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Abstract

This master’s thesis pursues the construction of stable, robust and growth portfo-

lios in active portfolio management. These portfolios provide limited downside risks,

short-time drawdowns and substantial growth prospects. We argue that the construc-

tion of such portfolios is based on security selection as well as on portfolio theory

(the Mean-Variance Model, MVM). The equity based portfolios were constructed

and tested on real market data from the 1995-2014 period. The tested portfolios

outperformed the S&P 500 out of and within the risk-reward ratio domain.

Robust portfolios build on the MVM but they are less sensitive to errors of

parameters estimation. We experimented with several robust approaches and the

results confirmed that the robust portfolios were less sensitive to outliers, less volatile

and more stable (robust).

The bottom-up process of security selection seems time consuming and labor

intensive. Therefore we proposed an alternative approach to select stocks with so-

called “cluster analysis”. Generally, the cluster analysis classifies similar objects

(companies) into similar groups. Technical and fundamental parameters of companies

provided needed classification parameters. The classification was run over companies

from the German DAX index. The achieved results were surprisingly supportive and

valuable.

We argue that the robustness of a portfolio is primarily driven by security se-

lection, therefore we describe what matters in our opinion. The robustness of a

portfolio can be measured by many measures. The personally selected measures are

size, frequency of drawdowns, drawdown period and risk-return measures (such as

Sharpe ratio). The selected measures were evaluated on the historical data. The

experimental verification supported our assumptions that robust portfolios provide

lower drawdowns and high risk-return measures.

JEL Classification C1, C6, C8, G0, G1

Keywords Portfolio construction, equity, MVM, cluster analy-

sis, robustness, optimization, reward-to-variability

ratios
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Abstrakt

Diplomová práce se zabývá konstrukćı stabilńıho, robustńıho a r̊ustového portfolia

v rámci aktivńıho portfolio managementu. Takováto portfolia poskytuj́ı omezeńı

rizika poklesu hodnoty aktiv, krátkodobý propad hodnoty portfolia a přiměřené

r̊ustové perspektivy. Tvrd́ıme, že konstrukce takovýchto portfolíı je závislá na výběru

cenných paṕır̊u a teorii portfolia (MV model, MVM). Námi vytvořená a testovaná

akciová portfolia byla založena na reálných tržńıch datech za obdob́ı 1995-2014. Port-

folia prokázala nadvýnos nad tržńım indexem S&P 500 mimo doménu i v doméně

rizikově upraveného zisku.

Robustńı portfolia stavěj́ı na MVM, ale jsou méně citlivá k chybám odhadu

parametr̊u. Experimentovali jsme s několika robustńımi př́ıstupy a výsledky potvrdily,

že robustńı portfolia jsou méně citlivá k vychýleným hodnotám, méně volatilńı a v́ıce

stabilńı (robustńı).

Výběr vhodných cenných paṕır̊u je časově a dovednostně náročný. Z tohoto

d̊uvodu jsme použili alternativu ke klasifikaci akcíı využit́ım klasifikačńıho algoritmu

tzv. “shlukové analýzy”. Obecně shluková analýza nám přǐrad́ı do podobných

ćılových skupin (cluster̊u) parametrově podobné objekty (společnosti). Technické

a fundamentálńı parametry společnost́ı poskytly potřebné klasifikačńı parametry.

Klasifikace prob́ıhala nad akciovými společnostmi obsaženými v německém indexu

DAX. Dosažené výsledky byly překvapivě hodnotné.

Tvrd́ıme, že robustnost portfolia je primárně ovlivněna výběrem cenných paṕır̊u,

proto uvád́ıme d̊uležité výběrové faktory, na kterých podle našeho názoru zálež́ı.

Robustnost portfolia je možné měřit mnoha mı́rami. Námi vybrané faktory jsou

rozsah pokles̊u, frekvence propad̊u hodnoty, doba propadu a tzv. rizikové mı́ry (např.

Sharpeho poměr) na historických datech. Experimentálńı ověřeńı podpořilo naše

předpoklady, že robustńı portfolia poskytuj́ı nižš́ı propady a vyšš́ı rizikově výnosové

mı́ry.

Klasifikace JEL C1, C6, C8, G0, G1

Kĺıčová slova Konstrukce portfolia, akcie, MVM, shluková

analýza, robustnost, optimalizace, výnosově-

rizikové mı́ry
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Chapter 1

Introduction

The investment portfolios are constructed from elementary investable assets [BD11]

such as money-market securities, bonds, stocks, currencies, commodities, structured

and alternative instruments [Cip00, Ste99]. To mitigate or reduce portfolio risks,

derivative instruments [Hul08] are employed for hedging purposes and mitigation of

portfolio volatility.1 Since two relatively recent disaster events in capital markets,

the IT bubble (in 2000) and the mortgage bubble (in 2008), were both followed

by deep recessions, we have seen an increasing interest and demand for growth and

robust long-term investment portfolios [EGBG07, CWS07]. These portfolios are con-

structed on unknown future characteristics of investment or speculative assets and

their derivatives but they can be forecasted or estimated. These problems fit per-

fectly into the robust optimization domain that solves an optimization problem with

uncertain parameters to achieve good objective function values for the realization of

these parameters in given uncertainty set. From a more practical view, we see robust

portfolios as the portfolios that ensure a stable growth of the invested principal with

a low volatility and a strict downside protection.

The chapter is structured as follows: Section 1.1 explains some general terms

from the capital markets. Section 1.2 describes research and development in the

portfolio optimization. Section 1.3 explains the classical mean-variance model.

Section 1.4 is devoted to the robust portfolio optimization. Section 1.5 summa-

rizes the chapter. Section 1.6 is about the motivation and goals. Outline of the

thesis is in Section 1.7.

1.1 General Terms

We clarify several terms of the capital markets, portfolio theory and management to

use them later in the thesis. We assume that they are quite basic but they deserve

your attention.

1Volatility is a measure for variation of price of a financial instrument over time.
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Investing [Cip00] is a process of deploying capital in order to get appropriate

return on the capital as well as return of the capital with a high probability. On

the other hand, betting (speculating) is a process of deploying capital with quite

uncertain outcomes. Both approaches are pooling securities to form portfolios to be

managed.

Portfolios [Cip00] are pools of securities that are managed by portfolio man-

agers. The portfolio managers are responsible for insightful, intelligent and low-risk

deployment of capital and managing the capital pools. These pools are made of

money-market securities, bonds, equities, mutual funds, derivatives and alternative

assets.

Bond security (also bond) [Cip00] is a financial instrument of indebtedness of

the bond issuer to the bond holders. The issuer owes a debt and is obliged to pay

the holders interest (the coupon) and to repay the principal at the maturity date.

Interest is usually payable at fixed intervals (semiannual, annual). Bonds are usually

used by companies, municipalities, states and governments to finance a variety of

projects and activities. Bonds are commonly referred to as fixed-income securities.

Figure 1.1: The superiority of equities. The return superiority of eq-
uities over other asset classes is described during the pe-
riod between 1802 and 2006. Source: seekingalpha.com.

Equity security (also common stock, share, equity) [Cip00] is an asset class that

enables an investor to be a (minority) owner of a company. Equities tend to be more

risky but more profitable than bonds (see in Figure 1.1). Equities are highly corre-

lated with an economic cycle, capital markets and negatively correlated to bonds.

Equity/bond mix is a mix of equities and bonds in an investment portfolio rec-

ommended by investment advisors. The risky part of the portfolio is formed of

equities and the conservative part is of bonds. The more equities in the portfolio,

the more the overall portfolio is risky. Generally, the 60/40 portfolio2 (the ratio of

2Throughout the year 2013 we ran the experimental study that tested the performance of the
equity/bond portfolio mix on the period of 10 and more years. The portfolio mix was done from
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equities/bonds) is recommended to the general public. The tested 60/40 portfolio

performance against the S&P 500 is depicted in Figure 1.2.

Figure 1.2: The 60/40 portfolio. The 60/40 portfolio performance
against the S&P 500 (SPY) is depicted. The portfolio ex-
perienced 91.6% total return (vs. 115.5% of SPY), 6.6%
compound annual growth rate (7.8%), 11.7% volatility
(20.2%) and -35.08% max drawdown (-55.20%) on the
period 22nd Sep 2003 - 10th Dec 2013. The equities were
represented by the S&P 500 (SPY) and the bonds by
iShares Core Total US Bond (4-5yr) (AGG). The strat-
egy was ‘buy and hold’ with reinvestments of dividends
and no rebalancing.

A hedge fund [Cip00] is a pooled investment vehicle administered by a professional

management firm, and often structured as a limited partnership, limited liability

company, or similar vehicle. Hedge funds invest in a diverse range of markets, use

a wide variety of investment styles and financial instruments (including derivatives).

The name “hedge fund” refers to the hedging techniques traditionally used by hedge

funds, but hedge funds today do not necessarily hedge.

We have reviewed the terms such as investing vs. speculation, portfolio, bond,

0/100 to 100/0 ratios. The equities were represented by S&P 500 (SPY) and the bonds by iShares
Core Total US Bond (4-5yr) (AGG). The 60/40 portfolio overweighted equities performed well on
risk-adjusted basis against the S&P 500. We argued that a skilled portfolio manager would be able
to construct an equity-cash portfolio with reward-to-variability ratios not significantly worse than
the 60/40 portfolio. The bond part could be replaced by cash and equities in defensive sectors such
as consumer staples, pharma or utilities. Our results confirmed the research and publications [Sie13]
by Prof. Jeremy J. Siegel from the Wharton School of the University of Pennsylvania. To conclude,
these were the reasons why we have focused on equities as a major asset class in the thesis.
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equity, equity/bond mix and hedge fund. We turn our attention to State of the Art

on the portfolio selection and optimization.

1.2 State of the Art

This part follows several sources [Lu08, FFK07, FKPF10] on the robust portfolio

selection and optimization.

Portfolio selection problem is concerned with determining a portfolio such that the

“return” and “risk” of the portfolio have a favorable trade-off. The first mathematical

model of the portfolio selection problem was developed by Markowitz [Mar52] six

decades ago, in which an optimal or efficient portfolio can be identified by solving a

convex quadratic program (CQP). In his model, the “return” and “risk” of a portfolio

are measured by the mean and variance of the random portfolio return, respectively,

therefore is also known as the mean-variance model.

Despite the theoretical elegance and importance of the mean-variance model, it

continues to encounter skepticism among the investment practitioners [FKPF10].

One of the main reasons is that the optimal portfolios determined by the mean-

variance model are often sensitive to perturbations in the parameters of the problem

(e.g., expected returns and the covariance matrix), and thus lead to large turnover

ratios with periodic adjustments of the problem parameters. Various aspects of

this phenomenon have also been extensively studied in the literature, for example,

see [CZ93, Mic98].

As a recently emerging modeling tool, robust optimization can incorporate the

perturbations in the parameters of the problems into the decision making process.

Generally speaking, robust optimization aims to find solutions to given optimiza-

tion problems with uncertain problem parameters that will achieve good objective

values for all or most of realizations of the uncertain problem parameters. For de-

tails, see [FHZ10, FFK07, RS09, FKPF10]. Recently, robust optimization has been

applied to model portfolio selection problems in order to alleviate the sensitivity of

optimal portfolios to statistical errors in the estimates of problem parameters. Gold-

farb and Iyengar [GI03] considered a factor model for the random portfolio returns,

and proposed some statistical procedures for constructing uncertainty sets for the

model parameters. For these uncertainty sets, they showed that the robust portfolio

selection problems can be reformulated as second-order cone programs.

Alternatively, Tütüncü and Koenig [TK04] considered a box-type uncertainty

structure for the mean and covariance matrix of the assets returns. For this un-

certainty structure, they showed that the robust portfolio selection problems can be

formulated and solved as smooth saddle-point problems that involve semidefinite con-

straints. In addition, for finite uncertainty sets, Ben-Tal et al. [BTMN00] studied the

robust formulations of multi-stage portfolio selection problems. Also, El Ghaoui et
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al. [GOO03] considered the robust Value-at-Risk (VaR3) problems given the partial

information on the distribution of the returns, and they showed that these problems

can be cast as semidefinite programs. Zhu and Fukushima [ZF05] showed that the

robust conditional Value-at-Risk (CVaR4) problems can be reformulated as linear

programs or second-order cone programs for some simple uncertainty structures of

the distributions of the returns. Recently, DeMiguel and Nogales [DN08] proposed

a novel approach for portfolio selection by minimizing certain robust estimators of

portfolio risk. In their method, robust estimation and portfolio optimization are

performed by solving a single nonlinear program.

There are several very new articles that extend the domain. One of them [LT14] is

a numerical study of a robust active portfolio selection model with downside risk and

multiple weights constraints. The study tracks numerical performance of solutions

with the classical MV tracking error model and the naive 1/n portfolio strategy from

real China market and other markets.

1.3 The Classical Mean-Variance Model

The classical Mean-Variance Model (MVM, also as the Modern Portfolio Theory,

MPT) [Wil07] suggests that the return on individual assets are represented by normal

distribution with the analysis, with a certain mean and standard deviation over a

specified period. Therefore the mean-variance framework models an asset’s return

as a normally distributed function (or more generally as an elliptically distributed

random variable), defines risk as the standard deviation of return, and models a

portfolio as a weighted combination of assets, so that the return of a portfolio is the

weighted combination of the assets’ returns. By combining different assets whose

returns are not perfectly positively correlated, the MVM seeks to reduce the total

variance of the portfolio return. The MVM also assumes that investors are rational

and the markets are efficient. The theory was invented by Harry Markowitz in

1952 [Mar52]. The following subsections of the MVM are based on published works

and accessible research [FKPF10, Hul08, Wil07].

1.3.1 The Fundamental Concept

The fundamental concept behind the MVM [Mar52] is that the assets in an invest-

ment portfolio should not be selected individually, each on its own merits. One needs

3VaR is a Value-at-Risk measure. VaR is a downside risk measure developed by JP Morgan, as a
part of the Risk Metrics software, in 1994. VaR measures the predicted maximum loss at a specified
probability level (95% or 99%) over a certain time period (10 days or 1 month). The measure has
been frequently used in financial institution to track and report the market risk exposure of the
trading portfolios [FKPF10].

4CVaR is a conditional VaR measure that elaborates on VaR issues. CVaR measures the expected
amount of losses in the tail of the distribution of possible portfolio losses, beyond the portfolio
VaR [FKPF10].
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to consider how each asset changes in price relative to how every other asset in the

portfolio changes in price.

Investing is a tradeoff between risk and expected return. In general, assets with

higher expected returns are riskier. For a given amount of risk, the MVM describes

how to select a portfolio with the highest possible expected return. Simply said, for

a given expected return, the MVM explains how to select a portfolio with the lowest

possible risk.

