
Charles University in Prague

Faculty of Social Sciences
Institute of Economic Studies

BACHELOR THESIS

Agent-Based Model of the Software
Market

Author: Michal Bureš

Supervisor: PhDr. Jǐŕı Kukačka

Academic Year: 2014/2015

http://www.cuni.cz/UKENG-1.html
http://fsveng.fsv.cuni.cz/FSVENG-1.html
http://ies.fsv.cuni.cz/index.php?module=board&action=board&lng=en_GB
mailto:bures.michal@hotmail.com
mailto:jiri.kukacka@gmail.com

Declaration of Authorship

The author hereby declares that he compiled this thesis independently, using

only the listed resources and literature.

The author grants to Charles University permission to reproduce and to dis-

tribute copies of this thesis document in whole or in part.

Prague, May 13, 2015
Signature

Acknowledgments

I am indebted to PhDr. Jǐŕı Kukačka, the supervisor of this thesis, for introduc-

ing me into the field of agent-based modelling and for his valuable help. I am

also grateful to my parents without whom my studies would not be possible.

Abstract

In this thesis we apply agent-based modelling methodology on the software

market. We derive and implement an original model of the market as the re-

search in this field seems negligible. The work focuses mainly on the derivation

of the model and explanation of the methodology. Specific features of the soft-

ware market are discussed and presented as assumptions of the model. Based

on these principles we construct a model of the software market with complex

customer behaviour. In the end we test our model in an application we devel-

oped solely for this purpose. Responses of the model to dynamic modifications

of individual parameters are tested using the application. A simple case sce-

nario in which we apply the model on the dynamic market of game engines is

presented.

JEL Classification C63, D11, D47, D82, D83, L10

Keywords Software market, Simulation, Agent-based mod-

elling, Customer behaviour

Author’s e-mail bures.michal@hotmail.com

Supervisor’s e-mail jiri.kukacka@gmail.com

http://ideas.repec.org/j/C63.html
http://ideas.repec.org/j/D11.html
http://ideas.repec.org/j/D47.html
http://ideas.repec.org/j/H25.html
http://ideas.repec.org/j/H71.html
http://ideas.repec.org/j/L10.html
mailto:bures.michal@hotmail.com
mailto:jiri.kukacka@gmail.com

Abstrakt

Tato bakalářská práce je aplikaćı agentńıho modelováńı na trh softwarových

produkt̊u. Našim ćılem je odvodit a implementovat nový model softwarového

trhu, jelikož výzkum v této oblasti je zanedbatelný. Text práce se zabývá

předevš́ım odvozeńım modelu a popisem metodologie. Také jsou diskutovány

specifické rysy trhu softwarových produkt̊u, které jsou použity jako předpoklady

modelu. Na jejich základu navrhneme model softwarového trhu s komplexńım

chováńım zákazńık̊u. Model je testován pomoćı aplikace implementované za

t́ımto účelem. Pomoćı této aplikace jsou testovány reakce modelu na dynam-

ické změny parametr̊u. Součást́ı práce je také scénář, kde aplikujeme náš model

na trh herńıch engin̊u.

Klasifikace JEL C63, D11, D47, D82, D83, L10

Kĺıčová slova Trh softwarových produkt̊u, Simulace,

Agentńı modelováńı, Chováńı zákazńıka

E-mail autora bures.michal@hotmail.com

E-mail vedoućıho práce jiri.kukacka@gmail.com

http://ideas.repec.org/j/C63.html
http://ideas.repec.org/j/D11.html
http://ideas.repec.org/j/D47.html
http://ideas.repec.org/j/H25.html
http://ideas.repec.org/j/H71.html
http://ideas.repec.org/j/L10.html
mailto:bures.michal@hotmail.com
mailto:jiri.kukacka@gmail.com

Contents

List of Tables viii

List of Figures ix

Acronyms x

Thesis Proposal xi

1 Introduction 1

2 Software Market 3

2.1 How Does a Customer Decide? 6

3 Agent-Based Modelling 7

3.1 Definition of ABM . 7

3.2 Variety of Applications . 8

3.3 ABM in Economics and Finance 9

3.4 Spread and Justification of ABM 11

3.5 Implementation of ABM and OOP 12

3.6 Validation of ABMs . 14

4 Model of the Software Market 15

4.1 Structure . 16

4.2 Model Advantages . 17

4.3 Customer Agents . 17

4.3.1 Initialization . 18

4.3.2 Parameters . 18

4.4 Agent Behaviour . 18

4.4.1 Motivation . 19

4.4.2 Perception . 20

Contents vii

4.4.3 Satisfaction . 21

4.4.4 Willingness to Change 22

4.4.5 Decision . 23

4.5 Product . 24

4.6 The Big Picture . 26

5 Implementation and Model Analysis 27

5.1 Model Application Interface . 27

5.2 Calibrating the Model . 30

5.3 Observing the Effects . 31

5.3.1 Price Effect . 32

5.3.2 Marketing Effect . 33

5.3.3 Quality Effect . 34

5.3.4 Combined Effect . 35

5.3.5 Price Wars . 36

6 Case Scenario - Game Engines 39

7 Conclusion 43

Bibliography 47

A Important Code I

B Content of Enclosed Zip Archive IV

List of Tables

3.1 OOP and ABM Connection . 13

4.1 Parameters of the Customer Group 19

4.2 Product Parameters . 26

4.3 Simulation Actions . 26

4.4 Customer Actions . 26

5.1 Reasonable Values of Customer Parameters 30

5.2 Reasonable Values of Product Parameters 31

5.3 Settings of the Test Scenario - Customer Groups 31

5.4 Settings of the Test Scenario - Products 32

6.1 Settings of the Game Engines Scenario - Customer Groups . . . 39

6.2 Settings of the Game Engines Scenario - Products 40

List of Figures

3.1 Example of an Agent in OOP . 13

4.1 Theoretical Basis of the Model 16

4.2 Simulation Settings Dialog . 18

4.3 Graph of arctan(x) . 23

4.4 Graph of f(Si,t) . 24

4.5 Simulation Diagram . 25

5.1 Settings Window . 28

5.2 Control Window . 28

5.3 Output Window . 29

5.4 Sample of Exported CSV Product Data 30

5.5 Price Effect - Decrease . 32

5.6 Price Effect - Increase . 33

5.7 Marketing Effect - Decrease . 33

5.8 Marketing Effect - Start Decrease 34

5.9 Quality Effect - Decrease . 34

5.10 Quality Effect - Increase . 35

5.11 Combined Effect - Marketing Decrease, Quality Increase 36

5.12 Price Wars . 36

5.13 Price Wars with Additional Steps 37

5.14 Price Wars 2 . 37

6.1 Game Engines Scenario - No Modifications 40

6.2 Game Engines Scenario - Dynamic Modifications 41

6.3 Game Engines Scenario - Dynamic Modifications 2 41

Acronyms

2D Two Dimensional

3D Three Dimensional

.NET Software framework from Microsoft

ACE Agent-Based Computational Economics

ABM Agent-Based Modelling/Model

CSV Comma Separated Values

DSGE Dynamic Stochastic General Equilibrium

EURACE Macroeconomic Model of European Economy

HAM Heterogenous Agent-Based Model

NetLogo Multi-Agent Programmable Modelling Environment

OOP Object Oriented Programming

WPF Windows Presentation Foundation

Bachelor Thesis Proposal

Author Michal Bureš

Supervisor PhDr. Jǐŕı Kukačka

Proposed topic Agent-Based Model of the Software Market

Topic characteristics

This thesis should be an application of agent-based modelling methodology to

the study of the market for software products. The products on the market

will serve the same purpose, but qualitative parameters will differ. The price

of the products can also vary as it is the key in determining how the market

forces interact.

In the model few firms compete for customers to maximize their profit, or

even to achieve more complicated objectives. The product has preset charac-

teristics making it unique among others as is common in reality. Each firm is

free to dynamically change the price of their product. The simulation will pro-

ceed in discrete steps. In each step firms make their decisions and present their

offers to the market. The agents make their choice based on their preferences

including the product’s price. They will also remember their own user experi-

ence making those, who are unsatisfied, more likely to change their choice. The

central interest of the simulation will lie in the choice of the pricing strategy of

an individual firm. A special attention will also be given to the market share

and profit dynamics. In the second part I will focus on the application of the

model. Interesting hypotheses connected with pricing strategies will be tested

by employing this unique model.

Hypotheses

1. Agent-based modelling is a suitable methodology for software pricing and

customers modelling.

2. Optimal pricing strategies differ significantly among heterogenous products.

mailto:bures.michal@hotmail.com
mailto:jiri.kukacka@gmail.com

Bachelor Thesis Proposal xii

3. Freemium model can be more profitable than conventional pricing strategies.

4. If we assume profit as a function of price, it is common that the function

has multiple local maxima.

5. It is reasonable to change the price of the product during its life cycle.

6. Software as a service can be the optimal strategy for products with certain

characteristics.

Methodology

A simulation model based on agent-based modelling best practices will be de-

veloped to represent the market for software products. The structure of the

model will be developed specifically to realistically represent the market for

software products. C#, a modern object-oriented programming language, will

be used to write a stand-alone simulation.

Outline

1 Pricing Strategies

1.1 Motivation

1.2 Product pricing strategies

1.3 Software pricing

2 Agent-Based Modelling

2.1 ABM methodology

2.2 ABM and pricing strategies

3 The Model

3.1 Theoretical Explanation

3.2 Implementation

4 Evaluating Strategies

4.1 Using the model

4.2 Evaluating strategies

4.3 Interpretation

4.4 Results

5 Conclusion

Core bibliography

1. Alkemade, F. (2004): “Evolutionary Agent-Based Economics.” Technische Univer-

siteit Eindhoven.

