
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Elena Myazina

Tools for NDL Elaboration

Department of Software Engineering

Supervisor of the master thesis: doc. Ing. Karel Richta, CSc.

Study program: Computer Science

Specialization: Software Systems

Prague 2014

I would like to thank my supervisor, doc. Ing. Karel Richta, CSc. for his patience
and for his valuable expert advices. Moreover, I would like to thank my parents
and my friends for supporting me during my studies.

 2

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Praque, July 30, 2014 Elena Myazina

Název práce: Nástroje pro zpracování NDL

Autor: Bc. Elena Myazina

Katedra (ustav): Katedra softwarového inženýrství

Vedoucí diplomové práce: doc. Ing. Karel Richta, CSc., katedra softwarového

inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze

Abstrakt: Aktuální stav ve výzkumu sítí umožňuje koncovým uživatelům vytvářet

vlastní specifická spojení (lightpaths) pro danou aplikaci a optické privátní sítě

(OPNs). Taková nastavení vyžadují jasnou komunikaci mezi žádající aplikací a

požadovanou sítí. Jazyk NDL (Network Description Language) je určen pro popis

takových optických sítí. Je založen na Resource Description Framework (RDF). Tato

práce se zabývá analýzou popisu sítě v jazyce NDL a jeho zpracováním. Aktuální

stav sítě lze načíst ve formátu NDL a zobrazit jeho grafickou reprezentaci. V tomto

stavu lze hledat cesty v reprezentované síti, případně provádět úpravy sítě. Výsledek

pak lze opět transformovat do formátu NDL.

 Klíčová slova: NDL, RDF, optická technologie

Title: Tools for NDL Elaboration

Author: Bc. Elena Myazina

Department: Department of Software Engineering

Supervisor of the master thesis: doc. Ing. Karel Richta, CSc., Dept. of Software

Engineering, Faculty of Mathematics and Physics, Charles University in Prague

Abstract: Current state of research of networks enables end users to create custom

connections (lightpaths) for a given application and optical private networks

(OPNs). Such adjustments require clear communication between the requesting

application and the desired network. Language NDL (Network Description

Language) is used to describe such optical networks. NDL is based on the Resource

Description Framework (RDF). This thesis analyzes the network description

language NDL and its treatment. Current status of the network can be loaded in the

form of the description in the NDL and displayed as the graphical representation.

The representation enables to find out paths in the network, or edit the network. The

result can then be transformed back into NDL format.

Keywords: NDL, RDF, optical technology

Contents

Contents... 1

Chapter 1 .. 3

Introduction .. 3

1.1 Computer Networks ... 4

1.2 Hybrid Networking .. 4

1.3 Network Management ... 5

1.4 Optical Networks and Transport Networks ... 7

Chapter 2 .. 8

Network Description Language ... 8

2.1 Introduction .. 8

2.2. Introduction to the Semantic Web ... 8

2.2.1 Resource Description Framework ... 9

2.2.2 RDF Schemata .. 10

2.2.3 RDF versus XML ... 12

2.3 Network Description Language... 12

2.3.1 Topology Schema .. 12

2.3.2 Layer Schema ... 14

2.3.3 Domain Schema ... 17

2.3.4 Distributed Repositories .. 20

Chapter 3 ... 21

Analyzing the problem ... 21

3.1 Introduction .. 21

3.2 Network modeling problems and approaches to solve them 22

3.3 Encoding .. 24

3.4 Problems of searching the way ... 25

3.5 Example of the program dealing with the network 25

 .. 30

Chapter 4 .. 31

NDL Applications .. 31

4.1 Introduction .. 31

4.2 Applications .. 31

4.2.1 Reading and extracting Data from Network Descriptions 32

4.2.2 Visualization using RDF/XML tools. ... 32

4.2.3 Modifications of the Visualized Structure ... 32

4.2.4 NDL Graph creation and editing. .. 32

4.2.5 Storing of the edited documents. ... 32

4.2.6 Finding the shortest path in a NDL graph .. 33

Chapter 5 .. 34

User Guide ... 34

5.1 User Interface ... 34

5.1 View NDL structure ... 35

5.1 NDL data visualization (the NDL topology schema) 37

5.4 Finding the shortest path in an NDL graph ... 39

 2

5.5 Creation and manipulation of graphs ... 40

5.5.1 Export .. 42

5.5.2 Printing .. 43

Chapter 6 .. 44

Shortest-paths problem... 44

6.1 Introduction ... 44

6.2 Bellman–Ford algorithm .. 45

6.3 Dijkstra's algorithm .. 46

6.4 Floyd–Warshall algorithm ... 48

6.5 Experience of application and conclusions .. 49

6.6 Multi-layer network model .. 49

6.6.1 Device-based network description G .. 50

6.6.2 Stack-based network description Gs .. 50

6.6.3 Path selection in Gs ... 51

6.6.4. Creating the search algorithm ... 53

Chapter 7 .. 56

Architecture of the project ... 56

7.1 Introduction .. 56

7.2 Overview of the Architecture .. 56

7.2.1 The View .. 57

7.2.2 The Model .. 57

7.2.3 The ViewModel ... 58

7.3 Architecture of decision system .. 58

7.4 Models and helper classes .. 59

7.5 The ViewModel class .. 62

Chapter 8 .. 65

Base algorithms .. 65

8.1 Introduction .. 65

8.2 Parsing NDL documents ... 65

8.3 Manipulating NDL documents ... 67

8.4 Modification of the Dijkstra Algorithm ... 68

Conclusions ... 70

Bibliography .. 71

List of Figures .. 74

List of Listings ... 75

List of Abbreviations.. 76

Appendix A .. 77

 3

Chapter 1

Introduction

Computer networks seems to be integral part of current society. Many broadly used

public systems are based on the communication networks as a part of distributed

processing of information. Newest applications require underlying physical

infrastructure of wires, fibers, switches and routers provides network services for

applications on the network.

One important problem with such networks is to find appropriate paths through such

a network, satisfying some criteria – distance, time constraints, permeability, etc. For

this purpose tools are needed for network configuration elaboration. Any such tool

has to elaborate a formal description of the network. This formal description serves

as a definition of the network structure, and contains all necessary information about

network nodes and connections.

Network Description Language (NDL) is designed as a tool for the specification of

fiber nets. NDL serves for formal description of network elements and combining

such elements into more complex nets.

The aim of this thesis is to design and develop a tool for elaboration of specifications

of networks in NDL. The tool has to support creation and verification of such

specifications - e.g. queries, if two points in the net are connected, and what are real

parameters of this connection.

Thesis organization

The thesis is organized in the following way: chapter 1 is an introduction to the

problem, chapter 2 describes the NDL language, the chapter 3 contains the

description of the NDL application (here I will often refer to the scientific works of

the two authors [35] [36]), and the user guide to this application is at the chapter 4.

The chapter 5 discusses the problem of the shortest path in the network, and

appropriate algorithms. The selected algorithms is the part of the final solution. The

chapter 2 describes the general architecture of my project. The chapter 7 analyzes

existing solutions, chapter 8 summarizes the work. The last chapter, Appendix A,

lists the contents of the attached CD.

 4

1.1 Computer Networks

“Communication networks are ubiquitous in our society: we use them to make
phone calls, end e-mails, and browse the web. In all cases an underlying physical
infrastructure of wires, fibres, switches and routers provides network services
for applications on the network [32].
Network services can be classified as circuit switched and packet switched
network services. The public switched telephone service (PSTN), also known as
plain old telephone service (POTS), is a circuit based switching technology” [36].
“The Internet on the other hand is largely based on packet switched technology.
Creating connections in a circuit-switched networks, and especially optical
networks, is a complex task. A complete end to end circuit must be created
before the connection can be used. Provisioning such a circuit requires
knowledge of the network topology, capacities and capabilities. This thesis
describes the Network Description Language (NDL), an ontology for describing
complex network topologies and technologies. The language defines a clear
terminology for describing network topologies that can be linked to other
descriptions, to other kinds of resources, but also to other networks, creating a
distributed interoperable description of the global topology.
Network operators tend to be protective of detailed topology information,
because of scalability, security, or policy reasons. It is also possible to share an
aggregated view of the topology, so that only the most important details are
published” [35].

1.2 Hybrid Networking

“The idea of providing e-science applications with deterministic point-to-point
connections was fostered by a community of research networks, later organised
in the Global Lambda Integrated Facility (GLIF)[1]. This community provides a
global network to support data-intensive scientific research, and also supports
middleware development for optical networking. The ideas in this community
led to the concept of hybrid networking, the offering of packet switched (IP)
services and circuit switched connections over the same physical network
infrastructure.

Since most e-science applications operate in a large scale environment, with
collaborators at different universities, the networks required for these
applications are nearly always multi-domain networks. De Laat estimated in
2000 that a typical network connection for a physics experiment crosses seven
domains [2].
To achieve inter-domain operation, the different networks have to collaborate.

 5

For dedicated network connections, this collaboration is done in the GLIF
community [35].

FIGURE 1.1: GLIF WORLD MAP OF MAY 2011

In few years time a number of international network connections have been
established to provide the inter-domain connectivity. Figure 1.1 shows a
collection of the interconnections provided by partners in the GLIF community
as of May 2011” [35].
The GLIF community is working hard at improving the light path provisioning
process by exchanging experiences, documenting processes and developing
middleware.

1.3 Network Management

In computer networks, network management refers to the activities, methods,
procedures, and tools that pertain to the operation, administration,
maintenance, and provisioning of networked systems. Network management is
essential to command and control practices and is generally carried out of a
network operations center.
Functions that are performed as part of network management accordingly
include controlling, planning, allocating, deploying, coordinating, and
monitoring the resources of a network, network planning, frequency allocation,
predetermined traffic routing to support load balancing, cryptographic key

 6

distribution authorization, configuration management, fault management,
security management, performance management, bandwidth management,
Route analytics and accounting management.
Data for network management is collected through several mechanisms,
including agents installed on infrastructure, synthetic monitoring that simulates
transactions, logs of activity, sniffers and real user monitoring. In the past
network management mainly consisted of monitoring whether devices were up
or down; today performance management has become a crucial part of the IT
team's role which brings about a host of challenges—especially for global
organizations [34] .
I describe the current architecture for management of computer networks.
Figure 1.2 shows a schematic overview of this architecture.

FIGURE 1.2: THE MANAGEMENT PLANE (TOP) AND THE DATA PLANE (BOTTOM) [36].

“At the bottom is the data plane. This is the physical network over which the
signals are sent using data communication protocols, electric or optical pulses.
The data plane takes care of moving the data from source to destination.
Examples of data plane implementations are Ethernet, TCP/IP, or fiber
infrastructure.
The control plane is used by the network to manage the topology of the data
plane. The routers and switches in a network communicate over the control
plane with routing and switching protocols in order to get an overview of the
data plane topology. The control plane is not shown in the figure, as it can either
be implemented as a small dedicated part of the data plane (in-band), or as an
independent network (out-of-band).
Finally there is the management plane, which is used by the network engineers
and operators to manage and monitor the network. The management plane can

 7

use the control plane network, or a separate network. Examples of management
plane protocols are Simple Network Management Protocol (SNMP) and NetConf.
Examples of these applications are HP Openview[3] or Nortels DRAC[4].
Note that the management planes of different networks are shown separated in
the figure above. Detailed topology or management data of different networks is
not shared between them. Some limited information exchange between
networks happen so far as it is required for the operation of the network, for
example the announcement of prefixes and connectivity to other Autonomous
Systems in case of the Border Gateway Protocol (BGP)”[5] [35].

