
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Ján Pich

Complexity Theory in Feasible
Mathematics

Department of Algebra

Supervisor of the doctoral thesis: Prof. RNDr. Jan Kraj́ıček DrSc.,
MAE

Study programme: Mathematics

Specialization: Algebra, Theory of Numbers

and Mathematical Logic

Prague 2014

Acknowledgements

Most of all, I would like to thank my supervisor Jan Kraj́ıček for inspirational con-
versations, far reaching suggestions, careful reading of my manuscripts, patience
and support. I am also grateful for a stimulating environment and a guidance pro-
vided by members of the Proof Complexity and Computation Complexity group
in Prague. That is, in particular, Pavel Pudlák, Neil Thapen, Emil Jeřábek, Jǐŕı
Sgall, Michal Koucký, and fellow PhD students Michal, Zi and Sebastian.

It was an enriching experience to meet all participants of Prague Special
Semester in Logic and Complexity during the fall of 2011. Here I investigated
intuitionistic logic with Kaveh Ghasemloo. As well I learnt extraordinarily many
things from a number of researchers attending Semantics and Syntax programme
in Cambridge, summer term 2012.

Especially, I thank Albert Atserias and Sam Buss for advise which led to
some results presented in the thesis. Further, an anonymous reviewer significantly
improved presentation of the first attached article.

Finally, I want to thank my parents for encouragement and support through
the whole studies.

My research was financially supported mainly by grant projects GA UK 5732,
IAA100190902 GA AV ČR, N-SPP 2011/2012 and SVV-2014-260107.

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Názov práce: Teória zložitosti v dosiahnutel’nej matematike

Autor: Ján Pich

Katedra: Katedra Algebry

Vedúci dizertačnej práce: Prof. RNDr. Jan Kraj́ıček, DrSc., MAE

Abstrakt: Skúmame dokázatel’nost’ tvrdeńı z teórie zložitosti v obmedzenej ar-
itmetike. Za istých zložitostných predpokladov ukážeme, že teórie so slabš́ımi
dosvedčovaćımi vlastnost’ami než S1

2 nemôžu dokázat’ spodné odhady vel’kosti nk

na booleovské obvody pre SAT vyjadrené formulou LB(SAT, nk). Špeciálne, pr-
vorádová teória pravdivých univerzálnych tvrdeńı v jazyku obsahujúcom symboly
pre všetky uniformné NC1 algoritmy nedokazuje LB(SAT, n4kc) pre k ≥ 1, c ≥ 2
predpokladajúc existenciu funkcie f ∈ SIZE(nk), ktorá nie je aproximovatel’ná

formulami Fn subexponenciálnej vel’kosti 2O(n1/c) so subexponenciálnou výhodou:
Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2+1/2O(n1/c). Bezpodmienečne, teória V 0 nedokazu-
je kvazipolynomiálne spodné odhady na booleovské obvody pre SAT. Čo sa týka
horných odhadov, dokážeme PCP vetu v Cookovej teórii PV1. To zahŕňa for-
malizáciu (n, d, λ)-grafov v PV1. Ako dôsledok dostaneme polynomiálne krátke
Extended Frege dôkazy tautologíı vyjdadrujúcich PCP vetu.

Kl’účové slová: booleovské obvody, obmedzená aritmetika, PCP veta

Title: Complexity Theory in Feasible Mathematics

Author: Ján Pich

Department: Department of Algebra

Supervisor: Prof. RNDr. Jan Kraj́ıček, DrSc., MAE

Abstract: We study the provability of statements and conjectures from Complex-
ity Theory in Bounded Arithmetic. First, modulo a hardness assumption, we
show that theories weaker in terms of provably total functions than Buss’s theory
S1

2 cannot prove nk-size circuit lower bounds for SAT formalized as a Σb
2-formula

LB(SAT, nk). In particular, the true universal first-order theory in the language
containing names for all uniform NC1 algorithms denoted TNC1 does not prove
LB(SAT, n4kc) where k ≥ 1, c ≥ 2 unless each function f ∈ SIZE(nk) can be

approximated by formulas Fn of subexponential size 2O(n1/c) with subexponential
advantage: Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c). Unconditionally, V 0 does
not prove quasipolynomial nlogn-size circuit lower bounds for SAT. Considering
upper bounds, we prove the PCP theorem in Cook’s theory PV1. This includes a
formalization of the (n, d, λ)-graphs in PV1. A consequence of the result is that
Extended Frege proof system admits p-size proofs of tautologies encoding the
PCP theorem.

Keywords: Circuit Lower Bounds, Bounded Arithmetic, The PCP theorem

Contents

Introduction 3
0.1 Circuit Lower Bounds and Complexity - Theoretic Tautologies . . 5
0.2 Facts that are hard to witness . 6
Bibliography . 8

1 Attachment: 9

Circuit Lower Bounds in Bounded Arithmetics 10
1.1 Introduction . 10
1.2 Formalization . 12
1.3 Feasible Mathematics . 14

1.3.1 More formalizations of circuit lower bounds for SAT 15
1.3.2 Witnessing errors of p-size circuits 17

1.4 Circuit Lower Bounds in S1
2(bit) 18

1.5 Theories weaker than PV1 . 23
1.6 Unprovability of circuit lower bounds in subtheories of PV1 25
References . 30

2 Attachment: 32

Logical Strength of Complexity Theory and a Formalization of the
PCP Theorem in Bounded Arithmetic 33
2.1 Introduction . 33
2.2 Formalizations in bounded arithmetic: initial notes 35

2.2.1 Theory PV1: formalized p-time reasoning 36
2.2.2 Theory APC1: formalized probabilistic p-time reasoning . 39

2.3 Previous formalizations of complexity theory and our contribution 41
2.3.1 NP-completeness . 41
2.3.2 Randomized computation 42
2.3.3 Circuit lower bounds . 43
2.3.4 Interactive proofs . 43
2.3.5 Cryptography . 43
2.3.6 Complexity of counting . 44
2.3.7 Derandomization . 44
2.3.8 Contribution of our paper: the PCP theorem and the (n, d, λ)-

graphs . 45
2.4 The Cook-Levin theorem in PV1 46
2.5 The exponential PCP theorem in APC1 48

2.5.1 Test of linearity in APC1 52
2.6 Pseudorandom constructions in PV1 54

2.6.1 Definition and some properties of the (n, d, λ)-graphs . . . 55
2.6.2 A technical tool . 58
2.6.3 The tensor product . 59
2.6.4 The replacement product 60
2.6.5 The construction of the (n, d, λ)-graphs 62

1

2.7 The PCP theorem in PV1 . 63
References . 74

2

Introduction

This thesis consists of two articles:

• Circuit Lower Bounds in Bounded Arithmetics, to appear in Annals of Pure
and Applied Logic, [11],

• Logical Strength of Complexity Theory and a Formalization of the PCP The-
orem in Bounded Arithmetic, submitted to Logical Methods in Computer
Science, [12],

preceded by an introduction providing an extended discussion of their context to-
gether with some possible future research directions.

The aim of this thesis is to understand which conjectures from complexity
theory can be feasibly true in the sense that they would be provable without
declaring the existence of an infeasible object.

Perhaps the best standard approximation of such proofs, which might be called
feasible mathematics, is the intuitionistic version of Buss’s theory S1

2 denoted IS1
2 ,

cf. [3, 4]. As S1
2 is ∀Σb

1-conservative over IS1
2 , cf. [2], IS1

2 contains an essential
part of Cook’s theory PV1 formalizing a reasoning with p-time concepts. In
addition, IS1

2 admits a stronger form of witnessing than PV1: for any formula A,
IS1

2 ` ∃yA(x, y) implies the existence of a p-time function f such that A(x, f(x)),
cf. [1]. In S1

2 and PV1 this holds only for Σb
1 formulas A, cf. [3, 7].

The investigation of Complexity Theory in theories of Bounded Arithmetic is
closely related to Propositional Proof Complexity. One reason being that each
statement S either cannot be feasibly true simply because it is not witnessed
efficiently in the sense that its existential quantifiers are not witnessed by p-
time algorithms or otherwise S is equivalent to a Πb

1-formula S ′ which can be
translated to a sequence of tautologies. If the tautologies are hard for Extended
Frege propositional proof system (EF), the statement S ′ is unprovable in S1

2 . A
form of the opposite implication holds too. See [3, 7] for the details.

In the first attached article Circuit Lower Bounds in Bounded Arithmetics we
study the nonuniform equivalent of the P 6=NP conjecture, i.e. SAT /∈ P/poly,
from the perspective of feasible mathematics.

Polynomial circuit lower bounds for SAT are formalized here as a Σb
2-formula

LB(SAT, nk). The article includes an observation that under the assumption
of the existence of one-way functions secure against p-size circuits and functions
in E hard on average for subexponential circuits, LB(SAT, nk) is witnessed by
a certain p-time protocol, cf. [11, Proposition 1.4.3] . This allows us to ex-
press LB(SAT, nk) as a sequence of tautologies lb(SAT, nk) that could be even
exponentially hard for strong proof systems like EF, cf. Section 0.1 in this intro-
duction. On the contrary, the usual encoding of SAT /∈ P/poly by propositional
formulas uses the whole truth table of SAT on inputs of each given length. Such
formulas are quasi-polynomially easy assuming they are true at all. Nevertheless,
they are considered as candidate hard tautologies for strong proof systems.

3

Interestingly, the relation to Propositional Proof Complexity mentioned above
shows that deriving the unprovability of LB(SAT, nk) in PV1, which would be a
form of consistency of P=NP, could be also seen as an approach to the separation
of NP and coNP.

We do not know how to show that PV1 6` LB(SAT, nk) but we can obtain
the unprovability basically for any weaker theory in terms of provably total func-
tions. In particular, we prove that TNC1 , the true universal first-order theory
in the language containing names for all uniform NC1 algorithms, cannot prove
LB(SAT, n4kc) where k ≥ 1, c ≥ 2 unless each function f ∈ SIZE(nk) can be

approximated by formulas Fn of subexponential size 2O(n1/c) with subexponential
advantage: Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c), cf. [11, Theorem 1.6.1].
Using Hastad’s lower bound on AC0 circuits computing PARITY, we derive also
an unconditional result: the bounded arithmetic theory V 0 cannot prove quasi-
polynomial nlogn-size circuit lower bounds on SAT, cf. [11, Corollary 1.6.3]. These
proofs proceed by showing that a more efficient witnessing of LB(SAT, nk) than
the one by p-time algorithms is impossible unless certain hardness assumption
fails.

Since it is hard to obtain an unprovability of LB(SAT, nk) in PV1 we dis-
cuss also complexity-theoretic statements which could be harder to witness and
thus easier to be shown unprovable. Notably, the problem of recognizing the
range of a given pseudorandom generator, LB(Rng(g), nk), cf. Section 0.2 in this
introduction.

The second main component of the thesis is the article Logical Strength of
Complexity Theory and a Formalization of the PCP Theorem in Bounded Arith-
metic. It presents known formalizations of theorems from Complexity Theory
demonstrating that theories of Bounded Arithmetic like PV1 are actually very
powerful. Our contribution is a PV1-proof of the PCP theorem [12, Theorem 2.7]
which includes a formalization of the (n, d, λ)-graphs, cf. [12, Section 2.6]. In this
sense, the PCP theorem is shown to be feasibly true.

A motivation for this formalization was to find a true Πb
1 complexity-theoretic

statement unprovable in PV1. As this task is too hard it would be good to
find at least a Πb

1 complexity-theoretic statement whose known proofs exceed S1
2 .

Our result shows that the PCP theorem which is equivalent to a Πb
1 sentence is

not such case. Consequently, tautologies encoding the PCP theorem have p-size
proofs in EF. It remains open if they could be hard for Frege system.

The thesis is organized as follows. Section 0.1 of the introduction discusses
circuit lower bounds and tautologies based on feasibly witnessed statements from
Complexity Theory. Section 0.2 of the introduction presents a problem of rec-
ognizing range of proof complexity generators. Then we attach articles Circuit
Lower Bounds in Bounded Arithmetics [11] and Logical Strength of Complexity
Theory and a Formalization of the PCP Theorem in Bounded Arithmetic [12].

In the introductory sections we refrain from defining concepts from Bounded
Arithmetic and Propositional Proof Complexity, see Buss [3] Kraj́ıček [7] and
Cook-Nguyen [5] for a general introduction into the area. However, some of them
can be found in the attached articles. For example, Σb

i ,Π
b
i hierarchies and a

definition of S1
2 are in [11], and a definition of the theory PV1 is in [12].

4

0.1 Circuit Lower Bounds and Complexity - The-

oretic Tautologies

In [15] Razborov suggested to investigate propositional formulas ¬Circuitt(fn)
asserting that the circuit size of Boolean function fn with n variables is greater
than t. The function fn is represented by its truth table, i.e. a string of 2n bits.
A consequence of one of his conjectures [15, Conjecture 1] is that under certain
hardness assumptions, ¬Circuitnω(1)(SATn) are hard tautologies for Frege system.

Such a hardness for EF would imply the unprovability of a first-order Πb
1

equivalent of ¬Circuitt(SATn) in S1
2 . Crucially, these formalizations represent

SATn by its truth table. Hence, if we reason about them inside PV1 it is as if we
could manipulate feasibly with whole truth tables of SATn. From the perspective
of feasible mathematics it is more natural if SAT is represented by its defining
formula. In [11, Section 1.2] we formalize polynomial circuit lower bounds for
SAT as such Σb

2-formula LB(SAT, nk) of the following form.

∀1n > n0, ∀ circuit C with n inputs and size nk ∃ y, a such that
(C(y) = 0 ∧ SAT (y, a)) ∨ (C(y) = 1 ∧ ∀z¬SAT (y, z))

Here n0, k are constants, 1n denotes a string of length n, and SAT (y, z) means
that z is a satisfying assignment to the propositional 3CNF formula y. Formally,
LB(SAT, nk) is a set of formulas for all possible n0’s but this should not cause
any confusion. Whenever we say that LB(SAT, nk) is provable in a theory T we
mean that it is provable in T for some n0.

If ¬Circuitnk(SATn) is hard for EF, LB(SAT, nk) is unprovable in S1
2 . How-

ever, it should be “exponentially” harder to reason about LB(SAT, nk) and thus
easier to show that S1

2 6` LB(SAT, nk).

By known witnessing theorems [6, 14], S1
2 ` LB(SAT, nk) implies the exis-

tence of p-time functions interactively witnessing the existential quantifiers in
LB(SAT, nk), see [11, Section 1.3.2] for a precise definition. In such case we
say that LB(SAT, nk) has an S-T protocol with poly(n) rounds. Moreover, by
witnessing properties of IS1

2 , if IS1
2 ` LB(SAT, nk), then the existential quanti-

fiers in LB(SAT, nk) can be witnessed by a single p-time algorithm. Denote the
existence of such witnessing by LB(SAT, nk) ∈ P , see [11, Section 1.3.2].

A way how to derive, at least conditionally, the unprovability of LB(SAT, nk)
in PV1 is to show that any S-T protocol for LB(SAT, nk) with poly(n) rounds
contradicts some standard hardness assumption. However, such protocols follow
from usual cryptographic conjectures, cf. [11, Proposition 1.4.3]. It remains
open whether we could similarly obtain LB(SAT, nk) ∈ P . Nevertheless, it
makes sense to consider propositional formulas based on the assumption that
LB(SAT, nk) ∈ P .

LB(SAT, nk) ∈ P implies that LB(SAT, nk) can be rewritten as a Πb
1-

sentence in which the existence of the formula y and its assignment a is wit-
nessed by a specific p-time function whose inputs are nk-size circuits C. Thus,
LB(SAT, nk) can be expressed as a sequence of tautologies lb(SAT, nk). The
details of such translation can be found in [3, 5].

5

It seems that these tautologies could be even exponentially hard for EF.
Notice that this is not the case with formulas ¬Circuitnk(SATn) which have
quasipolynomial-size proofs if they are true.

Problem 1. Assume LB(SAT, nk) ∈ P . Are the resulting tautologies lb(SAT, nk)
hard for EF?

Instead of LB(SAT, nk) ∈ P we could similarly use any S-T protocol for
LB(SAT, nk) with poly(n) rounds. Therefore, assuming the standard cryp-
tographic assumptions we have tautologies expressing polynomial circuit lower
bounds for SAT that could be exponentially hard for EF.

Clearly, circuit lower bounds do not play a significant role in the above trans-
lation to propositional logic. Essentially any complexity-theoretic statement with
existential quantifiers witnessed in p-time (or even by p-size circuits) might serve
as a candidate hard tautology.

0.2 Facts that are hard to witness

It would be interesting to find any Πb
1 complexity-theoretic conjecture, not neces-

sarily circuit lower bounds, whose provability in PV1 contradicts some standard
hypothesis. In fact, the choice of Πb

1 can be relaxed too as in LB(SAT, nk). How-
ever, for more complex formulas, obtaining a conditional unprovability result
might become trivial.

A direct application of Buss’s witnessing [3] implies that Σb
1 formulas like

∃x, f(x) = y for a PV -function f cannot hold in PV1 unless the function f is easy
to invert. This seems to work for many statements about concepts conjectured
to be stronger than P. See also Buss’s [3] consistency of NP∩coNP=P with S1

2 or
Pudlák-Kraj́ıček’s [10] consistency of p-optimality of EF with S1

2 . Despite that,
the witnessing method might lead to interesting unprovability results because
for many statements “about p-time concepts” we do not know whether they are
likely to be witnessed efficiently or not.

Incomlpleteness-style methods can be used to obtain also an unprovability
of Πb

1-formulas in strong theories like PV1. Pudlák [13] showed that even the
theory S2 does not prove the so called bounded consistency of S1

2 . See Kraj́ıček
[7, Chapter 10.5] for more related results. Unfortunately, no reduction of the
bounded consistency to a standard complexity-theoretic statement is known.

We will now describe a problem we find interesting from the perspective of
efficient witnessing.

Since the unprovability of LB(SAT, nk) in PV1 is hard to obtain, it might be
useful to consider similar statements that could be harder to witness. Kraj́ıček
(private communication) suggested to investigate formulas LB(Rng(g), nk) as-
serting that no nk-size circuit can recognize the range of a pseudorandom gen-
erator g. As we will see, this connects the witnessing method and the theory of
proof complexity generators introduced in [1, 8].

Let gn : {0, 1}n 7→ {0, 1}n+1 be a map such that g(x) = y is a relation
defined by a Σb

1-formula. Then for constants n0 and k we have Σb
2-formula

LB(Rng(g), nk):

6

∀1n > n0, ∀ circuit C with n inputs and size nk ∃ y < 2n+1, a < 2n such that
(C(y) = 0 ∧ y = g(a)) ∨ (C(y) = 1 ∧ ∀z < 2n y 6= g(z))

Problem 2. Fix a constant k. Is there a p-time algorithm which given a string
of length n and any nk-size circuit C with n inputs finds y ∈ {0, 1}n+1 and
a ∈ {0, 1}n such that

(C(y) = 0 ∧ g(a) = y) ∨ (C(y) = 1 ∧ y /∈ Rng(g))

Shortly, is LB(Rng(g), nk) ∈ P?

A proof complexity generator g : {0, 1}n 7→ {0, 1}m for injective function
m = m(n) > n is a map computed by poly(m)-size circuits. For any string
b ∈ {0, 1}m, let τ(g)b be a propositional formula asserting that b /∈ Rng(g). A
generator g is hard for a proof system P if there are no p-size P -proofs of formulas
τ(g)b for any sequence of different b’s. See [1, 8] for more details. It has been
indeed conjectured that certain generators g should be hard for systems like EF.
A survey of the area can be found in [9].

We will show that formulas LB(Rng(g), nk) provide a formally simpler version
of some problems from the theory of proof complexity generators. The reason is
that they do not claim just that a string b is not in the range of given generator
g but, in fact, that no small circuit can recognize the range.

Say that a generator gn : {0, 1}n 7→ {0, 1}n+1 is s-Σb
1 definable if the relation

g(x) = y is defined by a Σb
1 formula in the prenex normal form without negations

in the prefix. The s-Σb
1 definability of a generator g guarantees that the provability

IS1
2 ` LB(Rng(g), nk) gives us tautologies encoding LB(Rng(g), nk).

Proposition 0.2.1 (Kraj́ıček (private communication)). If a s-Σb
1-definable gen-

erator g is hard for EF, then IS1
2 6` LB(Rng(g), nk) for any k ≥ 1.

Proof. Either LB(Rng(g), nk) /∈ P , and so IS1
2 6` LB(Rng(g), nk), or otherwise

there are tautologies lb(Rng(g), nk) asserting LB(Rng(g), nk) which are hard for
EF. If they were not, EF would prove b /∈ Rng(g) for a string b obtained by sub-
stituting a trivial circuit which always outputs 1 to free variables of the tautology
lb(Rng(g), nk).

Consequently, for each s-Σb
1-definable generator g, either LB(Rng(g), nk) /∈ P

or there are tautologies lb(Rng(g), nk) encoding LB(Rng(g), nk) which are at
least as hard as the underlying generator g. In the case of Nisan-Wigderson
generators considered in [15], this gives us tautologies lb(Rng(NWf,A), nk) and
thus a potentially easier version of Razborov’s conjecture from [15].

7

Bibliography

[1] Alekhnovich, M., Ben-Sasson, E., Razborov, A., Wigderson, A.,
Pseudorandom Generators in Propositional Proof Complexity. SIAM J. on
Comp., 34(1), 2004.

[2] Avigad, J. Interpreting classical theories in constructive ones. Journal of
Symbolic Logic, 65(4), 2000.

[3] Buss, S.R. Bounded Arithmetic. Bibliopolis, Naples, 1986.

[4] Buss, S.R. The Polynomial Hierarchy and Intuitionistic Bounded Arith-
metic. Structure in Complexity, Lecture Notes in Computer Science, 223:77-
103, 1986.

[5] Cook, S.A., Nguyen, P., Logical Foundations of Proof Complexity. Cam-
bridge University Press, 2010.

[6] Kraj́ıček, J. No counter-example interpretation and interactive computa-
tion. Logic from Computer Science, 21:287-293, 1992.

[7] Kraj́ıček, J. Bounded arithmetic, propositional logic, and complexity theo-
ry. Cambridge University Press, 1995.

[8] Kraj́ıček, J. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1-3):123-140, 2001.

[9] Kraj́ıček, J. Forcing with random variables and proof complexity. Cam-
bridge University Press, 2011.

[10] Kraj́ıček, J., Pudlák, P., Propositional Proof Systems, the Consistency
of First Order Theories and the Complexity of Computations. Journal of
Symbolic Logic, 54(3):1063-1079, 1989.

[11] Pich, J. Circuit Lower Bounds in Bounded Arithmetics. to appear in Annals
of Pure and Applied Logic.

