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Název práce: Hledáńı ve videu pomoćı signatur
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Introduction

The volume of video data has been increasing rapidly over the last years which
poses a challenge to the state-of-the-art video management and retrieval systems.
Independently on the volume and the nature of the data, users still expect
fast and accurate responses as well as simple user interfaces to specify a query
and to intuitively browse the results. These demands are making designing
a system for video indexing and retrieval a true challenge.

A large amount of attention is paid to the systems based on semantic anno-
tation [11, 15] allowing users to specify textual queries. To deal with the lack
of annotation, complex concept and event detectors are being employed, but de-
spite the progress made in the last years, the semantic gap 1 still persists. If we
consider just the reliably detectable common concepts (e.g., human faces [3, 33]
or cars [14, 31]), we may end up with zero annotation, thus we cannot rely on them
exclusively.

For these reasons the general-purpose content-based methods are getting
more popular. Many visual descriptors [9, 27, 29] were introduced to enable fast
extraction, indexing and searching in large scale video archives. The systems [24]
based on these descriptors usually demand an example as a query; however, such
an example may not be always available. In such cases the user has to put
an effort into obtaining the example, say using Google Images, which can be time
consuming or even impossible in some cases. Let us give an example: We are
searching for a clip with a particular TV studio interior, filmed from an unusual
angle while do not have an example. If we try to find the example in an independent
image database with the phrase ”TV studio” we will probably retrieve plenty
of relevant results and it might be hard to find such image that is visually close
to the searched scene.

This scenario matches the problem of the so-called Known-Item Search (KIS),
where the user “knows” what object (i.e., a video clip) she is searching for (by imag-
ination and/or textual description), however, she has no example to run a tradi-
tional query (an example video shot/key-frame in our case). By allowing users
to specify the searched clip directly, for example with a sketch [7, 10], the un-
comfortable need of example can be eliminated. It is crucial, however, to keep
the user interface as simple as possible. Such descriptor shall be utilized that is
descriptive enough, is understandable to users and can be easily specified.

Respecting the mentioned demands, we utilize the feature signatures [26],
where a video key-frame is represented by a set of it’s color regions. Such simple
representation enables users to specify these regions directly in simple sketches.
Unlike the fixed grid features, the feature signatures are able to capture even less
significant color regions and adapt to the complexity of a key-frame. For instance,
the representation of a single-colored key frame comprises only few color regions
while in the case of a more complex scene the representation is also more complex.
Moreover, the resulting 5-dimensional feature space together with Euclidean
distance makes the retrieval process efficient.

1The gap between raw pixel data and the semantic meaning — easy to overcome for humans
yet a tremendous problem for machines.
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In this thesis, we describe in detail a novel video retrieval model based on the fea-
ture signatures enabling an effective KIS in video data. We also present an award
winning 2 tool implementing the proposed model – Signature-Based Video Browser
(SBVB) – which is capable of indexing and searching of up to tens of hours of video
content.

Structure

At first, we gently introduce basic concepts used in the similarity searching
and discuss key features being employed in the current state-of-the-art tools
(Chapter 1). Then, the feature signatures based video retrieval model is presented
(Chap. 2) paying special attention to the possibilities of indexing the feature space
(Chap. 3). Since the user interface plays a crucial role in the overall performance
of SBVB, we present and vindicate our solution in detail (Chap. 4). Finally,
we find the optimal setup of the model, ranging from various model parameters
to indexing techniques, via experiments with real data (Chap. 5). The results are
then summarized in the conclusion.

An important and integral part of this thesis is the attached CD with an imple-
mentation of the proposed model in C# programming language – SBVB. Besides
the complete sources and compiled ready-to-use binaries, the CD also contains
all the logs from the experiments and an already indexed video file suitable
for the first inspection of the tool. Since we have not encountered any significant
problem during the implementation, we just point out and discuss the interesting
parts of the code in a HTML document on the CD instead of devoting a whole
chapter for this purpose.

Key Contributions

The key contributions of this thesis can be listed as follows:

• We propose and describe in detail a novel video retrieval model based
on feature signatures suitable for visual and textual KIS in video.

• We analyze users behavior, possibilities of indexing the feature space
and the model parameters and propose the optimal setup of the model.

• We present SBVB – an award winning tool for the KIS in video which
implements the proposed model.

2The tool was presented at Video Browser Showdown (VBS) [1] and clearly outperformed
the tools of other participants. We report more details in Chapter 5.
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Preliminaries

In this chapter, we shortly summarize necessary basic concepts used in the field
of similarity search. Namely, we define a Metric space along with common query
paradigms and a Vector space over the real numbers as an example. We also
describe in principle the k-means clustering widely used in the processing of visual
data.

Metric and Vector Spaces

A Metric space M is a pair M = (D, d), where D denotes a set of objects and d is
a distance function D× D→ R (R is the set of real numbers) satisfying following
conditions:

d(x, y) ≥ 0 (non-negativity)

d(x, y) = 0 iff x = y (identity)

d(x, y) = d(y, x) (symmetry)

d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality)

A Metric space forms a similarity model together with the query-by-example
searching paradigm, where a query is formed by an object example q ∈ D
and an additional constraint defining a subset of D to be returned. Basic types
of queries are range query (q, r) returning all the objects within the range r (i.e.,
{x ∈ D | d(q, x) ≤ r}) and k nearest neighbor query (q, k) where the set of k
nearest objects to q from D is returned [34].

