
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Daniel Sipták

DEECo Component Model Framework

on Android Mobile Platform

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Tomáš Bureš, Ph.D.

Study programme: Informatics

Specialization: System architecture

Prague 2014

I would like to express my gratitude to my supervisor Tomáš Bureš for the useful

comments, remarks and engagement through the process of this master thesis.

Furthermore I would like to thank Ilias Gerostathopoulos and Jaroslav Keznikl

for support on the way as also to whole development team of jDEECo software.

I would like to thank my loved ones, who have supported me throughout entire

process kept me on the track and gave me time to create this master thesis.

I will be grateful forever to my wife and son for their love.

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University in Prague has the right to conclude a license agreement

on the use of this work as a school work pursuant to Section 60 paragraph 1 of

the Copyright Act.

In date signature of the author

Název práce: Framework pro DEECo komponentńı model pro platformu Android

Autor: Daniel Sipták

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: doc. RNDr. Tomáš Bureš, Ph.D., Katedra distribuo-

vaných a spolehlivých systémů návrh Abstrakt: Prezentována diplomová práce

se věnuje tvorbě podpory DEECo komponentńıho modelu na platformě Android.

Vytvorěńı distribuovaného systému schopného použ́ıvat DEECo framework nad

v́ıce zař́ızeńımi. Pro tento účel je využita jDEECo implementace DEECo kom-

ponentového modelu, která je portována na platformu Android. Návrh řešeńı

synchronizace společného stavu je navržen a implementován za pomoci JGroups

knihovny. Prezentovány jsou možná řešeńı a implementace vytvořeného produk-

tu. Ako posledńı je ukázána demo aplikace, na které je vidět použit́ı funkćı

vytvořeného frameworku.

Kĺıčová slova: DEECo, Android, JGroups, Komponentové systémy

Title: DEECo Component Model Framework on Android Mobile Platform

Author: Daniel Sipták

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Tomáš Bureš, Ph.D., Department of Distributed and

Dependable Systems

Abstract:

Presented master thesis is dedicated to creation of DEECo component model

supported on Android platform. Enabling distributed system of inter-connected

devices to run DEECo framework. For this purpose jDEECo implementation of

DEECo component model is ported to Android platform and synchronization so-

lution creating common state is done on top of JGroups toolkit. Possible solutions

are presented and implementation of created solution is described. At last demo

application showing usage of created framework was developed and evaluated.

Keywords: DEECo, Android, JGroups, Component systems

Contents

1 Introduction 2

2 Background 5

2.1 Distributed Emergent Ensembles of Components 5

2.2 Android Fundamentals . 8

2.3 Jgroups . 10

3 Analysis 11

3.1 Goals revisited . 11

3.2 Application architecture . 13

3.3 Network communication channels 18

3.4 jDEECo implementation . 20

3.5 Multinode comunication . 25

4 Android part 30

4.1 ADEECo . 30

4.2 EventBus . 31

4.3 Background processing . 32

5 Inter-node communication 33

5.1 JjDEECo . 33

5.2 JGroups . 33

5.3 Knowledge replication . 35

5.4 Cluster merging . 36

5.5 Session support . 37

5.6 Knowledge aging . 38

5.7 JjDEECo usage . 39

6 Example and testing 41

7 Conclusion 47

Bibliography 49

1

1. Introduction

With increasing number, complexity and connectivity of computing devices there

are new possibilities to use them in completely new ways. Addressing social and

environmental challenges like smart city infrastructure, environmental monitor-

ing, smart electricity grid, emergency coordination could be done by creation of

large-scale Resilient Distributed Systems (RDS) [1]. As RDS are responding and

influencing ever changing environment they have to cope with very dynamic envi-

ronment. To overcome these challenges they are design to be highly autonomous

and adaptive. Most of the complexity for creating of such systems is not in build-

ing new hardware or addressing network infrastructure but in designing software.

Part of current research is dealing with RDS challenges by identifying new

subclass of existing component-based software architectures. This new architec-

ture called Ensemble-Base Component System (ECBS)[1] is specifically created

to address RDS. One of the proposed solution is DEECo (Distributed Emergent

Ensembles of Components) component model[1, 2, 3]. This model is employ-

ing several topics from another research areas namely, component-based software

engineering, agent-oriented computing, ensemble-oriented systems and control

system engineering. For ECBS architecture and specifically DEECo these are

most important features.

• Architecture of the system emerges at runtime.

• Runtime framework is managing belief maintained for each Component.

• Component is executed in fully isolated way only using it’s belief.

In this thesis we will try to improve current pilot implementation of DEECo

called jDEECo[1]. This implementation is supporting most of the features re-

quired by ECBS system. But it is missing multi node architecture support. Im-

plementation is supporting multiple instances by using Apache River Technology.

This is creating abstraction of single point where all beliefs are hold. To enable

mobility testing we create implementation of DEECo on Android platform. So

2

nodes will be running on different devices which could connect or disconnect dur-

ing usage of the software.

Main goals of thesis are

• Design and implement DEECo component model on Android

Implement main ideas of DEECo component model under Android environ-

ment[android]. Support basic ideas for components, ensembles and knowl-

edge exchange. If possible reuse code from jDEECo project which is based

on Java and should be portable to Android.

• Support background processing on Android

Solution needs to run in background without active user interface. This way

DEECo framwork can be running under normal operation of the device.

Also take account of resource consumption specific to mobile devices.

• Support inter device communication and synchronization

Create solution supporting multi device communication with possibilities

of adding new nodes, removing nodes and merging at least two separate

groups of nodes. This will add mobility support which could be used for

testing DEECo model in very dynamic environment with network failures

and sporadic inter node communication.

• Create demo application

Created demo application with full graphical interface. Main aim is to have

application registering and reacting to the changes in DEECo component

model it is using. Application doesn’t need to server any real usable func-

tion.

By creating DEECo implementation with multi node capabilities we open up

space for mobility testing. Where nodes are connecting, re-connecting and dis-

connecting often. In this environment would be possible to test how DEECo

component model behaves during such deployment. Also it will provide more

complex solution for RDS systems.

3

Next chapter Background (5) presents and describes theoretical basis of DEECo

component model and also fundamental design of Android platform. After this

more theoretical chapter Analysis (11) follow. Where we will introduce main

problems of background processing on Android and multi-node implementation

of DEECo component mode. There we also propose and explain solutions to those

problems. Next two chapters (30,33) are devouted to implemetantion details and

pitfalls encoutered during development. Also these chapters should improve clari-

ty of understating the solutions from analysis chapter. In the testing chapter (41)

we introduce ADEECo Cloud demo application together with few test results. At

last we sumarize and evaluate our work in Conclusion chapter (47)

4

2. Background

In order to create DEECo component model on Android platform we need to

review theoretical and technical solutions which are used. There are two sepa-

rate parts and those are DEECo component model[1] and Android platform [4].

DEECo has it’s pilot implementation in jDEECo project. Portation to Android

and creation of multi-device support requires to create environment in Android

application for DEECo component model.

2.1 Distributed Emergent Ensembles of Com-

ponents

‘DEECo is proposed as refinement of ECBS model which is tailored to be used in

RDS systems. It is combining multiple research areas and creating one system-

atic approach for creating real-life software engineering procedures to build RDS

systems. Two mains ideas of DEECo are components and ensembles. Component

is self-sufficient unit of computation,development and deployment. And ensem-

ble is dynamically formed group of components which manages inter-component

communication. Idea behind creating self-contained components and manag-

ing their interaction with ensembles is separation of concerns. Runtime frame-

work is providing all necessary services and controls life-time of components and

ensembles.‘[1]

More comprehensive description of components and ensembles is below.

