Univerzita Karlova v Praze
Matematicko-fyzikalni fakulta

BAKALARSKA PRACE

Lubos Kuli¢

Automatické tridéni posty pro IMAP servery

Katedra softwarového inzenyrstvi

Vedouci bakalarské prace: RNDr. David Bednarek

Studijni program: Informatika

2006

Na tomto misté bych rad podékoval vedoucimu préace panu RNDr. Davidu
Bednarkovi za zajimavé téma a podnétné pripominky a navrhy pfi feSeni
rocnikového a posléze bakalarského projektu.

Prohlasuji, ze jsem svou bakalaiskou praci napsal samostatné a vyhradneé
s pouzitim citovanych pramenu. Souhlasim se zaptujcovanim prace a jejim
zverejnovanim.

V Praze dne 8. 8. 2006 Lubos Kulié

Contents

Abstract

1

Introduction

1.1 E-mail classification
1.2 Related Work
1.3 Motivation
1.4 Project goals Lo
1.5 Thesis organization

Program analysis and design

2.1 Messages sorting and sorting rules L.
2.2 Dataaccess L
2.3 Event handling and logging
2.4 Logical division of the application

Program run

Rules correcting

4.1 Final and potential rules
4.2 Creating a new potential rule
4.3 Basic vs. Advanced rule-correcting algorithm
4.4 Condition relevance determining — Basic algorithm
4.5 Condition relevance determining — Advanced algorithm . . .

Implementation

5.1 Used libraries
5.2 Hiding the libraries 0.
5.3 Security

6 Conclusion
A Supplied CD
B Apofis quick start guide

Bibliography

31

34

35

38

Nézev prace: Automatické tridéni posty pro IMAP servery
Autor: Lubos Kuli¢

Katedra (ustav): Katedra softwarového inzenyrstvi
Vedouci bakalarské prace: RNDr. David Bednarek

e-mail vedouciho: david.bednarek@mff.cuni.cz

Abstrakt: Jelikoz mnozstvi ptijatych e-mailovych zprav rapidné stoupd, jsou
uzivatelé nuceni t¥idit je do nékolika kategorii. V predkladané préaci predstavujeme
nastroj, nazvany Apofis, ktery poméaha uzivatelum automatizovat jejich rutinni
kazdodenni praci s IMAP mailboxem tim, Ze jejich nové zpravy tridi a také
postupné vytvari nova pravidla podle jejich chovani, ovsem s tim, ze stéle
ponechavé uzivateli moznost vytvaret, ménit nebo mazat pravidla a ovlivnit
tak cely proces tiidéni a uc¢eni. V programu byl zaveden dvojiroviovy systém
pravidel — finalni pravidla, podle kterych se tfidi, a potencidlni pravidla,
ktera byla vytvorena podle uzivatelova chovani a ¢ekaji na potvrzeni dalsimi
uspéchy. Byly navrzeny dva algoritmy na vytvareni potencialnich pravidel —
zakladni, rychly nicméné v nékterych pripadech nedostatecny, a pokrocily al-
goritmus, ktery vylepsuje spravnost vytvaieni pravidel tim, Ze pii zjistovani
relevance podminek uvazuje uspoiadani celého mailboxu. Tato prace ob-
sahuje nejdulezitéjsi informace a rozhodnuti o navrhu a implementaci ap-
likace a jejich algoritmu.

Klicova slova: e-mail, t¥idéni, automatické vytvareni pravidel

Title: Automatic mail organizer for IMAP servers
Author: Lubos Kuli¢

Department: Department of Software Engineering
Supervisor: RNDr. David Bednarek

Supervisor’s e-mail address: david.bednarek@Qmff.cuni.cz

Abstract: Number of received e-mail messages is growing explosively which
forces users to classify them into several categories. In the presented work we
introduce a tool called Apofis, which helps users to automate their routine
every-day work with IMAP mailbox by sorting new messages for them and
also by step-by-step creating of new rules based on their behaviour, while
it still lets the user create, edit or delete the rules and thus affect the pro-
cess of sorting and learning effectively. Two-level system of sorting rules is
introduced — final rules, which the application uses to sort, and potential
rules, which have been created according to user’s behaviour and are wait-
ing for more successes to prove their usability. Two potential rule learning
algorithms were designed — the basic algorithm, fast but not accurate for
some cases, and the advanced algorithm, which improves the accuracy by
creating a new rule based on condition relevances determined from the or-
ganization of the whole mailbox. This thesis contains the most important
facts and decisions about the design and implementation of the application
and its algorithms.

Keywords: e-mail, classification, automatic rule-creating

Chapter 1

Introduction

1.1 E-mail classification

Since its birth, Internet has expanded unbelievably — once being only network
for exchanging knowledge between scientists it is now used by millions of
people to find information, communicate, entertain, make money, One
of the most popular (and oldest as well) services is electronic mail, or shortly
e-mail. It is faster than a telegram but can be as long as classic mail and
it’s for free. And one can read his/her mail from everywhere on the world.
No wonder that a number of messages received is growing rapidly, even
'normal’ person using e-mail only for private communication can receive
tens of messages per day, while enterprises can easily reach hundreds or

thousands.