[12] Pich, J. Logical strength of complexity theory and a formalization of the
PCP theorem in bounded arithmetic. submitted.

[13] Pudlák, P. A note on bounded arithmetic. Fundamenta Mathematicae,
136:85-9, 1990.

[14] Pudlák, P. Some relations between subsystems of arithmetic and complexity
theory. Proc. Conf. Logic from Computer Science, 21:499-519, 1992.

[15] Razborov, A.A. Pseudorandom Generators Hard for k-DNF Resolution
and Polynomial Calculus. preprint (available at authors webpage), 2002-
2003.

8

1. Attachment:

9

Circuit Lower Bounds in Bounded Arithmetics

Ján Pich

Department of Algebra
Faculty of Mathematics and Physics

Charles University in Prague
Sokolovska 83, Prague, CZ-186 75, The Czech Republic

Abstract

We prove that TNC1 , the true universal first-order theory in the language con-
taining names for all uniform NC1 algorithms, cannot prove that for sufficiently
large n, SAT is not computable by circuits of size n4kc where k ≥ 1, c ≥ 2 un-
less each function f ∈ SIZE(nk) can be approximated by formulas {Fn}∞n=1 of

subexponential size 2O(n1/c) with subexponential advantage:

Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c)

Unconditionally, V 0 cannot prove that for sufficiently large n, SAT does not
have circuits of size nlogn. The proof is based on an interpretation of Kraj́ıček’s
proof [J.Kraj́ıček, On the proof complexity of the Nisan-Wigderson generator
based on NP∩coNP function, Journal of Mathematical Logic 11(2011) 11-27]
that certain NW-generators are hard for TPV , the true universal theory in the
language containing names for all p-time algorithms.

1.1 Introduction

We investigate the provability of polynomial circuit lower bounds in weak frag-
ments of arithmetic including Buss’s [1] theory S1

2 and its subsystems. These
theories are sufficiently strong to prove many important results in Complexity
Theory. In fact, they can be considered as formalizations of feasible mathemat-
ics. A motivation behind the investigation of these theories is the general question
whether the existential quantifiers in complexity-theoretic statements can be wit-
nessed feasibly and so that to derive the witnessing we do not need to exceed
feasible reasoning.

Informally, our formalization of nk-size circuit lower bounds for SAT, denoted
by LB(SAT, nk), has the following form:

∀n > n0, ∀ circuit C with n inputs and size nk ∃ y, a such that
(C(y) = 0 ∧ SAT (y, a)) ∨ (C(y) = 1 ∧ ∀z¬SAT (y, z))

where n0, k are constants and SAT (y, z) means that z is a satisfying assignment
to the propositional 3CNF formula y, see Section 2.

If S1
2 proves the formula LB(SAT, nk) for some constant n0, then by the usual

kind of witnessing, Buss’s witnessing [1] or the KPT theorem [12], for any nk-size
circuit with n inputs we can efficiently find a formula of size n on which the circuit
fails to solve SAT, see Proposition 1.4.1.

10

One could hope to use the p-time algorithm to derive a contradiction with
some established hardness assumption, however, Atserias and Kraj́ıček noticed
that the same p-time algorithm follows from standard cryptographic conjectures,
see Proposition 1.4.2. (Actually, as discussed in Section 4, a randomized version
of such observations appeared already in Buss [3, Section 4.4] and Cook-Mitchell
[6, Section 6].) It is an interesting question to ask how strong theories are needed
to derive these conjectures.

We do not know how to obtain the unprovability of SAT circuit lower bounds
in S1

2 but we can do it basically for any weaker theory with stronger witnessing
properties. We present it in the case of theory TNC1 which is the true universal
first-order theory in the language containing names for all uniform NC1 algo-
rithms.

In theories weaker than S1
2 , like the theory TNC1 , the situation is less natural

because they cannot fully reason about p-time concepts. In particular, some
universal quantifiers in LB(SAT, nk) can be replaced by existential quantifiers
without changing the intuitive meaning of the sentence. The resulting formula
LB∃(SAT, n

k) (defined in Section 5) is equivalent to LB(SAT, nk) in S1
2 but

not necessarily in TNC1 . This is because LB∃(SAT, n
k) asserts among other

things the existence of computations of general nk-size circuits, a fact which may
not be TNC1-provable. Therefore, it is essentially trivial to obtain a conditional
unprovability of LB∃(SAT, n

k) in TNC1 , see Proposition 1.6.1. This is not the
case with the formalization LB(SAT, nk) and in this sense it is easier and more
suitable for the theory TNC1 to reason about LB(SAT, nk).

The main result of this paper is that we can obtain a conditional unprovabil-
ity of LB(SAT, nk) as well. We show that LB(SAT, n4kc) for k ≥ 1, c ≥ 2 is
unprovable in TNC1 unless each function f ∈ SIZE(nk) can be approximated by

formulas Fn of size 2O(n1/c) with subexponential advantage:
Px{0,1}n [Fn(x) = f(x)] ≥ 1/2+1/2O(n1/c). The proof will be quite generic. In par-
ticular, using known lower bounds on PARITY function, we will obtain that, un-
conditionally, V 0 cannot prove quasi polynomial (nlogn-size) circuit lower bounds
on SAT. Here, V 0 is a second-order theory of bounded arithmetic such that its
provably total functions are computable in AC0, see Section 5.

To prove our main theorem we firstly observe that by the KPT theorem [16]
the provability of LB(SAT, n4kc) in universal theories like TNC1 gives us an O(1)-
round Student-Teacher (S-T) protocol finding errors of n4kc-size circuits attempt-
ing to compute SAT. Then, in particular, it works for n4kc-size circuits encoding
Nisan-Wigderson (NW) generators based on any function f ∈ SIZE(nk) and
any suitable design matrix [17]. The interpretation of NW-generators as p-size
circuits comes from Razborov [20]. In this situation we apply Kraj́ıček’s proof
from [15] showing that certain NW-generators are hard for the true universal
theory TPV in the language containing names for all p-time algorithms. This is
the main technique we use. We show that it works in our context as well and
allows us to use the S-T protocol to compute f by subexponential formulas with
a subexponential advantage.

Perhaps the most significant earlier result of this kind was obtained by Razborov
[19]. Using natural proofs he showed that theory S2

2(α) cannot prove superpoly-
nomial circuit lower bounds on SAT unless strong pseudorandom generators do

11

not exist. In fact, his proof works even for sufficiently big polynomial circuit lower
bounds. The second-order theory S2

2(α) is however quite weak with respect to
the formalization Razborov used. As far as we know his technique does not imply
the unprovability of circuit lower bounds (formalized as here, see Section 2) even
for V 0. In this respect, our proof applies to much stronger theories, basically to
any theory weaker than S1

2 in terms of provably feasible functions.

The paper is organized as follows. In Section 2 we formalize circuit lower
bounds in the language of bounded arithmetic. In Section 3 we define a con-
servative extension of the theory S1

2 denoted S1
2(bit) and state its properties. In

Section 4 we discuss the provability of circuit lower bounds in S1
2(bit). Section 5

defines subtheories of S1
2(bit) for which we prove our main unprovability results

in Section 6.

1.2 Formalization

The usual language of arithmetic contains well known symbols: 0, S,+, ·,=,≤.
To encode reasoning about computation it is natural to consider also symbols
bx

2
c, |x| for the length of the binary representation of x and # with the intended

meaning x#y = 2|x|·|y|. Theories of bounded arithmetic are typically defined using
the language L = {0, S,+, ·,=,≤, bx/2c, |x|,#}, cf. Buss [1]. We will consider
also the language Lbit which contains in addition the symbol xi for the i-th bit
of the binary representation of x. The basic properties of symbols from Lbit are
captured by a set of basic axioms BASIC(bit) which we will not spell out, cf.
[1, 13], e.g. chapter 5.2 in Kraj́ıček [13] states the axioms for symbols in L and
chapter 5.4 in [13] gives a construction of a formula in the language L defining
the i-th bit of the binary representation of x which we use here as an axiom.

We say that a quantifier is sharply bounded if it has the form ∃x, x ≤ |t| or
∀x, x ≤ |t| where t is a term not containing x. A quantifier is bounded if it is
existential bounded: ∃y, y ≤ t, or universal bounded: ∀y, y ≤ t where y is not
occuring in t. Σb

0(=Πb
0) denotes the set of all formulas in the language L with

all quantifiers sharply bounded. Note that all relations defined by Σb
0 formulas

are p-time computable. For i ≥ 0, the sets Σb
i+1 and Πb

i+1 are the smallest sets
satisfying

(a) Σb
i ∪ Πb

i ⊆ Σb
i+1 ∩ Πb

i+1

(b) Σb
i+1 and Πb

i+1 are closed under ∧, ∨ and sharply bounded quantification
(c) Σb

i+1 is closed under bounded existential quantification
(d) Πb

i+1 is closed under bounded universal quantification
(e) the negation of a Σb

i+1-formula is Πb
i+1

(f) the negation of a Πb
i+1-formula is Σb

i+1.

In words, the complexity of bounded formulas in the language L (formulas with
all quantifiers bounded) is defined by counting the number of alternations of
bounded quantifiers, ignoring the sharply bounded ones.

All NP resp. coNP properties are representable by Σb
1 resp. Πb

1 formulas, cf.
[11, 21, 22].

Define Σb
i(bit),Π

b
i(bit) for i ≥ 0 as above but in the language Lbit. For i ≥ 1,

Σb
i(bit) resp. Πb

i(bit) formulas are actually equivalent to Σb
i resp. Πb

i formulas in

12

the theory called PV1, cf. [4, 13], see also Section 3.

We will now express circuit lower bounds in Lbit.

Firstly, denote by Comp(C, y, w) a Σb
0(bit)-formula saying that w is a compu-

tation of circuit C on input y. Such a formula can be constructed in many ways
and our results work for any Σb

0(bit) formalization. For simplicity, we present
here a less efficient one where C represents a directed graph on |w| vertices.

Let EC(i, j) be C[i,j], the [i, j]th bit of C, where [i, j] is the pairing function
[i, j] = (i + j)(i + j + 1)/2 + i. EC(i, j) = 1, i, j < |w|, means that there is an
edge in circuit C going from the i-th vertex to the j-th vertex. For k < |w|, let
NC(k) be the pair of bits (C[|w|,|w|]+2k, C[|w|,|w|]+2k+1) encoding the connective in
the k-th node of circuit C, say (0, 1) be ∧, (1, 0) be ∨, and (1, 1) and (0, 0) be ¬.
Therefore, |C| = [|w|, |w|] + 2|w|. Then let Circ(C, y, w) be the formula stating
that C encodes a |w|-size circuit with |y| inputs:

∀j < |w|, j ≥ |y|,
(NC(j) = (1, 0) ∨NC(j) = (0, 1)→ ∃i, k < j, i 6= k, ∀l < j, l 6= k, l 6= i,

(EC(i, j) = 1 ∧ EC(k, j) = 1 ∧ EC(l, j) = 0))∧
(NC(j) = (1, 1) ∨NC(j) = (0, 0)→ ∃i < j, ∀l < j, l 6= i,

(EC(i, j) = 1 ∧ EC(l, j) = 0))

which means that if the j-th node of C is ∧ or ∨, there are exactly two previous
nodes i, k of C with edges going from i and k to j, if the j-th node of C is ¬,
there is exactly one previous node i with an edge going from i to j.

Comp(C, y, w) says that for each i < |y| the value of wi is the value of the
i-th input bit of y and each wj is an evaluation of the j-th node of circuit C given
wk’s evaluating nodes connected to the j-th node:

Circ(C, y, w) ∧ ∀i < |y|, yi = wi ∧ ∀j, k, l < |w|, k 6= l, [
(NC(j) = (0, 1) ∧ EC(k, j) = 1 ∧ EC(l, j) = 1→ (wj = 1↔ wk = 1 ∧ wl = 1)) ∧
(NC(j) = (1, 0) ∧ EC(k, j) = 1 ∧ EC(l, j) = 1→ (wj = 1↔ wk = 1 ∨ wl = 1)) ∧
((NC(j) = (0, 0) ∨NC(j) = (1, 1)) ∧ EC(k, j) = 1→ (wj = 1↔ wk = 0))]

Formula C(y;w) = 1 stating that w is an accepting computation of circuit C
on input y will be Comp(C, y, w) ∧ w|w|−1 = 1. Similarly for C(y;w) = 0.

Next, let SAT (y, z) be a Σb
0(bit)-formula saying that z is a satisfying assign-

ment to the propositional 3-CNF formula y.

To define it explicitly for each i, j, k < 2m we let y[i,j,k] = 1 if and only if the
3-CNF encoded in y contains a clause of variables vpi , v

p
j , v

p
k where vpi is vi if i < m

and ¬vi−m if i ≥ m. Here also [i, j, k] = [i, [j, k]]. Hence, the 3-CNF encoded in
y has m variables v0, ..., vm−1 and |y| = [2m− 1, 2m− 1, 2m− 1] + 1. We use m
implicitly given by y in the formula SAT (y, z):

∀i, j, k < 2m, [yi,j,k = 1→
(i, j, k < m→ zi = 1 ∨ zj = 1 ∨ zk = 1)∧
(i, j < m ∧ k ≥ m→ zi = 1 ∨ zj = 1 ∨ zk−m = 0)∧
...

13

(i, j, k ≥ m→ zi−m = 0 ∨ zj−m = 0 ∨ zk−m = 0)]

Finally, for any k, hardness of SAT for nk-size circuits can be expressed as
the following ∀Σb

2(bit) sentence

LB(SAT, nk) :

∀1n > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w, z, |w| ≤ nk, |z| < |y|,
[Comp(C, y, w)→

(C(y;w) = 1 ∧ ¬SAT (y, z)) ∨ (C(y;w) = 0 ∧ SAT (y, a))]

Here n0 is a fixed constant which is not indicated in LB(SAT, nk). This should
not cause any confusion. Whenever we say that LB(SAT, nk) is provable in a
theory T we mean that it is provable in T for some n0. Further, ∀1n > n0 is a
shortcut for ∀m,n such that |m| = n∧m > n0. Therefore, y is feasible in m and
for each n0 and k, LB(SAT, nk) is universal closure of a Σb

2(bit) formula.

We use the formalization of circuit lower bounds which is essentially a fam-
ily of statements parametrized by n0 instead of the formalization of the form
∃n0, LB(SAT, nk) because the latter would result in a formula with higher quan-
tifier complexity and the witnessing necessary in our proofs would not work. A
similar problem would arise if we used lower bounds of the form
”∀1n0 ,∃1n > 1n0 ,∀C, ∃y, a ...”. Moreover, it seems natural to avoid situations in
which ∃n0, LB(SAT, nk) is provable but not for any specific n0.

Note also that, strictly speaking, for fixed k, LB(SAT, nk) might not be equiv-
alent to lower bounds with different encodings of SAT formulas. For instance, our
encoding of 3CNF’s makes the formula size (the n) always cubic in the number of
variables. However, the choice of our encoding is rather arbitrary and our results
apply analogously for any efficient encoding of 3CNF’s. On the other hand, if we
used general SAT formulas instead of 3CNF’s, the predicate SAT (x, y) would not
be in AC0 anymore what would cause problems in results concerning the provabil-
ity in theory V 0. Then, we would need to decide what is the right formalization
of circuit lower bounds in the case of V 0 and modify the proof accordingly which
we want to avoid.

1.3 Feasible Mathematics

If we obtain nk-size circuit lower bounds for SAT but do not find any efficient
method how to witness errors of potential nk-size circuits for SAT, some of these
circuits might work in practice like correct ones. We will now define theories of
feasible mathematics where provability of nk-size circuit lower bound for SAT
implies the existence of such an error witnessing.

Perhaps, the most prominent one is S1
2 introduced by Buss [1]. We will use

its conservative extension S1
2(bit). The theory S1

2(bit) is defined in the language
Lbit and its axioms consist of BASIC(bit) and polynomial induction for Σb

1(bit)-
formulas A:

A(0) ∧ ∀x(A(bx/2c)→ A(x))→ ∀xA(x)

(S1
2 is defined in the language L and its axioms consist of polynomial induction

14

for Σb
1-formulas and BASIC(bit) except the defining axioms of xi.) An important

property of S1
2(bit) is Buss’s witnessing theorem:

Theorem 1.3.1 (Buss [1]). If S1
2(bit) ` ∃yA(x, y) for Σb

0(bit)-formula A, then
there is a p-time function f such that A(x, f(x)) holds for any x.

S1
2(bit) admits also a useful kind of witnessing for Σb

2(bit)-formulas which
was obtained by using a direct method in Pudlák [18], and by using Herbrand
functions in Kraj́ıček [12].

Theorem 1.3.2 (Pudlák [18], Kraj́ıček [12]). If S1
2(bit) ` ∃y ∀z ≤ t A(x, y, z)

for Σb
0(bit)-formula A and term t depending only on x, y, then there is p-time

algorithm S such that for any x either ∀z ≤ t A(x, S(x), z) or for some z1,
¬A(x, S(x), z1). In the latter case, either ∀z ≤ t A(x, S(x, z1), z) or there is z2

such that ¬A(x, S(x, z1), z2). However after k ≤ poly(|x|) rounds of this kind,
∀z ≤ t A(x, S(x, z1, ..., zk), z) holds for any x.

Another theory with similar witnessing properties is PV1 which is an extension
of a theory PV introduced by Cook [4], see also [13]. The language of PV1 consists
of symbols for all functions given by a Cobham-like inductive definition of p-time
functions (hence it contains Lbit). PV1 defined in Kraj́ıček-Pudlák-Takeuti [16]
is then a first-order theory axiomatized by equations defining all the function
symbols and a derivation rule similar to polynomial induction for open formulas.
It is a universal theory, i.e. it has an axiomatization by purely universal sentences,
and since all function symbols of PV1 have well-behaved Σb

1 and Πb
1 definitions

in S1
2(bit), PV1 is contained in the extension of S1

2(bit) by these definitions. We
denote the extension also S1

2(bit).
Let Σb

0(PV)-formulas be defined as Σb
0-formulas but in the language of PV1.

PV1 proves induction:

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x)

for Σb
0(PV)-formulas A.

Theories S1
2(bit) and PV1 are weak fragments of arithmetic but they are suf-

ficiently strong to prove many things. We can interpret provability in PV1 and
S1

2 as capturing the idea of what can be demonstrated when our reasoning is
restricted to manipulations of p-time objects.

1.3.1 More formalizations of circuit lower bounds for SAT

LB(SAT, nk) is not the only way to express circuit lower bounds for SAT. For
example, for given n0 and k, we can define formula SCE(SAT, nk) stating that
for each 1n > n0 and each nk-size circuit there is a satisfiable formula of size n
such that the circuit will not find its satisfying assignment.

SCE(SAT, nk) :

∀1n > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w, z, |w| ≤ nk, |z| < |y|
[SAT (y, a) ∧ (C(y;w) = z → ¬SAT (y, z))]

15

where C(y;w) = z means that w is a computation of circuit C on input y with
output bits z. Formally, Comp(C, y, w) ∧ ∀i < |z|(w|w|−i−1 = 1 ↔ zi = 1). SCE
in SCE(SAT, nk) refers to ”search SAT counterexample”.

A different formalization of circuit lower bounds is given by the following for-
mula DCE(SAT, nk) where DCE refers to ”decision SAT counterexample”. In
DCE(SAT, nk) circuits C attempting to solve SAT have again just one output
but using self-reducibility they are used to search for satisfying assignments of
propositional formulas: If C says that a formula y is satisfiable, we can set the
first free variable in y firstly to 1 and then to 0, and use C to decide in which of
these cases the resulting formula is satisfiable and in the same manner continue
searching for the full satisfying assignment. DCE(SAT, nk) states that for each
nk-size circuit C there is a formula y and a possibly partial assignment to its
variables a such that either 1.) SAT (y, a) and C says that y is unsatisfiable, or
2.) ¬SAT (y, a) for a full assignment a of y and C says that a satisfies y, or 3.)
it happens that C gets into a local inconsistency: for a partial assignment a of y
C claims that y under the assignment a is satisfiable but when we extend a by
setting the first of the remaining free variables by 1 and 0 in both cases C claims
that the resulting formula is unsatisfiable. Formally,

DCE(SAT, nk) :

∀1n > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w0, ..., w4, |w0|, ..., |w4| ≤ nk, [
(Comp(C, y, w0)→ (C(y;w0) = 0 ∧ SAT (y, a)))∨
(Comp(C, y(a), w1)→ (C(y(a);w1) = 1 ∧ FA(a, y) ∧ ¬SAT (y, a)))∨
(Comp(C, y(a), w2)→ (C(y(a);w2) = 1 ∧ PA(a, y)∧

(Comp(C, y(a1), w3)→ C(y(a1);w3) = 0)∧
(Comp(C, y(a0), w4)→ C(y(a0);w4) = 0)))]

where y(a) encodes formula y under the assignment a, FA(a, y) resp. PA(a, y)
means that a is full resp. partial assignment to variables in y and y(a1) resp.
y(a0) is y under the assignment which is the extension of a that sets the first
unassigned variable in y to 1 resp. 0. We leave details of these encodings to the
reader.

The formalizations LB(SAT, nk), SCE(SAT, nk), DCE(SAT, nk) are (essen-
tially) equivalent modulo slight changes to the size parameter. For example,
SCE(SAT,Knk+1)→ LB(SAT, nk) and LB(SAT, nk +Kn)→ SCE(SAT, nk),
where SCE(SAT,Knk+1) is defined as SCE(SAT, nk) but with |w| bounded by
Knk+1. Similarly for LB(SAT, nk + Kn). Here, K is a sufficiently big constant
and n0 is arbitrary but the same constant in the assumption and in the conclusion
of each implication. We claim that this is provable already in PV1.

Proposition 1.3.1. PV1 proves the following implications
SCE(SAT,Knk+1)→ LB(SAT, nk)
LB(SAT, nk +Kn)→ SCE(SAT, nk)

LB(SAT, nk)→ DCE(SAT, nk)
DCE(SAT, nk)→ LB(SAT, nk)

where K is a sufficiently big constant and n0 is arbitrary but the same constant
in the assumption and the conclusion of each implication.

16

Proof: The first implication was observed in [5]: Assume ¬LB(SAT, nk), i.e.
for a big enough n there is an nk-size circuit C deciding SAT on instances of size n.
Then there is a p-time function which given a circuit C witnessing ¬LB(SAT, nk)
produces a Knk+1-size circuit sC which outputs a satisfying assignment sC(y)
for every satisfiable formula y of size n. For each i, the circuit sC finds the i-th
bit of the satisfying assignment by asking C whether y remains satisfiable if the
i-th variable is set to 1, given the values it has previously found for the first
i − 1 variables. Then (assuming ¬LB(SAT, nk) and SAT (y, a)) PV1 proves by
Σb

0(PV) induction on i that y instantiated by the first i truth values is satisfiable
according to C and hence ¬SCE(SAT,Knk+1).