2. Lehmann, S. & P. Buxmann (2009)): “Pricing strategies of software vendors.” Busi-

ness & Information Systems Engineering 1(6): pp. 452-462.

Bachelor Thesis Proposal xiii

3. Macy, M. W. & R. Willer (2002): “From factors to actors: Computational sociology

and agent-based modeling.” Annual Review of Sociology 28: pp. 143-166.

4. Rao, V. (2010): “Handbook of Pricing Research in Marketing.” Edward Elgar Pub-

lishing.

5. Schildt, H. (2008): “C# 3.0 The Complete Reference 3/E,.” McGraw-Hill Educa-

tion.

6. Tesfatsion, L. (2006): “Agent-Based Computational Economics: A Constructive

Approach to Economic Theory.” Staff General Research Papers 12514, Iowa State

University, Department of Economics.

7. Tesfatsion, L. & K. L. Judd (2006): “Handbook of Computational Economics.”

Vol. 2 of Handbook of Computational Economics, Elsevier.

8. Ondřej Šerý, Tomáš Poch, Pavel Šafrata & Cyril Brom (2006): “Level-

of-Detail in Behaviour of Virtual Humans.” Volume 3831 of Lectures in Computer

Science, Springer Berlin Heidelberg.

Chapter 1

Introduction

The state of technology is moving forward in a pace unseen by the past. New,

structurally different markets are emerging and innovation sparks various forms

of interaction. Existing markets are not excluded from this development. The

rapid growth of information processing, data analysis and automation induces

new, more effective means of matching supply and demand. Transaction costs

are lowering and sellers can be more direct in their access to customers. It is

a great challenge for economists to capture and explore the mechanics of both

the brand new and the changing markets. Software market is one of these new

markets. Despite the fact, that it is one of the most innovative markets, it lies

on the margin of research attention.

The objective of this thesis is to explore the mechanics of the software

market by developing an agent-based model that captures the processes of the

market for software products with a common purpose. It is constructed in

accord with the ABM methodology. The agents in the model are built based on

the basics of microeconomic theory. Simulational approach offers us a possibil-

ity mostly unavailable in theoretical models. The agents can be more than a

purely abstract entity with a static equation behind. They can learn, remember

the degree of their satisfaction and the results of their decisions. This form of

dynamic individuality should be the key concept and advantage of this model.

The structure of our model is inspired by the model in Zhang & Zhang (2007).

Antonides (1989) and Said et al. (2001) serve as a reference for my reasoning

about the decision making system of customer agents.

The thesis is structured as follows. At first, the basic characteristics of the

software market are explored in Chapter 2. Together with an inquiry into cus-

tomer behaviour, they serve as a basis for deriving a simplified representation

1. Introduction 2

of the market. Agent-based modelling methodology is reviewed in Chapter 3

where examples of existing models are presented. Chapter 4 is the core of

this thesis. It is concerned by the theoretical derivation of the model of the

software market. A standalone simulation is written to enable usage of the

model. In Chapter 5 the implementation of the simulation and its usage are

described. Individual effects of dynamic parameter modifications are tested.

Chapter 6 follows with a small case scenario based on the dynamic market for

game engines. Finally, the contribution of our work is summarized.

Chapter 2

Software Market

In this chapter we study the software market and formulate its characteristics.

The software market is a market where software products are sold. We are

interested in the form of production and distribution of software and its key

features. Nowadays the distribution of software is done mostly via the Internet.

Anyone can run free software often with less than ten mouse clicks. Payments

are done via the Internet within seconds. Software is nothing more physically

than a sequence of zeros and ones. But multiple levels of abstraction enable

programmers to write complex programs that bring enormous increase in effec-

tivity of repetitive labour. Contemporary programs can often do the job of a

few people, or even a job that could not be done by any human. The precision

and speed are the domains of the computer however creativity still lies in the

hands of men. The greatest advantage of software is something that has been

known for hundreds of years. It is connected with the invention of the printing

press around 1440. Books were written at first with a large amount of effort.

But thanks to the spread of printing press the book could reach a huge amount

of readers with a reduced price. Then you can imagine a car designer creating

a concept for a new car. The process is costly and it is the core creative process

in development of a new car. Let us assume the company spends 500 000 $

for a concept of a car. It is a lot of money but production of every car may

cost few thousands of dollars. This reveals the change in the characteristics

of effectivity. When Smith (1776) was written it was mainly the effectivity of

production that was important. Smith spent many pages describing the impor-

tance of the division of labour. With printing books and now even more with

selling software we face the phenomenon of duplication. From this we derive

two important assumptions for our model.

2. Software Market 4

Negligible transaction costs. Most of the software products are available

online either for direct use or with easy download. Customers are free to gather

information on the internet and face little or no barriers when they want to

acquire a specific product. The process of buying often comes down to paying

for a license. Product is then ready to use. It is straight-forward and fast.

The software market has low variable costs. Once a software product

is developed a customer support needs to be provided. But this depends only

weakly on the amount of copies sold. Because the variable costs are significantly

lower than fixed costs the best strategy is maximizing income.

Continuing with our analysis of the market we capture another important

characteristic. On the software market the price of an individual product is

not very high. The choice of the customer when buying a new car depends

dramatically on his income and wealth. When buying a software product the

customer is influenced by those characteristics only slightly. That means we can

expect linear price elasticity on the software market. Additional unit paid

for the product brings about the same loss to our customer as the individual

prices tend to be low. This is supported by the fact, that he buys only one

instance of the product. So we do not have to take into account the diminishing

utility of buying another unit.

On the software market we assume highly differentiated products. Ev-

ery product has its name, brand and product characteristics. Generally, only

one instance of the product is bought and the customer views it as different.

The structure of the market is specific. In fact it consists of a huge amount

of small software markets. They influence each other in certain ways. Events

such as adoption of one product can increase the need of another product, or

just improve the perception of a related product. But mostly the products are

independent and their qualities are not very correlated. So we assume that

the structure of the software market resembles a large amount of indepen-

dent, but similarly functioning markets. We can view them as separated

without a large loss of realism.

We assume that the individual markets for software products have oligopolis-

tic market structure. Developing a qualitatively capable software product is

a complex and difficult task. It requires work of many programmers and testers

to deliver a successful product. Managers and sales analysts are needed to max-

imize the profit from an existing product. There is a plenty of opportunities

for developing a software product. So when the market for a product with a

specific purpose is satiated, it is likely, that the company will choose another

2. Software Market 5

market to penetrate. So there exist only a few software products for every

specific purpose as it is not profitable trying to penetrate satiated markets.

When customer chooses a product many important aspects play a role in his

decision. Price is an important parameter of his decision as on other markets.

When buying bananas the customer often remembers his past experience. If he

bought delicious bananas last week in a shop nearby he will repeat his choice

with a greater probability. On the contrary, if he saw rotten bananas in the

shop nearby he is likely to avoid the shop, at least for some amount of time.

With software this effect is even stronger. Any experience the customer has

with a specific software product is the most important information he has about

the product. Using a software product happily for a year, the customer will

probably continue to use it unless the underlying situation changes. He can

perceive a new need, or a new version of a concurring product with a lot of

new functionality can reach the market. Often we see emergence of products

that are free, at least in some degree. Even after such an impulse, the customer

may stick with the product he uses simply because he is satisfied and is not

willing to spend time making a new choice. So we observe an important role

of experience and memory.

Software products are very complicated and their features and quality can

take a long time to recognize. The customer often realizes that the product

lacks some qualities only after weeks of using it. Discovery of serious flaws of the

product can cause a strong incentive to look for another product that will better

suit the needs of the customer. On the contrary, the influence of satisfaction of

the product is a reason to stick with the product though we suppose that is has

smaller impact than unsatisfactory product. High influence of unsatisfying

quality is another assumption we make about the software market.

Another fact that is connected with the complexity of software product

lies in the hardihood with which the customer reviews the product. That

induces him to search for helpful information wherever he can. Aside from

the information on the Internet, or in a shop the customer tries to gather

information in his social network. He will ask friends about their opinion on

the product. They can tell him about the experiences with the usage of their

product and the customer will take this information into account when making

his decision. So we can see that influence of friends has its place in the

decisions of the customer.

2. Software Market 6

2.1 How Does a Customer Decide?

On the software market the decision of the customer is often a long and compli-

cated process. As we mentioned before the products are differentiated. When

the customer makes his choice he has to make a comparison of the available

products. We assume that the customer can assign a certain value represent-

ing his utility or preference for the product. This is an important assumption.

Without it we would find it very complicated to simulate his behaviour. So

existence of a function that assigns the utility value is required:

fu(p1, p2, ..., pn, c1, c2, ..., cm) (2.1)

where p1, p2, ..., pn are parameters of the product that influence the per-

ceived utility. Similarly c2, ..., cm are parameters of the customer on which the

utility depends. In Chapter 4 we build on this requirement when describing

our motivation function.

Chapter 3

Agent-Based Modelling

Agent-based modelling is a promising methodology that is trying to make its

way to economic analysis. It is applied in a wide range of scientific areas. The

rise of ABM is connected with increased computational capability of modern

computers. It is only natural that many scientist try to utilize computers in

their research. At first, there was no common methodology, but the struggle

for effectivity enabled the emergence of shared knowledge. So a set of guide-

lines and theory concerning representation of reality came into being under the

headline of agent-based modelling.