1.3.2 Risk And Expected Return

The MVM5 assumes that investors are risk averse [Mar52], meaning that given two

portfolios that offer the same expected return, investors will prefer the less risky one.

Thus, an investor will take on increased risk only if compensated by higher expected

returns. Conversely, an investor who wants higher expected returns must accept more

risk. The exact trade-off will be the same for all investors, but different investors will

evaluate the trade-off differently based on individual risk aversion characteristics.

The implication is that a rational investor will not invest in a portfolio if a second

portfolio exists with a more favorable risk-expected return profile. That is if for that

level of risk an alternative portfolio exists that has better expected returns.

Equations of the MVM

This part on the MVM follows the related publications [Mar52, RS09]. Optimal

portfolio asset allocation problems are quadratic programming problems (QP). Some

of them can be formulated as convex QP that is minimizing a quadratic function

subject to linear constraints.

Let n be the number of the available assets, and

X =
{
x ∈ ℜn|

n∑
i

xi = 1, xi ≥ 0, i = 1 . . . n
}

(1.1)

be a set of the feasible portfolios. Next, let µ be the estimated expected return

vector of the given assets while matrix Σ is the covariance matrix of these returns.

Then the mean-variance model can be formulated as follows:

1. Maximize the expected return subject to an upper limit on the variance,

max µTx

s.t. xTΣx ≤ σ (1.2)

x ∈ X.

5Note that the framework uses standard deviation of return as a proxy for risk, which is valid if
asset returns are jointly normally distributed or otherwise elliptically distributed. There are several
problems with this idea as it is explained later.
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2. Minimize the variance subject to a lower limit on the expected return:

min xTΣx

s.t. µTx ≥ R (1.3)

x ∈ X.

3. Maximize the risk-adjusted return:

max µTx− λxTΣx (1.4)

s.t. x ∈ X,

where λ ∈ R denotes a risk-aversion parameter.

These three models are parameterized by the variance limit, the expected return

limit and the risk-aversion parameter, respectively. The variance constraint is a

nonlinear constrain, so the first formulation can not be classified as as a convex QP

formulation, while the later two are convex QP formulations.

A published study of Black and Litterman [BL92] demonstrated that small changes

in the expected returns may have a substantial impact in the portfolio composition.

Large estimation errors in the expected returns influence significantly the optimal

allocation. The mean-variance model seems to be less sensitive to inaccuracies in

the estimate of the covariance matrix Σ than to estimation errors in the expected

returns but insurance against uncertainty in these estimates is recommended.

These equations were elementary equations of the MVM to be used in the port-

folio analysis and construction.

1.3.3 Diversification

An investor [Wil07] can reduce portfolio risk simply by holding combinations of

instruments that are not perfectly positively correlated (correlation coefficient ρxy,
6

−1 ≤ ρxy < 1). In other words, investors can reduce their exposure to individual

asset risk by holding a diversified portfolio of assets. Diversification may allow for

the same portfolio expected return with reduced risk. These ideas [Wil07] have been

started by Markowitz and then reinforced by other economists and mathematicians

such as Andrew Brennan who have expressed ideas in the limitation of variance

through portfolio theory.

6If all the asset pairs have correlations of ρxy = 0, they are perfectly uncorrelated. The portfolio’s
return variance is the sum over all assets of the square of the fraction held in the asset times the
asset’s return variance and the portfolio standard deviation is the square root of this sum.
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1.3.4 The Mean Variance Efficient Frontier

As shown in Figure 1.3, every possible combination of the risky assets, without

including any holdings of the risk-free asset, can be plotted in risk-expected return

space, and the collection of all such possible portfolios defines a region in this space.

The left boundary of this region is a hyperbola, and the upper edge of this region is

the (mean-variance) efficient frontier (the EF, MVEF) in the absence of a risk-free

asset (sometimes called ‘the Markowitz bullet’). Combinations along this upper edge

represent portfolios (including no holdings of the risk-free asset) for which there is

lowest risk for a given level of expected return. Equivalently, a portfolio lying on

the efficient frontier represents the combination offering the best possible expected

return for given risk level.

Figure 1.3: The Mean-Variance Efficient Frontier (the MVEF). The
hyperbola is the efficient frontier if no risk-free asset is
available. With a risk-free asset, the straight line is the
efficient frontier. Source: [Mar52, Wil07].

1.3.5 The Capital Allocation Line

The risk-free asset [Wil07] is the (hypothetical) asset that pays a risk-free rate. In

practice, short-term government securities (such as US treasury bills) are used as a

risk-free asset, because they pay a fixed rate of interest and have exceptionally low

default risk. The risk-free asset has zero variance in returns (hence is risk-free); it is

also uncorrelated with any other asset (by definition, since its variance is zero). As a

result, when it is combined with any other asset or portfolio of assets, the change in

return is linearly related to the change in risk as the proportions in the combination

vary.

When a risk-free asset is introduced, the half-line shown in the figure is the

new efficient frontier. It is tangent to the hyperbola at the pure risky portfolio

with the highest Sharpe ratio. Its horizontal intercept represents a portfolio with

100% of holdings in the risk-free asset; the tangency with the hyperbola represents a

portfolio with no risk-free holdings and 100% of assets held in the portfolio occurring
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at the tangency point; points between those points are portfolios containing positive

amounts of both the risky tangency portfolio and the risk-free asset; and points on

the half-line beyond the tangency point are leveraged portfolios involving negative

holdings of the risk-free asset (the latter has been sold short—in other words, the

investor has borrowed at the risk-free rate) and an amount invested in the tangency

portfolio equal to more than 100% of the investor’s initial capital. This efficient

half-line is called the capital allocation line (CAL), and its formula can be shown to

be

rp = rf + σp
rr − rf

σr
, (1.5)

where rr is return of the sub-portfolio of risky assets at the tangency with the Marko-

witz bullet, rf is return of the risk-free asset, σp, σr are respective return volatilities,

and rp is a return combination of risk free f and risky portfolios r.

The introduction of the risk-free asset as a possible component of the portfolio has

improved the range of risk-expected return combinations available, because every-

where except at the tangency portfolio the half-line gives a higher expected return

than the hyperbola does at every possible risk level. The fact that all points on the

linear efficient locus can be achieved by a combination of holdings of the risk-free

asset and the tangency portfolio is known as the one mutual fund theorem, where

the mutual fund referred to is the tangency portfolio.

1.4 Robust Portfolio Optimization

Despite the theoretical support, the availability of computer programs and the el-

egance of the mean-variance model, there are several pitfalls [Wil07]. The optimal

portfolios are not well diversified but concentrated, require large data for the ac-

curate estimation of inputs and are very sensitive to changes in input parameters

such as expected returns, variances and covariances. Portfolio managers demand to

reduce the complexity of the framework and the sensitivity of a portfolio on input

parameters. There are various approaches to resolve these issues, one of them is the

Black-Litterman model optimization [BL92] and the other is the robust optimiza-

tion. The robust framework models optimization problems with data uncertainty to

receive a solution that is ‘good’ under all possible circumstances.

1.4.1 Robustness

There are several facts related to the robustness and the portfolio robustness [FHZ10].

A robust system is a responsive system that is insensitive to extreme input parameters

irrespective how wildly they fluctuate. We propose a working definition of robustness

of a portfolio as follows.
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Robustness of a portfolio ρ is the ability of a financial trading system (portfolio)

χ(ϑ, ϵ, ξ) to remain effective under different markets ϑ and changing market condi-

tions ϵ, or the ability of a portfolio model to remain valid under various assumptions,

input parameters and initial conditions ξ.

ρ : ∀ ϑ, ϵ, ξ χ(ϑ, ϵ, ξ) ≤ δρ, (1.6)

where δρ is a robust parameter that says the system is still robust. Sometimes inputs

ϑ, ϵ and ξ can fluctuate excessively but χ(.) ≤ δρ holds.

This feature ensures that a managed portfolio does not react excessively to

changes and outliers of inputs. And therefore one can assume that robust invest-

ment portfolios provide a significant downside risk, low volatility and substantial

wealth growth over time. Generally, in bull markets, these portfolios grow faster

than tracking market indexes. During economic downturns, market crashes and re-

cessions (bear markets) they are relatively stable or decreasing far less than the

tracking benchmarks. This is an ideal and theoretical case, but the reality is not far

different. There are some examples of such robust portfolios:

� bond and call option (on a stock or equity index)

� stock and put option (on an underlying stock or equity index)

� 60/40 equity-bond mix

� 130/30 strategy7

� general long/short strategy

� multi-strategy portfolios.8

All the above examples are robust strategies from simple to more complicated

ones as they ensure robustness with the limited downside and the unlimited upside.

Generally, the robust portfolios repeatedly deliver high reward-to-variability ra-

tios (such as Sharpe, Sortino or Treynor ratios [Wil07]). The reward-to-variability

ratio is a measure of the excess return (or risk premium) per unit of deviation in

a portfolio. Such characteristics of general asset portfolios are often appreciated in

active management of mutual funds and hedge funds. See the performance statistics

of the latter in Table 1.1.

7This is a long-short strategy that shorts 30% of a portfolio and the received cash from shorts is
redeployed to the long side of the portfolio. The investable example is ‘Credit Suisse 130/30 Large
Cap Index’.

8A multi-strategy approach focuses on two and more investment strategies to gain a profit from an
investment portfolio. These strategies are the mix of the following ones: convertible arbitrage, dedi-
cated short, emerging markets, event driven, fixed income arbitrage, market neutral, global macro,
long-short and managed futures. When exploited skillfully, the portfolio provides low volatility,
diversification effects, high robustness and (uncorrelated) growth.



1. Introduction 11

1.4.2 Robust MVM

Let us assume [RS09] the uncertain mean return vector µ and the uncertain covari-

ance matrix Σ of the asset return belong to uncertain sets of the following form:

Uµ = {µ : µL ≤ µ ≤ µU} and UΣ = {Σ : Σ ≽ 0,ΣL ≤ Σ ≤ ΣU}.

The end-points of the intervals may correspond to the extreme values of the

corresponding statistics in historical data or in analyst estimates. Alternatively, an

analyst may choose a confidence level and then generate estimates of returns and

covariance parameters in the form of prediction intervals.

The first robust problem determines a feasible portfolio x such that its maximum

risk-adjusted expected return, where both parameters vary in the given uncertainty

sets, is the minimum ones among the feasible portfolios,

max
x∈X

{
min

µ∈Uµ,Σ∈UΣ

µTx− λxTΣx
}

(1.7)

and

Hedge funds, Indexes and Sharpe ratios

Strategies Avg. Ret. [%] Std. Dev. [%] SR

Convertible Arbitrage 9.04 4.62 1.09
Dedicated Short Bias -2.39 16.97 -0.38
Emerging Markets 9.25 16.00 0.33
Equity Market Neutral 10.01 2.88 2.09
Event Driven 11.77 5.54 1.40
Fixed Income Arbitrage 6.46 3.66 0.67
Global Macro 13.54 10.75 0.89
Long/Short Equity 12.09 10.05 0.81
Managed Futures 6.50 11.84 0.21
Multi-Strategy 9.57 4.29 1.30

D&J 30 9.18 14.60 0.35
Nasdaq 8.87 26.10 0.19
S&P 500 8.66 14.27 0.33

Table 1.1: Hedge funds, Indexes and Sharpe ratios. There are sev-
eral statistics such as average return (Avg. Ret.), stan-
dard deviation (Std. Dev.) and Sharpe ratio (SR). These
statistics are of hedge funds (HFs) with various investment
strategies. The equity market indexes are for comparison.
One can see that Sharpe ratios of HFs can be over 1.00.
Source: cairn.info (May 2007).
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min max
Σ∈UΣ

xTΣx

s.t. min
µ∈Uµ

µTx ≥ R, (1.8)

x ∈ X.

On the other hand, the latter robust problem looks for a feasible portfolio which

guarantees the lower limit R on the expected return also in the worst case, i.e., for the

worst realization of parameter µ in Uµ, and which minimizes in the worst realization

of parameter Σ according to the uncertainty set UΣ.

Under certain simplifying assumptions, that is when ΣU is a positive semidefinite

matrix, these robust problems can be reduced to pure MVO problems. In such a

special case, the best asset allocation can in fact be determined by first fixing the

worst-case input data in the considered uncertainty sets, that is µL for the uncertain

mean return vector µ and ΣU for the uncertain covariance matrix Σ and then solving

the resulting QP problems [RS09].

1.4.3 Robust Portfolios

Unobservable θ

Suppose θ and θ̂ represent the true and estimated input parameters in a portfolio

selection model [FHZ10], respectively. For example, θ denotes the mean µ and the

covariance matrix Σ in the mean-variance model, it represents the distribution of

portfolio return. Typically, θ is unobservable but is believed to belong to a certain

set P which is generated from the estimated parameter θ̂, i.e., θ ∈ P = Pθ̂. We aim

at constructing a portfolio so that the risk is as small as possible with respect to the

worst-case scenario of the uncertain parameters in this set P.

1.4.4 Portfolio With Known Moments

We consider a general portfolio optimization model [FHZ10] where the investor seeks

to maximize the expectation of his utility u(.).9 The investor solves the following

general stochastic mathematical program:

max
x∈X

E[u(rTx)], (1.9)

where X = {x ∈ ℜn : 1Tnx = 1}. When the distribution of the portfolio return r is

exactly known, problem (1.2) is a general one-stage stochastic optimization problem

9Utility function u(.) is an economic function that measures usefulness of goods or services to a
consumer. A function u : X → R is a utility function that represents preference ≽ such as ∀ x, y ∈ X
where x ≽ y ↔ u(x) ≥ u(y).
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without recourse. Particularly, if u(.) is a quadratic utility u(r) = c2r
2 + c1r + c0,

the problem (1.2) does not depend on the actual distribution of r, except its mean

µ and covariance Σ, and amounts to:

max
x∈X

c2x
T (Σ+ µµT )x+ c1µ

Tx+ c0. (1.10)

This only applies to the case of quadratic utility functions, partially explaining

why it is particularly favored in economics and finance models, especially for portfolio

selection. Details of the general case, when u(.) is not quadratic and the distribution

p(r) is partially known, are in [FHZ10].

1.4.5 Portfolio With Unknown Mean

We follow [FHZ10] to discuss the robust version of the mean-variance portfolio prob-

lem where uncertainty is present only in the expected return and Σ is known, so

θ = µ ∈ Pµ̂.

Box uncertainty on mean

The simples choice for the uncertain set µ is box,

Pµ̂ = {µ : |µi − µ̂i| ≤ δi, i = 1 . . . n}.

The δi parameters can be related to some confidence interval around the estimated

expected return. The robust portfolio problem can be formulated as

min
x∈X

{
xTΣx : min

µ
µTx ≥ µ0, |µi − µ̂i| ≤ δi, i = 1, . . . , n

}
,

which can be further formulated as follows

min
x∈X

{
xTΣx : (µ̂− µδ)

Tx ≥ µ0

}
, (1.11)

where µδ = (sign(x1)δ1, . . . , sign(xn)δn)
T . The term sign(x) is the sign function equal

to 1 if x ≥ 0 and 0 otherwise.

