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1. Introduction

1.1 The Problem

Three out of the top ten programming languages in TIOBE index[1] – an indica-
tor of programming languages popularity, are dynamically typed languages. One
of the reasons for their popularity is that they can be easier to use and suitable for
fast prototyping. But at the same time the possibility to omit type information,
which might be helpful during the early stages of a software project, can lead to
more error prone code, and eventually to problems in later phases of the devel-
opment and maintenance. Dynamic typing is also challenging for the compiler or
interpreter designers. With the type information, a compiler is usually able to
emit more efficient code.

Programmers are aware of the possible problems with the maintenance of
dynamically typed code and they often include the type information in documen-
tation comments. However, the correspondence of the documentation and the
actual code is not checked, and moreover the compiler usually does not take any
advantage of having type hints in the comments.

The PHP programming language is one of the mentioned popular dynamic
languages and Phalanger [2] is an implementation of a PHP compiler that com-
piles PHP code into the .NET intermediate code. Phalanger was developed at the
Department of Software Engineering of the Charles University in Prague. A part
of the Phalanger project is also an implementation of PHP tools for Visual Studio.

Because of its dynamic nature, PHP code is more difficult to analyse than
code written in a statically typed language, especially if we want the analysis
to be reasonably fast so that it can be used in everyday development. There is
ongoing research into the static analysis methods for many different families of
programming languages, including dynamic languages. The problem this project
is addressing is to adapt and apply those methods on a real world and widely used
programming language PHP. The result is a library that is capable of performing
static analysis of PHP code and can be integrated into the Phalanger project.
The library is capable of supporting many kinds of analysis, for example constant
propagation. However, the main goal is to provide type analysis in order to
discover possible type related errors and mismatches with the type information
in the documentation comments. Furthermore, in the future the library can
be integrated into Phalanger as a middle-end to provide optimizations for the
compiler.

This project and the library has a code name Control Flow for Phalanger and
we refer to it using this name in the following text.

1.2 Thesis structure

The following chapter 2 describes the challenges connected with analysing source
code written in the PHP programming language, approaches to static analysis of
source code in general and our adoption of those to PHP. In chapter 3, we discuss
existing tools of this kind. Chapter 4 provides more detailed description of the
design and implementation of Control Flow for Phalanger. The implemented
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analysis has been evaluated on several open source PHP projects and the results
are presented in chapter 5. The final chapter 6 gives a conclusion and discusses
future work.
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2. Analysing PHP Code

The PHP programming language first appeared in 1995[3]. Over the years the
language has evolved and so have the ways programmers use it. This project
focuses on PHP version 5.51 and the aim for the analysis is to work well on PHP
source code written in an object oriented style, using modern PHP patterns and
idioms that are described later in this text. The analysis, however, should provide
correct results for any valid PHP code of any PHP version. We do not focus only
on websites, but also on PHP libraries and frameworks that by themselves do not
contain any PHP files that produce HTML or any other output for the user.

The following section 2.1 describes some important parts of the semantics of
the PHP programming language, especially those that represent a challenge for
static analysis.

Section 2.2 gives a brief overview of existing static analysis methods with
references to relevant literature. It is not meant as a comprehensive description,
but should provide a context for the following section 2.3, where we discuss how
we used the existing techniques for the purposes of our PHP code analysis.

2.1 PHP Semantics

2.1.1 Dynamic Typing

In PHP, local or global variables, object fields and function or method parameters
are dynamically typed, which means that they can hold values of completely
different types at different times of the execution.

2.1.2 Local Variables

Local variables in PHP do not need to be declared explicitly. Instead the first
usage of a variable is also its declaration. If a variable’s value is used before the
variable got any value assigned, then the interpreter generates a notice, however
the execution continues and value null is used instead. A variable can get a value
assigned to it when it appears on the left hand side of an assignment or when
a reference to that variable is created, in which case it gets value null, but no
notice is generated. References are discussed in one of the following subsections.

The scope of a local variable is always its parent function not the parent code
block as in other languages like C or Java. So in the following example, the usage
of variable $y at the end of the function can generate uninitialized variable notice,
however, if $x was equal to 3, $y will have a value although it was declared in
the nested code block.

function foo($x) {

if ($x == 3) { $y = 2; }

echo $y; // uninitialized variable if x != 3

}

1From this point, if the PHP version is not stated explicitly, it is implicitly 5.5.
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2.1.3 Global and Local Scope

PHP distinguishes two scopes for variables: global scope and local scope. Local
scope is a scope of local variables within a user defined routine. Variables that
are declared in global scope, that is outside of a user defined routine, are available
anywhere in global scope and are called global variables. Global variables are also
available in user defined routines as long as they are imported into the routine’s
scope using the keyword global.

$g1 = 1; // global variables g1 and g2

$g2 = 2;

function foo() {

global $g1;

echo $g1; // prints the value of global variable g1

$g2 = 4; // sets the value of local variable g2,

// because global variable g2 was not imported,

// its value does not change

}

Global variables can be imported and used in any user defined routine. This
means that even if we know some type information about a global variable’s value
at some point in the analysed code (e.g. just after assignment to that variable),
any time another user defined routine is invoked, we have to take into account
that the other routine can change the value of the global variable even if we do
not pass the global variable to the invoked routine as an argument passed by
reference.

2.1.4 Closures

PHP also supports anonymous functions. An anonymous function has its own
scope as any other function and its local variables are not visible to the scope
where it was declared. Variables from the parent scope are available in the closure
scope only if they are explicitly imported to its scope and they can be captured
by value or by reference. Only the later represents a challenge for the analysis,
because any code that can access the closure can invoke it and thus change the
values of variables imported to the closure’s scope by reference. By invoking a
closure, we can influence the values of variables in a completely different and
otherwise inaccessible scope.

2.1.5 References

References in PHP are similar, but not same, as pointers in the C programming
language. PHP has a special operator =& (assign by reference) that turns the
variable on the left hand side into a reference to the variable on the right hand
side. For example $a=&$b, after this, any assignment to $a will in fact change
the value of $b and wherever the value of $a is used (e.g. in an expression), the
value of $b is used instead.

The variable the reference is pointing to is determined in a transitive fashion,
which means that if we assign by reference another reference, the new reference
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will point to where the other reference was pointing to, but the intermediate link
is lost. The following example illustrates this.

$a =& $b; // a points to b

$c =& $a; // c points to where a points, that is b

$a =& $d; // a points to d, but c still points to b

2.1.6 Arrays

Arrays in PHP do not have to be homogenous and they can be indexed by either
integers or strings. In fact, PHP arrays are hash maps rather than arrays in the
usual sense and that is also how they are implemented internally.

String indexed heterogenous arrays are often used as flexible ad-hoc structured
data type. Instead of defining a class with required fields, one can use what would
be a field name as an index into an array. Such arrays are usually indexed only
with finite number of constant string values.

In this light, it is no surprise that using the subscribe operator [] with string
index on an object instance will access the field with the same name as the index
value.

2.1.7 Interesting Control Flow Structures

The break and continue statements with optional numeric argument are sup-
ported in PHP in a similar way as in other imperative programming languages.
There are, however, important differences to be noted.

Firstly, The numeric argument can be an arbitrary expression in some of the
older versions of PHP, in which case we cannot statically determine the target of
the jump for the control flow resolution.

Secondly, the switch statement is considered a loop for the purposes of both
break and continue. The semantics of break is intuitive. One of the meaning-
ful use cases is to break a loop from within a switch by using break 2. The
semantics of continue statement is perhaps not so intuitive: within a switch it
works the same way as break.

Switch Statement Semantics

The basic semantics of the switch statement in PHP is again very similar to that
of other standard imperative programming languages. The switch statement in
PHP permits an arbitrary expression as the value to be used for comparison with
values of its case labels. Furthermore, the values of case labels can also be
arbitrary expressions and because we are in a context of dynamic programming
language, they can again evaluate to a value of any type at runtime.

The switch expression is evaluated only once at the beginning, and if it has
an undefined value (undefined variable, void function call), then the control flow
goes directly to the default item, without evaluating the expressions in the case
items. If the value is defined, then it is one-by-one compared to the values that
the case labels evaluate to. If a case label evaluates to boolean value, then it
is used to decide whether to jump to that case item or continue with evaluating
the value of the next case label. Note that the value of switch expression is not
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compared to the case label value. If a case label evaluates to a complex type
(object or array), it is ignored and evaluation continues with the next case

label. And finally, if a case label evaluates to an integer, float or string

value, it is compared to the switch expression. All these expressions can have
side effects due to usage of assignments as expressions or calls of functions with
side effects.

PHP also permits placing the default label anywhere in between the other
case labels. This can be used for fall-back to or from a case item as in the
following code sample that is abbreviated version of actual code taken from the
WordPress [4] code base.

switch ( $status ) {

default:

case ’install’:

$actions[] = ’<a class="install-now" ...’;

break;

case ’update_available’:

$actions[] = ’<a class="install-now" ...’;

break;

case ’newer_installed’:

case ’latest_installed’:

$actions[] = ’<span class="install-now" ...’;

break;

}

2.1.8 Conditional Declarations

User defined functions, classes, etc. are declared in a global scope in PHP, that is
a scope where one can as well place any arbitrary code. Therefore a declaration
can be wrapped in any control structure. It is not allowed to redeclare once
declared symbol, however.

A typical use case is to dynamically import a file that may provide some
functions and then check, using function exists, whether the functions were
indeed declared and if not, provide default implementation. This is a pre-object-
oriented way of doing overriding and is usually not to be found in modern projects.
Nonetheless, WordPress still relies on this pattern in parts of its code base.

Although the mentioned pattern could be deemed as reasonable and useful.
This feature permits very problematic code as in the following example that may
or may not crash on fatal errors “Cannot redeclare foo()” or “Call to undefined
function foo()” depending upon the user input.

while ($_POST[’a’] != 3) {

function foo() { return 5; }

$_POST[’a’] = $_POST[’b’];

}

echo foo();
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2.1.9 Auto-loading

Historically, in PHP, in order to reference any symbol from a different file, one
had to import that file explicitly. Newer versions of PHP support customized
auto-loading. A user defined routine can be invoked by the runtime every time
an undefined class is referenced. The auto-loading routine is then responsible for
importing the file(s) that contain the code of the required class.