This amount of e-mails enforces users to sort messages into some directo-
ries which usually contain messages, that are somehow similar - e.g. refer to
the same topic or came from the same sender (or a group of defined senders).
Of course most users want some tool to make this sorting for them auto-
matically — that, as mentioned in [Pazzani (2000)], allow users to prioritize

some mail and maintain his/her mailbox organized.

Another related task is getting more and more important — junk or spam

filtering. This problem has some specifics, that also imply the way to solve
it: most of junk mails are (more or less) recognizable by it’s style and us-
age of specific words. However being very annoying to most of users, this
problem has been solved very well in many e-mail clients (such as Mozzila
Thunderbird or Apple Mail) and also in most of free mailboxes, so this topic

will not be discussed in the rest of the thesis.

1.2 Related Work

There has been a lot of research on the field of e-mail classification and there

are many approaches to solve this task. Here we mention only a bit of them.

e Incremental rule growing and pruning — used as an improved Incremen-
tal Reduced Error Pruning algorithm called RIPPER in [Cohen (1995)]
and then compared to TF-IDF style classifier in [Cohen (1996)]

e TF-IDF! — algorithm based on TF-IDF used in tool SwiftFile intro-
duced in [Segal, Kephart (2000)], [Pazzani (2000)] introduces proto-
type method in many ways very similar to TF-IDF weighting

e Naive-Bayes — very often in junk filtering, employed for classifying in
[Rennie (2000)] or software POPFile

e Associative classifier — used in [Itskevitch (2001)] to avoid the unreal-

istic independence presumption of Naive Bayes

Another text classification approaches like support vector machines, near-
est neighbor (kNN) or even a combination of mentioned methods are also

possible to use.

ITerm Frequency - Inverse Document Frequency weighting

1.3 Motivation

There are many programs that allow user to define some rules and then
sort e-mails according to them, e.g. almost every popular e-mail client (such
as Microsoft Outlook, Mozzila Thunderbird, The Bat, ...) has this feature
included. These applications however enforce users to make up many rules

and quite surely edit them and add new ones frequently.

There also are many classifying systems, proposed or even implemented
(as mentioned in section 1.2), that are really sophisticated and fully auto-
mated in rules learning. These can without a doubt work with high accuracy
and effectiveness, but for many (even advanced) users are too complex for
their every-day e-mail sorting and possibly not smart enough to catch the

rare and special cases anyway.

But there is missing an application somewhere halfway — it should help
user to sort mail according to simple rules, and it should be able to create
new rules from user’s behaviour. That means, when the user moves a message
to another directory and thus changes its classification, the program should
create corresponding rule, i.e. a rule which would sort this message to the
new place. This rule learning should work successfully especially in the most
obvious but also most frequent cases. It must also provide some easy way
to delete or edit all rules as well as adding new ones. This behaviour can
help user in his/her every day work with a mailbox but also don’t try to be

smarter than him /her.

1.4 Project goals

The main goal is to design and implement software that will help to auto-
mate some routine work with IMAP? mailbox. This tool should sort (espe-

cially non-junk) incoming messages, as well as outgoing ones, according to

?Internet Message Access Protocol, see RFC 3501

rules partly made by the user and partly created by the tool step-by-step in
correspondence with user’s actions. So as the user moves various messages
to appropriate directories of the mailbox, the program should create corre-
sponding rules, so that after some time most of the messages will be sorted
automatically and the user will have to move himself only those ones which
are rare, somehow specific or do not really correspond to the organization

of the mailbox.

It should help to automate especially routine work, so it should be ca-
pable of creating rules in particular in the most frequent cases. And on the
other hand, it should not try to interpret every little action of the user as a
necessarily significant for his/her way of organizing the mailbox. Even if a
small amount of new messages would be moved incorrectly, the tool would
probably become annoying [Segal, Kephart (2000)]. The newly created rules
should thus prove themselves right at least in couple of times, because it is
better not to move the message anywhere than to move it to a place user

would not really expect it.

The program is intended for experienced users to spare them some time,
it should thus work alone without interaction with some e-mail client or user
and there is no need for GUI. The settings and especially the rules have to
be easily read and edited as well as portable, preferably by just copying some
file(s), so that the user can adjust the behavior of the program quickly or

just bring the settings from one computer to another.

1.5 Thesis organization

The purpose of this bachelor project was to design and implement a piece of
software (according to goals as mentioned in section 1.4), the result of this
is called Apofis (as an acronym of Automatic e-Post Organiser For IMAP
Servers) and is distributed with the thesis (see Appendix A).

This thesis discusses the most important decisions made in the process of

10

creating Apofis and accomplishment of the project goals. It is recommended
to get familiar with the Apofis first. For that, User Guide, Program Docu-
mentation and Code reference are distributed with the program (for details
see Appendix A) and there is also a Quick Start Guide included in this thesis
(as Appendix B).

Here a is brief description of following chapters of the thesis:

Chapter 2 deals with program analysis and design, main structure of the

application and data storing and accessing.

Chapters 3 and 4 present two most important algorithms — main program
run and learning from user’s behavior (and trying to correct the set of rules

to correspond to that).