1.4 Optical Networks and Transport Networks

An optical network is a type of data communication network built with optical
fiber technology. It utilizes optical fiber cables as the primary communication
medium for converting data and passing data as light pulses between sender
and receiver nodes. An optical network is also known as an optical fiber
network or fiber optic network.
Because of the wavelength division multiplexing (WDM) capabilities of optical
networks, the term optical network was also used to describe networks that
could provision dedicated network circuits. „The term lambda (after the symbol
λ for wavelength), which originally meant a single wavelength on a fibre [6],
started to be used for any link segment, and the term lightpath was used to refer
to end-to-end circuits over these networks. Nowadays, the scope of the term
has so broadened that it also includes non-optical technologies such as
Ethernet“ [36].
Transport networks it is networks providing circuit-switched based services,
regardless of the use of optical or other transmission technologies.
„Transport networks can be created with any circuit-switched technology.
Example technologies included wavelength division multiplexing (WDM), time
division multiplexing (TDM) technologies such as synchronous digital hierarchy
(SDH) [7] and synchronous optical network (SONET) [8], Optical Transport
Network (OTN) [9, 10], Asynchronous transfer mode (ATM) [11]. In addition,
the connection oriented properties of some packet switched technologies can
also be used to create virtual circuits.
Whereas a lightpath refers to a single network connection, a collection of
lightpaths for the same user or organization is referred to as an optical private
network (OPN) for that organization. Just like a virtual private network (VPN) is
an overlay network over the regular Internet, an optical private network is an
overlay network over a transport network“[36].

 8

Chapter 2

Network Description Language

2.1 Introduction

“The routing step, which is required for provisioning of circuit switched
network connections, is responsible for distributing topology information and
network state across different domains. This chapter examines the distribution
of topology information. It presents the Network Description Language (NDL).It
builds upon RDF and its linking capabilities to produce a distributed view of the
global inter-domain network.
NDL provides a way to implement the idea of the Topology Knowledge Base as
proposed by Travostino in 2005 [12].
It is worth to emphasise that proposed network description language is only a
method to describe topology information. It does not enforce a specific way of
distributing this information, nor does it eliminate the need for a control plane
for signalling and provisioning” [36].

2.2. Introduction to the Semantic Web

“The World Wide Web has allowed us to publish and share documents and
information with other people in the world. However, because the web has
become so popular and so widespread, it has almost become the victim of its
own success. Because of the large-scale and the abundant availability of data, it
becomes very hard to find what we want. Search-machines, such as Google or
Yahoo, have come to the rescue and have indexed the data. However, computers
still have no common sense, so the search capabilities of the search machines
are rather limited. Consider for example the following two sentences:

 A is connected to B.
 There is a connection between A and B.

 Even humans can differ in opinion whether these two sentences have the

 9

same meaning. So there is no way that a computer without common sense
will understand that these two lines mean the same thing. This is where the
Semantic Web comes to the aid of computers (and people). The following is
an excerpt of the activity statement of the Semantic Web initiative[13]:

The goal of the Semantic Web initiative is to create a universal
 medium for the exchange of data where data can be shared and

processed by automated tools as well as by people. For the Web to
scale, tomorrow’s programs must be able to share and process data
even when these programs have been designed totally independently.

In 2000 the Semantic Web initiative was started by the World Wide Web
Consortium (W3C). Since then they have been working on several specifications
to publish and share (meta)data, including the Resource Description
Framework (RDF) [14] and SPARQL [15]. In the following section we provide a
brief introduction to RDF” [36].

2.2.1 Resource Description Framework

In order for two computer programs to communicate there must be a common
understanding about the vocabulary being used. Currently most communication
by computer programs is defined by protocols. The form of the interaction is
fixed, but the meaning of the data being exchanged is not.
Take a web-browser for example: when a user types in a URL, the web browser
starts communicating with the designated server, asking for the resource
identified by the URL (‘GET’). The server then answers the browser with the
designated file. This interaction is strictly defined in RFC 2616[16]. But neither
the web-browser nor the server know what kind of data is being exchanged, it
could be about the weather, traffic information, etc.
Because in this example the applications do not grasp the meaning of the data
being presented, it limits the possibilities to mere presentation. The Semantic
Web idea originated as a solution to this problem; it tries to make it easier for
computers to understand the meaning of the content they present, so that they
can navigate autonomously through this information to find what they are
looking for.
The Resource Description Framework (RDF) is a method for representing
information about resources on the Web. It provides a common framework for
expressing metadata so that it can be exchanged between applications without
loss of meaning.
Information in RDF is expressed as statements. Each statement is a triplet, with
the following elements:

 Subject The resource being described

 10

 Predicate The property of the subject that is described

 Object The value of the property for the subject

A set of triplets is called a graph. An object can also be the subject of another
triplet, so complex graphs can be created. An example of such a graph is shown

in figure 2.1. An example triplet in the graph is ‘Thesis creator John, with the

subject, predicate and object respectively. The graph also contains other triplets

providing more information about the object John, such as his name, email

address and homepage.

FIGURE 2.1: A SIMPLE RDF GRAPH

The graph shown in figure 2.1 still has the same problem; it is an abstract way of
defining relations. RDF solves this terminology problem by using Uniform
Resource Identifiers (URIs)[17]. Related terms are usually defined using the
same URI-prefix, taking the form of XML namespaces [36].

2.2.2 RDF Schemata

An example of using semantics with data is the Friend of a Friend project [18].
Participants of this project describe themselves, giving their name, homepage,
place of work, etc. The properties are predefined to make sure there is no
conflict with e.g. using ‘last name’ versus ‘surname’. But definitions of terms is

John Smith

Thesis

http://www.science.uva.nl/
~jsmith/

„abc@gmail.com“

email

homepage

creator

Family name

“John Smith”

 11

not enough for computers: is ‘surname’ the same as ‘Surname’? An example of a
FOAF description is given below.

LISTING 2.1: THE RDF/XML REPRESENTATION OF THE SEMANTIC GRAPH IN FIGURE 2.1

Listing 2.1 describes the semantic graph of figure 2.1 in RDF/XML format. The
properties in the example are defined using XML namespaces for readability,
they actually point to specific URIs with a well-defined meaning. For example the

creator property is defined by the URI ttp://purl.org/dc/elements/1.1/creator, which

is defined by the the Dublin Core Initiative [19]. When defining RDF properties, it
is possible to define what kind of types are valid as subject and object. The set of
valid subjects is called the domain, and the set of valid objects is called the range
of that property.
The other terms are either from the rdf namespace to describe standard RDF
types and objects, or the foaf namespace, which provides definitions for the
Person class, and basic properties of that class. Note that the homepage
relationship points to a URL, but in this case it is also treated as an RDF object.
This homepage object can then have other properties, such as a creator
property.
An XML namespace with definitions of related terms is called an RDF schema.
RDF schemata define the URIs and properties of RDF classes and RDF
predicates. RDF classes define the types of subjects and objects [35].

LISTING 2.2: EXAMPLE OF LINKING DESCRIPTIONS

<foaf:Person rdf:nodeID="#me">

 <foaf:knows>

 <foaf:Person>

 <foaf:name> John Lewis </foaf:name>

 <rdfs:seeAlso

rdf:resource="http://staff.science.uva.nl/~fdijkstr/foaf.rdf"/>

 </foaf:Person>

<foaf:Person rdf:nodeID="#me">

 <dc:creator

rdf:resource="http://www.science.uva.nl/~jsmith/thesis"/>

 <foaf:family_name>John Smith</foaf:family_name>

 <foaf:mbox>abc@gmail.com</foaf:mbox>

 <foaf:homepage

rdf:resource="http://www.science.uva.nl/~jsmith/"/>

 </foaf:Person>

 12

2.2.3 RDF versus XML

There are several ways of expressing RDF graphs, one is the graphical form as
in figure 2.1, and another is the statements of triplets in Notation3 in listing 2.1.
The most common textual form is RDF/XML [20], where the graph is encoded
in an XML format. Throughout this thesis we use the RDF/XML notation, which
allows us to leverage tools for XML as well as RDF.
Besides that RDF allows reasoning about statements, it also has a few other
technical advantages over other descriptions languages, such as plain XML.

Unique Identification Objects in RDF are identified by a URI. This is an
advantage in multi-domain environments, since it makes it easy to
clearly and uniquely define network elements in requests.

Flexible Graph Structure The relations between network elements can lead
to cycles in the relation-graph. RDF extends the tree structure of XML
with reference pointers so that it is able to deal with cycles.

Distributed Descriptions In order to describe inter-domain connections,

the interrelation of different (operational) network domains must be
described.
Each domain must be able to independently publish its own network
information and point to other network domains. The RDF seeAlso
predicate provides an elegant solution for this problem.

Extendable RDF schemata are easily extensible. That is, it allows users to
publish all information they care about, and mix it with network
schemata. The extensibility applies to both current schemata (e.g.
geographic information or organizational information in geo and vcard),
as well as future schemata [36].

2.3 Network Description Language

For what would to describe extensible, distributed network descriptions,
developers have created a simple ontology in RDF to describe networks. The
result of this work is the Network Description Language (NDL).

2.3.1 Topology Schema

The Network Description Language consists of multiple schemata, each
describing a separate part of the ontology.

 13

The topology schema of the network description language is the ontology which
created to describe the topology of computer networks. An overview of the
classes and properties of the topology schema is given in figure 2.2.

FIGURE 2.2: OVERVIEW OF THE CLASSES AND PREDICATES IN THE NDL TOPOLOGY SCHEMA

NDL has eight classes, shown at the top, that define what kind of resources can
be described. The three main classes are:

Location Physical places where devices are located.

Device Devices that are part of a network.

Interface The interfaces with which devices are connected to a network.

NDL has six properties, shown at the bottom in the figure, to define the relations
between instances of the classes and other information.

locatedAt A relation between resources and their location.

hasInterface A relation between devices and interfaces.

linkTo A relation between two interfaces, describing that they are externally
connected with a direct link.

connectedTo This property is similar to linkTo, but the connection does not
have to be direct; the interfaces may be connected by a series of links.

switchedTo This property is used to describe cross connects, internal
connections within a device.

 14

In addition, the predicates label from the RDF schema, and description from the
Dublin Core schema can be used to describe the name and description of
network elements [36].

2.3.2 Layer Schema

Layers are described in NDL using logical interfaces. This means that a single
physical interface is described by multiple Interface objects, each on a different
layer, depending on the properties of that interface. For example a physical
interface in an Ethernet switch will have a logical interface on the physical layer,
and on the Ethernet layer, with an adaptation between them. A more extensive
example is described below in listing 2.3.

FIGURE 2.3: CLASSES AND PREDICATES IN THE NDL LAYER SCHEMA.

In figure 2.3 we show the NDL layer schema based on the G.805 model. The
layer schema does not define actual adaptation functions, but instead provides a
common vocabulary to describe technologies, layers and the relation between
layers.
Adaptation functions are defined using the class Adaptation Property. The
definition of that function is given using four properties: the client layer, the
server layer, the client count and the server count.

 15

The client and server layer properties are not explicitly defined as such, instead
they are given as the rdfs: domain and rdfs: range of that specific
AdaptationProperty instance.
The client count represents the maximum number of client layer interfaces. The
server count represents the number of required server layer interfaces. For one-
to-one adaptations, the client count and server count are both one. For
multiplexing adaptations, the server count is set to one, and the client count is
greater than one, see the example in listing 2.3. For inverse multiplexing
adaptations there is a single client layer, transported over multiple server layer
connections, for example a 1 Gigabit Ethernet connection that is transported
using 21 STS channels. For such an adaptation the client count is 1, and the
server count is 21.
A Layer is a specific encoding, or a set of compatible encodings. Associated with
a layer is a Label Set, the set of labels allowed for that layer. For example the
label used for the Ethernet Layer is the VLAN, which must come from the set of
integers f0; 1; 2; : : : ; 4095g.
The set of labels that are allowed on an interface are described using the ingress
label set and egress label set properties. The property label set is shorthand for
setting both ingress and egress to the same value. The actual labels configured
on an interface are described using the ingress label and egress label properties,
with a similar label shorthand.