It is a theoretical background for computer simulations that tries to capture

the behaviour of non-trivial agents. According to Epstein (1999) ABM models

provide computational demonstrations that a given microspecification is in fact

sufficient to generate a macrostructure of interest. Recently, in Macal & North

(2010) ABM is described as a new approach to modelling complex systems

composed of interacting and autonomous agents.

ABM is offered as a solution of the failure of mainstream economic models.

Farmer & Foley (2009) react to the inability of DSGE models to predict crises

and sudden shocks. Bouchaud (2008) by criticism of mainstream economics

calls for a different paradigm in economic modelling. He gives hope to econo-

physics and behavioral economics.

3.1 Definition of ABM

Most definitions of agent-based models contain three central features as stated

in Windrum et al. (2007):

1. Bottom-up approach: In agent-based models we want to derive macro

3. Agent-Based Modelling 8

results from the micro behaviour of individual agents. This is often set in con-

trast with the so called top-down approach of the neoclassical models of main-

stream economics. Clasically the bottom level is represented by an individual

with constraints connected with reaching of equilibrium. In ABM we have het-

erogeneous agents that form complicated systems. They evolve in time based

on complex interactions. The macro outcome is then determined by the many

actions taken by the individual agents (Epstein & Axtell 1996).

2. Boundedly-rational agents: It is not possible to implement agents as

fully rational entities. That would be beyond capabilities of any imagainable

computational model. That means we have to substitute rationality with some

other approach. We arrive at some partly rational rules, often in form of an

optimisation problem. We can apply some heuristics based on observation from

the real world. So in ABMs agents are modeled as boundedly rational forming

a compromise between rationality and viability.

3. Network directed interactions: The interaction among the individ-

ual agents should be direct and non-linear. The interactions are direct because

the particular decision depends straightly on the past choices made by other

agents present in the simulated population. Groups of agents interacting among

themselves or networks based on spatial proximity can serve as examples (Irwin

& Geoghegan 2001). Structure of these interactions may change over time, as

the agents develop in a dynamic way.

These features when combined can lead to complex outcomes. Through the

aggregation process structurally new objects or actions can emerge. Agents

inherently do not have any understanding of the environment. But through

interactions in agent-based models a learning process can be implemented.

3.2 Variety of Applications

The variety of possibilites to use agent-based models is enormous. We choose

only three representative interesting examples to ilustrate the breadth of ap-

plications.

In Castella et al. (2005) an interesting agent-based model of land-use in

mountainous Vietnam is described. It is concerned mainly with scale factors

and their effect on the model. The author uses a visual represantation and

calibrates the model using old aerospatial photographs. The model is run with

different spatial resolutions. The land-use preference is found to be largely

affected by the scale.

3. Agent-Based Modelling 9

Auchincloss et al. (2011) tries to explore the role of economic segregation

in causing income disparities in a diet. By using a simple agent-based model

a relationship between income differentials and the segregation of low-income

households and unhealthy food stores from high-income households and healthy

food stores is discovered. In the low income group, increasing their preferences

for healthy food improved their diet but still a difference remained.

Epstein (2009) discusses the application of ABM on the modelling of the

spread of the swine flu disease. It is a logical continuation of the classical

disease spread modelling. Irrational behaviour and complex networks can be

modelled on a global scale using ABM.

In Axelrod (1997) a list of simple replicable models can be found.

3.3 ABM in Economics and Finance

In recent years agent-based modelling capabilities are being used more widely

in the field of economics. One of the most common applications of ABM is

modelling financial markets. There from the ABM methodology heterogeneous

agent models or simply HAMs are derived. In Amman et al. (2006) its use is

explored. They argue that in economics we can see an important paradigm

shift. Traditionally, in economics representative rational agents were used.

They had access to full information and through some maximization problem

they hace chosen the best suited option available. Here a new agent-based

approach is advocated. The agents are only boundedly rational and make

decision based on simple rules of thumb. These come mainly from the field of

behavioural economics. They support this attitude with the view of Kahneman

and Tversky who propose that the behaviour of agents under uncertainty can

be best described by simple heuristics and biases. They support it by the role

expectations and crowd behaviour described by Keynes (1936).

In a large part of HAMs in finance there are two types of agents that should

represent the real financial market actors. The first group are the fundamen-

talists. They decide based on underlying economic factors. So they have some

benchmark guess of the fundamental value and buy the undervalued assets

while selling the overvalued ones. The second group is represented by the

chartists. These represent the technically based traders. They decide solely by

past movements of prices.

Amman et al. (2006) introduces the area of HAM by a simple model by Zee-

man (1974) that illustrates the basics. Its purpose is to qualitatively describe

3. Agent-Based Modelling 10

the stylized fact of the changing of bull and bear markets. It contains a lot of

behavioural elements still used in HAMs. The model consists of fundamentalists

and chartists as they were described earlier. In Zeeman (1974) model chartists

are only trend followers simply copying the direction of the market. There are

only three variables. The rate of growth of a stock market index, the share

of chartists and the excess demand for stock of the fundamentalists. Zeeman

shows that the simplest model that can be derived from his seven hypotheses

based on qualitative features of the stock market and the behaviour of individ-

ual agents is the cusp catastrophe model with a slow feedback flow. In Amman

et al. (2006) the reader can find a nice description of the model.

Brock et al. (2005) tries to describe the dynamics of behaviour of purely

heterogeneous markets with a huge amount of trader types. They apply it to

an evolutionary market and show that increase in the heterogeneity of agents

and diversity of their beliefs may lead to unpredictable outcomes and excess

volatility.

In Mueller & de Haan (2009) a simulation of market for new cars is de-

scribed. The aim of this model is to forecast the effects of feebate systems

based on energy labelling scheme. Consumers, the agents, have differing price

elasticity and various reaction options to feebates. Consumers decide among

few car sizes. The outcome of the model should serve to understand environ-

mental and market effects of feebates. It is similar to our model as it features

a market with differentiated products with a discrete choice.

Last years have brought extensive use of ABM in macroeconomics. Very am-

bitious projects such as EURACE model, a simulation of the European economy.

As written in Deissenberg et al. (2008) is a complete model of all important

markets. These include market for consumer goods, labour, credit or invest-

ment. It is unique among all ABMs as it contains a huge amount of agents.

Not only it does simulate more than one market but it establishes a connection

among the individual parts of the model. They stress out that the agent in

EURACE acts within a context. That means not only he can interact on multi-

ple markets but he can become a buyer on one market and seller on another.

The model contains many classes that represent multiple types of agents. The

connection between ABM and OOP is discussed later.

These large scale agent-based models can possibly be the future of economic

modelling. They can be implemented with scalable and modular architecture.

Various scenarios can be tested with only a small amount of work. It is a good

example of using new technologies in economics and of an interdisciplinary

3. Agent-Based Modelling 11

approach.

In Dawid et al. (2012) the assumptions and economic features of an EURACE

extension Eurace@Unibi are explained. The model is extensively described and

serves as an inspiration for our model. They try to base the behaviour of agents

on empirically observed data. That is a good approach but gathering high

quality empirical data is a hard task.

The time in the model flows in discrete steps in a manner similar to our

model. In EURACE there are more types of time steps as there are more types

of agents who can require a different schedule of activation. A day of activa-

tion is randomly chosen for every agent in the simulation and then preserved

throughout the simulation. Agents often have more than one activation in-

terval and are registered to listen to some important events. For instance a

firm chooses its retail price every year and can react to a bankruptcy protocol.

Other actions are taken every month. Households receive their income every

month, perform their consumption-saving decisions and pay taxes. Every week

they interact on the market for consumption goods. Unemployed citizens can

react to events on the labour market. The decision rules are fairly sophisticated

and based mostly on microeconomic theory and empirical data.

3.4 Spread and Justification of ABM

Despite the widening application of agent-based modelling in economics, re-

search papers based on ABM fail to reach top economic journals. ABM somehow

still lies on the edge of economic research. The simulation approach is often

viewed as somehow inferior to the purely mathematic approach. Leombruni

& Richiardi (2005) tackle these opinions showing that simulation approach is

not less sound than the mathematical modelling. They build on the assump-

tion that for every time index t the agent i, i ∈ 1...n is well described by his

state variable xi,t. Then they let the evolution of the state variable in time be

specified by a difference equation as:

xi,t+1 = fi(xi,t, x−i,t, αi) (3.1)

where αi are parameters of the agents and by x−i,t are represented the states

of all the other agents i.e. excluding the agent i. Then we are interested by

the outcome or some macro feature that is typically a function of all the state

variables. The denote this variable as Y . So in time t we have an equation:

3. Agent-Based Modelling 12

Yt = s(xi,t, ...xn,t) (3.2)

Now they ask a question whether it is possible to solve this equation for

each t in a general case. By using the theory of differential equations they

show that the value of Y at any possible time t is uniquely determined by the

initial conditions of the formerly defined system and the parameters αi. They

conclude that this formalization can be used to describe not only the ABM

model but also the traditional dynamic micro framework.

Additionally, they show that the criticism of the difficulty of estimating

ABMs fails. It is just necessary to use different estimation methods. Agent-

based models are sometimes even advantageous because they enable us to model

more complex phenomena and solve the model for a huge amount of data. The

computation process is much more traceable as we can modify the model with

ease.

3.5 Implementation of ABM and OOP

i The choice of implementation techonolgies seems to be often made depending

on the skills of researchers involved. During smaller projects executed by e.g.

economists a simple modelling environments such as NetLogo are often used

(Tisue & Wilensky 2004). Simple simulation models are easy to design and

an interesting visualization is available. That is very useful for models of one

separate phenomenon. For large scale models such as EURACE these modelling

environments are inappropriate. Huge computational complexity requires more

sophisticated tools that operate on a lower level. Also modularity and ease of

changing a part of the model is essential. Programmers are then required to

write a simulation that will be both fast and maintainable in some standard

programming language.