Components and processes

In DEECo every component has it’s state, interface used to access the state

and processes which are manipulating the state. Knowledge reflects state of

the component and it is represented as hierarchical data structure. This state

is retrieved and stored by framework and the component processes are called

with requested knowledge. Processes on top of components and their knowledge

are basically soft real-time tasks that manipulate knowledge. Process can be

5

characterized as an function with input and output parameters which are in this

case knowledge fields. Processes are scheduled and run by runtime framework

which is also managing knowledge storage. There are two types of processes,

scheduled and triggered. Scheduled process is run in soft-real time manner and

triggered process is run once specified knowledge has been changed by another

process.

Ensembles

An ensemble is dynamically created group of components in which one component

assumes the role of coordinator and others the role of members. Thus ensemble is

determining composition and interactions of the system. Runtime framework is

determining which component is coordinator and which is member according to

the membership condition defined by ensemble. As components do not explicitly

communicate they use ensembles for indirect communication by using knowledge

exchange.

Each ensemble comprises of

• Membership condition

Condition which is evaluated with coordinator and each member and it de-

tects if the member is part of the ensemble. If this coordinator/member

pair is part of the ensemble than the knowledge exchange is done. Gen-

erally each component can be coordinator and member of multiple groups

simultaneously.

• Knowledge exchange

Knowledge exchange is declared as an function on top of coordinator/mem-

ber pair. It encapsulates communication between components and in prin-

ciple separating knowledge transfer from the components to the runtime

framework. This relationship can be viewed as one-to-one in oppose to

one-to-many in case of Membership condition.

In multi device environment processes of components are run on the device

where the component was created. But membership condition and therefore

6

knowledge exchange is done on all devices. This feature is delivered by run-

time framework and is creating implicit ensembles over all devices in the given

ensemble.

Nodes mobility

Nodes mobility is defined as possibility for the node (device) to join, re-join and

leave communication with other nodes. Each node can embody multiple com-

ponents and use different set of ensembles. Where components are running on

local knowledge and Membership function is determining composition of the sys-

tem. Communication between the nodes is only through knowledge exchange and

this exchange is also done on inter-node level. Runtime framework is managing

synchronization of the knowledge between group of connected nodes. Change in

knowledge by knowledge exchange, component process or by joining of another

node are transfered to all nodes in the group which needs the information.

Knowledge repository

Knowledge repository is and abstraction layer in implementation of DEECo which

servers as single point were all knowledge is kept. Interface whit transaction like

functionality has only three basic operation on top of knowledge repository. Op-

eration get,put and take. Additionally this abstraction layer provides possibility

to alert about changes on top of knowledge.

7

2.2 Android Fundamentals

Android is an open source mobile operating system based on Linux kernel. It

is primarily design to be used on touchscreen devices mainly smart phones and

tablets.

Android application called apps are written in Java programing language.

Which is compiled and packet together with any resources into one APK (An-

droid Package). Each app has its own APK which is used by Android-powered

devices to install the app.[4]

There are four types of app components. Which are essentially main building

blogs of Android app.

Activities An activity represents single screen with a user interface. It repre-

sents main building block of most applications. And all user interactions

with app is done by activities. More in sub-chapter about activit on page

9.

Services A service is a component of background processing. It can perform

long-running processes or work on remote processing on the network. A

service has no user interface and it is started by another components, such

as Activities. More in sub-chapter about service on page 10.

Content providers A content provider manages a shared set of app data. It’s

main purpose is to store the data in file system, SQLite database on Web

or on any other persistent storage.

Broadcast receivers A broadcast receiver is a component that responds to

system-wide announcements like picture was captured, screen has been

turned off or a battery is low. In most cases a broadcast receiver is an

gateway for app to communicate with other apps in the system.

As android aims for mobile devices it supports multitude of network commu-

nication protocols and platforms. Like Wi-Fi, Cellular, Wi-Max, Wi-Fi Direct,

Bluetooth or NFC. Most of these protocols and platforms creates connections

8

Figure 2.1: Activity life-cycle

enabling usage of Java standard network interfaces. In case of Wi-Fi Direct and

Bluetooth technologies it is more about how the connection between devices is

created than about special interface for communication.

In our apps we employ several activities and a single service. And therefore

we give here more accurate description of these components.

Activity

Activity component used for user interaction is defined as subclass of activity

class. All activities shares life-cycle which reflects usage of activities by the user

and the system[4]. Once the activity is called onCreate() (2.1) method is fired

up and creates graphical representation shown to the user. Activity is running as

long as it is visible to user and if another activity goes to foreground activity is

paused and later stopped. In case when memory is needed on the device whole

activity is destroyed and that garbage collected by Java runtime.

9

Service

Service serves as an component enabling long-running tasks. On its behalf net-

work communication can be managed. It can reside in same process as activities

and it elevates the priority of that process as system would prefer to close pro-

ceses without services. Services are defined as an subclasses of Service class and

has the same initialization procedures. Service can be either started as a long

running or as an batch job. In later case service is closed after it finishes one

specific action. In case of the long-running task, service will get possibility to

control its own life-cycle.

More informations about Android Framework can be found on documentation

pages of Android Project[4] .

2.3 Jgroups

Another software besides DEECo and Android which is used in this thesis is

JGroups toolkit[5].

It is a multicast toolkit used for reliable messaging and cluster creation. It

has wide range of uses and supports multitude of protocols for delivering cus-

tomization. Abstraction created by JGroups on top of standard Java networking

interface decreases complexity of networking applications. Precisely for this rea-

son JGroups would be used in our thesis[5, 6].

10

3. Analysis

In this part of the thesis we will revisit our goals and analyze possible solutions

to the raised issues.

3.1 Goals revisited

Design and implement DEECo model on Android

• Managing component lifetime Component is defined by the knowledge

and processes it is using. Also it defines initial values of the components

knowledge. Components creation is managed by runtime which initialize

and run processes according to the specification. Starting of the components

processes can be described as atomic loading of needed knowledge. Exe-

cuting process functions with local copy of the knowledge and than atomic

write of the changed knowledge.

• Evaluating ensembles Ensembles are defined as pairs of Membership con-

dition and Knowledge Exchange functions. Runtime framework will evalu-

ate membership condition on coordinator/member pair. If the pair is part

of the ensemble it will do knowledge exchange. Both parts are executed

separately from component processes and can be seen by components as

atomic actions.

• Knowledge repository Runtime will store all knowledge defined by com-

ponents in structure similar to tuple space[7]. For given key it can store

whole complex objects. Interface of this part is supporting synchronization

to get atomic like operations for other parts of framework. Most of the

multi-node synchronization will be done on the knowledge repository.

To gain this functionality jDEECo implementation was re-used. With small

changes it is possible to run runtime framework on top of Android Platform.

More about porting jDEECo to Android can be found in JjDEECo sub-chapter

on page 33.

11

Support background processing on Android

Created runtime needs to be run continuously and with Android application life-

time we need to create solution to keep framework running as long as possible.

From the design of Android there is no way how to enforce that the process will

not be stopped[4]. But several actions can be taken so the runtime will run in

background and OS will not stop it until necessary.