An example multi-layer description is given in listing 2.3. Lines 1 to 6 start the
XML RDF description and define namespaces. Besides the rdf and ndl
namespaces, we also define the RDF Schema (rdfs) namespace to use some extra
RDF properties, and we include the layer and wdm schemata. Lines 7 to 12 show
an excerpt of that wdm schema with the definition of the WDM adaptation
property. Line 7 defines that it is an AdaptationProperty and line 8 defines that it
is also a regular RDF property. Lines 9 and 10 define the domain and range of
the adaptation property, in this case FiberNetworkElement and
LambdaNetworkElement respectively. For this adaptation property we define
that the serverCount is 1 (an XML Schema integer) on line 11. We do not define
the clientCount, because this is variable for WDM. WDM is a multiplexing
adaptation that is always transported over a single fiber (the server layer). The
client count is dependent on the specific implementation and configuration of
WDM on a device.
A label property is defined on lines 13 to 16. It is a regular RDF property, as
defined on line 13, but also a kind of NDL label, as defined on line 14. The range
of the label is an XML Schema float number. This label is used in an interface,
port3-l1310, that is defined in lines 17–20. Line 17 defines the NDL Interface,
and line 18 defines that it is on the Lambda layer. The wavelength of the
interface, 1310nm, is defined on line 19. Another interface, port3, is defined on
lines 21–24, line 21 states that it is an NDL Interface, and line 22 defines that the
interface is on the Fiber layer. Everything is tied together on line 23, there we
define that the port3-l1310 interface is adapted to the port3 using the WDM
adaptation.

 16

LISTING 2.3: THE NDL DESCRIPTION OF A WDM ADAPTATION [36] .

 17

2.3.3 Domain Schema

The topology schema allows the description of physical network topologies.
The NDL domain schema also allows group description of devices, links and
interfaces in networks. The classes and predicates of the domain schema are
shown in figure 2.4.

FIGURE 2.4: OVERVIEW OF THE CLASSES AND PREDICATES IN THE NETWORK DESCRIPTION
LANGUAGE DOMAIN SCHEMA

The two classes in the domain schema are:

NetworkDomain is a collection of network elements. It behaves very similar to
a Device in the topology schema, but describes a domain rather than a physical
device.

AdministrativeDomain is an organizational entity that is responsible for the
operational control of resources (including network resources).

Using the combination of the topology and domain schema, it is possible to
create descriptions of network domains. An example of such a description is
shown in listing 2.4. The picture in figure 2.5 shows what is being described.

 18

FIGURE 2.5: A SIMPLE NETWORK.

Lines 14 to 18 of listing 2.4 define the device Rembrandt3. The #-prefix on line 14
states that the device is defined in the local namespace. Line 15 provides a
human readable name and line 16 states that this device is located in the
location Lighthouse (defined on lines 11 to 13). Finally, line 17 defines that
Rembrandt3 has an interface, Rembrandt3:eth0. This interface is defined on lines
19 to 22. The connection to another interface is defined using the linkTo
property on line 21, in this case it is defined to be connected to
Glimmerglass:port3. The Glimmerglass device is defined similarly on lines 23–38,
and the Rembrandt5 device on lines 39–47.
The connection between the Rembrandt3 and the Glimmerglass is defined in
both directions. This is used to denote a duplex connection and further ensures
the consistency of the description.
Our network description does not only contain a topology description, but also
describes the current configuration of the Glimmerglass device. The switchedTo
statement in line 32 states that the Glimmerglass:port3 has an internal
connection to Glimmerglass:port5.
Just like the linkTo property, the switchedTo property must be defined in both
directions. So the inverse switchedTo property from Glimmerglass: port5 to
Glimmerglass:port3 is also be given on line 37. With the linkTo and switchedTo
statements as given above, have defined a path from the device Rembrandt3 to
Rembrandt5 [36].

 19

LISTING 2.4: AN EXAMPLE DESCRIPTION OF THE NETWORK OF FIGURE 2.5.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:ndl="http://www.science.uva.nl/research/sne/ndl#"

xmlns:domain="http://www.science.uva.nl/research/sne/ndl/domain#">

 <domain:NetworkDomain rdf:about="#UvALight">

 <rdf:label>UvA Light</rdf:label>

 <domain:hasDevice rdf:resource="#Rembrandt3"/>

 <domain:hasDevice rdf:resource="#Rembrandt5"/>

 <domain:hasDevice rdf:resource="#Glimmerglass"/>

 </domain:NetworkDomain>

 <ndl:Location rdf:about="#Lighthouse">

 <rdf:label>Lighthouse</rdf:label>

 </ndl:Location>

 <ndl:Device rdf:about="#Rembrandt3">

 <rdf:label>Rembrandt3</rdf:label>

 <ndl:locatedAt rdf:resource="#Lighthouse"/>

 <ndl:hasInterface rdf:resource="#Rembrandt3:eth0"/>

 </ndl:Device>

 <ndl:Interface rdf:about="#Rembrandt3:eth0">

 <rdf:label>eth0</rdf:label>

 <ndl:linkTo rdf:resource="#Glimmerglass:port3"/>

 </ndl:Interface>

 <ndl:Device rdf:about="#Glimmerglass">

 <rdf:label>Glimmerglass</rdf:label>

 <ndl:locatedAt rdf:resource="#Lighthouse"/>

 <ndl:hasInterface rdf:resource="#Glimmerglass:port3"/>

 <ndl:hasInterface rdf:resource="#Glimmerglass:port5"/>

 </ndl:Device>

 <ndl:Interface rdf:about="#Glimmerglass:port3">

 <rdf:label>port3</rdf:label>

 <ndl:linkTo rdf:resource="#Rembrandt3:eth0"/>

 <ndl:switchedTo rdf:resource="#Glimmerglass:port5"/>

 </ndl:Interface>

 <ndl:Interface rdf:about="#Glimmerglass:port5">

 <rdf:label>port5</rdf:label>

 <ndl:linkTo rdf:resource="#Rembrandt5:eth0"/>

 <ndl:switchedTo rdf:resource="#Glimmerglass:port3"/>

 </ndl:Interface>

 <ndl:Device rdf:about="#Rembrandt5">

 <rdf:label>Rembrandt5</rdf:label>

 <ndl:locatedAt rdf:resource="#Lighthouse"/>

 <ndl:hasInterface rdf:resource="#Rembrandt5:eth0"/>

 </ndl:Device>

 <ndl:Interface rdf:about="#Rembrandt5:eth0">

 <rdf:label>eth0</rdf:label>

 <ndl:linkTo rdf:resource="#Glimmerglass:port5"/>

 </ndl:Interface>

</rdf:RDF>

 20

2.3.4 Distributed Repositories

In multi-domain environments there is a big potential for inconsistencies if
information for each domain is not centrally maintained, and each domain
replicates network descriptions of other domains. NDL addresses this issue by
creating a distributed topology description, where descriptions link to each
other. These links are provided using RDF’s seeAlso statement, which points to
other documents. An example of this is shown in listing 2.5.

LISTING 2.5: EXAMPLE OF DISTRIBUTED REPOSITORIES.

As shown before, lines 1 to 4 show the description of an interface of the
Glimmerglass. However, note that in line 3, this port is defined to be connected
to http://www.netherlight.nl/ndl.rdf#C6509:port7. On lines 5 to 7 is the
definition of the interface http://www.netherlight.nl/ndl.rdf#C6509: port7. The
rdfs:seeAlso statement is used to link to the network description of NetherLight.
An application or crawler can then follow this pointer to the description of
NetherLight and get more information about the interface there.
Concluding, it is possible to create a distributed network description, without
a central repository [36] [35].

<ndl:Interface rdf:about="#Glimmerglass:port27">

 <ndl:name> Glimmerglass:port27</ndl:name>

 <ndl:linkTo

rdf:resource="http://www.science.nl/ndl.rdf#C6509:port7"/>

 </ndl:Interface>

 <--! Test -->

 <ndl:Interface

rdf:about="http://www.science.nl/ndl.rdf#C6509:port7">

 <rdfs:seeAlso

rdf:resource="http://www.science.nl/ndl.rdf"/>

 </ndl:Interface>

 21

Chapter 3

Analyzing the problem

3.1 Introduction

Global Information Infrastructure is the technical basis for construction of the

information society comprising a telecommunication, computer or may be an

optical subsystem. The key task of such subsystems is to enable transmission of

any type of information from any place of the world, at any time. Currently, such

networks are considered as communication networks constructed according to

the NGN concept. Meeting the requirements of telecommunication systems is

possible by developing methods for network management as well as developing

design methods.

Current telecommunication, computer systems are constructed on the principle

of networks overlay which means that one transport network provides

transparent transfer of data flows to another network forming its logical

connections as well as its logical structure. Thus, the current telecommunication

systems have a layered structure formed by the technology hierarchy.

This chapter deals with the model describing the structure of today's various

systems by means of the NDL language, which takes into account their multi-

level, multi-domain and multi-connection structure.

It also shows the properties and possible parameters of multi-layer graphs and

proposes the describing technique, transformation, and visualizing the structure

of modern telecommunication systems by means of the multi-layer graph. We

also propose the search algorithm for transferring any kind of data from any

place of the world, taking into account the complexity of the structure, the

network parameters as well as calculation of the time spent on it.

 22

3.2 Network modeling problems and approaches to solve
them

Modern computer, optical or telecommunication networks provide ransmission

of different types of traffic (information). To transmit various types of traffic

over the network, its nodes must have special equipment that enables receiving

incoming traffic and its subsequent transfer by outgoing communication

channels. Also, the communication channels among network nodes must have

sufficient bandwidth allowing transmission of information circulating within

the network flows.

When constructing or upgrading such networks a network provider usually

faces a problem of designing such a system. The main problem of designing is

generally to determine the set of nodes and communication channels among

them (network topology), to determine the capacity of communication channels

and parameters of the network equipment installed in those nodes, to

determine the transmission routes of data flows through the network and the

number of flows transmitted via these routes.

Such networks are very complex for mathematical description. Optical

(computer) networks are constructed on the hierarchical, multi-level principle,

both organisationally and technologically.

Organizationally such networks are divided into levels with the higher levels

managing and providing the interaction of lower levels in the hierarchy. Levels

of the organization hierarchy generally have territorial separation. For example,

the main network segment (WAN), the regional network (MAN) and the local

area network (LAN). The levels of the technological hierarchy are overlay

networks using different technologies. Each link on the upper level uses one or

more ways on the lower level. For example, the IP-channel between two IP-

routers can be enabled by one or more light flows in the underlying fiber-optic

network.

Ideally, we can describe a multi-layer network model with the help of simple

graph consisting of nodes and ribs. However, the nodes of different layers may

be incompatible with each other. As a result, the final network version is not

optimal, and in some cases it can cause instability in the operation of the

designed network. To solve the given problem, we would like to propose using

the model of multi-level network built by means of the ordered set of graphs.

Using the multi-layer graph instead of classical graphs allows consider the

 23

technological hierarchy of modern telecommunication systems, particularly

overlay principle of these systems.

The topology of each graph may differ, they can have different sets of ribs.

In the previous chapter we introduced the Network Description Language

(NDL) to describe transport (computer) networks. We are going to describe the

multi-layer computer or optical network with this technology-independent

model and its syntax. For this purpose we extend the NDL syntax. Using an

independent NDL syntax we are able to create quite a universal model and

apply it to various technologies. In this case, the main goal is to do this without

compromising various independent technologies.

 We do this by matching the functional elements described in Chapter 2.

We are going to apply our model to various technologies, such as:

 Ethernet networks WLAN

 SONET and SDH

 WDM with a selection of wavelength switches

Another possible problem is a different of subnetwork designs that have their

own parameters. These parameters are not always compatible with other

network parameters. We developed a program able to distinguish all these

subnetworks, their parameters and combine them into one model displayed

(visualized) as a multi-layer graph. Each network or each network layer is able

to contain data that may appear in other documents and which act as properties

or parameters of other network. Our program is able to recognize and display

such information, thereby finding and loading multiple documents at the same

time.

How did we do that? Implementation of such model is carried out in RDF. This is

a continuation of “Network Description Language” (NDL). In the NDL many

classes and properties are organized into several modular schemes (we

described them in Chapter 2). We applied three main schemes for the

construction, description and visualization of such a model:

 “Topology scheme”, describing the concept of devices, interfaces,
and connections among them in a single layer;

 “Layer scheme”, describing the concept of network layers, and
relationship among the network layers;

 “Domain scheme”, describing grouping of network elements in the
domain, the parameters and creating an abstract representation of the
network in the domain.