Auto-loading routine can use arbitrary logic to determine what file(s) to im-
port, in fact, it can execute arbitrary code. Typical pattern used for example in
Zend Framework [5] before namespaces were introduced to PHP is to have a file
per class and use class names in form of CodeFolder1 SubFolderName FileName

for a class placed in file CodeFolder1\SubFolderName\FileName.php.

2.1.10 PHPDoc Annotations

Although not part of the official PHP syntax, there is a widely recognized format
for documentation comments of JavaDoc style called PHPDoc. PHPDoc com-
ments may contain type information that cannot be expressed using PHP syntax.
For example, PHP allows “type hints” for routine parameters, but only for class
types, not for primitive types like int. However, primitive type expectations can
be included in the documentation comments. The important difference is that
PHP will throw an exception at runtime if a routine is invoked with a parameter
of different type than what its “type hint” is. The documentation comments, on
the other hand, are of course ignored by the runtime.

The PHPDoc defines a fairly advanced syntax for expressing type informa-
tion. It supports multiple primitive and class types, homogenous and heteroge-
nous arrays as well multidimensional arrays, and some constants like false. For
example, in the following code the documentation comment tells us that function
foo can return either null, or false (but should never return true), or an array
of integer values.

/**

* @return null|false|int[]

*/

function foo() { ...

2.2 Static Code Analysis

Static analysis of source code is an analysis that is performed without executing
the code. This means that we do not need to have a web server, for example, in
order to analyse code of a web application. We can also guarantee some properties
of the analysis that would not be possible to guarantee if we executed the code.
Namely the halting property and upper bounds on time and space complexity.
Arbitrary code may not halt if executed, but static analysis of such code can still
halt and give results.

Static analysis can be used to get possible types of an expression in a dynam-
ically typed language, to find out expressions that have constant value through
constant propagation and many other problems. Static analyses usually do not
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give accurate solution, it is an approximation, which can be an over-approximation
or an under-approximation and it is up to the designer and user of the analysis
which one is acceptable or safe for their purposes.

In the rest of this section, we provide a brief overview of static analysis meth-
ods, especially Data Flow Analysis (DFA) [6][7], which has become a de-facto
standard type of analysis for most of the optimizing compilers and other more
complex static analysis methods are either directly based on DFA or on the ideas
behind DFA. This should provide a context for the following section Control Flow
for Phalanger Approach, where we discuss how we applied and adapted DFA and
other techniques described in this section in order to analyse PHP code in Control
Flow for Phalanger.

2.2.1 Program State

Execution of a program can be seen as a series of transformations of the pro-
gram state. Each individual program instruction, when executed, can change
the program state and produces its output state. How exactly is defined by the
instruction’s semantics and it typically depends on the input state, which is a
program state produced by the previously executed instruction.

The goal of a static analysis is to devise some useful piece of information
about how instruction i can change the program state, so that it can be used
for program optimization or to reveal potentially problematic instructions. For
example, if assignment a = 4/b always assigns constant value 1 to a, because b
happens to be equal to 4 in any possible program state preceding a = 4/b, we can
change a = 4/b to a = 1, which has the same affect to the program state. If we
instead found out that b is always equal to 0, we would know that this instruction
will cause an exception.

The result we expect from a static analysis is, for each instruction in the pro-
gram, provide some useful property of program state transformation that always
holds every time the instruction is executed. The analyses differ in the properties
they compute. We will call such computed property a data-flow.

2.2.2 Control Flow Graph

DFA is typically performed on a control flow graph, although there exist ap-
proaches to DFA without explicit control flow graph construction [8].

Control flow graph nodes, also called basic blocks, represent blocks of instruc-
tions that are always executed sequentially. Directed edges represent the control
flow between basic blocks, for example, jumps in the control flow due to condi-
tionals, goto statements or any other statements that can change the flow of the
program. Control flow graphs usually contain two special nodes: entry node and
exit node. The entry node does not have any incoming edges and all the paths
lead to the exit node. An example of a control flow graph is given in figure 2.1.

2.2.3 Transfer functions

We say that the input state of a statement is associated with the program point
before the statement and the output state is associated with the program point
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echo ’entry’;

if ($x == 3)

$y = 4;

else

return 5;

while ($y < 7) {

echo $y;

$y++;

}

return 3;

Table 2.1: Control flow graph

after the statement. Our aim is to calculate data-flow value for both program
points for each statement, denoted IN(s) and OUT (s) for a statement s.

Single Statement

We can express the data-flow for program point after a statement as a function of
the data-flow of program point before the statement, also called transfer function.
Formally if ft is a transfer function, then ft(IN(s)) = OUT (s). Each type of
statement will have a different transfer function that will reflect the semantics of
the statement.

Example: our analysis tracks type of local variables, so the data-flow is a
map from variable names to their type. In such setting, a transfer function for
assignment statement $a=$b, will take the input data-flow flowin and will return
flowout, such that flowout(x) = flowin(x) for every variable name x, except for
flowout($a) = flowin($b). In other words, the type of all the variables stays the
same, except for $a, whose type changes to whatever is the type of $b is.

In practice, there is only one transfer function for all the assignment state-
ments that is parametrized by the left-hand side and right-hand side of the assign-
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ment. And in general, each statement in the programming language has usually
its “meta” transfer function that is parametrized not only by the input data-flow,
but by the statement structure.

Transfer functions are often described in the form of inference rules. An
example of an inference rule can be “if the type of variable b is Integer in state
S1, then after executing statement a=b, we get a new state S2 that is the same as
S2 except variable a is of type Integer in S2”. Those rules can be also described
with the following notation

S1 ` b : Integer

[a = b, S1]→ S2, S2 ` a : Integer

where above the horizontal line we have hypothesis and below is the conclusion.
In hypothesis we have that in state S1 a is an integer. The conclusion says that
given that statement a = b transforms the state S1 to S2, then in state S2 b is an
integer. We should also say that other facts in S2 stay the same as in S1, in other
words, they are not changed by the transformation, but for the sake of brevity,
we will always assume that implicitly.

Statement Interaction

The data-flow for program point before a statement depends on the data-flow of
program point after the last executed statement. Let us consider a basic block
B with statements s0, s1, ..., sn, that is a sequence of instructions that are always
sequentially executed. A basic block is part of a control flow graph and its
incoming edges lead from all the basic blocks whose execution can precede this
basic block.

In the case of any si 6= s0, that is any statement but the first one, there is
only one statement whose execution can precede the execution of si and that is
the previous statement in the sequence: si−1. So we have IN(si) = OUT (si−1)
for i ∈ [1..n].

In fact, thanks to this property, we can define transfer function fB of a basic
block as composition of transfer functions of its statements. Formally:

fB = fsn ◦ fs(n−1)
◦ ...fs0

where fsi is the transfer function for statement si. Furthermore, we denote
data-flow values of basic block as IN(B) = IN(s1) and OUT (B) = OUT (sn).
From the definitions we can observe simple identities:

fB(IN(s1)) = fB(IN(B)) = OUT (B) = OUT (sn)

The first statement s1 of the basic block has to be handled differently. Its exe-
cution can be preceded by execution of the last statement of any of the basic blocks
B1, B2, ..., Bm that precede basic block B in the control flow graph. One of the
possibilities to deal with this, is to combine data-flows OUT (B1), ..., OUT (Bm)
into single data-flow that approximates all of them. Nonetheless, the way the
data-flows are combined depends on the concrete data-flow type and thus should
be defined by the analysis. We denote the function to combine data-flows as
MEET .
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Equations for Data-Flow

When we put everything together, we get a set of equations:

OUT (Bi) = fBi
(IN(Bi))

IN(Bi) = MEET (OUT (P0), ..., OUT (Pm))

where P0, ..., Pm are predecessors of Bi in the control flow graph. The analysis
must also define value of IN(START ), that is input state for the initial node,
which does not have any predecessors.

Example

We will illustrate the system of data-flow equations on a simple example. The
subject of our analysis will be the type of the variable $i in the code sample in
figure 2.2.

Data-flow will be a set of possible types of variable i and initial data-flow of
the start node will be an empty set.

$i = 3;

while (foo($i)) {

$i = 3.14;

}

// exit

Table 2.2: Code for Data-Flow Example

Transfer functions : we will assume that a function call does not change state,
therefore the transfer function of function call is identity – OUT (s) = IN(s).
Assignment of a constant c of type T to $i changes type of $i to T.

MEET operation will be union of the sets of possible types of $i.
The set of equations is in this case

OUT (B1) = fB1(IN(B1)) = fB(∅) (initial node)

OUT (B2) = fB2(MEET (OUT (B1), OUT (B3)))

OUT (B3) = fB3(OUT (B2))
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Knowing that fB1 and fB3 are constant functions, because the assignment
changes type of $i to T without taking the input data-flow into account, and fB2

is identity function, we can simplify the equations to

OUT (B1) = {Integer}
OUT (B2) = fB2(MEET (OUT (B1), OUT (B3)))

OUT (B3) = {Double}

OUT (B1) = {Integer}
OUT (B2) = fB2({Integer} ∪ {Double}) = {Integer ,Double}
OUT (B3) = {Double}

With this result we can, for example, check that function foo is invoked with
correct argument type, because from IN(B2) we know that $i at the moment of
invocation of foo can be either of type Integer or Double.

2.2.4 Finding Solution for the Data-flow Equations

Lattices

The algorithm for finding a solution to a set of data-flow equations is based on
algebraic structures called lattices. A lattice is a partially ordered set in which
every two elements have a least upper bound, called supremum, and a greatest
lower bound, called infimum. If a and b are elements of a lattice, we denote their
least upper bound as a ∧ b.

Bounded lattice is a lattice that has a greatest element and a least element,
usually denoted as > and ⊥. A bounded lattice is depicted in figure 2.1.

Figure 2.1: Bounded lattice with 5 elements.

There are several properties of lattices important for DFA.
If we have a finite bounded lattice (S,≤s) and a function f : S → S that

is monotonous, in order words, ∀a, b ∈ S : a ≤s b ⇒ f(a) ≤s f(b), then ∀x ∈ S
∃k ∈ N, such that fk(x) = f (k+1)(x). fk(x) is called a fixpoint.