As the distance function may be costly to compute or the Metric space can
contain a large amount of objects, an indexing technique has to be introduced
for efficient query processing. Some datasets are of course harder to index than
others. To capture this property, we define the intrinsic dimensionality [5] based
on a basic statistical analysis (1), where µ and σ denotes the mean and variance
respectively of all the pairwise distances between the objects from D. The higher
the intrinsic dimensionality is, the less clusters 3 the dataset contains which
indicates less possibilities to prune the space efficiently.

idimD =
µ2

2σ2
(1)

As an example of a Metric space, we present the d-dimensional Vector space 4

over the real numbers Rd along with the Lp metric (for p ≥ 1) defined as

Lp(x, y) =

(
d∑

i=1

|xi − yi|p
) 1

p

(2)

where p is typically 1 (Manhattan distance), 2 (Euclidean distance) or∞ (Maximal
distance). Once particular dimensions of a Vector space have different meanings,

3A group of objects close to each other and far from the objects outside the group.
4From now on, we assume that a Vector space is over the real numbers unless stated otherwise.
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we can introduce weights wi to the distance function (3) in order to reflect these
differences.

L
′

p(x, y) =

(
d∑

i=1

wi|xi − yi|p
) 1

p

(3)

For example, with p = 2 we get a weighed Euclidean distance.
Note that Vector spaces have many important properties enriching the variety

of possible indexing techniques in comparison with general Metric spaces. For ex-
ample, since Vector spaces have defined operations such as addition of two vectors
or multiplication of a vector and a scalar, new vectors can be ”created” using
these operations. Also, an arbitrary finite set of vectors can be easily bounded,
for example, with a sphere or cuboid.

K-means Clustering

The k-means clustering is a kind of cluster analysis — grouping a set of objects
to clusters so that within a cluster, objects are more similar to each other than
to objects in other clusters. More specifically, it operates over a Vector space
and for a given set of points and k, the goal is to estimate k cluster centers (means)
so that the sum of distances of the points to the nearest mean is minimal possible.

This problem is actually NP-hard [8] and thus heuristic algorithms are being
employed. We present the original algorithm [16] based on the iterative process
of within-cluster sum of distances optimization.

Given a set of points X and an initial set of k means m
(1)
1 . . .m

(1)
k (e.g. random

points from X) the two following steps are repeated until a terminating condition
is reached.

Assigning points to means: Assign the points to the nearest mean.

S
(t)
i = {x ∈ X |L2(x,m

(t)
i ) ≤ L2(x,m

(t)
j )∀j = 1 . . . k} (4)

Updating means: Update the means according to the previous assignment.

m
(t+1)
i =

1

|S(t)
i |

∑
x∈S(t)

i

x (5)

The algorithm converges to a local optimum once S
(t)
i = S

(t+1)
i for every i;

however, it is not guaranteed that the global optimum will be found in this process.
It is also common to terminate the algorithm earlier, for example, after a limited
number of iterations.
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1. Related Work

Tools for the KIS in video are being evaluated at various multimedia retrieval
events, like the VBS workshop at the Multimedia Modeling (MMM) conference
series. In this particular case, the usage of a textual query is prohibited; thus,
participants are forced to introduce innovative and interactive interfaces to their
tools which makes the event even more interesting. Visual as well as textual KIS
tasks are evaluated in both single video and video archive scopes. We shortly
describe the tools of all the participants of VBS 2014.

David Scott et al. [28] participated with a tool based on the automated semantic
annotation of both audio and video data. In particular, occurrences of 60 visual
concepts were identified and indexed using the current state-of-the-art methods
such as Scale-Invariant Feature Transform (SIFT), Support Vector Machine (SVM)
and Bag of Visual Words (BoVW). The tool enabled a visual similarity search and
a face browsing, where all the faces found in the video were presented and users
could list the shots in which selected faces appeared.

Similar approach was followed by Anastasia Moumtzidou et al. [21]. More than
300 concepts were detected via the current state-of-the-art methods and visual
similarity search was supported with MPEG-7 and Speeded Up Robust Fea-
tures (SURF). Agglomerative hierarchical clustering of the segmented shots were
employed in order to provide a hierarchical view of the results.

A very innovative tool introduced by Claudiu Cob Arza et al. [6] exploited
the advantages of collaborative search. In contrast to the previous approaches, only
simple descriptors such as MPEG-7 color layout and motion histogram [27] were
extracted. Users could specify the desired scene (via dominant color, background
and foreground movement, scene duration etc.) simultaneously on several devices
such as tablets or smart-phones. Promising results could be marked for further
examination by any of the collaborators.

A tool benefiting from both concept detectors and simple color descriptors
was presented by the team from NII and UIT [22]. The training data for concept
classifiers were obtained from Google Images; in addition, a simple 4x3 grid
of dominant colors for each video segment was calculated. Users could specify
a sequence of patterns comprising concept occurrences and grid-like color sketch
to filter out the irrelevant segments of a video. Results were presented in a coarse-
to-fine manner ensuring optimal space utilization and easy browsing.

Werner Bailer et al. [2] introduced a video browsing tool originally created
for media production where a high redundancy is expected. Low-level features such
as a global color distribution, camera motion and object trajectories were extracted
and aggregated into MPEG-7 descriptors in addition to SURF descriptors. Both
used to cluster the video segments and to enable a visual similarity search.

Finally, we joined VBS with the tool described in this thesis – SBVB. The basic
principle of the tool from the user as well as the algorithmic point of view was
already published [17, 19], however, this thesis goes in much more detail.
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Let us summarize the key features appearing repetitively in the tools of other
participants:

1. Concept detection [21, 22, 28]

2. Low-level visual descriptors [2, 6, 22]

3. Enhanced results presentation [6, 21, 22]

4. Visual similarity search [2, 21, 28]

In our approach, we employ low-level visual descriptors – feature signatures and
a visual similarity search based on this descriptor. We also propose a technique
how to include the concept-based filtering in our tool. Furthermore, the problem
of the results presentation is addressed in Chapter 4.
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2. Retrieval Model

In this chapter, we describe the employed retrieval model for searching video
clips of user interest. Since humans are naturally able to process visual stimuli
very quickly and to remember the color and position of distinct color regions
in the observed scene, we believe that extracting these color regions and enabling
users to specify them, is sufficient to form an effective video retrieval model.