 24

As it is defined in the “Topology scheme”, each interface acts as a connection

point. By default each channel in each layer is presented as a single logical

interface. Further we begin to describe the technical scheme for each of these

technologies: IP, Ethernet, WDM, TDM (SDH / SONET). The resulting schemes

describe specific technologies. The success of our model is defined by the ability

to describe each of these schemes using only technology and the NDL syntax.

3.3 Encoding

Many technologies define more than one possible encoding. Encoding defines

the data format for communication. For all practical goals, we define two

different encodings as incompatible, and two equal encoding as compatible.

Figure 3.1 displays an example of two encodings in a single technology:

Table 3.1 gives a list of a few examples of layers and encoding types. Each

encoding in our program is modeled as a layer property. Such method allows us

to describe the incompatibility in a single layer.

In addition to the mentioned above, we define those properties of the layer,

which are not connected with different encodings. For example, we define the

power level of the fiber. The advantage of the RDF is that it can be easily

extended to describe such properties. It can be used for finding a particular way

or technology for troubleshooting software.

FIGURE 3.1: EXAMPLE OF TWO ENCODINGS IN FOR THE SAME LAYER [35]

Version1 length label data 16 bit checksum

Version2

length

label

data

24 bit checksum

 25

We will consider carried-out operations on an example

TABLE 3.1: EXAMPLES OF ENCODING TYPES FOR DIFFERENT LAYERS [35]

3.4 Problems of searching the way

As modern technology is being changed and modernized quite quickly, the

problem of choosing the way is quite urgent. Not much work has been done for

finding an optimal route in multi-layer networks. We know that technologies

(and thus incompatibilities) change over time.

Any good algorithm for finding the way operates independently of the network;

it must not be changed to take into account the specifics of a particular network.

Thus, the algorithm of finding the way in the multi-layer network must be

independent, universal enough and must not be modified, to take into account a

small part of technology. If the algorithm for finding the way is created for a

particular technology, then this algorithm must be updated or changed after

updating the technology itself.

How can we cope with this problem? It should be noted that the Graphs and

“Network Description Language” are independent from networks. Using them

we can construct simple blocks for networks. When describing the network the

instances of classes are created which are defined in the topology scheme and

one or more technology schemes (such as Ethernet, WDM or TDM). Technology

schemes are defined as subclasses in the “Layer scheme”. Thus, in order to

create an independent, universal way of finding algorithm, we have to know the

scheme of the layer and the topology diagram. Based on these schemes, we will

know all we need about a specific technology and will be able to find the way.

You will learn more details about the search algorithm in Chapter 6.

3.5 Example of the program dealing with the network

 26

Let us study the example of certain operations.

Let us study the system consisting of five physical devices. Each of these devices

is composed of multiple domains and has its own interface, which may differ

from interfaces of other devices.

These devices use the IP-network operating over the Ethernet network, and

uses an optical signal transmission cable. The given network has the following

layers in its structure:

- The layer of IP-network, which is represented by a collection of IP-nodes

connected by IP-channels;

- The layer of Ethernet network, represented by a number of nodes

interconnected by communication channels acting as transport environment for

the IP-network layer;

- The optical network layer represented by the nodes of optical network

connected with optical communication cables. In the nodes of optical network

optical splitters, multiplexers/demultiplexers and other optical network

equipment can be installed;

- the layer of cable channels represented by cable channels applied for laying

fiber optic cable.

We can see the multi-layer network scheme in Figure 3.2

FIGURE 3.2: SCHEME OF MULTI-LAYER NETWORK

For describing such a network with a multi-layer graph we perform the

 27

following operations:

1.1. Select a number of layers in the modelled telecommunications system.

1.2. Describe the topology of each layer and domain by means of the NDL syntax.

1.3. Describe each layer topology by means of the classical graph.

1.4. Distinguish among objects of different layers logical, functional and physical

links and visualize (draw) them using graphs.

1.5. Assign a set of parameters, characterizing the corresponding objects and

inter-object links to ribs and vertices of the graph.

The example of describing the network topology using the NDL syntax can be

seen in Listing 3.1.

LISTING 3.1: THE NDL DESCRIPTION OF A MULTI-LAYER AND MULTI-DOMAIN NETWORK

When the program performs the operation 1.3, for each separate layer, selected

<ndl:Device rdf:about="#Lls001a_ome01">

 <ndl:name>Lls001a_ome01</ndl:name>

 <ndl:locatedAt rdf:resource="#SURFnet6"/>

 <ndl:hasInterface rdf:resource="#Lls001a_ome01:9/1"/>

</ndl:Device>

<ndl:Interface rdf:about="#Lls001a_ome01:9/1">

 <ndl:name>Lls001a_ome01:9/1</ndl:name>

 <ndl:connectedTo rdf:resource="#Zl001a_ome01:5/1"/>

 <ndl:capacity rdf:resource="#OC192"/>

 <ndl:encapsulation rdf:resource="#Ethernet "/>

</ndl:Interface>

<ndl:Device rdf:about="#Zl001a_ome01">

 <ndl:name>Zl001a_ome01</ndl:name>

 <ndl:locatedAt rdf:resource="#SURFnet6"/>

 <ndl:hasInterface rdf:resource="#Zl001a_ome01:1/1"/>

 <ndl:hasInterface rdf:resource="#Zl001a_ome01:5/1"/>

 <ndl:hasInterface

rdf:resource="#http://www.netherlight.nl/ndl.rdf#C6509:port7"/>

</ndl:Device>

<ndl:Interface rdf:about="#Zl001a_ome01:5/1">

 <ndl:name>Zl001a_ome01:5/1</ndl:name>

 <ndl:connectedTo rdf:resource="#Lls001a_ome01:9/1"/>

 <ndl:capacity rdf:resource="#OC192"/>

 <ndl:encapsulation rdf:resource="#SONET"/>

 <ndl:Interface

rdf:about="http://www.netherlight.nl/ndl.rdf#C6509:port7">

 <rdf:seeAlso

rdf:resource=”http://www.netherlight.nl/ndl.rdf”/>

 </ndl:Interface>

</ndl:Interface>

 28

in step 1.1 and 1.2 the network topology is determined. For this purpose:

2.1. At the given layer each node of the network is replaced with a vertex of the

graph.

2.2. Pairs of interacting nodes are determined.

2.3. For each pair of interacting nodes we introduce a rib connecting the

corresponding vertices.

For the upper layer corresponding to the level of IP-network, the graph will

contain a set of vertices representing the nodes of the IP-network. The graph

corresponding to the IP-network layer is a set of fully-connected subgraphs. The

layer graph corresponding to the layer of Ethernet network, contains vertices

corresponding to the nodes of the Ethernet network. In the networks

constructed with use Ethernet technology, nodes can:

- interact directly with each other (in the case of use in general transmission

environment)

- interact through the central node (in the case of dial-up connections).

Depending on this the topology of the graph of this layer is different. Thus in

both cases, the graph of this layer contains many subgraphs whose number

corresponds to the number of Ethernet segments of the modelled network. In

this case the connection between subgraphs is performed by the rib connecting

vertices of subgraphs matching the network nodes where a switch or a bridge

connecting Ethernet segments of the network is installed.

The graph of the layer level of the optical network contains a number of vertices

standing for the nodes of the optical network, where optical splitters,

multiplexers/demultiplexers and other equipment are installed. The ribs of the

graph stand for optical cables connecting the nodes of the network and thus the

graph topology repeats the optical network topology.

While performing operation 1.4 the multi-layer graph gets ribs connetcting

vertices which belong to different layers. Each introduced rib stands for the

logical and physical link between nodes of the overlay networks.

While performing operation 1.5 each rib of the multi-layer graph receives a

number of parameters corresponding to the parameters of the modelled

network. The following parameters act as such parameters for the network in

question.

For the layer graphs corresponding to the overlay networks:

- channel capacity between the network nodes;

 29

- message processing time in the node;

- parameters of data flow transmitted through communication channels.

Such graph visualization is displayed in Figure 3.3. The possible parameters are

shown in Figure 3.4. The results of searching the way taking into account the

parameters are shown in Figure 3.5.

FIGURE 3.3: VISUALIZATION OF A MULTI-LAYER AND MULTI-DOMAIN NETWORK

FIGURE 3.4: THE POSSIBLE PARAMETERS

 30

FIGURE 3.5: THE SHORTEST PATH IN A GRAPH

 31

Chapter 4

NDL Applications

4.1 Introduction

In the previous chapter we have introduced the Network Description Language.
I have shown an example of how it can describe devices and link between
different domains.
“One of the advantages of using NDL as the language for description of hybrid
networks is the availability of semantic web tools for RDF that can parse and
consume the information in each NDL file. This means that extracting of the
information needed for network management is straightforward and simple.
In this chapter we show example of how the language can be applied for solving
the operational issues that operators and users face in hybrid optical networks
and other kinds of networks.
Network operators and users often use maps of the network to make sense of
the topology and be able to provide support in diagnostics or manual path
finding”. [A2]
Primarily we need to gather data. After developing application one can see that
it is helpful to have an available toolkit in order to support the most common
tasks performed with NDL files.

4.2 Applications

Main goals of NDL applications application can be listed by the following points:

 Reading and extracting Data from Network Descriptions

 NDL data visualization.

 Modification of the visualized structure.

 32

 NDL Graph creation and editing.

 Storing of the edited documents.

 Finding of the shortest path in NDL graph

4.2.1 Reading and extracting Data from Network Descriptions

As we described in the previous chapter NDL is based on RDF/XML. This has
several advantages, one of which is that we can make use of generic RDF/XML
tools and standards. It applies a simple syntax to specify variables and triplet
templates for retrieving information from a repository.

4.2.2 Visualization using RDF/XML tools.

One of the advantages of using NDL as a language for description of hybrid
networks is the availability of semantic web tools for RDF, which can parse and
consume the information in each NDL file. This means that extracting of the
information needed for network management is straightforward and simple.
In my work a visualization tool is implemented. It takes network description in
NDL format in order, to get the connections between the devices and their
names. This data is then converted in to the graph by using the scripts.

4.2.3 Modifications of the Visualized Structure

RdfVisualizer enables editing of each every element, its properties, like name or
namespace and its attributes. It is possible to add or remove elements from the
document thus allowing modifications of the tree hierarchy.

4.2.4 NDL Graph creation and editing.

Program enables editing of every node and its ports. It is possible to add or remove

nodes/ports from the document thus allowing modifications of the tree hierarchy.

New document can be created in a variety of formats.

4.2.5 Storing of the edited documents.

NDL documents can be saved back to the text format, exported to various image
formats and sent to the printer.

 33

4.2.6 Finding the shortest path in a NDL graph

The application allows the user to choose the vertices and each vertex has a
label. The distance between the vertices in fact is measurement for shortest-
path calculations. The distance is calculated automatically by calculating the
distance between the vertices. A report with the total distance and path found
will be shown [33] .

 34

Chapter 5

User Guide

5.1 User Interface

The Work Project offers tools for data visualization of NDL documents,
generation of NDL schema document and finding of the shortest path in an NDL
graph.
The following sections describe in details “what” and “how” you can achieve.

FIGURE 5.1: MAIN WINDOW

 35

Figure 5.1 shows the main window of the program. It contains the following,
parts:

• Loading document – here you can upload your document

• View NDL structure – window view the structure of your document.

• Canvas – the main working area.

• Zoom – enables to zoom-in or zoom-out the canvas.

• Select nodes – here you can select the start and end point for the search
path.

5.2 View NDL structure

First you need to upload your document. You need to click on the "Load". This
situation is shown in figure 5.2

FIGURE 5.2: LOADING DOCUMENT

After selecting the file in the left part of the window you will see the hierarchical
structure of the NDL document. Tree view of the NDL document, containing
nodes and paths, is displayed. It is also possible to expand, the collapsed node.
All this is shown in figure 5.3 and figure 5.4.

 36

FIGURE 5.3: HIERARCHICAL STRUCTURE

FIGURE 5.4: EXPANDING NODES

 37

5.3 NDL data visualization (the NDL topology schema)

In order to see a graphical representation, first it is necessary to load the
document. The program will draw your graph, according to the document
scheme, in the right part of the screen. This is shown in figure 5.5

FIGURE 5.5: DOCUMENT VISUALIZATION

Figure 5.6 shows the one of child elements on canvas. The child element is
connected to its brothers with a line ended with an arrow. Relationships
between elements can be both unilateral and bilateral. Bilateral ties are red
pointers, but one-way links between elements, it is blue pointers. These links
can be seen by hovering the mouse over the node.