The term µ̂− µδ can be viewed as a shrinkage estimator10 of the expectation of

portfolio returns. In other words, constructing a robust portfolio for µ from µ̂ is

equivalent to constructing a portfolio from µ̂− µδ. If the weight of asset i in the

portfolio is negative, the expected return on this asset is increased, µi + δi and vice

versa.

10Shrinkage estimator improves the estimate that is made closer to the value supplied by the ‘other
information’ than the raw estimate.



1. Introduction 14

1.4.6 Portfolio With Unknown Mean And Covariance

We continue to follow the material [FHZ10]. There are some situations when the

covariance matrix Σ is subject to estimation error. Then, θ = (µ,Σ) ∈ P(µ̂,Σ̂).

Therefore there are several methods for modeling uncertainty in the covariance ma-

trix. Some are superimposed on top of factor models for returns [GI03] and others

consider confidence intervals for the individual matrix entries [TK04]. For more

details, see [FHZ10].

1.5 Summary

The Mean-Variance Model (MVM) is an elegant framework for portfolio optimiza-

tion. The framework operates with the return and risk of investable assets and their

asset weights to form an optimal portfolio. The returns and risks of these assets are

derived from the means and variances of historical data series or various estimation

models.

The MVM seeks to reduce the total variance of the portfolio returns and proposes

an efficient frontier for the assets, where the best possible MV portfolios reside.

Mutual correlations of the assets impact the portfolio formation and weights of the

assets forming the portfolio. The MVM assumes that investors are rational and the

capital markets are efficient. In our opinion this is a strong assumption that holds

most of the time but does not hold all the time (bubbles, recessions).

Despite the elegance of the framework, the MVM suffers with the over-concentra-

tion and sensitivity issues. Therefore these issues of the model were studied exten-

sively and several correcting techniques have been proposed. There have been two

paths to overcome the disturbing issues. One is the mitigation of the issues and the

other is robust portfolio optimization.

We reviewed several practical as well as theoretical cases of the possible robust-

ness. The theoretical cases include:

1. Robust MVM

2. Portfolios with known moments

3. Portfolios with unknown mean

4. Portfolios with unknown mean and covariance.

Topics such as the MV framework, the mitigation of MVM issues, robust opti-

mization, the classification of securities, robustness and robust portfolios are develo-

ped in next chapters.
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1.6 Motivation

The goals of the thesis were motivated by problems encountered during an analysis,

construction and optimization of risky asset portfolios. The robust investment port-

folios are of a practical applicability but their fundamentals are of a theoretical as

well as of a practical nature. There are four goals to be declared.

� The first one is to test the mean-variance model (MVM) and investigate its

disadvantages.

� The second one is to evaluate a robust optimization technique to overcome the

disadvantages of the MVM.

� The third one is to provide and test an intuitive framework for classification or

selection of risky assets for a robust portfolio.

� The fourth one is to give a practical allocation procedure and to verify that ro-

bust portfolios offer low and infrequent drawdowns and high reward-to-variability

ratios.

In the presented thesis there are no complete answers to many questions but they

provide elementary building blocks and guidance to the solution.

1.7 Outline Of Thesis

The thesis is organized so that the reader can view the sections independently. The

main directives of investigation and research are related to MV/RMV portfolios. One

can read some relevant sources of portfolio analysis, optimization and management,

of which there are plenty elsewhere [Cip00, FHZ10, Wil07].

The thesis is structured as follows: Chapter 1 is a brief introduction to the

thesis. Chapter 2 provides the theory on the mean-to-variance portfolios. Chap-

ter 3 is about robust portfolios. Chapter 4 gives some hints on equity selection

and classification for the robust portfolios. Chapter 5 covers the robustness, robust

portfolios, drawdowns, risk-reward ratios of the robust portfolios and some empirical

verifications. Chapter 6 summarizes and discusses the results. Chapter 7 con-

cludes the thesis. There are five appendixes. Appendix A provides a description

of two well-known equity indexes and a growth fund. Appendix B is about Value

at Risk method (VaR) and Mean-Variance Model (MVM). Appendix C gives in-

sight into the clustering algorithm, input data and other results. Appendix D is

about details on Reward-To-Variability Ratios and additional experimental results.

Appendix E informs about Data Sources among other things.



Chapter 2

MVM Portfolio

The chapter1 provides some insight into portfolio analysis and construction but com-

plete references [Cip00, Hul08] offer proper details.

Markowitz [Mar52] proposed and published a solution for portfolio selection prob-

lems. The basic idea was elegant, innovative and intuitive such as to allocate invest-

ment capital over a number of assets in order to maximize the ‘return’ and minimize

the ‘risk’. The solution was substantially researched and two main weaknesses ap-

peared [FHZ10].

The chapter is structured as follows: Section 2.1 gives some background about

portfolios, investments and related work. Section 2.2 specifies the MV model

(MVM). Section 2.3 is related to empirical verification and Section 2.4 discusses

results. Section 2.5 concludes the chapter.

2.1 Background

This section reviews the research work related to portfolio selection and management.

It explains essential ideas, facts and context of the topic. The section starts with

portfolio selection problems researched by Markowitz.

Portfolio selection problems [RS09] were formulated for the first time by Markowitz

[Mar52]. They consist of allocating capital over a number of available assets in order

to maximize the ‘return’ on the investment while minimizing the ‘risk’ using mathe-

matical techniques. In the proposed models, the return is measured by the expected

value of the random portfolio return, while the risk is quantified by the variance of

the portfolio (mean-variance models).

Despite the strong theoretical support [RS09], the availability of efficient com-

puter codes to solve them and the elegance of the models, they present some practical

pitfalls: the optimal portfolios are not well diversified; in fact they tend to concen-

1This chapter was rewritten and published at the conference [Kon13]. The requested revisions
and suggestions were incorporated into the chapter.
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trate on a small subset of the available securities and, above all, they are often very

sensitive to changes in the input parameters.

Also, a critical weakness of mean-variance analysis [FHZ10] is the use of variance

as a measure of risk. In some sense, risk is a subjective concept and different investors

adopt diverse investment strategies in seeking to realize their investment objectives,

and hence the exogenous characteristics of investors mean that probably no unique

risk measure exists that can accommodate every investor’s problem.

For example, one investor may be concerned about dramatic market fluctuation

no matter whether this movement is upside or downside, whereas another investor

may be more concerned with the downside movements, which usually imply severe

loss consequences. In this case, the variance is obviously not sufficient to express or

measure the investors’ risk. On the other hand, the market may change in nature.

The introduction [FHZ10] of new derivatives and investment strategies may re-

quire the formulation of an alternative risk measure more appropriate for different

investors. This is because the portfolio distribution with derivatives such as futures

and options is skewed and heavy-tailed, which calls for a risk measure to respond to

downside and upside deviations asymmetrically.

2.2 The Mean-Variance Model

Portfolio

Consider n risky assets [FHZ10] that are chosen by an investor in the financial market.

Let r = (r1, . . . , rn)
T ∈ ℜn denote the uncertain returns of the n risky assets from

the current time t = 0 to a fixed future time t = T . Let x = (x1, . . . , xn)
T ∈ ℜn

denote the percentage of the available funds to be allocated in each of the n risky

assets. A portfolio allocation model aims at finding the optimal (best) portfolio x to

be constructed at t = 0, in order to maximize the portfolio’s future return rTx from

t = 0 to t = T . The definition of the portfolio is extended in the next subsection.

The Mean-Variance Problem

In this section we consider a one-period portfolio selection problem [FHZ10, Mar52].

Let the random vector r = (r1, . . . , rn) ∈ ℜn denote random returns of the n risky

assets, and x = (x1, . . . , xn)
T ∈ X,X = {x ∈ ℜn : 1n

Tx = 1} denote the proportion

of the portfolio to be invested in the n risky assets, where T means transposition

and 1n denotes a vector of all ones. Suppose that r has a probability distribution

p(r) with mean vector µ and covariance matrix Σ. Then the target of the investor

is to choose an optimal portfolio x that rests on the mean-variance efficient frontier.

In the Markowitz model [Mar52], the ‘mean’ of a portfolio is defined as the expected
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value of the portfolio return, µTx, and the ‘risk’ is defined as the variance of the

portfolio return, xTΣx.

Mathematically, minimizing the variance subject to target and budget constraints

leads to a formulation like:

min
x

{
xTΣx : µTx ≥ µ0,1n

Tx = 1

}
, (2.1)

where µ0 is the minimum expected return. There are two implicit assumptions in

this formulation: i) the first two moments of portfolio return exist and ii) the initial

wealth is normalized to be 1 without loss of generality.

If the moment parameters are known, the analytical solution [FHZ10] to the

above formulation is straightforward to apply, and the above problem can be solved

numerically under various practical constraints, such as no-short-selling or position

limits. However, the moment parameters are never known in practice and they have

to be estimated from an unknown distribution with limited data. Typically, the

procedure of minimizing the portfolio variance with a given expected return can be

decomposed into three steps: (i) estimate the expected return and covariance, (ii)

use the above optimization problem to create an efficient frontier, and (iii) select a

point on the efficient frontier or select a mix of the risk-free assets and the optimal

risky asset allocation according to the investor’s risk tolerance. This procedure is

clearly not optimal, and hence robust procedures for making a good use of portfolio

theory are called for in the presence of parameter, model uncertainties or both.

2.3 Empirical Verification

The section gives an overview of the MV method, preliminary test cases and other

experimental results with the MVM. These are true unobservable values (µ, Σ),

which are estimated as (µ̂, Σ̂)2 from historical data series.3 We assume that holds

µ ≈ µ̂, Σ ≈ Σ̂.

2.3.1 The MVM Method

Let us review the procedure of minimizing the portfolio variance as a four step

method.

[Step 1] Estimate the expected returns (µ̂s) and covariance matrix (Σ̂s) over the

period S as

2Σ includes σ, so we will operate only with Σ.
3The process of parameters’ estimation (µ,Σ) is also interesting one. If not stated otherwise,

we calculated the estimates as simple averages from historical series over the stated periods (sam-
ple estimators). This is not the best estimation method but it is sufficient for our demonstration
purposes. Better options are shrinkage estimators (i.e. James-Stein or Bayes-Stein shrinkage esti-
mators) [FKPF10].
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µ̂s =
1

S

S∑
s=1

rs, Σ̂s =
1

S

S∑
s=1

(rs − µ̂s)(rs − µ̂s)
T . (2.2)

[Step 2] Use the optimization problem to create an efficient frontier.

[Step 3] Select a point on the efficient frontier or select a mix of the risk-free

assets and the optimal risky asset allocation.

[Step 4] Calculate weights of risky assets for the selected mix.

We have to find an estimation of the expected return, the standard deviation and

the correlation of risky assets. Based on that, one calculates the covariance matrix

of the returns and an efficient frontier. Finally, one optimizes the portfolio.

2.3.2 Data

The primary stock selection was narrowed to the U.S. traded stocks (the Dow 30,

the S&P 500) due to long time series and data availability. Experimental data

were retrieved from one financial information source [YA]. The estimations of sample

means, variances and correlations of risky assets were calculated as equally-weighted

from the historical time series (1.1.1995-2.1.2014). We assumed that these statistical

parameters were ‘close’ and ‘reasonable’ approximations of true parameters of the

constructed portfolio.

2.3.3 Test Case

We experimented with three US stocks4 – Coca-Cola (KO), Procter&Gamble (PG)

and IBM (IBM). If not stated otherwise, we kept this order of the stocks. The index

S&P 500 (SPX) was a comparative benchmark which includes all three stocks. The

main task of the setup is to searched for weights xop = (xKO, xPG, xIBM ) to get

these portfolio parameters (µop, σop) of our portfolio.

[Step 1] In Table 2.1, there are the estimation of expected returns (µ̂) and

standard deviations (σ̂) for the stocks and the S&P 500 index.

In matrices (Ĉor, Σ̂), there are estimated correlations and calculated covariances

between the three selected assets.

Correlation Ĉor =

 1.0000 0.7705 0.8504

0.7705 1.0000 0.8502

0.8504 0.8502 1.0000

 (2.3)

4These are global large capitalization companies, leaders in their industries with capable man-
agement and distributing regular dividends. Operating results of the companies are a sort of uncor-
related therefore they form a portfolio.
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µ̂ σ̂

KO 0.0640 0.1840
PG 0.1001 0.1724

IBM 0.1260 0.2747
SPX 0.0600 0.2000

Table 2.1: (µ̂, σ̂) pairs. There are expected returns (µ̂) and standard
deviations (σ̂) for the stocks and the S&P 500 index.

Covariance Σ̂ =

 0.0339 0.0244 0.0430

0.0244 0.0297 0.0403

0.0430 0.0403 0.0755

 (2.4)
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Figure 2.1: The MVEF with three risky assets and the S&P 500 index
(left) and the S&P 500 index and two portfolios. Our and
MinRisk portfolios are depicted (right).

[Step 2] Then we ran a portfolio optimization procedure to receive the efficient

frontier of the risky assets. The result is depicted in Figure 2.1 (left).

[Step 3] We selected a point on the efficient frontier (µop, σop) = (0.1174, 0.2339)

that reflected our risk aversion. The result is depicted in Figure 2.1 (right).

[Step 4] Finally, we calculated weights of the selected assets. The weights of

the three risky assets were xop = (0.0000, 0.3335, 0.6665). One could see that the

MinRisk portfolio had parameters (µmr, σmr) = (0.0871, 0.1668) with weights xmr =

(0.0000, 0.3593, 0.6407). And that was the final step of the optimization.

2.3.4 Test Case (reiterated)

We ran the previous setup with the same steps but very recent data. Recent risk-

return statistics are in Table 2.2. (µ̃, σ̃) are estimated parameters of the true return

and variance of the true parameters (µ ≈ µ̃, Σ ≈ Σ̃).

The rest of the data (C̃or, Σ̃) could be found in Appendix D. We do not describe
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µ̃ σ̃

KO 0.1036 0.0611
PG 0.1293 0.1164

IBM 0.0186 0.0375
SPX 0.1884 0.0946

Table 2.2: (µ̃, σ̃) pairs. There are expected returns (µ̃) and standard
deviations (σ̃) for the stocks and the S&P 500 index.

procedural details again but we concentrate on results. And the results look quite

differently. Let us compare Figures 2.2 (original left, reiterated right).
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Figure 2.2: The MVEF with three risky assets, the S&P 500 index
and two portfolios (original, left). Our and MinRisk port-
folios are depicted (reiterated, right).