Intuitively, f has to have a fixpoint because for every argument y, it must
either return y itself, but then y is a fixpoint, or it returns another element that
is strictly greater than y, but this cannot go on forever, because eventually f will
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be given > for which it does not have any other option but returning > and we
have a fixpoint again.

From this property further follows that if we use a finite lattice’s elements as
a domain for transfer functions, and the transfer functions are monotonous, then
the set of data-flow equations has a solution, which is a safe approximation of
the, in a sense, best solution to the data flow problem. Details can be found in
[9].

Product lattice obtained from two or more lattices is also a lattice, which can
simplify the design of data flow analyses.

Power set P(S), the set of all subsets of S, is also a lattice, the lattice order
relation being subset relation ⊆.

The Iterative Algorithm

The algorithm to find the solution to the data-flow equations initially setsOUT (Bi)
for every basic block to the initial data-flow, which should be the lowest element
of the lattice. Then it iteratively takes a basic block Bj such that its input data-
flow IN(Bj) has changed or is not initialized yet and computes OUT (Bj), which
might change the input data-flow of the ancestors of Bj. The process is repeated
until the system stabilizes.

The algorithm can take basic blocks in any order, however, the reverse post
order provides the best time complexity [6].

Bit Vectors as Data-flow Representation

The performance of the algorithm also depends on the implementation of data-
flow, the MEET operations and the transfer functions.

Data-flow values often represent a subset of a set of all possible values of
some kind and the MEET operation is either union or intersection. For example,
a subset of all possible types of a variable. Furthermore, we want to calculate the
information for all variables not only for one. If we know the number of variables
n and types m in advance, we can represent the data-flow as a bit-vector where
groups of m bits represent a data of single variable and within those bits, value
of bit with index i indicates whether the type with index i is in the set. Union
or intersection can be implemented using fast bitwise operations.

2.2.5 Abstraction

The data-flow value for program point is typically an abstraction of some property
of the set of all possible program states that can be observed during real execution
for that program point.

Abstracting the desired property is often important in order to make the anal-
ysis practical or even feasible. Let us consider an analysis that should determine
the sign of integral variables at each program point. We can have inference rules
of the following form: given that in state S1 v1 equals to −10 and v2 equals to 3,
and statement v3 = v1 + v2 transforms state S1 to S2, then in state S2 v3 is equal
to −7.
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S1 ` v1 : −10(sign : 	) S1 ` v2 : 3(sign : ⊕)

[v3 = v1 + v2, S1]→ S2, S2 ` v3 : −7(sign : 	)

However, the implementation would not be very efficient and also the full
information about variables values is not always available, but in some cases we
can deduce another less precise, but still useful piece of information by other
means. For example, variable of type unsigned integer will always be positive,
we can count on that even if we do not know the actual value. What we can do
is to abstract the possible integral values with set {0,	,⊕} with the following
meanings

• 	 represents all negative integers,

• ⊕ represents all positive integers,

• 0 represents zero,

and rewrite the inference rules as follows:

S1 ` v1 : 	 S1 ` v2 : 	
[v3 = v1 + v2, S1]→ S2, S2 ` v3 : 	

Nonetheless, there is another problem. What to do when we have 	 and ⊕
in the hypothesis.

S1 ` v1 : 	 S1 ` v2 : ⊕
[v3 = v1 + v2, S1]→ S2, S2 ` v3 :?

The solution is to extend the domain so that it is closed under all operations.
We add another element to our set:

• > represents an unknown value (either positive, negative, or zero).

Then the rule will be:

S1 ` v1 : 	 S1 ` v2 : ⊕
[v3 = v1 + v2, S1]→ S2, S2 ` v3 : >

And for example another rule dealing with > in hypothesis:

S1 ` v1 : 	 S1 ` v2 : >
[v3 = v1 + v2, S1]→ S2, S2 ` v3 : >

It is no surprise that we used symbol >, which is also used to denote the
greatest element in a lattice. By adding ⊥, the least element, and inference rules
for it, we can get a lattice depicted in 2.1 and use this abstraction as data-flow
value.
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Formalization

There is a theoretical framework for designing sound and correct abstractions. In
a nutshell, an abstraction following this framework has to include:

• concrete domain C, which has to be a lattice ,
• abstract domain A, which has to be a finite lattice,
• concretization function γ : A 7→ C,
• abstraction function α : C 7→ A,

In our case the concrete domain could be the power set of all possible integral
values, which is a lattice, and the abstract domain with elements {0,	,⊕>,⊥}
was described above. The γ and α functions map values from one domain to
another. When we map elements of concrete domain to the abstract domain,
we loose precision due to abstraction. Let us provide few examples, instead of a
formal definition of γ and α.

γ(⊕) = {1, 2, 3, ...}
γ(>) = > = {...,−2, 1, 0, 1, 2, ...}

α({3, 4, 5}) = ⊕
α({3,−4}) = >

The framework for abstract interpretation further defines necessary conditions
for the γ and α functions and conditions for the transfer functions with respect
to γ and α mapping. Details and other static analysis methods based on abstract
interpretation framework can be found in [10], [11].

2.2.6 Intraprocedural Analysis

So far we have been discussing an analysis of a single function or a method 2.
However, if we want to analyse a whole program or a library, the interaction
between the routines must be taken into account.

A straight forward approach is to regard other routines as black boxes and
assume the worst with respect to how a routine call can change the program state.
Nonetheless, in practical programming language with references, or pointers, pass-
by-reference arguments, lambda functions with capture by reference, and other
caveats, an innocent routine call can theoretically do almost anything to the
program state even from the local point of view of the function we are analysing.

Context Sensitive Interprocedural Analysis

The most precise solution is to analyse a function, say foo, for each possible
calling context. In other words, re-analyse foo’s body every time we encounter
its invocation when analysing another function, and use the program state before
the invocation of foo as an initial state for the re-analysis of foo.

Caching of the results of analysis based on the calling context, so that we do
not re-analyse it if the context is the same as some context previously encountered,
is possible. However, in the most generic form, it is impossible to asses the
equality of program states, because the context consists not only of arguments
passed to the function, but also the global state including the heap.

2We will use term routine to designate a global function, static or instance method
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Another problem, which makes fully context sensitive approach impractical or
even impossible, is polymorphism or dynamic invocation of routines in general,
be it lambda functions, virtual methods, reflection, or any other means. It is
not known statically what function will be invoked and thus what function to
analyse. The call site can be determined by the analysis itself, but in general it
cannot be guaranteed.

Heap Abstractions

When a routine takes a pointer or reference to some object on the heap as an
argument, it can traverse to other objects on the heap and change their state.
Let alone low-level languages that allow direct manipulation with the memory
and can therefore change anything in the heap.

The heap can be important part of the program state for some kinds of analy-
ses. If we want to take the heap state into the consideration during the analysis,
we need an abstraction for the heap to make the approach feasible in practice.

Researchers have proposed several approaches to representation of heap data
in an abstract way to minimize memory requirements and provide fast algorithms
to check two heap abstractions for equality or isomorphism. A sound and useful
definition of heaps isomorphism is also a problematic task by itself. The paper
[12] provides a survey on the heap abstraction models.

Region Based Analysis

Another approach is to analyse a routine once in a generic context setting and
create a transfer function that summarizes the effects of the routine call to the
program state [6]. However, in practical setting, we need to decide how to derive
the transfer function and how to represent it. A constant transfer function that
always returns the >, in other words, the worst assumption about the program
state, is always safe transfer function for any routine call, but we have not gained
anything over the naive solution from the beginning of this section.

In the case of Control Flow for Phalanger, we used a variant of a region based
analysis. Details are discussed in the following section.

2.3 Control Flow for Phalanger Approach

2.3.1 Introduction

The approach taken in Control Flow for Phalanger is based on an observation
that even when developers are given a dynamically typed programming language,
it does not mean that they will write dynamically typed programs. Empirical
evidence for this observation was presented in [13].

We are therefore assuming that large part of the analysed code corresponds to
a statically typed code one-to-one, it only does not include the type information.
However, we do not want to ignore the dynamic typing completely.

Another decision we made, is that only local variables will be a viable target
for compiler optimizations use case, since the compiler optimizations have to be
safe with respect to all the possible and obscure corner cases, and global variables
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and heap memory are difficult to analyse precisely. On the other hand, with bug-
hunting and integrated development environment supporting style analyses, we
can afford more courageous assumptions.

In this section we focus on the type analysis, because it is by far the most
complex kind of analysis implemented. Other analyses, like constant propagation,
follow the same concepts and, furthermore, they rely on the results of the type
analysis and points-to analysis, which is also discussed in this section.

The design of type analysis consists of three parts:

• Determine what the actual results of the analysis will be.
• Design of the local analysis, which is based on the DFA approach and so

we need to design lattice of data-flow values and transfer functions.
• Design of the interprocedural analysis, which adapts the region based method,

therefore we need to decide how to devise and represent a transfer function
that summarizes effects of a whole routine body.

2.3.2 Analysis Results

The outcomes of the analysis of a single routine are:

Variables table: type information for local variables – for every local vari-
able, a set of its possible types at any point during the execution of the rou-
tine. Note that it summarizes all types that variable can have at different
program points. Knowing that a variable has only one possible type can be
useful for compiler.

Type information for expressions – every expression in the routine’s body
will be annotated with the type or set of types the expression can evaluate
to.

Warnings – some expressions expect only operands of certain type; if the anal-
ysis encounters such expression and from the analysis it follows that the
operand is not of the expected type, the piece of code in question is report-
ed as a warning. The same holds for the type expectations extracted from
documentation comments for fields, routines and others.

Another outcome of analysis across all routines will be globals table with type
information for global symbols that is global variables, instance and static fields
and routines.

2.3.3 Local Analysis: Overview

We can think about expressions in terms of evaluation trees, like in figure 2.2.
Since expressions should be annotated with their type information, the analysis
can use a bottom up approach and annotate the leaves of the evaluation tree first
and then recursively from the type information of operands infer type information
for compound expressions.