 38

FIGURE 5.6: RELATIONSHIPS BETWEEN ELEMENTS

Every visualized item has its port (the definition of relationships between
elements) (figure 5.7) which visible when the mouse is over it.

 39

FIGURE 5.7: THE DEFINITION OF RELATIONSHIPS

5.4 Finding the shortest path in an NDL graph

For finding the shortest path in an NDL graph you need to select nodes in the
loaded document. Select nodes according to your query, as shown in figure 5.8.
The nodes selected by the query will get label “selected”. The shortest path
between specified elements will be displayed in the window.

FIGURE 5.8: THE SELECTED NODES

 40

For a given source vertex (node) in the graph, the algorithm finds the path with
lowest cost (i.e. the shortest path) between that vertex and every other vertex.
As a result, the shortest path in the graph will be shown a green arrow. Figure
5.9

FIGURE 5.9: THE SHORTEST PATH IN A GRAPH

5.5 Creation and manipulation of graphs

For adding new nodes/edges to a graph, we have to click the button "Add
Device"/”Add edge”. We add in a new window a new node name and the name
of resource.

 41

FIGURE 5.10: ADDING NEW NODES/EDGES TO A GRAPH

FIGURE 5.11: ADDING THE NODE NAME

For editing or deleting of the existing node, we have to allocate the necessary nodes,

and then click, the appropriate button. After that the button "Save to file" and the

whole document will be saved to the file. Figure 5.12.

 42

FIGURE 5.12: EDIT/DELETE OF THE EXISTING NODE

FIGURE 5.13: SAVE TO FILE

5.5.1 Export

The graph of NDL document can be saved to one of the following formats:
XML, RDF, PNG. To export the current graph, click on the "Export" button.

 43

5.5.2 Printing

The visualized NDL document can also be sent to the printer. To do so, click
on the "Print" button.

FIGURE 5.14: EXPORT AND PRINTING

 44

Chapter 6

Shortest-paths problem

6.1 Introduction

In graph theory, the shortest path problem given weighted, directed graph G =

(V, E), positive weight function w : E → R. The weight of a path
 ki VVVp ,...,,0

 is
the sum of the weights of its constituent edges.
Weight of the shortest path from vertex u to vertex v is defined by

otherwise

pathaifvupw p

,

,:)(min

Then, by definition, the shortest path from vertex u to vertex v - it is the way, the
weight of which satisfies),()(vupw .

The weight of each of edges can be interpreted as other metrics. Often they are
used for representation of time intervals or any other value which needs to be
minimized.
This section presents the Bellman-Ford algorithm that allows to solve the problem of

the shortest path from a fixed node in the general case, when the weight of any edge

can be negative. This algorithm is characterized by its simplicity. Its advantages also

include the fact that it determines whether the cycle in a graph with negative weight,

reachable from the node.

Also in the section describes the algorithm of Dijkstra which is characterized by

smaller time of performance, comparing to the Bellman-Ford algorithm, but requires

non-negative weight of each of the ribs was.

Furthermore, an algorithm for dynamic programming - Floyd-Warshall algorithm,

which allows to solve the problem of finding the shortest paths between all pairs of

nodes, is included in the section. [21]

 45

6.2 Bellman–Ford algorithm

The Bellman-Ford algorithm finds the distance from one vertex (assigned
number 0) to all other vertices, where the weight of each of the edge can be
negative. For a directed weighted graph G = (V, E) with root s and weight
function w: E R Bellman-Ford algorithm returns a Boolean value indicating
whether the graph contains a cycle with negative weight from the root. If such a
cycle exists, the algorithm indicates that no solutions exist. If there are no cycles,
the algorithm shows shortcuts and their weight.

Asymptotic complexity:

 Average case (random data): O(| V |·| E |)

 Worst case: O(| V |·| E |)

Formal description

LISTING 6.1: THE BELLMAN–FORD ALGORITHM [22]

Bellman_Ford(G, w, s)

1: INITIALIZE (G,s)

2: for i ← 1 to |V|-1

3: do for each edge (u,v)∈E

4: do RELAX (u,v,w)

5: for each edge (u,v)∈E

6: do if d[v]>d[u]+w(u,v)

7: then return FALSE

8: return TRUE

 46

6.3 Dijkstra's algorithm

Dijkstra's algorithm finds the shortest distance from one of the vertices of the graph

to all others. All weights must be non-negative.

Running time.

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q in an

ordinary linked list or array and extract minimum from Q-it is simply a linear search

through all vertices in Q. In this case, the running time is
)()(22 VV

.

Formal description

LISTING 6.2: DIJKSTRA'S ALGORITHM

Dijkstra (swG ,,)

1: INITIALIZE_SINGLE_SOURCE (G,s)

2: S 0

3: Q GV

4: While Q 0

5: do MinExtractu _ (Q)

6: uSS

7: for each edge uAdv j

8: do RELAX (u,v,w)

 47

Example. The algorithm of Dijkstra's: figure 6.1

 a) b)

 с) d)

FIGURE 6.1: DIJKSTRA'S ALGORITHM [23]

1

2
5

3 4

1w

2
5

3 4

0

∞ ∞

∞ ∞

10
10

10

30

50

30

40

20

10 10

30 50

40

10 10

30
50

10

30

20

1

2 5w

3 4

0

10 10

40 20
20

30

10

50

10 10

40

30

1

3

5 2

4

10

20 40

10

0

10

30

10

50

10

30

20

40

 48

6.4 Floyd–Warshall algorithm

The Floyd-Warshall algorithm-dynamic algorithm for finding the shortest distances

between all vertices of a directed weighted graph.
Defined directed graph G = (V, E) each arc v⟶w of the graph corresponds to a non-

negative value of C [v, w]. The general problem of finding of the shortest paths is to

find for each ordered pair of vertices (v, w) of any path from vertex v to vertex w,

whose length is minimal among all possible paths from v to w.

Formal description

Let A be a N x N matrix (N is the number of vertices), A[i, j] representing the length

(or cost) of the shortest path from i to j.

“For each element A[i, j] assign a value equal to the cost of the edge going from i to

j, or an infinity value if this edge doesn't exist.

 At each step, for each pair of vertices i and j see if there's an intermediate vertex k so

that the path from i to j through k is shorter than the one already found for i and j.

If i, j and k are ordered properly, only O(N
3
) operations are needed to find the values

of all elements of A. Such an order is obtained when first k is considered and then i

and j”.[24]

After the k-th iteration, A[i, j] contains the value of the smallest path lengths from

vertex i to vertex j, which does not pass through the vertices with index greater than

k. At the k-th iteration to compute the matrix A formula is used:

Ak[i,j]=min(Ak-1[i,j], Ak-1[i,k]+Ak-1[k,j])

To calculate Ak[i, j], value Ak-1[i, j] is compared with a value:

 Ak-1[i, k] + Ak-1[k, j]

FIGURE 6.2: INCLUSION THE VERTEX K IN THE PATH FROM THE VERTEX I TO THE VERTEX

J[25]

 i

k

j

],[1 kiAk],[1 jkAk

],[1 jiAk

 49

Example. The algorithm of Floyd-Warshall: figure 6.3

FIGURE 6.3: EXAMPLE OF A GRAPH AND TABLE OF DISTANCES

6.5 Experience of application and conclusions

After detailed analyses of the considered methods for creation of optimum
ways. I can conclude that from all listed algorithms, the most convenient and
effective algorithm of the solution of a task about finding of the shortest way is
Dijkstra's algorithm. The advantage of this algorithm over other methods is that for

sufficiently large number of vertices, the computing time is less. The algorithm of

Dijkstra's was applied in my work.

6.6 Multi-layer network model

0

1

2

3

4

5

6

4

1

10

0

7

7

 0 1 2 3 4

0 0 12 15 ---- 22

1 7 0 11 ---- 10

2 14 7 0 ---- 17

3 19 12 5 0 4

4 15 8 1 ---- 0

 50

In this section, we provide three network descriptions. The first model is a model in

which each device represents node in a graph G, and network links are represented

as edges. The second model is a model in which each network device as multiple

nodes in a graph Gl. The third model where transform the multi-layer network into a

graph Gs consisting of nodes and links on different ‘‘technologies”.

6.6.1 Device-based network description G

Figure 6.4 is example of a multi-layer network. This network we provide six
devices, D={A,B,C,D,E,F}, here we consider two layers L={Ethernet,
SONET(STS)}. There two layers of the adaptation: Gigabit Ethernet (GE) can be
compatible in 24 STS channels or in 21 STS channels(STS-3c-7v where is it 7
virtual containers of 3 concatenated channels).
It is designated as A(STS) = { 24с, 3c7v }. The network has 6 physical links, and
not all devices support all adaptations. In this network the shortest correct
path from A to C is A–B–E–D–B–E–F–C, because then GE is adapted in STS-24c at
node B and 22 STS channels are available between B and D.
The graph G in figure 5.4 is a primary way to description the physical
properties of a network, with devices as nodes, and links as edges. Information
on (de)adaptation capabilities is present in the nodes, in the graph defined by G
={N,E}.

 FIGURE 6.4: EXAMPLE OF A MULTI-LAYER AND MULTI-DOMAIN NETWORK [36]

6.6.2 Stack-based network description Gs

 51

For creation of effective algorithm of the count Gs we must come to a simple

description of the network, which consists of nodes and edges. (De)adaptations from

one technology to another are represented as simply by vertical edges. Consider the

example network in figure 5.4. We will define three adaptation : S = {Ethernet,

Ethernet over 24 STS channels, Ethernet over 21 STS channels}.

We will create the graph Gs=(Ns,Es) of a multi-layer network. We will assume that

the network consists of D devices and S technology stacks, in this case the graph

contains of Ns = S * D nodes. Nodes on the same row have an edge, if they can

communicate with each other directly. An edge from a node in one row to a node in

another row represents a (de)adaptation. “By assigning weights to the horizontal

edges we can represent the cost of using an edge, and by assigning weights to the

vertical edges we can represent the cost of (de)adaptationIn figure 6.5, we presented

more detailed scheme of the network from figure 6.4 (we use edge weights for the

link capacity)”. [37]

 Node B can only use GE in 24 channels, node D can use GE into 24 channels or

into 21 channels. Nodes on the same row t can communicate among themselves

without (de)adaptations. The dotted line, shows that these nodes should be able to

communicate among themselves.

FIGURE 6.5: REPRESENTATION OF THE NETWORK IN Figure 6.4 AS A MULTI-LAYERED GRAPH

[36]

6.6.3 Path selection in Gs

We will consider the Dijkstra algorithm to the graph G in figure 6.4 from node A in

node C, in this case the shortest the path it is A–B–E–F–C. If we use the Dijkstra

algorithm to the graph Gs in figure 5.5, we would find the path AEth–BEth–B24c–

E24c–D24c–DEth–D3c7v–E3c7v–F3c7v–FEth–CEth, which will correspond to

path A–B–E–D–E–F–C.

 52

For finding of an optimum path (A–B–E–D–B–E–F–C), we need to create

algorithm, taking into account capacity on physical links traversed multiple times.

We need to check for enough bandwidth. If is insufficient bandwidth, then

subsections of shortest paths are not optimum (not necessarily shortest). It is

algorithm for path selection in Gs is MULTI-LAYER-DIJKSTRA (Gs, s, t,B). The

algoritm of MULTI-LAYER-DIJKSTRA(Gs, s, t, B) is given below.

LISTING 6.3: MULTI-LAYER-DIJKSTRA ALGORITHM

We need to find a shortest path from s to t in Gs, which has bandwidth of B.
" d[v] gives the shortest found distance from s to v.