Required parameters of our portfolio were (µ̃op, σ̃op) = (0.1174, 0.0829). We cal-

culated weights as previously. The weights of the three risky assets were x̃op =

(0.4662, 0.5388, 0.0000). The MinRisk portfolio had parameters (µ̃mr, σ̃mr) = (0.0382,

0.0286) with weights x̃mr = (0.0000, 0.1770, 0.8230). One can assume that the ex-

pected return of the assets is higher, the expected risk is lower and the S&P 500

outperformed all three risky assets. We continued with the long term data from the

previous Test Case as we assumed they were more reliable.

2.3.5 Experimental Setup

The tested portfolios were simple three-stock equity based portfolios.5 The tracking

index was the US large cap index (the S&P 500 [SPX]). The tested portfolios were

of two types: (i) long-only equity and (ii) long-short equity.

From a practical perspective, the long equity side was constructed from subsets

of carefully selected equities. The short side could be achieved via short-selling

stocks, equity market indexes or using derivatives.6 In our case, we shorted 1/4 of

5These are small portfolios, but one can understand them easily.
6These are options, warrants, swaps, futures, leveraged certificates, ETFs (Exchange Traded

Funds) and others.
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SPX against the overall portfolio value. We could imagine more aggressive shorting

scenario, but we would not want to exploit the ex-post knowledge.

The tested portfolios could take up of 100% leverage (200% of the total gross long

exposure, but this setup was still underbetting the Kelly criterion7. The primary

modeling software was Matlab 2011a. Some experiments used examples from the

optimization library by Attilio Meucci.8

2.3.6 Results
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Figure 2.3: The MVEF I. The MV efficient frontier and 10 risky port-
folios on the efficient frontier (left). Portfolios weights are
in Table 2.3. Three types of portfolios with different lev-
els of short-selling (0%, 50% and 100%) (middle). There
are also depicted the MVEF and 1,000 randomly gener-
ated portfolios (right).

The first results with the MV model are presented in Figures 2.3 and in Table 2.3.

In Figure 2.3 (left), the MVEF is depicted. It shows the efficient frontier with 10

risky portfolios, represented as small circles, on the efficient frontier along the S&P

500 index. The higher risk means the higher expected return and vice versa. In

Table 2.3, one can find weights of these 10 risky portfolios.

# 1 2 3 4 5 6 7 8 9 10

xKO 0.36 0.24 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00
xPG 0.64 0.76 0.88 0.99 0.83 0.67 0.50 0.33 0.17 0.00
xIBM 0.00 0.00 0.00 0.00 0.17 0.33 0.50 0.67 0.83 1.00

Table 2.3: Portfolios weights and risks. Calculated portfolio weights
are related to Figure 2.3. The lowest risk-return portfolio
splits weights between KO (0.36) and PG (0.64) [left]. The
highest risk portfolio concentrates in IBM stock (1.00)
[right].

7The Kelly criterion [Wil07] is a criterion for maximizing expected growth of assets by investing
a fixed fraction of your wealth. The criterion suggests use of leverage for growth of assets, when the
leverage is lower than recommended, we are ‘underbetting’ the criterion.

8The library is available at http://symmys.com.
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Figure 2.4: The MVEF II. Figure (left) displays the diversification
effect of increasing the number of assets in the market
(from 2 to 125 securities). The efficient frontier also de-
pends on the investment horizon (right).

Figure displays the diversification effect of increasing the number of assets in the

market (from 2 to 125 securities) 2.4(left). This reflects the intuitive thinking because

the more asset available, the more possibilities to construct a better performing

portfolio. The efficient frontier depends on the investment horizon and highlights

the problems arising from an incorrect use of compounded returns instead of linear

returns for this analysis in Figure 2.4 (right). The investment horizon is one month

and 10 years.

2.4 Discussion

The presented research explains a simple procedure how to construct, optimize and

balance the equity based portfolios. The current algorithmic setup provides far more

functionality than was presented. E.g. splitting stocks into industry groups, restrict-

ing on local and global regions, other limiting and restrictive constrains might be

declared on the algorithms.

We experimented with the simple optimization portfolio strategy (the MVM).

The results were presented in the form of figures, tables and appropriate comments.

The achieved results reflect the reality and counter-testing. These experiments have

shown the relation between risk and return that reflects the financial markets. As

mentioned previously, there are some minor flaws9 in the model but anyway this

simple model works quite consistently.

There was no discussion about the relevance to capital markets, allocation strate-

gies, nor real-life portfolio construction. Some parts of applied statistics [Fel66] and

econometrics [Bal11] might need more attention. The presented study was about

understanding the portfolio theory, applied statistics and simulation software. The

9One of them is a directional concept of volatility. In some case, any increased volatility is a
problem and in the other the increased volatility with falling markets is the serious issue.
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experiments with extended stress-testing, re-allocations and re-optimizations were

not completed.

In Appendix B we presented results from minor experiments with VaR (Value-

at-Risk). The results are only a set of Figures and related comments. As dipping

our toes into VaR, let us clarify that VaR (Value-at-Risk) is one of the risk measures

and metrics used in banking and the financial markets. It helps to construct and

guard portfolios of financial assets. For the sake of context, the mean-VaR model for

portfolio selection [FHZ10] was proposed in 2000.

2.5 Summary

The chapter defined and explained the Mean-Variance Model (MVM), the Mean-

Variance Problem (MVP), asset portfolio and the optimization as a minimization of

the portfolio variance. The MVM works with estimates of expected returns of assets

and their covariance matrix. The estimates are usually calculated as sample means

from historical time series.

The experiments involved two test cases. The test cases optimized a portfolio of

the same three risky assets. Due to calculation sample means from two time series

with different periods, we received different expected returns and covariance matrix

for the assets and then two different MV portfolios. We continued with the more

conservative estimation and the portfolio. Therefore we can claim:

� The MVM provides a simple, elegant and intuitive framework for portfolio

optimization. It includes portfolio leverage, short-selling, correlated and un-

correlated assets, various asset classes and so on.

� The MVM was tested with 3-stock portfolios against the capital market data

for the 1995-2014 period. The tests showed the favorable diversification, opti-

mization and performance effects of individual securities formed in the portfolio

to the equity index. The stock portfolios showed the MV superiority over the

benchmark index.

� The asset estimation of expected returns and related covariance matrix is quite

vital to the MVM. Small inaccuracies in the estimation of asset parameters lead

to absurd or unacceptable results. This is a disturbing feature of the MVM.

There are many sophisticated approaches to deal with these unpleasant issues of

the MVM such as mitigation approaches and robust optimization.



Chapter 3

Robust Portfolio

The chapter provides some insight into robust estimates, robust portfolio methods,

analysis and construction. We start with the Mean-Variance Model (MVM) and its

issues. The issues have been researched and several adequate solutions proposed.

The solutions lead to robust estimates in portfolio management.

Markowitz [Mar52] proposed and published a solution for portfolio selection prob-

lems, so called the MVM. The solution was substantially researched and two main

weaknesses appeared [FKPF10]. The weaknesses were the sensitivity to estimation

errors and small changes in the inputs. These weaknesses can be mitigated with four

approaches to make the classical mean-variance approach more robust:

1. Improve the accuracy of inputs

2. Use constraints for the portfolio weights

3. Use portfolio resampling to calculate the portfolio weights

4. Apply the robust optimization framework to the portfolio allocation process.

The other direction to solve the weaknesses is robust optimization. Robust opti-

mization has its roots in robust statistics and robust control engineering [FKPF10].

The robust portfolio optimization includes uncertainty in the optimization process.

The uncertain parameters are assumed to vary in specified uncertainty sets that are

defined on statistical and probability techniques.

Making the portfolio optimization process robust [FKPF10] with respect to un-

certainty in the parameters is not very expensive in computational costs but it may

result in a worse objective value. This feature can be corrected by using “smart”

uncertainty sets for parameters that do not make the expected portfolio return very

conservative.

There is a strong empirical evidence that the robust optimization reduces portfo-

lio turnover, transaction costs, improves worst-case performance, limits drawdowns,
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leads to increased and stable returns in the long run [FKPF10, Meu10]. These are the

features which are quite attractive, demanded and useful in the investment industry.

The chapter is structured as follows: Section 3.1 provides some background

about the topic. Section 3.2 specifies the robust approaches and allocations. Sec-

tion 3.3 is devoted to experiments. Section 3.4 discusses results. Section 3.5

closes the chapter.

3.1 Background

This section reviews the topic related to robust estimates and optimization. As

stated in the previous section, we know that the classical MVM has two weaknesses

– the sensitivity to estimation errors and small changes in the inputs. The presented

approaches either mitigate the weaknesses or provide direct robust solution.

While experimenting with the MVM, one needs to understand that there are three

frontiers [FKPF10] – true (unobservable), estimated and actual frontiers. The true

and estimated ones seem evident. The actual frontier takes portfolios on the efficient

frontier and calculates their expected returns using the true expected returns. The

estimated frontier is the most optimistic frontier of the three as the actual one is the

most pessimistic. The optimization target is to get as close as possible to the true

unobservable frontiers therefore the mitigation and robust approaches might be the

required path.

The next part follows several published references [FKPF10, Meu09a, Meu09b,

Meu10, Meu11]. Any details, derivations, technicalities and proofs of robust ap-

proaches are in the references above, therefore we give only a short overview of each

model. There are four approaches – Bayesian, Black-Litterman, Robust and Robust

Bayesian approaches1 to be experimented with.

3.1.1 Bayesian Approach

The Bayesian approach limits parameters’ sensitivity. Bayesian allocations are pre-

sented in terms of the predictive distribution of the market, as well as the classical-

equivalent Bayesian allocation, which relies on Bayes-Stein shrinkage estimators of

the market parameters, the estimator [FHZ10] is defined as,

µ̂BS = (1− ν)µ̂+ νµ̂g1n, (3.1)

where ν is the weight given to the shrinkage target µ̂g and 1− ν is the weight on

1Actually, there is at least one more – Michaud’s resampling technique [FKPF10]. The rationale
behind this approach consists in limiting the extreme sensitivity of the optimal allocation function
to the market parameters by averaging several sample based allocations in different scenarios but
we did not work with this one.
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the sample mean. The target is the average excess return of the sample minimum-

variance portfolio,

µ̂g =
1Tn Σ̃

−1µ̂

1Tn Σ̃
−11n

=
1Tn Σ̂

−1µ̂

1Tn Σ̂
−11n

(3.2)

and the weight is

ν =
n+ 2

(n+ 2) + T (µ̂− µ̂g1n)T Σ̃−1(µ̂− µ̂g1n)
, (3.3)

where Σ̃ is defined as T
T−n−2Σ̂. From a shrinkage point of view, combing µ̂BS

with Σ̃ gives an estimator of the optimal portfolio weights.

The Bayesian approach provides a mechanism that mixes the positive features

of the prior allocation and the sample-based allocation: the estimate of the market

is shrunk towards the investor’s prior view in a self-adjusting way and the overall

opportunity cost is reduced.

3.1.2 Black-Litterman Approach

The Black-Litterman (BL) approach controls the extreme sensitivity of the optimal

allocation function to the unknown market parameters,

µ̂BL = [(τΣ)−1 +PTΩ−1P]−1[(τΣ)−1Π+PTΩ−1q], (3.4)

where Σ is the n × n covariance matrix of returns, Π is [Π1, . . . ,Πn]
T which is

the vector of expected excess returns, computed from an equilibrium model such as

CAPM, τ is a scalar that represents the confidence in the estimation of the market

prior, q is a k-dimensional vector of k investor views, P is a k×n matrix of investor

views, Ω is a k × k matrix expressing the confidence in the investor’s view.2

Like the Bayesian approach, the Black-Litterman methodology makes use of

Bayes’ rule. In this case the market is directly shrunk towards the investor’s prior

views, rather than indirectly through the market parameters. We present the theory

in a general context, performing the computations explicitly in the case of normally

distributed markets.

3.1.3 Robust Approach

Rather than trying to limit the sensitivity of the optimal allocation function, the

robust approach aims at determining the “best” allocation in the presence of esti-

mation risk. In other words, robust allocations minimize the opportunity cost over

a reasonable set of potential markets. The conceptually intuitive robust approach,

as is defined in Chapter 1 (Robust MVM), is hard to implement in the general case.

2The matrix Ω is assumed to be diagonal, that is, investor views are assumed to be independent.
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Therefore, the two-step mean-variance framework helps as follows: (i) under suitable

assumptions for the investment constraints the optimal allocations solve a second-

order cone programming problem: (ii) as a result, the optimal allocations can be

efficiently determined numerically. The robust approach can also be blended with

the Bayesian approach (Robust Bayesian approach). There are some disadvan-

tages of the robust approach: (i) the markets are defined quite arbitrarily and (ii)

the investor’s prior view are not taken into the account.

3.2 Experiments

3.2.1 Data and Setup

The data series were artificially generated or retrieved from one financial source [YA].

The retrieved data were narrowed to the U.S. index (the S&P 500) and its industry

components. The means, variances and correlations of the index were calculated

from historical time series (sample data).

The primary calculation software was Matlab 2011a. The additional software

sources were adjusted and rebuilt from the optimization examples created by Attilio

Meucci3 and the SeDuMi4 library v.1.1 by Jos F. Sturm.

3.2.2 Results
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Figure 3.1: Robust estimate – The sample one is sensitive to outliers
and the robust one is not. The arrows point to impor-
tant outliers (left). There are Huber M-robust estimates
(middle) and sample estimates with the robust set for
comparison (right).

There are presented experimental results based on the ARPM and the SeDuMi

libraries. We experimented with robust statistics (Huber M-robust estimates) but

the experiments are not described due to the space limitations. We provide only

three illustrative and self-descriptive diagrams in Figure 3.1.

3These are available at the resource for Advanced Risk and Portfolio Management (ARPM,
http://symmys.com).

4The software for optimization over symmetric cones, available at
http://sedumi.ie.lehigh.edu/downloads.
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Bayesian allocation The sequence of diagrams shows the evaluations of the

Bayesian allocation, which replaces the true, unknown market parameter in the op-

timal allocation policy with a Bayesian classical-equivalent (point) estimate in Fig-

ure 3.2.
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Figure 3.2: Bayesian allocation – Charts display the distribution of
satisfaction, cost of constraint violation and opportunity
cost for each value of the market stress-test parameters
(in this case the correlation; time passes from top left to
bottom right).

Black-Litterman approach The figures show the motivations for the Black-

Litterman approach. The estimation risk is such that the true (“optimal”) frontier

estimated with naive estimators changes quite wildly for different time series realiza-

tions and corner solutions when inputing the views in Figure 3.3.
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Figure 3.3: Robust motivation for BL – there are three scenarios such
as true frontier (left), naive estimation frontier (middle)
and naive views on true market frontier (right). Each of
the figures is represented in the risk propensity/portfolio
composition view.

