18.3 words for the entire corpus.

3.2 Building a corpus

We randomly choose 12, not necessarily rare, diseases from the PubMed database
in order to extract 50 articles or case reports from each. Each search on PubMed
is ordered by relevance to the query, and the list of diseases is shown below.

e polycystic ovary syndrome e primordial dwarfism

e hereditary hemorrhagic telangiec-

. e kawasaki disease
tasia

e breast cancer e myasthenia gravis
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e lupus erythematosus e septic arthritis
e renal failure e fibromuscular dysplasia of arteries

e synovial sarcoma e Duchenne muscular dystrophy

Although it is possible to download the articles in PDF format, we collect the
HTML files for easier processing. There are many tools available for removing
HTML tags, but the HITMLParser tool included in Python allows us to extract
only the paragraphs from an article, leaving out other text such as the footnotes,
and captions to figures, which can cause problems for the sentence tokenizer
applied afterwards. This tokenization is performed with the Punkt sentence to-
kenizer provided by the Natural Language Toolkit (NLTK). Unfortunately the
tokenizer handles references very poorly, especially references which appear just
after the end of a sentence, like the two sentences in Example (3.2.1}

Example 3.2.1

Tracheostomy is effective in severe or emergent cases.7 Respiratory stimulants
such as caffeine and doxapram, commonly used for apnea of prematurity and res-
piratory depression after anesthesia, could be a future treatment option in babies
with achondroplasia, due to the stimulation of breathing on the medullary respi-
ratory centers and carotid bodies; however, they have not been evaluated for use
in this patient population.12

We attempted to remove all references from the articles, but because there
are so many different referencing styles this only lead to different problems with
tokenization and sentence legibility. Other tokenization tools did not fare much
better, so we use the results as is and propose more specific solutions based on
careful evaluation of the discourse relation extraction results in Section 4.5l Hence
the resulting corpus is saved in XML format and contains a total of 600 articles.

3.3 External resources

As mentioned before, medical text requires specialized preprocessing tools since it
contains so much domain-specific terminology. Fortunately there are a few tools
available, including thesauri and a named entity recognizer, which we will briefly
introduce here. We utilize these tools when building the pattern structures in
Formal Concept Analysis, which will be described in detail in Section [5.3|

One of the most important sources for medical texts is the Unified Medical
Language System (UMLS)H from the U.S. National Library of Medicine. It pro-
vides several tools, including a large MetaThesaurus which incorporates terms
from several different medical thesauri, and a Semantic Networkﬂ which provides
a categorization of the concepts from the MetaThesaurus. The MetaThesaurus is
a large collection of medical terms, in fact the 2014A A release contains 2,973,458
concepts, and it provides additional information about each term including the

3http://www.nlm.nih.gov/research/umls/
“http://semanticnetwork.nlm.nih.gov/
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variations in names for a term, the preferred name for the term, a unique con-
cept ID called the CUI, relationships between different terms, short definitions
of the term, and links to semantic types in the Semantic Network |[National Li-
brary of Medicine, 2009]. In order to match medical text with terms found in
the MetaThesaurus, there is the MetaMap tool|[National Library of Medicine,
2013], which is essentially a named entity recognizer for medical terms. It pro-
vides several candidates in the form of MetaThesaurus terms for every phrase in
a sentence, ranked according to a confidence level. Example |3.3.1b shows the set
of concepts which MetaMap recognizes based on the sentence in |3.3.1a, when we
choose the top candidate for each phrase.

Example 3.3.1

a. On the other hand, it has been shown that BMP9, a liver-specific BMP, is
present at significant levels in both mouse and human plasma (183, 14), suggesting
that it could act systematically on the endothelium where ALK1 is expressed.

b. {Hand, Show, BMP9 (GDF2 gene), BMP (Bone Morphogenetic Proteins),
Present, Mouse, human plasma, Suggest, ACT, Endothelium}

Although the tool does generate quite a bit of noise, like recognizing the term
Hand from the phrase on the other hand, it also recognizes a lot of terms correctly.
Removing stop words from the sentence does not have any effect on the amount
of noise which the tool produces. Furthermore, the tool can only process ASCII
text, so some information contained in our corpus might be lost during the con-
version. Despite these disadvantages, MetaMap works well for adding additional
semantic information to textual data, especially when the terms it generates can
be connected to semantic types in the Semantic Network.

Every MetaThesaurus term links to at least one semantic type in the Semantic
Network. The network forms a tree-like structure of 133 semantic types, with
54 relationships between them. Some examples of major semantic types are
organisms, anatomical structures, biologic function, chemicals, events, physical
objects, and concepts or ideas. There are several types of relationships between
semantic types, such as spatially_related_to and functionally_related_to, but the
most general relationship is the is_a relation. Figure |3.2] shows a small portion
of the network using the is_a, taken from |[National Library of Medicine, 2009).
The tree structure of the Semantic Network allows us to use it in the creation of
pattern structures, which is further described in Section [5.3]
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4. Extracting discourse relations

There exist many well-developed theoretical representations of discourse in lan-
guage (see Section, but extracting discourse structures from text in practice is
still a challenge. Some research focuses on extracting discourse relations between
or within elementary units of texts like sentences [Marcu and Echihabi, 2002,
Sporleder and Lascarides| |2008|, [Sporleder, 2008], whereas others focus on gen-
erating a more complete discourse structure either at a sentence-level [Baldridge
and Lascarides, [2005| [Soricut and Marcu, 2003, |Wellner et al., 2009] or at a
document-level [Muller et al., 2012].

The latter task of extracting a complete discourse structure is more ambitious
in that it aims to capture the discourse at several levels, resulting in tree or
graph representations. However the methods employed so far rely heavily on the
availability of annotated training data, and the range of corpora with discourse-
related annotations currently available is very limited. Furthermore the different
corpora which do feature discourse-related annotations are based on different
discourse theories, so they cannot be used in combination without first finding
methods to merge them. [Soricut and Marcu, 2003] relied on the RST Discourse
Treebank [Carlson et al., 2002] which is based on Rhetorical Structure Theory
(RST) and results in tree structures of discourse. |[Baldridge and Lascarides, |2005]
performed their own annotation on dialogues found in the Redwoods Treebank
[Oepen et al., 2002], using Segmented Discourse Representation Theory (SDRT).
Whereas [Muller et al., 2012] used ANNODIS [Afantenos et al., 2012], a French-
language corpus also based on SDRT. Finally, |Wellner et al., [2009] performed
experiments on the Discourse GraphBank [Wolf et al., 2004]. As the name sug-
gests, this corpus contains discourse structures in the form of graphs instead of
trees, which allows for more complicated features such as discourse elements with
multiple parents, or cross-dependencies. Although the results achieved through
supervised methods involving corpora is generally promising, none of the re-
sources mentioned above are based on medical texts. Applying these resources
to the medical articles extracted from PubMed would lead to high sparsity, and
consequently give worse results.

There also exist unsupervised methods for extracting discourse from text,
which focus on the sub-task of finding discourse representations in the form of
discourse relations between texts segments, but allow us to circumvent the prob-
lems associated with the corpora. [Marcu and Echihabi, 2002] and [Sporleder and
Lascarides|, |2008] both focused on this approach, where they looked for discourse
markers to indicate a relation between segments, and subsequently trained clas-
sifiers to recognize discourse relations even when the markers are not present.
We use their methods to create our own corpus of discourse-annotated medical
articles. Section describes the discourse relations we considered, after which
Section lists the discourse markers and their patterns. An overview of the
method along with our initial results can be seen in Section [£.3] which is evaluat-
ed in Section [4.4] Finally, Section lists the improvements which were adopted
and shows the final results.
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4.1 Choosing discourse relations

Discourse relations (also called rhetorical relations) describe the connection be-
tween two text segments. Here, we consider two types of relations: intra-sentential
relations occur between two parts of the same sentence, whereas inter-sentential
relations occur between two whole sentences. [Marcu and Echihabi, 2002] illus-
trated the concept of relations with the following two examples:

Example 4.1.1

a. Such standards would preclude arms sales to states like Libya, which is also
currently subject to a U.N. embargo.

b. But states like Rwanda before its present crisis would still be able to legally
buy arms.

Example 4.1.2

a. South Africa can afford to forgo sales of guns and grenades

b. because it actually makes most of its profits from the sale of expensive, high-
technology systems like laser-designated missiles, air-craft electronic warfare sys-
tems, tactical radios, anti-radiation bombs and battlefield mobility systems.