Chapter 5 contains some implementation comments and describes used

libraries and the reasons for using them.

Finally, Chapter 6 summarizes the whole thesis and tries to make a

conclusion of the program and of how it fulfill the goals.

11

Chapter 2

Program analysis and design

2.1 Messages sorting and sorting rules

The main purpose of the application is to sort e-mails according to rules and
to add new ones, thus one of the most important parts of the design was to

decide the way program will sort messages and define some form of its rules.

As described in section 1.2, there are many approaches to e-mail sorting
and filtering. Before deciding what way should be chosen, some presumptions

were made:

1. The sorting rules must be easily human-understandable as well as

readable by program.

2. Sorted messages are not junk, but they may be both wanted and
unwanted and both of them are usually in very similar style — nice
example is given in [Pazzani (2000)]: it studies some message set
from faculty member where unwanted e-mails included some talk
announcements and grant opportunities, and are very hard to

distinguish only by style or message bodies.

3. User of e-mail and this program does not really think statistically of

12

his/her mailbox. When he/she wants to sort some message to specific
directory, it’s not because it contains more of some words than other
ones. However rules like this (such as prototypes) are quite suitable

for automatic rule generation, they are really hard for user to make

up.

Based on the first point, Naive-Bayes model was ruled out because it does
not have real rules or any other mechanism for user to adjust behaviour of

the sorter.

Then, because of the second point, it was decided to sort only according
to message headers and don’t consider bodies. Reasonable non-junk e-mail
has the most important message of the body in its subject and this, to-
gether with sender and some other headers such as receiver (e.g. for e-mail

conferences), should be sufficient to recognize the class of the message.

When we sum all that up, we are left by simple rules containing condi-
tion(s) about message headers. The exact form for the program was defined

as a pair of condition and place with the meaning:
message satisfy condition = message belongs to directory place

Condition is build by predicates is_equal and contains which compare
value of a specific key (message header) with given one, where these two
values have to be perfectly equal for is_equal to be true, while for contains
it is sufficient when the first value includes the second one as a substring.
These predicates can be then combined with logical operators and, or and

not.

These rules will be simply evaluatable — program will fetch values for
headers of the sorted message and substitute them for appropriate header
names in the predicates and then just evaluate the whole condition consisting

of a combination of these predicates.

A new message can be thus classified if it satisfies any rule. In the first

13

version of the application, only the messages which satisfied just one rule
were classified and moved. But this model turned out to have some serious

disadvantages:

1. It is not really transparent for the user, especially for a hierarchical
structure of the mailbox — messages belonging to the child directory
must not satisfy rules of the parent folder, therefore these parent rules
has to be almost as complex as the child ones. Whereas the logical way
would be to have a general rule for the parent and more specific ones

for the child directories.

2. When the program want to make a new rule according to some user’s
action, it should not produce rules which would be satisfied by mes-
sages satisfying other rules. And because it often makes these new rules
according to messages formerly being in other directories, as explained
in Chapter 4, this requirement is hard to fulfill. The algorithm has to

edit some old rules and even that is not always enough.

Because of these major drawbacks, it was decided to change the semantics
of the rule set so that if a message satisfy more than one rule, the program
tries to find the most specific (complex) rule and assume the corresponding
place has the most in common with the message. To improve the behaviour of
this, user has the opportunity to define his/her priorities for various headers
and the application will then take them into consideration about the most

important satisfied rule.

Rules formed this way has logically hierarchical structure, so the best way
to represent them in program runtime would be also hierarchical. And it can
be used to make the evaluation more efficient by pruning — not evaluating

branches not important for the final evaluation of the condition.

14

2.2 Data access

However the application is to be some kind of IMAP client and therefore
(to correspond to the IMAP main idea) should be really 'thin’ program, it
needs to have some external data stored on a hard drive. At least, it will be

the list of sorting rules, logging information of the mailbox(es) and settings.

One of the program requirements is to store these data human read-
able and also portable. Because of the rules, which probably will contain
header values with non ASCII characters (especially for users out of English-
speaking countries), it should support various codepages and should be easy

readable on computers anywhere.

Designing some proprietary file type would also mean to provide some
editor or reader to handle it and that is not really easy readable. So it was
decided to use some standardized format. On the other hand, to achieve
simple program readability of the data, the files should have some strict

format of the content.

To fulfill all these needs, XML was chosen. It is (strictly speaking) a
text file, so it is as easy readable as possible, but it also supports codepages
and has a possibility of defining strict document schema (via DTD or XML
Schema), which the document can be validated against. And it is also quite
easy to handle by a program as well as there are many free (or even open

source) libraries to do that.

Document Object Model (DOM) of XML permits storing and working
with hierarchic data naturally — the node of the data can be easily repre-

sented as an element, which can have children or textual content (or both).

Logging information, or at least the passwords, should not be stored as
plaintext, on the other hand, it would really bother the user to enter the
password every while, so it should be stored somehow. Therefore some kind
of secure storage should be used. The easiest way to do that is to have a

special XML file which would contain the passwords in an encrypted form.