Let us show two examples (Fig. 2.1) with occurrences of distinct color regions
which are, however, not dominant (in terms of the occupied area). The color
together with the position of such color region is very descriptive and can be easily
remembered and later specified. In order to capture even less dominant regions,
we employ the feature signatures [26] as described in the following section.

(a) The red braces. (b) The red microphone.

Figure 2.1 Examples of distinct however not dominant color regions.

2.1 Key-frame Representation

For the reasons mentioned above, we focus on position-color feature signatures that
can flexibly aggregate and simply represent the color distribution of the contents
of the key-frames. In order to extract a feature signature from a given key-frame,
the extraction algorithm maps all pixels of the key-frame into 5-dimensional
feature space 1 F ⊂ R5 and then performs an adaptive variant of the k-means
algorithm [12].

The algorithm results in the set of centroids of detected clusters (ideally centers
of distinct color regions in the key-frame) forming feature signature FS ⊂ F,
where the initial set of centers for the k-means is distributed uniformly. Due
to the adaptive nature of the utilized k-means algorithm, the feature signatures
vary in the number of centroids respecting the complexity of the key-frames.
Besides the color and position of centroids, the weight (i.e., the number of pixels
contributing to the cluster) could be extracted; however, in this work we do
not utilize this information in the retrieval model. We will discuss this problem
in the conclusion.

An example of a feature signature is shown in Fig. 2.2, where we may observe
that the utilized feature signatures can be simply and intuitively interpreted as
a rough approximation of the original image. Furthermore, such simple colored

1The feature space is formed by coordinates (x, y, L, a, b), where x, y denotes the position
of the pixel and L, a, b represents its color in the CIE LAB color space [32].
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circles can be directly entered by users trying to define their query intent which
can substitute the uncomfortable need of an example query image.

Figure 2.2 A key-frame and
the visualization of the fea-
ture signature. For each cen-
troid a circle with the corre-
sponding color and position is
drawn. The weight of the cen-
troid is depicted as the diame-
ter of the circle.

The video retrieval techniques also try to reduce the number of key-frames
by selecting only the representative ones. However, employing a scene detection and
representing the detected scenes with only one key-frame would bring a possibility
of not capturing some of the less significant color regions. For this reason, we
decided to select simply every k-th frame for the feature signatures extraction.
Although this method may introduce a noticeable overhead, it gives the desired
robustness to the retrieval model. Furthermore, the extraction is still reasonably
fast allowing to extract the feature signatures from an hour of video within a few
minutes. One feature signature comprises tens of centroids and it is sufficient
to reserve only 3 bytes for the color and 4 bytes for the position. As a result,
the memory demands are reasonably low 2.

2.2 Retrieval Algorithm

Let us assume that we have already extracted the feature signatures FSi = {rij}
for the selected key-frames Fi where rij denotes the j-th centroid of the i-th
feature signature. Users are enabled to specify a simple sketch of the viewed
scene with colored circles(i.e. user-defined centroids) which allows to represent
a query in the same way as the extracted feature signatures. Since users may
memorize only the most distinct color regions from the searched scene, we expect
only a few query centroids to be specified; hence, the model uses local instead
of global matching. For a user defined query FSu = {ruv}mv=1 the ranking for each
key-frame is calculated according to (2.1).

rankui = avg
∀ruv∈FSu

(distuvi −minDuv)

(maxDuv −minDuv)
where (2.1a)

distuvi = min
∀rij∈FSi

L2(rij, ruv) and Duv = {distuvi | ∀i} (2.1b)

The searched clip may consist of more than one visually discriminative scene
and a sequence of sketches would be more descriptive. For this reason, users are
enabled to specify two (and possibly more) time-ordered query sketches. The
overall ranking for a two-sketch query FSu followed by FSw in the user-defined
range ε is calculated according to (2.2).

2In practice, it is sufficient to process 2 frames per second. Assuming the proposed 7-byte
representation and 25 centroids per frame, an hour of video produces less than 2Mb of meta-data.
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ranki = rankui +
i+ε+1

min
k=i+1

rankwk (2.2)

Once we obtain the overall rankings, it is desirable to merge near-duplicate
results generated by the dense key-frame representation. We accomplish that
with the Alg. 1, where the function Neighbor returns all the key-frames from
the predefined neighborhood, say 10 seconds around the popped key-frame. Note
that the algorithm produces properly sorted results.

Algorithm 1 Results merging

queue ← overall rankings . A queue ordered with respect to the ranking
merged ← empty . A list of the results after merging
while queue.NonEmpty() do

result ← queue.Pop()
merged.Add(result)
queue.Remove(Neighbor(result))

end while
return merged

The model presented so far demands the database to be fully scanned. Al-
though the computation of the distances is not expensive, the overall processing
of a query is not feasible once the dataset grows significantly. Moreover, it is
clear that some centroids in the database are completely irrelevant for the query
ranking. For example, if a user specifies a yellow centroid in the left-bottom
corner of the sketch, a black database centroid situated in the right-top corner
of a key-frame will not contribute to the query ranking and thus can be omitted.

Once we appropriately prune the database for a particular query centroid,
the ranking of a key-frame having all the centroids pruned is undefined according
to (2.1). In such case, we set the ranking to 1 meaning the worst match. It is clear,
that correct definition of database centroid relevancy is crucial for maintaining
the effectiveness of the model. We will show in the experiments (Chap. 5) that
the relevant database centroids for a query centroid are defined with a range query.

2.3 Further Concept-Based Filtering

The concept detection is becoming a common procedure and the dataset may be
even already annotated. Therefore, we also propose how to enhance the retrieval
model with further concept-based filtering. For concepts Cj and key-frames Fi,
we assume that the concept detections result into a set of probabilities Cji ∈ [0; 1]
meaning that the key-frame Fi contains the concept Cj with the probability Cji.