1. DIJKSTRA(Gs, t)r[v]/*Lower bounds for all nodes*/
2. for all nodes v Ns
3. d[v] /*The distance to s*/
4. [v] NIL/*The predecessor node to s*/
5. counter[v] 0
6. maxlength
7. d[s] 0
8. counter[s] counter[s] + 1
9. INSERT(Q,s, counter[s], NIL, d[s] + r[s])
10. while Q 0;
11. EXTRACT-MIN(Q)u[i]
12. if u[i] = t
13. return path
14. else
15. for each v adj[u[i]]/*for each neighbor v of u[i]*/
16. if d[u[i]] + w(u[i],v) + r[v]< maxlength
17. if FEASIBLE (u[i],v,B)/*Backtracking*/
18. d[v] d[u[i]] + w(u[i],v)
19. p[v] u[i]
20. counter[v] counter[v] + 1
21. INSERT (Q,v,counter [v],u[i], d[v] + r[v])
22. if v = t
23. maxlength d[v] + r[v]
24. x u
25. y i
26. B‘ b(u,v)
27. while([x[y]] NIL)
28. if L([x[y]],x) = L(u[i],v)
29. B‘ B‘- B
30. x[y] [x[y]]
31. if x = v
32. return FALSE
33. if B‘ < B
34. return FALSE
35. else
36. return TRUE

 53

 [v] gives the predecessor of node v that was used to reach node v with
distance d[v].
counter[v] refers to the number of paths stored at node v and maxlength refers
to the maximum length that a (sub)path may have.
 w(u,v) and b(u,v) give the weight and the available bandwidth on the edge
(u,v), respectively." [37]
We define c(e) to be the available capacity of the physical link e. L(u,v) defines
the relation of a given edge (u,v) to the corresponding physical link. We created
nodes n as n(d, s) for device d and technology stack s, L(u,v) = L(u(du, su),v(dv,
sv)) is the physical link between devices du and dv.
We define b(u,v) = c(L(u,v)). C is the set of capacities for all physical links in the
network.
B is the required capacity of the path, which may also differ per stack.
Line 1 computes the shortest path from t to all other nodes in the graph using
the classical Dijkstra algorithm and does not consider any restrictions. For a
start we need to describe all nodes (lines 1–9).
 The weights of these paths, referred to as r[v] for all nodes v Ns. If the
shortest path from s to t will be found, we can finish the algorithm and return
result. In other case the algorithm will proceed.
The weights of these paths is it lower bound estimates, r[v] for all nodes v Ns.
Line 9 inserts the source node with length d[s] + r[s] = r[s] and predecessor
NIL in the queue Q.
Line 11: the node u[i] from the queue has the shortest weight. Since multiple
paths can be stored at a node u, u[i] is used to denote the ith path at node u. Not
entire paths are stored, but by backtracking the predecessor list p, the entire
path can be reconstructed. Node u[i] is the new scanning node towards
destination t. If u[i] = t we have found the shortest path.
„Line 16 checks whether the length of the path extended from u[i] to v does not
exceed maxlength, otherwise it is discarded because we already have a better
candidate. If this first test is passed, we continue by backtracing the predecessor
list to check, with the module FEASIBLE(), for loops and for enough available
bandwidth on the physical link (u,v). If these tests are also passed, we may
insert v into the queue.“ [37]
The complexity of MULTI-LAYER-DIJKSTRA(Gs, s, t,B). Lines 1–9 have the
complexity O(Ns*logNs + Es). kmax the maximum number of paths stored at
each node. If node can be selected at kmax times from the queue, the EXTRACT-
MIN function in Line 11 takes value O(kmax*Ns*log (kmaxNs)).
Total complexity for MULTI-LAYER-DIJKSTRA O(kmaxNslog kmaxNs) +
kmaxNsEs), where kmax may be exponential in Ns.

6.6.4. Creating the search algorithm

Above we have described search algorithms for multi-layer graphs.

All these algorithms are based on Dijkstra's algorithm. The above mentioned

 54

algorithms are quite interesting and complex enough. They include the

parameters and limits that can contain optical (telecommunication) networks.

But in our opinion, these algorithms do not apply the significant parameters

that are very important when dealing with this kind of technologies. If we do not

take into account the way finding algorithm it may not work properly and it

cannot be optimal, that is very important when operating with optical

technologies.

We developed the algorithm which modifies the classical Dijkstra's algorithm

and adds parameters and limits which are important in our opinion.

Above all we would like to add a parameter called switch. We have already told

that in our graph the nodes represent either devices or network interfaces, and

the ribs stand for the communication channels or adaptation between network

layers. As a rule, the switches may stand both at the input and output of a

device. That means that when passing through a certain interface or an

adaptation device parameters of communication channels may change, to put it

simply we see a process of switching. We must take into account that some

switches already have certain connections that we are not able to change,

because it may lead to an error or degrade already existing communications. In

this case, our algorithm contains two options:

1. If such adaptation is suitable, the "algorithm runs on";

2. If such adaptation is incompatible with our adaptation, the
algorithm starts to look for another way using other communication
channels.

The second important parameter is the wavelength (lambda). This is quite an

important parameter to be considered when creating the search algorithm. The

wavelength parameter affects the speed and has a great importance when

calculating the propagation time of the algorithm.

The third significant parameter added to our algorithm is the power

("capacity"). The problem is that the power of devices is not always given in

their description or given by certain encodings, for example: "AS-12.01" or

"B09." Our algorithm can solve this problem in the following manner. If the

parameter of the device capacity is not specified, it is determined by default, i.e.,

we use a certain standard value. If the capacity parameter is encoded, the

program translates this code into the numeric format. Thus, we receive a certain

number which is taken into account when calculating the execution time of the

algorithm.

 55

The fourth parameter, which we added to our algorithm is a type of encoding

("encoding type"). As long as we have a multi-layer network which contains

several types of encoding, we need to check the adaptation of various encodings.

If encodings are not compatible, the algorithm will have to look for other ways,

spending extra time.

So we explained how the created algorithm operates. We are sure that this

algorithm is very simple to use. We tried to make it easy to understand for

users. This algorithm can surely be modified, complicated or simplified. Also the

parameters (limits) we added may be removed.

Certainly, considering the fact that the optical (communication) technology is

rapidly changing, improving, so parameters for search algorithm will change.

That is why we tried to make our work as accessible as possible for

understanding and further modification.

Implementation of our algorithm can be seen in Chapter 8.

 56

Chapter 7

Architecture of the project

7.1 Introduction

The architecture of my project consists of several main parts. I consider that
such approach helps to keep all integrity of my work and it is easier to
understand the project for users and for programmers. I tried to simplify my
work.

7.2 Overview of the Architecture

In my work I applied the C# language using NET Framework 4.5 as a
development platform. The application consists of three main parts. This is
shown in figure 7.1. The overall architecture is inspired by the WPF: MVVM
(Model View View-Model) [26].
„The Model-View-View-Model (MVVM) is an architectural pattern used in
software engineering that originated from Microsoft which is specialized in the
Presentation Model design pattern. It is based on the Model-view-controller
pattern (MVC) and is targeted at modern UI development platforms (WPF and
Silverlight) in which there is UX developer who has different requirements than
more "traditional" developer. MVVM is a way of creating client applications that
leverages core features of the WPF platform, allows for simple unit testing of
application functionality, and helps developers and designers work together
with less technical difficulties“ [27].
 Give a simple definition of Model View View-Model.

 57

FIGURE 7.1: EXAMPLE OF MVVM

Figure 7.1 shows overview of program. It contains the following
parts:

1. The View holds a reference to the ViewModel. The View basically
displays stuff by Binding to entities in the View Model.

2. The ViewModel exposes Commands, Notifiable Properties, and
Observable Collections to the View. The View Binds to these ViewModel
entities/members

3. The Model is your data and/or application objects that move data while
applying Application Logic. If you have a Business Layer, then you might
not need this.

The ViewModel is the most significant in the entire pattern as it is the glue that
sits between the View and the Model and binds both of them together[26].

7.2.1 The View

A View is defined in XAML. The View can contain the visual controls, animations

and other functions of the navigation for the purpose of the visual representation. The

View is data bound to the Model. The View acts as communications between your

software and users.

7.2.2 The Model

Model is responsible for exposing data in a way that is WPF. Model can
implement INotifyPropertyChanged and/or INotifyCollectionChanged. When
data is expensive to fetch, it abstracts away the expensive operations, never
blocking the UI thread.

ViewModel Model View

 58

7.2.3 The ViewModel

A ViewModel is a model for a view in the application. The ViewModel exposes
data and exposes the behaviors for the view with Command. The ViewModel is
the glue between the View and the outside environment. It is what the View is
bound to. It provides a specialization of the Model that the View can use for
data-binding.

7.3 Architecture of decision system

RdfVisualizer is an application which contains common Models, Views and
ViewModels. The most important classes and interfaces are shown in figure 7.2.

FIGURE 7.2: BASE MODELS AND VIEWS

 59

7.4 Models and helper classes

GraphEntities contains realization of the main models and other helper classes
which should be implemented for the description and visualization of the graph
of the initial document. This can be seen in figure 7.3.

FIGURE 7.3: MODELS OF GRAPHENTITIES

NetworkEdge

This class serves as an application model. It describes all the necessary
properties, methods and events which should be implemented for construction
and visualization of edges between vertices and for search of the optimal way

between vertices of the graph. Part of the NetworkEdgel class can be seen in
listing 7.1.

 60

LISTING 7.1: NETWORK EDGE

public class NetworkEdge : TaggedEdge<NetworkVertex,string>,

INotifyPropertyChanged

 {

 private bool _isBestWay;

 private string _description;

 private bool _isSelected;

 public string Description

 {

 get { return _description; }

 set

 {

 _description = value;

 OnPropertyChanged("Description");

 }

 }

 public bool IsBestWay

 {

 get { return _isBestWay; }

 set

 {

 _isBestWay = value;

 OnPropertyChanged("IsBestWay");

 }

 }

 public bool IsSelected

 {

 get { return _isSelected; }

 set

 {

 _isSelected = value;

 OnPropertyChanged("IsSelected");

 }

 }

 private ICommand _edgeChooseCommand;

 public ICommand EdgeChooseCommand

 {

 get { return _edgeChooseCommand; }

 set { _edgeChooseCommand = value; }

 }

 public event EventHandler Selected;

 public event PropertyChangedEventHandler PropertyChanged;

 public NetworkEdge(NetworkVertex source, NetworkVertex target, string

description)

 : base(source, target, description)

 {

 Description = description;

 EdgeChooseCommand = new DelegateCommand(EdgeChoosedAction);

 }

 private void EdgeChoosedAction()

 {

 OnSelected();

 }

 protected virtual void OnSelected()

 {

 EventHandler handler = Selected;

 if (handler != null) handler(this, EventArgs.Empty);

 }

 61

NetworkVertex

This class represents a dynamic data collection which describes vertices of the
graph. We will apply this description for creation of internal representation,
visualization and editing of NDL documents. Part of the NetworkVertex class can
be seen in listing 7.2.