Concerning the second implication: If ¬SCE(SAT, nk), i.e. for a big enough
n there is an nk-size circuit C which outputs a satisfying assignment C(y) for
every satisfiable formula of size n, then there is a p-time function which given
any such circuit C produces an (nk + Kn)-size circuit dC which decides SAT
on instances of size n. Given a formula y, dC outputs 1 if and only if C(y)
satisfies y. Assuming ¬SCE(SAT, nk) it follows in PV1 that for any y, a of size
|a| < |y| = n, (SAT (y, a) → dC(y;w) = 1) ∧ (dC(y;w) = 1 → SAT (y, C(y))),
hence ¬LB(SAT, nk +Kn).

Next, in PV1, if circuit C witnesses formula ¬DCE(SAT, nk), then it wit-
nesses also ¬LB(SAT, nk): for any y, a of size |a| < |y| = n for a big enough
n, C(y;w) = 0 → ¬SAT (y, a) and if C(y;w) = 1 then by Σb

0(PV)-induction
(as in the first implication) C(y(b);w) = 1 for a full assignment b of y for which
SAT (y, b) holds.

Finally, in PV1, if circuit C witnesses formula ¬LB(SAT, nk), then it witnesses
¬DCE(SAT, nk): for any y, a of size |a| < |y| = n for a sufficiently large n,
(C(y;w) = 0 → ¬SAT (y, a)), C(y(a);w) = 1 ∧ FA(a, y) → SAT (y, a) and
if C(y(a);w) = 1 ∧ PA(a, y) then for some b extending a SAT (y, b) and thus
C(y(a1);w) = 1 ∨ C(y(a0);w) = 1.

1.3.2 Witnessing errors of p-size circuits

Using LB(SAT, nk), SCE(SAT, nk) and DCE(SAT, nk) we can define several
types of error witnessing of p-size circuits claiming to solve SAT.

We say somewhat informally that LB(SAT, nk) ∈ P if there is a p-time algo-
rithm A which for any sufficiently big n and any nk-size circuit C with n inputs
finds out y, a such that LB(C, y, a):

C(y) = 0 ∧ SAT (y, a) or C(y) = 1 ∧ ∀z¬SAT (y, z)

Intuitively, A witnesses the important existential quantifiers in LB(SAT, nk).

We say that LB(SAT, nk) has an S-T protocol with l rounds if there is a p-time
algorithm S such that for any function T and any sufficiently big n, whenever
S is given nk-size circuit C, S outputs y1, a1 such that either LB(C, y1, a1) or
otherwise T sends to S w1, z1 certifying ¬LB(C, y1, a1). Then S uses C,w1, z1 to
produce y2, a2 and the protocol continues in the same way, S possibly using all
counter-examples T sent in earlier rounds. But after at most l rounds S outputs
y, a such that LB(C, y, a).

17

Analogously, DCE(SAT, nk) ∈ P if there is a p-time algorithm A which for
any sufficiently big n and any nk-size circuit C with n inputs finds out y, a such
that DCE(C, y, a):

C(y) = 0 ∧ SAT (y, a) or C(y(a)) = 1 ∧ FA(a, y) ∧ ¬SAT (y, a) or
C(y(a)) = 1 ∧ PA(a, y) ∧ (C(y(a0)) = 0 ∧ C(y(a1)) = 0)

Finally, SCE(SAT, nk) ∈ P if there is a p-time algorithm A which for any
sufficiently big n and any nk-size circuit C with n inputs and n outputs finds out
y, a such that SAT (y, a) ∧ ¬SAT (y, C(y)).

The phrase that DCE(SAT, nk) resp. SCE(SAT, nk) has an S-T protocol
with l rounds could be defined similarly but notice that in this case T’s advice
would consist only of computations w of given circuit C which can be produced
by S itself as it has C as input.

In practice, if we want to witness that no small circuit solves SAT, it does
not seem sufficient to have a p-time algorithm for LB(SAT, nk) because such
an algorithm could output a tautology but we would not have an apriori way
to certify that it is indeed a tautology and hence a correctly witnessed error.
Therefore, it seems that practically more appropriate error witnessing is defined
by DCE(SAT, nk) or SCE(SAT, nk) in which we actually force given circuits to
claim inconsistent statements. We discuss it in more detail in the next section.

1.4 Circuit Lower Bounds in S1
2(bit)

In this section we observe that the provability of circuit lower bounds in S1
2(bit)

would give us an efficient witnessing of errors of p-size circuits for SAT described
in the previous section. Then we show that certain hardness assumptions imply
the same efficient witnessing of errors. Consequently it seems that the first result
itself cannot be used to show the unprovability of LB(SAT, nk) in S1

2(bit).
Similar observations appeared already in Buss [3]. More precisely, Proposi-

tion 1.4.1 is a folklore and Buss [3, Section 4.4] described also a witnessing of
SCE(SAT, nk) by non-uniform p-size circuits based on the existence of strong
pseudorandom generators which is analogous to the one from Proposition 1.4.2.

Proposition 1.4.1. If S1
2(bit) ` LB(SAT, nk), then LB(SAT, nk) has an S-T

protocol with poly(n) rounds. If S1
2(bit) ` SCE(SAT, nk), then SCE(SAT, nk) ∈

P . If S1
2(bit) ` DCE(SAT, nk), then DCE(SAT, nk) ∈ P .

Proof: LB(SAT, nk), DCE(SAT, nk) and SCE(SAT, nk) are universal clo-
sures of Σb

2(bit)-formulas so the first implication follows directly from Theorem
1.3.2. In case of SCE(SAT, nk) and DCE(SAT, nk) T’s advice in the result-
ing S-T protocol consist just of computations of given circuit C. This can be,
however, produced by S itself as it has C as input.

Alternatively, one could show in S1
2(bit) that SCE(SAT, nk), DCE(SAT, nk)

can be stated in a ∀Σb
1(bit) way and apply directly Buss’s witnessing.

An efficient witnessing of errors of p-time SAT algorithms can be performed
in the following way.

18

If f is a one-way function, we can secretly produce a ∈ {0, 1}n and ask the
algorithm claiming to solve SAT whether the statement f(a) = f(x) encoded
as a poly(|a|)-size formula with free variables x = x1, ..., xn is satisfiable (the
formula might also contain some auxiliary variables used to express computation
of f such that their value can be efficiently determined given any assignment
to x), see Cook-Mitchell [6]. The algorithm is forced to say that the formula
is satisfiable and by the choice of f , with high probability it will not find its
satisfying assignment.

Atserias (private communication) suggested to derandomize this construction
and Kraj́ıček made the following observation.

Proposition 1.4.2. If there exists a one-way permutation f computable in p-
time and secure against p-size circuits, i.e. for any p-size circuits Cn there is a
function ε(n) = n−ω(1) such that for large enough n,

Px∈{0,1}n [Cn(f(x)) = x] ≤ ε(n)

and if there exists h ∈ E hard on average for subexponential circuits, i.e. there is
δ > 0 such that for all circuits Cn of size ≤ 2δn and large enough n,

Px∈{0,1}n [Cn(x) = h(x)] ≤ 1/2 + 1/2δn

then for each k, SCE(SAT, nk) ∈ P .

Proof: If there is h ∈ E hard on average for subexponential circuits, by [17]
for each l there is c and NW-generator g : {0, 1}c logn 7→ {0, 1}n such that g is
poly(n)-time computable and for any nl-size circuits Dn,

|Px∈{0,1}c logn [Dn(g(x)) = 1]− Px∈{0,1}n [Dn(x) = 1]| ≤ 1/n

This generator allows us to derandomize the construction above: Let f be a
one-way permutation secure against p-size circuits. Take l such that for each
((n + 1)d)k-size circuits C(n+1)d with (n + 1)d inputs, the following predicate
C(n+1)d(′′f(x) = f(y)′′) = x with input x ∈ {0, 1}n can be computed by nl-
size circuits. Here, ′′f(x) = f(y)′′ is a 3CNF formula expressing the fact that
f(x) = f(y). The formula has free variables y = y1, ..., yn together with auxil-
iary variables used to express the computation of f . On the other hand, x’s in
′′f(x) = f(y)′′ are constants denoting x ∈ {0, 1}n. The size of ′′f(x) = f(y)′′ is
nd for an absolute constant d (but ′′f(x) = f(y)′′ can be seen also as a formula
of size (n + 1)d). For the chosen l there is c and NW -generator g as mentioned
above.

Now, we will describe the algorithm witnessing SCE(SAT, nk) ∈ P . For
sufficiently big n, given mk-size circuit Cm with m inputs, nd ≤ m < (n + 1)d,
consider the one-way function f on n inputs. Formulas of the form ′′e = f(y)′′

where e ∈ {0, 1}n can be seen as formulas of size m. By exhaustive search find
b ∈ {0, 1}c logn such that Cm(′′f(g(b)) = f(y)′′) 6= g(b). If such b did not exist,
then Px∈{0,1}c logn [Cm(′′f(g(x)) = f(y)′′) = g(x)] = 1. This would break g because
by definition of f , Px∈{0,1}n [Cm(′′f(x) = f(y)′′) = x] is small. The failure of Cm
is thus witnessed in p-time by the formula ′′f(g(b)) = f(y)′′ and its assignment
g(b).

19

Proposition 1.4.2 says that under certain hardness assumptions we can wit-
ness circuit lower bounds for SAT in p-time. It is natural to ask now for a p-time
witnessing of these assumptions. What we already know is that by Jeřábek [9,
Corollary 3.6] the existence of a function h ∈ E hard for subexponential circuits
in S1

2 would imply that S1
2 proves tha so-called dual weak pigeonhole principle

for PV-functions dWPHP (PV). In this case, S1
2 could formalize randomized

algorithms as described in Jeřábek [10]. Kraj́ıček observed that a witnessing of
LB(SAT, nk) is also possible assuming just that LB(SAT, nk) holds but the wit-
nessing is non-constructive and only by nonuniform p-size circuits, see Proposition
1.4.4.

Proposition 1.4.2 seems to imply that for proving S1
2(bit) 6` SCE(SAT, nk)

we need to use other properties than SCE(SAT, nk) ∈ P. Moreover, assumptions
of Proposition 1.4.2 give us an S-T protocol for LB(SAT, nk) too. Informally,
any nk-size circuit C claiming to decide SAT can be used to search for satisfying
assignments of propositional formulas. Using the algorithm from Proposition
1.4.2, S can produce y, a, such that SAT (y, a) but C will not find any satisfying
assignment of y. This means that either C claims that y is unsatisfiable or the
assignment it finds does not satisfy y or while searching for a satisfying assignment
it gets into a local inconsistency which is the only case when S needs to ask for an
advice of T, a satisfying assignment of y extending the partial assignment found
by C.

Proposition 1.4.3. If the same hardness assumption as in Proposition 1.4.2
holds, then LB(SAT, nk) has an S-T protocol with 1 round (i.e. 1 advice of T)
where S is a p-time algorithm, and LB(SAT, nk) has also an S-T protocol with
poly(n) rounds where S is in uniform AC0. Here, “S in uniform AC0” means
that for each n, there are poly(n) circuits Sn1 , ..., S

n
poly(n), one for each round of

the interaction of the S-T protocol, and the uniformity means that there is a p-
time algorithm which produces Snj given 1n and 1j without knowing the interaction
before round j.

Proof:
By Proposition 1.4.2 we have a p-time algorithm A solving SCE(SAT, n2k).

Firstly, we show that LB(SAT, nk) has an S-T protocol with 1 round and p-time
S.

For each nk-size circuit C with one output bit, there is a circuit sC of size
≤ Knk+1, for a sufficiently big K, searching for satisfying assignments of given
formulas as in Proposition 1.3.1. Here we give a more detailed description: For
each formula y, let a be a partial assignment of y produced by sC so far (empty
at the beginning) and denote by y(a) the formula y under the assignment a. If
C(y(a)) = 0, sC outputs an assignment of y full of zeros. If C(y(a)) = 1, it
assigns y1

a, the first free variable in y(a), firstly by 1 and then by 0. Denote
the resulting formula y(a1) resp. y(a0). If C(y(a1)) = C(y(a0)) = 1, sC sets
y1
a = 1. If C(y(a1)) = C(y(a0)) = 0, sC outputs an assignment of y full of

zeros. If C(y(a1)) = 1 and C(y(a0)) = 0, sC sets y1
a = 1. If C(y(a1)) = 0 and

C(y(a0)) = 1, it sets y1
a = 0. In this way sC sets all variables in y.

Given C, S can produce sC in p-time and use A to find y, a1 such that
SAT (y, a1) but ¬SAT (y, sC(y)).

20

If C(y) = 0, S outputs y, a1. Else, S simulates sC on input y. If it never
happens that C(y(a1)) = C(y(a0)) = 0 for any partial assignment a produced by
sC, S outputs y(sC(y)). Otherwise, for a partial assignment a of y, C(y(a)) = 1
and C(y(a1)) = C(y(a0)) = 0. In such case S outputs y(a), a2 where a2 is a
full assignment of y extending a with all zeros. If this is not a correct answer,
T replies with a3 extending a and satisfying y. Then S outputs y(ab), a3 where
b ∈ {0, 1} such that ab is consistent with a3.

In all cases S succeeds after asking for at most 1 advice of T.

To get S in uniform AC0 note that A actually produces a set B of ≤ nc

propositional formulas of the form f(Y) = s and their satisfying assignments
such that each Knk+1-size circuit fails on at least one of them. It suffices to use
instead of A the set B, i.e. AC0 S will try all of the formulas f(Y) = s with
their satisfying assignments in place of y, a1. Recall that the AC0 S is actually
a sequence of polynomially many uniform AC0 circuits in the sense that every
reply of T is managed by a different AC0 circuit.

Given C, S will firstly try some y, a1 from B. If y, a1 does not witness that
C does not solve SAT as in LB(SAT, nk), T replies with the computation of
C witnessing that C(y) = 1. S then finds out if C(y(1)) = C(y(0)) = 0 using
the following general protocol. Whenever S needs to simulate given circuit C on
input z, it outputs z with its arbitrary assignment r. If z, r does not witness
that C fails to solve SAT, T replies either with a satisfying assignment d of z
or with the computation of C on input z which can be verified by a uniform
constant-depth formula. In the former case, S (but a different AC0 circuit than
the one which produced z, r) outputs z, d and this time it either witnesses that
C fails to solve SAT or it gets the computation of C. In this way S finds out if
C(y(1)) = C(y(0)) = 0 and continues to simulate sC and the S-T protocol with
p-time S.

If the protocol above using y, a1 does not witness failure of C, S tries another
element from B in place of y, a1. By the definition of B, at least one of them
works.

Note that the uniformity of the AC0 S-T protocol described in Proposition
1.4.3 is not DLOGTIME because to produce the respective AC0 circuits we need
to compute a function h ∈ E on log-sized inputs which is hard for subexponential
circuits.

Further, while Proposition 1.4.3 says that uniform AC0 S-T protocols for
LB(SAT, nk) with poly(n) rounds are likely to exist, in Theorem 1.6.1 we will
show that under a hardness assumption LB(SAT, nk) has no AC0 S-T protocols
with O(1) rounds.

The proof of Proposition 1.4.3 shows also that if SCE(SAT, nk) ∈ P, then
DCE(SAT, nk) ∈ P. All in all, Buss’s witnessing does not seem to help us to
obtain the unprovability of LB(SAT, nk) in PV1 or S1

2(bit). Maybe it could work
for intuitionistic S1

2 where the witnessing holds for arbitrarily complex formulas,
cf. Buss [2]. The situation is different in case of weaker theories where we
have more efficient witnessing. This will allow us to reduce to some hardness
assumptions.

21

Before considering weaker theories let us also mention that in order to show
SCE(SAT, nk) ∈ P/poly, it suffices to assume that for any sufficiently big n, SAT
restricted to instances of length n has no circuit of size n2k. This was observed
by Kraj́ıček in [14] but unlike Buss’s [3, Section 4.4] proof of SCE(SAT, nk) ∈
P/poly which assumes the existence of strong pseudorandom generators, this
method is not constructive in the sense that it does not tell us what could be the
hard SAT instances.

Kraj́ıček’s observation uses a well known combinatorial principle1:
Let E ⊆ X × Y be a bipartite graph, |X| = 2n

k
, |Y | = 2n. Then

∀x1, ..., xn ∈ X ∃y ∈ Y
∧

i=1,...,n

E(xi, y)⇒

∃y1, ..., ynk ∈ Y ∀x ∈ X
∨

i=1,...,nk

E(x, yi)

Now take as X the set of all nk/2-size circuits and interpret E(x, y) as ”y is
a satisfiable formula of size n and circuit x does not find a satisfying assignment
of y”. Assume n is big enough. If SAT restricted to instances of size n does not
have nk-size circuits, then for every n circuits C1, ..., Cn of size nk/2 there is y such
that

∧
i=1,...,nE(Ci, y). Else, there is a specific sequence of n circuits such that for

any satisfiable y at least one of these n circuits finds a satisfying assignment of y
and this yields a single nk-size circuit solving SAT at length n, contradicting the
assumption. By the principle above, there are then y1, ..., ynk such that for each
nk/2-size circuit C,

∨
i=1,...,nk E(C, yi). Therefore there is an n2k-size circuit which

for each x ∈ X finds y such that E(x, y) by trying E(x, yi) for i = 1, ..., nk and
thus using additional satisfying assignments a1, ..., ank of respective y’s as advice
solves SCE(SAT, nk/2).

Analogously, we can show that DCE(SAT, nk) ∈ P/poly by considering
E(x, y) = ”circuit x rejects formula y which is satisfiable or circuit x accepts
y but if it is used to find a satisfying assignment of y it ends up in the same
inconsistent situation as in DCE(x, y, a) for some a”. Such E(x, y) is a p-time
relation.

It is not clear how to apply this technique in the case of LB(SAT, nk).
Straightforwardly defining E(x, y) as ”circuit x rejects formula y which is sat-
isfiable or circuit x accepts unsatisfiable y” does not work because then for each
y, ¬E(1, y) ∨ ¬E(0, y) where 1 resp. 0 is a trivial circuit which outputs always 1
resp. always 0.

Therefore, we have the following proposition.

Proposition 1.4.4 (Kraj́ıček [14]). If for any sufficiently big n, SAT restrict-
ed to instances of length n has no circuit of size n2k, then SCE(SAT, nk) and
DCE(SAT, nk) are in P/poly.

1To see that the principle holds note that by a counting argument whenever r x’s from X
remain unconnected to any of already chosen y’s there is another y ∈ Y connected to at least
r/2 of these r x’s.

22

1.5 Theories weaker than PV1

We will now present some theories weaker than PV1 like TNC1 for which we
will show the unprovability of circuit lower bounds. We could however similarly
define a general theory TC corresponding to a standard complexity class C and
our results would work analogously.

Definition 1.5.1. TNC1 is the first-order theory of all universal LNC1 statements
true in the standard model of natural numbers where LNC1 is the language con-
taining names for all uniform NC1 algorithms.

TNC1 is a universal theory so it admits the KPT theorem from [16]:

Theorem 1.5.1 (Kraj́ıček-Pudlák-Takeuti [16]). If TNC1 ` ∃yA(x, y) for open
formula A, then there is a function f in uniform NC1 such that A(x, f(x)) holds
for any x.

If TNC1 ` ∃y∀zA(x, y, z) for open formula A, there are finitely many functions
f1, ..., fk in uniform NC1 such that

TNC1 ` A(x, f1(x), z1) ∨ A(x, f2(x, z1), z2) ∨ ... ∨ A(x, f(x, z1, ..., zk−1), zk)

There are also two-sorted theories of Bounded Arithmetic corresponding to
uniform AC0, NC1 and other complexity classes, cf. Cook-Nguyen [7]. The first-
sort (number) variables are denoted by lower case letters x, y, z, ... and the second-
sort (set) variables by capital letters X, Y, Z, ... The underlying language includes
the symbols +, ·,=,≤, 0, 1 of first-order arithmetic. In addition it contains symbol
=2 interpreted as equality between bounded sets of numbers, |X| for the function
mapping an element X of the set sort to the largest number in X plus one, and
∈ for the relation n ∈ X meaning that n is an element of X.

Bounded quantifiers for sets have the form ∃X ≤ t φ which stands for
∃X (|X| ≤ t ∧ φ) or ∀X ≤ t φ for ∀X (|X| ≤ t → φ). Here t is a number
term which does not involve X. ΣB

0 formulas are formulas without bounded
quantifiers for sets but may have bounded number quantifiers. Each bounded set
X ≤ t can be seen also as a finite binary string of size ≤ t which has 1 in the i-th
position iff i ∈ X. When we say that a function f(x,X) mapping bounded sets
and numbers to bounded sets is in AC0 or NC1 we mean that the corresponding
function on finite binary strings X and unary representation of x is in AC0 or
NC1.

The base theory we will consider is V 0 consisting of a set of basic axioms
capturing the properties of symbols in the two-sorted language and a comprehen-
sion axiom schema for ΣB

0 -formulas stating that for any ΣB
0 formula there exists

a set containing exactly the elements that satisfy the formula, cf. [7]. Further,
Cook and Nguyen define theory V NC1 as V 0 extended by the axiom that every
monotone formula has an evaluation, see [7].

Theorem 1.5.2 (Cook-Nguyen [7]). If V NC1 ` ∀x ∀X ∃Y A(x,X, Y) for ΣB
0 -

formula A, there is a function f in uniform NC1 such that A(x,X, f(x,X)) holds
for any x,X.

If V NC1 ` ∀x ∀X ∃Y ∀Z A(x,X, Y, Z) for ΣB
0 -formula A, there are finitely

many functions f1, ..., fk in uniform NC1 such that ∀x,X, Z1, Z2, ..., Zk

23

A(x,X, f1(x,X), Z1) ∨ A(x,X, f2(x,X, Z1), Z2) ∨ ...
... ∨ A(x,X, , f(x,X, Z1, ..., Zk−1), Zk)

Analogously for V 0 with the resulting functions in uniform AC0.

LB(SAT, nk) translates to the two-sorted language as follows

∀n > n0, ∀C, ∃Y ≤ n, ∃A ≤ n, ∀W ≤ nk, ∀Z ≤ n, [Comp(C, Y,W)→
(C(Y ;W) = 1 ∧ ¬SAT (Y, Z)) ∨ (C(Y ;W) = 0 ∧ SAT (Y,A))]

where k, n0 are constants as before and Comp(C, Y,W), C(Y ;W) = 0/1, SAT (Y, Z)
are defined as their first-order counterparts but function xi is replaced by i ∈ X.