As mentioned earlier on page 8 Android framework recognize two separate

components an activity and a service. As a service is by design created for running

in the background it is used to create background processing capability. Fitting

DEECo on top of service with combination of activity opens up few different

architectures.

• in-process architecture

• one-to-one architecture

• many-to-one architecture

• many-to-one separated architecture

Each of the proposed architectures have it’s advantages as well as disadvan-

tages. More complex architectures have possibility to support multiple applica-

tion with only one DEECo runtime. This would improve local usage of the DEECo

component model. But simpler ones have simpler development and don’t have

to use inter-process communication. Specification and comparison between sug-

gested architectures is bellow. For initial implementation we have chosen simpler

but effective solution of using one process for both activities and a service. More

elaboration about possible architectures can be found in chapter Application ar-

chitecture on page 13.

12

Support inter-device communication and synchronization

Implementation of inter-device communication require ability to discover nearby

devices, initiate knowledge synchronization, replicate newly changed knowledge.

Firstly we need to identify potential hardware channels for communication. Most

promising are Wi-Fi, Wi-Fi Direct[8] and possibly Bluetooth. All are supported

by Android Platform and in later two cases they would provide communication

in nearby group. More on this in chapter Network communication channels on

page 18.

3.2 Application architecture

Here we tackle the problem of application design. Specifically application archi-

tecture regarding split of the activity and the service into the different processes

or applications. Some parts are given by the design of OS specifically that GUI

is implemented in the activity component. And the DEECo runtime framework

together with network handling is implemented under the service component.

Here we present four proposed architectures:

in-proccess architecture

This architecture on page 14 use just one process for service and activity handling.

This is a standard usage on android platform if no special features are required.

Activity of the process handles only GUI and pass all request for changes in

DEECo runtime to the service. Service embodies runtime framework and is the

main communication hub for the application. As there can be multiple activities

in one application service will keep reference to the currently active one. In case

that the application is running on the background ,activity might be removed

by the OS and therefore most of the memory allocated to the activity should be

released.

13

Figure 3.1: in-proccess

Figure 3.2: one-to-one

In this case communication between service and activity can be done implicitly

in the code. The barrier dividing these two parts is not really visible which

has the increased value of simpler development and easier reusing of the code.

Communication model still has to account for a need of making changes in GUI

only on main thread. Also usage of one process for the whole application increases

the chance that it will be stopped by OS due to higher memory needs caused by

usage of activity component in the same process as services implementation of

DEECo framework.

one-to-one architectures

This case 3.2 is improved version of ’in-process’ architecture 3.1. The main idea

is to split the activity and therefore GUI handling more from the service and its

DEECo runtime framework. Here the activity and the service uses different pro-

cesses. So the process for the activity is running only as long as the application

is directly used by the user. It will be removed completely once OS needs to gain

more memory. But the service process which runs runtime framework will be

14

Figure 3.3: many-to-one

unaffected by the activity disappearance once it is started by the activity.

As the application has two running process one for active activity and one

for the background service inter-process communication is used between them.

This increases complexity for designing the application but will result in better

separation of concerns, maintainability and cleaner interface between the two

main parts.

many-to-one architectures

First two mentioned architectures were supporting only one application with

DEECo runtime framework. But in case multiple application will be using the

DEECo component model it would be beneficial to use just one DEECo runtime

framework for all application. Proposed solution 3.3 creates this support by cre-

ating one common service for all application. Thanks to Android support with

inter-application usage of services, there is a clean way how to implement this.

Two separate types of applications are used.

15

Figure 3.4: many-to-one separated

Main application creates the service which is holding DEECo runtime framework

and this service is used by all other applications.

Standard application will hold GUI and its components and ensembles. Once

standard application starts it will load its components and ensembles into the

service where they will be handled by DEECo runtime framework. In this case

even after the original application is removed from memory its components and

ensembles will still run under main application service.

Most complexity of this architecture arises from the need of running applica-

tions components and ensembles under another application service. This requires

dynamic loading of Java class code into the service which could be handled by

OSGi platform. OSGi platform is working under Android but with very limited

set of features and would account for a big increase in memory usage. Also ser-

vice would have to handle multiple connections to activities and serve two side

communication channels for them.

16

many-to-one separated architectures

This architectures 3.4 tries to solve problem with dynamic loading of code from

many-to-one architecture. Here each standard application would have its own

service which would be running DEECo runtime framework but knowledge repos-

itory would be stored only in one main service. This ensures that applications

on the same node use only inter-process communication and not networking for

knowledge transfer. Main service with the implementation of knowledge repos-

itory could be implemented as content provider. This is another component of

the Android framework specifically design as a component storing data shared

between multiple applications.

Major problem of this architecture is bigger memory footprint even than in-

process architecture. As it needs one extra main service or content provider for

common knowledge repository. Also it is using inter-process communication much

more that in-process because network communication would be used only once

something has changed in repository but in case of this architecture every read

will terminate in inter-process communication.

In our project main goal is to run DEECo component model application across

multiple devices and not multiple application on one device therefore we choses

to use in-process architecture. This enables to easier development and even in

case of multiple application on one device it is still fully functional.

17

3.3 Network communication channels

In order to provide inter-device connectivity we have researched possible com-

munication channels. After research into multiple ways of connection we had

to resolve only to use standard network connections because only those fulfills

the needed requirements. The main problem of ah-doc style of communication is

explicit need for user authorization on Android Platform.

Here we present the list of considered communication technologies and stan-

dards

Standard networking

By standard networking we mean cellular network, Wi-Fi, Wi-Max and Ethernet

communication standards. All of these are almost indistinguishable from each

other on Android Platform and so we gain all of them once we implement us-

age of networking API. The part that is quite different for these technologies

is searching for available hosts and support for multi-cast communication. So

different solutions for host discovery might be used on different networks. Main

implementation focus is on Wi-Fi which enables connection to the Ethernet net-

work.

Wi-Fi Direct

This is an ad-hoc variant of Wi-Fi technology which can be used to create small

separate networks for inter-device communication. It offers same speeds as stan-

dard WiFi connection and also multi-cast support for the group of inter-connected

devices. Usage of Wi-Fi Direct would add possibility to directly test mobility

of the devices and behavior of DEECo component model under such environ-

ment. Where as the users would move with their mobile phones, they will con-

nect to each other creating short-lived small networks. Which would be used

by DEECo runtime to exchange knowledge of components running inside them.

This would allow for mobility testing and would move DEECo implementation

closer to ASCENT[9] e-mobility use-case study[].

18

However during investigation it was found that currently Android OS requires

user action to initiate Direct connection. No possibility of remembering paired

devices exists and therefore user action is required every time WiFi Direct dis-

covery is started. This defeats main idea behind using WiFi Direct.

Bluetooth

In current version of Android 4.3 there is still missing full support for personal

area network (PAN) profile of Bluetooth technology. This profiles enables cre-

ating of ad-hoc networks of nearby devices. There exists third party extensions

which creates PAN support but as it not a standard part and it requires rooting

the device our project will not use these third party extensions.

Current API for Bluetooth technology features possibility for inter-device

communication on the required level but it is design to be used for one-time

data exchange and not for frequent two-side communication. It would require to

create protocol for knowledge exchange between at least two nodes interconnected

by Bluetooth. After early stages of investigation latency of such connection was

too high to be used in heavily ch nging environment as in case of DEECo. Usage

of Bluetooth communicatio together with jDEECo implementation would require

substantial changes in design of jDEECo. For these reasons and for that our

goals are fulfilled by standard networking interfaces we do not include Bluetooth

inter-device communication into the scope of the project.