Users are enabled to specify whether a particular concept is present in the sear-
ched scene or not. The ranking rankui defined by (2.1) is updated according
to (2.3), where Cdef is the set of concepts which occurrences were specified by a user,
and α is user-defined constant defining the weight of the filters. Note that rank∗ui
is again within the [0, 1] interval.

11



rank∗ui = (1− α)rankui + α
1

|Cdef |
∑

Cj∈Cdef

C∗ji where

C∗ji =

{
Cji if Cj shall occur
1− Cji if Cj shall not occur

(2.3)

2.4 Time complexity

In this section, we determine the time complexity of the proposed algorithm in case
that the user specified a query with two sketches FSu = {ruv}mv=1 and FSw =
{rwv}nv=1. Let the set of relevant centroids in the database for a particular query
centroid ruv be Ruv. Every Ruv defines a set Fuv of the relevant key-frames such
that their feature signature contains at least one relevant centroid. The query
centroid with the highest amount of the relevant centroids will be denoted by rmax.
Finally, let us define the overall relevant key-frames as Frel =

⋃
rx∈FSu∪FSw

Fx.
The algorithm can be divided into the following steps:

1. Centroid ranking. Since |Fuv| ≤ |Ruv|, the work done by ranking
Fuv (2.1b) is O (|Ruv|). Thus, the total work done in this step can be
bounded with O ((m+ n) |Rmax|)

2. Ranking aggregation The time needed for aggregating (2.1a) the cen-
troid rankings is again O ((m+ n) |Rmax|) while for determining the overall
ranking (2.2) is O (ε|Frel|).

3. Results merging Following the Alg. (1), it is clear that each relevant
key-frame is inserted into the priority queue and either popped or removed
only once and thus the total work done in this step is O (|Frel| log |Frel|).

Finally, we get O (|Frel| log |Frel|+ ε|Frel|+ (m+ n) |Rmax|), where we expect
ε to be less than 20 seconds and Rmax to be less than 5% of the database.
The pitfall is that in practice, Frel = F , i.e., all the key-frames are relevant
for at least one query centroid.
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3. Indexing the Feature Space

In order to efficiently process range queries in the utilized 5-dimensional Vec-
tor space (x, y, L, a, b) using the Euclidean distance, we investigate both spa-
tial and metric indexing approaches, each represented by a suitable method.
Since the employed feature extraction does not favor any key-frame region, the dis-
tribution of the position coordinates show high degree of uniformity (Fig. 3.1)
and thus we have selected a Grid Index as the representative of spatial indexing
methods. As a Metric space method, we have selected the current state-of-the-art
technique – the M-Index [23]. As both techniques are well described in the litera-
ture, we will just review their most important properties.

x

0 50 100 150 200 250 300 350 400 450

(a) The histogram of x coordinates.

y

0 30 60 90 120 150 180 210 240 270

(b) The histogram of y coordinates.

Figure 3.1 The histogram of spatial coordinates of the centroids extracted
from the dataset used in the experiments (Chap. 5).

3.1 Grid Index

The Grid Index divides the feature space into uniform cuboid-like bins, where
the number of bins grows exponentially with the space dimension which limits
this approach only for low-dimensional spaces. The advantage of the uniform Grid
Index is that the bin where an indexed centroid belongs can be directly computed.
When the index is queried with a range query (q, r), every bin having non-empty
intersection with the sphere defined by q and r has to be examined (blue-colored
bins in Fig. 3.2a).

3.2 M-Index

The M-Index is a member of the permutation-based index family where the pivots
(selected objects from the Metric space) help to dynamically cluster the feature
space with respect to the data distribution. More specifically, the M-Index uses
the repetitive Voronoi-based partitioning to define the cluster tree structure used
for efficient range query processing where all possible metric filtering principles
are combined (for more details, see [23]). The cluster tree is extended dynamically
when an amount of objects in a leaf cluster exceeds the cluster size parameter.
Besides the original M-Index, we employ the Cut-region extension [18](M-Index
CR) enabling additional filtering already in the upper levels of the cluster tree.
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q r

(a) A basic Grid Index.

q r

(b) A Grid Index enhanced with BSs.

Figure 3.2 2D Grid Index queried with a range query (q, r). The database
objects are depicted as black points.

Since the parameters of the M-Index, such as the pivot count or cluster size
are crucial for the M-Index performance, we carefully optimize these parameters
for every M-Index variant separately. Furthermore, the performance is affected
significantly by the pivot selection technique as described in the following section.

3.2.1 Pivot selection techniques

In was shown that some pivots cluster the space better than others [4] which
makes the pivot selection technique a point of interest. In particular, we can
achieve the same performance with fewer pivots or improve the performance using
the same number of pivots when we select them properly. The number of pivots
affects also the memory demands of the M-Index and the indexing time. Clearly,
it is desirable to optimize the pivot selection technique; therefore, we evaluate
the performance with the following techniques in the experiments (Chap. 5).

Data random The standard selection technique where the pivots are
selected randomly among the indexed objects.

Space random As the feature space is in fact a bounded Vector space
and the objects are distributed more or less uniformly, selecting the pivots
from the space randomly and independently of the data may be meaningful.

Heuristic This technique is based on the assumption that so called outliers
(objects far from others) are better pivots [4]. Although finding 1 these
outliers is computationally expensive, it may bring the desirable performance
gain in the querying phase.

3.3 Bounding Sphere Constraint

Since we work with a Vector space, we can improve the filtering power of the uti-
lized indexes by tight Bounding spheres (BSs) 2 evaluated dynamically for each
bin/cluster separately. The motivation is that additional bounding can describe
the region more tightly than grid bin or Voronoi-based cell cut-off by rings centered
in global pivots.

