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Using SAR data for wet snow monitoring 

Abstract 

This paper focuses on an existing method of snow information retrieval by means of 

satellite SAR data. The method was first presented by Malnes and Guneriussen 

(2002), and has been proven to be capable of sub-pixel classification of wet snow. It 

is also able to classify dry snow pixels. The classification is based on change 

detection, so a snow-free reference image is required. Some flaws in this algorithm 

have been discovered during the work on this paper and are discussed, as well as a 

possible solution is suggested. I have also proposed a modification of the algorithm 

which could improve the classification results and tested the modified algorithm. 

Keywords: SAR, snow cover, remote sensing, wet snow 

Zjišťování mokrého sněhu z radarových dat 

Abstrakt 

Tato práce se zaměřuje na existující metodu pro získávání informací o sněhové 

pokrývce z družicových radarových dat. Zkoumaná metoda byla navržena 

Malnesem a Guneriussenem (2002) a je schopná provést subpixelovou klasifikaci 

mokrého sněhu, a také klasifikovat pixely se suchým sněhem. Klasifikace je 

založená na detekci změn, takže je potřeba referenční snímek bez sněhové 

pokrývky. V průběhu zpracování byly v algoritmu objeveny některé nedostatky, které 

jsou v práci diskutovány, a zároveň je navrženo možné řešení. Navrhnul jsem také 

modifikaci tohoto algoritmu, která by mohla přispět ke zlepšení jeho přesnosti. 

Modifikovaný algoritmus jsem pak otestoval. 

Klíčová slova: SAR, sněhová pokrývka, dálkový průzkum Země, mokrý sníh 
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CHAPTER 1 

Introduction 

1.1 Remote sensing of snow 

Land-based methods for measurement of snow properties are precise, but have 

several disadvantages. Automatic measurement devices are expensive, manual 

measurements are time-consuming and they are not exactly cheap either. Besides, 

all of the land-based methods only provide information from a single point, and to 

get areal data, these point measurements must be interpolated; and interpolation 

techniques are burdened with errors. Remote sensing, on the other hand, enables 

collection of data over large areas fast, relatively cheap and repeatedly. However, 

interpreting the information collected by remote sensing techniques is tricky and 

requires an intensive research. 

Snow data achieved by remote sensing techniques can be useful in 

hydrological modelling, but also in many other fields. For example the influence of 

snow covered area and snow properties on animal migration, the animals’ condition 

in spring or condition of vegetation after snow melt can be studied. 

 However, the most important use of snow observing is snow melt and runoff 

modelling. Information about snow is a valuable variable in most runoff models. 

Outputs from such models may help predict increased flood risk, furthermore, spring 

floods from melting snow are especially difficult to predict. For example, in 1995 the 

Østland region in southern Norway was struck by one of the strongest floods ever 

recorded in this part of the country. It was also thanks to remote sensing data that 

the unusually long-lasting snow cover was discovered, which helped predict the flood 

and decrease the damage it caused (Moen and Landmark, 2008). 
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 This kind of information is also very important in the hydropower industry. In 

Norway 98 % of all power comes from hydroelectricity plants (Storvold et al., 2006), 

while around half of the annual precipitation in Norway comes in the form of snow 

(Rognes et al., 2005). A majority of Norwegian hydro plants lies in high altitudes and 

their catchments often cover vast mountainous areas, where regular land-based 

measurements would be complicated and costly. Knowledge of the amount of water 

stored in the form of snow, together with the speed of snow melt, is essential to 

efficiently manage the water level in the reservoir to prevent overflowing or shortage 

of water. The amount of water stored as snow can also significantly influence the 

prices of electricity throughout the year (Rognes et al., 2005). For the reasons given 

in this chapter, most power companies are constantly developing and improving their 

own runoff models to gain access to the most precise predictions possible. For 

remote sensing data to be useful in such models, they should not differ from reality 

by more than 10 % (Storvold et al., 2006). This is why remote sensing of snow is a 

very active research field in Norway and other Nordic countries. Of course, snow 

remote sensing is also being actively researched in other regions with significant 

contribution of snowmelt to annual runoff, like Alpine countries, Himalayan region or 

Canada.  

1.2 Remote sensing of snow: current research status 

The Norwegian Water Resources and Energy Directorate (Norges vassdrags- og 

energidirektorat, NVE) currently uses NOAA (National Oceanic and Atmospheric 

Administration) AVHRR (Advanced Very High Resolution Radiometer) images 

operationally to retrieve snow covered area (SCA). This system has been in 

operational use since the mid-1990s, while the first attempts to retrieve snow 

information by means of remote sensing began in 1978 (NVE, 2009). This system, 

however, cannot retrieve information through cloud cover. Such a limitation poses a 

big problem, because cloud cover is a common phenomenon in Norway, especially 

during winter. And like this system, all sensors operating in visible or IR part of the 

electromagnetic spectre are good in retrieving SCA, with some limitations even 

distinguishing wet and dry snow, but their operational use is strongly limited by the 

requirement of daylight or cloud-free conditions. 

 Some operational algorithms for SCA monitoring with radar instruments have 

also been developed (e.g. Nagler & Rott, 2000). However, most of the algorithms 
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are good at detecting wet snow, but struggle with detecting dry snow, mostly due to 

unavailability of a sensor suitable for this purpose. Several workarounds have been 

developed, but these are still far from perfect. Dry snow was successfully detected 

with polarimetric data (Martini et al., 2007), but this process requires training data for 

classification, which reduces the applicability of such algorithm. While trying to get 

the most out of current instruments, most researchers are also hoping for a future 

radar instrument that would be better suited for snow monitoring. Current techniques 

of SCA retrieval from remote sensing data will be discussed in more detail further. 

1.3 Thesis objectives 

In this paper, existing methods for deriving snow covered area (SCA) from remote 

sensing data will be described. I will focus mainly on the use of radar instruments, 

which have repeatedly been used in methods that had promising results, not only for 

SCA monitoring, but also for monitoring other snow properties, mainly snow water 

equivalent. Unlike the instruments that operate in the visible or infrared (IR) part of 

the electromagnetic spectre, radar devices have a big advantage in being able to 

operate nearly in all meteorological conditions and the ability to gather information 

at night or through cloud cover. In Norway cloud cover is very common during winter, 

so radar instruments can provide information much more frequently than instruments 

operating in other parts of the electromagnetic spectre, which would be often 

obstructed by clouds. Another advantage of radar systems is that radar waves can 

penetrate relatively deep under the surface of snow. Thus information from below 

the snow surface can be gathered, which can help understand the snowpack’s 

properties better. 

 I will then choose one of the presented methods, modify it, and apply it on a 

remote sensing data set to gather information about the extent of wet and dry snow. 

This method’s properties, advantages and disadvantages, possibilities of operational 

use and possible potential for improvement will be discussed. Details about the test 

data and area of interest will be given further in this paper. 
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CHAPTER 2 

Microwave and radar sensors 

Microwave sensors detect radiation of wavelength from about one millimeter up to 

nearly one meter. The main advantage of using microwave sensors for remote 

sensing is the ability to penetrate cloud cover, rain or fog and their independence of 

light conditions, which means they can operate during day as well as at night. 

However, the radiation intensity of most natural objects on these wavelengths is very 

low, so data gathered by passive microwave sensors suffer from poor spatial 

resolution. The reason for this is that for the radiation to be detectable, it must be 

gathered from a relatively large area.  

 Radar devices possess the advantages of microwave sensors. In addition, 

they are equipped with their own source of radiation, so they are not dependent on 

the intensity of passive radiation of surfaces and therefore can gain a much better 

spatial resolution. The sensor then records the so-called echo – the strength and 

form of the signal reflected back to the radar. The echo (also called backscattered 

signal) contains information about some physical properties of the surface it was 

reflected from, and its value also depends on signal wavelength and polarization. 

Strength of the backscattered signal (also known as radar cross section - RCS) is 

usually measured in square meters, or, generally, units of area. RCS is commonly 

marked as σ. A simplified way to calculate RCS is given in equation 1, where R is 

the distance between the radar and the object, Er is the reflected energy received by 

the sensor and Ei is the signal’s energy when it reaches the object (Mahafza, 2000). 

When processing remote sensing radar data, RCS is commonly converted to 

normalized RCS (σo). Normalized RCS is given by equation 2 (NASA JPL, 1994), 

where A is the image pixel area. Units of σo are decibels (dB). 

𝟏: 𝜎 = 4𝜋𝑅2 ∗  
𝐸𝑟

𝐸𝑖
 [𝑚2] 
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𝟐: 𝜎0 = 10 ∗ 𝑙𝑜𝑔10 ∗
𝑅𝐶𝑆

𝐴
[𝑑𝐵] 

Backscattering coefficient is a simpler way to describe RCS. Backscattering 

coefficient ρ at wavelength λ is defined as the ratio of backscattered radiation 

intensity Mr and the intensity of radiation emitted to the surface Mi. The simple 

formula for computing backscattering coefficient is given in formula 3. Backscattering 

coefficient represents a surface’s ability to reflect radar signal back to its source, by 

showing how big part of the radiation is reflected back. It is rarely used to describe 

backscattering intensity in SAR images, even though the term “backscattering 

coefficient” is commonly used to refer to RCS or normalized RCS. Because of this, 

it is important to pay attention to the units used to describe backscattering, to be sure 

what is the author actually referring to. 

𝟑: 𝜌(𝜆) =  
𝑀𝑟(𝜆)

𝑀𝑖(𝜆)
∗ 100 [%] 

2.1 Imaging radar principle 

The principle of imaging radar is depicted on figure 1. Radar transmits the signal a 

little sideways, instead of directly beneath itself. It is important for the radar 

instrument to be able to determine, where did the backscattered signal come from. 

Otherwise, backscattered signal from places that lie in the same distance but 

opposite direction from the nadir would reach the sensor at the same moment and 

the sensor would not be able to determine which side of the nadir, did the respective 

backscatters come from. The side-looking principle also allows achieving better 

ground range resolution. The angle between the radar antenna and the nadir is 

called look angle, or off-nadir angle and commonly lies between 20 and 50 degrees. 

The angle at which the signal reaches the ground is slightly higher due to Earth’s 

curvature. The ERS satellite’s look angle is 21 degrees and the signal reaches the 

ground at an angle of 23 degrees (Ferretti et al., 2007). 
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Figure 1:The principle of imaging radar (Ferretti et al., 2007). 