15

2.3 Event handling and logging

Because the application will run standalone without any interaction with
user, it will be important to log all the important information about sorting
and rule correcting — especially some important events, e.g. when the pro-
gram checks a mailbox, sorts a message or invent some new rule. And in the
debug phase of the development (or after that in the case of malfunction) it

will be necessary to print out some debug messages for that.

To unify all the communication with the user and to centralize decisions
about program events it was decided to include an event handler. If any kind
of important event (both expected and unexpected) occurs in the applica-
tion, it will be reported to the handler (along with some message, type of
event and level of importance). The handler decides what to do according
to its policies — if the event should be reported to user, if it should be logged
or if it is some error, that should stop the run of current function (or the

whole application).

This way it is the place of occurring event, where it is decided what
kind of event it is and how it is important, but there is still only one place,
where it is decided what to do with each kind of event. That of course allow
changing this policy in the future or by program settings or command line

options.

2.4 Logical division of the application

To separate different tasks the application is to be divided to several parts

(as shown in Figure 2.1).

The most important is the Manipulation kernel, which is responsible for
the main run of the application (as described in Chapter 3) and initiates all
the important work of the application by calling member functions of owned

classes.

16

The Rules are holding one set of rules and are able to sort given mes-
sage according to that. It also provides some interface to allow other parts
handling, editing and creating the rules without knowing their insides. Rules

are edited by Rule corrector to follow user’s behaviour.

Manipulation kernel holds and controls several Abstract sortable boxes,
which is an abstraction for a box of items which could be classified. Mailboz is

a concrete child of Abstract sortable box which represents one IMAP mailbox.

All the classes can find out their settings via Options.

e _| Rules | Rule Corrector

I
-~Manipulation Kernel

____________ |
'

| «uses» «interface»
| Abstract sortable box

1

————— «implementation class»

IMAP K Mailbox

Figure 2.1: Basic division of the application

17

Chapter 3
Program run

The user of the application should barely know about it, so it should run
without interaction with him/her and periodically check his/her mailbox(es),

just like regular e-mail client behave.

So the main program run is quite straightforward — after initialization,
it logs in all the controlled mailboxes (if a password is required, it asks the
user for it and then save it via the secure storage). Then it checks all the
boxes and wait until the next check time of some of the mailboxes. This is
repeated until the user closes the program or some unexpected dangerous

situation arise (especially one which could damage program data).

At one iteration of the loop the application checks mailbox for new mes-
sages (both in inbox and other directories). New messages in inbox and
directory of sent messages (i.e. really new messages) are tried to classify
according to rules corresponding to the box and moved to appropriate di-
rectory. New message in other directories is considered as moved by user and
application supposes, that this message, as well as similar ones, should be
sorted to this new directory. According to that the program tries to make
up a new rule that would correspond with the situation (for the mechanism
of that, see Chapter 4.

18

Chapter 4
Rules correcting

The most important feature of the application (and also the feature which
distinguishes it from normal sorter included in almost every e-mail client) is
the ability of guessing new rule only from user’s behaviour. There are many
possible ways of rule learning but almost none of them is successful at 100%,
so the program should work on best-effort basis. According to the method

of learning, they can be divided into two main groups:

e Batch-building of rules. This method needs some set of already
classified messages (called training set) to learn itself and usually an-
other set (test set) to decide whether the created rules are sufficiently

accurate.

e Iterative-building of rules means the classifier learns itself itera-

tively with every moved, i.e. (re)classified, message.

Since e-mail is in its nature dynamic and new messages come almost
every day, the iterative approach is more suitable and it was taken into

consideration as a necessary need for the rule-building algorithm.

Another important presumptions about mailbox hierarchy and user’s

behaviour were made:

19

1. The application runs with (almost) no interaction with the user, so
the only way for the user to classify a message differently than the

program is to move it to another directory.

2. All the messages in a specific directory has something in common —
same or similar values of some attributes. Some of these properties
characterize the directory and make it somehow unique. If the user
moves a message to this directory, it has some of this properties and
they can be used to create a rule, which would sort this message (and

possibly many other messages from the directory) correctly.

3. Not all moved messages mean wrong rule set — sometimes the user
would like one specific message in a directory where other similar mes-
sages don’t belong. This behaviour should not affect or even damage
the rule set. On the other hand, if the user moves some number of
similar messages to the same directory, it usually means, that he/she

wants to sort them this way.

4.1 Final and potential rules

Clearly, there is a conflict between the second and the third presumption.
The second one says all directories are unique and their messages correspond
to their characteristics, so that when the user moves a message somewhere, it
should be considered to belong there and (because of the iterative approach)
there should be created a new corresponding rule. On the other hand, the
third point implies the rule-creating process should be more careful and

should not try to insert a new rule every time user moves something.

To solve this problem, the rule-learning process was structured into two

phases and according to that, the rules was split into two categories:

e Final rules are the rules according to that the program actually sorts

messages. They are either the ones inserted by the user or proposed

20

by program and proved themselves right.

e Potential rules are created by the program after a message is moved
by the user. They should correspond to the moved item as well as
the new directory. Each one of them has its hit count — number of
moved messages which satisfied the rule (i.e. satisfied the condition

and matched the place).