One of the most popular approaches for designing computer programs is

called object-oriented programming. In fact this approach is very useful for

writing agent-based simulations (Amman et al. 2006). The prototype of the

agent can be naturally represented by a class in any OOP language. The in-

dividual agent is then an instance of the class. That means the agent has the

same interface as every other agent. What is different is the data behind which

determines the behaviour of the specific agent.

The object is in fact a container for data that allows actions to be taken

3. Agent-Based Modelling 13

Table 3.1: OOP and ABM Connection

Object Oriented Programming Agent-Based Modelling

Class Agent prototype
Object Agent
Interface Set of possible actions
Method/Function Individual type of action
Property Data and Parameters

on its data. These actions are predefined and are called methods or func-

tions. They can be parametrized on the data or even modify them (Szyperski

2002). The object oriented approach is used extensively in our model. The

main advantage is high freedom of implementation. In addition it is easier to

customize simulation written in a casual programming language. But as men-

tioned before for smaller simulations simplified programming environments are

often sufficient and can save a non-trivial amount of time.

Figure 3.1: Example of an Agent in OOP

public class Agent
{

// p u b l i c l y a c c e s i b l e data
public int Wealth{ get ; s e t ;}
public int Age{ get ; s e t ;}

// p r i v a t e data
private Agent Neighbour { get ; s e t ;}

// c a l l e d when the o b j e c t i s c o n s t r u c t e d
public Agent (Agent neighbour)
{

// i n i t i a l i z a t i o n
this . Neighbour = neighbour ;

}

// n o t i f i e s ne igbour
public void Not i fy ()
{

// c a l l s n o t i f y on the neighbour
this . Neigbour . Not i fy () ;

}
}

See Figure 3.1 for an example of a single agent represented by a C# class.

3. Agent-Based Modelling 14

It consists of properties that represent data and of a method that shows the

possibility of interaction among agents.

3.6 Validation of ABMs

An important part in the development of agent-based models is their validation.

In Moss (2008) the author describes the possible methods of validation based

on Windrum et al. (2007).

1. Indirect calibration begins with identifying stylised facts on the macro

level. These can be some relations among macroeconomic variables such as

GDP, growth or employment. Then we base the design of the model on empir-

ical evidence from the real world. This is often based on microeconomic theory

or on behavioural economics. Then the parameter space is restricted based

on stylised facts or empirical knowledge. Sometimes Monte Carlo methods are

used.

2. The Werker-Brenner calibration starts from the opposite side. At

first, empirical facts are used for calibrating the ranges for parameters and find

reasonable settings. Then we run a huge amount of simulations for all possible

sets of parameters. The sets that are not in accord with the empirical facts are

discarded. Then the range can be further restricted by some expertise in the

underlying mechanics.

3. History-friendly calibration as the nomenclature suggests is based

on including historical facts into the model. The model uses more empirics

and less theory. The initial conditions and parameters are based preferably on

historical evidence. The validation then proceeds by comparison of the outputs

of the model with the historical facts.

Moss (2008) concludes that all these approaches are based on techniques

and theories selected independently of the evidence. They are chosen before

the design and implementation takes place.

Chapter 4

Model of the Software Market

According to our research no ABM model representing the software market has

yet been made. We construct a new model based on the state of art in other

ABM applications and the consumer decision theory. From Zhang & Zhang

(2007) we take the well-reasoned concept of motivation. However, the decision

rule they use, shows to be inappropriate in our model. The model in Zhang &

Zhang (2007) is concentrated only on the study of the decoy effect. It is simple

and has purely heterogeneous agents.

Ajzen (1991) inspired our model by its insights about the decision making

process. It is one of the sources for the decision to include perception into the

model.

Unlike standard economic models, agent-based models are generally rep-

resented not only by a set of equations but they contain other entities. It is

essential to describe these entities first. The core of the model is the customer

agent. His internal representation is the main theoretical part of the model.

The behaviour is derived not only from economic theory, but we take into ac-

count other scientific fields such as psychology, sociology or marketing science.

Said et al. (2001) describes interesting consumer theoretical framework. It

comes out, that many concepts are bundled together by the marketing science.

Scientists and practitioners that are concerned with marketing try to under-

stand consumer behaviour without the methodological restraints of economics

or sociology. Inspired by psychology they explore perception of the product

and learning process.

Economics incorporates the view of a consumer as a rational being. The

consumer is given a utility function he tries to maximize. The problem is that

we are unable to measure utility and the full rationality of customer is often

4. Model of the Software Market 16

too strong assumption.

Said et al. (2001) points to Antonides (1989) as an interesting attempt

to combine the psychological theory of attitude with the economic theory of

demand. After reviewing the individual approaches he tries to integrate the

theories of utility maximization, theory of attitudes used in social psychology

and the interesting theory of psychophysics. In psychophysics the relation of

objective and perceived values are explored.

Figure 4.1: Theoretical basis of the model

Here we can see the advantage of the psychological attitude to customer

on the micro-level. It can be used without the concept of utility and is very

useful when the customer is not faced with a choice that would greatly affect

his budget. When buying a car, the total budget and income play a huge role

in the decision. While in the case of a much cheaper goods, these effects are

diminished.

In our model we take into account these findings and on their theoretical ba-

sis we construct a reasonable representation of the software market. We make

an analysis of the specifics of the market and find a suitable representation in-

tegrating together the economical, psychological and sociological perspectives.

4.1 Structure

Our model has two central types of entities. The first type is product and the

second type is customer. We decided to represent the supply side only by the

product. This is supported by the assumption of low variable and transaction

4. Model of the Software Market 17

costs. To simplify the model and understand the market we choose to ignore the

role of the company. We assume that the internal processes of the company do

not play an important role in determining the structure of the market or market

shares of individual products. Their modelling could be done using ABM or

different methodology and integrated with the model of the market. In our

model we simply take the company’s decision as an input. Then we observe

the reaction of the market. We can say that the model simulates the situation

conditional on the product characteristics determined by the company.

4.2 Model Advantages

Most simulation models develop in time, but only a few of them take into ac-

count the individual memory and experience of each agent. In our assumptions

in Chapter 2 we discussed their importance in understanding the processes on

the software market.

We extend the concept of often simple memory parameters. In the model

we implement perception memory based on Said et al. (2001). Additionally,

memory of satisfaction with the product is included to represent the experience

with the usage of the product. This should be a unique feature among agent

based models and it is described later in the text with a greater specificity.

4.3 Customer Agents

Each agent is a representation of a particular customer. Agent’s individuality

is defined by a collection of parameters. In the model, customer is seen from

a restricted perspective. We are not interested in his background but we are

concerned only by the resulting characteristics that describe his behaviour and

attitude on the software market.

Each customer that is a part of the model has the same mechanics of be-

haviour. What is specific to the individual are the decisions he makes based

on his unique parameters. The model is populated by a chosen amount of

agents. This is determined before the simulations starts and it is a part of the

simulation settings.

4. Model of the Software Market 18

4.3.1 Initialization

Some agent-based models are populated only with agents whose parameters

are generated randomly from some standard distribution. In our model the

parameters of agents are taken from normal distribution. However, for each

group we can specify different mean and standard deviation. So there is hetero-

geneity caused not only by the underlying distributions from which parameters

are taken. Differences among groups make a second type of heterogeneity. The

appearance of the settings dialog can be found in Figure 4.2 on page 18.

Figure 4.2: Simulation Settings Dialog

4.3.2 Parameters

The parameters of individual customer are described in Table 4.1 and the cal-

ibration of their effect is discussed later. The behaviour is based mostly on

these parameters.

4.4 Agent Behaviour

We proceed with explaining the derivation of the behaviour of the customer

agent. In the following text for the sake of simplicity we speak about one

specific customer. All we derive for this customer, unless we explicitly state

otherwise, applies to the customer agent in general.

4. Model of the Software Market 19

Table 4.1: Parameters of the Customer Group

Group Parameters Explanation

Price sensitivity Price elasticity coefficient
Marketing sensitivity Coefficient representing the intensity of perception
Quality sensitivity Coefficient representing reaction to the quality level
Average friends Average amount of friends of each group member
Required quality X Required level of quality X of the product
Memory coefficient Coefficient describing speed of forgetting
Amount Number of customers of this group to be created

4.4.1 Motivation

The central question of this section is how the customer decides which product

to buy. In Chapter 2 we assume our customer makes a decision that is partly

rational. We admit that there is a certain level of unpredictability but his de-

cision is correlated with the parameters. So we have to derive some measure of

his willingness to buy the product. This characteristic will be called motivation

and is inspired by motivation in Zhang & Zhang (2007). We will denote the mo-

tivation of the consumer to buy product i as Mi. The motivation is computed

in every step of the simulation in which the customer wants to buy a product.

It is obvious that the motivation depends on both the characteristics of the

customer and the product. The motivation is the core of customer’s decision

so it depends on two variables described further in the text. The perception

that represents a long-run view of a product even if the customer has no direct

experience with its usage. We will denote the perception of the consumer of

product i as Pi. Now we propose the following equation for the computation

of the motivation of the customer at time step t:

Mi,t = pi × sp + Pi,t (4.1)

where by pi we denote the price of product i at time t. Variable sp represents

the sensitivity of this particular customer to changes in price. Finally, Pi,t

denotes the perception of the consumer of product i at time step t.

We set the dependence of motivation on price as linear. Consult Chapter 2

for justification. The motivation is directly dependent on the perception of

product i at the present time step t.