 Azimuth resolution can be calculated by equation 4 where Ra is azimuth 

resolution, h is the satellite’s height above the terrain, λ is wavelength, L antenna 

length and θ is the angle at which the signal reaches the ground, or incidence angle 

(Elachi, 1998 in Finsland, 2007). 

𝟒: 𝑅𝑎 =
ℎ ∗ 𝜆

𝐿 ∗ 𝑐𝑜𝑠𝜃
 

 In case of instruments on the Earth’s orbit, their height above terrain is very 

high. From equation 4 we can see that this leads to either poor azimuth resolution or 

the need to use a very long antenna or short wavelengths. Shorter wavelengths are, 

however, more significantly influenced by the Earth’s atmosphere and constructing 

a very long antenna brings some engineering issues.  This is why synthetic aperture 

radars, or SARs, are used. 

2.2 Synthetic aperture radar 

Synthetic aperture radar (SAR) is a radar system that takes advantage of the 

Doppler-effect to simulate a longer antenna and improve azimuth resolution. The 

satellite moves relatively to the terrain, which leads to a change of the backscattered 

signal’s frequency dependent on the speed and direction of the movement related 

to the scatterer (pixel). The radar signal backscattered from a pixel is being recorded 

for a certain period of time that depends on the width of the radar beam. During this 

time period the backscattered signal is being recorded and is further processed as if 
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it was recorded by an antenna with length equal to the distance the satellite has 

travelled while recording the signal. 

 Figure 2 shows how the Doppler-effect relates to SAR. Backscattering from 

areas b and c will have lower and higher frequency than transmitted respectively, 

while in case of backscattering from area a there will be no change in frequency. If 

we imagine the instrument moving forward, signal backscattered from area a would 

have a lower frequency and backscattering frequency from area c would not be 

changed. 

 

Figure 2: Relation of SAR and the Doppler-effect. a – zero frequency shift, b, c – lower and higher 

frequency respectively, d – azimuth resolution, e – ground range resolution, f – Resulting pixel. 

Source: Dobrovolný (1998). 

2.3 SAR images geometry and topographic effects 

As shown in figure 1, the distance between the radar and an imaged object can be 

represented in two different ways. Either as slant range, which is the shortest 

distance between the two objects, or as ground range, which is the distance between 

nadir and the imaged object. An object’s (pixel’s) location on a radar image is 

determined by the time of receiving backscattered signal. This means that a radar is 

determining the pixels’ position by slant range. However, slant range distorts ground 

range scale – the scale increases with increasing slant range. Slant range can be 

converted to ground range relatively easily, using the Pythagorean theorem, but 

such procedure assumes flat terrain (Dobrovolný, 1998). Moreover, a hilly terrain 

causes several distortions, which are more difficult to correct (or cannot be corrected 
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at all) and require a digital elevation model (DEM) to be identified. A short description 

of these distortions follows. 

2.3.1 Foreshortening  

Foreshortening occurs, when the terrain is sloped against the instrument. It causes 

slopes on the image to appear shorter than they actually are. In figure 3, the 

distance of AC is equal to that of AD, but the slant range recorded by SAR shows 

A’D’ significantly shorter than A’C’. The reason is, that backscattered signal from 

point D reaches the sensor sooner than signal backscattered from C, because D is 

much closer to the sensor than C. To correct foreshortening we need to know the 

elevation difference ΔH, and incidence angle θ. The shift in the point’s position is 

than calculated by using equation 5 (Finsland, 2007). The equation is explained in 

figure 3. 

𝟓: 𝛥𝑔 =
𝛥𝐻

𝑡𝑔𝜃
 

Figure 3: Distortions caused by terrain. Source: Finsland (2007) 

2.3.2 Layover 

Layover occurs when a hill’s slope (α) is bigger than the radar’s look angle and at 

the same time the slope is turned towards the sensor. In case of layover, a mountain 

top appears before the mountain’s foot in the image. This is also shown on figure 3 
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– D’ appears before B’, even though B is closer to nadir than D. Backscattering from 

the slope will be melted together and no useful information will be gained from these 

parts, because echoes from various areas of the slope will arrive in the same time, 

which makes it seem like they all arrived from the same distance. Echoes from the 

lower parts of the slope are then laid over echoes from upper parts of the slope, 

because to the radar it seems like they arrived from the same point. This distortion 

causes the echo from various, usually not neighbouring, areas on the slope to be 

combined into one pixel, which makes it impossible to retrieve any kind of reasonable 

information. 

A special case of layover is, if a hill’s slope is equal to the look angle. In this 

case, backscattering from the entire slope would be recorded at the same moment 

and the entire slope would be shown as a single pixel with very high backscattering 

intensity. Also in this case no useful information can be retrieved from the data. For 

this reason, areas affected by layover are usually masked out during the pre-

processing of SAR images. 

2.3.3 Shadow 

Slopes steeper than the radar’s look angle that are turned away from the radar, 

cause radar shadow to appear. SAR does not receive any information from areas 

influenced by shadow, because the radar signal cannot reach these areas at all. In 

figure 3, shadow occurs between E and F (Finsland, 2007). Also areas affected by 

shadow are usually masked out from SAR images during the pre-processing phase. 

2.4 Radar signal properties & speckle 

Parameters of a backscattered radar signal can be divided into two categories – 

inner parameters, or parameters that are influenced by the radar itself and outer 

parameters, or parameters influenced by the scatterer. Typical inner parameters are 

wavelength, signal polarization or look angle. Outer parameters are surface 

roughness (related to local incidence angle), wetness, topography or the surface’s 

dielectric properties (Dobrovolný, 1998). The effects of topography have been 

described in the previous chapter. 

2.4.1 Inner properties 

Table 1 shows the wavelengths and names for the most common radar bands. 

Wavelength is an important factor that determines the signal’s ability to penetrate 
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atmosphere, soil or snow cover. Shorter wavelengths below 3 cm are more 

influenced by the atmosphere and also have smaller capabilities in penetrating soil 

and snowpack (Dobrovolný, 1998). Currently, satellite systems operating in bands C 

(ERS), X (TerraSAR-X) and L (JERS) are active. 

Band Wavelength [cm] Frequency [MHz] 

Ka 0,75 – 1,1 40 000 – 26 500 

K 1,1 – 1,67 26 500 – 18 000 

Ku 1,67 – 2,4 18 000 – 12 500 

X 2,4 – 3,75 12 500 – 8 000 

C 3,75 – 7,5 8 000 – 4 000 

S 7,5 – 15 4 000 – 2 000 

L 15 – 30 2 000 – 1000 

P 30 - 100 1 000 - 300 

Table 1: Radar bands, according to Dobrovolný (1998). 

 Radar signal can be polarized. If a signal is not polarized, the wave oscillates 

in all directions, otherwise only in one plane perpendicular to the signal’s direction. 

Transmitted signal can be polarized either in vertical (V) or horizontal (H) plane. Also 

the received signal can be filtered by polarization+, which means that a radar signal 

can be transmitted and received in total four different regimes. Either identical (HH 

and VV) or unlike (HV and VH) polarization can be used. Signal polarization can be 

used to gather information about so-called depolarizing surfaces. While comparing 
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two images with different polarization such a surface would appear different in each 

image (Dobrovolný, 1998).  

 Incidence angle has a significant influence on topographic distortions. Large 

incidence angles cause topographic distortions more often, because a less steep 

slope is needed for a topographic effect to occur with large incidence angle. Larger 

incidence angles also make it harder for the signal to penetrate vegetation. At the 

same time, by increasing incidence angle stronger backscattering from rough 

surfaces can be achieved (Dobrovolný, 1998). 

2.4.2 Outer properties 

Radar signal received from a single pixel usually comes from more than one 

scatterer. In some cases however, a scatterer may cause such an intensive 

backscatter, that it makes backscattering from all other scatterers in the pixel 

insignificant and this backscatter will be recorded in the image. A typical example is 

the corner of a building, which may cause backscatter of nearly all transmitted signal 

back to the radar (figure 5c). Figure 4 shows a trihedral corner reflector. Despite its 

relatively small surface, such a reflector will be very well visible on the radar image, 

because it will return almost all the transmitted signal back to the radar. Unlike a 

corner of a building, where the reflector is only dihedral, it is less sensitive to the 

direction from which the signal comes (Finsland, 2007). Trihedral corner reflectors 

have been used for image calibration and geocoding by, among others, Malnes et 

al. (2004). 

 

Figure 4: A trihedral corner reflector. Source: Finsland (2007) 

 Backscattering intensity is a very complex topic and depends on wavelength, 

polarization, local incidence angle and dielectric and geometric properties of the 

surface. Different kinds of backscattering depending on surface roughness are 
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shown in figure 5 – diffusive backscatter, mirror reflection and corner reflection are 

each shown in 5a, 5b and 5c respectively. Whether or not a diffusive backscatter will 

occur depends on the surface roughness. Surface roughness is defined relative to 

wavelength and local incidence angle (Dobrovolný, 1998). According to Kolář et al. 

(1997), surface roughness is determined by the Rayleigh criterion (formula 6). In 

formula 6, rms is the square root of the unevenness height squared, λ is wavelength 

and θ is local incidence angle. 

𝟔: 𝑟𝑚𝑠 >  
𝜆

8 ∗ 𝑐𝑜𝑠𝜃
 

 Formula 6 shows, that a surface can be considered either rough or smooth 

depending not only on its own properties, but also on the wavelength and local 

incidence angle. 

Kolář et al. (1997) consider a surface rough, when formula 6 is true. Otherwise 

the surface is considered a mirror reflector. Other authors, for example Dallemand 

(1993, in Dobrovolný, 1998) relate surface roughness towards average unevenness 

height. 

 

Figure 5: Reflection types depending on surface roughness. Source: Dobrovolný (1998) 

 With surface roughness as criterion, we may define three different types of 

scatterers. Diffusive scatterers scatter the signal in all directions, and a part of the 
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scattered signal is recorded by the sensor. Smooth reflectors reflect most of the 

signal away from the sensor and no or very little backscatter is recorded. Orientation 

of the surface to the radar beam also plays an important role. Smooth surfaces that 

are perpendicular to the radar beam (corner reflectors) will reflect nearly all of the 

radar signal back to the sensor, which will result in a bright point on the image. Other 

surfaces with the same roughness but different orientation would, on the other hand, 

appear as dark points on the image, because most of the signal would be reflected 

away from the sensor. Corner reflectors are the most common in cities. But even 

here, orientation of the surface to the sensor plays an important role. Equally rough 

or smooth surfaces may therefore result in different backscattering intensity 

depending on the local incidence angle (Dobrovolný, 1998). 