Black-Litterman approach There has been shown a comparison among: (i)

the true efficient frontier, (ii) the pseudo-efficient frontier stemming from the BL
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general equilibrium prior and (iii) the pseudo-efficient frontier stemming from the

BL posterior (general equilibrium plus views). Results are depicted in Figure 3.4.
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Figure 3.4: Robust BL and the frontiers. The comparison relates
true frontier (left), prior frontier (middle) and BL MV
frontier (right).

Black-Litterman approach This scenario compares the Black-Litterman ap-

proach to inputing views on the market with a brute force approach, which gives rise

to corner solutions in Figure 3.5.

0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Black−Litterman "posterior" frontier

0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
no−views frontier

0.015 0.0155 0.016 0.0165 0.017 0.0175 0.018 0.0185 0.019 0.0195
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
"brute force" views frontier

Figure 3.5: Robust BL and three cases. There are three cases to
compare: BL “posterior” frontier (left), no views frontier
(middle) and brute force views frontier (right).

Robust MV approach The diagram shows the robust mean-variance allocation

by means of SOCP (a second-order cone program). The uncertainty region for the

expected value is elliptical and no uncertainty is assumed on the covariance matrix

in Figure 3.6 (left).

There are (i) the sample MV frontier, (ii) the Bayesian MV frontier and (iii) the

robust Bayesian MV frontier while the experiment is repeated for the number S = 20

of simulations. The results are depicted in Figure 3.6 (right). The figure is displayed

in the mean-variance coordinates.

Robust Bayesian MV approach The figure displays the robust Bayesian al-

location frontier, which shrinks the sample estimate toward the practitioner’s prior

view by including elliptical uncertainty on both location and scatter parameters of a

normal market. Three frontiers are computed for three different levels (T i
0, ν

i
0, T

i)3i=1

of shrinkage (confidence levels) in Figure 3.7.
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Figure 3.6: Robust MV (left) – There is a robust mean variance
(RMV) allocation based on the random input data. The
RMVM is controlled with the variance parameter. MV
comparison (right) – There are depicted (i) the sample
MV frontier, (ii) Bayesian MV frontier and (iii) Robust
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Figure 3.7: Robust Bayesian MV simulations – Three frontiers are
computed for three different levels of shrinkage (confi-
dence levels). The number of assets is 6.

This computation compares robust Bayesian allocation, which shrinks the sample

estimate toward the practitioner’s prior view by including elliptical uncertainty on

both location and scatter parameters of a normal market. That was done with a

simplistic sample-based allocation, which estimated the market parameters without

processing inputs from the investor. The market was represented by industry sectors

of the S&P 500. The results are in Figure 3.8.

3.3 Discussion

There are several points for the discussion. Generally, robust statistics (i.e. Huber

M-means) resist outliers. M-means provide better estimations and close solutions.

All the approaches (Bayesian, Black-Litterman, Robust and Robust Bayesian)

demonstrated their abilities to improve or completely avoid the weaknesses of the

MVM. In Figure 3.6, the advantages of the Bayesian, Robust MV and Robust
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Figure 3.8: Robust Bayesian approach on the S&P 500 – sample and
robust returns (top and bottom left). The sample and
robust returns of the portfolio over time (top and bot-
tom right) over the period. The robust samples are less
volatile but in this particular example they appreciated
less in value than the regular data sample.

Bayesian approaches were sufficiently demonstrated. The approaches headed towards

a low variance and the best risk-reward ratio.

Nevertheless, robust optimization methods can decrease returns of the invested

capital as shown in Figure 3.8. This needs to be dealt with accordingly.

Optimization software and rich statistics were new for us. Therefore we felt that

we only possessed a superficial knowledge of the topic. The topic is rich, complex

but applicable and stimulative.

3.4 Summary

The chapter has explained the weaknesses of the MVM and corrective approaches.

The corrective approaches include robust statistics, mitigation of the MVM weak-

nesses, “robustification” of the MVM and the RMVM (Robust Mean-Variance Model).

There were four elemental approaches to deal with the MVM issues. These are

Bayesian, Black-Litterman, Robust and Robust Bayesian approaches. The first two

are mitigating ones and the last two are robust ones. The robust ones are determining

the best allocation in the presence of estimation risk. There were described several

experiments to demonstrate the ability of the approaches.

The portfolio management application that compared sample and robust returns

of the S&P 500 industries demonstrated the decrease of the volatility and drawdowns.

This result supports the empirical and theoretical evidence [Meu10] that the robust

portfolio limits drawdowns, improves worst-case performance and provides stable

returns in the long-term horizons.



Chapter 4

Equity Classification

In this chapter we describe our analysis of equities via explorative techniques such

as cluster analysis (CA) or principal component analysis (PCA). The equities were

from the DAX index. The explorative analysis worked with technical as well as

fundamental parameters of the equities.

The notion of a “cluster” varies between methods and is one of the many decisions

to make when choosing the appropriate algorithm for a particular problem. At first

the terminology of a cluster seems obvious: a group of data objects. However,

the clusters found by different algorithms vary significantly in their properties, and

understanding these “cluster models” is key to understanding the differences between

the various algorithms [Har75].

The remainder of the chapter1 is structured as follows: Section 4.1 gives details

on cluster analysis and portfolio selection. Section 4.2 gives a short overview of

the financial data and introduces the data and some preliminary statistical tests.

Section 4.3 specifies the details of cluster analysis used in the investigation. Section

4.4 and Section 4.5 presents the obtained empirical analysis and results. Finally,

Section 4.6 summarizes the results and concludes the most important findings.

4.1 Background

4.1.1 Cluster Analysis And PCA

Cluster analysis or clustering is the task of assigning a set of objects into groups

(called clusters) so that the objects in the same cluster are more similar (in some

sense or another) to each other than to those in other clusters [Har75]. The intuitive

and explanatory example of clustering is in Figure 4.1.

Clustering is a main task of explorative data mining [Har75], and a common

technique for statistical data analysis used in many fields, including machine learn-

1This chapter was rewritten into a conference paper [Kon14].
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Figure 4.1: A cluster diagram. This is a simple example of cluster
analysis of circular objects in a 2D space. There are 8
objects and 4 clusters available. Steps of the clustering
process are also usually depicted by a dendrogram.

ing, pattern recognition, image analysis, information retrieval, econometrics [Bal11],

finance [Bro08, Wil07] and bioinformatics.

Cluster analysis [Har75] itself is not one specific algorithm, but the general task

to be solved. It can be achieved by various algorithms that differ significantly in their

notion of what constitutes a cluster and how to efficiently find them. Popular notions

of clusters include groups with low distances among the cluster members, dense areas

of the data space, intervals or particular statistical distributions. Clustering can

therefore be formulated as a multi-objective optimization problem. The appropriate

clustering algorithm and parameter settings (including values such as the distance

function to use, a density threshold or the number of expected clusters) depend on

the individual data set and intended use of the results. Cluster analysis as such is

not an automatic task, but an iterative process of knowledge discovery or interactive

multi-objective optimization that involves trial and failure. It is often necessary to

modify preprocessing and parameters until the result achieves the desired properties.

Principal Component Analysis (PCA) [Jol02] is a statistical procedure that

uses orthogonal transformation to convert a set of observations of possibly correlated

variables into a set of values of linearly uncorrelated variables called principal com-

ponents. Usually, it has been used to decrease a dimensionality of the input data

and to provide the order of the highest significant components in the explored set.

4.1.2 Portfolio Selection

A portfolio manager of a fund picks investment instruments into a portfolio. The in-

struments are selected with technical, fundamental and hybrid analytical approaches.

Portfolio managers make use of quantitative heuristics, applied statistics and nume-

rical computing in their decision making.

Therefore our elementary idea was to use cluster analysis in portfolio manage-
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ment. Due to several resource constraints, the task was a bit simplified. We focused

on a small sized index of ‘Large Cap’ companies, which of the financial data were

freely available and could be used in the exploration via cluster analysis. The results

should have provided the classification of companies into clusters and revealed the

similarity of companies in a cluster. The portfolio manager could use this approach

as an analytical or screening tool of potential investments.

4.2 Data Description

The financial data were of German large companies in the DAX index. The DAX

has been an industry indicator of the national economy in Germany. The DAX

(also as the DAX 30) consists of 30 companies with the largest market capitalization

and the national importance. The DAX floated around 7, 074 points at the time

of data retrieval.2 The weighting of companies is based on the free float market

capitalization, i.e. on the freely tradable shares and not on the entire market value

of a company.

Stated briefly, the DAX is a German ‘Large Cap’ index. The index consists of 30

blue chips companies such as SIEMENS AG, SAP AG, BASF SE, DAIMLER AG,

BMW AG, ALLIANZ SE, DEUTSCHE TELECOM AG, E.ON AG, DEUTSCHE

BANK AG and so on. A complete table of the companies and their industries are

placed in Appendix C (Table C.1).

Descriptive statistics, technical and fundamental parameters of equities were em-

ployed. The technical parameters were Market Capitalization (MCap, Mio EUR),

Beta (β), Volatility (Vol) and Momentum (Mom, Moment) in the last 250 days. The

fundamental parameters were Price To Earnings (PE), Price to Book (PB), Dividend

Yield (DY) and Return On Equity (ROE) (last two in percents).

These statistical variables were retrieved from financial data sources ([DB, DI]).

Then the financial data were processed automatically, standardized3 and inserted

into three test files (tech, fund, tech+fund). The summary statistics of our finan-

cial data before scaling are placed in Table 4.1.

4.3 Methodology

Our motivation was to find out if cluster analysis on technical and fundamental data

of companies would be helpful in the investment process. The empirical analysis was

conducted via one descriptive statistics and cluster analysis. The basic idea was that

2This was in 21.8.2012 at 11:00 CET. Since then, the DAX has advanced to 9, 644 points in
25.7.2014 and crossed the 10, 000 level three times in 2014.

3It was with the embedded R function scale().
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the companies with the same descriptive statistics should create clusters together.

The technical and fundamental data needed to be standardized before clustering.

There is a number of different clustering methods available. Ward’s minimum

variance method aims at finding compact, spherical clusters. The Ward Hierarchical

Clustering method was run with the Manhattan distance (manhattan, ward). The

largest data set was also run with another set of clustering parameters (euclidian,

complete). The final experiments employed K-Means clustering method.

Our computation scripts were a modification of the original R script.4 The scripts

were redesigned to ensure required calculations, diagrams and charts. Data statistics

and cluster analysis were calculated in the R software package version 2.15.1.

4.4 Cluster Analysis

The additional empirical results are also described in Appendix C. Here, we summa-

rize the most important results.

The number of clusters was set to 6 due to the industry segregation of the DAX.

The industry groups were set as: (1) Finance; (2) Services and Transport; (3) Stores,

Telecom and Utilities; (4) Apparel, Cosmetics and Medical Equipment; (5) Autos

and Machinery; and (6) Chemicals, Energy, Materials and Semiconductors.

Clustering of technical parameters is shown in Figure 4.2 (left). Figure shows a

dendrogram which is a hierarchical graph of the clustering method. The clustering

of fundamental parameters is described in Figure 4.2 (right). We clustered technical

and fundamental parameters together in Figure 4.3 (left and right).

We assume that the best results are from the very last clustering. This is because

the companies from related industries often finished in the same cluster. Two diffe-

rent clusterings (euclidian, complete) were utilized in the experiments. However,

the clustering methods did not classify the companies as uniformly as expected, the

classification process was very explorative in our opinion.

4http://www.statmethods.net/advstats/cluster.html

Technical and fundamental parameters

MCap β Vol Mom PE PB DY ROE

Min.: 4.56 0.36 20.35 0.62 5.42 0.27 0.00 −12.23
1st QX : 8.24 0.75 28.08 1.02 8.46 1.08 1.78 4.59
Median: 19.84 0.93 36.53 1.23 12.62 1.75 2.79 12.23
Mean: 25.92 0.97 35.71 1.18 13.39 1.79 3.29 11.25
3rd QX : 39.73 1.19 41.53 1.34 16.41 2.32 5.07 15.87
Max.: 68.22 1.65 66.63 1.53 27.61 4.89 7.39 31.22

Table 4.1: Technical and fundamental parameters of the DAX com-
panies.
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In all dendrograms one can see that COMMRZB and DBANK, FMC and FSE,

BASF and BAYER are grouped together. These companies operate in the same or

the related industry. In the last dendrogram one can detect groups such as (COMM-

RZB, DBANK), (FMC, FSE, HENKEL, BRSDRF), (EON, RWE, DTEL, METRO),

(BMW, DAIMLER, VW, SIEMENS) and (BASF, BAYER). In our assumption, the

resultant clusters of the companies are related to the economic cyclicality and funda-

mentals. There are some more examples of the smooth classification, see for example

(DLUFT, THSSKRP) or (ALLIANZ, MUNCHRE).

It needs to be emphasized that the quality of classification improved notably after

standardization of the input data. To achieve a better classification a larger set of

parameters would have been required. It is presumed that something between 15−25

weighted parameters for each company would be satisfactory.
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Figure 4.2: Dendrogram (left) for technical parameters with
cluster numbering [3, (4), 6, (1), (5), 2] and cluster-
ing parameters (manhattan, ward). Dendrogram
(right) for fundamental parameters with cluster num-
bering [(3), (1), 4, (2), 6, 5] and clustering parameters
(manhattan, ward). Clusters in brackets are fundamen-
tally strong and the best one is in bold.

Matrix visualizations of the parameters interaction are shown in Figures C.1

(technical) and (fundamental), C.2 (technical and fundamental). There are strong

dependencies between Beta and Volatility and also some between PE/PB, PB/ROE,

PE/DY, and PB/DY. These dependencies confirm scientific references regarding the

relation between technical, fundamental statistics and growth/value stocks.

There are statistic means calculated in Tables 4.2, 4.3 and 4.4. These are

statistics inside of each cluster after the clustering method finished. The enumeration

of a cluster in the table relates to the bracket number in the matching dendrogram.
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Figure 4.3: Dendrogram (left) for both fundamental and technical
parameters with cluster numbering [4, 6, 1, (3), (2), (5)]
and clustering parameters (manhattan, ward). Dendro-
gram (right) for both fundamental and technical parame-
ters with cluster numbering [5, 6, (4), (2), (3), 1] and clus-
tering parameters (euclidian, complete). Clusters in
brackets are fundamentally strong and the best one is in
bold.

Two main principal components are depicted in Figures C.3 (tech, [left]),(fund,

[right]) and (fund+tech, [bottom]). These two components explain 84.46%, 78.64%

and 65.13% of the data variability as is shown in the figures, respectively.

4.5 Results and Discussion

After the experiments the achieved results are evaluated and discussed. It is provided

some reasoning behind the results. First, there are some facts behind the parameters.

1. The cluster analysis using only technical parameters is not reliable to construct

a long-term portfolio. This kind of clustering may suit to day, high-frequency

and algorithmic traders.