NFC

Another technology currently implemented in Android for Inter-device commu-

nication is NFC (Near field communication). This technology is however not

meant to create network between the devices but should be used for specific data

exchange.

Although it should be possible to create protocol for knowledge exchange over

this communication it is not in scope of this project.

19

3.4 jDEECo implementation

jDEECo implementation of DEECo component model is reused in this project

and therefore we review here it’s basic structure and what is needed to change in

other to be used in our new framework. Whole jDEECo implementation will be

a part of the service running in the background. Due to the reasons better ex-

plained in chapter on page 33 and mainly due to incompatibility of Android with

Java 7 we used older version of the jDEECo framework. However main changes

done to the older version are portable to the new generation of jDEECo.

On the example of initialization code of jDEECo we will show most important

parts of the existing framework.

1 List<Class<?>> components = Arrays.asList(new Class<?>[]{

NodeA.class,NodeB.class, NodeC.class });

2 List<Class<?>> ensembles = Arrays.asList(new Class<?>[]{

MigrationEnsemble.class });

3 KnowledgeManager km = new RepositoryKnowledgeManager(

4 new LocalKnowledgeRepository());

5 Scheduler scheduler = new MultithreadedScheduler();

6 AbstractDEECoObjectProvider dop = new ClassDEECoObjectProvider(

components, ensembles);

7 Runtime rt = new Runtime(km, scheduler);

8 rt.registerComponentsAndEnsembles(dop);

9 rt.startRuntime();

On the first two lines groups of components and ensembles are defined. In

both cases the needed entities are defined as an classes. These classes are used

by framework to initialize and run components and ensembles functions.

On the third and fourth line initialization of KnowledgeRepository together

with decorated classes RepositoryKnowledgeManager and KnowledgeManager is

done. This KnowledgeRepository holds all initialized knowledge and this part

will be changed to provide synchronization with other devices. In this case only

20

LocalKnowledgeRepository is initialized which only holds locally stored HashMap.

Which is used as an storage of knowledge.

In later lines supporting classes are initialized where rt is object holding whole

DEECo runtime framework. On the eighth line registration of components and

ensembles is done to the framework. This means that runtime will parse the

classes for initial knowledge and processes of components as also for membership

functions of ensembles.

On the implementation of KnowledgeRepository depends if,how and when the

knowledge will be synchronized to another devices. In DEECo component model

only knowledge of the components has to be accessible between nodes of the

system. That means that information about components,ensembles, component

processes, membership functions used by runtime are only local and does not

propagate to another nodes. This in term defines that only synchronization on

the level of knowledge is needed. Knowledge can be be access, changed or removed

and this API is used for these purposes in jDEECo.

1 public interface IKnowledgeRepository {

2 /* get knowledge with entryKey identificator under defined session

*/

3 public Object [] get(String entryKey, ISession session)

4 throws KRExceptionUnavailableEntry, KRExceptionAccessError;

5

6 /* Alter knowledge with entryKey identificator */

7 public void put(String entryKey, Object value, ISession session)

8 throws KRExceptionAccessError;

9

10 /* Return and remove knowledge from the repostory */

11 public Object [] take(String entryKey, ISession session)

12 throws KRExceptionUnavailableEntry, KRExceptionAccessError;

13

14 /* Register listener with the callback once knowledge change */

15 public boolean registerListener(IKnowledgeChangeListener

21

16 listener);

17

18 /** Session is used for transaction like acess to the repository */

19 public ISession createSession();

20 }

Full implementation of this interface with synchronization to another nodes

will in affect allow inter-node knowledge exchange. Therefore it brings multi-

node support for the jDEECo runtime. This is done on current implementation

of jDEECo with the use of Apache River technology. Which is creating single

point of storage for all knowledge regardless of the node which uses the knowledge.

For explanation and illustration we use example DEECo application. Our

application is derived from cloud demo application fro original jDEECo imple-

mentation. It is simple as each node consist only from one component and two

ensemble processes.

Node component definition:

1 @DEECoComponent

2 public class Node extends ComponentKnowledge {

3

4 public Float loadRatio;

5 public String targetNode;

6

7 @DEECoInitialize

8 public static ComponentKnowledge getInitialKnowledge() {

9 Node k = new Node();

10 k.id = "Node_"+getUUID(); --universaly unique value

11 k.loadRatio = 0.0f;

12 k.targetNode = null;

13 return k;

14 }

15

16 @DEECoProcess

22

17 @DEECoPeriodicScheduling(3000)

18 public static void process(@DEECoIn("id") String

id,@DEECoInOut("loadRatio") OutWrapper<Float> loadRatio) {

19 loadRatio.item = new Random().nextFloat();

20 }

21 }

This code defines component named node. Knowledge of this component

consist of two values loadRatio and targetNode. Component also defines one

periodically scheduled process which updates loadRatio value.

Next is simple ensemble function which creates and alert once any component

reaches threshold value of loadRatio.

1

2 @DEECoEnsemble

3 @DEECoPeriodicScheduling(3000)

4 public class AlertEnsemble extends Ensemble {

5

6 @DEECoEnsembleMembership

7 public static boolean membership(

8 @DEECoIn("coord.id") String cId,

9 @DEECoIn("member.id") String mId

10 @DEECoIn("member.loadRatio") Float mLoadRatio) {

11 return cId.equals(mId) && mLoadRatio > 0.7f;

12 }

13

14 @DEECoEnsembleMapper

15 public static void map(@DEECoIn("member.id") String mId,

16 @DEECoIn("member.loadRatio") Float loadRatio) {

17 System.out.println(mId + " overloaded with " +

Math.round(loadRatio *

18 100) + "%");

19 }

20 }

23

In this case DEECoEnsembleMembership process is evaluated every three sec-

onds. In case that mLoadRatio is higher than 0.7f (70%) it will create ensemble

on top of this member. This ensemble will run DEECoEnsembleMapper process

which prints an alert about two high load ratio for member component.

1 @DEECoEnsemble

2 @DEECoPeriodicScheduling(2000)

3 public class MigrationEnsemble extends Ensemble {

4

5 @DEECoEnsembleMembership

6 public static boolean membership(

7 @DEECoIn("member.id") String mId,

8 @DEECoIn("member.loadRatio") Float mLoadRatio,

9 @DEECoIn("coord.id") String cId,

10 @DEECoIn("coord.loadRatio") Float cLoadRatio) {

11 return !mId.equals(cId) && mLoadRatio > 0.7f && cLoadRatio <

0.7f; }

12

13 @DEECoEnsembleMapDEECoEnsembleMapperper

14 public static void map(@DEECoIn("member.id") String mId,

15 @DEECoIn("coord.id") String cId,

16 @DEECoOut("member.targetNode") OutWrapper<String>

mTargetNode) {

17 mTargetNode.item = cId;

18 System.out.println("Balance load from "+mId+" to " + cId);

19 }

20 }

Another more complex ensemble in our cloud examples is MigrationEnsemle.

DEECoEnsembleMembership process defines that if member has load over 70%

and coordinator has node lower than 70% it will run DEECoEnsembleMapper

process. This process will set that member’s target node will be set to coordinator

id.

This example is a simple application triggering load balancing between multi-

ple nodes. As value targetNode is meant as instruction for application offloading

24

from current node to node set in this knowledge. We show it here to illustrate

main ideas and usage in our implementation of DEECo.