As readers, we can in most cases automatically infer a contrast relation between
the two sentences in Example[4.1.1, and an explanation relation between the pair
of sentence segments in Example [{.1.2 These particular examples feature very
obvious markers: the word but in the first example, and the word because in
the second example. However even when these markers are not present, we can
determine discourse of text through semantic interpretation and our knowledge
of the world. As Marcu and Echihabi pointed out, the sentence 4.1.1la can be
semantically represented as cannot_buy_arms_legally(libya) , the next sentence
can be represented as can_buy_arms_legally(rwanda), our background knowledge
tells us that is_similar(libya, rwanda), and all of this leads to the conclusion that
there is a contrast relation between the two sentences.

Unfortunately such a robust semantic interpreter does not yet exist, so both
[Marcu and Echihabi, [2002] and [Sporleder and Lascarides, 2008| relied on the
obvious markers in a text segment to determine the discourse relation. One major
difference between their methods is the set of discourse relations they considered.
Linguists do not agree on when it comes to the number of discourse relations or
their definitions; each of the theories introduced in Section [2.1] has its own set of
relations, some more detailed than others. Therefore, [Marcu and Echihabi, |2002]
generalized the different theories based on the features they had in common, to
create a small set of just four discourse relations: contrast, cause-explanation-
evidence, condition, and elaboration.

In contrast, [Sporleder and Lascarides, 2008| chose a subset of relations de-
fined by Segmented Discourse Representation Theory (SDRT): contrast, result,
summary, continuation, and explanation. They chose the relations for which
unambiguous markers are known, but which also appear in text without any
markers, since the goal of the experiment was to use the former to classify the
latter. Both sets of relations roughly overlap, and since [Marcu and Echihabi,
2002] took into account SDRT’s relations in their generalization, we can convert
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the relations and compare or combine the two methods.

4.2 Choosing discourse markers

Choosing the discourse markers which indicate discourse relations is another dif-
ficult task. Words can be used in so many different contexts that there is sure to
be some noise in the data extracted using markers. [Marcu and Echihabi, |2002]
chose some very common words, like but and because, based on evidence from pre-
vious research that these words result in contrast and cause-explanation relations
respectively, the majority of the time. Patterns were built around these markers
to determine where the text should be split into the two segments connected by
the relation. Two examples of such patterns are shown in Example 4.2.1], where
BOS and EOS stand for beginning-of-sentence and end-of-sentence respectively,
and the two text segments are contained in square brackets.

Example 4.2.1
[BOS ... EOS] [But ... EOS]
[BOS ...] [because ... EOS]

Applying the second pattern to a simple example sentence shown in Example
4.2.2la, results in the sentence being split into two text segments (indicated by
square brackets) such that a cause-explanation relation holds between the two

parts, shown in Example |4.2.2\b. In total Marcu and Echihabi listed 12 patterns,
containing 8 distinct discourse markers.

Example 4.2.2
a. The apple is bruised because it fell from the tree.
b. [The apple is bruised] [because it fell from the tree.]

In comparison, [Sporleder and Lascarides, 2008] worked with a list of 55 dis-
course markers. They performed a corpus study to select only discourse markers
which are unambiguous, meaning that the study showed the marker to indicate
the same relation in each case. Sporleder and Lascarides also wrote detailed
extraction patterns, but main goal of the patterns was to further disambiguate
discourse markers and decrease the number of false positives in their data. Seg-
mentation of the text was done afterwards by taking into account punctuation,
the position of the marker, and linguistic background knowledge.

Although the Sporleder and Lascarides mentioned the importance of the pat-
terns in ensuring the quality of the data, they unfortunately did not include their
patterns in the paper. For this reason we start the analysis of our medical data
using the discourse markers and patterns provided by Marcu and Echihabi, and
consequently use their generalization of the set of discourse relations: contrast,
cause-explanation-evidence, condition, and elaboration.
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4.3 Extracting relations from medical text

All of the markers and patterns used by |[Marcu and Echihabi, 2002| are listed
in Table [4.1] Any words which are explicitly written are discourse markers, and
the commas are important features of the patterns. In the case of complicated
sentences with multiple segments separated by commas, we always consider the
first comma which is encountered and stays true to the pattern. Square brackets
indicate where the sentence(s) will be split into the two segments connected by
the discourse relation.

CONTRAST

[BOS ... EOS] [BOS But ... EOS]

[BOS ...] [but ... EOS]

[BOS ...] [although ... EOS]

[BOS Although... || [... EOS]
CAUSE-EXPLANATION-EVIDENCE
[BOS ...] [because ... EOS]

[BOS Because ... ,] [... EOS]

[BOS ... EOS] [BOS Thus, ... EOS]
CONDITION

BOS If... ] [... EOS]

[BOS If...] [then ... EOS]
[BOS ..] [if ... EOS]

ELABORATION
[BOS ... EOS] [BOS... for example... EOS]
[BOS...] [which... ]

Table 4.1: Initial set of patterns for relation extraction
Source: |Marcu and Echihaby [2002)]

Extraction is performed by going through every article in the XML corpus,
sentence by sentence. Each individual sentence is checked against every intra-
sentential pattern in Table [4.1] A sentence may only contain one discourse re-
lation, since splitting a sentence on several relations requires finding an order or
structure between them (often in the form of a tree). Afterwards, the current
sentence and the next sentence adjacent to it are compared against every inter-
sentential relation in the table. Once again, only one relation may hold between
two adjacent sentences. This means that in total, a sentence can have maximum
three relations: one with the previous sentence, one within the sentence itself,
and one with the next sentence.

This method results in a total of 10,962 relations found in 81,505 sentences,
with more detail shown in Table[4.2] In this table, the third column shows a ratio
calculated by dividing the number of relations found by the number of sentences,
and this multiplied by 100. The last column shows this very same ratio calcu-
lated with the results reported by [Marcu and Echihabi, 2002], to examine the
differences between our results. In their experiments, Marcu and Echihabi used
what they called a Raw corpus, composed of several different corpora provided
by the Linguistic Data Consortium. Although they did not mention the specific
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corpora which were included, nor the type of text these corpora contained, it is
probably safe to assume that not all of it was based on medical texts.

The ratios are quite similar in most cases, the only exception being the con-
trast relation, which appears less frequently in our medical corpus than in the
mixed corpus used by Marcu and Echihabi. One important feature of our corpus
is that it consists only of medical articles and case reports, which in most cases
aim to dispense information about a disease or a patient in a very straightforward
way, leaving out any information deemed inessential. Although contrast relations
can obviously be used to dispense such information, the very nature of contrast
also makes it ideal for adding more excitement to a story or other text. Hence
a possible explanation for the disparity between the number of contrast relations
found in our respective corpora, is that Marcu and Echihabi’s corpus possibly
contained more text of the type which would use contrast relations for the ex-
citement factor (like journalism). Similarly, a possible explanation for why our
corpus contains more elaboration relations than Marcu and Echihabi’s corpus, is
that elaboration is essential for conveying information straightforwardly without
repetition, and could therefore be more important in our collection of medical
articles.

Relation type # found Ratio H Original ratio

Contrast 4072 5.00 9.43
Cause 1670 2.05 2.16
Condition 951 1.17 2.93
Elaboration 4269 5.24 4.46

Table 4.2: Initial results of extracting relations from medical text

4.4 Manual error evaluation

We perform manual evaluation to determine the quality of the extracted relations
and the most common source of errors. The evaluator is a native speaker of
English, although she does not have experience in annotating medical texts. A
total of 200 relations are chosen randomly for evaluation, 50 for every relation
type. Each of these is checked against five categories of errors, described below.
Table 4.3 shows the results of the evaluation for each type of relation.

e Error 1 - Wrong relation: This error means the wrong relation type
is assigned to two text segments, when in reality they are connected by a
different relation type or not connected at all. It also includes cases where
two relations are possible, but where the one which is extracted is not the
main one.

e Error 2 - Wrong span: Relations belong to this error category when
the type of relation is correct, but the splitting of the two text segments is
incorrect.

e Error 3 - Mistake in preprocessing: This category contains erroneous
relations where the error is caused by a mistake in the preprocessing of
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the text, either during the HTML parsing step or the sentence tokenization
step.

e Error 4 - Sentence is too complicated: Since we make a very impor-
tant simplification of discourse structure, in restricting each sentence to
a maximum of 3 relations (one intra-sentential, and two inter-sentential),
some sentences have a structure which is too complicated to be analyzed
with this simplification. Hence, erroneous relations which are the result of
a sentence being too complicated for our method fall into this category.

e Error 5 - Error is unclear: This category includes any cases where
the relation does not seem quite right, but cannot be placed in any of the
previous categories.