2. The clustering with fundamental parameters as well as both technical & fun-

damental parameters is suitable for the long-term portfolio.

3. The set of parameters was not taken very large and the parameters were equally

weighted. We assume that more parameters and ‘intelligent’ weights can pro-

vide even better, more intuitive and reliable results.

Let us overview the results. There are clusters evaluated on fundamental metrics

(low PE, PB, high DY and ROE). In Table 4.2 [left], the clusters (1), (2) and (5)
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might be suitable. Assets in the clusters (1), (2) and (3) look very good for a robust

portfolio in Table 4.2 [right]. The clusters (2), (3) and (5) resp. (2), (3) and (4) are

good candidates for a robust portfolio in Table 4.3 resp. 4.4.

# MCap β Vol Mom # PE PB DY ROE

(1) 17.09 0.63 25.98 1.36 (1) 16.61 2.20 1.69 14.53
2 47.96 1.18 38.29 1.26 (2) 8.39 1.15 5.40 10.33
3 13.54 1.52 55.67 0.78 (3) 10.96 2.27 3.72 21.86
(4) 7.13 0.82 37.71 0.91 4 22.28 4.53 1.54 19.56
(5) 57.64 0.79 26.05 1.15 5 11.83 1.17 2.87 2.56
6 11.43 1.20 43.35 1.25 6 25.05 0.83 2.66 −5.08

Table 4.2: Means in each cluster for technical parameters
(manhattan, ward) [left]. Means in each cluster for
fundamental parameters (manhattan, ward) [right].
Clusters in brackets are (may be) fundamentally strong
and the best one is in bold.

# PE PB DY ROE MCap β Vol Mom

1 18.52 2.60 1.58 13.16 17.88 0.57 23.99 1.31
(2) 8.27 1.11 5.39 10.66 34.01 1.14 38.55 1.23
(3) 11.92 2.66 3.05 22.89 61.12 1.00 31.66 1.30
4 8.54 0.43 1.38 3.10 13.28 1.55 56.15 1.01
(5) 12.04 1.90 4.66 11.21 14.99 0.82 33.24 1.12
6 20.88 1.38 2.43 0.89 07.68 1.05 42.48 0.98

Table 4.3: Means in each cluster for fundamental and technical pa-
rameters (manhattan, ward). Clusters in brackets are
fundamentally strong and the best one is in bold.

# PE PB DY ROE MCap β Vol Mom

1 14.72 1.67 2.34 5.95 13.35 0.96 33.96 1.37
(2) 10.76 1.52 5.18 11.75 21.07 0.97 37.36 1.09
(3) 9.78 1.83 3.84 19.25 54.59 1.12 35.85 1.23
(4) 19.14 3.35 1.42 16.83 26.99 0.53 22.26 1.35
5 6.05 0.36 1.38 3.27 16.10 1.59 60.46 0.80
6 25.05 0.83 2.66 −5.08 6.50 0.99 42.05 0.83

Table 4.4: Means in each cluster for fundamental and technical pa-
rameters (euclidian, complete). Clusters in brackets
are fundamentally strong and the best one is in bold.

Based on the results above, the clusters optimized and grouped fundamentally

provide coherent groups of stocks to select from. The promising groups of stocks are:

i) BASF, BAYER ii) BMW, DAIMLER, SIEMENS, VW, iii) ALLIANZ, MUNCHRE
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and iv) DTEL, EON, RWE. These stocks delivered acceptable operating results and

robust performance over the period from September 2012 to July 2014.

Our original idea was to use one of the data explorative methods (such as cluster

analysis) in portfolio management. At that time, while compiling experimental data

sets, programming, testing and analyzing the results, we assumed that the idea had

been original, innovative and evolutionary. However, during writing this chapter and

reading related research publications, we realized that the idea was not a new one

as we had assumed and that there were several published references about cluster

analysis in the process of portfolio management [Har75]. There are no available

references related to what we did exactly, but there are some published references5

in the domain of portfolio analysis, construction and optimization.

4.6 Summary

Cluster analysis or clustering is the task of assigning a set of objects into groups

(called clusters) so that the objects in the same cluster are more similar (in some

sense or another) to each other than to those in other clusters [Har75].

Portfolio managers have employed many quantitative, statistical and data ex-

ploratory techniques to build better (robust) portfolios. The possible set of methods

and techniques is wide, therefore we selected the cluster analysis as an illustrative

example.

The empirical results showed that this type of clustering is very explorative and

the achieved results were satisfactory. On the other hand more descriptive parameters

of each classified company would have delivered results of the higher quality.

The practical use of the clustering method could be exploited in portfolio analysis,

construction and optimization. One should select companies into a portfolio from

different clusters to avoid over-concentration of the same or similar industry risk. One

can recognize if two companies are correlated as well as share similar risk profiles.

Clustering might be one of the possible explorative techniques in a quest for robust

portfolios. The cluster analysis provides sufficient insight into potential building

blocks (equities) of the robust portfolios. Fundamental, technical, combination of

the both and even behavioral parameters can be included in the clustering process.

5e.g. http://post.nyssa.org/.../cluster-analysis-as-a-funds-of-hedge-funds



Chapter 5

On Portfolio Robustness

The chapter is about robustness, specifically, about portfolio robustness, drawdowns

and risk-return measures of a portfolio. Robustness [Wil07] is defined as “the ability

[of a system] to resist change without adapting its initial stable configuration”.

Robustness is a characteristic that is desirable in many scientific fields such as ro-

bust statistics1 [Hub04, HRRS05], optimization, decision making and control [MMY06].

For example, a control system has to provide or ensure the stability and robustness

of outputs. Although input data to the system are delivered with outliers, incon-

sistencies, disturbances and even errors. From that perspective, we can view an

investment portfolio as the control system that reacts on positive and negative in-

coming market signals from the economy and capital markets. The signals could be

changes in interest rates, exchange rates, commodity prices, bond prices, retail sales,

data regarding slowdowns or recessions, macro data and so on. The robust portfolio

has to be intelligently constructed. The idea is to control the portfolio as a control

system where control actions are portfolio trades. Clearly, it is desirable to make

minimum portfolio changes (trades) to keep overhead costs low.

Robustness of a portfolio [Wil07] can be measured with several metrics such as

the largest drawdown, the frequency of drawdowns per a specified period, portfolio

sensitivity and volatility, period of the full recovery from the drawdown and several

risk-return ratios. The drawdowns, time to recovery and risk-return ratios provide

feedback on the portfolio robustness in historical financial data.

The remainder of the chapter is structured as follows: Section 5.1 gives de-

tails on robustness, robust portfolio construction, drawdowns and risk-return ratios.

Section 5.2 is about experimental verification. Section 5.3 adds some thoughts on

robustness in capital markets. Section 5.4 summarizes the results and concludes

the chapter.

1Robust statistics are statistics with good performance for data drawn from a wide range of
probability distributions, especially for distributions that are not normally distributed. Robust
statistical methods have been developed for many common problems, such as estimating location,
scale and regression parameters.
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5.1 Background

This section explains more on robustness of a portfolio, mainly on drawdowns,

reward-to-variability ratios and robust portfolio construction. As already mentioned,

some measures such as drawdowns, time to a full recovery and risk-return ratios pro-

vide feedback on the portfolio robustness in the context of historical as well as current

financial events.

We argue that portfolio robustness is essential and crucial from the several points

of view. Robust portfolios are frequented by investors during market crashes and

recessions, when capital markets are volatile, panicky and downtrending. Robust

portfolios provide not only hedging capabilities but also low operational costs due

to infrequent adjustment trades. Robust portfolios combine advantages of investable

ETFs and value stock-picking. On top of that when constructed correctly, the robust

portfolios are able to adapt to changes in the economy and smooth-out business

cycles.

The domain of robust portfolios is well published, but one needs to select carefully

to reach for an outstanding piece of research or publications. We recommend and

appreciate the following references [FFK07, FKPF10, FHZ10, RS09] but there are

plenty more elsewhere. The first reference [FFK07] is more general about the robust

portfolio theory and management but the second one [FKPF10] is more focused on

robust equity portfolios and quantitative equity investing.

In the next three subsections, we share and explain ideas on drawdawns, reward-

to-variability ratios and robust portfolio construction.

5.1.1 Portfolio Drawdowns

The definitions are derived, merged and adjusted from several sources. The main

important references are [FHZ10, FFK07, FKPF10, Wil07].

Generally, a portfolio drawdown (or a drawdown decline) is the measure of the

decline from a historical peak in some variable (typically the cumulative profit).

More descriptively, a drawdown is measured from the time a retrenchment begins

to a new low is reached. It is important to note that a valley cannot be measured

until a previous peak is regained. Once the previous peak is reached, the percentage

change from the old peak to the lowest trough is recorded. See in Figure 5.1.

The peak-to-trough is a decline during specifically recorded period of an invest-

ment, fund or commodity. A drawdown is usually quoted as the percentage between

the peak and the trough.

Drawdowns help to determine an investment’s financial risk. Both the Calmar

and Sterling ratios2 [Wil07] use this metric to compare a security’s possible reward

2The Calmar ratio is the annualized return for the last t years divided by the maximum drawdown
during these years. The Sterling ratio is the annualized return for the last t years divided by the
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Figure 5.1: A drawdown explained. It shows a description of the
drawdown of A and B portfolios. There are depicted the
previous peak, trough, revisited peak and the new peak
(new high).

to its risk. Intuitively, a portfolio A with smaller or less frequent drawdowns is better

than a portfolio B with larger or more frequent ones. Therefore investors prefer the

portfolio A to B (CR: A ≽ B, t ∈ [0, T ]) in Figure 5.1.

5.1.2 Reward-To-Variability Domain

The robust portfolios repeatedly deliver high reward-to-variability ratios (such as

Sharpe, Sortino or Treynor ratios [Wil07]). The most popular ratio is the Sharpe

ratio (SR3) which is defined as,

SR(x) =
µTx− rf√

xTΣx
, (5.1)

where µ is the return vector on the strategy over a specified period, rf is the

risk-free rate over the period and
√
xTΣx is the standard deviation of returns. The

Sharpe ratio is quoted in annualized terms. The high Sharpe ratio highlights a

good risk-return investment strategy. As a rule of thumb, the Sharpe ratio between

0.30−0.48 is a long-term average of the S&P 500, some hedge funds have experienced

the Sharpe ratios over 1.00.

The reward-to-variability ratio4 is a measure of the excess return (or risk pre-

mium) per unit of deviation in a portfolio. Such characteristics of general asset

average of the maximum drawdown (in absolute terms) in each of the preceding 3 years, less an
arbitrary 10%. An extra 10% is subtracted from the drawdown as one assumes that all maximum
drawdowns will be exceeded. For more see [FKPF10].

3We note that it is better to see Sharpe ratio as time dependent SR(x, t) =
µ(t)T x(t)−rf (t)√

x(t)TΣ(t)x(t)
,

because the input variables are time dependent and fluctuate. This idea was not implemented.
4Other reward-to-variability ratios are enclosed for reference purposes in Appendix D.
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portfolios are often appreciated in active management of mutual bond and equity

funds, private equity and hedge funds.

5.1.3 Robust Portfolio Construction

We propose a portfolio construction with robust characteristics. First, we provide

key factors that we assume are quite influential in the process of robust portfolio

construction. Second, we describe an allocation procedure. The description of the

key factors follows.5

1. Long value stocks, short weak stocks, the relevant index or hold some cash – The

long-short strategy is one of many hedge fund strategies. The long-short hedge

funds are stable (robust) during market weaknesses. A short side of a portfolio

can be created with a dedicated short bias fund. Shorting is an aggressive and

risky approach, so one can held some uninvested cash instead (e.g. 10-30% of

the portfolio).

2. Overweight less cyclical stocks, low beta stocks – The less pro-cyclic stocks are

often low beta stocks. These stocks tend to generate profits even during trou-

bled times. The companies are from diverse industries such as health care,

pharmaceutical, retail, telecommunication, utilities, tobacco, food and bever-

age sectors.

3. The mix of growth stocks and defensive dividend stocks – The intelligent mix

of two types of stocks provides less volatility, defensiveness and growth. The

mix of stocks can be adjusted based on the economic cycle.

4. Blue chips – Blue chips are high-quality stocks. They tend to be mature, multi-

national, large capitalization companies, dominant players in their industries

and regular dividend payers.

5. Stocks from developed markets (less or none from emerging or frontier markets)

– Generally, companies in developed markets are less volatile, stable and better

managed than emerging and frontier market companies.

6. Preference to ‘Large Cap’ – Large capitalization companies tend to be more

economically stable, established, profitable and less volatile than smaller capi-

talization companies.

7. Managers – Excellent managers of a company deliver stable, consistent and

outstanding financial results. The manager ought to be a minority owner of

the company and dependable on the delivered performance results.

5We see stocks as a proxy of a company, but we may use stocks and company interchangeably.
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8. Diversification (over capitalizations, industries, industry sectors, currencies,

countries and continents) – In academia, it seems that the term diversification

is over-stated. Nevertheless, diversified portfolios over many diversification

factors are more stable with some capacity for error.

9. Regular rebalancing, position sizing and optimization – The additional stability

of portfolios could be improved with position trimming, rebalancing, sizing and

allocation to riskless asset (cash). There are many portfolio management and

robust optimization technigues to achieve this.

10. Risk management and robust hedging – The investment world is fairly coinci-

dental and complex. There have been many periods (bubbles, recessions) when

the financial markets did not behave efficiently. Correct risk management and

robust hedging should provide an extensive support and protection during these

times.

We describe an RMV allocation procedure how to construct the robust port-

folio, practically. We can run an equity selection screener6 or explorative analysis, so

these help to find desired stocks for long and short sides. After the screener provides

a list of prospective stocks, one has to handpick the best/worst stocks. It is expected

that long positions of the portfolio are larger and less fragmented than short posi-

tions (long bias) if we do short-selling. The selected ‘long’ stocks are diverse and

uncorrelated. Then we implement the two-step robust MV allocation procedure.

1. We estimate (µ̂, Σ̂) of the selected stocks and compute their weights (x).

2. We reiterate the previous step and include investor’s view (µ̂BL, Σ̂BL) on the

selected stocks. Finally, we allocate the seed capital into the portfolio of in-

vestable assets.

Six times a year one checks whether any rebalancing is needed or any changes

in positioning, positions, risk management and hedging are required. During the

market stress, this might be done far more frequently (i.e. daily).

5.2 Experimental Verifications

Several experimental cases regarding portfolio parametrization, drawdowns and reward-

variability ratios were set-up. Financial data were retrieved from Yahoo [YA] and

Bloomberg [BL]. A new computation script was implemented in Financial toolbox of

6These investment screeners are freely available on the web (e.g. http://www.finviz.com). One
selects descriptive, fundamental and technical parameters to get a group of adequate stocks with
desired characteristics.
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Matlab R2011a. The Financial toolbox offered a lot of the functionality for our nu-

merical and financial analysis. Three investable securities created an equally weighted

portfolio and were compared against the benchmark index (the S&P 500). The size

of drawdowns and reward-variability ratios were calculated with developed compu-

tation scripts.