1We adopted the incremental method proposed in [4].
2Bounding spheres are also referred as enclosing balls or ball-regions.
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For a bin/cluster A with a BS BA(cA, rA) where cA and rA denote the center
and radius of the BS respectively and a range query (q, r), we can formulate
the Bounding Sphere Constraint :

d(q, cA) > r + rA (3.1)

If (3.1) holds, A can be omitted during the evaluation of the query since every
object in A is outside the query range (proof trivially implied by the Metric space
postulates).

The usage of BSs together with the Grid Index(Grid Index BS) is demonstrated
in Fig. 3.2b where the green bins can be skipped as their BSs do not intersect
the query sphere (q, r) (i.e., 3.1 holds). Note that we did not depict all the BSs
in order to keep the figure lucid. The Bounding Sphere Constraint can be also
utilized in the M-Index (M-Index BS) and M-Index CR (M-Index BS + CR).

3.3.1 Computing Bounding Spheres

Nevertheless, the creation and maintenance of BSs (finding centers and radii) can
be a costly indexing overhead and thus we employ the approximate Ritter’s BS
algorithm [25] suitable also for dynamic indexing. The algorithm, popular for its
efficiency and simplicity, starts with a small sphere, iterates over the given points
to be bounded and expands the sphere when needed. The process is depicted
in Fig. 3.3 where the sphere (c(t), r(t)) will be expanded to (c(t+1), r(t+1)) (dashed)
so that it bounds the current sphere as well as the point pt+1.

)(tc )1( tc 1tp

)(tr

)1( tr

Figure 3.3 A step of Ritter’s BS algorithm.

Needless to say, the algorithm gives only coarse results in comparison with the op-
timal BSs or other (more complicated) approximate algorithms [13, 30] and thus
the experimental results related to BSs should be interpreted as a proof-of-concept
only.
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4. User Interface

The User interface (UI) is a crucial part of SBVB as a cumbersome one would
make the tool ineffective. In this chapter, we describe and vindicate the UI
implemented in the tool available on the DVD. Our primary goal was the simplicity
and intuitiveness of the UI. We expect users to get familiar with the tool without
need of any user manual; nevertheless, reading this chapter should be sufficient
in case that something would be unclear.

4.1 Overall Layout

The UI depicted in Fig. 4.1 can be divided into two main areas where a query is
specified (right) and the results are presented (left). The latter dominates since it
is desirable to offer as much space as possible for the results presentation enabling
easy identification of the desired clip. Assuming a wide screen (which is more
common nowadays), we organized these two areas horizontally.

Figure 4.1 The overall layout of SBVB.

To utilize the whole available screen area, we suppressed the window frame
and SBVB runs in the full-screen mode by default. Since we target also less
skilled users, SBVB can be controlled utterly with a computer mouse leaving
the keyboard shortcuts, that might speed up the searching, for experienced users.

4.2 Control Panel

In this section we describe all the controls available for users to specify the files to be
searched, the query itself and also additional settings. We comment the depicted
controls (Fig. 4.2) in the order in which the controls would be used in a typical
usage scenario. The components highlighted in the figure are referred with capital
bold letters A–G.

Although the settings of the tool are optimized by default and users shall not
need to change them, some basic settings can be accessed with (C). The full-
screen mode can be toggled on and off with and respectively (C).
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4.2.1 Selecting Files to be Searched

Figure 4.2 The SBVB controls.

Prior to the search itself, the files to be
searched must be specified and loaded.
The currently loaded files are displayed
in the table E having the self-explanatory
header. To load a file, the user can click
on (D) and select it in the standard dia-
log. A file selected for the search first time
has to be indexed which may take several
minutes depending on the size of the file.

A file can be unloaded by selecting it
in the table E and clicking on (D).

We distinguish between wide (ca 16:9)
and narrow (ca 4:3) video files. The desired
video type can be selected with (D). Note
that a loaded file is marked with the green
background (E) if it matches the selected
video type and with the red background
(E) if not. The proportions of the sketches
(A) reflect this selection as well.

4.2.2 Playing a Random Clip

Once at least one file is loaded, the status
line (F) advises users to play a random clip.
To do so, the user has to click on (D).
A window with a video player appears, then
the clip playback starts automatically, and
the window disappears after the playback
ends.

After that, the user can draw simple sketches (A) to specify and hopefully
retrieve the viewed clip.

4.2.3 Drawing Sketches

The user is enabled to draw up to two sketches (A) in order to retrieve the results
as described in Sec. 2.2. The first (uppermost) is obligatory while the second one
is optional.

Defining a Color Region

A color region can be created simply with a left-click anywhere on the sketch.
A colored circle (i.e., a user-defined centroid) representing the color region appears
at the clicked position together with an enhanced color picker (B).

Color Picking

We designed an enhanced color picker (B) allowing easy, intuitive and fast color
picking. Instead of placing the color picker on a fixed position or to a special dialog
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window, it is displayed ad-hoc at each colored circle. The colors are organized
concentrically around the colored circle in the HSV color space [32]. The user can
access different value levels, i.e., lighter and darker colors, with the mouse-wheel
having the cursor over the color picker. The desired color can be selected with
a left-click on it and the user can cancel/induce the color picking with a left-click
on the colored circle itself.

Removing and Moving a Color Region

Any colored circle can be removed from the sketch by right-clicking it. Also, it
can be moved in the usual drag-drop manner in the scope of the sketch.

4.3 Results Presentation

The output of the retrieval algorithm is in fact a list of matched key-frames (or pairs
of key-frames in case of a two-sketch query). In order to make the identification
of the searched clip easier, each result is displayed on a separate row together
with a sequence of preceding and following key-frames from the original video
as depicted in Fig. 4.3. A displayed key-frame represents 2 seconds of video
and thus the user can also see how long a particular scene lasted. A result row
can be drag-dropped to the left or right in order to explore additional preceding
or following key-frames.