Table [4.3] shows that the condition relation is the most erroneous out of the
relation types, and the most common error types are error 4 (sentences are too
complicated) and error 3 (earlier mistakes in preprocessing). In total, 40.5% of
the extracted relations contain some sort of error.

Relation type FError 1 Error 2 FError 3 Error 4 FError 5 Total

Contrast 1 2 6 7 0 16
Cause 1 2 6 6 2 17
Condition 7 7 5 5 2 26
Elaboration 1 5 7 9 0 22

Table 4.3: Error analysis of initial results

Below are some examples of erroneous relations and how they are categorized,
to show the main sources of error.

Example 4.4.1

Error 1 - Wrong relation

a. [This can be rather worrisome | [because patients may receive an inappropriate
treatment if pathologists or physicians make an incorrect diagnosis of it, particu-
larly in cases of MSS occurring in an uncommon site.]

b. [A two-tailed Mann Whitney t-test was used to determine | [if significant dif-
ferences ezisted.]

Example [4.4.1] shows two relations which are marked as being erroneous due
to the wrong relation having been assigned. The first two text segments, shown
in Example [4.4.1]a, were marked during the extraction process as having a cause
relation. Although this relation is not incorrect, the first text segment gives very
little useful information. There is another relation present within this sentence,
namely a condition relation marked by the word if, which presents much more
useful information than the relation type cause in this case. Hence the condition
relation would be preferable over the cause relation in this case.

The second pair of text segments, shown in Example [£.4.1]b, were marked as
having a condition relation during extraction. Although one could possibly argue
against marking this as an erroneous relation, we do not consider these cases to
truly represent condition because it is unclear in the two segments which one is
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the condition and which one is the result. This is one of the reasons why Table
shows so many errors of the first type for the condition relation; most of those
errors are caused by sentences which contain to determine if, to assess if, or to
see if.

Example 4.4.2

Error 2 - Wrong span

a. [Acquired myasthenia gravis (MG) is an autoimmune disorder of the neu-
romuscular junction in | [which patients experience fluctuating skeletal muscle
weakness that often affects selected muscle groups preferentially.]

b. [Although the interactions between PCOS,] [ OSA, and the cardiometabolic con-
sequences are complex, a recent study has shown improvement in cardiometabolic
profile after the successful treatment of OSA (10).]

Example [£.4.2]a shows an intra-sentential relation marked as elaboration dur-
ing automatic extraction. The type of the relation in this case is correct, however
the splitting of the sentence into two parts is off by one word. The last word
of the first segment, in, should be included in the second segment in order for
this relation to be correct. Example [£.4.2]b shows a relation where the span is
off by more than one word. It is marked as a contrast relation by the extrac-
tion process, which is again correct, however splitting the sentence on the first
comma according to our pattern caused the mistake in spans. The split should
have been made between “... consequences are complex,” and “a recent study...”.
Some might argue that this example belongs to the fourth category of errors (i.e.
sentences which are too complicated), however we consider it to be the second
category because a list is quite a common occurrence within sentences.

Example 4.4.3

Error 3 - Mistakes in preprocessing

a. [Tracheostomy is effective in severe or emergent cases.7 Respiratory stimulants
such as caffeine and doxapram, commonly used for apnea of prematurity and res-
piratory depression after anesthesia, could be a future treatment option in babies
with achondroplasia, due to the stimulation of breathing on the medullary respi-
ratory centers and carotid bodies; however, they have not been evaluated for use
i this patient population.12 Our patient underwent three-dimensional computer-
ized tomography (CT) of the cervicomedullary junction without sedation instead
of MRI with sedation, | [because of faster image acquisition time with C'T than
MRI, and the risks associated with sedating an infant patient with SDB in order
to acquire MRI images.]

b. [Transient or low-affinity interactions could appear CSA/CSB independent |
[if interactions are fized by cross-linking as in ChIP experiments (Schwertman et

al.]

Most of the errors in the third category, mistakes in preprocessing, are caused
by the sentence tokenization process. Example 4.4.3| shows two cases which are
common in our data. In the first case, the tokenizer is unable to handle cita-
tions placed directly after the sentence boundary, resulting in a concatenation of
several sentences. In the second case, the abbreviation et al. causes a problem.
This problem was also seen with abbreviations such as e.g. or i.e., resulting in
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sentences cut off halfway.

Example 4.4.4

Error 4 - Sentence is too complicated

a. [The explanation of this phenomenon is not evident: the complex diploid tu-
mors cannot be regarded as aneuploid, even if the complex karyotype shows evident
aneuploidy (] [although at a more sensitive level).]

b. [For example, whereas vascular-specific targeting of Alk1 recapitulates the phe-
notype of HHT2 [29], vascular-specific targeting of TGF RII, | [which is the major
type II receptor for TGF on EC, has no vascular phenotype [18].]

Finally, Example shows two erroneous relations where the error occurs
because the sentence is too complicated for our method to work. The first sentence
shows typical use of parentheses for creating almost another sentence within a
sentence. Our extraction process recognized the relation within the parentheses
correctly, but because the part within parentheses is only a side-note, the relation
does not hold with the entirety of the rest of the sentence. The second sentence
does not have any side-notes hidden between parentheses, but it does consist of
many different parts separated by commas. These different parts could easily be
split into two separate, simpler sentences. In these cases it is very unlikely that
our extraction method can find one relation which hold between the two main
parts, because there are just too many sub-parts to consider.

We will not look at the errors belonging to the fifth category, since there were
only four such errors in the 200 examples. Furthermore, the errors belonging to
the last category are so different that there is no common problem to look at
solving.

4.5 Improvements in the relation extraction pro-
cess

Based on manual evaluation of the errors encountered in our initial results, we
implemented and tested several ideas for improving relation extraction. The
improvements are listed based on the error category they belong to.

Error 1 - Wrong relation

e (learly the condition relation suffers the most from cases where an incorrect
relation is assigned. This is almost always caused by phrases such as to
determine if, to assess if, or to see if. Hence an idea for decreasing the
number of these errors is to check if the word preceding if in a sentence is
a verb. Upon further inspection of the relation examples, we restrict the
word appearing before if to past tense verbs, past participle verbs, and non-
verbs. This will approve relations like [In these analyses, the whole family
was excluded | [if a proband had T2DM (n = 2 families and 7 people).], but
reject the cases we mention above.
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Error 2 - Wrong span

e Although it is again the condition relation which suffers most from wrong
span errors, we could find no clear pattern to these errors. On the other
hand, the elaboration relation also has a lot of errors involving spans, and
there is a pattern which can be used to formulate an improvement. Most of
the errors involve the discourse marker which, because the pattern defined
by Marcu and Echihabi splits the relation directly before this marker, but it
is often accompanied by prepositions or other auxiliary words, for example
in which, for which, or at which. Hence a possible improvement is to check
the word appearing before the marker which, and to split the sentence one
word earlier if this word is a preposition or a subordinating conjunction.

Error 3 - Mistake in preprocessing

e A lot of mistakes in preprocessing are caused by the sentence tokenizer
mistaking an abbreviation for the end of a sentence. For this reason we
remove the punctuation marks from abbreviations which commonly appear
in scientific (and medical) documents: Fig., et al., e.g., etc., and i.e.

e Another type of error which involves the sentence tokenizer is when citations
appear after the end of a sentence. Quite a few of the articles in the corpus
use this style of citation, so to prevent this from disturbing the tokenization
process, all citations of this type are removed from the texts.

Error 4 - Sentence is too complicated

e Many sentences in medical texts contain additional information in parenthe-
ses. Sometimes the parentheses are a complete sentence within themselves,
which causes errors during relation extraction, especially when the text in
parentheses contains one of the discourse markers. To solve this problem,
any information between parentheses is removed before relation extraction
occurs, and replaced after the algorithm has decided the relation type and
the splitting point.

e Many of the sentences encountered in our corpus could easily be split into
several simpler sentences. These types of sentences are often characterized
by many phrases separated by commas. We perform a simple evaluation
on sentences which are marked as being too complicated, compared to sen-
tences which are marked as being correctly extracted. In this evaluation we
count the number of phrases separated by commas and the average length of
these phrases. More than 90% of the correctly extracted sentences contain
less than 5 phrases separated by commas. When looking at the phras-
es which are marked as being too complicated, about 90% of the phrases
are larger than 50 characters. Although it is desirable to perform further
evaluation to determine the best values at which to reject relations, time
constraints push us to use these values as cut-off points.