Similarly, we obtain the two-sorted SCE(SAT, nk), DCE(SAT, nk).

Let us also specify the formalization of LB(SAT, nk) in TNC1 . LNC1 contains
symbols for SAT (y, z), Comp(C, y, w) and all the predicates we explicitly defined
as Σb

0(bit)-formulas because they are not just p-time but in fact uniform NC1. For
simplicity, whenever we speak about LB(SAT, nk) in TNC1 we mean its formal-
ization where instead of the Σb

0(bit)-formulas we have the respective symbols of
LNC1 . Similarly for SCE(SAT, nk), DCE(SAT, nk). Therefore, LB(SAT, nk),
SCE(SAT, nk) and DCE(SAT, nk) in TNC1 have the form ∃y∀z A(x, y, z) for an
open formula A (i.e. A has no quantifiers).

The situation with the provability of polynomial circuit lower bounds in weak
theories like TNC1 is less natural because they cannot fully reason about p-time
concepts. In particular, there is a formula LB∃(SAT, n

k) which is equivalent
to LB(SAT, nk) in S1

2(bit) but not necessarily in TNC1 . LB∃(SAT, n
k) is like

LB(SAT, nk) but with LB(C, y, a) (defined in Section 1.3.2) expressed positively:

LB∃(SAT, n
k) :

∀1n > n0, ∀C, ∃y, a, w, |a| < |y| = n, |w| ≤ nk, ∀z, |z| < |y|,
[¬Circ(C, y, w)∨

(C(y;w) = 0 ∧ SAT (y, a)) ∨ (C(y;w) = 1 ∧ ¬SAT (y, z))]

Analogously define DCE∃(SAT, n
k), SCE∃(SAT, n

k) and their two-sorted
and LNC1 formulations.

By the witnessing theorem above, if TNC1 ` LB(SAT, nk), then LB(SAT, nk)
has an NC1 S-T protocol with O(1) rounds which is S-T protocol with O(1)
rounds and S in uniform NC1. If TNC1 ` LB∃(SAT, n

k), then LB∃(SAT, n
k)

has an NC1 S-T protocol with O(1) rounds which is defined analogously as for
LB(SAT, nk) but with S producing also computations w of given circuits. As
DCE∃(SAT, n

k) has the form ∃yA(x, y) for an open A in LNC1 , its provability
in TNC1 implies DCE∃(SAT, n

k) ∈ NC1. Here again, DCE∃(SAT, n
k) ∈ NC1 is

defined as DCE(SAT, nk) ∈ NC1 but with the witnessing algorithm producing
also computations w of given circuits. Analogously for theories V 0, V NC1 .

24

1.6 Unprovability of circuit lower bounds in sub-

theories of PV1

To prove that V NC1 or TNC1 do not prove LB(SAT, nk) it suffices to show that
LB(SAT, nk) has no S-T protocol with O(1) rounds where S is in uniform NC1.
For the unprovability of LB∃(SAT, n

k) it however suffices to refute the existence
of S-T protocols with O(1) rounds where S ∈ NC1 produces w’s (computations
of given circuits) itself. This is essentially trivial since in such case, NC1 circuits
could produce computations of general circuits of similar size:

Proposition 1.6.1. LB(SAT, nk+1) /∈ NC1, DCE∃(SAT, n
k+1) /∈ NC1 and

LB∃(SAT, n
k+1) has no NC1 S-T protocol with poly(n) rounds unless

SIZE(nk) ⊆ NC1. Unconditionally, for any big enough k, LB(SAT, nk) /∈ AC0,
DCE∃(SAT, n

k) /∈ AC0 and LB∃(SAT, n
k) has no AC0 S-T protocol with poly(n)

rounds.

Proof: Assume first that LB(SAT, nk+1) ∈ NC1, i.e. there are NC1 circuits
Dm(x) such that for sufficiently big n whenever x ∈ {0, 1}m for m = poly(n)
encodes an nk+1-size circuit Cn with n inputs, Dm(x) outputs y, a such that

Cn(y) = 0 ∧ SAT (y, a) or Cn(y) = 1 ∧ ∀z¬SAT (y, z)

Now any nk-size circuits Bn with n inputs can be simulated by NC1 circuits: For
b ∈ {0, 1}n and z = (z1, ..., zn) denote R[Bn, b, z] the circuit with n inputs z but
computing as Bn on b, i.e. it does not use inputs z at all. The size of R[Bn, b, z]
is (nk + n). Let En(b) be an AC0 circuit which uses description of Bn’s as advice
and maps b ∈ {0, 1}n to x ∈ {0, 1}m encoding R[Bn, b, z].

For each b ∈ {0, 1}n, use Dm(En(b)) to find y, a and output 0 iff SAT (y, a).

Deciding SAT (y, a) is by our formalization doable by constant-depth formulas.
Therefore, for each b, we predict Bn(b) with an NC1 circuit.

If LB(SAT, nk) ∈ AC0 for sufficiently big k, we would obtain AC0 circuits
for PARITY, which is impossible.

This construction works analogously for DCE∃(SAT, n
k+1) and as well for

LB∃(SAT, n
k+1). If LB∃(SAT, n

k+1) has an NC1 S-T protocol, then for given
nk+1-size circuit C, S does not have to produce w, y, a such that w is a compu-
tation of C on input y but then T can reply 0 and S is thus eventually forced to
produce a computation of circuit C which means that NC1 S can simulate any
nk-size circuit as in the case of LB(SAT, nk+1).

Corollary 1.6.1. TNC1 6` DCE∃(SAT, nk+1) and TNC1 6` LB∃(SAT, nk+1) unless
SIZE(nk) ⊆ NC1. For any sufficiently big k, V 0 6` DCE∃(SAT, nk) and
V 0 6` LB∃(SAT, nk).

This simple observation does not work if we want to refute that LB(SAT, nk)
has NC1 S-T protocols because T can send to S a computation of the artificially
attached circuit. Indeed by Proposition 1.4.3, LB(SAT, nk) has a uniform AC0

S-T protocol with poly(n) rounds under a plausible assumption.

We can however show that LB(SAT, nk) has no NC1 S-T protocols with O(1)
rounds under a hardness assumption. To show this we will use an interpretation

25

of suitable NW-generators as p-size circuits which is due to Razborov [20] and
Kraj́ıček’s proof of a hardness of certain NW-generators for theory TPV which is
defined as TNC1 but in the language containing names for all p-time algorithms,
cf. [15]. Actually, the proof of the following theorem seems to be a natural
modification of the proof of Proposition 1.6.1.

Theorem 1.6.1. Let c ≥ 2, k ≥ 1. If there is f ∈ SIZE(nk) such that for

all formulas Fn of size 2O(n1/c), Px∈{0,1}n [Fn(x) = f(x)] < 1/2 + 1/2O(n1/c) for
infinitely many n’s, then LB(SAT, n4kc) has no NC1 S-T protocol with O(1)
rounds.

To prove the theorem we will use Nisan-Wigderson (NW) generators with
specific design properties. Let A = {ai,j}i=1,...,m

j=1,...,n be an m × n 0-1 matrix with l

ones per row. Ji(A) := {j ∈ {1, ..., n}; ai,j = 1} and f : {0, 1}l 7→ {0, 1}. Then
define NW-generator based on f and A, NWf,A : {0, 1}n 7→ {0, 1}m as

(NWf,A(x))i = f(x|Ji(A))

where x|Ji(A) are xj’s such that j ∈ Ji(A).

For any c ≥ 2, Nisan and Wigderson [17] constructed 2n × n2c 0-1 matrix A
with nc ones per row which is also (n, nc)-design meaning that for each i 6= j,
|Ji(A) ∩ Jj(A)| ≤ n. Moreover, the matrix A has such a property that for big
enough n there are n2c-size circuits which given i ∈ {0, 1}n compute the set Ji(A),
more precisely, given input i ∈ {0, 1}n they output nc indices in Ji(A) where
each index is described by 2c log n output bits. Therefore, as it was observed
by Razborov [20], if f is in addition computable by nk-size circuits, for any
x ∈ {0, 1}n2c

, (NWf,A(x))y is a function on n inputs y which is for sufficiently big
n computable by circuits of size n4kc.

To see this, note that for any given y ∈ {0, 1}n an n2c-size circuit produces nc

indices of Jy(A) where the r-th index is described by 2c log n bits Jr,1, ..., Jr,2c logn.
Then a circuit of size ≤ ncn2c(2Kc log n+K), with an absolute constant K, which
has the form∧

r∈{1,...,nc}

∧
s∈{0,1}2c logn

((
∧

t∈{1,...,2c logn}

(Jr,t ↔ st))→ (r-th output bit↔ xs))

specifies nc bits in x on which an nck-size circuit computes f(x|Jy(A)). Since
n2c + nkc + ncn2c(2Kc log n + K) < n4kc for k ≥ 1 and big enough n, the whole
circuit computing (NWf,A(x))y has size < n4kc.

Proof(of Theorem 1.6.1): Let f ∈ SIZE(nk) and A be a 2n × n2c (n, nc)-
design defined above so for any sufficiently big n and any x, (NWf,A(x))y can
be computed from y by an n4kc-size circuit. Assume that LB(SAT, n4kc) has an
NC1 S-T protocol with O(1) rounds. In particular, for sufficiently big n and
each n4kc-size circuit C(y) computing (NWf,A(x))y, S either finds out the value
of C(y1) by deciding (in AC0) SAT (y1, a1) for y1, a1 it produced itself or T will
send to S counterexamples w1, b1 such that

(C(y1;w1) = 1 ∨ ¬SAT (y1, a1)) ∧ (C(y1;w1) = 0 ∨ SAT (y1, b1))

In the latter case, S continues with its second try y2, a2. After at most t ≤ l
rounds for some fixed constant l, S will successfully predict C(yt).

26

Let En2c(x) be AC0 circuits mapping x ∈ {0, 1}n2c
to a description of an n4kc-

size circuit with n inputs y computing the function (NWf,A(x))y, so En2c just sub-
stitutes given x to a description of (NWf,A(x))y which is otherwise fixed. More-
over, without loss of generality, for any y, x1, x2 such that x1|Jy(A) = x2|Jy(A)
the computation of En2c(x1) on input y is the same as the computation of En2c(x2)
on input y up to the specific bits of x1 resp. x2 where x1 and x2 differ. We denote
the invariant part of the computation of En2c(x) on input y as its relevant part.
To be precise, it is the computation of En2c(x) on input y with bits xj, j /∈ Jy(A)
replaced by 0’s.

We will consider our S-T protocol only on inputs of the form En2c(x).

Kraj́ıček [15] showed that if f is in NP∩coNP with unique witnesses such S-T
protocol allows us to approximate f by a p-size circuit. We will inspect that his
proof works also for f in P/poly and NC1 S-T protocols. In addition we will
assume that T in our S-T protocol operates as follows: whenever S outputs y
with some a, T answers with the lexicographically first assignment b satisfying y
and the unique relevant part w of the computation of given circuit on input y. If
there is no such b, T replies with a string of zeroes instead of b (and the unique
relevant part w of the computation of given circuit on input y). This should
replace the uniqueness property assumed in [15]. Note that S can recover the full
computation of given circuit on input y just from its relevant part.

For u ∈ {0, 1}nc
and v ∈ {0, 1}n2c−nc

define ry(u, v) ∈ {0, 1}n2c
by putting bits

of u into positions Jy(A) and filling the remaining bits by v (in the natural order).
For each x there is a trace tr(x) = y1, a1, ..., yt, at, t ≤ l of the S-T communication.

Claim 1. There is a trace Tr = y1, a1, ..., yt, at, t ≤ l and p ∈ {0, 1}n2c−nc
such

that Tr = tr(ryt(u, p)) for at least a fraction of 2/(3(22n))t of all u’s.

Tr and p can be constructed inductively. There are at most 22n pairs yj, ai,
hence there is y1, a1 such that at least 1/22n traces begin with it. Either there is
p ∈ {0, 1}n2c−nc

such that y1, a1 = tr(ry1(u, p)) for at least 2/(3(22n)) of all u’s
or we can find y2, a2 such that at least 1/(3(22n)2) traces begin with y1, a1, y2, a2.
For the induction step assume we have a trace y1, a1, ..., yi, ai such that at least
1/(3i−1(22n)i) traces begin with it. Either there is p ∈ {0, 1}n2c−nc

such that
y1, a1, ..., yi, ai = tr(ryi(u, p)) for at least 2/(3i(22n)i) of all u’s or we can find
yi+1, ai+1 such that at least 1/(3i(22n)i+1) traces begin with y1, a1, ..., yi+1, ai+1.
This proves the claim.

Fix now Tr and p from the previous claim.

Because A is (n, nc)-design, for any row y 6= yt at most n xj’s with j ∈ Jy(A)
are not set by p. Hence there are at most 2n assignments z to xj’s with j ∈ Jy(A)
not set by p. For each such z let wz, bz be the T’s advice after S outputs y, ai
on any x containing the assignment given by z and p. By our choice of T, bz
depends only on y and wz is uniquely determined by z (and p which is fixed).
Let Yy, y 6= yt be the set of all these witnesses wz, bz for all possible z’s. The size
of each such Yy is 2O(n) (including the sizes of the witnesses wz, bz).

Now we define a formula F that attempts to compute f and uses as advice
Tr, p and some t sets Yy. For each u ∈ {0, 1}nc

produce ryt(u, p) (this is in
AC0). Let V be the set of those inputs u for which tr(ryt(u, p)) either is Tr or
extends Tr and let U be the complement of V . Define d0 to be the majority

27

value of f on U . Then use S to produce y′1, a
′
1. If y′1, a

′
1 is different from Tr

output d0. Otherwise, find the unique T’s advice in Yy1 . Again, this is doable
by a constant depth formula of size 2O(n) which has poly(n) output bits. It has
the form

∧
z∈{0,1}n(z = ryt(u, p)|(Jy1(A) ∩ Jyt(A)) → output = wz ∈ Yy1). In the

same manner continue until S produces y′t, a
′
t. If y′t, a

′
t differs from Tr output d0.

Otherwise, output 0 iff SAT (yt, at).

F is a formula with nc inputs and size 2O(n) because producing ryt(u, p) is
in AC0, searching for T’s advice in Yyi ’s is doable by constant-depth 2O(n)-size
formulas, S is in NC1 and the structure of S-T protocol can be described by a
constant-depth formula of size nO(1):

(S(x) /∈ Tr → output = d0) ∧ (S(x) ∈ Tr →
((S(x,wz, bz) /∈ Tr → output = d0) ∧ (...

(S(x,w1, b1, ..., wt, bt) /∈ Tr → output = d0)∧
(S(x,w1, b1, ..., wt, bt) ∈ Tr → (output = 0↔ SAT (yt, bt)))...)))

By the choice of Tr, for at least a fraction 2/(3(2n))t of all u ∈ {0, 1}nc
,

we have that u ∈ V and F will successfully predict f(u). Moreover, by the
choice of Tr in the proof of Claim 1, at most 1/(3(2n))t of all traces tr(ryt(u, p))
properly extend Tr. Since d0 is the correct value on at least half of u ∈ U , F will
successfully predict f(u) on at least half of U , half of V and 1/2(1/(3t2nt)) of all
u’s. That is, Pu∈{0,1}nc [F (u) = f(u)] ≥ 1/2 + 1/(3t2nt+1).

Corollary 1.6.2. TNC1 6` LB(SAT, n4kc) and V NC1 6` LB(SAT, n4kc) where

k ≥ 1, c ≥ 2 unless for each f ∈ SIZE(nk) there are formulas Fn of size 2O(n1/c)

such that for sufficiently big n’s, Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c).

To obtain an unconditional unprovability of circuit lower bounds we can use
Hastad’s lower bound for constant depth circuits computing the parity function.

Theorem 1.6.2 (Hastad [8]). For any depth d circuits Cn of size 2n
1/(d+1)

and

large enough n, Px∈{0,1}n [Cn(x) = PARITY (x)] ≤ 1/2 + 1/2n
1/(d+1)

.

If V 0 ` LB(SAT, nk), then LB(SAT, nk) has an AC0 S-T protocol with O(1)
rounds so the resulting formula F in the proof of Theorem 1.6.1 would be actu-
ally a constant-depth circuit and PARITY could be approximated by constant
depth circuits of size 2O(n1/c) with advantage 1/2O(n1/c). This is not enough for the
contradiction with Hastad’s theorem. Nevertheless, it is sufficient if we replace
polynomial circuit lower bounds LB(SAT, nk) by quasi polynomial lower bounds
LB(SAT, nlogn):

∀m > n0, ∀C, ∃y, a, |a| < |y| = n, ∀w, |w| ≤ nlogn = m,
[Comp(C, y, w)→

(C(y;w) = 0 ∧ SAT (y, a)) ∨ (C(y;w) = 1 ∧ ∀z¬SAT (y, z))]

where n is the number of inputs to C and m represents nlogn (or simply
|m| = |n|2).

If V 0 ` LB(SAT, nlogn), then in the proof of Theorem 1.6.1 we can use instead
of n4kc-size circuits of the form (NWf,A(x))y with x ∈ {0, 1}n2c

say n4kblog lognc-
size circuits (NWf,A(x))y with x of size n2blog lognc and big enough k. The proof

28

works for big enough n even if c = log log n. The size of the resulting constant-
depth circuit F is then 2O(n1/blog lognc) with advantage 1/2O(n1/blog lognc) contradicting
Hastad’s theorem.

Corollary 1.6.3. V 0 6` LB(SAT, nlogn).

Acknowledgement

I would like to thank Jan Kraj́ıček, Albert Atserias, Sam Buss and an anonymous
reviewer for many useful discussions, comments and suggestions. This research
was supported by grant GAUK 5732/2012 and partially by grants IAA100190902
of GA AV ČR and SVV-2012-267317. A part of this research was done while I
was a visiting fellow at the Isaac Newton Institute in Cambridge in Spring 2012
supported by grant N-SPP 2011/2012.

29

Bibliography

[1] Buss S.R.; Bounded Arithmetic, Bibliopolis, Naples, 1986.

[2] Buss S.R.; The Polynomial Hierarchy and Intuitionistic Bounded Arithmetic,
Structure in Complexity, Lecture Notes in Computer Science #223, 1986,
77-103.

[3] Buss S.R.; Bounded arithmetic, cryptography and complexity, Theoria, 63
(1997), 147-167.

[4] Cook S.A.; Feasibly constructive proofs and the propositional calculus, Pro-
ceedings of the 7th Annual ACM Symposium on Theory of Computing, ACM
Press, 1975, 83-97.

[5] Cook S.A., Kraj́ıček J.; Consequences of the Provability of NP⊆P/poly, J.
of Symbolic Logic, 72 (2007), 1353-1357.

[6] Cook S.A., Mitchell D.G.; Finding Hard Instances of the Satisfiability prob-
lem: A survey, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 1997.

[7] Cook S.A., Nguyen P.; Logical Foundations of Proof Complexity, Cambridge
University Press, 2010.

[8] Hastad J.; Computational limitations for small depth circuits, PhD thesis,
M.I.T. press, 1986.

[9] Jeřábek E.; Dual weak pigeonhole principle, Boolean complexity and deran-
domization, Annals of Pure and Applied Logic, 129 (2004) 1-37.

[10] Jeřábek E.; Approximate counting in bounded arithmetic, Journal of Sym-
bolic Logic, 72 (2007), 959-993.

[11] Kent C.F., and Hodgson B.R.; An arithmetic characterization of NP, Theo-
retical Comput. Sci., 21 (1982), 255-267.

[12] Kraj́ıček J.; No counter-example interpretation and interactive computation,
Logic from Computer Science, 21 (1992), 287-293.

[13] Kraj́ıček J.; Bounded arithmetic, propositional logic, and complexity theory,
Cambridge University Press, 1995.

[14] Kraj́ıček J.; Extensions of models of PV, Logic Colloquium ’95, ASL Springer
Series Lecture Notes in Logic, 11 (1998), 104-114.

[15] Kraj́ıček J.; On the proof complexity of the Nisan-Wigderson generator based
on NP∩coNP function, J. of Mathematical Logic, 11 (2011), 11-27.

[16] Kraj́ıček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polynomial
hierarchy, Annals of Pure and Applied Logic, 52 (1991), 143-153.

30

[17] Nisan N., Wigderson A.; Hardness vs. Randomness, J. Comput. System Sci.,
49 (1994), 149-167.

[18] Pudlák P.; Some relations between subsystems of arithmetic and complexity
theory, Proc. Conf. Logic from Computer Science, 21 (1992), 499-519.

[19] Razborov A.A; Unprovability of Lower Bounds on the Circuit Size in Cer-
tain Fragments of Bounded Arithmetic, Izvestiya of the Russian Academy
of Science, 59 (1995), 201-224.

[20] Razborov A.A; Pseudorandom Generators Hard for k-DNF Resolution and
Polynomial Calculus, preprint, 2002-2003.

[21] Stockmayer L.J.; The polynomial-time hierarchy, Theoretical Comput. Sci.,
3 (1976), 1-22.

[22] Wrathall C.; Complete sets and the polynomial-time hierarchy. Theoretical
Comput. Sci., 3 (1976), 23-33.

31

2. Attachment:

32

Logical strength of complexity theory and a
formalization of the PCP theorem in bounded

arithmetic
Ján Pich

Department of Algebra
Faculty of Mathematics and Physics

Charles University in Prague
Sokolovska 83, Prague, CZ-186 75, The Czech Republic

Abstract

We present several known formalizations of theorems from computational com-
plexity in bounded arithmetic and formalize the PCP theorem in the theory PV1

(no formalization of this theorem was known). This includes a formalization of
the existence and of some properties of the (n, d, λ)-graphs in PV1.

2.1 Introduction

The aim of this paper is to show that a lot of complexity theory can be formalized
in low fragments of arithmetic like Cook’s theory PV1.

Our motivation is to demonstrate the power of bounded arithmetic as a coun-
terpart to the unprovability results we already have or want to obtain, and gen-
erally to find out how complexity theory behaves in different worlds of bounded
arithmetic.

Concerning the unprovability results, Pich [24] proves that under certain hard-
ness assumptions theory TNC1 , the true universal first-order theory in the lan-
guage containing names for all uniform NC1 algorithms, cannot prove polynomial
circuit lower bounds on SAT formalized naturally by a sentence LB(SAT, nk). In
fact, that result generalizes basically to any theory weaker than PV1 in terms of
provably total functions. The question whether PV1 proves LB(SAT, nk) remains
open even if we allow standard complexity-theoretic hardness assumptions, see
the discussion in Section 2.2.

Generally, it would be interesting to arrive at a complexity-theoretic state-
ment, not necessarilly circuit lower bounds, whose provability in PV1 unexpect-
edly contradicts some other natural hypothesis. To understand better what are
plausible candidates for such statements it might help us to investigate the the-
orems which are provable in low fragments of arithmetic.