 Dielectric properties characterize a material’s ability to reflect, conduct or 

absorb electromagnetic energy. To describe them, the dielectric constant is used. 

Dielectric properties of materials can have a very significant effect on the strength of 

backscattered signal, especially when liquid water comes into play. Because of the 

high dielectric constant of water (most commonly, the dielectric constant ranges from 

3 to 8, but the dielectric constant of water is 80), the content of liquid water inside a 

scatterer can significantly influence the intensity of the backscattered signal. Radar 

backscatter is strongly attenuated by liquid water, which results in a significant 

decrease of backscattering intensity from wet objects. Changes in backscattering 

intensity may therefore be related to change of water content in the object, rather 

than to changes in its other properties (Dobrovolný, 1998). 

2.4.3 Speckle 

Upon visual inspection, SAR images seem to be very noisy. This happens because 

the transmitted and backscattered signal has a well-defined phase (i.e. is coherent). 

This means, that interference occurs between the radiation returned from adjacent 

parts of the Earth’s surface. This phenomenon is called speckle, and can be visually 

perceived as noise in SAR images. Speckle can be reduced using a number of 

different filters, at the expense of losing either spatial resolution or some of the details 

in the image (Pellikka & Rees, 2010).  
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CHAPTER 3 

Snow characteristics and measurement 

3.1 Snow formation 

When the atmosphere is saturated with water vapour or when air temperature drops 

below dew point, water vapour in the atmosphere condenses. If the temperature is 

lower than 0°C at the same time, deposition occurs instead. This means that water 

transitions from gaseous state directly to solid state. This process is sometimes also 

called crystallization. Gaseous water is deposited in solid (frozen) state on small 

solid objects contained in the atmosphere, for example dust particles. Water 

molecules are than agglomerated into crystalline formations – snow crystals. 

 Snow crystals can possess a nearly unlimited range of different shapes and 

sizes, depending on the amount of gaseous water in the atmosphere or temperature 

during condensation. At low air temperatures, only single snow crystals are 

observed, while at temperatures nearing 0°C the snow crystals group together to 

form snowflakes - the higher the temperature the bigger the snowflakes (Doležal and 

Pollak, 2004). 

3.2 Types of snow 

Snow cover can be classified in several different ways. Most commonly it is 

categorized by its texture, grain size and wetness. 

 If snow is categorized by its texture, criteria like grain size and shape, snow 

pack compactness or pore size are taken into account. All of these are dependent 

on the age of snow and on meteorological conditions. Freshly fallen snow is not 

compact and is the foundation for powder avalanches (Finsland, 2007). It is also 

easily transported by wind. This type of snow is called fresh or powdery. When fresh 

snow gets more compact, e.g. because of wind or its own weight, it becomes crud. 
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Crud is the foundation for slab avalanches (Finsland, 2007). Snow particles in crud 

are called decomposing or fragmented particles. Granular snow is snow that has 

been lying for a long time. It can be further categorized according to grain shape as 

either snow with rounded grains or solid faceted crystals. Last but not least, firn is 

the type of snow that has been lying for a very long time (most commonly over a 

year, but sometimes even the last remnants of spring snow are categorized as firn). 

Firn has often large, round grains and the original snow crystal has been completely 

metamorphosed (Doležal and Pollak, 2004). 

Category Grain size [mm] 

Very fine grains <0.2 

Fine grains 0.2 – 0.5 

Medium grains 0.5 – 1.0 

Coarse grains 1.0 – 2.0 

Very coarse grains 2.50 – 5.0 

Extremely coarse grains > 5.0 

Table 2: Snow grain size classification according to Doležal and Pollak (2004). 

 Snow classification by grain size according to Doležal and Pollak (2004) is 

shown in table 2 while table 3 shows the same authors’ idea of classifying snow 

according to its wetness, or liquid water content. In this paper however, I will be only 

using two classes of snow wetness – wet snow and dry snow. The reason for this is 

the fact, that there are currently no known remote sensing techniques, which would 

allow to attempt distinguishing more classes. 
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Category Average liquid water content [%] 

Dry snow 0 

Moist snow < 3 

Wet snow 3 – 8 

Very wet snow 8 – 15 

Extremely wet snow > 15 

Table 3: Snow wetness classification according to Doležal and Pollak (2004). 

3.3 Land-based measurements of snow characteristics 

Snow depth, grain size, or snow water equivalent are among the most commonly 

measured snow properties. Furthermore, analysis of snowpack stratification is often 

performed in order to evaluate the snowpack’s stability and avalanche risk. Snow 

water equivalent is usually presented in millimetres and describes the depth of water 

that would result from melting of all snow covering an area of one squared meter. It 

is likely to be the most valuable variable that can be used in snowmelt and runoff 

modelling, because it states exactly how much water is stored within the snowpack. 

 The traditional measurement techniques are rather simple. Depth is simply 

measured using a long probe. For measuring water equivalent, one first takes a snow 

sample of known volume. For gathering such a sample, NVE (2008) recommends 

using a one meter long metal (preferably steel or aluminium) cylinder with a diameter 

of ten centimetres, and sharp edges on its lower side to cut through snow easily. A 

hole in the snowpack (all the way to bare ground) shouod be dug to allow easier 

manipulation with the cylinder. A sample is then taken with the cylinder, near the 

edge of the hole. If the snow is deeper than the cylinder, samples are continuously 

taken until one reaches the ground. For each sample we measure its weight and, if 

the cylinder is not full (in case of the last sample before reaching bare ground), also 
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its volume is measured. From these measurements one can easily compute the 

snow’s density and using snow depth also snow water equivalent. 

 

Figure 6: The principle of snow pillows. Source: NVE (c2007) 

 For automatic measurements of snow water equivalent, so called snow 

pillows are used. These pillows measure the weight of snow from which snow water 

equivalent is computed. The way such devices work is shown on figure 6. 

Unfortunately, these devices are not cheap, so for example in the entire Norway, 

automatic snow water equivalent measurements are only performed by 25 snow 

pillows. Norway being a country with a high interest in snow monitoring and a much 

better financial situation than most other countries, suggests that most other 

countries will have a much thinner automatic SWE measurement network, if any at 

all. 

3.4 Remote sensing-based retrieval of snow properties 

3.4.1 Microwave backscattering from snow-covered terrain 

Backscattering from snowpack is a result of the influence of three components. 

These mechanisms of backscattering for a homogenous layer of snow are depicted 

in figure 10, A being backscattering from snow-air interface, B volume scattering 

from the snowpack and C Backscattering from the underlying ground. If the 

snowpack is not homogenous and consists of more layers, the boundaries between 

these layers also contribute to backscattering, as well as each layer’s volume. 
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Figure 10: Backscattering mechanism from a homogenous snowpack. Source: Koskinen(2001) 

3.4.1.1 The effect of snow wetness on backscattering 

In case of dry snow, the dielectric contrast at the air-snow interface is very low and 

so is the backscatter intensity. This means that the backscattering from air-snow 

interface in the case of dry snow could be neglected. Also volume scattering has low 

significance, but increases with increasing depth of the snow pack, as the signal is 

attenuated and the ground’s contribution to total backscattering decreases. 

Furthermore, the low dielectric contrast causes the importance of snow roughness 

or grain size to diminish. The backscattering of dry snow also decreases with 

increasing incidence angle. This is caused by decreasing contribution from the 

ground, as the incidence angle increases. The influence of incidence angle was 

computed by Koskinen (2001) using a model, and the result is shown in figure 11. 

This is important to bear in mind when comparing multiple products with varying 

incidence angles. 
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Figure 11: The effect of snow depth on backscattering coefficient as a function of incidence angle. 

Source: Koskinen (2001). 

 When the snowpack is wet, the water contained in the snowpack absorbs 

some of the signal. This is why an increase in snow wetness (also meaning an 

increase of liquid water content) leads to decreasing contribution of the ground to 

the total backscattering. The wetter the snowpack, the more radar signal is absorbed 

and not backscattered. Therefore the total backscattering decreases with increasing 

snowpack wetness, which is shown in figure 12. The influence of incidence angle on 

backscattering as a function of snow wetness has also been modelled in figure 12. 

The simulation has been performed by Koskinen (2001). Increasing incidence angle 

leads to a decreasing backscattering intensity, but the general functional behaviour 

remains the same for any incidence angle. This means that the backscatter 

decreases nearly linearly until around 2% of wetness for any incidence angle. After 

reaching around 2% wetness the curve stops the rapid decrease and levels out. 

 Snow wetness also causes an increase of the dielectric contrast at the snow-

air interface, which results in a higher contribution of this interface to total 

backscattering and to increasing significance of surface roughness. In fact, if the 

snow is wet enough, surface backscattering may even be the most significant 

component in total backscattering. Therefore, snow surface roughness is very 

important to be accounted for when modelling backscattering of wet snow. 
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Figure 12: The effect of snow wetness on backscattering coefficient. Modelled by Koskinen(2001). 

 Figure 13 shows the diurnal behaviour of snow wetness as well as 

backscattering coefficient on various microwave frequencies. Unlike figures 11 and 

12, the data in figure 13 represent actual observations. These observations show 

that snow wetness may vary significantly throughout the day, depending on changing 

air temperature or sunshine. Based on the data from figure 13, one should be very 

careful when interpreting the results of a remote sensing-based snow wetness 

analysis, because the reference data may have been taken in a different time of the 

day than the interpreted images. This must therefore be taken into account when 

evaluating the results of this paper and when working with data from multiple passes.  
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Figure 13: The diurnal pattern of snow wetness and backscattering coefficient. As observed by 

Koskinen(2001). 

 From figure 13 we can also see that higher frequencies respond to changes 

in snow wetness more drastically. This is because high frequencies do not penetrate 

so deep into the snowpack and the total backscatter is dominated by backscattering 

from the air-snow interface. High frequencies, like Ku- or K-band, may therefore be 

useful in monitoring dry snow. A single satellite radar, operating on multiple 

frequencies and polarizations, could therefore gather information simultaneously 

from the air-snow interface, the snowpack and the snow-ground interface, because 

each of these responds to different frequencies. Many authors, like Koskinen (2001), 

have expressed their hopes for a future multi-channel SAR instrument that would 

allow better operational snow monitoring. Such an instrument, unfortunately, is 
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unlikely to be launched in the near future, and that is why it is still attractive to try and 

find an operationally-useable method for snow monitoring using one of the currently 

operational radar instruments. 