When user moves a message, the program tries to find a formerly created
potential rule which would be satisfied by the message. If it is successful, it
increases the hit count of the rule and when a boundary count (adjustable
by user) is reached, the rule is inserted as a final and from now on, it is

considered in new message sorting.

When no appropriate potential rule is found, the program tries to create
a new corresponding rule (for details see following sections) and if successful,

inserts it as a new potential rule.

This way the the user not only initiates the creating of new rules, but
also has to confirm the guessed rules by similar behaviour in the future.
That gives the necessary feedback without bothering the user much. And of
course, he/she has always the possibility to delete all potential rules, which
do not match his/her needs and could lead to unintended behaviour of the

sorter. So he/she really has the full control over the rules creating.

4.2 Creating a new potential rule

Thanks to the system of the final /potential rules, creating of a new potential
rule became a little less important — if the rule is guessed wrong, the user
will probably not perform a similar action again. Thus the rule never became

final and will not make any harm to the sorter.

On the other hand, the application must be able to make a rule that

sorts the moved message to the right directory — the one it was moved to —

21

and should have some other characteristics:

1. Is satisfied by as many messages in the right directory as possible. That
corresponds to the second presumption mentioned at the beginning of
this chapter — the rule should not only sort the moved message here,
but also messages that are similar to it and to other messages in the
directory.

2. Should sort no (or as few as possible) messages currently being in an-
other directory into this one. This supposes that if the user wanted
other messages to be sorted in a specific directory, he/she would al-
ready moved them there. Therefore the application should not add
rules which would match messages from other directories (and proba-

bly sort similar messages wrong).

3. Is as short and simple as possible — although some complex rule would
likely be satisfied by more messages in the box or by less messages
from elsewhere, it would be too complicated to make it and that would
probably make the rule creating too long. Not to mention it would be
less readable for the user. The program should rather then create the

best possible rule try to make a rule that would be ”good enough”.

The making of a new rule is triggered by moving a message to specific
directory and the new condition is to be satisfied by that message, so it
must be built from some attributes of the moved message. The main task
for the algorithm is therefore to pick some of these attributes and create the
accurate condition (by joining all of them by logical and). To do that, it has
to determine relevance of each condition — that means how much does the

condition distinguish between the right directory and the other ones.

The only source for this decision is the mailbox and messages it contains,
so to determine relevance of each condition, the program has to find out,
which are characteristic for the directory (and not really characteristic for

the rest of the mailbox). This method could however lead to giving too much

22

significance to not really important headers which have big count more by

a coincidence, for example:

Some user can have two main categories depending on the senders: 'friends’
and 'work” and let’s say that his/her business uses MS Outlook by default
while most of his/her friends have Mozzila Firefox. Although sorting the
messages according to e-mail client could work quite well, it is probably not
what this user wants — more likely, he/she would like to sort all e-mails from
domain 'my_business.com’ to the directory 'work’ and others to ’friends’,

because not everyone in the work has Outlook and vice versa.

But there is no way the program could distinguish more and less im-
portant attributes (especially because it can vary from user to user), so it
uses sorting keys priorities given by user in settings to distinguish really

important condition from the ones with high count but no real relevance.

In the case of moving message from one specific directory to another (not
from inbox or sent directory) the application usually has a formerly satisfied
final rule available. The program supposes this means the moved message
has the characteristics of the old directory (because it satisfied the rule) but
it belongs to the other place, so the new rule must be more specific (to avoid
sorting similar messages to the old directory in the future). Straightforward
solution was chosen — to create a new rule on the basis of the old one just by
adding some conditions. This method also allow to cover hierarchic mailbox

organization.

4.3 Basic vs. Advanced rule-correcting algo-

rithm
The first draft of the application contained quite simple rule correcting al-
gorithm, partly because of simpler design and partly because of speed. In

the testing phase it turned out that however this algorithm produces quite

satisfactory results in most cases, there could be made some improvements

23

and the cost of less speed would not be as bad.

On the other hand, the algorithm is not all bad and has some advan-
tages, so it was decided to keep it as an option (called basic rule correcting

algorithm) and to add an improved algorithm (called advanced).

4.4 Condition relevance determining — Basic

algorithm

This algorithm is based on a simple presumption — if user moves message
from directory A to B, it should not affect messages in other directories. The
moved message has some of the characteristics of the old directory and now
the user is telling it also has some characteristics of the new directory, so an
attribute of the message should be typical for either one of them. Therefore,

the algorithm only determines relevance of a condition based on directories
A and B.

Because the new created rule should distinguish messages belonging to
B from the ones belonging to A, it should not match any messages in the old
directory. In this algorithm it was chosen to discard from the condition all
predicates that are satisfied by any message in A. This way it is not possible
for any message that belongs to A to be sorted into B and that keeps the rule
set consistent (messages sorted into some directory before should be sorted
there with the new rule in the set as well). On the other hand, this approach
is quite strict and sometimes can disqualify important and characterizing
attributes with only a few appearances in old directory.

After that, the relevance of one simple condition with m appearances in
directory of n messages could be simply expressed as . But we want to
decide, what condition is the most relevant according to messages in one
specific directory B, so it is sufficient to compare them only according to m

(adjusted according to user priorities).