In the present paper we will describe the formalization of just a few results;
however, this should suffice to illustrate the power of the respective theories.
Actually, many classical theorems from complexity theory have been already for-
malized in bounded arithmetic. In the table closing this section we list some
representative examples. It should be understood that any of the formalized re-
sults is accompanied by a lot of other theorems that are formalizable in a similar
fashion. In fact, some of the formalizations are so evident that they are used

33

without a proof as a folklore. This is the case of Cook-Levin’s theorem whose
formalization we nevertheless describe for expository reasons in Section 2.4 as it
gives us the opportunity to introduce some notions. For more details concerning
the list see Section 2.3.

The main original contribution of this paper is a formalization of the expo-
nential PCP theorem in the theory APC1 and the PCP theorem in the theory
PV1. Perhaps the most challenging part here was to formalize properties of the
(n, d, λ)-graphs needed to derive the PCP theorem. These are usually obtained
using algebraic techniques involving norms over real vector spaces coming all the
way down to the fundamental theorem of algebra etc. In order to avoid formaliza-
tion of this machinery (and it is not clear whether this could be done) we employ
certain approximations to derive slightly weaker properties of the (n, d, λ)-graphs
in the theory PV1 which, however, suffice to derive the PCP theorem in PV1.

As the exponential PCP theorem follows trivially from the PCP theorem,
the exponential version is actually also provable in PV1. Nevertheless, although
the proof of the exponential version is used in the proof of the PCP theorem,
its formalization in APC1 is different. In PV1 it is applied so that we need to
reason only about sets of constant size, while in APC1 it is performed with p-time
definable sets. Hence, the APC1 proof shows different techniques to be available
in low fragments of arithmetic.

The paper is organized as follows. In Section 2.2 we describe general properties
of our formalizations and define theories of bounded arithmetic in which these
formalizations take place. In Section 2.3 we discuss theorems that have been
already formalized in bounded arithmetic as well as the new ones obtained in
this paper. Section 2.4 illustrates a formalization of the Cook-Levin theorem in
PV1. In Section 2.5 we prove the exponential PCP theorem in APC1. Section
2.6 formalizes pseudorandom constructions in PV1 which are then used in Section
2.7 to formalize the PCP theorem in PV1.

Theory Theorem Reference

PV1 Cook-Levin’s theorem Section 2.4
(n, d, λ)-graphs Section 2.6
the PCP theorem Section 2.7

PV1 +WPHP (PV1) PARITY /∈ AC0 [18]
APC1 BPP, ZPP, AM,... [15]

Goldreich-Levin’s theorem [11]
the exponential PCP theorem Section 2.5

HARDε Impagliazzo-Wigderson’s derandom. [14]
HARDA Nisan-Wigderson’s derandomization [13]
T 1

2 + rWPHP (PV2) SP2 ⊆ ZPPNP [17]
APC2 Graph isomorphism in coAM [17]

APC
⊕pP
2 Toda’s theorem [5]

The theories are listed from the weakest to the strongest one.

34

2.2 Formalizations in bounded arithmetic: ini-

tial notes

The usual language of arithmetic contains well known symbols: 0, S,+, ·,=,≤.
To encode reasoning about computations it is helpful to consider also symbols
bx

2
c, |x| and # with the intended meaning ”the whole part of x

2
”, ”the length of

the binary representation of x”, and x#y = 2|x|·|y|. The language L containing
all these symbols was used by Buss [4] to define the theory S1

2 (see below).
All theories we will work with, a subset of theories collectively known as

bounded arithmetic, contain L as a part of their language.

The defining properties of symbols from L are captured by a set of basic
axioms denoted as BASIC which we will not spell out, cf. Kraj́ıček [18].

A quantifier is sharply bounded if it has the form ∃x, x ≤ |t| or ∀x, x ≤ |t|
where t is a term not containing x. A quantifier is bounded if it is existential
bounded: ∃x, x ≤ t for x not occuring in t, or universal bounded: ∀x, x ≤ t for
x not occuring in t. By Σb

0 (=Πb
0 = ∆b

0) we denote the set of all formulas in the
language L with all quantifiers sharply bounded. For i ≥ 0, the sets Σb

i+1 and
Πb
i+1 are the smallest sets satisfying

(a) Σb
i ∪ Πb

i ⊆ Σb
i+1 ∩ Πb

i+1

(b) Σb
i+1 and Πb

i+1 are closed under ∧,∨ and sharply bounded quantification
(c) Σb

i+1 is closed under bounded existential quantification
(d) Πb

i+1 is closed under bounded universal quantification
(e) the negation of a Σb

i+1-formula is Πb
i+1

(f) the negation of a Πb
i+1-formula is Σb

i+1.

In words, the complexity of bounded formulas in language L (formulas with all
quantifiers bounded) is defined by counting the number of alternations of bounded
quantifiers, ignoring the sharply bounded ones. For i > 0, ∆b

i denotes Σb
i ∩ Πb

i .

An example of a bounded arithmetic theory is the theory S1
2 introduced by

Buss [4]. The language of S1
2 is L and its axioms consist of BASIC and Σb

1-PIND
scheme which is the following kind of polynomial induction for Σb

1-formulas A:

A(0) ∧ ∀x, (A(bx/2c)→ A(x))→ ∀xA(x)

Buss [4] showed that whenever S1
2 proves a formula of the form ∃y, A(x, y) for

Σb
1-formula A, then there is a p-time function f such that A(x, f(x)) holds for all

x.

Theories of bounded arithmetic generally cannot prove the totality of func-
tions with superpolynomial growth of length. This follows from a theorem of
Parikh [23]. In particular, ∀k ∃x, ||x|| = k is unprovable. Consequently, if we
want to prove in bounded arithmetic a statement of the form ”for all k, n, there
is an nk-size circuit (encoded by a binary string of some number, i.e. ∃x, |x| = nk)
s.t. ...” we need to quantify the exponent k outside of the respective theory. That
is, in such cases instead of proving

T ` ”for all k, n, there is an nk-size circuit s.t. ...”

we prove

35

”for all k, T ` for all n, there is an nk-size circuit s.t. ...”

Informally speaking, only the ”feasible part” of the theorem is provable inside
the theory.

In our formalizations numbers encode binary strings in a natural way. We
then follow the convention that inputs of circuits, algorithms or functions are
represented by binary strings. For example, when talking about nk-size circuit
lower bounds the number of inputs of nk-size circuits is the length of some number,
i.e ∃x, n = |x|. However, it does not necessarilly follow that n is smaller, say,
∃x, n = ||x||. To indicate sizes of objects inside our theories we employ the
shorthand notation x ∈ Log ↔ ∃y, x = |y| and x ∈ LogLog ↔ ∃y, x = ||y||.

On the contrary, for example Razborov [25] considered (second-order) formal-
izations of circuit lower bounds (corresponding in first-order logic to the formal-
ization) where p-size circuits with n inputs were required to satisfy n ∈ LogLog.
Thus, in his formalization, truth tables of functions computed by p-size circuits
are encoded by binary strings. The respective theory is much stronger with re-
spect to such formalization; it is as if it could manipulate with exponentially big
objects. Formalizing known theorems is then easier and proving unprovability
results is on the other hand formally much harder.

Similarly, in propositional proof complexity there are candidate hard tau-
tologies for strong proof systems like Extended Frege which express circuit lower
bounds on SAT (and other functions), see formulas ¬Circuitt(f) in Razborov [26]
or τ(tts,k)f in Kraj́ıček [19]. Using a standard translation into first-order logic
they again correspond to the formalization where truth tables of SAT are encoded
by binary strings. Therefore, by the known relation between propositional proof
systems and bounded arithmetics, the hardness of such formulas for Extended
Frege would imply a conditional unprovability of superpolynomial circuit lower
bounds on SAT in PV1 formalized in such a way that the theory PV1 would be
exponentially stronger than it is with respect to the formalization of circuit lower
bounds LB(SAT, nk) considered in Pich [24]. The formalization LB(SAT, nk)
follows the convention of our current paper.

However, the fact advocated here, that a lot of complexity theory is formal-
izable in theories like PV1, suggests that it might be also hard to obtain the un-
provability of LB(SAT, nk) in PV1. Actually, the unprovability of LB(SAT, nk)
in PV1 would imply that there is no provable witnessing of errors of p-time algo-
rithms claiming to solve SAT which is itself (interesting and) a reason to expect
hardness of such unprovability result, see Pich [24].

2.2.1 Theory PV1: formalized p-time reasoning

PV1 introduced in Kraj́ıček-Pudlák-Takeuti [20] is a conservative extension of an
equational theory PV introduced by Cook [8].

The language of PV and PV1 consists of symbols for all p-time algorithms
given by Cobham’s characterization of p-time functions (described below). In
particular, it contains L. By a slight abuse of the notation we denote the language
of PV1 and PV also PV . A PV -formula is a first-order formula in the language
PV . The hierarchy of Σb

i(PV)- and Πb
i(PV)-formulas is defined similarly to Σb

i

and Πb
i (in first-order logic with equality) but in the language of PV .

36

In PV we can define p-time concepts and prove their basic properties. More
precisely, every p-time function can be straightforwardly defined as a PV -function.
Therefore, in the theory PV1 which is a first-order theory we can reason about
p-time concepts. We can interpret provability in PV1 as capturing the idea of
what can be demonstrated when our reasoning is restricted to manipulation of
p-time objects. However, strictly speaking, this description would also fit the
theory S1

2 in which in addition uses NP-concepts in induction. Anyway, it is a
natural question which properties of p-time concepts are provable using only such
p-time reasoning.

Definition 2.2.1. A function f is defined from functions g, h0, h1 and l by limited
recursion on notation if:

1. f(x, 0) = g(x)
2. f(x, si(y)) = hi(x, y, f(x, y)), for i = 0, 1
3. f(x, y) ≤ l(x, y)

where s0(y), s1(y) are functions adding 0, resp. 1, to the right of the binary
representation of y, i.e. s0(y) := 2y, s1(y) = 2y + 1.

Theorem 2.2.1 (Cobham [7]). The set of polynomial time functions is the small-
est set of functions containing constant 0, functions s0(y), s1(y), x#y, and closed
under:

1. permutation and renaming of variables,
2. composition of functions,
3. limited recursion on notation.

Definition 2.2.2 (Cook [8]). We simultaneously define function symbols of rank
k and PV -derivations of rank k, k = 0, 1, The language of PV will then consist
of all function symbols of any rank, and a PV -derivation will be a PV -derivation
of any rank.

1. Function symbols of rank 0 are constant 0, unary s0(y), s1(y) and Tr(x); and
binary x_y, x#y, and Less(x, y)

2. Defining equations of rank 0 are:

Tr(0) = 0
Tr(si(x)) = x, i = 0, 1

x_0 = x
x_(si(y)) = si(x_y), i = 0, 1

x#0 = 0
x#si(y) = x_(x#y), i = 0, 1

Less(x, 0) = x
Less(x, si(y)) = Tr(Less(x, y)), i = 0, 1

Tr(x) deletes the rightmost bit, x_y is the concatenation, x#y is |y| concatenated
copies of x, and Less(x, y) is x with |y| right bits deleted

3. PV rules are as follows. Let t, u, v, t1, u1, ..., tk, uk, f, f1, f2 be function symbols.
R1. from t = u derive u = t
R2. from t = u, u = v derive t = v
R3. from t1 = u1, ..., tk = uk derive f(t1, ..., tk) = f(u1, ..., uk)
R4. from t = u derive t(x/v) = u(x/v)

37

R5. Let E1, ..., E6 be the equations (1-3) from the definition of the limited
recursion on notation: three for f1 and three for f2 in place of f . Then from
E1, ..., E6 PV can derive f1(x, y) = f2(x, y)

4. PV-derivations of rank k are sequences of equations E1, ..., Et in which every
function symbol is of rank ≤ k and every Ei is either a defining equation of rank
≤ k or derived from some earlier equations by one of the PV-rules

5. Let t be a term consisting of function symbols of rank ≤ k. Then ft is a
function symbol of rank k + 1 and ft = t is a defining equation of rank k + 1.

6. Other function symbols of rank k + 1 are obtained as follows. Whenever
g, h0, h1, l0, l1 are function symbols of rank ≤ k and π0, π1 are PV-derivations of
rank k of equality Less(hi(x, y, z), z_li(x, y)) = 0 then f = f(g,h0,h1,l0,l1,π0,π1) is a
function symbol of rank k + 1, and the equations defining f from g, hi by limited
recursion on notation are defining equations of rank k + 1.

PV1 is a theory in the first-order predicate logic which consists of all equations
provable in PV but has also a form of induction axiom: For an open formula ψ(x)
define a function h(b, y) by

(a) h(b, 0) = (0, b)
(b) if h(b, bu/2c) = (x, y) and u > 0 then

h(b, u) := (dx+ y/2e, y) if dx+ y/2e < y ∧ ψ(dx+ y/2e)
:= (x, dx+ y/2e) if x < dx+ y/2e ∧ ¬ψ(dx+ y/2e)
:= (x, y) otherwise

Then PV1 contains the universal axiom

(ψ(0) ∧ ¬ψ(b) ∧ h(b, b) = (x, y))→ (x+ 1 = y ∧ ψ(x) ∧ ¬ψ(y))

Note that PV1 is a universal theory.

It can be shown that PV1 proves Σb
0(PV)-induction, cf. Kraj́ıček [18]. That

is, for any Σb
0(PV)-formula A, PV1 proves

A(0) ∧ ∀x(A(x)→ A(x+ 1))→ ∀xA(x)

In PV we can speak about formulas, circuits, Turing machines and other
similar notions which can be encoded using finite sequences of numbers. These
are encodable in PV in a well-behaved way so that basic operations on sequences
like concatenation are definable by terms, i.e. by functions in the language. For
more details see Kraj́ıček [18] where the function (w)i which extracts the ith
element from a sequence w is shown to be ∆b

1-definable in S1
2 but the definition

is given by a p-time predicate so it can be written as an open PV -formula.

All PV -functions have well-behaved ∆b
1-definitions in S1

2 . Hence, S1
2 can be

seen as an extension of PV1, cf. Buss [4]. Moreover, Buss’s witnessing theorem
[4] implies that S1

2 is ∀Σb
1-conservative over PV1. This means that when proving

a ∀Σb
1 statement in PV1 we can actually use S1

2 . In particular, we will use an
induction scheme denoted as Πb

1-LLIND which is provable in S1
2 and says that for

any Πb
1(PV)-formula A the following holds,

A(0) ∧ ∀x ≤ ||a|| (A(x)→ A(x+ 1))→ A(||a||)

38

In Proposition 2.6.9, we will also use an induction scheme which we denote
Πb

1-LPIND. It is a weaker form of Πb
1-PIND, cf. Kraj́ıček [18], so it is derivable

in S1
2 . For any Πb

1(PV)-formula A:

A(a) ∧ A(a2) ∧ [∀l ≤ ||b||, (A(ab(l−1)/2c) ∧ A(ad(l−1)/2e)→ A(al))]→ A(a||b||)

2.2.2 Theory APC1: formalized probabilistic p-time rea-
soning

To reason about probabilistic p-time concepts we will use an extension of PV1 in
which Jeřábek [15] developed a well-behaved notion of probability based on an
approximate counting.

In this section, we recall a part of his work which we will use to formalize the
exponential PCP theorem.

The dual (or surjective) pigeonhole principle for f , written as dWPHP (f), is
the universal closure of the formula

x > 0→ ∃v < x(|y|+ 1)∀u < x|y|f(u) 6= v

For a set of functions Γ, dWPHP (Γ) := {dWPHP (f)|f ∈ Γ}.
Theory APC1 is defined as PV1 +dWPHP (PV) where PV stands for the set

of PV -functions.

When a number a is used in a context which asks for a set it is assumed to
represent the integer interval [0, a), e.g. X ⊆ a means that all elements of X are
less than a. If X ⊆ a, Y ⊆ b, then X × Y := {bx + y|x ∈ X, y ∈ Y } ⊆ ab and
X∪̇Y := X ∪ {y + a|y ∈ Y } ⊆ a+ b.

We will often work with rational numbers which are assumed to be represented
by pairs of integers in the natural way. By a definable set we mean a collection
of numbers satisfying some formula, possibly with parameters.

Let n,m ∈ Log, C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable
sets.We write C : X � Y if Y ⊆ C[X], i.e. ∀y ∈ Y ∃x ∈ X, C(x) = y. The
following definitions are taken from Jeřábek [15].

Definition 2.2.3 (in APC1). Let X, Y ⊆ 2n be definable sets, and ε ≤ 1. We say
that the size of X is approximately less than the size of Y with error ε, written
as X �ε Y , if there exists a circuit G, and v 6= 0 such that

G : v × (Y ∪̇ε2n) � v ×X

The sets X and Y have approximately the same size with error ε, written as
X ≈ε Y , if X �ε Y and Y �ε X.

A number s identified with the interval [0, s), so X �ε s means that the size
of X is at most s with error ε.

Definition 2.2.4 (in APC1). Let X ⊆ 2|t| be a definable set and 0 ≤ ε, p ≤ 1.
We define

Prx<t[x ∈ X] �ε p iff X ∩ t �ε pt
and similarly for ≈.

39

The definition of �ε is an unbounded ∃Πb
2-formula so it cannot be used freely

in bounded induction. This problem was solved by Jeřábek [15] by working in a
suitable conservative extension of APC1.

Definition 2.2.5 (in PV1). Let f : 2k 7→ 2 be a truth-table of a Boolean function
(f is encoded as a string of 2k bits, hence k ∈ LogLog). We say that f is (wors-
case) ε-hard, written as Hardε(f) if no circuit C of size 2εk computes f . The
function f is average-case ε-hard, written as HardAε (f), if for no circuit C of size
≤ 2εk:

|{u < 2k|C(u) = f(u)}| ≥ (1/2 + 2−εk)2k

Proposition 2.2.1 (Jeřábek [13]). For every constant ε < 1/3 there exists a
constant c such that APC1 proves: for every k ∈ LogLog such that k ≥ c, there
exist average-case ε-hard functions f : 2k 7→ 2.

PV1 can be relativized to PV1(α). The new function symbol α is then allowed
in the inductive clauses for introduction of new function symbols in definition
2.2.2. This means that the language of PV1(α), denoted also PV (α), contains
symbols for all p-time oracle algorithms.

Definition 2.2.6 (Jeřábek [13]). The theory HARDA is an extension of the
theory PV1(α) + dWPHP (PV (α)) by the axioms

1. α(x) is a truth-table of a Boolean function in ||x|| variables

2. x ≥ c→ HardA1/4(α(x))

3. ||x|| = ||y|| → α(x) = α(y)

where c is the constant from the previous lemma.

Theorem 2.2.2 (Jeřábek [13, 15]). HARDA is a conservative extension of APC1.
Moreover, there is a PV (α)-function Size such that HARDA proves: if X ⊆ 2n

is definable by a circuit C, then

X ≈ε Size(C, 2n, e)

where ε = |e|−1

We will abuse the notation and write Size(X, ε) instead of Size(C, 2n, e).

Definition 2.2.7 (in APC1). If X ⊆ 2|t| is defined by a circuit and ε−1 ∈ Log,
we put

Prx<t[x ∈ X]ε :=
1

t
Size(X ∩ t, ε)

Jeřábek [15] showed that these definitions are well-behaved:

Proposition 2.2.2. (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n be definable sets and
ε, δ < 1. Then

i) X ⊆ Y ⇒ X �0 Y
ii) X �ε Y ∧ Y �δ Z ⇒ X �ε+δ Z
iii) X �ε X ′ ∧ Y �δ Y ′ ⇒ X × Y �ε+δ+εδ X ′ × Y ′

40

Proposition 2.2.3. (in APC1)
1. Let X, Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ε, δ, θ, γ ≤ 1, γ−1 ∈ Log.
Then

i) X �ε Y ⇒ 2n − Y �ε+δ 2n −X
ii) X ≈ε s ∧ Y ≈δ t ∧X ∩ Y ≈θ u⇒ X ∪ Y ≈ε+δ+θ+γ s+ t− u

2. Let X ⊆ 2n × 2m and Y ⊆ 2m be definable by circuits, t �ε Y and s �δ Xy

for every y ∈ Y , where Xy := {x| 〈x, y〉 ∈ X}. Then for any γ−1 ∈ Log
st �ε+δ+εδ+γ X ∩ (2n × Y)

3. (Chernoff’s bound) Let X ⊆ 2n,m ∈ Log, 0 ≤ ε, δ, p ≤ 1 and X �ε p2n. Then

{w ∈ (2n)m||{i < m|wi ∈ X}| ≤ m(p− δ)} �0 c4
m(cε−δ2)2nm

for some constant c, where w is treated as a sequence of m numbers less than 2n

and wi is its i-th member.

2.3 Previous formalizations of complexity theo-

ry and our contribution

Many classical theorems from complexity theory have been already formalized
in bounded arithmetic. In the following sections we present some representative
examples from different areas of complexity theory. The last section describes
the formalizations that are obtained in this paper.

2.3.1 NP-completeness

Actually, formalization of some theorems is a folklore used without a proof. For
example, Cook-Kraj́ıček [9] mention that NP-completeness of SAT can be for-
malized in PV1.

Theorem 2.3.1 (Cook-Levin’s theorem in PV1). (a) For every Σb
1-formula φ(x),

there is a PV -function f(x) such that

PV1 ` φ(x)↔ ∃ySAT (f(x), y)

where SAT (z, y) is an open PV -formula which holds iff truth assignment y sat-
isfies propositional formula z.

(b) For each k we have a PV -function f such that PV1 proves: for any M,x,

∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1↔ ∃y, |y| ≤ 3|M ||x|2k, SAT (f(M,x), y)

where M(x, z, w) = 1 is an open PV -formula which holds iff w is an accepting
computation of Turing machine M on input x, z (so we are slightly abusing the
notation as M is actually a free variable in the formula M(x, z, w) = 1) and |M |
is the length of M ’s code.

Note that formulations (a) and (b) are essentially equivalent because the for-
mula ∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1 is Σb

1 and any Σb
1-formula φ(x) is equiv-

alent in PV1 to a formula ∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1 for some k and M .
In (b) we have in addition also an explicit bound on y.

For expository reasons we present a proof of (b) in Section 2.4.

41

2.3.2 Randomized computation

The main application of approximate counting in APC1 is in the formalization
of probabilistic algorithms in APC1 and complexity classes like BPP and AM.
Jeřábek’s formalizations involve many other results we will not state explicitely
like ”promise BPP ⊆ P/poly” (Lemma 3.10 in Jeřábek [15]), Rabin-Miller algo-
rithm (Example 3.2.10 in Jeřábek [14]) but also principles like Stirling’s bound
on binomial coefficients.