 We can thus summarize that: 

 Wet snow has significantly lower backscattering coefficient than dry snow. 

 Dry snow will probably be difficult to distinguish from bare ground, especially 

on lower frequencies like C-band. 

 Each part of the snowpack responds differently to different wavelengths which 

makes it nearly impossible to gather information about the entire snowpack.   

 Most of the backscattering from a wet snowpack comes from the snowpack’s 

volume scattering and the air-snow interface; the signal does not reach the 

ground in deep snowpack. 

 In the case of dry snow, most backscattering comes from the ground and 

some from the snowpack’s volume scattering. 

 Snow backscattering coefficient decreases nearly linearly until 2% of snow 

wetness. The favourable limit for wet snow could therefore be 2% of 

volumetric wetness.  

 The backscattering coefficient is strongly related to the snow’s wetness 

 Snow wetness, as well as backscattering coefficient, changes significantly 

throughout the day. 

 The total backscattering coefficient changes with incidence angle, but the 

functional behaviour remains the same.  
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3.4.1.2 SAR capabilities in snow-covered area and wet snow 

monitoring 

SAR instruments have however been a bit more successful in retrieving SCA, 

especially wet-snow cover, and some operational algorithms have already been 

developed (see for example Nagler and Rott, 2000). However, these algorithms are 

still far from perfect. The biggest flaw in using SAR for snow monitoring is the fact, 

that on SAR images retrieved from currently operational instruments it is impossible 

to distinguish dry snow from snow-free ground (Koskinen, 2001), so alternative 

methods are used to retrieve dry-snow covered area, such as assuming that all 

pixels that have not been classified as wet snow and lie above the average (or 

median) altitude of pixels classified as wet snow are dry snow. Surprisingly enough, 

such techniques perform quite well. 

Some results which suggest that dry snow mapping with C-band SAR might 

be possible, have also emerged. For example Pivot (2012) has discovered, that in 

C-band under certain conditions (the first 20 cm of soil penetrated by frost, and 

incidence angle between 20 and 31°), each 5-10 mm of accumulated water 

equivalent increases the total backscatter by 1 dB. These results have however not 

been verified, so it is not advisable to rely on them. 

Property Visible/NIR IR Microwave 

Snow extent (SCA) Yes Yes Yes 

SWE Fair 

 (shallow snow only) 

Poor Fair 

All weather capability No No Yes 

Spatial Resolution ~10 m ~100 m Passive sensors 20 – 150 km 

 Active sensors ~30 m 

Table 4: Remote sensing instruments’ capabilities in retrieval of some snow 
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characteristics according to Rango (1986) in Koskinen (2001). 

 Table 4 summarizes the capabilities of various types of remote sensing 

instruments in retrieval of snow properties. As mentioned before, microwave and 

especially SAR instruments are likely to be the best choice for operational snow 

monitoring, because of their good capabilities in retrieving the information, their 

independence on weather conditions and a reasonable spatial resolution.  

 Probably the most significant weakness of SAR data in snow monitoring is the 

behaviour of SAR signal on various land-use and land-cover types, the most widely 

discussed and examined being various forest classes. A forest backscatter model is 

usually used to separate backscatter from ground and forest. A different backscatter 

model is required for different forest types. Monitoring snow cover in forests is a 

separate research topic, commonly addressed by, among others, researchers from 

Finland – for example Koskinen et al. (2010). Most researchers, however, use a land 

cover map to mask out forests and other land cover types that could potentially cause 

problems in snow classification (like water), so that they can focus on classifying 

snow in open areas, which is still an active research topic itself. 

3.4.2 Snow water equivalent monitoring with SAR 

Measuring snow water equivalent (SWE) with SAR is an active research topic. The 

delta-k technique, first presented by Engen et al. (2003), has shown promising 

results. However, this method has several drawbacks that would make its 

operational use very complicated. Some of these drawbacks are the possibility of 

measuring only dry snow’s SWE, the need for precise calibration and deployment of 

corner reflectors in the investigated area or the need to average to larger pixel size, 

which results in poor spatial resolution. Furthermore, current satellite-borne SAR 

instruments are far from ideal for SWE monitoring and using other bands, like Ku-

band, (or even multiple bands used by the same instrument) have been suggested 

in order to improve the results. However, it seems unlikely that a new SAR instrument 

with specifications better for SWE monitoring will be launched any time soon 

(although there is some ongoing research in this area – see further), so finding a 

better SWE retrieval algorithm for C-band SAR is currently the best way to make 

progress in this area.  
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 To improve the capability of monitoring SWE and SCA, but also other 

hydrological variables, the Cold Regions Hydrology High-resolution Observatory 

(CoReH2O) mission has been proposed (see Rott et al., 2010). The proposed 

instrument is a dual-frequency (X-band and Ku-band) dual-polarization SAR. 

However, it is not yet clear when, and if, this mission will be launched, so active 

research still needs to focus on current SAR instruments. 

 I have chosen to not investigate SWE retrieval furher, because current SAR 

instruments do not seem to have the potential to provide the required information 

with sufficient accuracy, and even though some methods seem to be promising, their 

implementation is too complicated for a single student to carry them out, because 

the procedure requires a certain budget and also manpower. 

3.4.3 Snow-covered area and wet snow monitoring with SAR 

Using SAR for monitoring Snow-covered area is an active research field. As one can 

easily deduce from chapter 3.4.2, identifying wet snow from SAR data is relatively 

easy. However, identifying dry snow is a much more difficult task, and several 

different techniques have been developed, with varying success. In this chapter, I 

will describe recent techniques for retrieving wet and/or dry snow cover information. 

The techniques most important for this paper will be discussed more thoroughly in 

their own subchapters. 

3.4.3.1 Thresholding techniques 

For wet snow identification, thresholding techniques are the most common and also 

most straightforward. As I mentioned in chapter 3.5.1, the presence of liquid water 

in the snowpack significantly reduces backscatter. The backscatter is much less 

intensive than backscatter from snow-free ground and this behaviour has been 

exploited by several researchers for mapping wet snow cover. In general, these 

techniques usually require a snow-free or dry-snow reference image. The difference 

between backscatter from the reference image and the image of interest is then 

calculated. If the difference exceeds a certain threshold, the corresponding pixel is 

classified as wet snow.  

 Most commonly, the threshold is set around -3 dB, but most researchers 

usually experiment with the threshold value. Some, like Malnes and Guneriussen 
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(2002) even used a “soft” threshold (see chapter 4.3.1.3) to enable sub-pixel 

classification. 

 Valenti, Small and Meier (2008) used the thresholding technique for 

monitoring snow cover with multi-temporal ENVISAT ASAR data. The images were 

classified using a qualitative RGB overlay method. Temporal and spatial variations 

of backscatter in different scenes than appeared as a primary colour or a 

combination of them. The resulting comparison of a dry snow reference image with 

images taken during the melting season indicates differences in snow properties. 

This way, melting and freezing cycles can be monitored. Valenti, Small and Meier 

(2008) have found, that the backscatter differences caused by melting snow usually 

range from -3 dB to -12 dB. Another useful information is, that a robust radiometric 

correction of terrain-induced local incidence angle variations improves thematic 

information retrieval. 

 Slightly different approach was used by Bartsch et al. (2007). A combination 

of ascending and descending orbit images were used to reduce loss of information 

due to topographic effects. The most fundamental difference is, that Bartsch et al. 

(2007) did not convert backscatter to dB, as is the common practice, but used linear 

backscatter ratio values instead, and calculated the ration between reference image 

and the image of interest. The ratio images were then classified. The threshold was 

ratio less than 1 for morning acquisitions at the beginning of snow melt, and all further 

images were classified using a value of 2. This means that a reduction to at least a 

half of backscatter was assumed. The final step was to combine the results from 

ascending and descending orbits by deriving probability classes from the classified 

images. What Bartsch et al. (2007) called ‘Thawing snow with high probability’ is 

assumed if significant backscatter decrease was detected in both (morning and 

evening) images. Medium probability was assumed if melting snow was detected in 

either morning or evening image, and if no data could be acquired due to layover or 

shadow effects in the other image. Finally, low probability is assumed if low 

backscatter decrease was detected in one image, and high backscatter decrease 

was detected in the other image. The results were compared with SPOT data, taken 

4 days after the SAR acquisitions and were found to be promising, but the results 

were not described in detail. 
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 One of the most recent papers based on a thresholding technique was 

presented by Thakur et al. (2013). In this study, SAR data from Radarsat 2 and 

ENVISAT ASAR were used, together with MODIS 8 day global LST product. Pixels 

with land surface temperature less than -1 °C were classified as dry snow and other 

pixels were considered for wet snow mapping. The wet snow mapping algorithm 

classified pixels as wet snow if the difference between backscattering from reference 

(dry snow) and classified image is less than a certain threshold. In this case, the 

threshold value varied between -2 dB and -3 dB. Also, only pixels with backscattering 

values in a certain range (a < σ0 < b) were considered for wet snow classification, 

which was found to increase classification accuracy significantly. The most suitable 

parameters were found to be -24 dB and -4 dB respectively. The results were 

promising, and the SAR derived SCA was said to correspond well to MODIS 8-day 

SCA products, but, like in most similar studies, the possibilities to verify results were 

very limited. 

3.4.3.1.1 The Koskinen method 

The Koskinen method estimates the fraction of wet snow covered ground and is 

based on comparing the test image with two reference images. One of the reference 

images is fully covered with wet snow and the other one is snow-free. 

 The need for a reference image fully covered with wet snow suggests that this 

procedure can be hardly used in regions with complicated topography, because in 

such areas snow wetness can vary significantly on short distances, which would 

require a large amount of reference images, as each image would only contain a 

small area with wet snow cover. Koskinen (2001) has tested his algorithm in a rather 

flat and homogenous area in northern Finland, which is feasible for this method. But 

the test area used in this paper (see chapter 4) is far from homogenous, as there are 

strong climatic differences between valley floors and the plateau and also significant 

differences in climate between east (more continental climate) and west (climate 

more significantly influenced by the ocean). These phenomena do not occur so 

strongly on such short distances in Finland. 

 Furthermore, Koskinen’s method is only used to distinguish wet snow from 

other snow/ground conditions, whereas in this paper I aim to map both dry and wet 

snow cover. It is, however, a good starting point. 
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 This method uses a linear relationship between backscattering observed in 

the snow-free reference image and in the wet-snow-covered reference image to 

calculate the percentage of area covered by wet snow. However, the results are 

mostly just two classes: wet snow and no wet snow. Just a few pixels contain an 

intermediate value. 