24

4.5 Condition relevance determining — Ad-

vanced algorithm

Testing of the (basic) algorithm showed some drawbacks and this version

tries to improve them. They are especially:

1. Determining relevance only based on two directories (old and new).
This behaviour works quite well for messages moved from one non-
inbox (and not sent) directory to another one — the algorithm can
presume the message has something in common with other messages
in the old place and it was enough to sort it there, i.e. distinguishes it
sufficiently from another places. And it also knows the new rule would
be probably based on one which originally sorted the message into the
old directory, therefore there is almost no possibility that the new rule
would be satisfied by wrong messages. However, in the case of message
moved from inbox or sent directory (so that not satisfying any final
rule) to some specific new directory, this presumption is not right and

the new rule does not really distinguish the new directory from others.

2. Discarding all conditions which are satisfied by any message in the old
directory — as the first point, this is also more a problem in the case

of message moved from inbox or sent directory.

The first problem has quite simple solution — to determine relevance of a
condition not only from old and new directories but from all the directories

present in the mailbox.

To solve the second problem, the simplest way would be to just don’t
throw away all conditions satisfied in some wrong directory, but set some
boundary count of satisfying messages and only if a condition overcome this
number, it should be discarded. However, this method would probably not
make it any better. It is quite different when some condition is satisfied by

1 message in directory of 3 than in directory of 400.

25

And from the other point of view, if two conditions are satisfied by the
same number of messages in wrong directories, the one with more successes

in the right place is the one to pick to the new rule.

This leads to redefining relevance of a simple condition to some formula
of counts of appearances in both right and wrong directories and of overall
sums of messages in these places. As shown in [Quinlan (1987)], the ground

for the relevance can be expressed in a contingency table:

in right directory | in other directories

condition satisfied a b

condition not satisfied c d

It is intuitively clear that the higher is the ratio of @ and ¢ while the ratio
of b and d is still low, the higher the relevance is. The first way of determining
this significance tried was just to count a ratio of positive cases (i.e. either
satisfied condition in the right directory or not satisfied elsewhere) and all

messages:
a+d

a+b+c+d
But this do not distinguish cases with the same number of positive cases (a+
d) but with different count of matches in the right directory (a). Therefore
some modifications were tried, which would give more importance to that.
But however it brought some improvement, it still don’t really express the
idea of condition relevance — how confidently the condition distinguishes a

directory from others.

To find a better method, a statistic view of the problem was considered.
In the speech of statistics, the relevance of the condition is a degree (statisti-
cal significance) of contingency (or dependence) between the two attributes

of a message:

— whether a message belongs to the right directory

— whether it satisfies the condition

26

As mentioned in [Wikipedia: Contingency table], several tests should be
used to count the significance - y?-test, G-test or Fisher’s exact test. For
the purpose of the relevance computing in a program, the y>-test is the
most suitable one because it has the least complexity. On the other hand, it
is not suitable for cases with very small values of the counts a, b, ¢ or d (small
means here approximately less than 5 according to [Connor-Linton, Ball}).
In this application however, the goal is not to compute the most exact signifi-
cance, but to compare relevances of several conditions, so this little drawback

will not make much harm.

The x? of a contingency table above can be expressed as:

(Oc B EC>2
E.

2.

ce{all cells}

where O, means observed (i.e. really present) number of cases in the cell ¢
and E, expected theoretical number appropriate for this cell, i.e. the number
corresponding to null hypothesis (independence of belonging to the directory
and satisfying the condition). This ezpected number of cases for a cell can
be computed as the product of sums of the row and the column divided by
a total number of cases. For example for the cell in the upper left corner of

the table it is:
(a+c)(a+Db)

a+b+c+d

This number is then adjusted by user preferences.

27

Chapter 5
Implementation

Implementation of the functional kernel of the application just followed de-

sign and algorithms explained in Chapters 2, 3 and 4.

5.1 Used libraries

Some parts of the program was decided not to implement from scratch, but

to use available libraries. Concretely, they are used to provide:

e Communication with IMAP mailbox — c-client library!(part of
the University of Washington IMAP toolkit), API to make (not only)
IMAP clients which supports many features and authentication meth-

ods.

e Parsing of XML files and working with the data — Xerces-C+-+
Parser?, portable library faithful to the XML 1.0 recommendation.

e Secure storage used for remembering passwords to mailboxes — Crypto++

library?3, class library of many cryptographic schemes with FIPS 140-2

'For details see http://www.washington.edu/imap
2For details see http://xml.apache.org/xerces-c
3For details see http://www.eskimo.com/~weidai/cryptlib.html

28

validation.

The reason for this decision was mainly the fact that the most impor-
tant purpose of this application was to design and implement a tool to sort
messages and create rules according to user’s behaviour because there was
no similar tool known. Unlike that, parsing of XML files or RFC compliant
IMAP client were implemented many times and there are many available li-
braries free to use in the application. And it is also better to use well tested
and widely used library than to try to invent some own way and likely make

the same mistakes as its authors again.