LISTING 7.2: NETWORKVERTEX

 public class NetworkVertex : INotifyPropertyChanged

 {

 #region Private Fields

 private bool _isSearched;

 private IList<string> _liskTo;

 private ObservableCollection<NetworkVertex> _linkToVertexies;

 private string _portConnectedTo;

 private string _interfaceToDomain;

 private bool _isSelected;

 private string _label;

 private string _locatedAt;

 #endregion

 #region Public Properties

 public string LocatedAt

 {

 get { return _locatedAt; }

 set

 {

 _locatedAt = value;

 OnPropertyChanged("LocatedAt");

 }

 }

 public string Label

 {

 get { return _label; }

 set

 {

 _label = value;

 OnPropertyChanged("Label");

 OnPropertyChanged("About");

 }

 }

 public string About

 {

 get { return "#" + _label; }

 }

 public NetworkItemType NetworkItemType { get; private set; }

 public ObservableCollection<NetworkVertex> LinkToVertexies

 {

 get

 {

 return _linkToVertexies;

 }

 set

 {

 _linkToVertexies = value;

 OnPropertyChanged("LinkToVertexies");

 }

 }

 62

7.5 The ViewModel class

Adding attribute to the property, the dependence of the container decides and
implements the specified type after creating the View. Introduction of the
ViewModel is installed directly in the contextual data (datacontext) View.
RdfVisualizer contains the following ViewModels:

 DeviceDetailsViewModel - ViewModel for manipulation with object
model of the graph

 MainWindowViewModel – ViewModel for a Window/UserControl that

hosts the RdfVisualizer graphing controls. Listing 7.3

Using PocGraphLayout we can create a custom LayoutTyppe for the custom
graph. Listing 7.4

FIGURE 7.4: THE VIEWMODEL

 63

LISTING 7.3: MAINWINDOWVIEWMODEL

namespace RdfVisualizer.ViewModels

{

 public class PocGraphLayout : GraphLayout<NetworkVertex, NetworkEdge,

NetworkGraph> { }

 public class MainWindowViewModel : INotifyPropertyChanged

 {

 #region Private Fields

 private NetworkGraph _graph;

 private readonly MainWindow _mainWindow;

 public DelegateCommand LoadRdfCommand { get; set; }

 private readonly ObservableCollection<NetworkVertex>

_networkVertices;

 private string _layoutAlgorithmType;

 private string _searchString;

 private NetworkVertex _vertexFrom;

 private NetworkVertex _vertexTo;

 // private NetworkEdge _selectedEdge;

 #endregion

 #region Public Properties

 public ICommand DeleteVertexCommand { get; set; }

 public DelegateCommand AddDeviceCommand { get; set; }

 public DelegateCommand AddEdgeCommand { get; set; }

 public string LayoutAlgorithmType

 {

 get { return _layoutAlgorithmType; }

 set

 {

 _layoutAlgorithmType = value;

 OnPropertyChanged("LayoutAlgorithmType");

 }

 }

 public NetworkGraph Graph

 {

 get { return _graph; }

 set

 {

 _graph = value;

 OnPropertyChanged("Graph");

 }

 }

 public ObservableCollection<NetworkVertex> NetworkVerticesFrom

 {

 get

 {

 return _networkVertices;

 }

 }

 public ObservableCollection<NetworkVertex> NetworkVerticesTo

 {

 get

 {

 return _networkVertices;

 }

 }

 64

LISTING 7.4: COMMUNICATION OF DATA AND VIEW

<Window x:Class="RdfVisualizer.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:controls="clr-

namespace:WPFExtensions.Controls;assembly=WPFExtensions"

 xmlns:controls1="clr-

namespace:GraphSharp.Controls;assembly=GraphSharp.Controls"

 xmlns:graphEntities="clr-namespace:RdfVisualizer.GraphEntities"

 xmlns:viewModels="clr-namespace:RdfVisualizer.ViewModels"

 xmlns:converters="clr-

namespace:GraphSharp.Converters;assembly=GraphSharp.Controls"

 xmlns:i="http://schemas.microsoft.com/expression/2010/interactivity"

 Title="RDF Visualizer" Height="600" Width="800"

Loaded="OnMainWindowLoaded" WindowState="Maximized">

 <Window.Resources>

 <DataTemplate x:Key="DemoTemplate" DataType="{x:Type

graphEntities:NetworkVertex}">

 <StackPanel Orientation="Vertical" Margin="5" >

 <CheckBox IsChecked="{Binding IsSelected, Mode=TwoWay}" />

 <TextBlock x:Name="title" Text="{Binding Path=About,

Mode=OneWay}" Foreground="White"/>

 <TextBlock FontSize="9" Text="{Binding Path=LocatedAt,

Mode=OneWay}" Foreground="White"/>

 <!--<TextBlock Text="{Binding Path=Label, Mode=OneWay}"

Foreground="White"/>-->

 <StackPanel Orientation="Horizontal">

 <Button Content="Edit" Command="{Binding

EditVertexCommand}" VerticalAlignment="Center" HorizontalAlignment="Left"/>

 <Button Content="Delete" CommandParameter="{Binding}"

Command="{Binding DataContext.DeleteVertexCommand,

RelativeSource={RelativeSource Mode=FindAncestor,AncestorType={x:Type

controls:ZoomControl}}}" VerticalAlignment="Center"

HorizontalAlignment="Left"/>

 </StackPanel>

 65

Chapter 8

Base algorithms

8.1 Introduction

In this chapter we will talk about the basic algorithms, which we used for
creation of this project. We will note the based libraries used for creation of
internal representation and visualization of NDL documents.
We uses an open source library called GraphSharp [28] to layout the elements in
canvas. This library provides several different layout algorithms for graphs. It
contains some layout algorithms and a GraphLayout control for WPF
applications.

8.2 Parsing NDL documents

To create the Efficient internal representation of the NDL document, we use The
XML Document Object Model (DOM) [29]. The DOM presents an XML document
as a tree-structure. Event-based XML parser allows to access the relevant data.
Consider the example shown in listing 8.1.
We use the classes for LINQ to XML [30]. Also we use the System.Xml.XPath
namespace contains the classes that define a cursor model for navigating XML
information items [31]

 66

LISTING 8.1: PARSING. NDL FILES(TOPOLOGY SCHEMA) WITH DOM

OnPropertyChanged("NetworkVerticesFrom");

 OnPropertyChanged("NetworkVerticesTo");

 OnPropertyChanged("Graph");

 OnPropertyChanged("NetworkVerticesFrom");

 OnPropertyChanged("NetworkVerticesTo");

 var xml = File.ReadAllText(ofd.FileName);

 XNamespace rdfNamespace = "http://www.w3.org/1999/02/22-

rdf-syntax-ns#";

 XNamespace ndlNamespace =

"http://www.science.uva.nl/research/sne/ndl#";

 XNamespace domainNamespace =

"http://www.science.uva.nl/research/sne/ndl/domain#";

 var xdoc = XDocument.Parse(xml);

 var domains = xdoc.Descendants(domainNamespace +

"NetworkDomain");

 var devices = xdoc.Descendants(ndlNamespace + "Device");

 var nameTable = new NameTable();

 var namespaceManager = new XmlNamespaceManager(nameTable);

 namespaceManager.AddNamespace("ndl",

"http://www.science.uva.nl/research/sne/ndl#");

 foreach (var device in devices)

 {

 var deviceNetworkName = device.Attribute(rdfNamespace

+ "about").Value.Replace("#", string.Empty);

 var interfaces =

 xdoc.XPathSelectElements("//ndl:Interface",

namespaceManager)

 .Where(a => a.Attribute(rdfNamespace +

"about").Value.Contains(deviceNetworkName))

 .SelectMany(

 intf =>

 intf.Elements(ndlNamespace + "linkTo")

 .Select(linkTo =>

linkTo.Attribute(rdfNamespace + "resource").Value)).ToList();

 var interfaceToDomain =

 xdoc.XPathSelectElements("//ndl:Interface",

namespaceManager)

 .Where(a => a.Attribute(rdfNamespace +

"about").Value.Contains(deviceNetworkName))

 .Select(a =>a.Attribute(rdfNamespace +

"about").Value)

 .FirstOrDefault();

 if (interfaceToDomain != null)

 {

 var split = interfaceToDomain.Split(new[] { ':' },

StringSplitOptions.RemoveEmptyEntries);

 interfaceToDomain = split.Length > 1 ? split[1] :

null;

 }

 _networkVertices.Add(new

NetworkVertex(deviceNetworkName, NetworkItemType.Device, interfaces,

interfaceToDomain));

 }

 foreach (var domain in domains)

 {

 var deviceNetworkName = domain.Attribute(rdfNamespace

+ "about").Value.Replace("#", string.Empty);

 var interfaces =

 domain.Elements(domainNamespace + "hasDevice")

 .Select(a => a.Attribute(rdfNamespace +

"resource").Value).ToList();

 _networkVertices.Add(new

NetworkVertex(deviceNetworkName, NetworkItemType.Domain, interfaces)); }

 67

8.3 Manipulating NDL documents

For manipulations with the Graph we added additional ViewModel
(DeviceDetailsViewModel). We have created an additional class, which describe
the methods and objects to create new nodes of the graph, editing of existing
nodes and saving the modified data in the NDL document1. Listing: 8.2

LISTING 8.2: DEVICEDETAILSVIEWMODEL FOR MANIPULATIONS WITH THE GRAPH

1
 At creation of the editor, we consulted with a senior software developer.

 public event PropertyChangedEventHandler PropertyChanged;

 public DeviceDetailsViewModel(DeviceDetails view, NetworkVertex

editedNetworkVertex)

 {

 EditedNetworkVertex = editedNetworkVertex;

 Label = editedNetworkVertex.Label;

 LocatedAt = editedNetworkVertex.LocatedAt;

 View = view;

 View.DataContext = this;

 SaveCommand = new DelegateCommand(Save);

 CloseCommand = new DelegateCommand(Close);

 }

 private void Close()

 {

 View.DialogResult = false;

 View.Close();

 }

 private void Save()

 {

 View.DialogResult = true;

 View.Close();

 }

 [NotifyPropertyChangedInvocator]

 private void OnPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler != null) handler(this, new

PropertyChangedEventArgs(propertyName));

 }

 }

 68

8.4 Modification of the Dijkstra Algorithm

In Chapter 5, we considered the basic algorithms of search in the graph, we
described their features and showed simple examples. For implementation of
the Dijkstra algorithm we used QuickGraph. It provides generic
directed/undirected graph data structures and algorithms for .NET.
QuickGraph comes with algorithms such as depth first search, breath first
search, shortest path, k-shortest path, maximum flow, minimum spanning tree,
least common ancestors, etc... [31]
The AlgorithmExtensions class contains several helper methods to execute the
algorithm. We show how to solve this problem with QuickGraph in listing 8.3.

LISTING 8.3: IMPLEMENTATION OF THE DIJKSTRA ALGORITHM

We developed the algorithm which modifies the classical Dijkstra's algorithm

and adds parameters and limits which are important in our opinion.

Working principle of algorithm:

 calculates capacity for the interface;

 receives encoding type for the device;

public void ShowBestWay()

 {

 if (VertexFrom != null && VertexTo != null)

 {

 IEnumerable<NetworkEdge> result;

 Graph.ShortestPathsDijkstra(EdgeWeights,

VertexFrom).Invoke(VertexTo, out result);

 if (result != null)

 {

 foreach (var networkEdge in Graph.Edges)

 {

 networkEdge.IsBestWay = false;

 }

 foreach (var networkEdge in result)

 {

 networkEdge.IsBestWay = true;

 var edge =

 Graph.Edges.FirstOrDefault(

 a => a.Source == networkEdge.Target &&

a.Target == networkEdge.Source);

 if (edge != null)

 {

 edge.IsBestWay = true;

 }

 }

 }

 }

 }

 69

 If encodings are not compatible, the algorithm will have to look for other

ways, spending extra time.

 further, we can use standard methods of algorithm (dijkstra's algorithm).

LISTING 8.4: IMPLEMENTATION OF THE DIJKSTRA ALGORITHM (MODIFICATION)

private double EdgeWeights(NetworkEdge networkEdge)
 {
 double capacity = 1;
 if (networkEdge.Capacity != null &&
!string.IsNullOrEmpty(networkEdge.Capacity.CapacityValue))
 {
 double.TryParse(networkEdge.Capacity.CapacityValue, out
capacity);
 }

 string encodingTypeTarget = string.Empty;
 string encodingTypeSource = string.Empty;
 if (networkEdge.Source.Interface != null &&
networkEdge.Source.Interface.EncodingType != null)
 {
 encodingTypeSource =
networkEdge.Source.Interface.EncodingType.EncodingTypeValue;
 }
 if (networkEdge.Target.Interface != null &&
networkEdge.Target.Interface.EncodingType != null)
 {
 encodingTypeTarget =
networkEdge.Target.Interface.EncodingType.EncodingTypeValue;
 }

 return networkEdge.Target.NetworkItemType ==
NetworkItemType.Domain ||
 networkEdge.Source.NetworkItemType == NetworkItemType.Domain
 ? 100000000000
 : capacity*(encodingTypeSource.Equals(encodingTypeTarget) ? 1.0 : 0.5);
 }

 70

Conclusions

The aim of this thesis was to create the Tools for NDL Elaboration. Created
application project offers tools to create and edit generic topology schemes NDL
documents.
These documents are shown as visualized trees. This visualization can be
modified. The visualized documents can be exported to various formats
including TXT, XML and RDF.
NDL topology schemas can also be edited using this application. Using internal
representation of NDL elements, the user does not need to remember the names
of the elements available. RdfVisualizer is capable of opening and editing huge
NDL files. RdfVisualizer is one of the first attempts in creating tools to work with
NLD documents. But I think that, RdfVisualizer cannot to compete with
professional solutions which are on the market nowadays. Those solutions are
being developed by the whole teams of professional developers.
We tried to show how NDL editing can be done in a different way and can be
used for example for creating visualizations of simple NDL documents, editing
internal representation of NDL and finding the shortest path in NDL documents.
We are sure that there are many ways how this project could be enhanced. The
following list shows ideas which could make this project a better application:

 Add simultaneous text and visual editing of other types of NDL
documents,

 first of all, it is NDL layer schema and NDL domain schema.