 The results achieved by the classification algorithm have been compared to 

visual observations, which means, that the results presented in his paper are very 

rough and “only” prove that there is a relationship between the SAR-derived 

information and field observations. But even this is a success and a good fundament 

for future research, as well as it shows that one of the most crucial and complicated 

parts of any similar research is obtaining a reasonably detailed and precise ground-

truth data set. As I have mentioned before, retrieving ground-truth data requires 

resources (both financial, technical and human) that most researchers will struggle 

to obtain. 

3.4.3.1.2 The Nagler & Rott method 

Nagler & Rott (2000) use a simple thresholding algorithm to detect wet snow. They 

have found that the change in backscattering between the reference image and the 

wet snow image of -3 dB to be an appropriate threshold for their test area. 

 Use of images taken from opposite passes has also been suggested in order 

to reduce the area affected by shadow and layover and thus obtain information from 

a larger area. Furthermore, it was Nagler & Rott (2000) that have successfully used 

an image under dry snow conditions as a reference image. It has also been 

suggested to use a different classification approach for different land cover classes, 

namely agricultural areas that can be affected by surface roughness change, and 

mires that can be affected by wetness under snow-free conditions. It is either 

possible to avoid misclassifications on such areas by using land cover maps, 

topographic information or by studying the seasonal behaviour of backscattering 

from these areas. 

 Basically, the decision making of their algorithm is very simple – if a pixel is 

affected by layover, radar shadow or inappropriate local incidence angles in both 

passes, then snow mapping is not possible. If not, then the backscattering change 

between the test image and the reference image is calculated. If the result is less 
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than -3 dB, than the pixel is covered by wet snow, otherwise it is covered by either 

dry snow or bare ground. 

 Landsat TM images and photographs taken on the day of the radar pass were 

used by Nagler & Rott (2000) to verify their results. However, the Landsat data 

cannot provide proper information on snow wetness. On the other hand, on one of 

their test images all of the remaining snowpack was supposedly wet. Overall, they 

have achieved 83% agreement between the ERS and Landsat images. 

 Temporal consistency of SAR-derived snow maps was also investigated by 

Nagler & Rott (2000). It was based on the assumption, that pixels once classified as 

snow-free should remain snow-free later in the season, in case no fresh snow falls. 

A pixel by pixel comparison showed that 3.2 % of pixels classified as snow-free in 

June were classified as wet snow in July. This inconsistency is said to might have 

been caused by level of multi-looking and speckle filtering or by inaccurate 

geocoding and coregistration. 

 This approach has been used by Pettinato et al. (2009) to develop an 

operational snow-mapping algorithm. The algorithm in question uses MODIS data 

when possible (cloud-free conditions) and ENVISAT ASAR data for areas covered 

with clouds. ENVISAT data are classified using the Nagler & Rott (2000) approach, 

so they can only be used to identify wet snow. Snow on MODIS data is classified 

using the Normalized Difference Snow Index (NDSI). The information output of this 

algorithm is inconsistent, as pixels not affected by cloud cover are classified either 

as snow-free or snow covered, while the rest is classified as either wet snow or no 

wet snow.  

3.4.3.1.3 The Malnes method 

Malnes and Guneriussen (2002) have based their research on the two methods 

mentioned previously. The result of their work is a sub-pixel classification of wet 

snow, which, together with a reasonably detailed DEM, can also detect dry snow. 

For simplicity’s sake, I will refer to their algorithm as to the “Malnes’ algorithm” from 

now on. 

 Malnes’ algorithm masks out forest and water, because these two land cover 

classes give ambiguous results in SAR SCA mapping. Also pixels affected by 
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shadow or layover are masked out. The remaining pixels are than classified using 

modified Nagler’s & Rott’s (2000) algorithm. Resulting classification classes are 

snow-free ground, pixels containing 0 – 100 % of wet snow and dry snow. 

 The technique employed to obtain percentage of wet snow cover in a pixel 

originates from the -3 dB classification threshold found by Nagler & Rott (2000) and 

the linear sub-pixel classification scheme used by Koskinen (2001). Malnes and 

Guneriussen (2002) have, however, found, that using a “soft” threshold centered 

around -3 dB together with the sigmoid function shown in formula 7 (x being the 

backscatter and  a being a slope parameter for the function – see figure 19) gives 

more information than the “hard” threshold used by Nagler & Rott (2000). The 

percentage of wet snow cover on each pixel is derived from the sigmoid function. 

Figure 14 shows the sigmoid function used for sub-pixel classification.  

𝟕: 𝐹(𝑥) =  50 − 50 ∗ tanh[𝑎 ∗ (𝑥 + 3)]  % 

 

Figure 14: Weight function for sub-pixel classification of wet snow. When the difference is below 0 

dB, snow is classified as 0 – 100% wet. Source: Malnes and Guneriussen (2002) 

 Another improvement of Malnes’ algorithm is, that after performing the wet 

snow classification, it is possible to postulate that all pixels that lie above the median 
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altitude of wet snow and that are not classified as wet snow, can be classified as dry 

snow. This is applicable in Norwegian mountains, but does not have to apply in other 

regions, like the Alps, where mountain tops may be snow-free due to wind (Malnes 

and Guneriussen, 2002) 

 Malnes and Guneriussen (2002) have also suggested a special classification 

scheme for water bodies and suggest that other land uses can be processed in a 

similar manner. In this paper, I will attempt to process water bodies separately. 

 Statistical methods have been used by Malnes and Guneriussen (2002) to 

calculate the error rate achieved by their algorithm, because the authors were not 

able to find any suitable optical images. The resulting overall error rate was 

computed to be 16.6 % (see figure 15). 

 

Figure 15: Error assessment. The difference image histogram is fitted with two distributions, 

representing wet snow and dry snow/bare ground. Error rates are calculated by estimating the areas 

below the respective curves from the threshold. Source: Malnes and Guneriussen (2002). 

3.4.3.2 Using polarimetric data for snow cover monitoring 

Fully polarimetric SAR data contain more information than single or dual polarization 

data, and have been used by several researchers in attempts to monitor dry and wet 
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snow cover. A big advantage of fully polarimetric SAR data is their capability to 

monitor total snow cover, not only wet snow. Martini et al. (2006) have developed a 

method that used fully polarimetric SAR data in C- and L-bands. While The L-band 

data were used to classify land cover, the C-band images were used for snow 

monitoring. It was found, that polarimetric decomposition can be used to identify 

snow-covered forests and that the polarimetric contrast between snow cover and 

bare ground in open landscape is too low for snow classification. On the other hand, 

snow in open landscape can be classified using supervised classification, but this 

procedure requires training samples. This led to forested and open areas being 

processed separately by Martini et al. (2006). 

So the biggest drawback of using fully polarimetric data seemed to be the 

need for ground-truth data required to apply supervised classification algorithms. But 

Singh et al. (2014) have developed a new method, using ALOS-PALSAR data, which 

not only performs well in snow cover classification, but also does not require training 

samples. The only problem with this method is the low incidence angle of ALOS-

PALSAR data, which leads to large layover-affected areas in mountainous regions. 

Unfortunately, it is difficult to achieve fully polarimetric data, so in this paper I 

will be limited to the use of single polarization C-band data from ERS-2.  
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CHAPTER 4 

Data, test area and methods 

4.1 The test area 

The area upon which I will attempt to observe wet snow cover must satisfy a few 

requirements in order to provide good conditions for developing and evaluating a 

SCA retrieval algorithm. 

 First of all, the terrain should be rather flat. This should help avoid topographic 

distortions and also the results should be easier to evaluate if altitude does not vary 

significantly inside a pixel (snow properties can vary significantly on short distances, 

if altitude does). 

 Since it is complicated to retrieve information from forested areas, the test 

area should contain some open ground or low vegetation. Also bogs or mires could 

pose a problem, because they are likely to appear as water bodies or wet snow due 

to the high amount of liquid water contained in them.  

 Furthermore, it is important to find an area where the snowpack is thick and 

stable enough during winter, so that so that the backscatter actually carries 

information about the snowpack. The snowpack’s stability is important, because 

repeated freeze-thaw cycles lead to complicated stratification in the snowpack, 

which makes retrieving the snowpack information a bit more complicated. 

 Finally, there must be some ground-truth data available in the selected area 

so that the results can be evaluated. 

 These requirements are best satisfied in Scandinavian regions. The alpine 

regions satisfy the requirements of thick and stable snowpack and low or no 

vegetation, however, the terrain in these regions is so steep that radar instruments 
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cannot retrieve information from a large area. Eventually I have selected an area in 

southern Norway. The approximate location of the test area is shown in figure 16. 

 

Figure 16: A map showing the approximate test area (blue rectangle). Background map: Kartverket, 

c2007 

4.1.1 The test area description 

Most of the Hardangervidda lies in altitudes above 1000 m a.s.l. , which makes it a 

mountainous region. However, the terrain is relatively flat. The few exceptions are 

some valleys and fjords. Probably the most significant are Måbødalen, Hjølmadalen 

and Simadalen. The only fjord that lies in the test area is Eidfjorden. The valley floors 
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are also covered with forests. Furthermore, there is quite a lot of lakes and bogs in 

the area, as well as a glacier, Hardangerjøkulen. These special types of land-cover 

will be masked and treated separately. Several of these lakes are, however dammed 

and used to produce electricity, so their extent may vary in the radar images and in 

the land cover map that will be used. The valleys and the fjord will also be accounted 

for. 

 

Figure 17: A typical winter week’s precipitation over south Norway. Darker blue means more 

precipitation. Source: NVE (2013?) 

The test area is also strongly influenced by the proximity of ocean, as the western 

part of the area receives significantly more precipitation. Ocean’s influence should 

also result in higher winter temperatures in the western part, as well as it should be 

noticeable in snow wetness – snow should melt faster in the wetter and warmer 

parts. A typical winter’s week precipitation in this part of Norway is shown in figure 

17. It is clearly visible that the precipitation gets stronger as the clouds hit the 

mountains on the shore and then it gradually weakens.  Figure 18 shows a typical 

seven days average temperature. It is obvious that the temperature drops 
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significantly in the central parts of the Hardangervidda plateau, compared to its 

eastern part. 

 

Figure 18: Average temperature over south Norway on a typical winter week. Shades of blue mean 

temperature below zero and darker means colder. Yellow means temperature above zero. Source: 

NVE (2013?) 