5.2 Hiding the libraries

However useful the libraries are and however perfect they might seem to be,
it is not a good idea to use them directly in the whole program. Sometimes
in the future they could stop being good enough or better ones could be
explored etc. Therefore all of them were wrapped into program’s own class or
classes, which have interfaces general enough to presume all the functionality
could be reimplement to use another library and the rest of the application

don’t have to know. This presumption is supported by these observations:

1. Data — program works with DOM, so any other library following W3C
recommendation will probably have almost the same interfaces and

surely the same functionality, so porting will be quite easy.

2. IMAP communication — functionality of any similar library should
be based on IMAP RFC, so it should offer similar functions (based on
IMAP commands).

Some kind of wrapping or hiding was especially necessary in the case of
IMAP library c-client because it is not an object library. So the other reason

was to allow other parts of the program to work with some easy interface

29

which would give them needed complex functionality. Special class working

as a facade of all the functions of the library was created to do this job.

5.3 Security

In the case of security storage, the security itself was the main reason. How-
ever all the main cryptographic algorithms are open, so the only task is to
implement some, most of the successful attacks even to theoretically safe
schemes was caused by mistakes in implementation. So the usage of a certi-
fied library is most likely a better way. For real safety, one of the most secure

symmetrical ciphers at the time was chosen — algorithm AES (Rijnadel).

And because many users use the same password on every mailbox (how-
ever dangerous it is), before ciphering the passwords are salted® by string
unique for every mailbox, so that the same password ciphered as a password
for different box looks different.

“as explained for example in [Wikipedia: Password salting]

30

Chapter 6
Conclusion

The main goals of the project was to design and implement software tool
to automate routine, every-day work with an IMAP mailbox which would

follow these requirements:

1. Sorts new incoming and outgoing messages according to some kind of

rules given by the user.

2. Also creates these rules step-by-step as user moves messages in the

mailbox.

3. The newly created rules have to prove themselves right to be inserted

in the set to avoid unintended sorting based on rare action.
4. Works (almost) without interaction with the user.

5. All the rules and settings are easily readable and editable and yet
portable.

To fulfill these needs, program Apofis was created. In the following text

there is an summary of if and how it satisfies each of these goals.

A model of quite simple rules was introduced, which can yet cover almost

every message category by giving a condition made of predicates of message

31

header values with the possibility to make really complex conditions as well
(by connecting number of these predicates with logical operators). The mes-
sage is classified and moved to the directory according to a most important
satisfied rule — by default the most complex, but the meaning of the most

important can be adjusted by giving priorities to various headers.

The application runs standalone, the only interaction with the user is
asking for and retrieving a password to a mailbox, which is then safely
stored though to don’t bother the user again. On the other hand, to make
it possible to trace the behaviour of the application, e.g. find out what rule
was satisfied by a message, what one was newly created etc., unified event
and logging system was introduced and all the events in the program are

logged together with their time, place of occurrence and level of importance.

The rules and all the settings are stored in XML files, which thanks to
the textual nature of XML can be read on every computer, but also supports
storing the rules (and especially the conditions) in natural hierarchic way.
And it allows to define various encoding pages of the document, so the users

can build rules with their native language words without any trouble.

To fulfill the points 2 and 3, a two-level system was introduced — final and
potential rules. The program sorts new messages only with the set of final
rules, the potential ones are used to determine which of the rules created
by the program are really useful — this way also follows the requirement
of the point 4. After a message is (re)classified by the user, program first
tries to find some suitable potential rule and if successful, the rule’s count of
successes is increased and if it reaches the boundary count, the rule is made
final.

If no satisfied potential rule is found, a new one is tried to create. To do
that, two algorithms are present — the basic and advanced one. Both share
the same ground — they try to make the new rule from some of the headers
of the moved message. The headers with values most characterizing and
most distinguishing the directory are chosen. The level of this relevance of

particular header is determined according to other messages in the mailbox

32

— the basic algorithm works only with the directories from and where the

message was moved, the advanced one use all the directories present.

Both of these algorithms fulfill quite well the needs for the application —
they are capable of creating suitable rules for most frequent and not very dif-
ficult cases. The weakness of the basic algorithm — creating rules for messages
moved from inbox (or sent directory) — is solved in the advanced version by
processing all the directories and thus determining the significance of distin-
guishing of the condition more properly. The basic version on the other hand
works still very well in the case of messages moved from other directories

and has the advantage of higher speed.

Due to the possibility to switch between these two versions, the user
can enjoy the advantages of both of them by using the advanced one at
the beginning to create rules corresponding to his/her mailbox organization
and then switch to the basic version for everyday work (when changing the

classification of a message to another category is not expected often).

However these algorithms are not perfect, designing and implementing
of a really sophisticated rule-learning system would go beyond the scope of
a bachelor project. And it would probably have to give the program full
control over the rules, which would likely disallow the user to keep survey of
the rule set and maybe even to create his/her own rules as well as edit the
ones created by the learning algorithm. Introduced algorithms on the other
hand follow the goals for the program — they are capable of automating
user’s every-day work and the way they work tries to bother the user as

little as possible.