Definition 2.3.1 (Jeřábek [15]). (in APC1) A definable randomized algorithm
is given by a pair of PV -functions f, r such that

∃w < r(x) f(x,w) 6= ∗ → Prw<r(x)[f(x,w) = ∗] �0 1/2

where ∗ is a special symbol signallizing a rejecting computation.

The special symbol ∗ could be avoided but it is useful for denoting a ”failure-
state” of probabilistic algorithms. It can be used when the input random string
does not encode the expected structure, say a graph or a formula.

Definition 2.3.2 (Jeřábek [15]). (in APC1) A PV -function r and a PV -predicate
A define a BPP language if for each x either Prw<r(x)[¬A(x,w)] �0 1/4 or
Prw<r(x)[A(x,w)] �0 1/4.

Theorem 2.3.2 (Jeřábek [15]). Let A be a PV -predicate and r a PV -function.
There are Σb

2-formulas σ+(x), σ−(x) and Πb
2-formulas π+(x), π−(x) such that APC1

proves

Prw<r(x)[¬A(x,w)] �0 1/4→ π+(x)→ σ+(x)→ Prw<r(x)[¬A(x,w)] �0 1/3

Prw<r(x)[A(x,w)] �0 1/4→ π−(x)→ σ−(x)→ Prw<r(x)[A(x,w)] �0 1/3

In particular, any definable BPP language is in Σb
2 ∩ Πb

2.

In [17] Jeřábek formalized Cai’s [6] result stating that SP2 ⊆ ZPPNP in the
theory T 1

2 + rWPHP (PV2). Here, T 1
2 is defined as S1

2 but with induction for
Σb

1-formulas, PV2 denotes functions computable in polynomial time relative to
NP, and rWPHP (PV2) is a set of axioms

x > 0→ ∃y < x(|y|+ 1)(g(y) ≥ x|y| ∨ f(g(y)) 6= y)

for PV2-functions f, g.
Note that rWPHP (f, g) follows from dWPHP (f).

The complexity class SP2 consists of languages for which there exists a p-time
predicate R such that

x ∈ L⇒ ∃y∀zR(x, y, z)

x /∈ L⇒ ∃z∀y¬R(x, y, z)

where |y|, |z| are implicitly bounded by a polynomial in |x|.

Theorem 2.3.3 (Jeřábek [17]). (in T 1
2 +rWPHP (PV2)) The complexity class SP2

is contained in ZPPNP . That is, for each p-time relation R defining a language
L ∈ SP2 , there exists ZPPNP -predicate P definable in T 1

2 + rWPHP (PV2) such
that the same theory proves x ∈ L⇔ P (x).

42

2.3.3 Circuit lower bounds

In [18, Section 15.2] Kraj́ıček proves PARITY /∈ AC0 in the theory
PV1 +WPHP (PV1). By WPHP (PV1) he denotes the set of axioms

a > 0→ ∃y ≤ 2a∀x ≤ a, f(x) 6= y

for every PV1-function symbol f(x) where f may have other arguments besides
x and they are treated as parameters in the axioms.

It is known that WPHP (PV1) and dWPHP (PV) are equivalent over S1
2

but distinct over PV1, see [16]. However, the theory PV1 + dWPHP (PV) is
∀Σb

1-conservative over PV1 + {∃y < a#a ∀x < a, f(x) 6= y| for PV-functions f}
(noted in Jeřábek [16] as a corollary of earlier results).

Theorem 2.3.4 (Kraj́ıček [18], Section 15.2). Let d, k be arbitrary constants.
Then the theory PV1+WPHP (PV1) proves that for any sufficiently large n ∈ Log
there are no depth d circuits of size ≤ knk computing PARITY (x1, ..., xn).

In [25] Razborov developes a logical formalism supporting his feeling that S1
2

is the right theory to capture that part of reasoning in Boolean complexity which
led to actual lower bounds for explicitely given Boolean functions. He formalizes
lower bounds for constant-depth circuits over the standard basis, lower bounds for
monotone circuits, lower bounds for constant-depth circuits with MOD-q gates,
and lower bounds for monotone formulas based on communication complexity.

Importantly, his formalizations presented in second-order logic correspond in
first-order logic to the formalization where the number of inputs of circuits in
the respective theorems is in LogLog. This makes it more suitable for encoding
into the propositional setting but it also makes the formalization results formally
weaker.

2.3.4 Interactive proofs

Jeřábek [17] formalized the equivalence of public-coin and private-coin interactive
protocols in the theory APC2 := T 1

2 + dWPHP (PV2). This is illustrated on the
example of the isomorphism problem: given two structures G0 and G1 (as tables)
of the same signature, determine whether G0 ' G1.

Definition 2.3.3 (Jeřábek [15]). (in APC2) A pair 〈φ, r〉 where φ(x,w) is a Σb
1-

formula, and r is a PV -function, defines an AM language if for each x either
Prw<r(x)[¬φ(x,w)] �1

0 1/4 or Prw<r(x)[φ(x,w)] �1
0 1/4 where �1

0 denotes �0

relativized with a Σb
1-complete oracle.

Theorem 2.3.5 (Jeřábek [17]). (in APC2) Graph nonisomorphism is in AM.

2.3.5 Cryptography

Recently, Dai Tri Man Le [11] formalized Goldreich-Levin’s theorem in APC1.

Theorem 2.3.6 (Dai Tri Man Le [11]). (in APC1) Let f : {0, 1}n → {0, 1}n be
a function computed by a circuit of size t, and suppose that there exists a circuit

43

C of size s such that

Pr(x,r)∈{0,1}2n [C(f(x), r) =
n⊕
i=1

xiri]ε ≥
1

2
+

1

p(n)

If ε = 1
poly(n)

is sufficiently small, then there is a circuit C ′ of size at most

(s+ t)poly(n, 1/ε) and q = poly(n) such that

Pr(x,r′)∈{0,1}n×{0,1}q [f(C ′(f(x), r′)) = f(x)]ε ≥
1

4p(n)
− 15ε

2

2.3.6 Complexity of counting

In [5], Buss, Kolodziejczyk and Zdanowski derived Toda’s theorem in an extension
of the theory APC2.

For a fixed prime p ≥ 2, they denote by Ck
p for k ∈ [p] quantifiers counting

mod p. The intended meaning of Ck
px ≤ tA(x) is that the number of values x ≤ t

for which A is true is congruent to k mod p. See [5] for the explicit list of axioms
defining Ck

p .
A ⊕pP formula is a formula which is either atomic, or of the form Ck

px ≤ tA(x)

where A is sharply bounded. Σ
b,⊕pP
0 = Π

b,⊕pP
0 is the set of formulas obtained as

the closure of ⊕pP formulas under Boolean connectives ∨,∧,¬ and under sharply

bounded quantifiers. For i ≥ 1, the strict formula sets Σ̂b,⊕pPi are defined in the
usual way by counting the number of alternations of bounded quantifiers.

T
1,⊕pP
2 is the theory axiomatized by the axioms for PV1 symbols, the Ck

p

axioms for sharply bounded formulas A(x), and Σ̂
b,⊕pP
1 -IND.

APC
⊕pP
2 := T

1,⊕pP
2 + dWPHP (PV

⊕pP
2) where PV

⊕pP
2 means functions that

can be computed in polynomial time relative to NP⊕pP .
Σb
∞(⊕p) denotes formulas formed from bounded existential, universal, and Cp

quantifiers.
In APC

⊕pP
2 , we say that a language is in BP ·⊕pP if there exists PV1 functions

f and u such that for all x,

x ∈ L⇔ Prr<u(x)[f(x, r) /∈ ⊕1
pSAT] �0 1/4

x /∈ L⇔ Prr<u(x)[f(x, r) /∈ ⊕0
pSAT] �0 1/4

where ⊕ipSAT is the set of propositional formulas φ such that the number of
satisfying assignments of φ is congruent to i mod p for some prime p.

Theorem 2.3.7 (Buss, Kolodziejczyk, Zdanowski [5]). APC
⊕pP
2 proves that any

Σb
∞(⊕p) formula defines a property in BP·⊕pP.

2.3.7 Derandomization

The approximate counting developed in APC1 relies on a formalization of the
derandomization result by Nisan and Wigderson [22].

44

Theorem 2.3.8 (Jeřábek [13]). Let F be a randomized algorithm definable in
S1

2 + dWPHP (PV). Then there are PV -functions h and g such that HARDA

proves
∃y y = F (x)↔ h(x, α(g(x))) 6= ∗

∃y y = F (x)→ h(x, α(g(x))) = F (x)

Jeřábek [14] formalized also Impagliazzo-Wigderson’s [12] derandomization
which draws the same conclusion assuming only worst-case hardness. This turned
out to be much harder than the Nisan-Wigderson construction mainly because
list decoding of error-correcting codes used in the construction requires several
algebraic tools concerning finite fields.

Theorem 2.3.9 (Jeřábek [14]). Let F be a randomized algorithm definable in
S1

2 + dWPHP (PV), and let ε > 0. Then there are PV -functions h and g such
that HARDε proves

∃y y = F (x)↔ h(x, α(g(x))) 6= ∗

∃y y = F (x)→ h(x, α(g(x))) = F (x)

Here, HARDε is defined as an extension of S1
2(α), i.e. relativized S1

2 , by the
following axioms:

1. α(x) : 2||x|| → 2

2. x ≥ c→ Hardε(α(x))

for a standard constant c.

2.3.8 Contribution of our paper: the PCP theorem and
the (n, d, λ)-graphs

We add to the list of formalized results mentioned in previous sections formal-
izations of the exponential PCP theorem, the PCP theorem, and certain pseu-
dorandom constructions involving the so called (n, d, λ)-graphs which are needed
in the proof of the PCP theorem. The exponential PCP theorem was proved
in Arora-Safra [2], and the PCP theorem is originally from Arora-Safra [2] and
Arora et.al. [3]. In [10] Dinur gave a simpler proof of the PCP theorem which we
will formalize.

Definition 2.3.4. (in APC1) Let k, k′, d be constants, x ∈ {0, 1}n for n ∈ Log.
Further, let w ∈ {0, 1}knk

(represent random bits), π be a k′nk
′
-size circuit with

m inputs where m might differ from n, and D be a knk-time algorithm.
Denote by Dπ,w(x) the output of D on input x and with access to π specified

by (random bits) w as follows. D computes π on at most d different inputs:
first, it produces strings ŵ1, ..., ŵd where each ŵi ∈ {0, 1}m, then it computes
π(ŵ1), ..., π(ŵd) and finally computes its output which is either 1 or 0.

We formulate the exponential PCP theorem in APC1 as follows. For an
explanation and a discussion concerning the choice of the formulation see Section
2.5.

45

Theorem 2.5 (The exponential PCP theorem in APC1). There are constants
d, k, k′ and a knk-time algorithm D (given as a PV -function) computing as in
Definition 2.3.4 such that APC1 proves that for any x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y)→ ∃k′nk′size circuit π ∀w < 2kn
k

, Dπ,w(x) = 1

∀y¬SAT (x, y)→ ∀k′nk′size circuit π, Pr
w<2knk [Dπ,w(x) = 1] �0 1/2

We also formalize pseudorandom constructions involving the (n, d, λ)-graphs
in PV1 but leave the presentation of these results to Section 2.6 as it would require
to introduce too many definitions now.

In order to formalize the PCP theorem we use the notion of probability Pr
on spaces of polynomial size poly(n) for n ∈ Log which is assumed to be defined
in a natural way using an exact counting of sets of polynomial size which is also
assumed to be defined in PV1 in a standard way. The notion of probability Pr
should not be confused with the definition of Pr in APC1. We formulate (the
more important implication of) the PCP theorem in PV1 as follows.

Definition 2.3.5. (in PV1) Let k, c, d be constants, x ∈ {0, 1}n, n ∈ Log,
w ∈ {0, 1}c logn, π ∈ {0, 1}dnc

, and be D be a knk-time algorithm.
Denote by Dπ,w(x) the output of D on input x and with access to π specified

by w as follows. D uses at most c log n random bits w and makes at most d
nonadaptive queries to locations of π, i.e. D can read bits πi1 , ..., πid for i1, ..., id
produced by D. Then it computes its outputs, 1 or 0.

In Definition 2.3.5 we abuse the notation and use the shortcut Dπ,w(x) in
diferent meaning than in Definition 2.3.4. This should not lead into confusion.

Theorem 2.7 (The PCP theorem in PV1). There are constants d, k, c and a
knk-time algorithm D (given as a PV -function) computing as in Definition 2.3.5
such that PV1 proves that for any x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y)→ ∃π ∈ {0, 1}dnc ∀w < nc, Dπ,w(x) = 1

∀y¬SAT (x, y)→ ∀π ∈ {0, 1}dnc

, P rw<nc [Dπ,w(x) = 1] ≤ 1/2

Note that the exponential PCP theorem follows from the PCP theorem.
Hence, the exponential version is also provable in PV1. Nevertheless, although
the proof of the exponential version is used in the proof of the PCP theorem,
its formalization in APC1 is different. In PV1 it is applied so that we need to
reason only about sets of constant size, while in APC1 it is performed with p-time
definable sets. Hence, the APC1 proof shows different tools to be available in low
fragments of arithmetic.

2.4 The Cook-Levin theorem in PV1

This section serves mainly as an illustration of some techniques available in PV1

which we later use freely in our arguments.

46

Theorem 2.4.1. (The Cook-Levin theorem in PV1) For each k, we have a PV -
function f such that PV1 proves: for any M,x,

∃w, z; |z|, |w| ≤ |x|k,M(x, z, w) = 1↔ ∃y, |y| ≤ 3|M ||x|2k, SAT (f(M,x), y))

where M(x, z, w) = 1 is an open PV -formula which holds iff w is an accepting
computation of Turing machine M on input x, z, and |M | is the length of M ’s
code.

Proof. Note firstly that PV can introduce functions using conditional definitions:

f(x) := gi(x) if Pi(x), i = 0, 1

where g0, g1 are functions already defined in PV and P0, P1 are disjoint and
exhaustive open PV -formulas. This is because such P0, P1 define p-time truth
functions which can be introduced as PV -functions P ′0, P

′
1 and f can be then

defined as
f(x) := P ′0(x)g0(x) + P ′1(x)g1(x).

Now, we show that for some PV -function f , PV1 proves (∗):

∀M,x, z, w; |z|, |w| ≤ |x|k∃y; |y| ≤ 3|M ||x|2k (M(x, z, w) = 1→ SAT (f(M,x), y))

The Turing machine M is represented as a binary string encoding a tuple
(Q,Σ, b, F, ρ) where Q is the set of states, Σ is the set of tape symbols, b ∈ Q is
the initial state, F ⊆ Q is the set of accepting states, and ρ ⊆ ((Q− F)× Σ)×
(Q× Σ× {−1, 1}) is the transition function.

We assume that the open PV -formulas M(x, z, w) = 1 and SAT (x, y) are
already constructed in a well-behaved way.

The propositional formula f(M,x) will be built from atoms Ti,j,s with intended
interpretation ”tape cell i of M contains symbol j at step s”, atoms Hi,s for ”M ’s
head is at tape cell i at step s”, and atoms Qq,s for ”M is in state q at step s”.
These atoms are assumed to be encoded in a standard way.

Given M,x we define f(M,x) gradually by introducing more and more com-
plex functions.

Let us start with a definition of function finput(x, y) mapping x, y to a con-
junction of |y| atoms representing first |y| bits of binary string x:

finput(x, 0) := 0
finput(x, si(y)) := Finput(x, y) ∧ T|y|,i,0 if |y| ≤ |x| ∧ x|y| = i, i = 0, 1

For the sake of brevity we ignored the case |y| > |x|, it is meant that in such
case finput(x, si(y)) = f(x, y). Moreover, in the definition of finput, we are again
abusing the notation: A ∧ B denotes a function which given A and B produces
a code of the conjunction of propositional formulas encoded in A and B. In
definitions of other functions in this proof we will use similarly also more complex
propositional formulas.

Next, put fins(M,x) := finput(x, x) ∧Qb,0.

Then, define fsymb(M,x, [t, l,m]) = fins(M,x) ∧ G where G is a conjunction
of formulas (Tt′,l′,m′ → ¬Tt′,l′′,m′) for all l′ 6= l′′ and t′,m′ such that [t′, l′,m′],

47

[t′, l′′,m′] ≤ [t, l,m]. This guarantees that cell t′ ≤ t contains only one symbol at
step m′ ≤ m.

fsymb(M,x, 0) := fins(M,x)
fsymb(M,x, si([t, l,m])) := fsymb(M,x, [t, l,m]) ∧ (Tt′,l′,m′ → ¬Tt′,l′′,m′)

if l′ 6= l′′∧[t′, l′,m′], [t′, l′′,m′] ≤ [t, l,m], i ∈ {0, 1}

Similarly, define fstate(M,x, [t, l,m]) by extending fsymb(M,x, [t, l,m]) with
1. Qt′,m′ → ¬Qt′′,m′ for t′ 6= t′′ (M cannot be in two different states at step

m′)
2. Ht′,m′ → ¬Ht′′,m′ for t′ 6= t′′ (Head cannot be in two different positions at

step m′)
3. Tt′,l′′,m′ ∧ Tt′,l′,m′+1 → Ht′,m′ for l′ 6= l′′ and t′, t′′ ≤ t; l′, l′′ ≤ l;m′ ≤ m

Further, in this way introduce function ftrans capturing M ’s transition func-
tion ρ.

ftrans(M,x, c) := fstate(M,x, [|x|k, |x|k, |x|k])∧
(Hj,c∧Qq,c∧Tj,σ,c →

∨
(q,σ,q′,σ′,d)∈ρ(Hj+d,c+1∧Qq′,c+1∧Tj,σ′,c+1)

Finally, f(M,x) := ftrans(M,x, |x|k) ∧
∨
r∈F,t≤|x|k Qr,t.

This defines a PV -function f . To see that (∗) holds, given M,x,w, we define
y as follows:

1. y(Tj,i,0) = 1 if xj = i for i = 0, 1 and j < |x|.
y(Tj,i,0) = 0, else.
y(Tj,i,t) = 1, if w says that tape cell j of M at step t contains i
y(Tj,i,t) = 0, else.

2. y(Hj,c) = 1, if w says that at step c head is in position j
y(Hj,c) = 0, else.

3. y(Qr,t) = 1, if w contains M in state r at step t
y(Qr,t) = 0, else.

Informally, if w indeed encodes an accepting computation of Turing machine
M on input x, z, then the previous definition produces y which satisfies all con-
juncts in formula f(M,x) because these are copying the conditions from the
definition of M(x, z, w) = 1. Therefore, we can conclude that M(x, z, w) = 1 →
SAT (f(M,x), y) in the theory PV1.

Analogously, PV1 ` ∀M,x, y, ∃w, z(SAT (f(M,x), y)→M(x, z, w) = 1).

2.5 The exponential PCP theorem in APC1

The exponential PCP theorem was proved in Arora-Safra [2]. We formalize it in
the theory APC1 basically following the presentation in Arora-Barak [1]. Howev-
er, there is a crucial change: we cannot use the Fourier transformation to derive
the linearity test because it would require manipulations with exponentially big
objects and it is not clear whether this could be done (for example, using a rep-
resentation by circuits). Instead, we formalize the so called majority correction
argument as it is presented in Moshkovitz [21]. Other parts of the proof work

48

without much change. It is essential that all sets used to express probabilities
are definable by p-size circuits so that APC1 can work with them and the proof
itself does not use more than basic operations on these sets which are available
in APC1.

Recall Definition 2.3.4 introducing the predicate Dπ,w(x). The algorithm D
will represent the so called verifier of probabilistically checkable proofs π. The
verifier is standardly defined so that π is allowed to be any string of arbitrary
length and D has an oracular access to π, it can ask for any bit of π. Then,
for a language L, L ∈ PCP (poly(n), 1) standardly means that there is a p-time
algorithm D such that:

1. If x ∈ L, then there is a string π (proof) such that D with input x of length
n and poly(n) random bits asks for at most O(1) bits of π and accepts (with
probability 1);

2. If x /∈ L, then for any π, D with input x of length n and poly(n) random
bits asks for at most O(1) bits of π and accepts with probability ≤ 1/2.

The exponential PCP theorem says that NP ⊆ PCP (poly(n), 1). As the
verifier uses poly(n) random bits, the proof π can be seen as a string of size
2poly(n). In our formalization, n ∈ Log so bounded arithmetic cannot encode
the exponentially big proofs by binary strings. In order to be able to speak
about them we represent such proofs by p-size circuits. More precisely, for a
k′nk

′
-size circuit π with m inputs and x ∈ {0, 1}m, π(x) is the x-th bit of the

proof represented by π. Hence, the condition 1.) in our formulation of the
exponential PCP theorem will look formally stronger but it follows trivially from
the standard proof. In condition 2.) our D will recognize errors only in proofs
that are represented by k′nk

′
-size circuits. We can interpret it as if the proofs that

are not represented by such circuits were automatically rejected. Alternatively,
we could also represent proofs by oracles which would maybe better reflect the
nature of the exponential PCP theorem. However, then we would need to perform
the formalization in the theory APC1 extended by such oracles.

As the NP-completeness of SAT is provable in PV1 it is sufficient to show in
APC1 that SAT ∈ PCP (poly(n), 1). This should justify Theorem 2.5 as the right
formulation of the exponential PCP theorem in APC1.

Theorem 2.5 (The exponential PCP theorem in APC1). There are constants
d, k, k′ and a knk-time algorithm D (given as a PV -function) computing as in
Definition 2.3.4 such that APC1 proves that for any x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y)→ ∃k′nk′size circuit π ∀w < 2kn
k

, Dπ,w(x) = 1

∀y¬SAT (x, y)→ ∀k′nk′size circuit π, Pr
w<2knk [Dπ,w(x) = 1] �0 1/2

Proof. For any x ∈ {0, 1}n, the algorithmD firstly reduces SAT instance x to a set
of quadratic equations: It obtains 3SAT formula equivalent to x by introducing
new variable for each gate of the formula encoded in x and clauses representing
the gate. For each clause of the form x1 ∨ x2 ∨ x3 it produces two equations
(1−x1)y = 0 and y− (1−x2)(1−x3) = 0 where y is a new variable. Analogously
for other possible clauses, if some xi occurs in the clause negatively, 1− xi in the

49

resulting equations is replaced by xi. In this way D produces a set of quadratic
equations which is solvable in F2 if and only if x is satisfiable. More precisely,
there is k0 such that if x encodes a propositional formula with n0 variables it can
be efficiently mapped to a set of m ≤ |x|k0 quadratic equations on n1 ≤ |x|k0
variables u1, ..., un1 (w.l.o.g. u1 = 1). The set of equations can be represented by
an m× n2

1 matrix A and a string b ∈ {0, 1}m satisfying:

∃y SAT (x, y)→ ∃u Au⊗ u = b

∀y ¬SAT (x, y)→ ∀u Au⊗ u 6= b

where u ∈ {0, 1}n1 and u ⊗ u is a vector of bits uiuj, i, j ∈ [n1] ordered lexico-
graphically.