 All in all, the test area should provide enough bare ground with low altitude 

differences. The winter snow cover is also relatively stable here, and, except for the 

western part of the area and some of the valley floors, only starts melting on spring, 

so there should not be more freeze-thaw cycles which could cause complicated 

stratification in the snowpack. 

4.2 Data 

4.2.1 The satellite images 

I have chosen to use data acquired by the ERS-2 mission, mainly because they are 

relatively easy to achieve for research purposes. Even though some other sensors, 

possibly in a different band and with polarimetric capabilities, could be more feasible 
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for this purpose, images from such sensors were not possible to obtain. Besides, it 

is important to conduct research even with data that do not seem to be the best for 

the purpose. Data used in this paper were provided by ESA. The choice of images 

depended on several factors.  

 The reference (snow-free) images had to be actually snow-free and, 

favourably, taken at a time when the soil was relatively dry. The dry soil requirement 

is important, because wet soil (e.g. soil containing large amounts of water) would 

have similar backscattering properties as wet snow. Finding images that satisfied 

both requirements was rather difficult, because Norwegian mountainous areas are 

usually not entirely snow-free before September. However, in this period it also rains 

a lot, so the soil is seldom dry. Furthermore, the first snowfall comes not very long 

after the last snow has melted. This is the reason why the reference image, taken in 

July 2010, will still probably contain patches of wet snow. 

 Nagler and Rott (2000) claim, however, that it is also possible to use images 

with dry snow cover as reference images. Using dry snow reference images 

eliminates the risk of wet soil occurring in the reference image. But due to the test 

area’s diversity it was not possible to find an image entirely (or almost entirely) 

covered by dry snow. There are only a few days every year when the valley floors 

are covered by dry snow, and the chances of getting a satellite pass on one of the 

desired tracks during one of these days are very low. 

 The information about the reference images I have decided to use is summed 

in Table 5. As mentioned before, the reference image is likely to contain wet snow 

patches. There has also been some rain the week before each of these images was 

taken. However, the day before the image was taken, there has only been a little rain 

recorded over the test area, as seen in figure 19.  

Date Track Orbit Pass 

19th July 2010 194 79707 D 

Table 5: The reference image information. 
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It is also important for the reference and test images to have the same imaging 

geometry, so that the fold mask is the same for both images and the same area is 

depicted in them 

 The test images were chosen so that they would depict the test area during 

the snow melt season. I have therefore consulted the ground truth data when 

selecting these images. The information about the test images is summed up in table 

6.  

Date Track Orbit Pass 

13th April 1998 194 15579 D 

5th May 2008 194 68184 D 

Table 6: The test images information. 

The April image should contain some wet snow, little snow-free ground and 

some dry snow. So does the May image, but it should contain much less amount of 

dry snow. These presumptions are based on ground-truth data used while selecting 

the images. 



51 
 

 

Figure 19: Precipitation over the test area the day/week before each of the reference images was 

taken. Source: NVE (2013?) 

4.2.2 Ground-truth data 

Ground-truth data concerning snow wetness, or snow properties in general, are very 

tricky to achieve. Many researchers elect to conduct a field campaign and then wait 

for satellite images acquired during the time of their field campaign. Such a field 

campaign must, however, be very thorough and it requires a lot of manpower to 

collect data from a large area during a relatively short period of time; collecting the 

data shortly before or after the satellite image acquisition is necessary, because 

snow wetness may change significantly in less than an hour (see chapter 3), 

especially in open landscape. Even if I ignore logistical problems (which could be 

avoided by choosing a different test area), I still lack the necessary manpower and 

equipment. Not mentioning the fact, that the ERS-2 mission was officially aborted in 
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2012, when I have barely started working on this paper. Field campaign is therefore 

out of the equation.  

 Sometimes optical data can be used, but it requires the optical image to be 

taken shortly before or after the radar image, and optical images cannot properly 

distinguish dry and wet snow, so they can only be used to verify the total snow-

covered area. Also, the image must be cloud free, which is a condition that is hard 

to satisfy in Norwegian mountains during winter. However, when it comes to 

availability, this is probably the best option. 

 Automatic ground measurements of snow wetness are not operationally 

available in any of the regions I have considered when selecting the test area. Only 

some automatic measurements of snow depth are available in the test area, which 

can be used to very roughly compare the modelled and real snow extent. However, 

such measurements, taken from a single point, are not very reliable – the point where 

the measurement has been made, might be either a part of a small snow-free patch 

in otherwise compact snow cover, or a small patch of snow in an otherwise snow-

free landscape. 

 However, the NVE has developed a model that computes various hydrological 

and meteorological statistics in a 1km x 1km grid. All the outputs of this model can 

be viewed online in a web browser at www.senorge.no and are also accessible via 

a WMS service. Altogether the models are called “seNorge” (seeNorway). Obviously, 

such a model is far from 100% precise, but it has been updated this year and its 

authors believe that it should be good enough. The old version of the model was 

subject to an intensive evaluation process (see Stranden, 2010), which helped in the 

update. After some electronic correspondence with a few NVE researchers, I have 

decided that this model is the best ground-truth I can get. Especially mr. Tuomo 

Saloranta has been very helpful, and also confirmed that the data from this model 

are probably the best choice for this purpose. 

 Therefore, I will be using data from the seNorge model to evaluate the results 

achieved in this paper. I also plan using the automatic snow-depth ground 

measurements in order to gain as much information about snow extent as possible, 

but the ground measurements are more of a supplement, and might not prove helpful 

at all. 
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4.2.3 Land cover data 

Since radar backscattering may be strongly affected by some land cover categories 

even when a compact snowpack is present, it is good to handle some of these 

categories separately. This mostly concerns water bodies, forested areas and bogs 

and will be discussed further on. 

 Thanks to the EEA’s (European Environment Agency) CORINE (Coordination 

of Information on the Environment) land cover project, many European countries 

have performed very detailed land cover mapping. Norway is, luckily, one of these 

countries and the land cover data were made freely available in vector format by the 

Norwegian Institute for Forests and Landscape. The smallest area covered in these 

data is 25 ha, which should be sufficient for the purpose of this paper. 

4.2.4 DEM 

A digital elevation model is required for SAR image processing, mainly to account 

for topographic effects on backscattering. Foreshortening can be corrected, while 

areas affected by layover and shadow should be masked out. Even though the 

algorithms used should not be affected by foreshortening, because they employ 

change detection. 

 For this purpose, I have purchased a 20 meter grid DEM by Kartverket – 

Norwegian national cartographic authority. This model should have a standard 

deviation between 2 and 6 meters and is probably the best option I had for this 

purpose, due to its combination of acceptable cost and reasonable level of detail and 

precision. 

4.3 Methods 

4.3.1 Pre-processing data 

In order to be able to apply classification methods, the raw images, delivered in PRI 

(precision image) format, must be pre-processed, because the original data include 

such significant distortions and errors, that it is necessary to subject them to various 

corrections. These corrections are described in this chapter. 
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The images resulting from the pre-processing phase should be corrected for 

terrain induced errors, radiometrically normalized and speckle-filtered. For each of 

the raw images, an image in dB and another in linear values should be produced. 

Similar corrections are commonly used when pre-processing SAR data. The 

common order of pre-processing steps is to apply radiometric corrections first, then 

speckle filtering and eventually terrain corrections. All of these corrections induce 

changes in the image, but are necessary for the image to be suitable for geocoding 

and to remove some radiometric errors, which are so significant that they make the 

raw images useless for classification or other analysis. 

The aim of radiometric corrections is to modify the values received by the 

radar instrument, so that they correspond to the actual reflective properties of 

surfaces. Radiometric errors most commonly include missing lines or incorrect 

sensor calibration. When pre-processing digital remote sensing images in general, 

radiometric corrections should always be applied first, because geometric 

corrections sometimes, as well as speckle filtering change the original value of 

pixels, but radiometric corrections require unchanged values to be effective. Also, 

terrain corrections often rotate or otherwise geometrically transform the image, which 

could result in systematic radiometric errors (like missing lines) being transferred to 

multiple lines, thus making them more difficult to correct. 

Radiometric corrections were carried out as the first part of pre-processing 

and were done using the latest version of ESA’s NEST (Next ESA SAR Toolbox) 

software, which was 5.1, at the time of writing this paper. In order to use a PRI-

formatted image in NEST’s Terrain Correction operator, the image must first be 

radiometrically corrected. These corrections include correcting for antenna pattern 

gain, range spreading loss and analogue to digital convertor power loss. All these 

actions are performed by applying the Remove Antenna Pattern operator on the 

images. 

After having applied the radiometric corrections, a 3x3 median speckle filter 

was applied to the image. The effects and drawbacks of speckle filtering are 

discussed in chapter 2.4.3. Because of the way speckle filtering works, we can only 

expect some loss of detail, but reducing speckle is more important and the loss of 

detail should not have significant influence on the final results. 
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Geometric corrections in this case include corrections of terrain induced 

errors, modelling the instrument’s orbit and automatic geocoding. This process 

should not significantly influence the backscattering values recorded by the sensor. 

Terrain induced errors are discussed in chapter 2.3. Orbit modelling is 

important to know the satellite’s precise position at the time the image was taken, 

which in turn helps with precise geocoding. Geometric corrections are commonly 

applied as the last step of image pre-processing, because, they often include 

geocoding and resampling of the image. 

 All the necessary geometric corrections were carried out using NEST’s SAR-

Simulation Terrain Correction operator. This operator runs in three phases: 

1. SAR Simulation: 

a. First, it generates a simulated SAR image using a given DEM, 

geocoding and orbit state vectors, and generates a model of SAR 

image geometry. The simulated image has the same size and 

resolution as the original image. 

b. Then, the position of each DEM cell inside the simulated SAR image 

is calculated.  

c. Finally, the program calculates the backscattering intensity sigma0, 

based on the backscattering model generated in step a. 

2. Co-registration 

a. The simulated SAR image and the original SAR image are co-

registered, and a function, which assigns every pixel from the 

simulated image to the position of a pixel in the original image, is 

created. The accuracy of co-registration depends, aside from other 

factors, on the number of control points. In my paper, I used the default 

number of control points, which is 200, and should be sufficient for a 

precise enough co-registration.  