Although the implementation of the above improvements is a good starting
point, it is important to remember that there is another experiment from which
we can draw information. [Sporleder and Lascarides, 2008| provide a large list of
50 discourse markers used in their experiments, so it is worthwhile to try finding
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patterns for the most popular markers on their list. As explained in Section [4.1]
Sporleder and Lascarides use a different set of discourse relations than Marcu
and Echihabi, but there is some comparison. The set of discourse relations used
so far in this project is a generalization made by Marcu and Echihabi based on
several discourse theories, including SDRT, which is the theory used by Sporleder
and Lascarides. The former authors provide a table in their paper, detailing how
relation types from different theories are categorized in the four relation types
they defined (and which we use here). From this table it is possible to see that
the relations Result and Explanation in SDRT are part of our Cause relation,
and the Contrast relation in SDRT is equal to our own Contrast relation.

To determine which of the markers belonging to the Result, Explanation, and
Contrast relations are best to add to our algorithm, we count how often each
marker appears in our corpus. The most common markers are however (Con-
trast), whereas (Contrast), (in|by) contrast (Contrast), and consequently (Re-
sults). Proper extraction patterns are needed to minimize errors, and since these
patterns are not provided by Sporleder and Lascarides, we created new patterns
based on a manual inspection of the occurrences of these markers in the corpus.
This results in a new pattern table, shown in Table [4.4]

CONTRAST

[BOS ... EOS] [BOS But ... EOS]
BOS ...] [but ... EOS]

BOS ...] [although ... EOS]

[

[

[BOS Although... ] [... EOS]

(BOS ... EOS] [BOS However .. EOS]
[BOS Whereas... ] [... EOS]

[BOS ...] [whereas ... EOS]

[BOS (In|By) contrast ... ,| [... EOS]

[BOS ... EOS] [BOS (In|By) contrast, ... EOS]
CAUSE-EXPLANATION-EVIDENCE
[BOS ...] [because ... EOS]

[BOS Because ... ] [... EOS]

[BOS ... EOS] [BOS Thus, ... EOS]

[BOS ... EOS] [BOS Consequently ... EOS]
[BOS ... ] [(and)(,) consequently ... EOS]
CONDITION

[BOS If... ] [... EOS]

[BOS If...] [then ... EOS]

[BOS ..] [if ... EOS]

ELABORATION
[BOS ... EOS] [BOS... for example... EOS]
[BOS...] [which... |

Table 4.4: Final set of patterns used in experiment
For the marker howewver, there is only one pattern, to check if it occurs are

the start of a sentence. The occurrence of however within a sentence is too com-
plicated to replicate correctly in one or two patterns, especially to decide where
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to split the sentence and whether it is an inter-sentential or intra-sentential rela-
tion. In contrast, the marker whereas is relatively easy and has similar patterns
to the marker although. Again, for the marker (in|by) contrast we only check
the beginning of a sentence because its occurrence in the middle of sentences
is too complicated. However there are two different situations for this marker:
when it appears at the beginning of a sentence followed directly by a comma,
it forms an inter-sentential relation with the previous sentence, otherwise it is
intra-sentential. Finally, the marker consequently can appear at the beginning of
a sentence to form an inter-sentential relation. When it appears in the middle
of a sentence, the pattern will only be accepted if the word and, or a comma, or
both, appear in front of the marker. This does not cover all cases of the use of
consequently, but it does reject many cases where consequently does not indicate
the main relation within a sentence (i.e. when it appears in one of the phrases
found in a complicated sentence).

After running the algorithm again with all of the improvements and the new
markers, and doing another manual evaluation of 200 relations, we found that
the first improvement listed above, which tries to decrease the number of wrong
relation errors for the condition relation, is ineffective. Therefore it was scrapped
before running the algorithm one last time to arrive at the results presented in
Table [4.5] It shows the number of relations of each type found in our text, which
consisted of 82,667 sentences.

Relation type # found Ratio H Initial ratio Original ratio

Contrast 6545 7.92 5.0 943
Cause 1726 2.08 2.05 2.16
Condition 793 0.96 1.17 2.93
Elaboration 4181 5.06 5.24 4.46

Table 4.5: Final results of relation extraction

Again, the ratio was calculated by dividing the number of relations found
by the total number of sentences, multiplied by 100. It can be compared with
the ratio of our initial results, repeated in the third column, and the ratio of
the results achieved by [Marcu and Echihabi, 2002] in the last column. Our
ratios have improved for contrast and cause, due to the extra markers taken from
[Sporleder and Lascarides, 2008|]. The ratios for condition and elaboration did
decrease a little, however this is compensated by the improvement in error rate
of more than 10%. Table 4.6/ shows the final error analysis results.

Relation type FError 1 Error 2 FError 3 Error 4 FError 5 Total

Contrast 3 2 3 1 0 9
Cause 1 3 0 7 1 12
Condition 6 5 2 7 0 20
Elaboration 3 1 2 7 1 14

Table 4.6: Error analysis of final results

The new error analysis results show that the number of errors caused by mis-
takes in preprocessing has decreased significantly, and the elaboration features
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less errors in span now that the word before which is being examined for its type.
There are still quite a few errors involving sentences which are too complicated,
so this requires more experimentation to fix. Ideally it would involve methods for
simplifying the sentence based on its content, but this would require the avail-
ability of the semantics which we want to extract in the first place. So instead, a
good start to tackling the issue would be to further analyze which features make
the sentences too complicated and how these features can be detected. Finally,
notice that the condition relation is the most problematic relation in both the
initial and final results. A possible reason for this is that the algorithm really
only has one discourse marker (if) and three patterns involving this pattern to
check for. If it is not possible to find more markers for the condition relation, or
to improve the results found with the available patterns, it might be better to
choose a different discourse relation for future experiments. Indeed, [Sporleder
and Lascarides|, 2008] chose not to use the condition relation, they featured the
continuation and explanation relations instead.

4.6 Final analysis of discourse relation extrac-
tion

The ratios found in Table show that the relation data is very sparse. Re-
lying solely on explicit discourse markers in a text is clearly not sufficient for
extracting the majority of the semantics. To create a truly complete structure
of a sentence requires background information and semantic knowledge of words,
however there are possibilities for extending the current extraction capabilities.
One such possibility is Discourse Relation Algebra |Roze, 2011], introduced in
Section [2.1.4] Tt provides inference rules which can be used to generate a com-
plete set discourse relations from an incomplete set, hence it would be perfect for
reducing the sparsity of our data. However the method is not entirely finished,
only a few rules have been defined so far, but it is a good option for improving
our data in the future.

We managed to decrease the error rate in relation extraction from 40% down
to 30%, but this still carries quite a lot of noise through to the next step of this
project. In the future it would be worthwhile to attempt decreasing the error
rate even further. The sentence tokenizer is a source of quite some noise, so
experimenting with different preprocessing tools is one option for improvement.
Devising other improvements similar to the ones we’ve already introduced requires
more manual evaluation of the relations to build even more complex patterns.
One final possibility is to combine the unsupervised methods with some of the
supervised methods. For now, the results are promising enough to move on to
the data mining stage.
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5. Representation using FCA

To apply Formal Concept Analysis to relational discourse data it is necessary to
define a formal context as a starting point, with a set of objects and a set of
attributes (or patterns). By applying the CloseByOne algorithm to the formal
context, one can generate the closed concepts for forming a concept lattice. And
in the case of complex data which needs to be represented using the formalism of
pattern structures, it is essential to define a proper similarity operator.

There are many different possibilities for converting our discourse relation data
into such a formal context format with appropriate similarity operators, and each
method can result in a very different concept lattice. Some concept lattices could
provide useful knowledge to an expert, whereas others might be less suitable.
Hence in this chapter we discuss and compare different representations of formal
contexts, possible similarity operators, as well as external resources which could
add value to the data. First, some basic choices regarding FCA representations
are discussed in Section [5.1] followed by some more complex representations using
pattern structures in Section [5.2] Section describes external resources which
we use to add additional semantic value to our data and to define an order relation
between patterns. Finally, in Section we talk about the algorithm which is
used to generate the closed pattern concepts and the final lattice.