5.2.1 Portfolio Parametrization

The basic setup of an experimental equity portfolio gave an equal weighting to three

securities. These securities, namely Coca-Cola (KO), Procter&Gamble (PG) and

IBM (IBM), are U.S. stalwarts dominating the international markets. Their basic

performance characteristics are in Table 5.1. Based on the previous hints, these

stocks are the building blocks for our built robust portfolio.

Basic Metrics

Stock Return (µ) Std (σ)

SP500 0.0599 0.1944
KO 0.0636 0.1786
PG 0.1006 0.1678
IBM 0.1259 0.2669

Table 5.1: Basic performance metrics. The statistics of selected se-
curities were calculated for the 1.1.1995-2.1.2014 period.

5.2.2 Drawdowns
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Figure 5.2: Drawdowns. There are depicted the S&P 500, Coca-
Cola (KO), Procter&Gamble (PG), IBM (IBM), Long-
Equally-Weighted (LEW) and Long-Short (LS) portfolios
for the 1.1.1995-2.1.2014 period (left). There are signifi-
cant price drawdowns of the selected securities over the
period (right).

We analyzed and computed drawdowns. In Figure 5.2, there are time series of the
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selected equities, price-adjusted towards the index, to see their drawdowns and max-

imum drawdown period.7 The maximum drawdown periods are in Table 5.2. As one

can see, the maximum drawdown (MaxDD) experienced the IBM, the longest draw-

down period (DDp) is the result of the Coca-Cola Company and the robust portfolio

(LSPrtf) experienced the lowest drawdown. There are estimated forecasts regarding

drawdowns – geometric MaxDD (MaxDDG) and the estimation of geometric MaxDD

(EMaxDDG). The EMaxDD for IBM seems questionable (107.37%).

Drawdowns

Stock MaxDD[%] DDp[days] MaxDDG[%] EMaxDDG[%]

SP500 56.78 355 83.88 74.32
KO 55.26 1169 80.44 95.95
PG 54.23 41 78.15 86.98
IBM 59.36 815 90.04 107.37*

LEWPrtf 41.30 773 77.87 93.76
LSPrtf 34.55 773 76.66 89.22

Table 5.2: Drawdowns and maximum drawdown periods. The statis-
tics were calculated for the 1.1.1995-2.1.2014 period.

5.2.3 Reward-To-Variability Ratios

In this subsection, apart from the Sharpe ratio, we also included Information ratio

and Tracking error. The last two are partly described here and fully explained

in Appendix D. In Table 5.3, there were calculated the Sharpe ratios for all our

securities, the index as well as the robust portfolios. We see that the robust portfolios

experienced the highest Sharpe ratio over periods. The lowest Sharpe ratio is for the

index but the shortest period contradicts. Our reasoning for low Sharpe ratio is that

it is due to the over-diversification effect of the index.

Information ratios are calculated in Table 5.4. Information ratio is an active

return divided by tracking error. It has been used to gauge the skill of active portfolio

managers. The higher the Information ratio, the higher the active return of the

portfolio, and the better is the manager. One can see that the risky assets and both

portfolios underperformed the tracking index in the last 3 and 5 years.

Tracking errors are included in Table 5.5. Tracking error is a measure of how

closely a portfolio follows a benchmark index. Passively managed portfolios minimize

tracking error. On the other hand actively managed portfolio would normally have

a higher tracking error. In Table 5.5 Tracking error decreases as the time period

shortens. In our case that is not favorable because we are active portfolio managers.

7Maximum drawdown period (DDp) is a period of the largest loss from a previous high in the
given time period.
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Sharpe ratios

Stock 3y 5y 10y 15y

SP500 2.59 1.22 0.15 0.10
KO 1.98 2.98 0.52 0.20
PG 1.37 1.40 0.59 0.30
IBM 0.14 0.92 0.33 0.14

LEWPrtf 2.64 2.22 0.48 0.23
LSPrtf 2.81 1.65 0.53 0.26

Table 5.3: Sharpe ratios. The Sharpe ratio was calculated on differ-
ent time intervals for the securities, LEW and LS portfo-
lios. The data were calculated for the date 2.1.2014.

Information ratios

Stock 3y 5y 10y 15y

SP500 N/A N/A N/A N/A
KO -3.57 -0.11 0.51 0.23
PG -2.85 -0.43 0.18 0.22
IBM -1.80 -0.12 0.21 0.15

LEWPrtf -2.51 -0.16 0.28 0.24
LSPrtf -2.47 -0.16 0.28 0.24

Table 5.4: Information ratios. There are the Information ratios on
the different time intervals for the picked securities, LEW
and LS portfolios. The data were calculated for the date
2.1.2014.

Tracking errors

Stock 3y 5y 10y 15y

SP500 0.00 0.00 0.00 0.00
KO 0.02 0.08 0.11 0.14
PG 0.02 0.05 0.14 0.17
IBM 0.09 0.18 0.19 0.21

LEWPrtf 0.05 0.12 0.13 0.14
LSPrtf 0.06 0.14 0.15 0.17

Table 5.5: Tracking errors. There are depicted the Tracking errors
against the S&P 500 on different time intervals for the
picked securities, LEW and LS portfolios. The data were
calculated for the date 2.1.2014.
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5.3 Experience With Robust Portfolios

5.3.1 Value-Oriented Portfolios

Not surprisingly, core portfolios of many value-oriented investors8 are coherent with

the robust investment thesis. These investors are managers of retail funds, hedge

funds, insurance companies and special purpose vehicles. During past capital market

drawdowns, their portfolios performed from fairly to extremely well.

5.3.2 Warren Buffet’s Portfolios
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Figure 5.3: Drawdowns and returns – BRK.A vs. the S&P 500 for the
1.1.1995-2.1.2014 period (left) and daily returns (right).

Warren Edward Buffet9 has constructed robust portfolios for many decades. He

has been the Chairman and CEO of Berkshire Hathaway since 1965. Berkshire Hath-

away, an investment and insurance holding, comprises of many diversified private and

public U.S. businesses with North American as well as global exposure. After review-

ing these results, we can state that Berkshire Hathaway (tickers BRK.A, BRK.B at

NYSE) has been an extraordinarily successful compounder on a risk adjusted basis.

The comparison results are shown in Figure 5.3 and in Table 5.6. Therefore, we

can claim that Warren Buffet’s investment strategy provides a guide to the robust

portfolio construction.

5.3.3 Personal Experience

Since January 1999 I have been active as a private investor in the capital markets.

Since then I moved from retail mutual funds to direct security investments, which

seemed like a step getting me into a more risky game. The change was from investing

with a trained and dedicated professional portfolio manager to investing on my own.

8Value-oriented investors looks for undervalued assets to buy and overvalued assets to sell or
sell-short. This investment strategy has been popularized at Columbia Business School in the US
since 1930s but needed to evolve due to technological and business advancements since 1970s.

9Warren Edward Buffet (*August 30, 1930 in Omaha, Nebraska) has been a U.S. business mag-
nate, philanthropist and one of the greatest investors ever.
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My investing skill set has improved and direct security investments have been less

scary for me since then. During the bursting of the dot-com bubble and the Great

recession, both quite disturbing capital market events, I was impacted but fared

not as badly as the general investment public nor the global capital market indices.

The core investment strategy has been a low turnover value-oriented strategy. The

strategy used a low leveraged long-bias approach with securities from emerging and

developed markets. Risk-adjusted returns of the general investment strategy has

improved gradually. As my private experience suggests this investment approach

looks consistent and robust with some minor setbacks over the economic cycle.

5.4 Summary

The chapter was about portfolio robustness, drawdowns of a portfolio and risk-return

measures. The robustness of a portfolio can be measured with the largest drawdown,

the steepness & frequency of drawdowns, time to a full recovery, risk-returns ratios

and so on.

We ran several experiments on the financial time series of the three U.S. large

cap stocks, the S&P 500 index and two constructed portfolios. The time period was

from 1st January 1995 to 2nd January 2014. One could see clearly that the selected

stocks experienced drawdowns as high as 59.36%. The long only portfolio provides

drawdown of 41.30% magnitude. As well as expected, the long-short portfolio ensures

lower drawdowns (34.55%), offers the lower upside in bull markets but provides the

higher Sharpe ratio. The diversification of long investable assets and partially short-

selling, limits the size of drawdowns and improves the portfolio performance.

The selected securities and experimental portfolios were tested against high risk-

return ratios (Sharpe and Information). The long-short portfolio was the best among

the portfolios. Low diversification portfolios provided superior ratios. The index

suffers on over-diversification of the miscellaneous quality of enlisted companies.

We shared some thoughts and references on the robust portfolios in capital mar-

kets. There have been many investors who successfully built robust portfolios in the

past.

Performance statistics

Stock Return (µ) Std (σ) SR IR TE MaxDD[%]

BRK.A 0.0923 0.1582 0.5834 0.2233 0.1447 51.47
SP500 0.0599 0.2000 0.3087 N/A 0.0000 56.78

Table 5.6: BRK.A vs. the S&P 500. There are performance ratios
and statistics of BRK.A vs. the S&P 500. The BRK.A
ticker is better. Calculated for the 1.1.1995-2.1.2014 pe-
riod.



Chapter 6

Summary

Our work is summarized into the following seven paragraphs. Each of the following

paragraph highlights the key investigation, result or contribution.

1. We familiarized ourselves with general and elementary ideas of the financial

markets, assets and portfolios. We described basic features of the Mean-

Variance Model (MVM), its weaknesses, the portfolio robustness and its basic

features.

2. The MVM provides a simple, elegant and intuitive framework for portfolio

construction and optimization. It offers to work with portfolio leverage, short-

selling, correlated and uncorrelated assets, with various asset classes and so on.

The MVM was tested with 3-stock portfolios against the capital market data

for the 1995-2014 period. The asset estimation of expected returns and related

covariance matrix is vital to the MVM. Small inaccuracies in the estimation of

asset parameters lead to incorrect estimation results.

3. There were researched four elemental approaches such as Bayesian, Black-

Litterman, Robust and Robust Bayesian approaches to deal with the MVM

issue. There were described several experiments to demonstrate the ability of

the approaches.

This empirical results support the empirical and theoretical evidence that the

robust portfolio limits drawdowns, improves worst-case performance and pro-

vides stable returns in the long horizons.

4. The equity classification as a tool of equity selection was proposed, analyzed

and implemented. All included equities were comprised of the German DAX

index. The empirical results showed that the clustering analysis is quite explo-

rative and provides a significant fundamental insight for investment managers.

On the other hand, results only based on technical parameters were vague,
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more fundamental parameters of each classified company with correct setups

are needed to achieve high quality results.

5. Robustness, portfolio robustness, drawdowns of a portfolio and risk-return mea-

sures were clarified. We confirm that the features such as drawdowns, their

frequency and risk-return ratios provide indicative feedbacks on the portfolio

robustness.

From the experimental verification we can state that the long-short portfolios

were the best among the portfolios during meltdowns and obviously, the long

portfolio during bull markets. The diversification of investable assets, hedging

and shorting, limits the size of drawdowns and improves portfolio performance.

There are many investors who successfully have built robust portfolios for

decades. Their approaches, methods and strategies do vary but their long-

term performance results have been astonishingly consistent, up-trended and

highly robust (W. Buffet, J. Hussman).

6. However, all our experiments finished as anticipated, we supply several ideas

where we see inconsistencies and inaccuracies as well as the ideas for further

improvements.

The case studies and experiments were tested on the ex-post data. That means

we worked with successful companies that survived temporary financial set-

backs, but healed and improved themselves. The experiments also omitted

transaction costs, fees, taxes, bid-ask spreads and trade-based factors such as

a trade size, order type, trade timing, market liquidity and so on.

While forming the long-term investment portfolio [Cip00, Hul08, Wil07] there

are many other factors impacting overall portfolio returns and the covariance

matrix such as a macroeconomic situation, exchange rates, capital market dis-

crepancies, market volatility, bond vs. stock ratios, the situation in the com-

modity sector and so on.

7. One has to be able to identify promising companies (common stock, corporate

bonds or warrants) to construct a robust portfolio (in the ex-ante manner). A

possible methodology was proposed, where the key factors and the RMV allo-

cation procedure were described. Our primary regional focus concentrated on

developed markets (Germany and the USA), but these ideas are also applicable

in emerging and frontier markets.

Generally, the robust optimization reduces a portfolio drawdowns, volatility,

turnover and transaction costs, improves the worse-case performance and delivers

more stable returns.
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Conclusion

The objective of the thesis was to investigate the properties of robust portfolios. The

thesis was primarily focused on equities, but most of the results are applicable to other

investment instruments with minor changes. The following paragraphs highlights the

key contributions.

1. The thesis explains the MVM (Mean-Variance Model) and its sensitivity. The

sensitivity is a product of estimation errors of (µ,Σ). This has been shown in

the experiments.

2. The thesis shows mitigating and robust approaches to deal with the MVM

issues. We demonstrated that the approaches limit drawdowns, improve worst-

case performance and provide stable returns in the long-term horizons.

3. The thesis contributes to an asset selection for robust portfolios via cluster

analysis. The classification was tested on elements of the DAX equity index.

The clustering delivered a subset of the DAX equities suitable for a robust

investment portfolio.

4. Drawdowns, drawdown periods and reward-to-variability ratios are important

measures of the portfolio robustness. The thesis proposed the process of ro-

bust portfolio construction and its verification. The thesis also identified the

robustness in portfolios of several well-known managers.

5. Nevertheless, we also argue that the robustness of portfolios is primarily de-

pendent on manager’s investment skills and his market insight. The robust

approach is not simply applicable.

Even though portfolio theory and management have developed significantly over

the years, we can still find many successful but insufficiently diversified and over-

concentrated portfolios in the investment industry. This might be the research area

for future work.
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Appendix A

General Facts

This part of Appendix is connected to Chapter 1 and chapters working with the S&P

500. We present details on Hussman1 Strategic Growth Fund, the S&P 500 and the

Dow 30.

A.1 Strategic Growth Fund

Hussman Strategic Growth Fund The Fund [HSF] seeks to achieve long-term

capital appreciation, with added emphasis on the protection of capital during unfa-

vorable market conditions. It pursues this objective by investing primarily in common

stock, and uses hedging strategies to vary the exposure of the Fund to the general

market fluctuations. The performance chart of the fund is in Figure A.1.