3. Terrain Correction 
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a. Traverse the DEM grid, and for each cell computes its position in the 

simulated SAR image. 

b. The cell’s position (step a) can then be found in the original SAR image 

with the help of the function produced in step 2a.  

c. The pixel value for the orthorectified image can then be obtained from 

the original SAR image using Interpolation. 

The operator settings were applied as follows: In the SAR-Simulation tab of 

the operator’s setting window, I chose both amplitude and intensity to be processed, 

selected the DEM I have obtained for this purpose and checked the ‘Save Layover-

Shadow Mask’ checkbox. I have kept the default values in the GCP-Selection tab, 

because the recommended number of ground control points should be sufficient for 

precise geocoding of a standard ERS image, and checked ‘Apply radiometric 

normalization’ and ‘Save Sigma0 band’. The Sigma0 band will be used for image 

classification. The radiometrically normalized Sigma0 band reduces the effect of 

local incidence angle on backscattering (step 1c in the SAR Simulation Terrain 

Correction operator), which makes the final backscattering correspond better to the 

actual backscattering properties of the surface. 

The SAR-Simulation Terrain Correction operator also geocodes the images, 

so I have chosen to have the results geocoded in WGS84 projection. 

For more details on the tools used in this part of the pre-processing phase, 

please refer to ESA (c2000-2014). 

As mentioned before, all of these corrections are generally used to help 

achieve a better result, especially radiometric corrections, corrections of terrain-

induced errors and geocoding are necessary to achieve an image that is suitable for 

further processing, and the changes induced in the images by these corrections are 

considered negligible, especially when compared to the significant errors that can 

be found in the original images. Also, this pre-processing procedure corresponds to 

that used by other authors. 
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Figure 20: The exact test area and masks of water, forest and layover/shadow. Background map: 

National Geographic, Esri, DeLorme, HERE, iPC, NRCAN, METI (2014?). 

 Finally, I created a new Sigma0 band in dB by using NEST’s Linear to/from 

dB operator. The resulting image contains a band in dB, another band in linear units 

and a band of layover and shadow mask. The last step then was to export the bands 

images to GeoTIFF format, so that they can be opened in ArcMap for further 

processing. I did not need all the bands to be exported, only the σ0 band in dB and 

in linear units, and the layover/shadow mask. 
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 After having completed the above steps, the next part of pre-processing took 

place in ArcMap 10.1. First of all, I had to address the issue of performance, because 

the images exported from NEST were very large and my computer was unable to 

work with them efficiently. This is why I decided to only work with a portion of the 

total area covered on the satellite images. The final test area is depicted in figure 19. 

 

Figure 21: A flowchart of the pre-processing phase. 

Once the images have been clipped, I have masked out areas affected by layover 

and shadow, and then forest and open water areas. Layover and shadow mask was 

derived during terrain corrections in NEST, while forest and water mask were derived 

from CORINE land cover dataset. Forest mask includes areas that have been 

classified as borad-leaved, coniferous or mixed forest while the water mask includes 

rivers, water bodies, coastal lagoons, estuaries and sea and ocean. Also the water 

and forest mask can be seen in figure 20, as well as layover and shadow. 

After having performed all the pre-processing steps on all three images, I had 

a set of six images – an image in linear units and another in dB for each date. All 

images are geometrically and radiometrically corrected and masked for areas I 
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wanted to leave out of the classification process. The pre-processing phase is simply 

depicted in a flowchart in figure 21. The resulting images are ready to be applied as 

input in a snow wetness classifiaction algorithm. 

4.3.2 The classification algorithm 

In this paper, I have chosen to classify wet snow by using the algorithm developed 

by Malnes and Guneriussen (2002) (see chapter 3.4.4.1.3 for further details on this 

algorithm) and compare its performance with data in linear units and in dB. The 

reason to base my work on a relatively old paper, was the fact, that this is the newest 

paper that has made significant progress with non-polarimetric data, and also that 

many other authors base their work on the work of Malnes and Guneriussen (2002), 

attempting to resolve the issue of classifying dry snow. However, as the amount of 

relatively new articles described previously in this paper suggests, the topic of wet 

snow monitoring with single polarization C-band SAR is still active, in spite of the 

fact that it seems to have hit a dead end and many of the papers are still based on 

older techniques. C-band SAR can still provide valuable information about snow 

cover, and there are currently no plans of launching an instrument with better 

parameters for snow monitoring, even though there is an ongoing research on this 

topic, like the aforementioned CoReH2O project, so trying to improve current 

methods is still an attractive research topic. 

In order to be able to use data in linear units, the algorithm must be slightly 

modified. When working with decibel data, I need to calculate the difference between 

the reference image and the image of interest. However, with data in linear units, a 

ratio image must be calculated (reference image/image of interest, see Bartsch 

(2007)).  

 Another difference between classifying data in dB and in linear units is the 

threshold value. While for the images in dB, the soft threshold I have used is centred 

at -3 dB, in case of data in linear units the threshold is centred at 2. These are the 

thresholds used by Malnes and Guneriussen (2002) and Bartsch (2007) for data in 

dB and linear units, respectively. The images were classified using ArcMap 10.1 and 

its Raster Calculator tool. The classification of images in dB was conducted using 

formula 7 (see chapter 3.4.4.1.3). I have chosen to set the a parameter value to 1 

(both for classification of dB and linear data), because it does not seem to have any 

significant effect on the classification results.  
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 The classification formula had to be slightly modified for linear data, for 

several reasons. First of all, the threshold value is different. Also, with data in dB 

values, values lower than threshold are classified as wet snow, while with data in 

linear values, pixels with value higher than threshold are classified as wet snow. 

These two issues can be solved by simply changing the threshold value in the 

formula and by flipping the sign before the hyperbolic tangent. The result of this 

modification is formula 8. 

𝟖: 𝐹(𝑥) =  50 + 50 ∗ tanh[𝑎 ∗ (𝑥 − 2)]  % 

 The final issue that needed to be addressed is slightly bigger and has several 

possible solutions. For the classification function to result in a value of 0, the 

parameter of the hyperbolic tangent must be slightly lower than -19. However, the 

linear values are always positive, which means that the classification never reaches 

0 and would never classify a pixel as entirely snow free. 

To solve this problem, I needed to make the classification curve be able to 

reach both extreme values (0 and 100) within the given dataset. A possible solution 

would be to use a number larger than 1 for parameter a. I have decided not to choose 

this path, because it would make the classification curve so steep that using a “soft” 

threshold and sub-pixel classification would no longer make sense, because the 

results would be nearly identical to classification with a “hard” threshold. It would also 

make the classification results of dB and linear values incomparable, as well as it 

would affect the possibility of retrieving dry snow from the classification results. 

Eventually I have decided to not change the classification function, and rather 

reclassify the values that are close to 0 or 100. The result is, that values lower than 

5 are reclassified to 0 and values higher than 95 are reclassified to 100. This 

procedure maintains comparability, if applied on all linear and dB datasets, and also 

minimizes loss of information gathered by the sub-pixel classification process, as 

well as it maintains the possibility to classify dry snow. 
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Figure 22: 0% wet snow mask (in pink). Black pixels contain more than 0% of wet snow, white pixels 

represent areas where no data could be achieved due to topographic effects or water/forest presence. 
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Figure 23: 100% wet snow mask (in pink). Black pixels contain less than 100% of wet snow, white 

pixels represent areas where no data could be achieved due to topographic effects or water/forest 

presence. 
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The final phase of classification where dry snow is being identified, can be 

affected by this modification. However, this is not necessarily a bad thing, because 

it eventually leads to an increase in the number of pixels classified as dry snow or 

bare ground, and Malnes & Guneriussen (2002) have found, that their algorithm 

falsely classifies many pixels as wet snow, while they should have been classified 

as dry snow or bare ground. So this modification might, in fact, help improve the 

overall classification accuracy. 

After having performed the reclassification, the final step is finding dry snow. 

As a prerequisite for this part of the classification process, I needed to create masks 

of snow-free pixels (or pixels containing less than 5 % wet snow before the 

reclassification), as well as a mask of pixels with 100 % wet snow (more than 95 % 

before reclassification). These masks are presented in figures 22 and 23. 

In order to identify pixels that contain dry snow, the median altitude of pixels 

containing 100 % wet snow is calculated. Then, pixels lying above the median 

altitude and not containing any wet snow, are classified as dry snow. Table 7 

summarizes the median altitude for both images in both dB and linear units. The 

median altitude was calculated in R, using the RGDAL library and its readTIFF 

function. The table contains values for both images in linear and dB values, 

processed by the modified algorithm. In order to maintain close comparability 

between datasets in dB and in linear values, I had to use the same parameter a while 

processing both datasets (a = 1 in this case, because using a smaller value would 

result in linear data getting even further from zero). I have also processed the 

datasets in dB using the original classification procedure as suggested by Malnes & 

Guneriussen (2002), while also processing it with the modified algorithm and the 

parameter value equal to 0.5, so that the impact of the algorithm modification can be 

examined. 

From this table, we can presume that the highest amount of pixels classified 

as dry snow will occur in the dB image from 1998, classified with a = 0.5. The other 

image with a very low median altitude of 100% wet snow will probably contain much 

fewer pixels that will enter the process of masking by altitude, because it is the only 

case where I did not apply the reclassification rule of changing the values lower than 

5 to 0, thus maintaining the original procedure suggested by Malnes & Guneriussen 

(2002). 
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 dB a=0.5, orig dB a=0.5 dB a=1 Linear a=1 

1998/04/13 1258 1261 1268 1264 

2008/05/05 1369 1278 1265 1273 

 Table 7: Median altitude of pixels containing 100% wet snow. 

After having calculated the median altitudes, all pixels lying above the median 

altitude and classified as no wet snow, are reclassified as dry snow. Then, the final 

version of the classified image can be produced by combining the results of wet and 

dry snow classification. The entire classification process is described in a flowchart 

in figure 24. The results are presented and discussed in the following chapter. 

 

Figure 24: The classification process  
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CHAPTER 5 

Results & discussion 

Figures 25 and 26 show the snow maps resulting from the classification process 

described in the previous chapter. A total of four variations of the classification 

algorithm were used, and the results vary significantly, depending on the procedure.  

 Error assessment was carried out by generating 20 random points inside the 

test area, and then comparing the values of pixels lying on these points. The 

seNorge model served as the reference dataset. Due to a significant difference in 

spatial resolution between the classified ERS images and the model’s output (25 m 

vs. 500m), I found it appropriate to not compare a single pixel from the classified 

image against a single pixel in the reference image. Instead, I decided to create a 

200m buffer zone around each test point, and use the most frequent value inside 

this buffer zone as the classified value. This procedure was carried out for each of 

the eight classified images and the results can be seen in tables 8 and 9. 