5.1 Representing discourse relation data in FCA

We start by discussing the options of using the basic FCA theory when repre-
senting discourse relations, because it is possible to imagine representations where
our data is fit into a simple binary context. To illustrate how this could be done,
we first introduce three relations from our corpus in Example These three
relations will be used throughout this chapter to give a better idea of what each
approach could look like. Each relation has a name, for example bc49r3, which
means that this relation is the third relation from article be49 (the 49th article
about breast cancer) in our corpus. The relations are displayed with their XML
discourse annotation as they are stored in the corpus, such that the tag surround-
ing the entire relation indicates its type (CONT for contrast, CAUS for cause,
ELAB for elaboration, and COND for condition), and within this there are two
more tags to indicate how the sentence(s) are separated into two parts (PART1
and PART?2).

Example 5.1.1

bc49r3: <CONT><PARTI1>Using TFSEARCH (32), a web-based program that
searches for transcription factor binding sites, an Nkx-2.5 binding site was found
to be present when the major A allele was present, </PART1><PART2>but not
when the minor G allele was.</PART2></CONT>

bc49r8: <FELAB><PARTI1>Phosphorylated SMAD2 and SMADS3, in associa-
tion with SMADY, form a complex </PART1><PART2>which accumulates in
the nucleus and acts as transcription factors to requlate target genes.</PART2>
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</ELAB>

bc50r4: <CONT><PARTI1>On analyzing the data in rs353639 polymorphism
with logistic regression, we found increased significance of both the genotype (P
= 0.017, OR = 4.29) as well as allele (P=0.025, OR=3.34) with clinical tumour
size when compared with the results of univariate analysis (Table 6).</PART1>
< PART?Z2> However, no significant association of both the polymorphisms was seen
with treatment response to NACT.</PART2></CONT>

These particular relations were chosen because they come from two articles
which both discuss the role of particular genes in breast cancer cases, so there is
a higher chance that the relations have something in common and can provide
additional knowledge when combined. Both articles contain between 10-20 rela-
tions, but in order to keep the examples simple we chose three at random. The
first two in Example [5.1.1h and [5.1.1b come from article bc49, where the first
one is a contrast relation and the second is an elaboration relation. The third
relation comes from article be50 in the corpus and also belongs to the category
of contrast.

So one option for applying the relation data to a binary context is shown in
Table[5.1|where objects are the documents and attributes are the specific relations
found in those documents (in this case limited to the three relations we specified).
This is the most naive and direct way of fitting the data into the binary context
format. A document is related only to the relations which occur in its content. In
this particular example the context is quite small, however one can imagine that
such a method would quickly lead to contexts which are enormous in size, since
most relations are unique and belong only to one document. For this reason,
this type of context also doesn’t provide much useful information, because there
will likely be little to no overlap between documents (unless they contain exactly
the same sentence). Finally, it would be up to the expert to read and interpret
every relation in the resulting concept lattice, so it does not truly make use of
the additional information which discourse provides.

r3 14 18
bc49 | X X
beb0 X

Table 5.1: Primitive context for discourse relations

One of the first choices which needs to be made when formulating a formal
context is the definition of the objects. In Table each object is an entire docu-
ment, but one could just as easily define the objects to be paragraphs, sentences,
or even words. The choice of objects is completely dependent on what it is that
one wants to compare. If the goal is to compare various medical articles and
select the relevant ones according to some criteria, then articles are the obvious
choice for objects. However if a researcher were more interested in the structure
of relations, then indeed it would be possible to use the relations themselves as
objects. Since the aim of this project is simply to create a basis for the com-
bination of FCA with discourse structure, we could work with either articles or
relations as objects. For now we will use the latter in our examples.
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The next important consideration to make when building a formal context
is the definition of the attributes, which we defined as being whole relations in
Table 5.1l In basic FCA the attributes are restricted to boolean values which can
be represented in a binary table. In the case where we have a set of articles as
objects, this means it is possible to use relations, words, relation categories, or
other entities as attributes. However each of those options is either too general
(there are only four relation categories) or too specific (almost every separate
relation is unique by at least one word). Fortunately pattern structures make it
possible to define more complex patterns to use as attributes.

5.2 Applying pattern structures

In order to determine how pattern structures can be applied to discourse data,
it is important to realize exactly what the components of a relation are. Our
relations contain three components: the type of the relation, the text of the left
part of the relation, and the text of the right part of the relation. Hence the most
direct application of pattern structures to our discourse data would be to have
three types of patterns corresponding to the three parts of our relations. This
format is shown in Table using the three relations we introduced before.

Document| Type Left Part Right Part

bc49r3 CONT | Using TFSEARCH (32), | but not when the minor G
a web-based program that | allele was.
searches for transcription
factor binding sites, an Nkx-
2.5 binding site was found
to be present when the ma-
jor A allele was present,

bcd9r8 ELAB | Phosphorylated =~ SMAD2 | which accumulates in the
and SMAD3, in associa- | nucleus and acts as tran-
tion with SMAD4, form a | scription factors to regulate
complex target genes.

be50r4 CONT | On analyzing the data in | However, no significant
rs353639 polymorphism | association of both the
with logistic regression, | polymorphisms was seen
we found increased signifi- | with treatment response to
cance of both the genotype | NACT.
(P=0.017, OR=4.29) as
well as allele (P=0.025,
OR=3.34) with clinical
tumour size when com-
pared with the results of
univariate analysis (Table
6).

Table 5.2: Direct application of pattern structures to discourse relation data
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In order to generate closed concepts it is necessary to define similarity op-
erators in such a way that any two rows can be compared, which is where we
encounter the first problem with this representation. There is no obvious order
relation between the semantic types of discourse relations; there is no overlap and
there is no specialization/generalization relation between them. Nor is there a
logical clustering between the four categories of contrast, condition, elaboration,
and cause. In the absence of a similarity operator which can be applied to the
second column of Table |5.2] it becomes necessary to redefine the formal context.
A solution to this problem is to separate the four semantic categories in the for-
mal context, resulting in a total of eight pattern columns, two for each semantic
type. Since our example only features two contrast relations and one elaboration
relation, we show only four of those columns in Table [5.3]

Document| CONT Left CONT Right ELAB Left ELAB Right

bc49r3 Using TFSEARCH but not when the mi-
(32), a web-based nor G allele was.
program that searches

for transcription factor

binding sites, an Nkx-

2.5 binding site was

found to be present

when the major A

allele was present,

bc49r8 Phosphorylated which accumulates in
SMAD2 and SMAD3, the nucleus and acts as
in association with transcription factors to
SMAD4, form a regulate target genes.

complex
bc50r4 On analyzing the data  However, no significant
in rs353639 polymor- association of both the
phism with logistic = polymorphisms was

regression, we found seen with treatment
increased significance  response to NACT.
of both the genotype

(P=0.017, OR=4.29)

as well as allele

(P=0.025, OR=3.34)

with clinical tumour

size when compared

with the results of

univariate analysis

(Table 6).

Table 5.3: Pattern structure with separated semantic categories

By separating the semantic categories of discourse relations, we have created
a situation which requires the definition of only one similarity operator to handle
the comparison of the strings which form the parts of the relations. Statistical
methods are one possibility for comparing two strings, such as the Levenshtein
distance or the Jaccard index. The former is an edit distance, meaning it com-
pares two strings by calculating how many changes are needed to turn one string
into another. Changes which can be made include insertions, deletions, and sub-
stitutions. So as an example consider the two words dog and logs; the Levenshtein
distance between these two words is 2, since changing one word into the other
requires one substitution and one insertion. On the other hand, the Jaccard index
is a metric for calculating the similarity of sets. When applied to strings, it views
the strings as sets of tokens and proceeds by calculating the similarity between
two sets of tokens. Similarity is defined as the size of the intersection of the two
sets, divided by the size of the union of both sets. Although statistical similarity

41



measures have been applied to text mining before, they are not ideal for applying
to our data. A quick calculation on our corpus shows that the average Leven-
shtein distance between sentences is above 150 changes. Another possibility is to
abstract over the sentences by first applying part-of-speech tagging and then cal-
culating similarity with a string metric, but this would cause loss of information.
However, the string metric method in combination with part-of-speech tagging
could be kept in mind for linguistic research, since it could provide information
about how relations are structured.

Since discourse relations rely on the meaning of sentences, it would be logical
to apply a similarity operator which is based on semantics. Ideally we would build
a logical formula of the sentence based on one of the theories introduced in Section
[2.1] such as DRT or SDRT. However, as mentioned before, we lack the semantic
tools to properly build these formulas regarding both semantics and background
knowledge. Attempting to create the formulas anyway with the limited tools
available would result in a lot of noise in our data. Furthermore, such formulas
would have to be compared to create an order relation between them, and this
cannot be done through formal logic alone. They contain complex elements which
require further background knowledge to understand and compare. Although
building the complete set of formulas is not an option at this time, we can add
some basic background knowledge to the text by using an ontology. This requires
the application of external resources, like a medical thesaurus.