The results are organized in pages according to their ranking in the ascending
order (i.e., the best matches first). Initially, the 1st page is displayed and the fol-
lowing pages can be accessed by moving the cursor over the results and scrolling
the mouse wheel.

Figure 4.3 Top 5 result rows displayed after a two-sketch query. The matched
key-frames are marked with red decorations.

A result can be selected by double-clicking on an arbitrary key-frame. If the se-
lected key-frame is within the previously viewed clip, the selection is considered
as correct. Anyway, the exact position of the selected key-frame is displayed
in the status line (Fig. 4.2 – F) and also the selected clip is played in the result
player (Fig. 4.2 – G).

The results are updated on-fly immediately after every query modification
making the search indeed interactive.
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4.4 Query by Example

It is common practice to utilize a retrieved scene or key-frame, visually simi-
lar to the searched one, as further specification of the query. This may lead
to the success very quickly and therefore we intend to employ this query-by-
example paradigm as well. Commonly, additional descriptors are utilized such
as SIFT or MPEG-7; however, extracting, storing and loading these descriptors
costs noticeable computational time as well as extra memory.

For this reason, we introduce the following query-by-example procedure which
utilizes the feature signatures and thus fits well to the so far presented model and
UI. Moving the cursor over the results displays the centroids in the retrieved key-
frames. The user can pick-up any displayed centroid to a sketch simply by clicking
on it. In this manner, the user can pick up centroids even from key-frames
dissimilar to the searched scene yet having a particular color region in common.
The picked-up centroids can be adjusted in the same way as the user-defined ones,
e.g., moved to different position.

The effectiveness of such query specification is demonstrated in Fig. 4.4, where
we intended to find scenes similar to the green-framed one in Fig. 4.4a.

(a) Before centroids pick-up. (b) After centroids pick-up.

Figure 4.4 A query-by-example employing the feature signatures. The sketches
(right) and the four best matching key-frames (left) before and after picking-up
several centroids.

This feature can be toggled on and off with (4.2 - D). After a centroid
pick-up, the results update is a bit delayed giving the user a chance to pick-up
more centroids at one time.

19



5. Experiments

In this chapter, we discuss and optimize the important aspects of the proposed
model. More specifically, we determine:

• How the color and spatial coordinates should be scaled

• How to prune the database preserving the effectiveness of the model

• Optimal parameters for each index variant

• The efficiency of the indexing techniques

All the experiments were performed with a real dataset and user-defined sketches.
Furthermore, we summarize our participation at VBS pointing out the effectiveness
of SBVB.

5.1 Settings

The experiments were carried out on an EBU MIM-SCAIE video dataset[20]
from which we selected 27 hours of diverse video content. The resulting database
of 4.8 millions of centroids has the intrinsic dimensionality 3.23 which should
imply relatively easy indexing.

More than 40 users were told to find a randomly selected short clip within
five minutes. Almost 100 successfully found clips along with user-defined sketches
were gathered and employed in the model optimization (Sections 5.2 and 5.3).

In order to evaluate the performance of the indexing techniques (Sections 5.4
and 5.5), 300 user-defined query centroids were collected and used for querying
the index. Since we have utilized just cheap Euclidean distance, we have focused
mainly on the overall time needed to process a query. The measurements were
performed on an Intel Xeon CPU @2.80 GHz in a single thread. The data struc-
tures (excluding the key-frame images) occupied a reasonable amount of memory
and were kept in the RAM memory.

5.2 Importance of Position and Color

In this section, we focus on the relation between the color and position coordinates,
i.e., what is more important for finding the relevant key-frames. This relation
is typically modeled by additional weighs for the color and position coordinates,
for example, using weighted Euclidean distance. However, for fixed weights,
the same effect can be achieved by scaling the feature space 1 prior to the indexing
and searching. In the following text, we fix the color coordinates and scale only
the position coordinates with a position-color ratio (PCR) 2.

To determine the optimal value of the PCR, we have performed following steps.
For every searched clip c, we have queried the system with the user-defined query

1In this way, the distance function will be less computationally expensive which is desirable.
2Note that the distances computed in (2.1) are scaled which allows us to optimize on-

ly the PCR.
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sketch under different values of the PCR and tracked the position of the clip
c in the results. For PCR = x, the impairment ranking was obtained according
to (5.1), where Pcx denotes the position of the searched clip in the results (less is
better). In this way, impcx is the relative impairment of the position of the searched
clip with respect to the best and worst possibility within the evaluated interval
of the PCR.

impcx =
(Pcx −minPc)

(maxPc −minPc)
where Pc = {Pcx | ∀x} (5.1)

The average position impairment from all the user searches is depicted in Fig-
ure 5.1a. The optimal PCR found in this process depends of course on the initial
setup. In our case, the color coordinates were scaled to the interval [0, 255] (i.e.,
one byte) and the position coordinates followed the proportions of the key-frames –
350 x 200 (width x height). Finding the optimum at 1.35, the position coordinates
are scaled by this number from now on.
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Figure 5.1 The position – PCR dependency and the distribution function of user
errors.