3.5 Multinode comunication

In order to add multi-node functionality to our application we have analyzed ways

how to exchanged knowledge. From the parts above we learned that we need to

support only basic map like interface (get,put,take). Combined with standard

networking we need to develop ways how to find another available nodes in the

network. How to connect to them and exchange knowledge information. How

to keep exchanging the knowledge as long as the other site is available. Current

implementation of jDEECo has requirement that for each component knowledge

only one process is changing the value of this knowledge. That means that each

knowledge has one writer and multiple readers. One process in whole application

should be changing the value of each knowledge. Only exception is creation of

the knowledge done by initial knowledge setup done by framework.

For node discovery we can employ several techniques like broadcast discovery,

multicast discovery or usage of directory service. Each of these can be used in our

environment and has different set of advantages and disadvantages. As broadcast

discovery is usable only in one network and directory service introduce single

point of failure we have chosen to support multicast discovery. Another advan-

tage is that multicast can be used not only for discovery but also for knowledge

exchange. Main purpose of the node discovery is to find all reachable nodes and

connect them to an group of nodes. This group of nodes will be regarded as an

cluster.

In case of unicast communication sending node has to send as many packtes

as is the number of connected nodes 3.5. In case of multicas sender sends on

one packet and it is duplicated on the network. This improves scalability of the

cluster of nodes. In case of single network segment ususaly broadcast can be used

as replacement.

25

Figure 3.5: Difference beatwean unicast and mutlicast communcation

To properly show needed requirements and assumptions behind the design of

network communication we will demonstrate it on our cloud demo example in

figure 3.6.

From the above analysis we get these premises for communication protocol.

List of what it needs to provide to the framework:

• Regularly show our presence on the network

• Detect freshly joined nodes

• Detect when node rejoin the network

• Send all updates done on top of knowledge to all cluster members

• Maintain order of messages send by individual nodes

• Synchronize whole knowledge once new node is detected

In order to support knowledge repositories basic functions like get,put,take

in multi-node environment abstraction of single map data structure over whole

cluster is used. In case of jDEECo this is done by using Apache River software

in our case this can’t be used. As Apache River is not supported on Android

platform and as it creates single point of failure.

Each node needs to create its own representation of common knowledge and

this knowledge needs to be synchronized to all other nodes in the cluster. As

26

Figure 3.6: Knowledge exchange example

long as cluster is stable (no join or leaving of nodes) synchronization is done by

sending multicast messages to all members. For handling changes in knowledge

repository transaction like method is employed. Processes in components and

ensembles are carried in sessions where firstly needed knowledge is retrieved.

27

After process ends framework stores changed knowledge back to the repository.

Storing of knowledge need to be atomic and propagated to all other nodes in

cluster. Atomicity of knowledge update can be achieved by usage of locking on

top of all cluster nodes. As each knowledge entity has only one writer process

only lock during storing phase is needed, as no other entity, should have changed

updated knowledge during the time, when process was running. More complex

scenarios of locking are handled by DEECo component model itself.

The problem with re-joining arises when two nodes with the same knowledge

connects. It has to be determine which knowledge is valid. Validity of knowledge

is based on how recent it is, as it better represents status of the system. For this

versioning of knowledge can be employed. Where each update of the knowledge

item increases version of the item. The version of the knowledge is than used

during merging of two or more clusters and the knowledge item with highest

version is kept in local maps of DEECo runtimes. Merging of too clusters is done

when two separate groups of nodes connect and each group has it’s own map

abstraction of the knowledge repository.

As creation of whole multicast messaging cluster solution supporting ordering,

versioning and locking isn’t main goal of this thesis, we employ multicast toolkit

JGroups.

28

Jgroups

JGroups [5] is a toolkit for reliable messaging, used to create cluster of nodes. It is

fulfilling all the needed requirements of DEECo component model in multi-node

environment.

Fulfilled requirements:

Node discovery Use multiple ways of discovery on Android platform broadcast

and multicast messaging is supported.

Cluster handling It detects and handle joining,re-joining and leaving of nodes.

Supports merging of two separated clusters into one.

Message delivery Supports reliable multicast messaging with various level of

ordering.

Locking Supports multiple locking schemes on top of an cluster

As in our case JGroups is mostly used to create consistent state across multiple

nodes in one cluster. It already has non-production building block Replicated-

HashMap which we used as template for ReplicatedKnowledgeRepository. More

about how it is used can be found in chapter on page 33.

29

4. Android part

This chapter is devoted to explaining implementation of android part of the frame-

work. It is mostly related to Support background processing on Android and

lifetime of DEECo runtime framework on Android platform.

There were three separated projects created for this thesis and can found in

attachment 53.

ADEECo This project handled Android part of the framework. It implements

all necessary parts for fully functional Android app supporting DEECo

component model. This should be taken as development project and not

as example how the application should look like.

JjDEECo This project stands for jDEECo on JGroups. It is a modified jDEECo

implementation with added support of replicating knowledge using JGroups.

Implementation of this project are discussed in next chapter 33.

ADEECo Cloud This app is a demo showcasing usage of DEECo component

model on Android platform. It has fully implemented GUI and show

jDEECo’s demo application Cloud. This application is discussed in chapter

Testing on page 41

4.1 ADEECo

ADEECo is an template application for developing new application using JjDEECo

implementation of DEECo component model supported by JGroups. It is split

into main two parts. Activity handling which is handling user interface and ser-

vice part handling long running jDEECo framework. In-process architecture as

analyzed on page 13 is used.

One of the requirements of Android which affected design is that GUI changes

needs to be done only on MainThread of the process. And as a service and

specifically DEECo framework is running on background threads, application

needs to employ internal communication between background threads and the

30

MainThread. For this purpose EventBus software is used. It is small-weight mes-

saging system created specifically for Android. It is supporting sending events

across parts of the application with small overhead.

4.2 EventBus

Using EventBus takes five simple API calls:

1 /** Implement any number of event handling methods in the subscriber.

Type of the event is determining which posted events will be

delivered to this function. */

2 public void onEvent(AnyEventType event) {}

3

4 /** For delivering events on MainThread use */

5 public void onEventMainThread(AnyEventType event) {}

6

7 /** Register subscribers */

8 eventBus.register(this);

9

10 /* Post events to the bus */

11 eventBus.post(event);

12 /* Unregister subscriber: */

13 eventBus.unregister(this);

Usage of this library simplifies design of application and removes the need

for complex communication between service, activity and DEECo runtime. As

EventBus is globally accessible it can be used for delivering status updates from

component and ensemble processes.

1 @DEECoProcess

2 @DEECoPeriodicScheduling(3000)

3 public static void process(@DEECoIn("id") String

id,@DEECoInOut("loadRatio") OutWrapper<Float> loadRatio) {

4 loadRatio.item = new Random().nextFloat();

31

5 String text = id+" load "+Math.round(loadRatio.item * 100)+"%";

6 /** this call informs all necessary subscribers about change in

load of the node. This is not used in DEECo component model

but in Android application for user interface updates. */

7 EventFactory.getEventBus().post(new MessageEvent(id, text)); }

This ensures that only small change in components allows delivering informa-

tion from component processing to other parts of the application. It can be used

for logging, showing status and triggering of actions. If used properly it doesn’t

conflict with DEECo component model confinement of the processes. There is

no direct influence on the knowledge itself but it creates a link how to observe

changes in knowledge and react upon them.