5.3 Adding information through external resources

In Chapter 2| we described how [Coulet et al., 2013] use the NCI Thesaurus to
extract sets of concepts from documents. The tree structure of the ontology
provides an order relation between the concepts, and the similarity operator was
defined to be the convex hull. NCI Thesaurus is one of several ontologies incorpo-
rated in the Unified Medical Language System (UMLS) MetaThesaurus [National
Library of Medicine, 2009]. We describe the UMLS MetaThesaurus and Semantic
Network in Section [3.3] The elements of the UMLS MetaThesaurus are usually
referred to as concepts, but we will call them terms to make it clear that UMLS
concepts are not the same as formal concepts of FCA. To extract sets of UMLS
terms from textual data, we use the MetaMap tool [National Library of Medicine),
2013] which was developed specifically for that purpose. Example shows the
human-readable output which MetaMap produces for the phrase human plasma.
It finds a total of 4 MetaThesaurus terms which can correspond to the phrase at
varying confidence levels. In our experiments we use the XML output for easier
processing, but the results are the same.

Example 5.3.1

Phrase: "human plasma”

Meta Candidates (Total=4; Excluded=0; Pruned=0; Remaining=4)
1000 human plasma [Pharmacologic Substance/

861 Plasma [Body Substance]

861 Human (Homo sapiens) [Human/
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861 Plasma, NOS (not otherwise specified) [Body Substance]
Meta Mapping (1000):
1000 human plasma [Pharmacologic Substance]

In order to create the set of terms which corresponds to the text of a relation,
we select only the top candidate for each phrase identified by MetaMap. These
sets then replace the textual data in the formal context, as shown in Table
for the three chosen relations. Although these sets do abstract over the text
somewhat, they clearly provide much more information than if we were to apply
a statistical string metric like Levenshtein distance. One disadvantage is that
MetaMap does overgenerate quite heavily; the sets shown in Table |5.4] are all
quite large. On top of that there is quite a bit of noise: the relation bc50r4
mentions a table in the sense of a collection of information, but MetaMap links it
to the term Tablefurniture. It is possible to tweak the MetaMap results through
the use of a confidence threshold, which would at least decrease the size of the
sets, even though it would not prevent the occurrence of noise. For future work
it could be worth spending time on an empirical evaluation to determine the best
threshold for our corpus.

Document| CONT Left CONT Right ELAB Left ELAB Right
bc49r3 {Useof; Basisconcep- {Negation; Alleles} {} {}
tualentity; Program-
frameworkofgoals;
searchEntityNameUse;

BindingSites; Present;
To; Present; Major;
Alleles; Present}

bcd9r8 {} {} {SMAD2gene; {CellNucleus; TRAN-

SMAD3gene; Men- SCRIPTIONFAC-

SMAD4gene; Qualita- easeGene}
tiveform; Complex}

talassociation; TOR; CandidateDis-

bcb50rd {Data; LogisticRe-  {Mentalassociation; {} {}
gression; Present;  GeneticPolymorphism;
StatisticalSignificance; therapeuticaspects;

Genotype; Pblood- SLC13Ab5gene}
groupantibodies;  Al-

leles; Pbloodgroupan-

tibodies; Tumorsize;
univariatestatistics;

Tablefurniture}

Table 5.4: Pattern structure with UMLS MetaThesaurus terms

With a collection of MetaThesaurus terms populating our formal context in
place of textual data, it becomes much easier to define a similarity operator. In
fact we can use the Semantic Networl{]] as an ontology to order terms, similar
to how |[Coulet et al. [2013] use the structure of the NCI Thesaurus. Every
MetaThesaurus term links to at least one semantic type in the Semantic Network.
To define an order relation we use only the most general is_a relation between
terms. For simplicity we link every term with only one semantic type in the
network, namely with the type which MetaMap lists first for that term. By
linking the terms to the Semantic Network, we have a tree-like structure which
allows us to define the similarity operation to be the convex hull.

'http://semanticnetwork.nlm.nih.gov/
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5.4 Generating closed pattern concepts

Having defined a formal context in the form of Table [5.4], it is possible to apply
the CloseByOne algorithm to generate the closed pattern concepts. In fact, no-
tice that our formal context is similar to the formal context in Table 2.2] which
shows an adapted example from [Coulet et al. 2013]. Furthermore we define
the same similarity operator, namely the convex hull. We showed an example of
this similarity operator in Section [2.2.2] but we will now formally define it. The
convex hull Conv({c1, c2}) of the set of two terms ¢; and ¢y will be a set of terms
{1, %9, ..., 2, } such that:
x; <les({e1, e2})

(x; > ¢y and x; A ¢y = ¢)or(x; > ¢ and x; A ¢y = o)

where T refers to the top term of the ontology, and lcs finds the least common
subsumer of two terms (the most specific term which subsumes both smaller
terms). Furthermore, the convex hull can be recursively applied to a set of terms

Cp,={c1,c0, ..., 1

Vp € N, Conv(C,) = Conv({Conv(Cy_1),¢p})

Since we use the same similarity operator as |[Coulet et al., 2013], we can use the
modified CloseByOne algorithm defined by the same authors which we repeated
in Algorithms[I]and [2] The authors fortunately provide a java implementation of
the algorithmf] It reads the ontology of the NCI Thesaurus from an OWL format.
We replace this ontology with our own, which contains the complete structure of
the Semantic Network as well as all 12,416 terms which MetaMap found in our
corpus. It was converted to OWL format compatible with the implementation of
the CloseByOne algorithm using the Protégé tool [Tudorache et al [2013]. There
is some discussion about whether or not the OWL format is suitable for modeling
the Semantic Network, due to ambiguities in notation and a few other issues
|[Kashyap and Borgida, 2003], but a simple representation of the network using
only basic relationships and terms can be represented in OWL format without
problems.

Running the algorithm on the formal context in Table results in 8 closed
concepts. Figure shows the structure of the resulting concept lattice. Since
the table which shows the formal context leaves out the four columns relating to
the condition and cause relations, we have also left out those categories in the
lattice image. But keep in mind that this method can work with all four types
of relations at once; every intent would have 8 sets of terms in total, to account
for the left and right text segments of all four relation types. Notice that the
concept lattice is a complete lattice; in fact it is a power set. This will be the
case with any relations compared through our pattern structure model, because
the ontology is a single tree structure, meaning that there is a path to the top
starting from any term. If we want to prevent this, we would need to choose a
different similarity operator.

Zhttps://github.com/coulet/OntologyPatternIcfca
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¥I={{Conv(Tree 1, Tree 5) }{Conv(Tree 2, Tree 6) }{Tree 3}{Tree 4}}
¥ E={bc49r3, bc49r8, hcs50r4 }

3

¥I={{Conv(Tree 1, Tree 5) }{Conv(Tree 2, Tree 6} }{ H{ }
¥ E={bc49r3, bc50rd }

5

¥I={{Tree5}{Tree 6}{Tree 3}{Tree 4}}
¥ E={bc49r8, bc50r4}

1

¥I={{Tree 1}{Tree2}{Tree 3}{Tree 4}}
¥ E={bc49r3, bcd9r8}

7

¥1={{Tree 1} {Tree 2} { }{}}
¥E={bc49r3}

¥1={{Tree 5} {Tree 6} {}{}}
¥ E={bc50r4}

¥I={{}{}{Tree3}{Tree 4}}
¥ E={hbc49r8}

¥I=1{}
¥E={}

Figure 5.1: Concept lattice calculated from the formal context in Table

The full intents of the concepts are too long to present in the figure, therefore
they have been given names corresponding to their representations shown below.
However we will show one example of a full intent to illustrate how the lattice
should be interpreted. Example shows the full intent of concept 3 in the
lattice. The intent consists of four sets contained in curly brackets, where the
first two sets respectively represent the left and right text segments of all contrast
relations in the extent of the concept, and the last two sets represent the left and
right text segments of all elaboration relations in the extent of the concept. Since
concept 3 in the lattice has an extent with relations bc49r3 and beb0rd, which
are both contrast relations, the last two sets of its intent are empty. Example
[5.4.1] shows that the first two intents are both large sets containing terms from
the UMLS MetaThesaurus and the Semantic Network.