4. Model of the Software Market 20

4.4.2 Perception

Now we have to explain what perception is and why have we decided to use it

in our model. Perception is supposed to capture the continuous process of rec-

ognizing the product as an individual entity. The customer gradually gathers

information about the product. That simulates the reality when the informa-

tion customer gets is not complete and depends on the intensity with which he

observes the state of the product and on the intensity of the marketing activity

of each brand. Every piece of information the customer gets is subject to the

process of degradation.Its importance decreases over time. That is strongly

connected with how long and with what priority the customer uses his past

experiences. So we introduce perception variable based on our assumptions

stated in Chapter 2. We construct the following relationship for perception:

Pi,t = m× Pi,t−1 + ∆Pi,t (4.2)

where Pi,t is the perception of product i at time step t. Parameter m is

the memory rate. Pi,t−1 naturally denotes the perception at the last time step

t− 1. ∆Pi,t is the actual change of perception based on the parameters in time

t. We propose the following equation for the perception change:

∆Pi,t = sm × (Fi,t +Qi,t) + Si,t (4.3)

Parameter sm represents the sensitivity of the particular customer to mar-

keting activities of the products. It is the de facto rate of propagation of the

product characteristics to the perception variable. Fi,t is the influence of friends

of our customer in time step t concerning product i. Every customer can have

a set of friends that influence his attitude towards the product. This is dis-

cussed in Chapter 2. We have to choose a reasonable source of the influence

value. Perception seems to be the best option as it is a synthesis of the friend’s

attitude towards the product. This brings to our model some kind of spatial

interaction. We set a following relationship for the influence of friends:

Fi,t = w ×
∑

f∈friends

perceptioni,f,t (4.4)

where w is the follower tendency parameter of our customer. It specifies

how much does the customer take into account the opinion of his friends when

rating the product. The second part is just a sum of actual perceptions of all

4. Model of the Software Market 21

his friends.

Now we return to our equation (4.3) for the perception change. We have

to explain what does Qi,t represent. It should be a measure of how much does

the product meet the requirements. Justification of this measure is provided

in Chapter 2. We choose two different relationships for the influence of the

product requirements. When the product quality requirements are met the

influence of an individual requirement is:

Qi,q = qi,q − rq (4.5)

On the contrary, when qi,q − rq < 0 the relationship we choose is:

Qi,q = −(qi,q − rq) (4.6)

where for both equations (4.5) and (4.6) qi,q is the quality q of product

i. Parameter rq is the quality requirement for quality parameter q of our

customer. Thus we explored the relations connected with the individual quality

parameter. Now in aggregate we have the following equation:

Qi,t = sq ×
∑

q∈qualities

Qi,q (4.7)

So the value of Qi,t is nothing more than a sum of all the individual effects.

We expect no strong synergic effect of the individual effects. Also the absence of

more features is distinctively worse than absence of one. Unsatisfactory state of

some quality does not cause complete ignorance of other qualities when making

a comparison.

Until now we have ignored the last variable that has effect on the percep-

tion change. Si,t represents a third important characteristic computed for the

customer agent. A separate explanation is presented.

4.4.3 Satisfaction

The satisfaction has mechanics similar to perception. It is computed by similar

equations but it does not depend on marketing intensity and sensitivity. Also

recommendations of friends are not included as when using the product personal

experience dominates. Moreover, the recommendations are still included in the

perception. An important feature is that satisfaction influences perception as

was already mentioned. We have to emphasize that this makes the satisfaction

4. Model of the Software Market 22

play role even after abandoning the product. The satisfaction of chosen product

i at time step t is:

Si,t = m× Si,t−1 + ∆Si,t (4.8)

where m is the memory parameter and Si,t−1 is satisfaction with product i in

the past step. The value of ∆Si,t is

∆Si,t = sq ×
∑

q∈qualities

Qi,q (4.9)

Parameter sq is the level of quality sensitivity. The sum is identical to

the one in equation 4.7. For other products than the one that is used by the

customer only the process of forgetting is active:

Si,t = m× Si,t−1 (4.10)

4.4.4 Willingness to Change

Not every customer wants to buy a new product in each step. But how to

decide which one will choose a new product? In general, customers that are

satisfied with the use of the product are less likely to change their choice. On

the contrary, unsatisfied customers who find that the product they use has

serious flaws or that it cannot satisfy their needs will probably try to choose a

better suited option.

Now we see that some measure is needed to determine the probability the

customer will make a new choice. This was one of the reasons why we intro-

duced satisfaction variable earlier in the text. It captures the long-run experi-

ence of the customer with the usage of the product. So we have the measure we

needed, but additionally we would like the probability to reflect the behaviour

of completely satisfied or strongly unsatisfied customers.

We need a function f(Si,t) whose value around 0 will be some chosen default

probability p. Then in the negative domain we want the value to degrade from

p. We would like the function to be convex as the importance of the level of

satisfaction lowers with distance from 0. In positive domain we want the value

to rise similarly as it goes down in the negative domain. Naturally, we want

the values to lie in [0, 1] interval. After exploring possible options we decide to

use arctan(x) as f(Si,t) because it has some of the desired features described

above.

4. Model of the Software Market 23

Figure 4.3: Graph of arctan(x)

−10 −5 5 10

−4

−3

−2

−1

1

2

3

4

x

y

y = arctan(x)

On the figure above we can see several problems. Firstly, the range of

values is (−π
2
, π
2
). Also it does not logically correspond to our standard values

of satisfaction. So we have to make a transformation of arctan(x) to get:

f(Si,t) =
arctan(x

c
) + π

2

3.5
(4.11)

We add π
2

to move the range of values above zero and then divide the sum

by 3.5. This is done in order to constrain the values into the (0, 1) interval. A

value larger than π is chosen to leave some space for making a new choice when

satisfied. A reasonable coefficient c has to be chosen and that is discussed later

in the text.

So now concerning the probability that the customer i will not make a new

choice in step t we propose the following equation:

Pi,t = f(Si,t) (4.12)

This is applied at each step for each individual customer. A random number

from the U(0, 1) is drawn and if it is higher than Pi,t the customer makes a

new choice.

4.4.5 Decision

Now we analyze the decision of the customer. Earlier in the text we explained

the motivation variable Mi,t. It is computed in each step and serves as some

kind of measure of actually perceived utility inherent in buying product i. So

we have some measure of utility from buying product i for each i = 1, ..., n

where n is the number of products. We then base our decision on the sequence

4. Model of the Software Market 24

Figure 4.4: Graph of f(Si,t)

−800−600−400−200 200 400 600 800

1

x

y

y =
arctan(x

c
)+π

2

3.5

of all the motivations. In Zhang & Zhang (2007) they use a very simple decision

rule:

MAX(M1,M2, ...,Mn) (4.13)

This rule is elegant but it does not leave any space for unobserved factors. It

assumes complete rationality of the customer. We are searching for some partial

function that is easy to understand and leaves some space for randomness of

the decision. A core requirement is that higher motivation for buying product

i results in higher probability that it will happen so. Based on this requirement

we propose the partial function d : Rn → 1, ..., n defined by property:

P (Mi) =
Mi∑n
p=1Mp

(4.14)

Thus the probability of choosing product i is based on the relative value

of the motivation to buy it to the total sum of motivations. This partial

function satisfies the property that
∑n

p=1 P (Mp) = 1. Customer chooses the

product determined by the function d(M1,M2, ...,Mn). Any modification of

this function that best suits the particular case can be used.

4.5 Product

Another type of entity in our model is product. The product is not an agent as

the customer entity. It represents the supply side of the market. A data about

income and market shares of the individual products can be collected.

4. Model of the Software Market 25

Figure 4.5: Simulation Diagram

Customer

Customers

Initialization

Customer Groups Products Simulation

Products

1. Update Product Offers

Simulation State

Decision

Simulation History

MotivationPerception Satisfaction

Chosen Product
2. Make Choice

3. Save State

For each customer:

4. Model of the Software Market 26

Table 4.2: Product Parameters

Product Input Parameters Product Output Parameters

Price Income
Marketing Market Share
Quality Parameters Product History

4.6 The Big Picture

The overall structure of the model is shown by the diagram in Figure 4.5. At

first, the model has to be initialized with starting settings of customer groups

and available products. In each step of the simulation exogenous modifications

of the environment can be made. They are applied before the simulation step

takes place. Product offers are updated and sent to the customers. After that

each customer makes a sequence of actions. These are put together in Table 4.4.

Table 4.3: Simulation Actions

Simulation Action Order Remarks

Update 1) Apply exogenous changes
Call All Customers 2) Customers decisions are resolved
Save State 3) Save all variables of current step

Table 4.4: Customer Actions

Customer Action Order Remarks

Compute Perception 1) Computes and saves perception
Compute Motivation 2) Computes motivation
Make New Choice? 3) If true, call 4)
Choose Product 4) Called only if 3) is true
Compute Satisfaction 5) Computes and saves satisfaction

Customer starts with computing his perceptions of all the products and

saves them. Then he computes his motivation which will be used for the current

step. Then the customer decides based on his satisfaction whether he will

make a new choice. If that is the case he makes a new choice and finally his

satisfaction is computed based on the product currently in use. Then the state

of the simulation is saved, see Table 4.3.

Chapter 5

Implementation and Model

Analysis

To support the theoretical description of our model in Chapter 4 we introduce

a simulation that implements the theoretical framework of the model.

It is written in C#, an object-oriented programming language, and runs on

the .NET framework virtual machine. A visual interface of our simulation was

developed using WPF (Windows Presentation Foundation) technologies. It can

produce interactive visual output, enables customizing the parameters of the

model and modifications during the simulation. Export of simulation data to

CSV format is possible.