Statements or expressions that can change the program state, like assignment
statement, will have their operands annotated with the type information and
thus have all the necessary information to reflect the change of the program
state accordingly. For instance, the type of the right hand side expression of an
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Figure 2.2: Evaluation tree of an expression (foo()+$a)/$b.

assignment statement will determine the new type for the variable on the left
hand side.

Some type information can be inferred from the code without any knowledge
about variables’ types. For example, the result of string concatenation is always
a string, no matter what the types of the arguments are. However, simple
local variable use is an expression and we need to know the possible types of the
variable to annotate this expression with its type. For this, we need to perform
a DFA that will give us the type information for each variable at each program
point. Note that the data-flow values are used only temporarily to annotate the
expressions and build the variables table, but we do not create actual data-flow
instance for every program point.

The transfer functions use the bottom-up evaluation approach and reflect the
semantics of the PHP language. For the sake of brevity, we do not provide their
formal description3.

The remaining questions that have to be answered, in order to implement the
DFA, include:

• what the data-flow values will be,
• what data structures will be used to represent them efficiently,
• how to deal with routines calls and their effects to the program state –

interprocedural analysis.

2.3.4 Local Analysis: Data-flow Values

The data-flow should capture the type information for variables within the rou-
tine. We do want to support dynamic typing, therefore for every variable, we
have a subset of all its possible types, not only a single type. The data-flow value
is a map from variable names to subsets of types.

For an efficient representation of the data-flow, the routine’s body is scanned
for all local variables names and referenced types prior to the analysis. After the
scan, the number of variables and types is a known constant and the data-flow,
being an array of subsets of a set of all the types, can be represented as a bit-
vector. The MEET operation is a union, because if a variable can have type T

from one branch and type K from another, at the join point we can only assume
that it has either type T or K.

3 The transfer functions encoded in C# can be found in the source codes of the project
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However, with a real world class based object oriented programming language,
the situation is not as simple. We have to deal with subtyping, and we also want
to support type information from documentation comments, which nonetheless
should be distinguished from the type information inferred from the actual code.

The basic data-flow values for a single variable and set of types {int, false, null}
are depicted in the figure 2.3. Aside the whole set of all types referenced with-
in the routine’s body, we have another artificial value called Any, which simply
designates any possible type, not restricted to the set of known types. In the
following paragraphs, we discuss how we added support for classes and docu-
mentation comments to this schema. We focus on data-flow lattice for a single
variable; the lattice for all variables will simply be a product lattice.

Figure 2.3: Basic lattice with types.

Booleans

In the case of booleans, we distinguish true and false, because it is a well
known pattern in PHP for routines to use false return value as an indication of
failure. Routines then can have, for example, type false|object meaning that
this routine returns either object or value false, never value true.

Null

Another thing to note is that we treat null as a special type. This again
comes from PHPDoc documentation comments, where one can, for instance, state
integer|null as return type of a routine, in which case representing the routines
return type as just integer would not be precise. Moreover, having null can be
used to distinguish between non-nullable and nullable reference types. Control
Flow for Phalanger by default assumes that all the reference types can be null,
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but it can be configured to assume the opposite, in which case it can, for example,
report type error if a routine expects instance of some object as an argument,
but is given null.

Type Hints

We refer to the type information gathered from documentation comments as type
hints. For example, routines can have documentation comments that state ex-
pected types of the parameters. However, it is perfectly legal to invoke the routine
with actual parameters of different types, so we cannot rely on the documentation
completely, but we want to utilize it.

For this purpose, we distinguish between type information that was inferred
from the code and should always be valid and type information that was extracted
from the documentation comments or possibly other unreliable sources, for in-
stance, return type of a non-final method, which cannot be accurately determined
because of polymorphism.

The distinction is realized as a single bit flag we call “type hint”. It is a
single flag for the whole set of possible types, so we cannot have a set of two
possible types where one is “type hint” and the other is not. This is a deliberate
over-approximation in order to enable more efficient implementation.

We can think of all the sets with “type hint” flag as a parallel lattice to
the lattice of sets without “type hint” flag. Let us say that hint(x) denotes an
element from the parallel lattice corresponding to element x in the original one.
If we are comparing two elements a and b′, where b′ = hint(b) is from the “type
hint” lattice, we say that their upper bound or supremum is equal to hint(a∧ b),
formally a ∧ b′ = hint(a ∧ b). A lattice that is formed from putting together the
original types lattice and the “type hint” lattice for types {int, string} is depicted
in figure 2.4.

Classes

We refer to built-in types as basic types, those are

• int
• double
• string
• resource

• false and true (instead of boolean)
• null
• array
• callable – for example: lambda

If we say that variable $a is of type T, where T is a non-final class, even in
statically typed language, this could mean that $a can be in fact instance of many
different classes, namely T and all its subclasses.

Because we are in a dynamic environment, we cannot, in general, know all
subclasses of T in advance. Nonetheless, it can be useful to distinguish between
“$a is of type T only” and “$a is of type T or any of its subtypes”.

To make this distinction, we add another flag “subclasses”, which works simi-
larly to “any type” flag: it holds or does not hold for the whole set of class types.
Also the upper bound of two elements, where one of the has the flag “subclasses”,
will have the “subclasses” flag.
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Figure 2.4: Types lattice with “type hint” flag.

Moreover, we add one artificial value, which is object, and it denotes arbi-
trary class instance, but it is not the same as Any, because it excludes the other
primitive types. A lattice for just class types {T,K} is in figure 2.5.

The upper bound of any set of class types and a set of basic types is a union
of those. However, the upper bound of a set with some class types in it and a set
with object in it is a union of the basic types and object, so the class types are
“overridden” by the object. This is illustrated in figure 2.6.

This lattice with class types can be amended with the “type hint” flag the
same way we did before we introduced classes.

2.3.5 Interprocedural Analysis

The approach we described so far considers only local variables, but we want to
analyse object and class fields’ types, and global variables. We also have to take
into account possible changes to local variables made from other routines through
references.

The assumption here is that the results of analysis for fields and global vari-
ables do not have to be precise and that although PHP is a dynamic language
that permits dynamic fields and dynamic methods, mostly the developers do not
abuse those features and we can assume that instances of the same class have the
same fields of the same type and the same methods across the whole program.
Furthermore, routines return type and expected arguments types will mostly be
constant and independent from the program state or each other.
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Figure 2.5: Types lattice with classes.

Routines Return Values

When the analysis encounters a routine invocation, it needs to know the routine’s
return type and possibly other pieces of information we discuss later.

If the source code of the routine in question is available, in other words, it is
part of the analysed source, we recursively trigger its analysis in order to infer its
return type. Once the analysis of the routine is finished, we save the results to
the globas table so that we do not need to analyse the routine next time and we
resume the analysis of the original routine, which invoked the “nested” routine.

This approach, however, does not work for recursive and mutually recursive
routines. The solution we use is that if a cycle in routines invocations is detected,
we do not analyse the last routine in the cycle, but instead we assume the worst
about its return type – we assume it can return any type.

Heap

Let us first provide an example, where heap abstraction and context sensitive
interprocedural analysis would be useful:

function foo() {

$a = new X();

boo($a);

return $a->bar;

}

function boo(X $a) {

$a->bar = 3;

}
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Figure 2.6: Types lattice: class and a basic type.

Here the function boo changes type of the nested field bar. If we do not
reflect this in the program state after the invocation of boo($a) in function foo,
we cannot determine the type of the return expression $a->bar.

However, we decided to approach this problem differently. We do not analyse
individual object instances, instead we summarize the type information inferred
for individual instances of the same class and provide those results within the
globals table.

Illustrated on the same example, when analysing function foo, the analysis
would encounter the invocation of boo. Since boo has not been analysed yet, this
triggers analysis of boo. While analysing boo the globals table learns that field
bar can be of type integer. When analysis of boo finishes and analysis of foo

resumes, on the line with return $a->bar we know from the data-flow that $a

is of type X and from the globals table we get that field bar of class X can be of
type integer.

With this approach we do not have to model heap, which can be more ef-
fective, but on the other hand, there are cases different to this example, where
our approach fails to devise any useful information and heap model could give
us better results. For instance, if function boo did not provide type information
for its parameter in its signature, because we analyse each routine in a generic
context.

Moreover, we ignore the effects of indirect assignments and references to the
globals table, which means that the globals table is not safe approximation. How-
ever, as we stated at the beginning of this section, the analysis of instance fields is
meant for bug hunting purposes and we can afford some imprecision. In addition,
any type information inferred by means of globals table is marked with the “type
hint” flag.
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The global variables and static class field are analysed in the same way as
instance fields.

Type Documentation

There are two different cases where we need to consider type information for fields
or global variables: when a field or global variable is read, and when a field or
global variable is assigned to.

Field and global variables can have PHPDoc type documentation. In the
case of assignment, we want to check that the value assigned to the variable
has a type compatible with the documentation, otherwise it is possibly a bug or
documentation error.

When it comes to type annotation of an expression that uses a global variable
or a field, if the type documentation is available, we use it over the information
from globals table, but still mark the type information with “type hint” flag.

References Analysis

References in PHP are used, but occasionally, therefore we do not want to ignore
them, but we do not require a precise results when references are used in the
analysed routine.

Another piece of information the analysis needs to know about a routine that
is being invoked from within the analysed routine is which arguments are passed
by reference to it, so that their value can be changed inside the invoked function.
This is fortunately a part of the routine’s signature, and can be easily determined.
We simply throw away any assumptions we had about the type of a variable which
is being passed by reference to another routine.

The situation is more complicated with references within a single routine.
When a statement or expression can change the type of a variable, it can change
type of any variable that this variable points to, if it is a reference.

We use a simple approach: prior to the analysis, the routine body is scanned
for any assignments by reference ($a=&$b) and two sets are created: variables
that can be a reference and variables that can be pointed to by a reference. This
is very conservative approximation, but we expect sparse usage of references.

When the analysis finds out that a type of a variable can be changed to T, it
checks if the variable can be a reference and if so the types of all the variables
that can be pointed to by any reference are updated. Those variables may only
be pointed to, but do not have to be pointed to, so we take their current type
information and merge with type T, creating an over-approximation.