The algorithm D will interpret k′nk
′
-size circuits π with n2

1 + n1 + 1 inputs
b, z, z′, where b ∈ {0, 1}, z ∈ {0, 1}n1 , z′ ∈ {0, 1}n2

1 , as circuits allowing us to
access functions fπ = WH(u) and gπ = WH(u⊗ u) for some u ∈ {0, 1}n1 in the
following way, π(0, z, z′) = WH(u)(z) and π(1, z, z′) = WH(u ⊗ u)(z′). Here,
WH(u)(z) := Σn1

i=1uizi mod 2. Similarly for WH(u ⊗ u)(z′). WH stands for
”Walsh-Hadamard”.

For any x ∈ {0, 1}n, the algorithm D with ≤ knk random bits w = rl1, ..., r
l
7

for l = 1, ...,m0, where m0 is a constant, rl1, r
l
2, r

l
3 ∈ {0, 1}n1 , rl4, r

l
5, r

l
6 ∈ {0, 1}n

2
1 ,

rl7 ∈ {0, 1}m and with access to an k′nk
′
-size circuit π accepts if and only if for

each l = 1, ...,m0, π passes the following tests

• ”linearity”: f(rl1 + rl2) = f(rl1) + f(rl2) and g(rl4 + rl5) = g(rl4) + g(rl5)

• ”gπ encodes u⊗ u”: g′(rl1 ⊗ rl2) = f ′(rl1)f ′(rl2)

• ”gπ encodes a satisfying assignment”: g′(z) = Σm
i=1(rl7)ibi for z representing

the sum Σm
i=1(rl7)i(Aiu ⊗ u) where Aiu ⊗ u is the lefthand-side of the i-th

equation in Au⊗ u = b

Here, f = fπ, g = gπ, f ′(rl1) = f(rl1 + rl3) + f(rl3), f ′(rl2) = f(rl2 + rl3) + f(rl3)
and similarly g′(rl1 ⊗ rl2) = g(rl1 ⊗ rl2 + rl6) + g(rl6), g′(z) = g(z + rl6) + g(rl6).

For any x ∈ {0, 1}n, if ∃ySAT (x, y), there is u ∈ {0, 1}n1 solving the corre-
sponding equations Au⊗u = b. Thus there is a k′nk

′
-size circuit π with n2

1+n1+1
inputs given by π(0, z, z′) := WH(u)(z) and π(1, z, z′) := WH(u ⊗ u)(z′) which
passes all the tests: for any w, the linearity is clearly satisfied by the definition.
Further:

g′(rl1 ⊗ rl2) = g(rl1 ⊗ rl2 + rl6) + g(rl6) = g(rl1 ⊗ rl2) = Σn1
i,j=1uiuj(r

l
1)i(r

l
2)j

= Σn1
i=1ui(r

l
1)iΣ

n1
j=1uj(r

l
2)j = f(r)f(r′) = f ′(r)f ′(r′)

and as Au⊗ u = b also g′(z) = Σm
i=1(rl7)ibi.

Now we will show that the algorithm D recognizes incorrect proofs with high
probability. The argument relies on the Test of linearity which we prove in Section
2.5.1.

50

Proposition 2.5.1 (Test of linearity in APC1). Let ε be sufficiently small,
ε−1 ∈ Log and let f be a function on n1 ∈ Log inputs represented by a circuit
such that for each linear function g with n1 inputs,

Prx∈{0,1}n1 [f(x) = g(x)]ε < p

Then Prx,y[f(x+ y) = f(x) + f(y)]ε �11ε+13ε2+2ε3 max{29/32, 1/2 + p/2}.

We abuse the notation and use f also in place of circuits representing f . Note
that g is represented by n1 coefficients.

Claim 2 (Local decoding in APC1). Let s < 1/4, ε ≤ 1 and f be a function on
n1 ∈ Log inputs represented by a circuit such that there is a linear function fl
which satisfies Prx<2n1 [f(x) = fl(x)]ε ≥ 1− s. Then for each x < 2n1,

Prr<2n1 [fl(x) = f(x+ r) + f(r)]ε �6ε 1− 2s.

Proof of the claim: By the assumption and Proposition 2.2.3 1.i), for x < 2n1 ,
{r|f(r) 6= fl(r)} ∩ 2n1 �2ε s2

n1 and {r|f(x+ r) 6= fl(x+ r)} ∩ 2n1 �2ε s2
n1 which

implies {r|f(r) 6= fl(r)∨f(x+r) 6= fl(x+r)}∩2n1 �4ε 2s2n1 . By linearity of fl, for
any x < 2n1 , {r|fl(x) 6= f(x+r)+f(r)} ⊆ {r|fl(r) 6= f(r)∨fl(x+r) 6= f(x+r)}.

Thus, Prr[fl(x) = f(x+ r) + f(r)]ε �6ε 1− 2s, which proves the claim.

Assume that ∀y¬SAT (x, y), so ∀u,Au⊗u 6= b and let π be arbitrary circuit of
size k′nk

′
. Further, let ε be sufficiently small, ε−1 ∈ Log and denote by Dπ,w

1 (x),
Dπ,w(x) with m0 = 1, i.e. D performing only one round of testing.

If for each linear function gl, Prx∈{0,1}n2
1
[g(x) = gl(x)]ε < 31/32 or for each

linear function fl, Prx∈{0,1}n1 [f(x) = fl(x)]ε < 31/32, then by the test of lin-
earity, we have Prw[Dπ,w

1 (x) = 1]ε �13ε+13ε2+2ε3 63/64. Otherwise, there are
linear functions gl, fl such that by local decoding, for each x ∈ {0, 1}n2

1 , it
holds Prr[gl(x) = g′(x)]ε �6ε 15/16 where g′(x) = g(x + r) + g(r) and for each
x ∈ {0, 1}n1 , Prr[fl(x) = f ′(x)]ε �6ε 15/16 where f ′(x) = f(x+ r) + f(r).

We need to show that even in the latter situation verifier D accepts with
small probabilty. For this, we distinguish two cases: 1. gl 6= WH(u ⊗ u), i.e.
∃x, y, gl(x⊗ y) 6= fl(x)fl(y); 2. gl = WH(u⊗ u).

Claim 3. If gl 6= WH(u⊗ u), then Prr1,r2 [gl(r1 ⊗ r2) 6= fl(r1)fl(r2)] �2ε 1/4

Proof: Let U,W be matrices such that gl(x⊗ y) = xUy and fl(x)fl(y) = xWy.
If U 6= W , then {r2 ∈ 2n1|Ur2 6= Wr2} �0 2n1/2 as witnessed by the following

circuit: Let (i, j) be a position where U and W differ. Consider the circuit
mapping r2 from {r2 ∈ 2n1|Ur2 6= Wr2} to r̂2 where r̂2 < 2n1/2 is obtained from
r2 by erasing its jth bit (r2)j. For each r2 < 2n1/2, let r0

2 < 2n be such that

r2 = r̂0
2 and (r0

2)j = 0 and let r1
2 < 2n1 be such that r2 = r̂1

2 and (r1
2)j = 1. Then,

for each r2 < 2n/2, r0
2 or r1

2 is in {r2 ∈ 2n1 |Ur2 6= Wr2}.
Similarly, if U 6= W , observe that {r1 ∈ 2n1|r1Ur2 6= r1Wr2} �0 2n/2 for each

r2 < 2n1 . Hence, by Proposition 2.2.3 2., {〈r1, r2〉 |gl(r1 ⊗ r2) 6= fl(r1)fl(r2)} �ε
22n/4. This proves the claim.

Suppose now that gl 6= WH(u⊗ u). As {〈r1, r2〉 |g′(r1⊗ r2) = f ′(r1)f ′(r2)} is
a subset of

51

{〈r1, r2〉 |g′(r1 ⊗ r2) = gl(r1 ⊗ r2) ∧ gl(r1 ⊗ r2) = fl(r1)fl(r2)∧
∧f ′(r1) = fl(r1) ∧ f ′(r2) = fl(r2)}∪

{〈r1, r2〉 |g′(r1 ⊗ r2) 6= gl(r1 ⊗ r2) ∨ f ′(r1) 6= fl(r1) ∨ f ′(r2) 6= fl(r2)}

which is �28ε 15/16(22n1) by Claim 3, we can conclude that
Prw[Dπ,w

1 (x) = 1]ε �2ε Prr1,r2 [g
′(r1 ⊗ r2) = f ′(r1)f ′(r2)]ε �28ε 15/16.

It remains to consider the case that gl = WH(u⊗ u).
For each u < 22n1 , R = {r|Σiri(Aiu ⊗ u) 6= Σiribi} ∩ 2m �0 2m/2 as it is

witnessed by the following circuit. Let j be the first such that Aju⊗u 6= bj. The
circuit maps each r ∈ R to r̂ where r̂ < 2m/2 is obtained from r by erasing its

jth bit rj. For each r < 2m/2, let r0 < 2m be such that r = r̂0 and r0
j = 0 and

let r1 < 2m be such that r = r̂1 and r1
j = 1. Then, for each r < 2m/2, r0 ∈ R or

otherwise Σir
0
i (Aiu⊗ u) = Σir

0
i bi and hence r1 ∈ R.

Furthermore, assuming gl = WH(u⊗ u), {r|g′(z) = Σiribi} is a subset of

{r|Σri(Aiu⊗ u) = Σiribi ∧ gl(z) = g′(z)} ∪ {r|gl(z) 6= g′(z)}

Thus, Prw[Dπ,w
1 (x) = 1]ε �2ε Prr[g

′(z) = Σiribi]ε �10ε 9/16.

In all cases, Prw[Dπ,w
1 (x) = 1]ε �28ε 63/64 so

{w ∈ 23n1+n2
1+m|Dπ,w

1 (x) = 0} �30ε 1/64(23n1+n2
1+m)

Therofore, for sufficiently big constant m0, Chernoff’s bound from Proposition
2.2.3 with δ2 := c30ε+ 1/1002 and sufficiently small ε implies that
Pr

w<2knk [Dπ,w(x) = 1] �0 1/2.

To conclude the proof of the exponential PCP theorem in APC1 it thus re-
mains to derive the Test of linearity.

2.5.1 Test of linearity in APC1

In this section we prove Proposition 2.5.1 in the theory APC1.

We cannot use the Fourier transformation argument directly as in Arora-
Barak [1] which would require to prove the existence of exponentially long Fourier
expansions (and it is not clear if this could be managed, for example, using a
representation by p-size circuits). Instead we formalize the so called majority
correction argument. Our presentation is a minor modification of Moshkovitz
[21].

Let ε > 0 be sufficiently small and ε−1 ∈ Log. Define gε : 2n 7→ 2 by

gε(x) = 1 ≡def Pry<2n [f(y) + f(x+ y) = 1]ε ≥ 1/2

Therefore, for any x < 2n, Px := Pry<2x [gε(x) = f(y) + f(x + y)]ε ≥ 1/2.
Hence, gε(x) is the major value of the expression f(y) + f(x+ y) for possible y’s.

We will now derive three claims that can be combined into a proof of Propo-
sition 2.5.1.

52

Claim 1. Pr〈x,y〉[f(x+ y) 6= f(x) + f(y)]ε �8ε+13ε2+2ε3
1
2
Prx[f(x) 6= gε(x)]ε

This holds trivially if Size({x|gε(x) 6= f(x)} ∩ 2n, ε) = 0. Otherwise, define
sets

T := {〈x, y〉 |f(x+ y) 6= f(x) + f(y)} and G := {x|gε(x) 6= f(x)}. Then,

Prx<2n,y<2n [f(x+ y) 6= f(x) + f(y)]ε ≥ Size(T ∩ (G× 2n) ∩ 22n, ε)/22n =

Size((G ∩ 2n)× 2n, ε)

22n

Size(T ∩ (G× 2n) ∩ 22n, ε)

Size((G ∩ 2n)× 2n, ε)

By Proposition 2.2.2iii), (G∩2n)×2n ≈ε Size(G∩2n, ε)2n, so the first fraction
in the expression above is ≈2ε Prx<2n [gε(x) 6= f(x)]ε.

Further, for each x ∈ G ∩ 2n, Px ≥ 1/2 and in particular, 2n/2 �ε Tx.
Hence, by Proposition 2.2.3 2., Size(G, ε)2n/2 �3ε+ε2 T ∩ (G× 2n), and

Size(T ∩ (G× 2n) ∩ 22n, ε)

Size((G ∩ 2n)× 2n, ε)
�4ε+ε2

Size(G, ε)2n

2Size((G ∩ 2n)× 2n, ε)
�2ε 1/2

Applying now Proposition 2.2.2 iii) we obtain Claim 1.

Claim 2. If Pr〈x,y〉[f(x+ y) 6= f(x) + f(y)]ε <
3
32

, then ∀x < 2n, Px >
3
4
.

Fix x < 2n and define
A := {〈y, z〉 |gε(x) = f(y) + f(x+ y) ∧ gε(x) = f(x+ z) + f(z)}
B := {〈y, z〉 |gε(x) 6= f(y) + f(x+ y) ∧ gε(x) 6= f(x+ z) + f(z)}

Then, Pry,z[f(y) + f(x+ y) = f(z) + f(x+ z)]ε = Pry,z[〈y, z〉 ∈ A ∪B]ε.

By Proposition 2.2.3 1.ii),
(A ∪B) ∩ 22n = (A ∩ 22n) ∪ (B ∩ 22n) ≈3ε Size(A ∩ 22n, ε) + Size(B ∩ 22n, ε).

Thus, Pry,z[〈y, z〉 ∈ A ∪B]ε ≈4ε Pry,z[〈y, z〉 ∈ A] + Pry,z[〈y, z〉 ∈ B].

Next, let A′ := {y|gε(x) = f(x+y)+f(x)}. Using Proposition 2.2.2 iii) twice,
A ∩ 22n is (A′ ∩ 2n) × (A′ ∩ 2n) ≈2ε Size(A

′ ∩ 2n, ε)Size(A′ ∩ 2n, ε). Therefore,
Pry,z[〈y, z〉 ∈ A] ≈3ε P

2
x .

As by Proposition 2.2.3 1.i), {y|gε(x) 6= f(x+y) +f(y)}∩2n = 2n−A′∩2n is
≈2ε 2n − Size(A′ ∩ 2n, ε), we analogously obtain Pry,z[〈y, z〉 ∈ B] ≈9ε (1− Px)2.

Therefore, Pry,z[f(y) + f(y + x) = f(z) + f(x+ z)] ≈17ε P
2
x + (1− Px)2.

Define now,

C := {〈y, z〉 |f(y + z) 6= f(y) + f(z)}
D := {〈y, z〉 |f(y + z) 6= f(x+ y) + f(x+ z)}

Then, 22n − (C ∩ 22n) ∪ (D ∩ 22n) ⊆ (A ∪ B) ∩ 22n and by Proposition 2.2.2
i) we have 22n − (C ∩ 22n) ∪ (D ∩ 22n) �0 (A ∪B) ∩ 22n.

By 2.2.3 1.ii), (C ∩ 22n)∪ (D∩ 22n) �3ε Size(C ∩ 22n, ε) +Size(D∩ 22n, ε), so
22n − Size(C ∩ 22n, ε)− Size(D ∩ 22n, ε) �4ε 22n − (C ∩ 22n) ∪ (D ∩ 22n).

53

Moreover, by the assumption, Pry,z[f(y) + f(z) 6= f(y + z)]ε < 3/32 and
similarly, Pry,z[f(y + z) 6= f(x+ y) + f(x+ z)]ε < 3/32. Therefore,

Pry,z[f(y) + f(x+ y) = f(z) + f(x+ z)]ε �5ε 13/16

This shows that P 2
x + (1 − Px)2 �22ε

13
16

and 2(Px − 1
4
)(Px − 3

4
) + 10

16
�22ε

13
16

.
As Px ≥ 1/2, Px < 3/4 would imply 10

16
2n �22ε

13
16

2n contradicting dual weak
pigeonhole principle. Hence, Claim 2 follows.

Claim 3. If Prx,y[f(x+ y) 6= f(x) + f(y)]ε < 3/32, then gε is linear.

By Claim 2, ∀x, y < 2n,

Prz[gε(x) 6= f(x+ z) + f(z)]ε �3ε 1/4
Prz[gε(y) 6= f(y + z) + f(z)]ε �3ε 1/4
Prz[gε(x+ y) 6= f(y + z) + f(z + x)]ε �3ε 1/4

Therefore,

Prz[gε(x) = f(x+ z) + f(z) ∧ gε(y) = f(y + z) + f(z)∧
gε(x+ y) = f(y + z) + f(z + x)]ε �16ε 1/4

The last estimation implies that if ε is sufficiently small, there exists z0 (and
we can efficiently find it) such that

gε(x) = f(x+ z0) + f(z0),
gε(y) = f(y + z0) + f(z0),
gε(x+ y) = f(y + z0) + f(z0 + x)

which shows that gε(x) + gε(y) = gε(x+ y) and proves Claim 3.

We can now derive Proposition 2.5.1. Assume that for each linear function g
we have Prx[g(x) = f(x)]ε < p. By Claim 3, Prx,y[f(x+y) 6= f(x)+f(y)]ε ≥ 3/32
or gε is linear. This means that either Prx,y[f(x + y) = f(x) + f(y)]ε �3ε 29/32
or Prx[gε(x) = f(x)] < p. In the latter case, Prx[gε(x) 6= f(x)] �3ε 1− p and by
Claim 1, Prx,y[f(x+ y) = f(x) + f(y)]ε �11ε+13ε2+2ε3 1/2 + p/2.

2.6 Pseudorandom constructions in PV1

In order to derive the PCP theorem in PV1 we will need to prove in the theory
PV1 the existence and some properties of the (n, d, λ)-graphs (see their definition
below). While the construction itself is very combinatorial, its analysis uses
algebraic techniques, e.g. properties of eigenvectors, which we do not know how
to formalizable in PV1.

Using an equivalent combinatorial definition of the (n, d, λ)-graphs it is pos-
sible to derive their existence and main properties by only combinatorial tools.
However, we need it for the algebraic equivalent and the implication producing
the algebraic (n, d, λ)-graphs from the combinatorial (n, d, λ)-graphs is one of
those which seem to require the algebraic techniques we are trying to avoid.

Therefore, we will employ an approximation of some algebraic tools which
will allows us to derive slightly weaker results about the algebraic (n, d, λ)-graphs
that are, however, sufficient to derive the PCP theorem.

For the history of the field leading to the results presented in this section see
Arora-Barak [1, Chapter 21].

54

2.6.1 Definition and some properties of the (n, d, λ)-graphs

In PV1 we say that a graph G is d-regular if each vertex appears in exactly d
edges. We allow G to have multiple edges and self-loops. The random-walk n×n
matrix A of a d-regular graph G with n vertices consists of elements Ai,j being the
number of edges between the i-th and the j-th vertex in G divided by d. All our
graphs will be undirected, hence, their random-walk matrices will be symmetric.
For any k and a graph G with n vertices, we denote by Gk the graph with n
vertices which has an edge between the ith and the jth vertex for each k step
path between the ith and the jth vertex in G.

We would like to define now the second largest eigenvalue of G denoted as
λ(G). The parameter λ(G) corresponds to a certain expansion property of G
(see Proposition 2.6.3) and normally it is defined as the maximum value of ||Ax||
over all vectors x in n-dimensional real vector space such that ||x|| = 1 and
Σixi = 0. Here, ||y|| = (Σiy

2
i)

1/2 and A is the random-walk matrix of graph G
with n vertices. In PV1 we will approximate this definition using a sufficiently
dense net of rational numbers.

The theory PV1 proves that each x is the value of an expression of the form
Σ
|x|
i=02iyi for yi ∈ {0, 1} which is encoded in a natural way. In PV1 we write that

x ∈ Qn/m if and only if x = (x1, ..., xn) and each element xi is a
b

or −a
b

for
a ∈ [m]∪{0}, b ∈ [m] = {1, ...,m} where a, b are represented by products of such
expressions Σi2

iyi, yi ∈ {0, 1}. These products are also encoded in a natural way.
In such cases we might write a = c ·d to specify that a is represented by a product
of c and d where c, d might be products of other expressions of the form Σi2

iyi.
Let L be a sufficiently big constant, then SQRT is a function which given

nonnegative r ∈ Q/m, m > 1, produces SQRT (r) ∈ Q/(Lm)7 such that

0 ≤ (SQRT (r))2 − r ≤ 1

L

where we ignore the difference between SQRT (r) and the value of the expression
it encodes. Moreover, SQRT satisfies the following property: If r = c·c·e

d·d·f ∈ Q/m
where c, d have the form Σi2

iyi, yi ∈ {0, 1}, then

SQRT (
c · c · e
d · d · f

) =
c

d
· SQRT (

e

f
) (∗)

which is illustrating the representation of the number encoded in SQRT (r). The
representation of c2e

d2f
guarantees that SQRT does not need to perform factoriza-

tion.
The function SQRT is essentially the usual algorithm approximating square

root by a digit-by-digit search. We will assume that SQRT works as follows:
given r ∈ Q/m, it first finds out maximal e, f ∈ [m] such that the current
representation of r is e·e

f ·f
p
q

for some p, q ∈ [m], and then by a digit-by-digit search

it finds c ∈ [L7m6] such that SQRT (r) which is ec
2fLqm4 ∈ Q/(Lm)7 satisfies

0 ≤ (ec
2fLqm4)2 − r ≤ 1

L
.

For x ∈ Qn/m, put ||x|| := SQRT (Σix
2
i) where the input Σix

2
i ∈ Q/(nm2n) is

computed so that if each xi = ±aic
bid

for some common c, d, then Σix
2
i is represented

as e·c·c
f ·d·d for some e, f .

55

By the definition, if x ∈ Qn/m, x 6= 0, then x
||x|| ∈ Qn/((Lnm2n)7m) and

using (∗), || x||x|| || = 1. Note that ||x|| might be a fraction so we assume that x
||x||

is rearranged appropriately.
However, by ||x||2 we always mean the product 〈x, x〉 where 〈x, y〉 := Σixiyi

for x, y ∈ Q/m. The n-dimensional unite vector is defined as 1 := (1/n, ..., 1/n).

The parameter λ(G) is defined as the maximum value of ||Ax|| over all possible
vectors x ∈ Qn/(Ln)(Ln)L such that ||x|| = 1 and 〈x,1〉 = 0. Here again, the
vector Ax ∈ Qn/(n(d(Ln)(Ln)L)n) (with elements of length poly(n)) is computed
so that if each xi = ±aic

bid
for some common c, d, then (Ax)j = ± c·ej

d·fj for some

ej, fj.