4.3 Background processing

To ensure long running of service embedding DEECo runtime framework fore-

ground mode of service is used. Android requires long running services to inform

users about its existence by creating notification to notification bar. According

to system specification[4] foreground service will be stopped only after all unused

activities are destroyed and system still exhibits shortage of memory. In case of

service is stop all parts of the framework are shutdown and deallocated. This

forces JGroups toolkit to leave current cluster and forget current knowledge. It is

possible to store current knowledge and restore it once service is started. But as

DEECo component model uses only the most current version of data there is no

big benefit for implementing this storing solution. If needed it can still be done

by usage of persistency support in JGroups toolkit.

32

5. Inter-node communication

It this chapter we introduce more technical parts of implementation of inter-node

communication in our project. Main part of inter-device communication is done

in JGroups toolkit. Project uses jgroups-2.12.0.Alpha3 version as this is the latest

version ported to Android platform [10].

Most of this chapter is devoted to JjDEECo project.

5.1 JjDEECo

This project is using standard Java 6 and it is a fork of original jDEECo project.

This enables thatKnowledgeRepository created for Android and based on JGroups

is usable on many other platforms. Other projects ADEECo and ADEECo Cloud

are including sources from JjDEECo project. Project is based on older version of

jDEECo which is using Java 6 because newer versions use Java 7 features incom-

patible with Android platform. Implementation of KnowledgeRepository backed

by JGroups should be portable to newer jDEECo versions. JGroups is integrated

into the projects as one jar file.

Parts of functionality is removed from original jDEECo project. Mainly inter-

pretation of classes files as sources of components. As on Android there is no such

possibility. OSGi support that is build in jDEECo had to be removed as used

implementation of OSGi is not supported on Android. There are possibilities how

to introduce OSGi to Android[11, 12] but as they are in development stages and

OSGi support is not necessary for DEECo it wasn’t investigated more closely.

5.2 JGroups

JGroups toolkit is used as core implementation of inter-device communication.

Our usage is revolving around using non-production building block[5] named

ReplicationHashMap. This building block is a part of JGroups toolkit and it

shows a possibility how to create abstraction of one Map over multiple cluster

33

nodes. It is not production ready because the logic behind merging of clusters

needs to be implemented in application specific way. In our framework JGroups

with improved version of ReplicatedHashMap creates ReplicateKnowledgeReposi-

tory which is used as abstraction level of common knowledge for all nodes in a

cluster.

Standard UDP configuration of JGroups is used with only minor changes.

This implies that multicast is used as discovery method and also as main channel

for communication between nodes. JGroups employ an abstraction of channel as

most important part of outside interface. Channel creates interface for reliable

sending of messages to all nodes in a cluster. It is composed of multiple layers of

protocols which handles different parts of reliable message delivery.

Example code of creating JGroups channel in JjDEECo project which is part

of ReplicatedKnowledge initialization:

1 System.setProperty("java.net.preferIPv4Stack" , "true");

2 channel = new JChannel("assets/udp.xml");

3 channel.connect("Adeeco");

4 replMap = new ReplicatedHashMap<String,

ReplicatedList<Object>>(channel);

5 replMap.start(10000);

As currently Android supports multicast only on IPv4 networks we set pre-

ferred stack accordingly. Creation of new channel requires xml configuration used

to setup protocol stack[5]. It is possible to create multiple JGroups channels in

one application and in one network. For channel identification JGroups uses sin-

gle string parameter in our case ’Adeeco’. This means that all reachable JGroups

instances with channel ’Adeeco’ will create single cluster.

34

5.3 Knowledge replication

All functions used by ReplicatedKnowledgeRepository are session oriented. This

transaction like interface enables possibility for locking and rollbacks of done

changes.

jDEECo uses slightly modified behavior of common map functions. Difference

is that instead of storing one value for each key it is storing list of values. FIFO is

used for ordering values in the list. This implies that function put doesn’t replace

currently stored value but it adds new value at the begging of the list. In case of

function take it will return and remove all values in the list. And in get function

array of all stored objects is returned.

1 /** pseudo code showing main ideas behind changed bahaviour of map

like interaface. Session behavior is not considered.*/

2 public Object[] get(String entryKey, ISession session){

3 return map.get(entryKey).toArray();

4 }

5 public void put(String entryKey, Object value, ISession session){

6 vals = map.get(entryKey);

7 vals.add(value);

8 }

9 public Object[] take(String entryKey, ISession session){

10 vals = map.get(entryKey);

11 copy = Copy(vals);

12 vals.clear();

13 return copy;

14 }

35

5.4 Cluster merging

JGroups handles joining of nodes into the channel but from application side there

is a need for state transfer. In our case current state of knowledge repository.

There are two distinct ways how the node will be included in existing cluster.

Initial search

Once the JGroups channel is started it waits for determined period of time before

releasing channel for usage. This time is used for discovering any node already

existing in the network.

If another node is found in the network JGroups initiates state transfer from

that node to the newly joining one. In case whole cluster is found JGroups choses

one cluster node as the node which transfers the state. This initial transfer

of states is done by getState() and setState() functions. In case of knowledge

repository all knowledge of transfer node is serialized and send to joining node.

This node fills its knowledge repository and starts receiving updates. In case no

other node is found in the network node assumes it is the first node and carry on

without any state transfer.

Merging

Another case is when two already initialized nodes found each other. In this case

JGroups toolkit will starting Cluster merging. In case of two nodes it is consid-

ered as two clusters with node count of one. Merging of the state is application

dependent and in our case preservation of knowledge from both clusters is re-

quired. JGroups will call viewAccepted() in all nodes. View represents connected

nodes to the cluster and this function is dealing with changes in cluster composi-

tion. If the MergeView is send to this function we initiate merging of knowledge

for the clusters.

As mentioned in the analysis on page 28 each knowledge has a version number

associated with it. These version numbers ensures that newer knowledge will not

36

be rewritten by older knowledge. Using this feature suffice to resend all knowl-

edge stored in the knowledge repository to synchronize knowledge repositories

across all nodes.

In fact it is enough that only one node from each cluster resends all its knowl-

edge. As knowledge repositories are synchronized over the cluster all nodes con-

tains the same knowledge. This resending is done on the background and doesn’t

stop standard processing. Once all resending is done clusters have merged in to

one cluster and all nodes shares the same state.

5.5 Session support

Transaction like behavior created by sessions is implemented in all three main

functions:

• get(String key,ISession session)

Retrieval of stored knowledge is alway done from locally stored copy of

replicated map. Session is storing all previously given values and if same

item is asked again it will used stored value and not actual value in the

knowledge repository. This prevents changing of knowledge value during

session.

• put(String key, Object value,ISession session)

Storing of new values to local copy of replicated map is postponed and

stored in session. If the changed knowledge item is retrieved again session

will return previously updated value.

• take(String key,ISession session)

Retrieval and removal of all values for one knowledge item is stored in

session. When repeated retrieval is called empty array is returned as take

had cleared the value.

Implementation of session storing requires to store only the last performed

function. Storing type of last function (GET,PUT,TAKE) and the value that

should be stored in knowledge repository is sufficient. Closing of session is done

37

by cancel() all end() functions. In case of cancel() rollback operation is performed

which means that no change is done on top of replicated knowledge repository.

In case of end() function commit operation is stared. Knowledge repository local

lock is acquired and all operations stored in session are applied to the knowledge

repository.