33

Appendix A

Supplied CD

The CD distributed with this thesis contains all of the results of this work
— this thesis in its electronic form in various formats, including source files,
and the application Apofis described in this thesis. The program is provided
in two forms — packed in a zip file, for easier copying and distribution and
as a plain directory structure, which allows to install it without zip software
and also to browse it (e.g. documentation or source files) without copying
to the hard disc. Both forms contain all the files necessary to run it and also
bianco versions of the settings and rule files with example comments. The

whole program documentation is also included, it consists of:

e User Guide — explains in detail how to set up and use the application

and what is the precise format of all the settings and rules files.

e Program Documentation — contains detailed object design together

with description of the structure and algorithms of the application.

e Code Reference — consists of detailed description of all program’s

functions, classes and interfaces between them.

The distribution also contains all the source files and libraries necessary

to build the application.

34

Appendix B

Apofis quick start guide

To use the application, it is necessary to unpack it to some place in the hard

drive. The directory hierarchy will then look like this:

— boxes_and _rules — in this folder, boxes settings, logging informations

and sorting rules are stored.

— data — this is used internally by the application to store its data, so
it is not recommended for user to edit any content of it, it is initially

empty.
— docs — contains whole program documentation.
— libs — all library files necessary to build the application are stored here.

— logs — a place to store log files of the application. Every log has a name
with a syntax logYYYYMMDD@hhmmss’, where the time signature

means the time of the start of the application instance.
— options — contains a file with program settings.

— src — all source files of the application are stored here.

35

- program main directory — contains the program win32-executable
file (Apofix.exe), libraries necessary for the run (dlls) and a configu-
ration file 'paths.xml’, which contains paths to directories where the
application should find list of boxes (with appropriate rule sets) and

options.

The distribution itself contains all the necessary option files already filled
with default values. Thus to run the application user only have to make list
of all mailboxes he/she would like to be controlled by the program, the right
file to do that is 'boxes_and _rules/boxes.xml’. For the full syntax of that file
(and also all the other settings files) see User Guide, the required values for

one mailbox are:

e User’s name for the box
e Name of the file with appropriate rules
e The mailserver address

e Login name to this mailbox
And these values should be filled in as follows:

<box id="name for the box" rules="rules file" type="mailbox">
<host>server address</host>
<login>login name</login>

</box>

There are two main possibilities for the run of the application (especially
important for the first run) depending of what messages should it try to

sort:

e New ones — when started for the first time, the application finds out
what messages are there in the box and in the following runs it will

only sort (and create rules according to) new messages.

36

e All messages — when started with appropriate command line option
(--sort_all_items), the application will consider all messages in the
whole mailbox as new. This option is especially suitable for making a

set of rules from already sorted mailbox.

At the first run, the user will also be asked to enter the password to the
mailbox (which is then safely stored, so this would probably happen only

once).

For more details about the settings and other possible modes of running

the application, see User Guide.

37

Bibliography

[Cohen (1995)] W. W. Cohen: Fast Effective Rule Induction, Proc.
of the 12th International Conference on Machine Learn-
ing, 115-123, Morgan Kaufmann, Tahoe City, CA, 1995.
http://citeseer.ist.psu.edu/cohen95fast.html

[Cohen (1996)] W. W. Cohen: Learning Rules that Classify E-Mail, Proc.
of the AAAI Spring Simposium on Machine Learning in Information
Access, 1825, 1996. http://citeseer.ist.psu.edu/cohen96learning.html

[Connor-Linton, Ball] J. Connor-Linton, C. N. Ball: Chi square tutorial,
http://www.georgetown.edu/faculty /ballc/webtools/web_chi_tut.html

[Itskevitch (2001)] J. Itskevitch: Automatic ~ Hierarchical — E-
Mail Classification Using — Association — Rules, 2001. cite-

seer.ist.psu.edu/itskevitchOlautomatic.html

[Pazzani (2000)] M. Pazzani and D. Billsus: Representation of Elec-
tronic Mail Filtering Profiles: A User Study, Proc. ACM
Conf. Intelligent User Interfaces, ACM Press, NewYork, 2000.
http://citeseer.ist.psu.edu/pazzaniOOrepresentation.html

[Quinlan (1987)] J. R. Quinlan: Simplifying decision trees, Inter-
national Journal of Man-machine Studies, 27:221-234, 1987.
http://citeseer.ist.psu.edu/article/quinlan87simplifying.html

38

[Rennie (2000)] J. D. Rennie: ifile: An Application of Machine Learning to
E-Majil Filtering, Proc. of the KDD-2000 Workshop on Text Mining,
Boston, MA, 2000. http://citeseer.ist.psu.edu/rennie00ifile.html

[Segal, Kephart (2000)] R. B. Segal, J. O. Kephart: Swiftfile: An
intelligent assistant for organizing e-mail, AAAI 2000 Spring
Symposium on Adaptive User Interfaces, Stanford, CA, 2000.
http://citeseer.ist.psu.edu/segal00swiftfile.html

[Wikipedia: Contingency table] Contingency table, Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/Contingency_table

[Wikipedia: Password salting] Password salting, Wikipedia, the free ency-
clopedia, http://en.wikipedia.org/wiki/Password salting

39