Moreover, any routine’s invocation can change any local variable from the can
be pointed to set, because references can “leak” on the heap, for where the other
routine can read them. That is why, after any routine invocation, we throw away
any assumptions about variables in the can be pointed to set.

The same holds for local variables that are captured by reference by some
lambda function. The lambda function can again “leak” on the heap, from where
the other routine can invoke it.
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2.3.6 Summary

In this section we provided an overview of the design of the type analysis used in
Control Flow for Phalanger.

The type analysis is based on Data-flow analysis framework with the lattice
of data-flow values being a power set of possible types with additional flags to
distinguish between some special cases, especially to distinguish between type
information (indirectly) inferred from documentation comments and type infor-
mation inferred from actual code.

The interaction between routines is dealt with using a modular approach
where for each routine we derive its return type and other required information
in a generic setting, not in a context of its concrete invocation from within other
routines. We do not analyse individual object instances and therefore we do not
need to take the heap state into consideration.

In the chapter Design and Implementation, we discuss the design and im-
plementation of Control Flow for Phalanger, an implementation of the analysis
designed in this section.
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3. Related Work

A brief overview of the static analysis methods was presented in the previous
chapter. In this chapter, we focus on tools that also use static analysis to analyse
PHP code for various purposes. We also shortly mention interesting tools for
other dynamic languages.

3.1 Security Vulnerabilities in Web Applications

Most of the existing work on static analysis of PHP is focused on discovery of
security vulnerabilities in web applications that typically come from improperly
handled user input, also called taint-style vulnerabilities. It is important for such
analyses to be able to follow the flow of data from global variables like $ POST

that contain user input, therefore more precise model of heap memory is required
so that flow of data in between object instances and routine calls can be analysed.

An analysis for security vulnerabilities has also a different model of usage.
Such analysis can be run less frequently, for example, only before release or as
a part of a continuous build process. Interactive on-the-fly analysis in an inte-
grated development environment could also be a viable use case, but typically
not the main goal. Moreover, such analysis is not likely to be run every time the
application is to be compiled or interpreted.

Some of the available tools for detecting taint-style vulnerabilities in PHP are
Pixy [14] and recently released Weverca: Web Verification Tool [15].

3.1.1 Weverca: Web Verification Tool

Weverca is an implementation of static analysis framework also based on the
Phalanger parser. As opposed to Control Flow for Phalanger, the main goal of
Weverca is to provide security vulnerabilities analysis, although it is capable of
supporting other kinds of static analyses.

Memory Abstraction

Weverca represents the program state at each program point by an abstraction of
the complete memory state including local variables, global variables and static
fields. Compared to our approach, we represent the program state by the state
of local variables only and global variables and fields not analysed precisely in
context sensitive way, but summarized in one global database shared among all
analysed functions.

Weverca also represents each memory location by not only its type informa-
tion, but if it has constant value, with its value.

The approach of Weverca enables better precision and their default imple-
mentations of the memory model do provide such precision. On the contrary,
our approach permits more effective representation of the program points state.
Needless to say, both tools provide means to be extended with an implementation
of the other approach.
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Moreover, the memory abstraction used in Weverca includes defined symbols,
such as routines, classes and others. PHP permits to define symbols dynami-
cally and in certain circumstances symbol cannot be used before it is defined1.
Therefore Weverca is capable of discovering use before declaration kind of errors
for global symbols. In Control Flow for Phalanger, we decided to not support
this, because most of the modern object oriented PHP projects use autoloading
and with autoloading it is impossible in general to analyse which files are be-
ing imported at which program points. Autoloading rules are often simple and
follow similar patterns and so a viable possibility for a static analyser would be
to let the user choose from predefined set of autoloading rules that the analyser
understands. However, neither of the tools implement this feature yet.

Weverca has context sensitive intraprocedural references analysis, which is
compared to our approach more powerful. We assume infrequent usage of refer-
ences, and simpler approach can provide better scalability.

Intraprocedural Analysis

In order to make the interprocedural analysis context sensitive, Weverca inlines
the control flow graph of invoked routine in the control flow graph of the analysed
routine. Note that there can be more than one routine that can be invoked due
to polymorphism or dynamic nature of PHP. In such case Weverca inlines all
of them adding a non-deterministic choice between them, in other words, edges
from the routine call program point to the first program point of all the possible
routines.

As discussed in the previous chapter, Control Flow for Phalanger uses modular
approach, which may scale better, but lacks the precision of Weverca.

Type Information

Weverca does not take into account type information from PHPDoc documenta-
tion comments. For this reason, it also does make sense have a distinction between
“type hints” and properly inferred types like Control Flow for Phalanger does.

Design and Implementation

From the point of view of implementation, Weverca uses Phalanger as a parser,
but the design does not evince any intention of tighter integration with Phalanger.
The version of Phalanger used is slightly outdated, and thereof support for some
of the newer PHP language constructs is missing.

As opposed to Control Flow for Phalanger, Weverca explicitly constructs its
intermediate PHP code representation and stores it in memory.

3.2 Type Inference

Type inference for dynamic languages is typically implemented for the purposes
of compilation or interpretation. A notable implementation is type inference

1A symbol cannot be used before the file with its declaration is imported, but symbols from
the same file can be used before they are declared.
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for PHP in Facebook’s Hip Hop project [16], which is a compiler from PHP
to C++ and a custom intermediate language that can be run in the Hip Hop
virtual machine. Hip Hop performs type analysis in order to find a single type
for a variable, so it can treat it as statically typed variable during compilation.
However, if a single type for a variable cannot be determined, Hip Hop does not
analyse the type information any further and fall backs to the dynamic typing.

There are implementations of type inference for other dynamic languages.
Ecstatic [17] is type inference for Ruby implemented using control flow insensitive
cartesian product algorithm. Rubydust [18] introduces a constraint based dynamic
type inference that infers static types based on dynamic program executions.

3.2.1 Phantm

Phantm [19] is a tool for detection of type related errors. From all the projects
mentioned in this chapter, the aim of Phantm is closest to our project, which is
why we also used Phantm for evaluation and compared its results with ours in
section 5.1 Comparison to Phantm.

Phantm uses semi-dynamic and semi-static analysis approach. The web ap-
plication in question is run up to a defined point, which is invocation of special
Phantm’s function that collects data about the state of the application, especial-
ly, values of global variables. This data is then used as an initial state for static
analysis. The dynamic part of the analysis is called bootstrapping. This design
illustrates that although type related errors can be searched for in generic frame-
works, libraries or, for example, command line utilities written in PHP, Phantm’s
focus is on complete web applications.

Memory Abstraction

Phantm keeps track of the shape of individual object instances on the heap. By
shape in this case, we mean list of fields and their type information. Phantm
therefore does not summarize the type information for fields based on classes as
Control Flow for Phalanger does, but each class instance can have different set
of fields with different type information.

However, the authors of Phantm assume that each individual routine manip-
ulates a distinct section of the heap memory and returns a fresh instance, if it
returns an object instance. In other words, a routine’s analysis result does not
depend on the state of heap at the program point before it was called and, from
the point of view of the call site, does not effect the heap state. This assumption
means that it is not necessary to take the heap memory state into account for
context sensitive analysis.

Type Information

In contrast to Weverca, Phantm takes into account type information from PH-
PDoc comments. However, the available documentation of Phantm does not
mention that Phantm would distinguish between type information inferred from
PHPDoc, in our case “type hint” flag.

Phantm also models boolean type as two types true and false capturing
the value as well as the type.
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Design Assumptions

The authors of Phantm made a design decision to ignore several problematic
features of PHP. They justify the decision by sparse usage of those in practice.
Namely the following PHP features are ignored:

• References within routines and arguments passed by reference.
• Indirect accesses to local variables and fields, for example, $$a=3.
• Assignments in conditional expressions, in other words, expressions whose

value determines the control flow, like the conditional expression of if-then-else.
• Special function eval and similar functions and autoloading.

Likewise, we also assume sparse usage of such features, but do not ignore them
completely.
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4. Design and Implementation

4.1 Introduction

In this chapter we provide an overview of the design and implementation of the
type analysis described in section 2.3. Aside the type analysis itself, the aim of
Control Flow for Phalanger is to provide a generic framework for implementation
of any kind of analysis, especially data-flow based analyses.

Control Flow for Phalanger includes implementation of aforementioned type
analysis, constant propagation analysis and dead code detection. The results of
those analyses are made available to other user defined analyses through a public
interface, so that user defined analyses can benefit from, for example, a resolved
method call that depends on the type of the variable the method is called upon.
Moreover, the analyses included in Control Flow for Phalanger can report errors
and warnings discovered during analysing the code like, for instance, dead code
or type mismatches with documentation.

Control Flow for Phalanger can also be used as a library by other tools. For
example, integrated development environment plug-in can visualize the issues
reported by the default analyses, or compiler can use the public interface for
accessing the analyses results to emit more efficient code.

In the next section we discuss the implementation constraints that come from
the requirement to use Phalanger front-end and to integrate Control Flow for
Phalanger with the whole Phalanger project – it should be designed so that it
can be plugged in between the Phalanger’s front-end and back-end and it should
also provide public interface useful for the Phalanger PHP Visual Studio tools.

Section 4.3 provides an overview of the architecture of Control Flow for Pha-
langer in terms of high level modules and their interaction. Finally, the last
section of this chapter 4.4 describes some of the interesting bits of the implemen-
tation.

4.2 Implementation Constraints

Abstract Syntax Tree

Phalanger front-end parses PHP code into an Abstract Syntax Tree (AST) [6]
structure. An example of such AST structure is depicted in figure 4.1. This struc-
ture is then traversed by the Phalanger back-end, which emits the corresponding
Microsoft Intermediate Language (MSIL) instructions. Phalanger does not use
any other intermediate representation than AST and so the back-end transforms
AST directly to MSIL.

The classes that represent the AST nodes support extensible attributes through
which one can attach any additional information to the nodes, or in other words,
“annotate” the nodes. This mechanism is used by Phalanger back-end and Con-
trol Flow for Phalanger also uses the extensible attributes to provide the results
of its analyses as discussed in the following section.
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Figure 4.1: Abstract Syntax Tree of code (foo()+$a)/$b.