 Another way of error assessment is visual comparison of the two datasets 

(classified image and seNorge’s model output), which is a procedure that does not 

offer any quantifiable result, but can provide a nice overview of the situation. The 

model outputs can be seen in figures 27 and 28.Unfortunately, these images are 

taken from an external source, so I had very little control over their appearance, so 

they are missing important things like graphical legend or ground truth control 

points. 

 Upon visual inspection, the first thing to notice is, that the top-left image in 

figure 25, which was classified using the modified algorithm and a = 1, contains a 

lot of bare ground pixels, which probably should have been classified as either wet 

or dry snow. This is most likely caused by the parameter value, because higher 

parameter value reduces the amount of intermediate values in the classification 

result. This leads to more pixels being classified as either 100% wet snow or bare 
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ground. Another factor that probably has contributed to this, is the reclassification 

of values below 5 and above 95, which lead to an even higher number of pixels 

being classified as zero (bare ground). 
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Figure 25: Classification results for the modified algorithm with dB and linear data for a = 1 

 

Figure 26: Classification results for the original and modified algorithm with dB data and a = 0.5. 

In the other two images from 1998, which were classified from data in dB, 

we may notice a decrease in the number of pixels classified as bare ground, but 
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also fewer pixels classified as dry snow. This indicates, that the parameter value 

probably had stronger influence on wrongly classifying many pixels as bare 

ground, than the reclassification of values close to 0 or 100. 

 Also, all the 1998 dB images contain much more wet snow than they should, 

according to the seNorge’s model output. Because other researchers have found 

that thresholding techniques are quite reliable in classifying wet snow, I believe that 

this is probably caused by the difference in spatial resolution of the two products. 

Relatively coarse spatial resolution of the reference model may lead to ignoring small 

or narrow areas of wet snow in the output, which could explain these differences 

between the classified images and the ground truth image. But this still suggests, 

that in these images, we can expect some dry snow misclassified as wet snow. 

Otherwise, the general spatial distribution of dry snow is similar in all of the classified 

images and the reference ground truth image, which can be observed especially in 

the top left corner of the classified images, which roughly corresponds to the arc of 

dry snow in the ground truth image. 

 

Figure 27: Snow wetness on 13th April 1998 according to NVE. Green colour indicates no snow, 

yellow colour indicates very wet snow (above 10% liquid water content), purple indicates wet snow 

(2-9 liquid water) and blue colour indicates dry snow (less than 2% liquid water content) Source: NVE 

(2013?) 
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Table 8 confirms what visual inspection suggested – in the 1998 dB images, 

wet snow is almost always classified correctly, while dry snow is often misclassified 

as wet snow or bare ground. The possible reasons for misclassifying dry snow as 

bare ground were discussed earlier. Misclassification of dry snow as wet snow might 

have been caused by different time of acquisition of the data, as especially during 

the melting period, snow may freeze over night, and then start melting again during 

the day. SeNorge’s model output is calculated to 8AM, while the 1998 image was 

taken around 10:30 AM, which might have caused some difference in snow wetness. 

Also, the aforementioned coarse spatial resolution of the ground truth model output 

may have caused smaller areas of wet snow to be ignored, and classified as dry 

snow. 

 

Figure 28: Snow wetness on 5th May 2008 according to NVE. Green colour indicates no snow, yellow 

colour indicates very wet snow (above 10% liquid water content), purple indicates wet snow (2-9 liquid 

water) and blue colour indicates dry snow (less than 2% liquid water content) Source: NVE (2013?) 

 The image from 1998, classified from linear values, contains hardly any pixels 

classified as dry snow or bare ground. Even though the spatial distriubution of dry 

snow pixels is similar to that of other 1998 images, the density of dry snow pixels is 
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still very low. Also the data in table 8 confirm very frequent cases of dry snow being 

misclassified as wet snow. These errors are most likely caused by very low amount 

of pixels classified as 0 or 100 compared to images in dB. This can also be seen in 

figures 22 and 23.  

This problem could not be observed in such a big scale on the linear image 

from 2008, mostly because there is very little dry snow in the 2008 scene. But still, 

when compared to the dB images and the ground truth image, there is much fewer 

pixels classified as dry snow in the linear image than in the others. These results 

suggest, that images in linear values are not suitable to be used in this algorithm, 

even though the algorithm has been modified to suit linear data. 

Ground truth 
point number 

real snow 
status 1998 a=0.5 1998 a=1 

1998 a=0.5 
orig. 1998 linear 

0 dry dry dry dry wet 

1 wet wet ground wet wet 

2 wet wet ground wet wet 

3 dry ground ground ground wet 

4 dry wet ground wet wet 

5 dry wet wet wet wet 

6 dry wet dry wet wet 

7 dry dry dry dry wet 

8 dry wet ground wet wet 

9 dry wet ground wet wet 

10 dry dry dry dry wet 

11 dry ground ground ground wet 

12 dry wet dry wet wet 

13 dry wet ground wet wet 

14 dry ground ground wet wet 

15 dry wet ground wet wet 

16 wet wet ground wet wet 

17 dry ground ground ground wet 

18 dry dry dry dry wet 

19 dry wet wet wet wet 

Table 8: Classification error assessment for the 1998 image 

 The 2008 scene was covered mostly by wet snow, with some areas of dry 

snow. The best results were achieved with the modified algorithm applied on data in 

dB values. Both results of the modified algorithm, with a = 0.5 and 1, show wet snow 

over most parts of the test area, and some areas of dry snow, which corresponds 

well to the ground truth image. Also the random point error assessment shows good 
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results. However, the dry snow areas are still very sparse, just like in the 1998 

images, and the only random point that was actually lying on dry snow, was 

misclassified as wet snow. The image that was classified with a = 1 also contains 

some bare ground pixels. These are very sparse and are located in areas where the 

ground truth image reports very wet snow (more than 5% of liquid water content), so 

these bare ground pixels might in fact be classified correctly, and are not visible in 

the ground truth image due to its spatial resolution. This possibility seems more likely 

than misclassification, because classification of very wet snow should be reliable 

with this method. 

The 2008 scene classified with the original algorithm contains hardly any dry 

snow pixels, and looks very similar to the 2008 linear image. These two images also 

contain the same misclassification of wet snow. 

Ground truth 
point number 

real snow 
status 2008 a=0.5 2008 a=1 

2008 a=0.5 
orig. 2008_linear 

0 wet wet wet wet wet 

1 wet wet wet ground ground 

2 wet wet wet wet wet 

3 wet wet wet wet wet 

4 wet wet wet wet wet 

5 wet wet wet wet wet 

6 wet wet wet wet wet 

7 wet wet wet wet wet 

8 wet wet wet wet wet 

9 wet wet wet wet wet 

10 wet wet wet wet wet 

11 wet wet wet wet wet 

12 dry wet wet wet wet 

13 wet wet wet wet wet 

14 wet wet wet wet wet 

15 wet wet wet wet wet 

16 wet wet wet wet wet 

17 wet wet wet wet wet 

18 wet wet wet wet wet 

19 wet wet wet wet wet 

Table 9: Classification error assessment for the 2008 image 

In the case of 2008 data, both visual inspection and random point error 

assessment suggest, that the best results were achieved by applying the modified 
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algorithm on dB data. The value of parameter a plays an important role in classifying 

dry snow and bare ground, and slightly better results were achieved with a = 1. 

Data from 1998 were best classified by the modified algorithm and the original 

algorithm, both with a = 0.5. The modified algorithm with a = 1 achieved nearly the 

same error rate in random point error assessment, but clearly misclassified many 

pixels as bare ground. 

The most reliable results were achieved in classifying wet snow – only very 

few pixels that contained wet snow were misclassified. This is not very surprising, 

since the classification algorithm is derived from algorithms that have proven their 

capability in classifying wet snow.  
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CHAPTER 6 

Summary 

I have examined several algorithms for classifying wet snow from SAR data. One 

of these algorithms was modified and applied on SAR data in different units. The 

original algorithm was also applied on the same datasets, and the results were 

compared.  

 The best classification results were achieved with the modified algorithm 

and dB data, even though the original algorithm performed nearly just as well. The 

modification consists of reclassifying results of sub-pixel wet snow classification so 

that values < 5 become 0 and values > 95 become 100. 

The attempt to achieve better classification results, by modifying the 

algorithm so that it can process data in linear values, failed. Probably because the 

linear images classified with the wet snow sub-pixel classifier have too many 

intermediate values and not enough extremes indicating either bare ground or 

100% wet snow. These extreme values are crucial for being able to distinguish 

bare ground from dry snow. The classification results contained only a few dry 

snow pixels, and while the spatial distribution of these pixels was correct, there 

was still much more wet snow pixels in the areas that should have been classified 

as dry snow. In order to be able to use linear data for classifying dry snow, a 

different approach should probably be considered. 

The best results were achieved with classifying wet snow. Even though in 

some cases (1998 dB with a = 1) pixels that probably should have been classified 

as wet snow were classified as bare ground, either because of the temporal 

difference between ground truth data (8AM) and the satellite image (10:30 AM), or 

due to the fact that parameter a = 1 results in more pixels being classified as 

extreme values.  
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Wet snow extent seems to be overestimated in the 1998 images, and it 

looks like some areas should have been classified as dry snow. This might have 

been cause by the difference in spatial resolution between ground truth data and 

the classified image, as the wet snow areas are not very big, so they may have 

been classified as dry snow in the ground truth model output, because most of the 

pixel area was covered by dry snow.  

Dry snow classification was not so successful. The spatial distribution of dry 

snow pixels roughly corresponds to ground truth, but dry snow areas still contain a 

lot of wet snow pixels (this issue is much less significant in dB data). In the case of 

dB data, this may have, again, been caused by the difference in spatial resolution 

between ground truth and the classified image. 

The value of parameter a in the classification function seems to have a 

significant effect on dry snow classification, which can be seen very well on the 

example of 1998 dB image. The image classified with a = 1 contains a lot of bare 

ground pixels (that should have been classified as snow), but also much more dry 

snow, which, in turn, is correct. However, on the 2008 dB images, it seems that the 

image with a = 1 has better results than the image with a = 0.5. But on the 2008 

image there is very little dry snow, so this may be misleading. I have not been able 

to find any lead that would suggest which parameter value is better for which use 

case, so this requires further research. 
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