Let us consider the very first set in Example [5.4.1] It represents the left text
segments of both contrast relations be49r3 and beb0r4, which we converted into
a set of terms using MetaMap, the results of which are shown in the first column
of Table 5.4l To combine the two relations into a formal concept, the algorithm
computes the convex hull of the two sets of terms. Again in this example we
encounter the problem that MetaMap over-generates to produce very large sets
of terms as pattern descriptions, which result in equally large convex hulls. This
convex hull contains all of the terms from both sets, the least common subsumer
of all of those terms, and every term in between, which results in the first set in
Example Similarly, the second set shown in the example is the convex hull
of the original sets of terms corresponding to the right text segments of contrast
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relations bc49r3 and be50r4 (see the second column in Table [5.4)).

Example 5.4.1

{ Activity, Alleles, Amino_Acid,_Peptide,_or_Protein, Anatomical_Structure, Ba-
sisconceptualentity, BindingSites, Biologically_Active_Substance, Chemical,
Chemical_Viewed_Functionally, Chemical_Viewed_Structurally, Conceptual_Entity,
Data, Entity, Fvent, Fully_Formed_Anatomical_Structure, Functional_Concept,
Gene_or_Genome, Genotype, Idea_or_Concept, Intellectual_Product, LogisticRe-
gression, Major, Manufactured_Object, Occupational_Activity, Organic_Chemical,
Organism_Attribute, Pbloodgroupantibodies, Physical_Object, Present, Program-
frameworkofgoals, Qualitative_Concept, Quantitative_Concept, Receptor, Research_Activity,
Spatial_Concept, StatisticalSignificance, Substance, Tablefurniture, To, Tumor-
size, Useof, searchEntityNameUse, univariatestatistics}

{Alleles, Anatomical_Structure, Biologic_Function, Conceptual_Entity, Entity, Event,
Fully_Formed_Anatomical_Structure, Functional_Concept, Gene_or_Genome, Ge-
neticPolymorphism, Genetic_Function, Idea_or_Concept, Mental_Process, Menta-
lassociation, Molecular_Function, Natural_Phenomenon_or_Process, Negation,
Organism_Function, Phenomenon_or_Process, Physical_Object, Physiologic_Function,
SLC13A5gene, therapeuticaspects}

{}
{}

Since the ontology is structured as a tree, every set of terms can also be
represented by a tree structure. Such a representation is much more intuitive
than looking at a large set of terms. Therefore we will repeat the same example of
concept 3 from the lattice, only now we will illustrate it with the tree structures.
Each tree shows a convex hull which is the entire intent of a concept. It is
important to understand that the colored terms (blue for be49r3 and purple for
beb0rd) are the original MetaThesaurus terms which describe the left textual
segments of the relations. All of the other uncolored terms are simple part of
the hierarchy computed by taking the convex hull of the original set of terms.
The representations do not show the top element of the ontology, so the two
most general semantic types below the top are Entity and Event. So the first
two representations shown below are that of Tree 1, which is the left part of the
contrast relation bc49r3, and Tree 5, which is the left part of the contrast relation
bebH0r4.
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Tree 1 corresponds to the following text: Using TFSEARCH (32), a web-based
program that searches for transcription factor binding sites, an Nkx-2.5 binding

site was found to be present when the major A allele was present,
Treel

Entity
Conceptual Entity
Idea-or_Concept
Functional_Concept
Basisconceptualentity
Use
Qualitative_Concept
Major
To
Quantitative_Concept
Present
Intellectual_Product
searchEntityNameUse
Programframeworkofgoals
Physical Object
Anatomical_Structure
Fully Formed_Anatomical_Structure
Gene_or_Genome
Alleles
Substance
Chemical
Chemically Viewed_Functionally
Biologically_-Active_Substance
Receptor
BindingSites

Tree 5 corresponds to the following text: On analyzing the data in rs353639
polymorphism with logistic regression, we found increased significance of both the
genotype (P=0.017, OR=/.29) as well as allele (P=0.025, OR=5.3/) with clinical

tumour size when compared with the results of univariate analysis (Table 6).
Tree 5

Entity
Conceptual Entity
Idea_or_Concept
Data
Quantitative_Concept
Present
StatisticalSignificance
Spatial_Concept
Tumorsize
Organism_Attribute
Genotype
Physical Object
Anatomical_Structure
Fully Formed_Anatomical_Structure
Gene_or_Genome
Alleles
Manufactured_-Object
Tablefurniture
Substance
Chemical
Chemical Viewed_Structurally
Organic_Chemical
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Amino-Acid, -Peptide, _or_Protein
PBloodgroupantibodies
Event
Activity
Occuptional Activity
Research Activity
LogisticRegression
univariatestatistics

The third representation is the convex hull formed from the first two repre-
sentations Conv(T'reel, Treeb), which is equivalent to the first two sets of terms
shown in Example [5.4.1] When applying the convex hull operator to trees, we
consider both trees to form a set of all the terms they contain. So the convex hull
contains all of the original terms describing the textual segments, colored blue
and purple. In this case, the least common subsumer is the top element because
it is the only element which subsumes all of the colored terms (its is not shown in
the representation, but it connects the current top elements Entity and Event).
The black terms are all of the terms between the top element and each colored
term. Hence all of the terms together is the result of taking the convex hull of
the above two trees representations.

This representation shows the convex hull of the two previous convex hulls.
Conv (Treel, Treeb)

Entity
Conceptual Entity
Idea_or_Concept
Data
Functional_Concept
Basisconceptualentity
Use
Qualitative_Concept
Major
To
Quantitative_Concept
Present
StatisticalSignificance
Spatial_Concept
Tumorsize
Intellectual_Product
searchEntityNameUse
Programframeworkofgoals
Organism_Attribute
Genotype
Physical Object
Anatomical_Structure
Fully Formed_Anatomical_Structure
Gene_or_Genome
Alleles
Manufactured_-Object
Tablefurniture
Substance
Chemical
Chemically Viewed_Functionally
Biologically_Active_Substance
Receptor
BindingSites
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Chemical_Viewed_Structurally
Organic_Chemical
Amino_Acid, Peptide, or_Protein
PBloodgroupantibodies
Event
Activity
Occuptional Activity
Research Activity
LogisticRegression
univariatestatistics

It is important to explain one more aspect of how the lattice should be read.
Normal concept lattices, like the one shown in Figure 2.3] have a large extent at
the top element with a minimum intent, and a minimum extent at the bottom
concept with a very large intent. Hence the further up the lattice a concept is
placed, the more general its intent description is. In Figure [2.3] the top concept
has extent {asthma,breastCancer,lungCancer} and intent {foundInAdults}.
Since every disease in that particular formal context has the attribute foundI-
nAdults, this is the least specific description of a disease. At first glance, our
lattice in Figure looks completely different, with the top element having both
large extent and large intent whereas the bottom element is empty on both.
However it does adhere to the same specialization/generalization structure as the
simpler concept lattice. When examining the final lattice, one must keep in mind
that in this case a larger intent is a more general description than a smaller intent
due to our similarity operator. It should be clear that a small convex hull gives
a much more specific description than a large convex hull.

The concept lattice built for the three relations we chose to use as an example
shows a clear representation of the possible relationships and combinations. It
forms a promising visualization tool. Unfortunately we were unable to run the
algorithm on the full corpus. The large number of terms which MetaMap assigns
to every text segment means the algorithm takes about two hours to run for just
one article. This time varies a lot depending on the complexity of the relations
as well as the number of relations which the article contains. An even bigger
problem is that it cannot handle the bigger articles, or indeed more than one
complete article, because the algorithm will result in out of memory errors. It
ran on a machine with an Intel® Core™i7-3540M processor and 16GB memory.
So for future experiments it would be crucial to run the algorithm on a cluster in
order to process the bigger inputs.

However it would also be a good idea to look into decreasing the number of
MetaMap terms associated with a text segment, since this would greatly speed
up the CloseByOne algorithm. This could be done through simplification of the
sentences, but that might lead to loss of information, so a better method would
be to empirically decide the best MetaMap threshold for producing useful results
on a smaller scale. Limiting the size of the ontology could also speed up the
algorithm during its calculation of convex hulls, but since the UMLS Semantic
Network is already quite small this probably would not have a great impact in
our case.