Integrated Development Environment Integration

The PHP Tools for Visual Studio use Phalanger front-end in order to parse PHP
code into AST and then the AST is again traversed to provide code completion
and other features. The AST nodes hold necessary pieces of information, for
example, the position in the source file or documentation comments. Control
Flow for Phalanger can seamlessly integrate into this schema, because it provides
its results as annotations of the original AST nodes.

The longer term aim of this project, not in the scope of this thesis, is to
replace the existing algorithms for code completion, “jump to definition” and
“find usages” features. Because with a dynamic language like PHP, it is not
trivial to find all the usages of, for example, a class or determine a definition of,
for instance, a field accessed on some local variable. In order to provide more
precise results, type analysis is needed.

Large PHP Projects

The implementation of the analysis should be able to handle PHP projects with
few thousands of files on a typical development PC configuration under 1 minute
and with less than 2GB of memory, so that it can be integrated into the devel-
opment process as a part of a compiler or IDE plugin.

4.3 Overall Design

The project is divided into several modules.

• Control Flow Graph,
• Intermediate Representation of PHP Code (Phil, RPhil),
• Generic Data Flow Analysis Framework,
• Tables with Type and Other Information,
• Concrete Analyses:

– Dead Code Elimination,
– Aliasing Analysis,
– Constant Propagation,
– Type Analysis.
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The interactions between those modules on a conceptual level when perform-
ing an analysis are depicted in diagram 4.2. Green elements represent extension
points. Red arrows represent the core flow of the algorithm.

Figure 4.2: Control Flow for Phalanger Design Overview

In case of analysis of a single routine, the PHP source code is first parsed by
Phalanger front-end, then we construct a control flow graph of the routine and
start the Data-flow analysis. Each control flow graph node, called basic block,
contains AST elements representing statements that are always executed sequen-
tially. The Data-flow analysis module directs the generic algorithm of computing
the data-flow equations, but when it needs to perform a transfer function or an
operation with a data-flow value, it invokes the implementation of those provided
by the “Concrete Data Flow Analysis”. In order to make the implementation of
transfer functions easier, the the list of basic block’s AST elements is transformed
into an intermediate language, which is simplified version of the AST elements
and also includes some additional information useful for analysis implementation.

The analysis results can be saved as annotations of corresponding AST nodes
or they can be saved into the global symbols database that provides type and
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other useful information about global symbols like routines, classes, and others.
Conversely, the global symbols database can be used by the analysis to query the
global symbols information.

The following paragraphs describe some of the modules in detail.

4.3.1 Intermediate Representation

The purpose of the intermediate representations is to aid the design of the concrete
analyses by providing a simpler interface than full AST. However, at the same
time, it was desirable to stay as close to the original AST elements as possible
in order to easily propagate the results and to easily integrate Control Flow for
Phalanger into the Phalanger project. Lastly the intermediate language should
stay close enough to PHP code so that PHP specific patterns can be recognized.

Control Flow for Phalanger uses two intermediate representations on a concep-
tual level, however, they are usually not explicitly constructed, but transformed
from AST on the fly.

Phil stands for PHP Intermediate Language and is very abstract representa-
tions close to the original AST. The main aim of Phil is to provide a framework
for traversing the AST elements in the order of their execution in the smallest
execution steps possible with respect to their possible effects to the environment.

Phil contains only statements and expressions that can be in a Basic Block,
therefore it does not contain most of the control flow changing statements like
if, switch, or loops. A Phil statement represents the smallest single step of an
execution that can change state of variables or global state or throw an exception.
Syntactic constructs like $i++ are unfolded to $i=$i+1, which is then split to
evaluation of binary expression and assignment expression that uses the result of
the binary expression. In some sense, Phil can be viewed as a three address code.

RPhil stands for Resolved PHP Intermediate Language. RPhil is essentially
Phil with resolved symbols where possible. In order to resolve the symbols,
the module building RPhil can use names explicitly expressed in the code, for
example, for direct local variable access $a, or results of an analysis, for instance,
results of the type analysis to resolve method calls and fields references. Those
results are obtained from AST annotations and from global symbols. RPhil itself
is typically consumed by the analyses, so the accuracy of RPhil and subsequently
of the analyses results can be improved by iterative execution of the analyses.

4.3.2 Global Symbols

Global symbols database provides interface for obtaining type information of
global symbols, namely routines, object fields, static fields, constants and global
variables. Definitions of those symbols can be part of the analysed code or they
can, for example, refer to a built-in functions or external libraries. For this reason,
there are two interfaces for the Global symbols database.

Code Tables is a read and write interface for a database of symbols that are
part of the analysed code. In this case the database can provide more than just
type information. Especially, we have a source code of definitions of those symbols
and so we can perform analysis in order to infer their type information and save
it back into the Code Tables.
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Type Tables on the other hand provide only read access to only type informa-
tion and few other important pieces of information, concretely which parameters
are passed by reference, if a routine returns a reference and similar. Type Tables
merge the data from Code Tables, which provide even more information than
needed, and any other user defined data source, which can be, for example, a
database with built-in symbols.

4.3.3 Extensibility

The whole project is designed as a class library and framework with many exten-
sion points. Some of the functionality can be used independently. For example,
Control Flow Graph builder to generate diagrams.

Nonetheless, in order to provide better usability, Control Flow for Phalanger
also contains a simple Facade interface that plugs in together all the necessary
objects needed to perform a defined analysis of a file or a given piece of code.

4.4 Implementation

This section describes some of the interesting parts of the implementation in more
detail.

4.4.1 Intermediate Languages Construction

We denote one statement of the intermediate language as a Phil or RPhil ele-
ment. RPhil elements correspond one-to-one to Phil elements, they only carry
more information. The aim of the implementation was to save resources by not
constructing the Phil (RPhil) representation for every AST element explicitly and
saving it in memory.

Under closer look, most of the AST elements correspond to exactly one Phil
element, or they are ignored, which is the case of most control flow changing
statements and declaration statements. Those AST elements are used as Phil
elements as they are. However, elements that have to be unfolded into several
operations, such as IncDecEx representing post or pre increment or decrement,
have to be represented by more elements.

One option would be to create a whole new alternative AST structure that
would correspond the unfolded code. In our approach, we reuse the AST element
to represent one of the unfolded operations and create new special Phil elements
that wrap the original AST element and their only purpose is to indicate the
stage of the compound operation. So for example, IncDecEx is broken down to

• Expression that represents the variable access and is recursively broken
down to Phil elements,
• IncDecEx that represents the binary plus operation,
• IncDecPhilAssignment that represents the assignment and is a special

additional Phil element.

Phil elements are processed on the fly as they are transformed from the original
AST, therefore we do not have to explicitly save them in memory. This means
that every time a piece of AST is to be processed, the transformation to Phil
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take place again, but in a fact, it is a very light process. Nonetheless, we have
an object instance to represent every Phil element, so we do not have to process
them on the fly, they can also be saved into an array, which enables us to perform
the traversing of original AST only once, shall it be a performance issue in the
future.

It is also possible to crate accurate control flow graphs when it comes to try-
catch blocks, because a single AST element, can cause an exception in any stage
of its evaluation, therefore it should be split into single execution steps and those
put into separate basic blocks so that an edge from each of them to the catch
block can be created. Note that the design is prepared for this case, but it is not
implemented.

4.4.2 Control Flow Graph

Exceptions

For try code blocks every statement is placed in its own basic block that is
connected to the basic block of the consecutive statement and connected to all
the possible catch code blocks.

The possible catch blocks are chosen pessimistically, so a statement in try
code block is connected to all the catch code blocks, even nested ones, up to a
catch block that catches generic Exception or to the graph’s exit basic block.
The picture 4.1 show a control flow graph for a function with try-catch blocks.

Edges

Control Flow Graph edges can have an optional attribute which states the expres-
sion that has to hold if this edge is taken during the execution. For example, an
edge to then branch of if ($x==3) will have expression $x==3 and the analyses
may work out from it that $x is equal to 3 in the basic block corresponding to
the then branch.

4.4.3 Data Flow Analysis

A data flow analysis (DFA) in general can be performed on any graph, and so even
in our case, we did not want it to be tied Control Flow Graph. For this purpose,
our implementation of DFA is performed on interfaces that Control Flow Graph
implements, but they can be implemented, for example, by a definition-use graph
[6] and DFA can be run on this graph too. The interfaces are depicted in figure
4.3.

The generic data flow framework handles the order in which the graph nodes
should be visited, compares the input and output data flows and decides when
the analysis has reached a fix-point. However the concrete type of data flow,
operations with data flow instances and the transfer function are left to be defined
by a concrete analysis. In Control Flow for Phalanger, two types of analysis can
implemented. The basic one processes only nodes; the “branching” one also
processes edges, in which case it can take the branching expressions of Control
Flow Graph into account, for example, but in general any information that the
concrete implementation of IEdge can provide.

37



<?php

try {

foo();

try {

boo();

} catch (MyException $e2) {

handle($e2);

}

} catch (Exception $e) {

echo $e->message;

}

echo ’exit’;

Table 4.1: Control Flow Graph with Exceptions

The operations with data flow objects could be carried out by the objects
themselves, but this would mean that already existing classes that happen to be
suitable for being a data flow would have to be wrapped. And also one data
flow representation, could not have different operations for different analyses. An
example of this is BitVector class from .NET class library: it cannot implement
any additional interface, and some analysis perform union of two vectors as the
meet operation, while others perform intersection.

Nonetheless, having the data flow objects implement the operations by them-
selves is more convenient and allows better encapsulation. Because Control Flow
for Phalanger is meant as a framework for as well as software on its own, both
scenarios are supported and some convenient generics based implementations of
required interfaces are provided. The whole design is captured in diagram 4.4.

A simple example of concrete Data Flow Analysis is the built-in constant
propagation analysis, which is discussed in the following subsection.
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Figure 4.3: Generic Graph Interfaces for DFA

Figure 4.4: Interfaces for concrete Data Flow Analyses

4.4.4 Analyses

Dead Code Elimination

The Dead Code Elimination is based on the Reverse Post Order algorithm, which
is supposed to order nodes in a way that is the most beneficial for Data Flow
Analysis and has to be done anyway in order to perform Data Flow Analysis.