5.3 Relevant Neighborhood of a Query Centroid

It is desirable to delimit the minimal neighborhood of a query centroid in the data-
base that has to be examined in order to retrieve the wanted clip. Users are
of course inaccurate in specifying query centroids (e.g., the color of the intended
region may be in fact darker) and the model has to tolerate these inaccuracies. We
define the user error for a query centroid as the distance to the nearest database
centroid from the searched clip. More formally, for a query centroid r specified
by the user searching for a clip c the user error er is calculated according to (5.2),
where FSc stands for all the feature signatures extracted from the searched clip c.

er = min
∀rij∈FSc

L2 (r, rij) (5.2)

The empirical distribution function of user errors is depicted in Fig. 5.1b, where
the vertical red line marks the 95% quantile which is ca 87 in our case. Please
note that this number may vary with different datasets and users. We can see
that if we omit the database centroids beyond the range of 87 (i.e., a range query)
the ranking of the searched clip remains unaffected in most of the cases.
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5.4 Index Parameters

Prior to the comparison of the performance of the proposed index variants, we
of course optimized the parameters of each separately. Taking the 300 user-defined
query centroids, the whole database of 4.8 million centroids and the query range
of 87, we measured the average overall time needed to process a range query
under a particular setup. Each measurement was repeated 5 times and averaged
afterwards.

The situation is quite simple in the case of the Grid Index — the only param-
eter to be optimized is the number of bins per dimension. Note that the total
number of bins in the Grid Index grows exponentially with the number of bins
per dimension; thus, it is not surprising that this parameter has a significant
impact on the performance having a clear optimum in 16 (Fig. 5.2). It shall
be pointed out that the optimal setup was found for a concrete database size
and the performance of the Grid Index with this fixed setup might be suboptimal
under different database sizes. We will address this problem in the conclusion.
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Figure 5.2 The performance of the Grid Index and Grid Index BS with varying
number of bins per dimension.

The M-Index, unfortunately, has more parameters requiring optimization.
Namely the pivot count 3 and cluster size affects the performance greatly as de-
picted in Fig. 5.3 for the heuristic pivot selection. The results with the random
space and random data pivot selection are depicted in Attachment C – M-Index
Parameters Optimization. Here, we only summarize the performance of the best
setup for each M-Index variant and pivot selection (Fig. 5.4), where we can see
that the best results are achieved with the heuristic pivot selection.

The heuristic pivot selection, however, costs extra computing time and also
requires more pivots for the optimal setup than the random data pivot selection.
As a result, the indexing time and the memory demands are affected negatively
which may be uncomfortable in the actual usage. Nevertheless, we employ it
for the comparison of the index variants in the following section.

3As the pivot count defines the memory demands as well as the indexing time, it cannot be
extensively increased. Also, since all the pivot selection techniques contains randomness, too
little pivots would cause unstable performance. We empirically identified the reasonable interval
to be 40–150.
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(a) M-Index.
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(b) M-Index BS.
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(c) M-Index CR.
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(d) M-Index BS + CR.

Figure 5.3 The performance of the M-Index variants with the heuristic pivot
selection under varying parameters.
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Figure 5.4 The comparison of the pivot selection techniques.

5.5 Index Performance

The efficiency of the index variants was evaluated under the growing database
of up to 4.8 millions of centroids. The performance in the terms of the average
overall time needed to process a range query is depicted in Fig. 5.5a. Note
that the Bounding Sphere Constraint brings decent performance improvement
to the Grid Index as well as to the M-Index and M-Index CR.

Since the Grid Index uses fixed data structures independently on the database
size, visiting bins demands a constant time. This is not the case of the M-Index
where the number of buckets grows with the database size causing the cost of their
traversing to reflect this trend. As a result, for smaller databases with less than
500 000 centroids (i.e., almost 4 hours of video) the M-Index BS + CR performs
better than the Grid Index despite the need of more distances to be computed
(Fig. 5.5b) while for larger ones the Grid Index BS takes the lead.

As experienced users may be able to specify query centroids more precisely, i.e.,
with a minor user error, the query range can be possibly lowered without affecting
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Figure 5.5 The performance of the index variants under growing database.

the search effectiveness. For this reason, we examined the index performance
under 75% of the originally determined query range. The results are depicted
in Fig. 5.6a and Fig. 5.6b. Differently from the full range, the Bounding Sphere
Constraint provided only a little or no performance boost to the M-Index CR
and Grid Index. Furthermore, the Grid Index BS is no longer outperformed
by the M-Index in small databases.
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Figure 5.6 The performance of the index variants under 75% of the original
query range.

5.6 Video Browser Showdown Participation

We participated at VBS in all the categories which were visual KIS in a single
video/video archive and textual 4 KIS in single video/video archive. The length
of a single video ranged from 10 minutes to 2 hours, and the video archive comprised
total of 14 hours of video content 5. The tools were evaluated in interactive
and competitive way. The participants should perform the KIS tasks at the same
time within 3 (single video) or 6 (video archive) minutes. The real-time results

4An Example of such textual description follows: Three men are about to swim in a polar
see. One of them has very colorful swimming suit.

5As we were able to distinguish between wide and narrow screened video, we could split
the video archive into two sub-archives comprising 6 and 8 hours of video for the visual KIS
tasks.
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were presented on a publicly visible screen (Fig. 5.7). It should be stressed
out that the tool was controlled by an experienced user (in fact by the author
of this thesis).

Figure 5.7 VBS – the interactive and competitive evaluation.

The performance of SBVB at VBS is summarized in Table 5.1. Clearly,
the single video scope is not a problem for SBVB. For example, in the visual KIS
within single video category, we were able to find the desired clip usually even
before the playback ended. The video archive scope and especially a textual KIS
is, however, more challenging. Luckily, all the textual descriptions contained some
color clues enabling us to find the wanted clip in 6 out of 7 cases which is still
quite impressive.

Category Scope Success Avg. time

Visual KIS – single video 10 - 120 minutes 10/10 less than 1s
Textual KIS – single video 10 - 120 minutes 10/10 24.8 s
Visual KIS – video archive 6/8 hours 6/7 55.3 s
Textual KIS – video archive 14 hours 6/7 77.5 s

Table 5.1 The summary of the performance of SBVB at VBS.

Winning 3 out of 4 categories, SBVB clearly outperformed all the tools
described in Chap. 1. We proudly enclose the award as Attachment A – VBS
Award.