This schema supports only weak locking as multiple pathological cases can

be found. Locking is done only on local copy of the knowledge repository which

is acceptable only as long as one writer per knowledge item rule is unbroken.

JGroups supports locking schemes on top of whole cluster but in our case it will

introduce too big performance hit for little gain.

5.6 Knowledge aging

One aspect of multi-node environment like proposed by our work is that nodes

can leave the cluster for long periods of time or permanently. Problem is that

their knowledge stored on another nodes continuous to be used and even repli-

cated to freshly joined nodes. This implies that out of date knowledge would be

used in ensemble functions.

There are at least two ways of solving the problem.

remove all knowledge belonging to disconnected node Currently there is

no linkage between the node and knowledge stored in the repository. Cre-

ation of this linkage would require changes in jDEECo usage of Knowl-

edgeRepository.

time-stamp the knowledge and remove when too old Producer and updater

of knowledge would time-stamp the data. Data would be removed after

some arbitrary time. This is adding requirement of well enough synchro-

nized clocks across the cluster nodes. Another created requirement is detec-

tion of all knowledge for one component on the level of KnowledgeRepository

as it needs to be removed at the same time.

38

Both approaches requires substantial changes in jDEECo usage of Knowl-

edgeRepository interface. Currently no solution for knowledge aging is carried

out in JjDEECo or in jDEECo implementations of DEECo component model.

As not even DEECo component model is considering this problem, we leave this

issue open for future improvements.

5.7 JjDEECo usage

Implementation of JjDEECo has completely compatible interface regarding def-

inition of components and ensembles. Therefore all existing components and

ensembles for jDEECo should be function under JjDEECo. Directly in project

exists multiple examples used for testing of required features.

Only real difference from jDEECo implementation in how to use the framwork

is replacement of LocalKnowledgeRepository or TuplespaceKnowledgeRepository

for ReplicatedKnowledgeRepository class.

JGroups and possibility to use mutli-cast or unicast communication enables

multiple scenarios of usage.

P2P Cluster Cluster created from equivalent nodes where all nodes reside in

one multicast domain. This is the usage targeted by this thesis. To support

binding multiple locations REPLAY[] protocol implemented by JGroups

can be used.

Client / Server JGroups allows to set distant nodes as target of communica-

tion. If particular addresses are set they don’t have to be in mutli-cast

domain and still can be part of the cluster. For example all nodes will con-

nect to one main node which is openly available on the Internet. Creating

cluster of nodes in distant networks. Main node will impair distributed

character of the cluster but can server as server for other nodes.

39

Cloud This scenario is improvement over Client / Sever in a way that server

is distributed over many nodes. As server side would consist from high

number of servers in different locations it would create network with cloud

like computing.

All of the above use-cases can be implemented rather easily thankfully to

JGroups. Already exists similar solutions build on top of JGroups toolkit. De-

ployments where hundreds of nodes cooperate with JGroups exists.

40

6. Example and testing

Main goal of this chapter is to introduce created applications and show test-cases.

Testing is separated to two distinct parts. First part is testing and evaluating of

ADEECo Cloud on page 41 application. Mainly they are evaluating performance

of our solution on Android Platform. Time of inclusion to the cluster, battery

usage and memory consumption.

ADEECo Cloud

ADEECo Cloud application is an example of usable Android application on top

of JjDEECo implementation of DEECo component model. As it is using cloud

demo components it doesn’t demonstrate any particular purpose. But its graphi-

cal interface enables observation on how the implementation behaves in dynamic

environment. Particularly how new joining members of the cluster are handled.

There two main activities in this application first one 6.1 is the lists all com-

ponents which have their knowledge stored on the device. It can be either lo-

cally run component or component running on different node which knowledge

was replicated to the given device. Additional information about component is

shown after touching row with the component 6.2. For each value in knowledge

repository belonging to the selected component interface shows its name, value,

time of last update and version. Another main activity 6.4 is available by button

in left upper corner. This activity shows all messages generated by components

and ensembles about important events. From this information we can infer status

of the DEECo application underneath. This application also supports tablet 6.3

size screen when selection of components and showing of additional values are

done in one screen.

For testing and development of ADEECo Cloud demo application several

devices were used:

41

Figure 6.1: List of components Figure 6.2: Components detail

Figure 6.3: Tablet interface Figure 6.4: Meessage

screen

42

• 2x HTC DESIRE X Android Mobile Phone

OS version Android 4.1.1 with API level 16 and 4” screen

• HTC HERO Android Mobile Phone

OS version Android 2.1 with API level 7 and 3.2” screen

• 2x SDK Device Emulator

OS version Android 4.03 with API level 15 and 3.7” screen

OS version Android 4.03 with API level 15 and 10.1” screen

On all devices ADEECo Cloud was fully functional and graphical interface

behaved correctly. SDK Emulator doesn’t support full emulation of network

and there is no support for multicast messaging. This determined that multi-

node operation couldn’t be tested on SDK environment and also development of

multi-device part of the projects could be done only on real devices.

Battery test

Battery consumption test was conducted on HTC DESIRE X device. The initial

conditions were alway fully charged battery no other background process applica-

tion running. Application was started in required form and left for four hours to

show battery decline. This test show how different modes of operations changes

battery usage. As on mobile platform battery is one of the main resources we

tried to measure impact of running our solution.

WIFI NO WIFI

Clean device 94 % 98 %

No components 92 % 96 %

One node 91 % 95 %

Two nodes without components 93 % -

Two nodes 86 % -

Ten nodes 87 % -

Table 6.1: Results of battery test in seconds

43

There were six kinds of test performed on the devices (??). First three test

were performed with or without network connection. Each test was carried out

only once as each testes taken more that four hours. Together more than forty

hours of testing was done. Regardless this doesn’t allow for statistical analysis

of the results as we have only on measurement for each kind of test. Also reso-

lution of the discharge is only in percentage which creates big measurement error.

Clean device test is a baseline consumption when no ADEECo cloud applica-

tion was running on the device.

No components case ADEECo Cloud application was running but no compo-

nent or ensemble was loaded into the DEECo runtime framework. This test

should show consumption of JGroups discovery protocol.

One node test show running standard ADEECo Cloud application when no

other node was reachable.

Two nodes without components case have one reachable node and both with-

out any component or ensemble.

Two nodes case is same as previous test but components and ensembles were

running on the nodes.

Ten nodes case show how number of nodes is impacting battery consumption.

Altogether results are with agreement with expectation. Unfortunately small

result set doesn’t allow to check measurement error. In case of turned off Wi-Fi

higher consumption should be due to CPU time spend on JGroups and DEECo

framework scheduling. As even when no network is connected JGroups regularly

ties and fails to send discovery packet. Almost no difference between two and

ten nodes test is probably caused by operation Wi-Fi on full strength in both

cases. Standard time for Wi-Fi to go to sleep mode is more than five seconds

on Android [4]. And as discovery is done every three seconds and components

updates their knowledge each second Wi-Fi willnever enter sleep mode.

44

From above test we can deduce that significant savings can be done by pro-

longing discovery time and by updating knowledge in longer interval. More test

and investigation would be needed to propose any real values for savings or pos-

sible settings of the parameters.

At the end of each of these tests memory consumption of the application was

checked. Resolution of the captured values is only in MB. Developer tools allow

for more precise measurement but this would interfere with battery testing. Also

memory consumption was always at 14 MB. Therefore we concluded that no more

test are required.