Note that the Reverse Post Order algorithm as a part of the Data Flow Anal-
ysis module is implemented in a generic way for any IGraph implementations.

The algorithm performs a graph search from the Start node and after it finish-
es, the unvisited nodes are at the end of the list with all the nodes. At this point,
the list with all the nodes is traversed from the last element and the unvisited
nodes are removed until a first visited node is reached.

The Control Flow Graph design allows to mark some edges as “not executable”
if the branching condition is always false. Such edges will be ignored when the
Dead Code Elimination is performed, however, the tagging of edges with false
branching condition has not been implemented in the final version.
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Constant Propagation

Constant Propagation represents a simple example of non-branched implementa-
tion of a concrete Data Flow Analysis.

The lattice for the data flow values of single variable is depicted in figure 4.5.
The Data Flow type is class ConstantPropagationDataFlow, which wraps an
array that contains the value of each variable. The value is an object instance,
so it can be null, which is the least element of the lattice, or its value can be
concrete singleton object instance that by convention represents NotAConstant,
which is the greatest element of the lattice.

Figure 4.5: The Lattice for Constant Propagation

The transfer function annotates every expression with its constant value if
possible. An access to a variable is annotated with this variable’s value from the
data flow, some expressions can be symbolically executed using the annotations
to get operands values, and constants are annotated with their value retrieved
from Type Tables.

The data flow is updated only for assignment statement, reference assignment
statement and for function call, because some local variables can be passed by
reference, which can change their value. The right hand side of the assignment is
an expression, which should already be annotated with its value that is used for
the data flow value.

4.4.5 Type Information Representation

The theoretical side of workings of the type analysis was discussed in section 2.3.
In this paragraph we discuss representation of type information for a single vari-
able or a single expression. The representation is based on the type information
lattice described earlier. It is a set of possible basic types, class types and object.
It can have flags “subclasses” and “type hint”. There are few things to note:

• object represents any object type,
• Any is a special data-flow value that represents any possible type,
• empty set ∅ is a special data-flow value that represents uninitialized type.

The aim is to represent the type information efficiently, because we want to
annotate every expression with type information and because we want a memory
efficient representation of the data-flow, which is an array of type information for
all variables.
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The type information is always tied to a concrete routine: it is either anno-
tation of one of the expressions in the routine’s body, or type of one of the local
variables. For every routine we create a special “context” object with a list of all
referenced types T. This way every type has a unique index. Let us denote the
index of type K as index (T, K) the type under index i as type(T, i). Furthermore,
we made an assumption that a single routine is unlikely to reference more than
64 distinct types. From this follows that we can represent a subset of T as a 64
bit integer, where bit with index i indicates whether the type type(T, i) is present
in the set or not. With this representation, we can implement very efficient set
operations with bitwise operators.

However, this representation does not reflect the lattice we described earlier.
We shuffle the type indexes to the left and reserve first few indexes from right for
special bit flags:

• any flag if present, other bits should be ignored and the whole type infor-
mation value is deemed as the lattice element Any.
• object flag if present any class types should be ignored.
• type hint flag
• subclasses flag

From the properties of bitwise or, it follows that a bitwise or (union) of two
type information instances represented with this schema, will give us their lowest
upper bound. Let us, for example, consider a union of two type information
instances where one has any flag set. The union will have also any flag set,
which in the lattice corresponds to Any∧x = Any for every x. The same behaviour
works with respect to the other special flags.

Last thing we need to deal with is when a routine references more types than
the number we can represent. In such case, any type whose index would be greater
than 63, is treated as if its index was exactly 63. This means that types with
index greater or equal to 63 will share one bit and therefore we loose precision,
because we cannot distinguish those types from each other. However, it is a safe
approximation and a price we pay for the memory efficiency.
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5. Results

We evaluated Control Flow for Phalanger on several open source PHP projects.
In order to have a comparison to another established tool of similar type, we
analysed one of the PHP projects with both Control Flow for Phalanger and
Phantm. The discussion of the differences in results is provided in the following
section. The rest of the PHP projects were analysed only with Control Flow for
Phalanger and the reported problems were manually inspected and categorized.
Moreover, we measured execution time and memory consumption of the analysis
with several PHP projects of different sizes to investigate its scalability.

5.1 Comparison to Phantm

The project we chose for comparison evaluation is Zebra Image [20]. It is a PHP
image manipulation library that consists of 1707 lines of code in one file and one
class. Zebra Image code contains some type documentation, but incomplete and
often written in a way that does not follow the standard PHPDoc type description
grammar.

All the problems reported by either tool were briefly inspected and catego-
rized. The results are presented in the following table and are very different for
each tool, which can be due to the different approaches to the analysis. The
actual problems reported and the possible reasons for the difference in results are
discussed in the following paragraphs.

Category Phantm Control Flow for Phalanger
All Reported problems 130 1
Uninitialized variable use 2 1
Zebra Image dynamic fields 82 0
Any is not of type X 13 0
Prototype errors 9 0
Conversion: double to integer 2 0
Other type conversions 2 0
Not categorized 17 0

Reported Problems

The uninitialized variable error appears to be genuine problem that would gener-
ate a notice at runtime. It was discovered by both tools. Because the variable in
question is accessed as an array using the [] operator, Phantm reported it twice,
because it treats it as two variable accesses.

All the prototype errors are false positives probably due to the fact that
Phantm does not distinguish mandatory and optional parameters. In PHP, any
routine can take any number of arguments. Arguments explicitly named in the
signature are mandatory, but any number of optional arguments can be accessed
using intrinsic functions. Therefore it is not necessarily a prototype error if a
routine is given more parameters than the number of parameters explicitly named
in its signature.
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PHP allows to use undeclared object fields, they are dynamically created
when first used, usually assigned to. Zebra Image relies on this and dynamically
creates some fields in certain methods and then uses them in other methods,
which is reported by Phantm. Using fields without explicitly declaring them can
be seen as a style error, especially in case of Zebra Image, because all the fields
in question are in fact known beforehand and therefore it is perfectly possible to
explicitly declare them. In other cases, however, this language feature enables
useful patterns mainly in combination with magic set and get methods, as
for example in model classes of Doctrine Object-Relational Mapper [21].

Phantm regards some implicit type conversions as errors. Namely anything
to string type conversion, which is typically used in PHP, and double to integer,
which is more debatable, but nonetheless often used deliberately instead of cast
or floor or ceiling functions.

Conclusion

Those results can indicate that, although at first sight the aims of the two tools
are the same, under closer inspection, they differ. Phantm attempts to more
precise analysis. For example, by modelling heap memory. Such precision is, in
theory, more powerful and can discover more actual problems; yet, it also yields
many false positives. It would be possible to filter out the “likely to be” false
positives, but that would filter out those cases where due to the better precision,
Phantm discovered actual error.

On the other hand, although being less precise, Control Flow for Phalanger
seems to have better ratio of false positives. This could make it more suitable
option for a day to day development, which is what it is focused on.

Because of this difference, the results for other PHP projects were manually
inspected only in the case of Control Flow for Phalanger.

5.2 Evaluation on open source PHP code

For further evaluation, the following open source PHP frameworks were chosen:

PHPUnit: a port of JUnit unit testing framework for PHP; it is a mature and
well established project that has been developed for more than 6 years
by 156 contributors. Being a unit testing framework, PHPUnit itself has
extensive unit test suite. For the experiment the master branch of the clone
of the repository retrieved on 18.5.2014 has been used.

Nette: popular general purpose PHP framework with long development history
and contributions from 137 developers. Nette has unit test suite with good
code coverage and the source code is very well documented including the
type documentation comments.

An evaluation always started with downloading a git repository with the lat-
est source code of given PHP project. Then the analysis was run and all the
discovered problems were collected and categorized. Actual errors were rectified
and recorded as commits in the git repository.
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Often one real issue in the source code caused several warnings to be reported
by the tool. For instance, if a documentation of a type of a field was not correct,
most of the lines where a value was assigned to that field were reported, how-
ever, the root of the cause was actually the only one line with the wrong type
documentation. Such cases were counted as a single problem.

5.2.1 Problems Taxonomy

The problems were divided into few main categories described below.

Style: a category of problems that are not directly affecting the functionality
of the application, but they can be considered as a bad coding style.

Relaying on default return value – when an execution of a routine does not
end with a return statement, its return value is NULL by default, which can
then be cast to values of other types, like false for example. Developers
rely on this feature and omit the return statement if they want to return
NULL or something that NULL can be cast to.

Documentation: inconsistency of the PHPDoc type documentation with what
the actual code does. This category includes only cases where it is clear that the
documentation is wrong, for example, due to updates in the code that were not
reflected in the documentation. The inconsistency may also indicate another
problem, in which case it does not belong to this category.

Interestingly, most of the inconsistencies of type of a parameter of a function
call typically lead through several routines that only forward the parameter to
the next routine until eventually the routine that has a wrong documentation is
reached.

Missing false in return value type documentation – this is common pattern
in PHP where a routine returns false when it fails to do what it was
supposed to do. For example, function fopen returns resource of false if
the resource could not be opened. It is so common that developers tend to
forget to put false into the documentation.

Actual Error: includes all problems that can cause an unexpected exception
or unexpected runtime error or notice.

False Positive: problems reported by the tool that are not in fact real prob-
lems.

Unused routine arguments – when a method is an override of some base
method, it can have the same signature and if some of the parameters are not
used, they are not reported. There are however some cases where the routine
is implementing some interface by convention that is not explicitly expressed
in the syntax of PHP. For example, the pre-object-oriented pattern for
global functions overriding. In such case the analyzer cannot determine
that the unused parameter is in fact a part of an interface. Note that such
function could omit the unused parameter and everything would work the
same, therefore this may or may not be considered a false positive.
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Amendable false positive – false positives that are reported, although the
algorithm the analyzer is using should not report them. Those can indicate
errors in the implementation of the analysis.

Built-in documentation errors – false positives due to the inaccuracy of
the documentation of built-in functions and classes that was used in the
experiment.