Speaking about effectiveness, we should also mention that during the collection
of user-defined sketches and centroids, the novice users 6 were successful in ca 64%
of visual KIS tasks within 2-8 hours of video.

6More than 40 first-time users were at first instructed and then also occasionally advised.
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6. Conclusion

At first, we discussed the current state-of-the-art approaches for the video retrieval
focusing on visual and textual KIS. Frequently, very complex procedures comprising
SIFT or SURF features extraction, concept classification etc. are employed. These
computationally expensive methods, however, do not ensure high effectiveness
since for example, the concept classification, despite the progress, is not very
precise in a general case.

In this thesis, we proposed a novel feature signatures based video retrieval
model which simplicity contrasts with the previously discussed approaches. Video
key-frames are represented with sets of color regions forming a simple 5-dimensional
color-position feature space. This representation, also meaningful for humans,
enables users to specify the color regions of the desired scene directly in simple
colored sketches.

The important aspects of the model were carefully optimized; therefore,
the model remains efficient even when dealing with tens of hours of video con-
tent. We paid special attention to the indexing techniques exploiting the nature
of the feature space; more concretely, we evaluated the performance of the fixed
Grid Index and several variants of the M-Index with a real dataset and user-defined
queries.

Thanks to the low dimensionality and decent uniformity of the feature space,
the Grid Index showed high performance especially in larger datasets even though
it was optimized for a fixed dataset size. We believe that the Grid Index with
gradual partitioning (i.e., dynamic Grid Index) might perform even better.

It may seem that the M-Index is not suitable for our model since it is out-
performed by the Grid Index. Nevertheless, if we enhance the feature space as
discussed in the following section, the Grid Index would be probably unusable
(since the number of bins grows exponentially with the space dimension) while
the M-Index would be still efficient.

We also demonstrated that even roughly computed BSs can provide additional
filtering power to the processing of range queries in both the Grid Index and M-
Index.

The proposed model was implemented in C# programming language and thanks
to the optimizations, the tool can offer attractive and interactive UI, where every
modification of the query causes immediate update of results. The performance
of SBVB was evaluated at VBS. Despite the fact that SBVB clearly outperformed
the tools of other participants, it is questionable whether the model would be
effective in a general case. For example, it will probably utterly fail in providing
effective searching within a black-and-white movie.

Anyway, we believe that the proposed model forms a solid basis for video
retrieval systems focusing on KIS. This statement is supported by the successful
participation at VBS. Also, the model can be probably further improved and we
will now discuss the possibilities.
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6.1 Future work

Video data contain way more information than the color distribution in static
key-frames. For instance, the motion of the background and foreground can be
possibly detected and associated with particular centroids. It is also desirable
to utilize the weights of centroids. In our opinion, this information may play
an important role and we plan to incorporate it in the model. Furthermore,
the textures might be employed in the feature signatures as well. We should,
however, keep on mind that the UI shall be maintained as simple as possible.

Next, we believe that the effectiveness of SBVB can be greatly improved
with advanced results browsing. For example, results might be clustered based
on visual similarity showing only one representative for each cluster and thus
saving space for more results. In addition to that, results can be possibly organized
in a different way, e.g., according to the files from which they are.
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Glossary

BoVW Bag of Visual Words. 7

BS Bounding sphere. 14, 15, 26, 33

Feature signatures An adaptive and flexible representation of an image or video
key-frame based on the color distribution. For more information see Section
2.1 or Figure 2.2. 3, 4, 8–10, 19, 26, 27, 33

Grid Index A Vector space indexing technique dividing the space into uniform
cuboid-like bins. 13, 22–24, 26, 32, 33

Grid Index BS The Grid Index enhanced with the Bounding Sphere Constraint
defined in Section 3.3. 15, 22–24

Known-Item Search (KIS) Kind of information search where we are familiar
with at least a part of the searched document (item) – a video clip in our
case. The video clip can be previously viewed (visual KIS) or just described
textually (textual KIS). 3, 4, 7, 24–26, 32

M-Index The current state-of-the-art technique in indexing Metric spaces. More
details are provided in Section 3.2. 13–15, 22–24, 26, 33, 36

M-Index BS The M-Index enhanced with the Bounding Sphere Constraint de-
fined in Section 3.3. 15, 23, 36

M-Index BS + CR The M-Index enhanced with the Cut-region Extension[18]
and the Bounding Sphere Constraint defined in Section 3.3. 15, 23, 36

M-Index CR The M-Index enhanced with the Cut-region Extension[18]. 13, 15,
23, 24, 36

MPEG-7 A set of standards for description and search of multimedia content.
We name color layout, edge histogram, camera motion and motion trajectory
as examples of defined visual descriptors. 7, 19

SBVB Signature-Based Video Browser. 4, 7, 16, 17, 20, 25–27, 33, 35

SIFT Scale-Invariant Feature Transform. 7, 19, 26

SURF Speeded Up Robust Features. 7, 26

SVM Support Vector Machine. 7

UI User interface. 16, 19, 26, 27

VBS Video Browser Showdown. 4, 7, 20, 24–26, 33
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Attachments

A – VBS Award
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B – CD

The attached CD contains the following:

• HTML documents describing its contents

• The SBVB sources and compiled binaries

• A list of the available SBVB settings and keyboard shortcuts

• An already indexed video file

• A brief discussion about the interesting parts of the SBVB code
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C – M-Index Parameters Optimization
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(a) M-Index.
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(b) M-Index BS.
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(c) M-Index CR.
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(d) M-Index BS + CR.

Figure C.1 The performance of the M-Index variants with the random data pivot
selection under varying parameters.
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(a) M-Index.
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(b) M-Index BS.
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(c) M-Index CR.
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(d) M-Index BS + CR.

Figure C.2 The performance of the M-Index variants with the random space
pivot selection under varying parameters.
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