A.2 Standard & Poor’s 500

The S&P 500, or the Standard & Poor’s 500 [YA], is a stock market index based

on the common stock prices of 500 top publicly traded American companies, as

determined by S&P. It differs from other stock market indices like the Dow Jones

Industrial Average and the Nasdaq Composite because it tracks a different num-

ber of stocks and weights the stocks differently. It is one of the most commonly

followed indices and many consider it the best representation of the market and a

bellwether for the U.S. economy. The National Bureau of Economic Research has

classified common stocks as a leading indicator of business cycles. It is a free-float

capitalization-weighted index. The index is maintained by Standard & Poor’s, a di-

vision of McGraw-Hill that publishes a variety of other stock market indices such as

the S&P 1500 and S&P Global 1200. The S&P 500 index has several ticker symbols:

GSPC, INX, and SPX.

1John Hussman (*October 15, 1962) has been a stock analyst and mutual fund owner. He is a
former professor of economics and international finance at the University of Michigan.
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In Figures A.2, A.3 and A.4, we calculated some embedded index characteristics

such as daily returns, volume, Autocorrelation function (ACF), Parcial Autocorre-

lation function (PACF) and forecasted returns and conditional variances. These are

used when you investigate capital market time series. One can see the increase of

volatility in the 2008-2009 period.

Figure A.1: This is a chart of achieved performance of the Hussman
Strategic Growth Fund against the U.S. index equity
benchmarks (the S&P 500, Russell 2000). The chart
demonstrates the expected quality of the robust equity
portfolio. Please, follow the HSGFX time series in the
chart. The chart was extracted from the company web
side (Hussman Funds, [HSF]).
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Figure A.2: Prices and Volumes (top), Volatility (middle) and
MACD (bottom) of the S&P 500 during the 1.1.1995-
25.7.2014 period.

A.3 Dow Jones Industrial Average

The Dow Jones Industrial Average [YA], also called the Industrial Average,

the Dow Jones, the Dow 30, or simply the Dow, is a stock market index, and one of

several indices created by Charles Dow2. It was founded on May 26, 1896, and is now

owned by Dow Jones Indexes, which has its majority owned by the CME Group. The

average is named after Dow and one of his business associates, statistician Edward

Jones. It is an index that shows how 30 large publicly owned companies based in the

2Charles Henry Dow (*November 6, 1851 – �December 4, 1902) was an American journalist, Wall
Street Journal editor and Dow Jones & Company co-founder.

Top 10 of the S&P 500

# Ticker Name Sector Weight [%]

1 AAPL Apple Inc IT 3.2
2 XOM Exxon Mobil Corp. Energy 2.47
3 MSFT Microsoft Corp. IT 1.79
4 JNJ Johnson & Johnson Health Care 1.69
5 GE General Electric Co Industrials 1.50
6 WFC Wells Fargo & Co Financials 1.44
7 CVX Chevron Corp Energy 1.42
8 BRK.B Berkshire Hathaway Inc. Class B Insurance 1.30
9 JPM JP Morgan Chase Financials 1.25

10 PG Procter & Gamble Co Cons. Staples 1.21

Table A.1: Top 10 constituents of the S&P 500 by index weight.
Ticker, Name, Sector and Weight are included. Source:
25th July 2014 [YA].
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Figure A.3: the S&P 500 – Daily returns (top), Autocorrelation func-
tion (ACF, middle), Parcial Autocorrelation function
(PACF, bottom).
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Figure A.4: the S&P 500 – Forecasted Returns (top) and Conditional
Variances (bottom).

United States have traded during a standard trading session in the stock market. It

is the second oldest U.S. market index after the Dow Jones Transportation Average,

which was also created by Charles Dow.

The Industrial portion of the name is largely historical, as many of the modern

30 components have little or nothing to do with traditional heavy industry. The

average is price-weighted, and to compensate for the effects of stock splits and other

adjustments, it is currently a scaled average. The value of the Dow is not the actual

average of the prices of its component stocks, but rather the sum of the component

prices divided by a divisor, which changes whenever one of the component stocks has

a stock split or stock dividend, so as to generate a consistent value for the index.



Appendix B

VaR and MVM

This part of Appendix is connected to Chapters 1 and 2 in relation to the VaR

(Value-at-Risk) and the MVM (Mean-Variance Model).

B.1 VaR – Evaluate Market Risk

The market risk [MWS] of a hypothetical global equity index portfolio is modeled with

a filtered historical simulation (FHS) technique. FHS, which has recently received

much attention in the risk management literature, is an alternative to traditional his-

torical simulation and Monte Carlo simulation approaches. FHS combines a relatively

sophisticated model-based treatment of volatility (GARCH) with a nonparametric

specification of the probability distribution of assets returns.
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Figure B.1: VaR test. International Indexes – stock market indexies
(left) vs. Log returns (right).

This demonstration first extracts the filtered model residuals and conditional

volatilities from the portfolio return series with an asymmetric GARCH model from

which the series of independent and identically distributed (i.i.d.) standardized resid-

uals is formed. FHS retains the nonparametric nature of historical simulation by

bootstrapping (sampling with replacement) from the standardized residuals. These

bootstrapped standardized residuals are then used to generate time paths of future
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Figure B.2: VaR test. ACF (left) vs. ACFSR (right).

asset returns. Finally, the simulation assesses the Value-at-Risk (VaR) of the

hypothetical global equity portfolio over a one month horizon.

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
−0.05

0

0.05

Date

R
es

id
ua

l

Filtered Residuals

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
0

0.005

0.01

0.015

0.02

0.025

Date

V
ol

at
ili

ty

Filtered Conditional Standard Deviations

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample ACF of Squared Standardized Residuals

Figure B.3: VaR test. Returns, Volatility (left) vs. SACFSSR
(right).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logarithmic Return

P
ro

ba
bi

lit
y

Simulated One−Month Global Portfolio Returns CDF

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

8

9

10

Logarithmic Return

P
ro

ba
bi

lit
y 

D
en

si
ty

Simulated One−Month Global Portfolio Returns PDF

Figure B.4: VaR test. CDF (left) vs. PDF (right).

One of the appealing features of FHS is its ability to generate relatively large

deviations (losses and gains) not found in the original portfolio return series. Now

we only deal with a set of Figures depicting the procedure (Figures B.1, B.2, B.3

and B.4).
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B.2 Experimental Results

There are additional results as figures from the MV model. Figures B.5 and B.6

present optimal capital allocation. The differences of risk aversion (RA) from 1 to

3.5 are presented. The lower number for RA means lower risks and lower expected

return.
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Figure B.5: Optimal Capital Allocation I. The differences of risk
aversion (RA) in the presented setups such as RA = 1
(left) and RA = 2 (right).
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Figure B.6: Optimal Capital Allocation II. The differences of risk
aversion (RA) in the presented setups such as RA = 3
(left) and RA = 3.5 (right).



Appendix C

Equity Classification

This part of Appendix supports Chapter 4 in relation to the equity classification.

Two clustering methods, principal component analysis (PCA) and the experimental

index are described. Then there are visual outputs of the clustering analysis and

PCA from the experiments.

C.1 Clustering and PCA Algorithms

Hierarchical clustering [Har75] does not find a single partitioning of the data,

but a hierarchy (represented by a tree) of partitionings which may reveal interest-

ing structure in the data at multiple levels of granularity. Hierarchical clustering

algorithms may be of two types, agglomerative algorithms look at ways of merging

data points together to form a hierarchy, while divisive methods separate the data

repeatedly into finer groups.

K-means [Har75] is a method for clustering a data set, D = {x1, x2, . . . , xN}, of
N unlabelled data points into K clusters, where K is specified by the user. The

objective of the K-means algorithm is to minimize the following cost function V ,

V =

K∑
i=1

∑
xj∈Ci

(xj − µi)
2

where the Ci are each of the K clusters and µi are their respective cluster centers

(means). The algorithm starts by randomly placing each of the K centers and as-

signing each data point to the cluster with the closest center. It then iteratively

recalculates the cluster center based on the new assignments of data points to clus-

ters, and then reassigns each data point, until convergence. This cost function has

many local minima and several runs of the algorithm may be needed.

Principal Component Analysis [Jol02] is a statistical procedure that uses orthog-

onal transformation to convert a set of observations of possibly correlated variables

into a set of values of linearly uncorrelated variables called principal components.
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This transformation is defined in such a way that the first principal component has

the largest possible variance (that is, accounts for as much of the variability in the

data as possible), and each succeeding component in turn has the highest variance

possible under the constraint that it is orthogonal to (i.e., uncorrelated with) the

preceding components.

C.2 DAX Index

# Company Industry Price [e]
1 ADIDAS AG Apparel 63.43
2 ALLIANZ SE Insurance 88.13
3 BASF SE Chemicals 62.32
4 BAYER AG Spec. Chemicals 62.66
5 BMW AG Automotive 61.32
6 BEIERSDORF AG Cosmetics 57.09
7 COMMERZBANK AG Banks 1.24
8 DAIMLER AG Automotive 41.68
9 D. BANK AG Banks 26.17

10 D. BÖRSE AG Finan. Services 42.15
11 D. LUFTHANSA AG Transport 9.85
12 D. POST AG Transport 15.75
13 D. TELEKOM AG Telecom 9.47
14 E.ON AG O.N. Utilities 18.10
15 FRESENIUS MED. Medical Equip. 57.79
16 FRESENIUS SE & CO. Medical Equip. 87.11
17 HEIDLBRGCMNT AG Materials 40.51
18 HENKEL AG & CO. Cons. Staples 60.50
19 INFINEON TECH. AG Semiconductors 5.90
20 K+S AG Chemicals 40.57
21 LINDE AG Energy 123.10

*22 MAN SE Automotive 76.04
23 MERCK KGAA Pharma 90.38

*24 METRO AG Stores/Retail 24.62
25 MUENCHENER RE AG Insurance 119.05
26 RWE AG Utilities 33.44
27 SAP AG Software 52.66
28 SIEMENS AG Machinery 75.44
29 THYSSENKRUPP AG Iron/Steel 16.17
30 VOLKSWAGEN AG Automotive 146.05

Table C.1: The DAX 30. There are the order number, company name,
industry and closing price at Xetra börse in Frankfurt am
Main (Germany) on 20th August 2012. Companies with ‘*’
(star) were replaced by CONTINENTAL AG (Automotive)
and LANXESS AG (Chemicals) on 6th September 2012. The
experiments were run on the old DAX.
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C.3 Experimental Results

Description of the results contains a tuple like (manhattan, ward). This tuple means

the type of a distance and the type of a clustering algorithm (distance, algorithm).

MCap
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Figure C.1: Scatterplot matrix. Relationship (left) between techni-
cal parameters with clustering parameters (manhattan,
ward). Relationship (right) between fundamental param-
eters with clustering parameters (manhattan, ward).
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Figure C.3: K-Means clustering with 6 clusters. There are two prin-
cipal components of technical data with clustering pa-
rameters (manhattan, ward) described. These two com-
ponents explain 84.46% of the point variability (left).
There are two principal components of fundamental
data with clustering parameters (manhattan, ward) de-
scribed. These two components explain 78.64% of the
point variability (right). There are two principal com-
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tering parameters (manhattan, ward) described. These
two components explain 65.13% of the point variability
(bottom).



Appendix D

On Robustness

This part of Appendix is connected to Chapter 5 in relation to the robustness.

D.1 Definitions of Reward-To-Variability Ratios

Apart from the Sharpe ratio D.1, other relevant reward-to-variability ratios are

Modigliani-Modigliani, Sortino, Treynor and Information ratios [Wil07]. The pre-

viously mentioned Sharpe ratio has been criticized for attaching equal weight to

upside ‘risk’ as downside risk, this is not good for a skewed returns.

SR =
µ− r

σ
, (D.1)

where µ is return, r is a risk free rate and σ is variance. The Modigliani-

Modigliani ratio is defined as,

M2 = r + ν × SR, (D.2)

where ν is the standard deviation of returns of the relevant benchmark and SR is

the Sharpe ratio. The Sortino ratio (SoR) is calculated the same was as the Sharpe

ratio, except that it uses the square root of the semi-variance as the denominator

measuring risk. The semi-variance is measured as the variance except that all data

points with positive return are replaced with zero, or with some target value.

SoR =
µ− r

dr
, (D.3)

dr = (
1

N

N∑
k=1

(rk − T )2f(rk))
1
2 ,

where T is a target rate of return, rk is the kth return, f(rk) = 1 if rk < T and

f(rk) = 0 if rk > T . The Sortino measure ignores upside ‘risk’ completely. Another
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Sharpe-like measure is the Treynor ratio, but in denominator there is the portfolio’s

beta (β, systemic risk)

TR =
µ− r

β
. (D.4)

The Treynor (to Sharpe) ratio is more relevant for less diversified portfolios or

individual stocks. The Information ratio is a different type of performance mea-

sure,

IR =
µ− r

TE
. (D.5)

It uses the idea of a tracking error. The ratio gives a measure of the value added

by a manager relative to her benchmark. The numerator is the return in excess of

a benchmark. but denominator is the standard deviation of differences between the

portfolio returns and benchmark returns, the Tracking error (TE).

TE =
√

E[(Rp −Rb)2], (D.6)

where Rp − Rb is the active return. It is the difference between the portfolio

return and the benchmark return.

D.2 Experimental Results

There are experimental results of the MVM, statistics of stocks and correlation tables

between a group of common stocks. The stocks are represented by tickers. Tick-

ers of indexes and common stocks are ‘SPX’, ’SPY’, ‘KO’, ‘IBM’, ‘PG’, ‘WMT’,

‘WFC’, ‘AXP’ and ‘XOM’. The companies and their statistics are described in Ta-

bles D.1, D.2, D.3, D.4 and D.5.

# Company Industry Ticker

1 S&P500 US Large Cap Index SPX
2 S&P500* US Large Cap ETF SPY

3 Coca-Cola Cons. Staples KO
4 IBM IT IBM
5 Procter&Gamble Cons. Staples PG

6 Walmart Stores/Retail WMT
7 Wells Fargo & Co Banks WFC
8 American Express Cards AXP
9 Exxon Mobile Energy XOM

Table D.1: A complete list of the selected US index and companies.
The order number, company name, industry and ticker
are provided. (‘*’): SPY is a SPX tracking ETF.
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Appendix E

Data Sources

Data Sources The financial data were used in the thesis. The data were retrieved

from financial portals and financial data providers. We hinted the resources where

it was necessary. We also provide a complete list here.

1. http://www.bloomberg.com [BL],

2. http://www.dax-indices.com [DI],

3. http://deutsche-boerse.com [DB],

4. http://finance.yahoo.com [YA],

5. http://www.ft.com [FT],

6. http://hussmanfunds.com [HSF] and

7. http://mathworks.com [MWS].

DTP The master’s thesis utilized the IES FSV UK thesis template (v1.8.09.02.16-

beta) for LATEX. The thesis was compiled with MiKTex (v2.9.4533). Calc (v4.0.2.2),

GNU R (v2.15.1) and Matlab 2011a (v7.12.0.635) were modeling software packages.