5.2.2 Summary

Table 5.1 provides a summary of the problems found. The analysis of PHPUnit
code base provided the most interesting results and there is a table that lists all
the concrete problems found PHPUnit available in Appendix A.

Category PHPUnit Nette Zebra Image total
Style 6 0 1 7

default return value 2 0 0 2
Documentation 10 1 0 11

missing false 3 0 0 3
Actual Error 1 0 0 1
False positive 8 0 0 8

unused arguments 1 0 0 1
amendable 4 0 0 4
built-in doc error 3 0 0 3

Total (excl. false positives) 17 1 1 19

Figure 5.1: Issues reported by Control Flow for Phalanger.

5.2.3 Selected Problems

Actual Error When Handling DOMElements

The error is related to the following code (shortened).

function assertEqualXMLStructure(

DOMElement $expectedElement/*, ...*/ ) {

///...

PHPUnit_Util_XML::removeCharacterDataNodes($expectedElement);

PHPUnit_Util_XML::removeCharacterDataNodes($actualElement);

//...

for ($i = 0; $i < $expectedElement->childNodes->length; $i++) {

self::assertEqualXMLStructure(

$expectedElement->childNodes->item($i) /*<<< error */

/*...*/ );

}

The method assertEqualXMLStructure accepts only instances of DOMElement,
but it invokes itself recursively with first argument of type DOMNode. Because
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according to the PHP documentation the value of the childNodes property of
interface DOMNode is an instance of DOMNodeList and the method item(integer)

of DOMNodeList returns DOMNode, it is a type mismatch error as DOMNode is not
subtype of DOMElement.

In the PHP implementation of DOM model, the only implementations of
DOMNode either inherit from DOMElement or implement DOMCharacterData, and
those are removed from the childNodes collection by removeCharacterDataNodes.
Therefore, in most cases, this code behaves as expected.

However, the DOMNode interface can be implemented by any user defined class,
which does not have to inherit from DOMElement, and if an instance of such class
was present in the childNodes collection, the code would cause an exception
when trying to invoke assertEqualXMLStructure with an argument of wrong
type.

Note that if method removeCharacterDataNodes removed all the child nodes
that are not instances of DOMElement, the code would be correct, but the error
would still be reported, therefore it would be false positive.

5.3 Performance

Execution time and memory consumption were measured for real world PHP
projects of size from thousands to hundreds of thousands of lines of code. In
the charts, (K)LOC stands for (thousand) lines of code. The experiments were
conducted on Intel Core i7-4600U, 2.70 GHz with 8GB of RAM memory. Note
that we measured not only the analysis itself, but the whole process needed to
perform the analysis including parsing the source code by Phalanger.

The PHP projects used for the experiment include:

• Object Freezer – small PHP library for NoSQL databases access.
• PHPUnit – unit testing framework.
• Propel ORM – middle sized object-relational-mapper library for PHP.
• Zend Framework – complex application framework for PHP.

The execution time was measured using PowerShell Measure-Command com-
mand, which is supposed to measure wall clock time in a similar way as UNIX
time command. The chart in figure 5.2 shows mean values from 20 runs preceded
by 2 warm up runs, which were not counted.

For measuring the memory consumption, Visual Studio 2012 profiler was
used and the results are shown in figure 5.3. The graph shows total number
of megabytes allocated.

This experiment suggests that the execution time scales very well with the
growing number of lines of code. Memory consumption does not scale as well
as execution time, but is still within the chosen limit of 2GB for a large PHP
project.
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Figure 5.2: Execution time mean values for different sizes of analysed code.

Figure 5.3: Memory usage for different sizes of analysed code.
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6. Conclusion

In this thesis we presented a project with code name Control Flow for Phalanger,
which can analyse PHP source code in order to discover type related errors and
mismatches with type documentation. Control Flow for Phalanger also provides
a framework for implementation of any other kind of analysis.

The type analysis in Control Flow for Phalanger is based on Data-flow anal-
ysis. The data-flow values design used in Control Flow for Phalanger permits
an effective representation with bit-vectors. In order to deal with the effects of
routines interaction, we used a modular approach, where we analyse each routine
only once in a generic context setting to devise its return type and its effects
to the global state. This approach can provide better scalability over context
sensitive analysis with memory abstraction used by some of the other tools for
analysis of PHP code.

The results of the type analysis can be used by other tools, for example, a
compiler or integrated development environment plug-in. The inferred type in-
formation, provided as a result of the type analysis, supports distinction between
type information derived (indirectly) from documentation comments and from
actual code, thus it supports both use cases: the compiler can use the safe type
information derived only from code, but IDE plug-in can take advantage of the
PHPDoc documentation comments.

Control Flow for Phalanger was evaluated on three real world PHP projects
and it was capable of discovering several real issues with a good ratio of false
positives, even though it does not perform expensive context sensitive analysis
and does not use memory abstraction.

This result may indicate that, where some imprecision in the analysis results
can be tolerated, the modular approach we used can give results comparable to
those of tools that use more complex methods, but with better scalability.

6.1 Future Work

Phalanger Integration

The next step in integration with the Phalanger project is to run type analysis
as part of the compilation process and update the compiler back-end so that
it uses the available type information to emit more efficient code. Finally, the
possible performance gain when running PHP websites like WordPress should be
evaluated.

Arrays Support

Variables that can be of type array are analysed properly, but the structure of
the array is not analysed. Therefore any time an element of an array is accessed,
we do not have any type information for it and have to assume the worst – it can
be any type.

Arrays in PHP are often used as ad-hoc structural types like records in Pascal
or structs in C. In such case, the array is typically subscribed to only by a set of
known string constants, which represents a good opportunity for static analysis.
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One of the possible concepts for local arrays analysis we would like to inves-
tigate further and implement is based on the fact that arrays in PHP have copy
semantics as opposed to most of the other programming languages. We can mod-
el each constant index of an array as a separate local variable. For example, for
code $a[’x’]=3 we create two local variables: $a and $a@x and the type of $a

would be an array and the type of $a@x would be an integer. Such representation
would still permit us to easily use bit-vectors as the data-flow representation.

Performance Evaluation and Tuning

Some of the design decisions in Control Flow for Phalanger were made for per-
formance reasons. The design is done in a way that permits further performance
targeted improvements, but first, more advanced evaluation of the current per-
formance needs to be done.

One of the possible enhancements we are planning to implement is more ef-
ficient type information representation. Type information is represented using a
64 bit value, however, we can go even further and represent the type information
with 8 bit number, which will be an index into a table with all the possible type
information instances for one routine. This would give us 255 possible combina-
tions of types, which we assume is enough for most of the routines. Since every
expression node in AST is annotated with type information and data-flow val-
ues are arrays of type information, we expect memory consumption and possibly
performance improvement.
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Appendices

Appendix A Issues Reported for PHPUnit

The following table contains all the issues reported by Control Flow for Phalanger
analysis of PHPUnit code base. The issues with the same cause are grouped.

File Line Category Note
F\TestCase.php 1722 Style Foreach used in form

foreach($array as

$key=>$val) although the
$key variable was not used
anywhere.

F\TestCase.php 1726 Style Unused variable
$iRecursiveCheck.

F\Assert.php 1861 Actual Error Discussion in the thesis.
F\Assert.php 1960 Documentation The routine code allows one of the

arguments to be an array and
works with it as such, but the
documentation states that it can
only be boolean.

F\Assert.php 1896 Documentation assertSelectEquals method re-
stricts its parameter type to be
integer and is invoked with
boolean. However, the parame-
ter value gets only forwarded to
convertSelectToTag, which ac-
cepts any type (mixed).

U\XML.php 544 Documentation
Missing false in return value
documentation.

F\TestSuite.php 737 Documentation
U\Test.php 294 Documentation
U\GlobalState.php 351 False Positive

Built-in documentation error.
U\Test.php 360 False Positive
T\Command.php 791 False Positive
T\Command.php 745 False Positive
F\TestCase.php 1941 Documentation Field mockObjectGenerator

is documented to have type
array, but value of type
MockObject Generator is as-
signed to it. The documentation
should be updated.
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U\Test.php 46 False Positive Function trait exists is condi-
tionally declared if it does not
exist. It follows the same sig-
nature of actual built-in function
trait exists, but it has empty
body, therefore it does not use its
arguments.

F\C\Count.php 100 False positive
F\C\Count.php 115 Documentation The documentation of method

getCountOf states that it returns
boolean, but it returns integer.

F\C\Count.php 90 Style Not all paths in a routine return
a value.F\C\IsType.php 127 Style

F\C\EMessage.php 69 False positive
F\C\IsAnything.php 76 False positive Unused parameter of a method

that implements an interface.
F\C\IsJson.php 88 Documentation Method determineJsonError

has wrong type documentation
for one of its parameters.

F\C\Count.php 100 False positive
T\Command.php 339 Style Debatable: function ini set ex-

pects string, however, anything
given to it is implicitly converted
to string.

U\Configuration.php 991 Documentation The documentation of method
getInteger states that the re-
turn type is boolean.

U\D\Logger.php 198 Documentation Wrong documentation of field’s
type.

U\T\ResultPrinter.php 206 False positive

Note: paths are shortened according to this schema:

• F – Framework

• F\C – Framework\Constraint

• T – TextUI

• U – Util

• U\D – Util\DeprecatedFeature

• U\T – Util\TextDox

• F\C\EMessage.php – F\C\ExceptionMessage.php
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Appendix B Contents of the Enclosed CD

The enclosed CD has the following directory structure.

• Documentation

– GeneratedDocumentation.chm – generated API documentation.
– Thesis-ControlFlowForPhalanger.pdf – this thesis in PDF for-

mat.
– GlobalSymbolsDocumentation.pdf – additional technical docu-

mentation of the global symbols module.

• Phalanger.Analyzer – command line interface for Control Flow for Pha-
langer. Run command Phalanger.Analyzer without any arguments to
view the help. The command line interface is meant for demonstration of
the Control Flow for Phalanger analysis and for benchmarking purposes.
• PhpSource – PHP source code used for the evaluation.

– Nette
– ObjectFreezer
– PHPUnit
– Propel
– ZendFramework
– Zebra Image.php

• Source – source code of Control Flow for Phalanger and the command line
interface, and Visual Studio 2013 project and solution files.
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