In this chapter we describe the interface of our application to enable readers

running their own simulation. In the second part we prepare a test scenario

and test effects of various modifications on the market shares of the products

on the software market.

5.1 Model Application Interface

The application consists of the simulation and three separate windows in Fig-

ures 5.1, 5.2 and 5.3. First window is dedicated to setting the parameters of the

simulation. The second one serves as a control panel and enables modification

of the product during the simulation. The last one shows output product data

and a graph of market shares.

5. Implementation and Model Analysis 28

Figure 5.1: Settings Window

Figure 5.2: Control Window

In the settings window complete configuration of the simulation is available.

Aside from the possibility of adding new products and customer groups the

user of the application can remove them or modify existing settings. One of

the predefined decision rules can be chosen. Other option is to write a new

5. Implementation and Model Analysis 29

decision rule and encapsulate it in a form of C# class derived from Decision

class. In a similar way various predefined scenarios can be constructed and

then chosen from the settings window.

The control window enables the user to run the simulation. It can be

run in a step by step mode or in an automatic mode. In the control window

modification of an individual product is enabled. An indicator of the current

step number is shown.

Figure 5.3: Output Window

In the output window there is a list box where all the products are listed.

Their properties are displayed and can be modified at will. At the bottom, there

is a graph that is capable of displaying the market shares of the individual

products. There is a button that enables redrawing the graph. Using the

two remaining buttons complete data about products and customers can be

exported to CSV and saved to a chosen location. See Figure 5.4.

5. Implementation and Model Analysis 30

Figure 5.4: Sample of Exported CSV Product Data

STEPNUMBER ,PRODUCTNAME ,NUMBEROFUSERS ,LASTINCOME ,INCOME ,SOLD ,

1,ProductA ,3,15,30,3,

1,ProductB ,0,0,0,0,

2,ProductA ,3,0,30,3,

2,ProductB ,0,0,0,0,

3,ProductA ,1,0,30,3,

3,ProductB ,2,6,12,2,

5.2 Calibrating the Model

The important part of using the model is its calibration. As a most suitable cal-

ibration strategy we decide to use indirect calibration described in Chapter 3.

We have derived our rules from stylised facts from both the macro and micro

level. This derivation is explained in the preceding text. Then the indirect cal-

ibration approach guides us to restrict the parameter space only for reasonable

parameters. We need to scale the parameters to a reasonable domain. Another

requirement is that the proportions among the parameters should be in accord

with the reality.

Table 5.1: Reasonable Values of Customer Parameters

Cutomer Parameter Range of Mean

Price Sensitivity [−40, 0]
Marketing Sensitivity [0, 20]
Quality Sensitivity [0, 20]
Average Friends [0, 10]
Quality Requirement X [0, 20]
Follower Tendency [0, 100]
Memory [0, 100]

So for setting up the parameters we should take the empirical data and

transform them to our parameter space. For the sake of simplicity all com-

putations in our model are done with integers. After some tests and analysis

of the equations we found a reasonable range of individual parameters. In Ta-

ble 5.1 and Table 5.2 a reasonable range of individual parameters can be found.

The relative proportions of individual values depend on the endogenous input

and the parameters should be scaled with a constant proportion to mostly fit

in the intervals from the tables.

5. Implementation and Model Analysis 31

Table 5.2: Reasonable Values of Product Parameters

Product Parameter Range of Mean

Price [0, 50]
Marketing [0, 20]
Quality X [0, 20]

Some of the parameters can be generated from the normal distribution to

simulate a heterogeneous population. The values are taken from N(µ, σ
10

) where

µ is the mean that is set in the settings window and σ is the scaled standard

deviation inserted by the user. The only reason for this scaling is to enable

more precise setting of σ.

5.3 Observing the Effects

To demonstrate that the model behavior we test effects of various modifications

and scenarios. We encourage the reader to do the same (follow this link for a zip

archive with the simulation https://www.dropbox.com/s/l5sc8kucwhz01h9/

Simulation.zip?dl=0). We test how our model reacts to dynamic changes

of different parameters of the product. The graph of market shares and its

evolution after the modifications are observed. All the graphs in this section

are the output of the application.

Table 5.3: Settings of the Test Scenario - Customer Groups

Mean (Std. Deviation) Students Professionals Retired

Amount 5000 5000 3000
Price Sensitivity -10 (20) -10 (20) -20(20)
Marketing Sensitivity 10 (10) 10 (10) 10(10)
Quality Sensitivity 5(30) 10 (30) 10(20)
Average Friends 5 5 3
Quality Requirement A 10(40) 20(20) 5(20)
Quality Requirement B 10(40) 20(20) 5(20)
Quality Requirement C 10(40) 10(20) 10(20)
Follower Tendency 30 15 50
Memory 50 80 80

We have prepared a simple scenario that is used in the following tests.

There are three products in the scenario together with three customer groups

constituting a population total of 13.000. In Table 5.3 you can find the cus-

https://www.dropbox.com/s/l5sc8kucwhz01h9/Simulation.zip?dl=0
https://www.dropbox.com/s/l5sc8kucwhz01h9/Simulation.zip?dl=0

5. Implementation and Model Analysis 32

tomer groups settings of our scenario. The products are described in Table 5.4.

This scenario is predefined and can be run in the application immediately. In

the following sections we compare the individual of price, marketing level and

quality modifications. For their comparison see end of this chapter.

Table 5.4: Settings of the Test Scenario - Products

Mean Product A Product B Product C

Price 20 5 20
Marketing 20 10 10
Quality A 15 5 15
Quality B 10 10 10
Quality C 5 5 10

5.3.1 Price Effect

At first we study the effect of price. We leave the scenario unmodified and run

the simulation for 10 steps. We see that the products hold a similar share of the

market. Now, we decrease the price of Product A from 20 to 5. On the graph

we can observe a gradual increase in the number of users of product A. Part

of the customers who decide to make a new choice abandon their old product

and buy Product A instead.

Figure 5.5: Price Effect - Decrease

Then we test the effect of price increase on the market shares. As before

we let the simulation run in the original settings until step 10. Then we set the

price of Product B to 15 from the former value of 5. We observe similar, but

more dramatic decrease in market shares. The product which was inferior in

5. Implementation and Model Analysis 33

quality to the other two products got to their price level. The customers who

bought this product because it was significantly cheaper consequently bought

a different product.

Figure 5.6: Price Effect - Increase

5.3.2 Marketing Effect

Now let us continue with the situaton after the price increase. We suddenly

decrease the level of marketing of Product A at time step 21. The level of

perception decreases over few time steps and is followed by decrease of the

market share of Product A. The decrease in the level of marketing is from the

value of 20 to 5.

Figure 5.7: Marketing Effect - Decrease

In the second modification we run the scenario again and make the same

decrease in the level of marketing of Product A as before. The difference is

that now we apply the change before the simulation is run. We can observe

5. Implementation and Model Analysis 34

that the lower marketing level prevents the product from reaching the same

level of market share as it had before. The interesting thing in this case is that

the potential customers of Product A are taken over by Product C. So they

migrate to the product with similar qualities because they just do not have

enough information about product A. Still they do not choose Product B as it

does not go along with their quality requirements.

Figure 5.8: Marketing Effect - Start Decrease

5.3.3 Quality Effect

In this simulation run we have left the scenario unmodified until step 15. Then

we decreased the quality A of Product C from 15 to 5. It took some time for

the customers to perceive the change and to realize their unsatisfaction with

the product. For a few steps the market share even increased following the

former trend. But then a dramatic decrease in market share appeared thanks

to strong unsatisfaction of former users.

Figure 5.9: Quality Effect - Decrease

5. Implementation and Model Analysis 35

Contrary to the example before we test the effect of increase in quality. We

choose a quality A of Product A that already has a satisfactory value of 15 and

we set it to 25 at step 15. We can see that increasing an already high quality

does not bring a large effect on customers. It just mildly increases the level of

satisfaction and that is connected with a small increase in market share.

Figure 5.10: Quality Effect - Increase

5.3.4 Combined Effect

In this section we test changing multiple parameters at once and observe the

effect. At first, we modify quality and marketing level at once. This time we

take Product B which is inferior in quality to the other two products. We

set all its qualities to 10 while decreasing level of marketing. This can answer

the question if increasing quality at the cost of weaker marketing activities is

profitable in this situation. The modification is made at step 10. We observe a

small growth in market share of Product B initially. This is likely to be cause

by the greater level of satisfaction with the product. But then the information

about the quality change fails to reach the customers and a decrease in market

share follows.

5. Implementation and Model Analysis 36

Figure 5.11: Combined Effect - Marketing Decrease, Quality Increase

5.3.5 Price Wars

Here we test the effects of multiple modifications in price simulating price wars

between individul brands. Again starting at step 10 we decrease the price of

Product A to 10. At step 13 Product C reacts with the same decrease of price

to 10. At step 16 Product B decides to increase quality C to 15. This makes

no significant change ont the market. Product C sets its price to 0 at step 19.

We observe sharp reactions to the price changes in Product A and Product B

with a new convergence after agreein on price value of 10. The price change in

Product B to zero is not enough for the customers of Product A and C to stop

using them.

Figure 5.12: Price Wars

5. Implementation and Model Analysis 37

Figure 5.13: Price Wars with Additional Steps

Reducing price of the inferior Product B to 0 did not have a significant effect

on its sales. Now we test the effect of giving the high quality product for free.