 Improve user-friendliness of elements editing.

 Allow users to better customize the appearance of visualized elements.

 Optimize performance of the application when there are many

(thousands) of elements on canvas.

 Add more algorithms of search (the Floyd–Warshall algorithm, the
Bellman-Ford algorithm, A*, ...).

 Improve of internal representation of NDL elements.

 71

Bibliography

[1]. Global Lambda Integrated Facility (GLIF): http://www.glif.is/.

[2]. Cees de Laat, Erik Radius, and Steven Wallace: The Rationale of the
Current Optical Networking Initiatives. Future Generation Computer Systems,
19(6):999–1008 (August 2003).
http://www.sciencedirect.com/science/article/

[3]. HP Openview. http://openview.hp.com/ .

[4]. Dynamic Resource Allocation Controller (DRAC).
http://www.nortel.com/drac/

[5]. Iljitsch van Beijnum: BGP. O’Reilly Media, Inc. (2002). ISBN
9780596002541 .

[6]. X. Cao, V. Anand, and C. Qiao. Waveband Switching in Optical Networks.
In IEEE Communications Magazine Apr. 2003.
doi:10.1109/MCOM.2003.1193983 .

[7]. Characteristics of synchronous digital hierarchy (SDH) equipment
functional blocks. Recommendation ITU-T G.783, International
Telecommunication Union (ITU), Feb. 2004. http://www.itu.int/rec/T-REC-
G.783/ .

[8]. Synchronous Optical Network (SONET) - Basic Description including
Multiplex Structure, Rates, and Formats. Standard T1.105, American National
Standards Institute (ANSI),2001.
http://webstore.ansi.org/RecordDetail.aspx?sku=T1.105-2001 .

[9]. Interfaces for the Optical Transport Network (OTN). Recommendation
ITU-T G.709 / ITU-T Y.1331, International Telecommunication Union (ITU),
Mar. 2003. http://www.itu.int/rec/T-REC-G.709/ .

[10]. Architecture of Optical Transport Networks. Recommendation ITU-T
G.872, international Telecommunication Union (ITU), Nov.
2001.http://www.itu.int/rec/T-REC-G.872/ .

[11]. B-ISDN asynchronous transfer mode functional characteristics.
Recommendation ITU-T I.150, International Telecommunication Union (ITU),
Feb. 1999. http://www.itu.int/rec/T-REC-I.150/ .

http://www.glif.is/
http://www.sciencedirect.com/science/article/
http://openview.hp.com/
http://www.nortel.com/drac/
http://www.itu.int/rec/T-REC-G.783/
http://www.itu.int/rec/T-REC-G.783/
http://webstore.ansi.org/RecordDetail.aspx?sku=T1.105-2001
http://www.itu.int/rec/T-REC-G.709/
http://www.itu.int/rec/T-REC-G.872/
http://www.itu.int/rec/T-REC-I.150/

 72

[12]. Franco Travostino: Using the Semantic Web to Automate the Operation
of a Hybrid Internetwork. In GridNets conference proceedings (October 2005).

[13]. The Semantic Web. http://www.w3.org/2001/sw/ .

[14]. Resource Description Framework (RDF). http://www.w3.org/RDF/ .

[15]. Eric Prud’hommeaux and Andy Seaborne: SPARQL Query Language for
RDF (2005). http://www.w3.org/TR/rdf-sparql-query/ .

[16]. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard) (June 1999). Updated by RFC 2817,
http://www.ietf.org/rfc/rfc2616.txt .

[17]. T. Berners-Lee, R. Fielding, and L. Masinter: Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard) (January 2005).
http://www.ietf.org/rfc/rfc3986.txt.

[18]. Friend of a Friend (FOAF) Project. http://www.foaf-project.org/ .

[19]. Dublin Core Metadata Initiative. http://www.dublincore.org/.

[20]. D. Beckett. RDF/XML Syntax Specification. Recommendation, W3C, Feb.
2004. http://www.w3.org/TR/rdf-syntax-grammar/ .

[21]. The shortest-paths problém. http://urban-
sanjoo.narod.ru/shortest_way.html

[22]. The Bellman–Ford algorithm. http://urban-sanjoo.narod.ru/bellman-
ford.html

[23]. The algorithm of Dijkstra's. http://habrahabr.ru/post/111361/

[24]. The Floyd–Warshall algorithm.
http://www.graphmagics.com/articles/all_shortest_paths.php

[25]. The Floyd–Warshall algorithm. Example. http://urban-
sanjoo.narod.ru/floyd.html

[26]. WPF: MVVM.http://www.codeproject.com/Articles/36545/WPF-MVVM-
Model-View-View-Model-Simplified

[27]. MVVM(Model-View-ViewModel):
http://www.csharpcorner.com/uploadfile/nipuntomar/mvvm-in-wpf/

[28]. Graphsharp: http://graphsharp.codeplex.com/

http://www.w3.org/2001/sw/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.foaf-project.org/
http://www.dublincore.org/
http://www.w3.org/TR/rdf-syntax-grammar/
http://urban-sanjoo.narod.ru/shortest_way.html
http://urban-sanjoo.narod.ru/shortest_way.html
http://urban-sanjoo.narod.ru/bellman-ford.html
http://urban-sanjoo.narod.ru/bellman-ford.html
http://habrahabr.ru/post/111361/
http://www.graphmagics.com/articles/all_shortest_paths.php
http://urban-sanjoo.narod.ru/floyd.html
http://urban-sanjoo.narod.ru/floyd.html
http://www.codeproject.com/Articles/36545/WPF-MVVM-Model-View-View-Model-Simplified
http://www.codeproject.com/Articles/36545/WPF-MVVM-Model-View-View-Model-Simplified
http://www.csharpcorner.com/uploadfile/nipuntomar/mvvm-in-wpf/
http://graphsharp.codeplex.com/

 73

[29]. XML DocumentObjectModel(DOM):http://msdn.microsoft.com/en-
us/library/hf9hbf87%28v=vs.110%29.aspx

[30]. System.Xml.Linq:
http://msdn.microsoft.com/enus/library/system.xml.linq%28v=vs.110%29.as
px

[31]. QuickGraph, Graph Data Structures And Algorithms for .NET :
http://quickgraph.codeplex.com/

[32]. A computer network : http://en.wikipedia.org/wiki/Computer_network

[33]. XML Data Visualization, Roman Betík:
http://www.ksi.mff.cuni.cz/~holubova/bp/Betik.pdf

[34]. Network management:
http://en.wikipedia.org/wiki/Network_management

[35]. A Semantic Model for Complex Computer Networks Jeroen van der
Ham PhD Thesis :
http://staff.science.uva.nl/~vdham/research/publications/vdham-phdthesis

[36]. Framework for Path Finding in Multi-Layer Transport Networks, Freek
Dijkstra PhD Thesis:http://www.macfreek.nl/work/Dijkstra-multilayer-
pathfinding.pdf

[37]. Path selection in multi-layer networks Fernando Kuipers , Freek Dijkstra:
http://staff.science.uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf

http://msdn.microsoft.com/en-us/library/hf9hbf87%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/hf9hbf87%28v=vs.110%29.aspx
http://msdn.microsoft.com/enus/library/system.xml.linq%28v=vs.110%29.aspx
http://msdn.microsoft.com/enus/library/system.xml.linq%28v=vs.110%29.aspx
http://quickgraph.codeplex.com/
http://en.wikipedia.org/wiki/Computer_network
http://www.ksi.mff.cuni.cz/~holubova/bp/Betik.pdf
http://en.wikipedia.org/wiki/Network_management
http://staff.science.uva.nl/~vdham/research/publications/vdham-phdthesis
http://www.macfreek.nl/work/Dijkstra-multilayer-pathfinding.pdf
http://www.macfreek.nl/work/Dijkstra-multilayer-pathfinding.pdf
http://staff.science.uva.nl/~fdijkstr/publications/multilayer-pathselection.pdf

 74

List of Figures

Figure 1.1: GLIF world map of May 2011

Figure 1.2: The management plane (top) and the data plane (bottom).

Figure 2.1: A simple RDF graph

Figure 2.2: Overview of the classes and predicates in the NDL topology schema
Figure 2.3: Classes and predicates in the NDL layer schema

Figure 2.4: Overview of the classes and predicates in the Network Description
Language domain schema
Figure 2.5: A simple network

Figure 3.1: Example of two encodings in for the same layer
Figure 3.2: Scheme of multi-layer network
Figure 3.3: Visualization of a multi-layer and multi-domain network
Figure 3.4: The possible parameters

Figure 3.5: The shortest path in a graph
Figure 5.1: Main window

Figure 5.2: Loading document

Figure 5.3: Hierarchical structure

Figure 5.4: Expanding nodes

Figure 5.5: Document visualization

Figure 5.6: Relationships between elements

Figure 5.7: The definition of relationships

Figure 5.8: The selected nodes

Figure 5.9: The shortest path in a graph

Figure 5.11: Adding the node name
Figure 5.12: Edit/delete of the existing node
Figure 5.13: Save to file

Figure 5.14: Export and printing
Figure 6.1: Dijkstra's algorithm

Figure 6.2: Inclusion the vertex k in the path from the vertex i to the vertex j

Figure 6.3: Example of a graph and table of distances

Figure 6.4: Example of a multi-layer and multi-domain network
Figure 6.5: Representation of the network in Figure 5.4 as a multi-layered
graph

Figure 7.1: Example of MVVM
Figure 7.2: Base Models and Views
Figure 7.3: Models of GraphEntities

Figure 7.4: The ViewModel

 75

List of Listings

Listing 2.1: The RDF/XML representation of the semantic graph in figure 2.1

Listing 2.2: Example of linking descriptions
Listing 2.3: The NDL description of a WDM adaptation

Listing 2.4: An example description of the network of figure 2.5.
Listing 2.5: Example of distributed repositories

Listing 3.1: THE NDL DESCRIPTION of a multi-layer and multi-domain network
Listing 6.1: The Bellman–Ford algorithm

Listing 6.2: Dijkstra's algorithm

Listing 7.1: NetworkEdge
Listing 7.2: NetworkVertex
Listing 7.3: MainWindowViewModel

Listing 7.4: Communication of data and View
Listing 8.1: Parsing. NDL Files(topology schema) with DOM

Listing 8.2: DeviceDetailsViewModel For manipulations with the Graph

Listing 8.3: Implementation of the Dijkstra Algorithm

Listing 8.4: Implementation of the Dijkstra Algorithm (modification)

 76

List of Abbreviations

OWL Web Ontology Language
RDF Resource Description Framework
NDL Network Description Language
XML Extensible Markup Language
W3C World Wide Web Consortium
LINQ Language Integrated Query
DOM Document Object Model
LAN Local Area Network
WAN Wide Area Network
MAN Metropolitan area network
SONET Synchronous Optical Networking
WLAN Wireless Local Area Network
SDH Synchronous Digital Hierarchy
TDM Time Division Multiplexing
WDM Wavelength Division Multiplexing

 77

Appendix A

Content of the attached CD

/SourceCode/ Contains the complete source code in the form of solution in

 Visual Studio 2012

/Documentation/ Contains HTML documentation generated from comments

 in the source code

/Release/ Contains the installer of project with all required

 dependencies

/Thesis/ Text of this thesis in PDF format