Despite being unable to run the experiments using our full corpus of 600
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articles, we believe the results show great promise. It is difficult for us to interpret
the lattices from a medical perspective, since we are not medical experts, so we
cannot tell if the convex hull allows for the extraction of new medical knowledge.
However, once one understands how to read the lattice in Figure it becomes
easy to see how the different relations (and by extension the different documents)
interact. The intents of the formal concepts can be difficult to interpret in the
form of sets, but by transforming the visualization into the form of trees, the
intents become easy to understand and interpret at a glance. Such tree structures
provide important hierarchical semantic knowledge, which can be very meaningful
for experts who know the domain well.

In conclusion, we have shown that combining FCA with discourse structures
and additional ontology information is possible and promising. It would be worth-
while to have the data and the method examined by a medical expert to determine
how this method can best be applied to document summarization or document
selection on medical articles. We encountered several problems during the process
of generating the lattices, but with more research we believe these problems can
be mostly resolved and the lattices can become a visualization tool for experts to
use.
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6. Conclusion

As far as we know, this is the first attempt at combining Formal Concept Analysis
with discourse-annotated data. We believe that we have shown the merit of
performing more research on these types of ’deep’ text mining methods, since
discourse can provide a lot of additional information which an analysis focusing
on smaller unit of text cannot provide. In the medical field especially, there
is a wealth of articles from which one can extract causal, temporal, and other
discourse relations. Advancements in the fields of semantics, and in applying
background knowledge to text, would allow for an even more robust extraction
of discourse in the form of logical formulas.

In order to perform this research we have created a corpus of 600 full-text
medical articles, containing case reports, treatment and drug evaluations, de-
mographic studies, and historical accounts of disease treatment, with automatic
annotation of discourse relations. In the future we hope that the annotations can
be expanded, either through manual annotation, through the use of a discourse
algebra with inference rules, or through improvements in our automatic extrac-
tion process. We were able to add additional semantic information to the medical
text through the use of a medical thesaurus, as well as defining an order relation
on those segments through an ontology. The resulting lattice structure provides a
clear picture of the possible combinations of discourse relations. And combining
the lattice with visualizations of the intents in the form of tree structures makes
the whole output a lot easier to interpret. In our case we focused on the medi-
cal domain with a corpus of medical articles, but it might be interesting to try
applying this in different domains, since discourse occurs in every type of text.
Either way, it would be beneficial to eventually include an expert on the domain
of choice, to give input on the modeling process.

Of course we did encounter problems throughout the process of this research.
Many improvements are possible in both the linguistic side of this project, re-
garding the extraction of discourse elements, as well as the data mining side, with
the application of external resources and the modeling of our data using pattern
structures.

The biggest problem regarding the extraction of discourse structure is that
we would ideally like to have a complete structure for every document, accord-
ing to one of the theories described in Section [2.1 However this requires a very
good semantic interpreter as well as background knowledge about the world,
both of which are still difficult to create and model. Any advances in the prac-
tical side of discourse extraction could greatly benefit the information modeled
by our method. The idea of extracting discourse relations between two text seg-
ments is much simpler than extracting an entire tree or graph structure, but it
does provide a start to working with discourse in textual data. Due to a lack
of annotated training data, especially in the medical domain, the unsupervised
methods currently work equally as well as supervised methods. By combining
the methods and key words used in two different works, we extract a total of
13,245 relations. However, considering that these relations were extracted from
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a total of 82,667 sentences, it becomes clear that the annotations resulting from
our experiments are still very sparse. Improving the density of annotations could
be done by adding more key words to the current set used for extraction, or by
possibly combining the unsupervised method with a supervised option. There
are also some promising developments in building a discourse relation algebra,
which could be used to complete the annotations [Roze, 2011].

Another problem is the degree of noise, regarding relations which are catego-
rized incorrectly, which a random evaluation of 200 relations showed to be about
a 30% error rate. Although we did manage to decrease the error rate from the
original 40% through simple adjustments to the patterns and the algorithm in
general, it would be worthwhile to invest more time in decreasing the error rate.
A key problem is that the sentence tokenizer produces quite a bit of noise, which
perpetuates into noisy discourse relation extraction. So trying out different pro-
cessing tools could help improve the results and prevent a lot of noise from being
forwarded into the rest of the process.

The process of applying pattern structures to the data gained from discourse
relation extraction also has room for improvement. One issue is the large num-
ber of terms which MetaMap assigns to a piece of text, resulting in very large
descriptions and concept intents which are difficult to interpret. It also causes
the CloseByOne algorithm to have a very long running time and requires a lot of
memory. This could be solved by investing some time in an empirical evaluation
of the threshold value used in MetaMap, to determine the best value for our type
of data. There might also be options for simplifying the textual data before run-
ning it through MetaMap, such as removing all data between parentheses, which
is usually not the core information of a sentence. Despite these issues, applying
the UMLS MetaThesaurus ontology to the data adds useful information about
the semantics of the data, as opposed to the limited information which statistical
methods can provide. However as mentioned before, the statistical methods could
be used to apply this method to the linguistic domain, for modeling the struc-
tures of discourse relations. In that case the set of objects would again be the
relations, and the patterns could involve string metrics based on part-of-speech
tags to see if there is any new knowledge to gain about the linguistic features of
relations.

Currently the set of objects in our formal context consists of individual rela-
tions, so another interesting extension to this process would be to apply it to an
object set consisting of whole documents. This would add an extra level on top of
the current model, since one would need to group the current patterns into sets. A
document contains multiple relations, each of which we can describe as a pattern.
It would be necessary to define another similarity operator to compare the sets
of patterns corresponding to documents. However once that is defined, it would
be possible to create a concept lattice for comparing articles instead of individual
relations. In this project we show just one way to model discourse-annotated data
in a formal context, but there are many possibilities for other models. Involving
a domain expert in the modeling process could produce further improvements.

Since each step of our experiments experiences some problems, there is quite
a build-up of noise by the end of the process. The sentence tokenizer introduces
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noise, which causes more errors in the extraction of discourse relations, on top of
which MetaMap adds a little more noise. It is essential to reduce the amount of
noise passed forward by the process in order for this method to effectively create
a platform for experts to discover new knowledge from text. However we have
shown that the process creates an informative lattice despite the problems, and
there are many options for improving the modeling process at different stages.
We believe that performing data mining on complex linguistic structures is a very

promising field.
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Attachments

Intents of closed pattern concepts

The following representations are the remaining convex hull representations for
the intents of concepts which contain only one relation in the extent. Intents
of concepts with larger extents can be built by taking the convex hulls of these
smaller representations. All of the colored concepts are the original MetaThe-
saurus terms which describe part of the text of the relation. Every other entity
in the representations are semantic types which generalizes over the terms. None
of the representations feature the top entity of the ontology, so the most general
types are Entity and Event.

Tree 2 corresponds to the following text: but not when the minor G allele was.
Tree 2

Entity
Conceptual Entity
Idea_or_Concept
Functional Concept
Negation
Physical Object
Anatomical_Structure
Fully Formed_Anatomical_Structure
Gene_or_Genome
Alleles

Tree 3 corresponds to the following text: Phosphorylated SMAD2 and SMADS3,

in association with SMAD/, form a complex
Tree3

Entity
Conceptual Entity
Idea_or_Concept
Qualitative_Concept
Complex
Qualitativeform
Physical_Object
Anatomical_Structure
Fully Formed_Anatomical_Structure
Gene_or_Genome
SMAD2gene
SMAD3gene
SMAD4gene
Event
Phenomenon_or_Process
Natural_Phenomenon_or_Process
Biologic_Function
Physiologic_Function
Organism_Function
Mental Process
Mentalassociation

Tree 4 corresponds to the following text: which accumulates in the nucleus
and acts as transcription factors to requlate target genes.
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Tree 4

Entity
Physical_Object
Anatomical_Structure
Fully Formed_Anatomical_Structure
Cell_Component
CellNucleus
Gene_or_Genome
CandidateDiseaseGene
Substance
Chemical
Chemical Viewed_Structurally
Organic_Chemical
Amino_Acid, Peptide, or_Protein
TRANSCRIPTIONEFACTOR

Tree 6 corresponds to the following text: However, no significant association
of both the polymorphisms was seen with treatment response to NACT.

Tree 6

Entity
Conceptual_Entity
Idea_or_Concept
Functional_Concept
therapeuticaspects
Physical_Object
Anatomical_Structure
Fully_Formed_Anatomical_Structure
Gene_or_Genome
SLC13A5gene
Event
Phenomenon_or_Process
Natural_Phenomenon_or_Process
Biologic_Function
Physiologic_Function
Molecular Function
Genetic_Function
GeneticPolymorphism
Organism_Function
Mental Process
Mentalassociation
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