At step 15 we decrease the price of Product A to 10 and at step 20 Product C

reacts with becoming free of charge. After step 15 Product A gets edge over

Product C. But the reaction of Product C is followed by strengthening their

market share. However, it seems that most of the former users of Product

A stick to their choice as they are satisfied and accustomed to their product.

The viability of the free product strategy depends on the price sensitivity and

willingness to change of the customers.

Figure 5.14: Price Wars 2

The effect of price modifications is predictable, but the level of satisfaction

seems to have effect on the magnitude of their influences. Improving quality

of a product has positive influence on sales, but its significance is higher if

the product outreaches its competitor by this improvment. Decreasing quality

works in an opposite direction but additionally significant lack of quality can

5. Implementation and Model Analysis 38

have a dramatic negative effect. Level of marketing influences the speed of

reflection of the modifications. In Chapter 6 we present a small scenario with

five products where these effects can be also observed.

Chapter 6

Case Scenario - Game Engines

In this chapter we use our application for simulating the market for game en-

gines. Game engines are complex software products, that provide framework

for development of computer games. Recently, professional game engines, for-

merly hardly affordable, lowered their prices drastically. Hollister (2014) can

serve as an example of such an important price movement. Pearson (2014) is

concerned by the competitive changes in pricing on the game engine market.

Table 6.1: Settings of the Game Engines Scenario - Customer Groups

Mean (Std. Deviation) Students 2D Dev. 3D Dev. Hobby Dev.

Amount 5000 5000 10000 3000
Price Sensitivity -10 (20) -10 (10) -10(10) -20(10)
Marketing Sensitivity 10 (20) 10 (20) 10(20) 10(10)
Quality Sensitivity 5(30) 15 (30) 15(30) 10(30)
Average Friends 3 5 5 1
3D Quality Req. 10(40) 0(40) 15(40) 5(40)
2D Quality Req. 10(40) 20(40) 10(40) 10(40)
Ease of Use Req. 5(40) 5(40) 0(40) 15(40)
Follower Tendency 30 15 10 10
Memory 40 50 70 40

We have chosen the settings trying to capture the situation on the market

before the changes. According to our observations of the market we determined

the parameters based on our perception of the individual brands. The goal

of this scenario is not to simulate precisely the market for game engines but

rather to show that such a simulation can be useful and that it can give us an

interesting insight about the market. For the individual products we set their

price, marketing level and three distinctive qualities. Quality of 3D development

6. Case Scenario - Game Engines 40

tools, quality of 2D development tools and ease of use. Unreal Engine and Cry

Engine are 3D engines aiming at professional developers while Unity 3D tries to

be accessible by independent or hobby developers. Game Maker and Consruct2

are much more simple engines for making 2D games. The scenario settings are

available in the application and we encourage the reader to try it. For more

information consult Chapter 5.

Table 6.2: Settings of the Game Engines Scenario - Products

Mean Unreal Engine Unity 3D Cry Engine Game Maker Construct 2

Price 50 30 30 10 0
Marketing 10 20 15 0 5
3D Quality 20 15 18 0 0
2D Quality 10 10 10 15 10
Ease of Use 0 10 0 15 20

At first we run the simulation with the inititial setting in Tables 6.2 and

6.1. We observe the long run situation on a static market. A graph of this

situation can be found in Figure 6.1.

Figure 6.1: Game Engines Scenario - No modifications

Unity has the largest market share with a rising trend. This is a classical

example of higher satisfaction with the product. Users of Unity are less likely

to look for a new product a even then they are likely to stick with their former

choice. On the contrary, part of the users of Cry Engine and Unreal Engine

slowly migrate to Unity.

Now we simulate some dynamics on the market. We start with the initial

settings above as before. At the time step 10 Unreal Engine decides to decrease

the price from 50 down to 25 in order to become accessible to more customers.

6. Case Scenario - Game Engines 41

In the meantime developers fom Unity work on better 3D functionality and in

step 15 they develop a new version. Unity’s 3D quality increases from 15 to

18. Then in step 20 both Unity and Unreal Engine decide to give their basic

versions for free, so their price lowers to zero. The graph can be found in

Figure 6.2.

Figure 6.2: Game Engines Scenario - Dynamic Modifications

After the first price change of Unreal Engine there is only a little reaction

of the market. After the increase of Unity’s quality a slight increase in market

share can be observed. At step 20 when both Unity and Unreal Engine decrease

their price to 0 we can see a rise of Unreal Engine reaching a new level which is

persistent. After another few steps a gradual increase in market share of Unity

begins.

In the second scenario we decrease the price of prevalent product Unity at

step 10 to 0. The other 3D engines react at turn 20. Unreal Engine reduces the

price to zero and Cry Engine to half of the original value. The graph of this

scenario is in Figure 6.3.

Figure 6.3: Game Engines Scenario - Dynamic Modifications 2

6. Case Scenario - Game Engines 42

Following the price decrease of Unity we observe a predictable and stable

rise in its market share. After the reaction of its competitors at step 20 Unity

manages to hold its market share. This can be the result of high quality of

Unity. Its users do not look for a new product so a majority of them would not

even perceive the changes in price.

This scenario shows that there are interesting possibilities to utilize models

of software markets. With more complex model utilizing empirical data the

companies could test the effects of their pricing and development decision in a

fast and effective manner.

Chapter 7

Conclusion

In this bachelor thesis we have applied agent-based modelling methodology on

the software market. Specific features of the software market were discovered.

We used them as a foundation of the logic when constructing our original

model. After reviewing the literature concerning the ABM methodology we

discussed the theoretical basis of the model. The model is constructed as a

discrete simulation that is run in time steps. By following predefined rules the

customer agents decide what actions should they take. They use a tripartite

decision system based on three variables, that are computed by each agent

for each available product. Motivation describes the actual willingness to buy

the product, perception captures the long run view of the product and the

satifaction describes the experience with usage of the product. The decision to

buy a new product depends directly on the satisfaction. This decision system is

an original contribution of this thesis and is based on theoretical concepts from

Ajzen (1991) and Said et al. (2001). Its description can be found in Chapter 4.

In the last part of the text we implement a simulation based on our theoretical

model and describe its usage and calibration. It shows that the model gives

reasonable output and can be used as a foundation for exploring the mechanics

of the software market. The scenario concerning the market for game engines

can be taken as a simple example of possible applications of the model.

The motivation to write this text was to understand the often marginalized

software market and induce more interest into its research. The main contribu-

tion of the work lies in constructing and implementing an original model of the

software market. It gives a solid framework for exploring the behaviour and

processes of the individual actors and their macro outcome. The work shows

how an agent-based model of a specific entity can be built from the ground.

7. Conclusion 44

The model we developed in the thesis does not have the ambition to serve as

a complete representation of the software market. A larger team and various

data with high quality are required to carry out a simulation with precise

quantitative output. The model presented can be improved in several ways.

The individual rules can be tested and compared with empirical data to validate

them or to find more suitable rules. The simulation application itself has the

potential to be greatly extended both in the sense of adding more options and

computing a detailed and more useful output.

A natural extension of our work can be created using empirical data for

calibration. The usefulness of the model is directly dependent on the amount

and quality of the data about the customers and the products. The model can

give us a reasonable output only for data that realistically represent the soft-

ware market. With complex models based on empirical data companies could

evaluate their potential pricing and development decisions. Thanks to the na-

ture of computer simulations this can be done effectively and with low variable

cost. We hope that our endeavour could inspire more interest in research of

the software market. Possibly ABM methodology can be used for its analysis

or even an extension of our model can be constructed.

Bibliography

Ajzen, I. (1991): “The theory of planned behavior.” Organizational behavior

and human decision processes 50(2): pp. 179–211.

Amman, H. M., L. Tesfatsion, K. L. Judd, D. A. Kendrick, & J. Rust

(2006): Handbook of computational economics, volume 2. Elsevier.

Antonides, G. (1989): “An attempt at integration of economic and psycho-

logical theories of consumption.” Journal of Economic Psychology 10(1):

pp. 77–99.

Auchincloss, A. H., R. L. Riolo, D. G. Brown, J. Cook, & A. V. D.

Roux (2011): “An agent-based model of income inequalities in diet in the

context of residential segregation.” American journal of preventive medicine

40(3): pp. 303–311.

Axelrod, R. (1997): “Advancing the art of simulation in the social sciences.”

In “Simulating social phenomena,” pp. 21–40. Springer.

Bouchaud, J.-P. (2008): “Economics needs a scientific revolution.” Nature

455(7217): pp. 1181–1181.

Brock, W. A., C. H. Hommes, & F. O. Wagener (2005): “Evolutionary

dynamics in markets with many trader types.” Journal of Mathematical

Economics 41(1): pp. 7–42.

Castella, J.-C., T. N. Trung, & S. Boissau (2005): “Participatory simula-

tion of land-use changes in the northern mountains of vietnam: the combined

use of an agent-based model, a role-playing game, and a geographic informa-

tion system.” Ecology and Society 10(1): p. 27.

Dawid, H., S. Gemkow, P. Harting, S. Van der Hoog, & M. Neugart

(2012): “The eurace@ unibi model: An agent-based macroeconomic model

for economic policy analysis.” .

References 46

Deissenberg, C., S. Van Der Hoog, & H. Dawid (2008): “Eurace: A

massively parallel agent-based model of the european economy.” Applied

Mathematics and Computation 204(2): pp. 541–552.

Epstein, J. M. (1999): “Agent-based computational models and generative

social science.” Generative Social Science: Studies in Agent-Based Compu-

tational Modeling 4(5): pp. 4–46.

Epstein, J. M. (2009): “Modelling to contain pandemics.” Nature 460(7256):

pp. 687–687.