Connection test

Purpose of this test was to measure mean, max and min time for an already

runnig node to be added to the cluster. In this test case one JjGroups instace was

running one notebook computer and HTC DESIRE X running ADEECo cloud

connected to the same network as notebook used. Twenty tests were performed.

9 15 6 20 12 12 23 18 6 19

8 10 22 12 27 18 7 14 8 12

Table 6.2: Measured connection times in seconds

Maximal time of inclusion 27 seconds

Minimal time of inclusion 6 seconds

Average time of inclusion 13.9 seconds

Stadart deviaton of result set 6.13 seconds

Mean time for inclusion is 13.9 seconds which is quite high in comparison that

discovery is running every 3 seconds. This result show us that JGroups toolkit

needs time to start mergingView to join two clusters. This behavior might be

improved by changes in configuration or possibly new discovery protocol can be

implemented with better results. But for demonstrating mobility of ECBS system

the acquired value should suffice.

45

JjDEECo

JjDEECo implementation is evaluated separately. Because JjDEECo has possi-

bility to run on much greater range of environments. In case of JjDEECo mainly

testing compatibility on platforms was tested.

Platforms on which JjDEECo successfully worked and communicated with

other nodes in the network.

• Linux Mint 16 Petra using Linux kernel 3.11.012 on x86 64 architecture

• Windows XP Service Pack 3 with x86 architecture

• Raspbian Operation system on Raspberry Pi with ARM architecture

• HP-UX 11i v3 with Itanium architecture

This shows that JjDEECo and JGroups used by the project runs on many

platforms which are supporting Java language. This enables variety of testing

and deploying scenarios. Another benefit is than development of JjDEECo and

mainly ReplicatedKnowledgeRepository is not thigh to Android platform.

During development phase standard Java work-flow was used and this saved

considerable time as building, deploying and testing of apps on Android takes

more time.

46

7. Conclusion

In this master thesis we have analyzed the problem of bringing DEECo compo-

nent model [1] on to the Android Mobile Platform [4]. After careful analysis

and identifying possible solutions, we have used current pilot implementation of

DEECo component model called jDEECo [2, 3] as a basis for our implementa-

tion on Android. Finally with only slight modifications to the jDEECo we where

able to run locally DEECo framework (33). Next step of bringing the solution

on to the Android was to create synchronized shared state abstraction of knowl-

edge repository on multiple devices (33). For this purpose we have used JGroups

toolkit together with our own implementation of ReplicatedKnowledgeRepository.

Bringing these two parts together in one coherent unit was finally done in our

ADEECo Cloud example (41).

As for the goals of this master thesis we have fulfilled each one of them.

Design and implement DEECo component model on Android Portation

of jDEECo enabled to have most of the current functionality available on

Android Platform

Support background processing on Android By utilizing Androids compo-

nents namely a Service we were able to create solution for almost perma-

nently running DEECo framework.

Support inter device communication and synchronization TargetingWi-

Fi technology as main communication pathway and employing JGroups

toolkit helped us to create robust synchronization framework. Which is

permitting cooperation of components and ensembles in the multi device

environment.

Create demo application By creations ADEECo Cloud application we have

shown how the DEECo component model can be used on Android platform.

There is one hidden benefit of chosen usage of jDEECo and JGroups which

wasn’t required from this thesis. Not only Android devices can collaborate togeth-

er on DEECo platform but they can do this with virtually any device supporting

47

standard Java and Multicast communication (3346). All this is possible by using

our fork of jDEECo called JjDEECo which adds JGroups support and doesn’t

require any Android specific interface.

As for now there are still some pitfalls in the solution most notably knowledge

aging (38) and battery consumption (43). But both of these problems are out of

scope of this master thesis as they are not in our goals. These are possible places

where future improvement can be done.

During writing of this master thesis we have encountered many problems.

But by systematic analysis and small step improvements we were able to resolve

them and create presented solution. We have learned a lot about DEECo compo-

nent model and its pilot implementation jDEECo, also get familiar with JGroups

toolkit and Android Platform. This work has given us experience and knowledge

that with dedication and time these types of projects can lead to fruitful ends.

48

Bibliography

[1] Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., Plášil F.:

DEECo - an Ensemble-Based Component System, Tech. Report No. D3S-

TR-2013-02, Dep. of Distributed and Dependable Systems, Charles Univer-

sity in Prague, February 2013

[2] Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M., Plášil F.:

DEECo - an Ensemble-Based Component System, In Proceedings of CBSE

2013, Vancouver, Canada, ACM, June 2013

[3] Al Ali R., Bureš T., Gerostathopoulos I., Hnětynka P., Keznikl J., Kit M.,

Plášil F.: DEECo: an Ecosystem for Cyber-Physical Systems, In Companion

proceedings of the 36th International Conference on Software Engineering

(ICSE 2014), Hyderabad, India, ACM, poster and extended abstract, June

2014

[4] Android documentation project, developer.android.com

[5] Bela Ban,JavaGroups - Group Communication Patterns in Java, Dept. of

Computer Science Cornell University, July 1998

[6] Bela Ban, JGroups documentation, jgroups.com

[7] Eric Freeman, Susanne Hupfer, Ken Arnold: JavaSpaces Principles, Pat-

terns, and Practice. Addison-Wesley Professional, 1. June 1999, ISBN 0-

201-30955-6

[8] Camps-Mur D., Garcia-Saavedra A., Serrano p.:Device to device commu-

nications with WiFi Direct: overview and experimentation,NEC Network

Laboratories in Heidelberg, Germany,2012

[9] N. Serbedzija, S. Reiter, M. Ahrens, J. Velasco, C. Pinciroli, N. Hoch, and

B. Werther, Requirement specification and scenario description, ASCENS,

2011. http://www.ascens-ist.eu/deliverables/

[10] Yann Sionneau, Portation of JGroups to Android,

github.com/fallen/touchsurface-android-jgroups, 2012

49

[11] Bouzefrane S., Huang D., Paradinas P. : An OSGi-based Service Oriented

Architecture for Android Software Development Platforms, Arizona State

University,Conservatoire National des Arts et Métiers, 2011

[12] Kuna M., Kolaric H., Bojic I., Kusek M., Jezic G. :Android/OSGi-based

Machine-to-Machine Context-Aware System, Faculty of Electrical Engineer-

ing and Computing, University of Zagreb,2011

50

List of Figures

2.1 Activity life-cycle . 9

3.1 in-proccess . 14

3.2 one-to-one . 14

3.3 many-to-one . 15

3.4 many-to-one separated . 16

3.5 Difference beatwean unicast and mutlicast communcation 26

3.6 Knowledge exchange example . 27

6.1 List of components . 42

6.2 Components detail . 42

6.3 Tablet interface . 42

6.4 Meessage screen . 42

51

List of Tables

6.1 Results of battery test in seconds 43

6.2 Measured connection times in seconds 45

52

Attachments

1. Source codes of projects ADEECo, JjDEECo and ADDECo Cloud

53

	Introduction
	Background
	Distributed Emergent Ensembles of Components
	Android Fundamentals
	Jgroups

	Analysis
	Goals revisited
	Application architecture
	Network communication channels
	jDEECo implementation
	Multinode comunication

	Android part
	ADEECo
	EventBus
	Background processing

	Inter-node communication
	JjDEECo
	JGroups
	Knowledge replication
	Cluster merging
	Session support
	Knowledge aging
	JjDEECo usage

	Example and testing
	Conclusion
	Bibliography