Epstein, J. M. & R. Axtell (1996): Growing artificial societies: social sci-

ence from the bottom up. Brookings Institution Press.

Farmer, J. D. & D. Foley (2009): “The economy needs agent-based mod-

elling.” Nature 460(7256): pp. 685–686.

Hollister, S. (2014): “Epic drastically drops the price of unreal engine game

development.” http://www.theverge.com/gaming/2014/3/19/5526086/

epic-drastically-drops-the-price-of-unreal-engine-game-development.

Accessed: 2015-05-07.

Irwin, E. G. & J. Geoghegan (2001): “Theory, data, methods: developing

spatially explicit economic models of land use change.” Agriculture, Ecosys-

tems & Environment 85(1): pp. 7–24.

Keynes, J. M. (1936): The general theory of interest, employment and money.

London: Macmillan.

Leombruni, R. & M. Richiardi (2005): “Why are economists sceptical about

agent-based simulations?” Physica A: Statistical Mechanics and its Appli-

cations 355(1): pp. 103–109.

Macal, C. M. & M. J. North (2010): “Tutorial on agent-based modelling

and simulation.” Journal of simulation 4(3): pp. 151–162.

Moss, S. (2008): “Alternative approaches to the empirical validation of agent-

based models.” Journal of Artificial Societies and Social Simulation 11(1):

p. 5.

Mueller, M. G. & P. de Haan (2009): “How much do incentives affect car

purchase? agent-based microsimulation of consumer choice of new cars—part

http://www.theverge.com/gaming/2014/3/19/5526086/epic-drastically-drops-the-price-of-unreal-engine-game-development
http://www.theverge.com/gaming/2014/3/19/5526086/epic-drastically-drops-the-price-of-unreal-engine-game-development

References 47

i: Model structure, simulation of bounded rationality, and model validation.”

Energy Policy 37(3): pp. 1072–1082.

Pearson, C. (2014): “Engine wars! cryengine shifting to cheap

subscription.” http://http://www.rockpapershotgun.com/2014/03/20/

cryengine-subscription-model/. Accessed: 2015-05-07.

Said, L. B., A. Drogoul, & T. Bouron (2001): “Multi-agent based sim-

ulation of consumer behaviour: Towards a new marketing approach.” In

“International Congress on Modelling and Simulation Proceedings,” .

Smith, A. (1776): An Inquiry into the Nature and Causes of the Wealth of

Nations. T. Nelson and Sons.

Szyperski, C. (2002): Component software: beyond object-oriented program-

ming. Pearson Education.

Tisue, S. & U. Wilensky (2004): “Netlogo: A simple environment for mod-

eling complexity.” In “International conference on complex systems,” pp.

16–21.

Windrum, P., G. Fagiolo, & A. Moneta (2007): “Empirical validation

of agent-based models: Alternatives and prospects.” Journal of Artificial

Societies and Social Simulation 10(2): p. 8.

Zeeman, E. C. (1974): “On the unstable behaviour of stock exchanges.” Jour-

nal of mathematical economics 1(1): pp. 39–49.

Zhang, T. & D. Zhang (2007): “Agent-based simulation of consumer pur-

chase decision-making and the decoy effect.” Journal of Business Research

60(8): pp. 912–922.

http://http://www.rockpapershotgun.com/2014/03/20/cryengine-subscription-model/
http://http://www.rockpapershotgun.com/2014/03/20/cryengine-subscription-model/

Appendix A

Important Code

In this appendix the implementation of the methods concerning the decision of

the customer can be found. The complete source code is too large to be listed

here.

Listing A.1: Code of function MakeChoice

public Product MakeChoice (Observab leCo l l ec t ion<Product> o f f e r s L i s t)

{
foreach (Product product in o f f e r s L i s t)

{
i f (! Percept ions . ContainsKey (product))

{
// crea t e new ProductPercept ion

ProductPercept ion p = new ProductPercept ion () ;

Percept ions .Add(product , p) ;

}

ProductPercept ion pe rcept i on = Percept ions [product] ;

ComputePerception (product , pe r c ept i on) ;

ComputeMotivation (product , pe r c ept i on) ;

}
Product oldChosenProduct = this . ChosenProduct ;

i f (oldChosenProduct != null)

{
int noChangeProb = (int)

((Math . Atan (Percept ions [oldChosenProduct]

. S a t i s f a c t i o n /200) + Math . PI /2) /3 .5*100) ;

int random = rnd . Next (101) ;

i f (random > noChangeProb)

this . ChosenProduct = de c i s i o n . ChooseProduct (Percept ions) ;

}
else

{
this . ChosenProduct = de c i s i o n . ChooseProduct (Percept ions) ;

}

A. Important Code II

i f (this . ChosenProduct != oldChosenProduct)

{
this . ChosenProduct . NumberOfUsers++;

this . ChosenProduct . LastIncome += this . ChosenProduct . Pr i ce ;

this . ChosenProduct . TotalIncome += this . ChosenProduct . Pr i ce ;

this . ChosenProduct . TotalSold += 1 ;

i f (oldChosenProduct != null)

oldChosenProduct . NumberOfUsers−−;
}

ComputeSat i s fact ion () ;

return this . ChosenProduct ;

}

Listing A.2: Code of function for computing Motivation

private int ComputeMotivation (Product product , ProductPercept ion

pe rcept i on)

{

percept i on . Motivation += Pr i c e S e n s i t i v i t y * product . Pr i ce +

percept i on . Percept ion ;

return percept i on . Motivation ;

}

Listing A.3: Code of function for computing Perception

private int ComputePerception (Product product , ProductPercept ion

pe rcept i on)

{
int percept ionImmediate ;

int qua l i t yPe r c ep t i on = 0 ;

int f r i e nd sPe r c ep t i on = 0 ;

int change ;

change = (product . QualityParameterA − QualityRequirementA) ;

i f (change < 0)

change = −change * change ;

qua l i t yPe r c ep t i on += change * Qua l i t y S en s i t i v i t y ;

change = (product . QualityParameterB − QualityRequirementB) ;

i f (change < 0)

change = −change * change ;

qua l i t yPe r c ep t i on += change * Qua l i t y S en s i t i v i t y ;

change = (product . QualityParameterC − QualityRequirementC) ;

i f (change < 0)

A. Important Code III

change = −change * change ;

qua l i t yPe r c ep t i on += change * Qua l i t y S en s i t i v i t y ;

foreach (Customer c in this . Fr iends)

{
i f (c . ChosenProduct == product)

f r i e nd sPe r c ep t i on +=

((c . Percept ions [product] . Percept ion *FollowerTendency)

/100) / this . Fr iends . Count ;

}

percept ionImmediate = Marke t i ngSens i t i v i t y * (f r i e nd sPe r c ep t i on +

qua l i t yPe r c ep t i on) / 100 ;

pe r cept i on . Percept ion = (Memory * percept i on . Percept ion) / 100 +

percept ionImmediate + percept i on . S a t i s f a c t i o n ;

return percept i on . Percept ion ;

}

Listing A.4: Code of function for computing Satisfaction

private void ComputeSat i s fact ion ()

{
ProductPercept ion pe rcept i on = Percept ions [this . ChosenProduct] ;

int s a t i s f a c t i onChange = 0 ;

int change ;

change = (ChosenProduct . QualityParameterA − QualityRequirementA) ;

i f (change < 0)

change = − change* change ;

s a t i s f a c t i onChange += change*Qua l i t y S en s i t i v i t y ;

change = (ChosenProduct . QualityParameterB − QualityRequirementB) ;

i f (change < 0)

change = − change* change ;

s a t i s f a c t i onChange += change*Qua l i t y S en s i t i v i t y ;

change = (ChosenProduct . QualityParameterC − QualityRequirementC) ;

i f (change < 0)

change = − change* change ;

s a t i s f a c t i onChange += change*Qua l i t y S en s i t i v i t y ;

pe r c ept i on . S a t i s f a c t i o n = (Memory* percept i on . S a t i s f a c t i o n) /100 +

sa t i s f a c t i onChange ;

}

Appendix B

Content of Enclosed Zip Archive

There is a zip archive delivered together with this thesis which contains the

application, complete source codes and data from the simulations in this thesis.

Our application can also be downloaded from the link provided in Chapter 5.

The enclosed zip archive contains the following folders:

� Source: Complete source code of the application.

� App: Application with an executable file to run it.

� Data: CSV data from the simulations.

	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	Thesis Proposal
	1 Introduction
	2 Software Market
	2.1 How Does a Customer Decide?

	3 Agent-Based Modelling
	3.1 Definition of ABM
	3.2 Variety of Applications
	3.3 ABM in Economics and Finance
	3.4 Spread and Justification of ABM
	3.5 Implementation of ABM and OOP
	3.6 Validation of ABMs

	4 Model of the Software Market
	4.1 Structure
	4.2 Model Advantages
	4.3 Customer Agents
	4.3.1 Initialization
	4.3.2 Parameters

	4.4 Agent Behaviour
	4.4.1 Motivation
	4.4.2 Perception
	4.4.3 Satisfaction
	4.4.4 Willingness to Change
	4.4.5 Decision

	4.5 Product
	4.6 The Big Picture

	5 Implementation and Model Analysis
	5.1 Model Application Interface
	5.2 Calibrating the Model
	5.3 Observing the Effects
	5.3.1 Price Effect
	5.3.2 Marketing Effect
	5.3.3 Quality Effect
	5.3.4 Combined Effect
	5.3.5 Price Wars

	6 Case Scenario - Game Engines
	7 Conclusion
	Bibliography
	A Important Code
	B Content of Enclosed Zip Archive