We will not need to prove ∃y, y = λ(G) in PV1 but we will work with
formulas of the form λ(G) ≤ y which are Πb

1. To see this note that in λ(G) ≤ y
we universally quantify over all x’s in Qn/(Ln)(Ln)L . For each j, there are ≤ mj

ways how to represent b ∈ [m] as a product of j numbers so this is a universal

quantification over ≤ 2n
O(1)

x’s. For each such x, predicates ||x|| = 1, ||Ax|| ≤ y
are computable in time nO(1).

A d-regular graph G with n vertices is (n, d, λ)-graph if λ(G) ≤ λ < 1.

We will often use Cauchy-Schwarz inequality in PV1 which can be obtained
in the standard way.

Proposition 2.6.1. (Cauchy-Schwarz inequality in PV1) For every n,m and
x, y ∈ Qn/m, 〈x, y〉2 ≤ ||x||2 · ||y||2 and therefore, if n ∈ Log (and thus ||x||
exists), also 〈x, y〉 ≤ ||x|| · ||y||.

Proof. If y = 0, the inequality holds. Otherwise, let z := x − 〈x,y〉
〈y,y〉y. Then,

〈z, y〉 = 〈x, y〉 − 〈x,y〉〈y,y〉 〈y, y〉 = 0. Therefore,

||x||2 = (〈x,y〉〈y,y〉)
2||y||2 + ||z||2 = 〈x,y〉2

||y||2 + ||z||2 ≥ 〈x,y〉2
||y||2 .

In Peano Arithmetic, regular graphs G satisfy λ(G) ≤ 1 but in PV1 we will
have just λ(G) ≤ 1 + ε+ 1/L for any rational ε > 0. Fortunately, this is enough
to derive the PCP theorem in PV1.

Proposition 2.6.2. For any d and any rational ε > 0, PV1 proves that for any
d-regular graph G with n ∈ Log vertices, λ(G) < 1 + ε+ 1/L.

Proof. As the statement we want to prove is ∀Σb
1, by ∀Σb

1-conservativity of S1
2

over PV1, we can work in the theory S1
2 .

Let A be the random-walk matrix of G. We want to show that
λ(G) < 1+ε+1/L. Using Cauchy-Schwarz inequality, for every x ∈ Qn/(Ln)(Ln)L

such that ||x|| = 1,

||Ax||2 = Σi(ΣjAi,jxj)
2 ≤ Σi(ΣjA

2
i,jΣjx

2
j) ≤ ΣiΣjA

2
i,j ≤ ΣiΣjAi,j = Σi1 = n

As Ai,j = Aj,i, we have 〈x,Ay〉 = Σi(xiΣjAi,jyj) = Σj(yjΣi(xiAj,i)) = 〈Ax, y〉
and
||Ax||4 = 〈Ax,Ax〉2 = 〈A2x, x〉2 ≤ ||A2x||2 where A2 is the random-walk matrix
of G2, so also ||A2x||2 ≤ n and ||Ax||4 ≤ n. This shows that

∀k ≤ K log log n (∀A, ||Ax||2 ≤ n1/(2k) → ∀A, ||Ax||2 ≤ n1/(2k+1))

56

where K is a sufficiently big constant depending only on ε and the universal
quantifier before A goes only over random-walk matrices of d-regular graphs with
n vertices. Note also that n1/(2k) might be irrational but we can assume that
it is approximated with a sufficiently small constant error so that the predicate
||Ax||2 ≤ n1/(2k) is Πb

1.
Then, by Πb

1-LLIND (available in S1
2), we have ∀A, ||Ax||2 ≤ n1/(logn)K which

is < (1 + ε)2 by the choice of K and therefore ||Ax|| ≤ 1 + ε+ 1/L.

We can now prove that the (n, d, λ)-graphs satisfy a useful expansion prop-
erty. The term λd

Ln2 occuring in its formulation is an error resulting from our
approximations in PV1.

Proposition 2.6.3. (in PV1) If G is (n, d, λ)-graph with n ∈ Log vertices V and
edges E, then for every S ⊆ V, |S| ≤ n/2,

|E(S, V − S)| ≥ d|S|(1− λ)

2
− λd

Ln2

where E(S, T) denotes the set of edges (i, j) ∈ E with i ∈ S, j ∈ T .

Proof. It suffices to show:

|E(S, V − S)| ≥ (1− λ)
d|S||V − S|

n
− λ

Ln2

Let x ∈ Qn/n be the following vector: xi = |V − S| if i ∈ S and xi = −|S| if
i ∈ V −S. Put Z := Σi,jAi,j(xi−xj)2 for the random-walk matrix A of G. Then,
Z = 2

d
|E(S, V −S)|(|S|+ |V −S|)2. As A’s rows and columns sum up to one, we

have also

Z = Σi,jAi,jx
2
i − 2Σi,jAi,jxixj + Σi,jAi,jx

2
j = 2||x||2 − 2 〈x,Ax〉

Further, Σxi = 0 and x
||x|| ∈ Q

n/((Lnn2n)7n) so ||Ax|| = ||A x
||x|| ||||x|| ≤ λ||x||. By

Cauchy-Schwarz inequality, 〈x,Ax〉 ≤ ||x|| · ||Ax||. Therefore,

1

d
|E(S, V − S)|(|S|+ |V − S|)2 ≥ (1− λ)||x||2 − λ/L

It remains to observe that ||x||2 = |S||V − S|(|S|+ |V − S|)

In the following proposition we use the notion of probability Pr on sets of
polynomial size poly(n) for n ∈ Log. We assume that this is defined in PV1 in a
natural way using an exact counting of sets of polynomial size poly(n), n ∈ Log
which is also definable in PV1 in a usual way. This should not be confused with
the definition of Pr in APC1.

Proposition 2.6.4. For any d, l < L, PV1 proves that for each (n, d, λ)-graph G
with n ∈ Log vertices V , for any S ⊆ V, |S| ≤ |V |/2,

Pr(i,j)∈E(Gl)[i ∈ S ∧ j ∈ S] ≤ |S|
|V |

(
|S|
|V |

+ 2λl)

where E(Gl) denotes the set of all edges in Gl.

57

Proof. For empty S the statement holds. Otherwise put S := {i1, ..., i|S|}. If
〈x,1〉 = 0, then 〈Ax,1〉 = 0 for the random-walk matrix A of G. As Al is
the random-walk matrix of dl-regular graph Gl, we have Al−1 ∈ Qn×n/dl−1 and
Al−1x
||Al−1x|| ∈ Q

n/(Ln((dl−1n)nn)2n)7(dl−1n)nn for x ∈ Qn/n. By the choice of d, l,

this does not exceed the range (Ln)Ln
L

and we can apply λ(G) ≤ λ to obtain
||Alx|| ≤ λl||x|| for any x ∈ Qn/n with 〈x,1〉 = 0. Now, use the inequality from
the proof of Proposition 2.6.3:

|E(S, V − S)|
dl

≥ |S||V − S|(1− λ
l)

|V |
− λl

Ln2

Then, Pr(i,j)∈E(Gl)[i ∈ S ∧ j ∈ S] = 1
|V |Σ

|S|
m=1(1− Pr[j /∈ S|i = im]) is

|S|
|V |

(1− Σ
|S|
m=1

|E(im, V − S)|
|S|dl

) =
|S|
|V |

(1− |E(S, V − S)|
|S|dl

) ≤ |S|
|V |

(
|S|
|V |

+ 2λl)

2.6.2 A technical tool

Sometimes we will need to use an assumption which has the form ”||Ax|| ≤ λ
for x ∈ Qn/(Ln)(Ln)L” even for x’s exceeding the range fixed by (Ln)(Ln)L . We
will now prove a simple approximation lemma which allows this in some cases. It
illustrates a type of approximation which we use more often. The matrix A in its
formulation will not need to represent a random-walk matrix. In our applications
A will be a result of certain operations on random-walk matrices.

Proposition 2.6.5. (in PV1) Let A be an n×n matrix of elements from Q/(2L2n5d),
for n ∈ Log. Further, let s ∈ Log. If ||Ax||2 ≤ y(||x||2 + 1/L) for any
x ∈ Qn/(Ln)(Ln)L, then for any x ∈ Qn/m,

||Ax||2 ≤ (y(1 +
1

L
) +

1

L
)(||x||2 +

1

Ls
)

Proof. For x ∈ Qn/m and s ∈ Log, define ||x||′ in the same way as ||x|| but with
SQRT redefined so that 0 ≤ (SQRT (||x||2))2 − ||x||2 ≤ 1/(Ls).

It suffices now to approximate x
||x||′ , x 6= 0 by c ∈ Qn/(Ln)(Ln)L with ||c||2 ≤ 1

such that |||A x
||x||′ ||

2 − ||Ac||2| ≤ 1
L

. Then,

||Ax||2 ≤ ||A x
||x||′ ||

2(||x||2 + 1
Ls

) ≤ (y(||c||2 + 1/L) + 1
L

)(||x||2 + 1
Ls

) ≤
≤ (y(1 + 1/L) + 1

L
)(||x||2 + 1

Ls
)

The approximation: for each i, we have | xi||x||′ | ≤ 1 so we can find ci (i.e. PV1

can prove the existence of ci) such that 0 ≤ xi
||x||′ − ci ≤ 1/(18L5n13d2). Then

||c||2 ≤ || x
||x||′ ||

2 ≤ 1 and for each l, |Al,i xi
||x||′ − Al,ici| ≤ 1/(9L3n8d). Hence,

|(A x
||x||′)l − (Ac)l| ≤ 1/(9L3n7d). As (A x

||x||′)l, (Ac)l ≤ 3L2n6d, we conclude

|||A x
||x||′ ||

2 − ||Ac||2| ≤ 1/L

Using a similar approximation, we will derive one more useful lemma.

For any n×n matrix A with elements from Q/m, we say that ||A|| ≤ 1 iff for
every x ∈ Qn/(Ln)(Ln)L , ||Ax||2 ≤ (1 + 2/L)(||x||2 + 1/L).

58

Proposition 2.6.6. For any λ and d < L, PV1 proves the following. Let A be
a random-walk matrix of a d-regular graph G with n ∈ Log vertices such that
λ(G) ≤ λ ∈ Q/(Ln2). Let J be n × n matrix such that Ji,j = 1/n for every i, j.
Then,

A = (1− λ)J + λC

for some C with ||C|| ≤ 1

Proof. Define C := 1
λ
(A − (1 − λ)J) ∈ Qn×n/(2L2n5d). We want to prove that

for any x ∈ Qn/(Ln)(Ln)L , ||Cx||2 ≤ (||x||2 + 1/L)(1 + 2/L). Decompose x as
x = α1 + y for some α ∈ Q/((Ln)(Ln)L)n+1 where 〈1, y〉 = 0.

Similarly as in Proposition 2.6.5, approximate y
||y|| by vector c with ||c||2 ≤ 1

so that ||A y
||y|| ||

2 ≤ ||Ac||2 + λ2/L and c
||c|| ∈ Q

n/(Ln)(Ln)L . This time we can do
it without the absolute value because all elements of A are positive. Note also
that for d < L the range of c

||c|| does not exceed (Ln)(Ln)L .

Since A1 = 1 and J1 = 1, we have Cα1 = α1. As 〈y,1〉 = 0, Jy = 0 and
Cy = 1

λ
Ay. Using 〈Ay, α1〉 = 0 and ||Ac|| ≤ λ||c||, we obtain,

||Cx||2 = ||α1+ 1
λ
Ay||2 = ||α1||2+|| 1

λ
Ay||2 ≤ ||α1||2+ 1

λ2
(||Ac||2+ λ2

L
)(||y||2+ 1

L
) ≤

≤ ||α1||2 + (1 + 2/L)(||y||2 + 1/L) ≤ (1 + 2/L)(||x||2 + 1/L)

2.6.3 The tensor product

The explicit construction of the (n, d, λ)-graphs needs two graph products, the
tensor product and the replacement product, which we describe in this and the
next section.

Definition 2.6.1. (in PV1) If A = {ai,j}i,j=1,...,n is the n×n random-walk matrix
of d-degree graph G and A′ = {a′i′,j′} is the n′×n′ random-walk matrix of d′-degree
graph G′, then the random-walk matrix of G⊗G′, denoted as A⊗A′ is the nn′×nn′
matrix that in the 〈i, i′〉th row and the 〈j, j′〉th column has the value ai,ja

′
i′,j′.

This means that G ⊗ G′ has a cluster of n′ vertices for every vertex in G. If
(i, j) is an edge in G and (i′, j′) is an edge in G′, then there is an edge between the
i′-th vertex in the cluster corresponding to i and the j′-th vertex in the cluster
corresponding to j. Therefore, G ⊗ G′ has degree d′d and nn′ vertices. We can
see matrix A ⊗ A′ as consisting of blocks of the form ai,jA

′, that is, intuitively,
A⊗ A′ is matrix A with elements multiplied by copies of A′.

In Peano Arithmetic, λ(G⊗G′) ≤ max{λ(G), λ(G′)} for regular graphs G,G′.
The standard derivation of this bound uses the existence of an orthogonal basis
of eigenvectors for symmetric matrices which uses the fundamental theorem of
algebra (applied to determinant of matrix A−xI consisting of exponentially many
terms). We do not know how to formalize this in PV1. Instead, we will derive a
weaker bound which is sufficient for our purposes.

Note first that in PV1 for every two n×n matrices A,B and x ∈ Qn/m where
n ∈ Log, Cauchy-Schwarz inequality implies,

||(A+B)x||2 = 〈(A+B)x, (A+B)x〉 = ||Ax||2 + 2 〈Ax,Bx〉+ ||Bx||2 ≤
≤ ||Ax||2 + 2||Ax||||Bx||+ ||Bx||2 ≤ (||Ax||+ ||Bx||)2

and so ||(A+B)x|| ≤ ||Ax||+ ||Bx||+ 1/L1/2.

59

Proposition 2.6.7. PV1 proves that if G is a d-regular graph with n ∈ Log
vertices and G′ is a d′-regular graph with n′ ∈ Log vertices such that d, d′ < L,
λ(G) ≤ λ ∈ Q/(Ln2) and λ(G′) ≤ λ′ ∈ Q/(L(n′)2), then

λ(G⊗G′) ≤ ((1 + 6/L)2 + 1/L)(max{λ+ λ′ − λλ′, λλ′, λ′, λ}) + 3/L1/2

(Note that PV1 does not need to know that λ(G) ≤ 1 or λ(G′) ≤ 1.)

Proof. Let A be the random-walk matrix of G of the form n × n and A′ be
the random-walk matrix of G′ of the form n′ × n′. By Proposition 2.6.6 A is
(1−λ)Jn +λC for some C with ||C|| ≤ 1 and n×n all 1/n matrix Jn. Similarly,
A′ = (1−λ′)Jn′ +λ′C ′ for some C ′ with ||C ′|| ≤ 1 and n′×n′ all 1/n′ matrix Jn′ .

As tensor product satisfies distributions (A+ B)⊗ C = A⊗ C + B ⊗ C and
A⊗ (B + C) = A⊗B + A⊗ C, for any x ∈ Qnn′/(Lnn′)(Lnn′)L we have (∗):
||A⊗ A′x|| ≤ (1− λ)||(Jn ⊗ Jn′)x||+ (1− λ)λ′||(Jn ⊗ C ′)x||

+λ(1− λ′)||(C ⊗ Jn′)x||+ λ′λ||(C ⊗ C ′)x||+ 3/L1/2

If Σixi = 0, then Jn ⊗ Jn′x = 0. Moreover, if x ∈ Qn/(Ln)(Ln)L , then
||Jnx||2 = 1

n
(Σixi)

2 ≤ ||x||2 where we used 〈x, (1, ..., 1)〉2 ≤ n||x||2 which follows
from Cauchy-Schwarz inequality. Therefore, ||Jn|| ≤ 1 and similarly ||Jn′ || ≤ 1.

If λ > 1 or λ′ > 1, we can trivially upper bound the term corresponding to
1−λ resp. 1−λ′ in (∗) by 0. In all cases, to finish the proof it suffices to show that
for any n× n matrix A ∈ Qn×n/(2L2n5d), n′× n′ matrix B ∈ Qn′×n′/(2L2(n′)5d)
such that ||A|| ≤ 1, ||B|| ≤ 1, for any x ∈ Qnn′/(Lnn′)(Lnn′)L with ||x|| = 1,
||(A⊗B)x|| ≤ (1 + 6/L)2 + 1/L holds.

For any x ∈ Qnn′/m′ and i ∈ [n′] define xi ∈ Qn/m so that for each j ∈ [n],

xij = Σk∈{n′(j−1)+1,...,n′j}Bi,(k−n′(j−1))xk

Then, ||(A⊗B)x||2 = Σi∈[n′]||Axi||2 and as by Proposition 2.6.5 for each i,
||Axi||2 ≤ (Σj∈[n](x

i
j)

2 + 1/(Ln′))((1 + 1/L)(1 + 2/L) + 1/L), we have,

||(A⊗B)x||2 ≤ (1/L+ Σi∈[n′]Σj∈[n](x
i
j)

2)(1 + 6/L)

Since also ||Bx||2 ≤ (||x||2 + 1/(Ln))((1 + 1/L)(1 + 2/L) + 1/L), for each j ∈ [n],

Σi∈[n′](Σk∈{n′(j−1)+1,...,n′j}Bi,(k−n′(j−1))xk)
2 ≤ (

1

Ln
+Σk∈{n′(j−1)+1,...,n′j}(xk)

2)(1+
6

L
)

Therefore, if ||x|| = 1, then ||(A⊗B)||2 ≤ (1/L+ (1 + 6/L)(1 + 1/L))(1 + 6/L),
and ||(A⊗B)x|| ≤ (1 + 6/L)2 + 1/L.

2.6.4 The replacement product

If G is an n-vertex d-degree graph, we can give a number from 1 to d to each
neighbor of each vertex and then the rotation map Ĝ : [n]× [d] 7→ [n]× [d] maps
a pair 〈v, i〉 to 〈u, j〉 where u is the i-th neighbor of v and v is the j-th neighbor
of u. Using this rotation map, we define the replacement product.

Let G,G′ be graphs such that G has n vertices and degree D, and G′ has
D vertices and degree d. Further, let A,A′ denote the random-walk matrices

60

of G and G′ respectively, and Â be the permutation matrix corresponding to
the rotation map of G which means that Â is an nD× nD matrix whose (i, j)th
column is all zeroes except a single 1 in the (i′, j′) position where (i′, j′) = Ĝ(i, j).
Then the replacement product of G and G′, denoted G � G′, is the graph with
the random-walk matrix

A� A′ := 1/2Â+ 1/2(In ⊗ A′)

where In is n× n 0-1 matrix with 1’s only on diagonal.
This means that G � G′ has a copy of G′ for every vertex in G (including

edges) and if (i, j) is an edge in G then there are d parallel edges between the
i′-th vertex in the copy of G′ corresponding to i and the j′ vertex in the copy of
G′ corresponding to j where i′ is the index of j as neighbor of i and j′ is the index
of i as neighbor of j in G. Therefore, G�G′ has degree 2d and nD vertices.

Proposition 2.6.8. (in PV1) Let d,D < L. Suppose G is a D-degree graph with
n ∈ Log vertices and G′ is a d-degree graph with D vertices.

If λ(G) ≤ 1 − ε ∈ Q/(Ln2) and λ(H) ≤ 1 − δ ∈ Q/(LD2) for n ∈ Log,
rational ε and rational δ ∈ [0, 1], then

λ((G�H)3) ≤ (1− εδ2/8)(1 + 8/L1/2)9 + δ2/(2L1/2) + 2/L1/2

In Proposition 2.6.8, Peano Arithmetic could prove λ(G � H) ≤ 1 − εδ2

24
fol-

lowing the argument in Arora-Barak [1]. In [1] this is derived using the equation
λ(Gl) = λ(G)l which uses the existence of an orthogonal basis of eigenvectors for
symmetric matrices. Again, in PV1 we prove just a weaker bound for (G �H)3

which is sufficient for our purposes.

Proof. Let A resp. B be the random-walk matrix of graph G with n vertices resp.
graph H with D vertices and Â be the permutation matrix corresponding to the
rotation map of G. By definition, A�B = 1

2
(Â+ In ⊗B) and

(A�B)3 = 1
8
(Â3 + Â(I ⊗B)Â+ (I ⊗B)Â2 + (I ⊗B)2Â+ Â2(I ⊗B)+

+Â(I ⊗B)2 + (I ⊗B)Â(I ⊗B) + (I ⊗B)3)

By Proposition 2.6.6, B = δJ+(1−δ)C for some C with ||C|| ≤ 1 and D×D
all 1/D matrix J . Therefore,

(I ⊗B)Â(I ⊗B) = δ2(I ⊗ J)Â(I ⊗ J) + δ(1− δ)(I ⊗ J)Â(I ⊗ C)+
+δ(1− δ)(I ⊗ C)Â(I ⊗ J) + (1− δ)2(I ⊗ C)Â(I ⊗ C)

Since ||C||, ||I|| ≤ 1, for any x with ||x|| ≤ 1, we have ||(I⊗C)x||2 ≤ (1+6/L)4

as in the proof of Proposition 2.6.7. Similarly, ||(I ⊗ J)x||2 ≤ (1 + 6/L)4.
If a matrix A satisfies ||Ax||2 ≤ (1 + 6/L)4 for ||x|| ≤ 1, then for any B

and x, ||(AB)x||2 = ||A Bx
||Bx|| ||

2(SQRT (||Bx||2))2 ≤ (1 + 6
L

)4(SQRT (||Bx||2))2.

Consequently, ||(AB)x|| ≤ (1 + 6/L)2||Bx||+ 1/L1/2.
As ||Â|| ≤ 1, this shows that for any x, ||x|| ≤ 1 and δ ∈ [0, 1],

||((I ⊗B)Â(I ⊗B))x|| ≤ δ2||((I ⊗ J)Â(I ⊗ J))x||+ (1− δ2)((1 + 6
L

)8+
+(1 + 6

L
)4/L1/2 + (1 + 6

L
)2/L1/2 + 1

L1/2) + 3
L1/2

Further, for any x, ||x|| = 1 and δ ∈ [0, 1],

61

||(I⊗B)x|| ≤ δ||(I⊗J)x||+(1− δ)||(I⊗C)x||+1/L1/2 ≤ (1+6/L)2 +2/L1/2

Hence, ||(I ⊗ B)x||2 ≤ (1 + 8/L1/2)4, and using an analogous argument as
above we can bound ||(A�B)3x||. For any x, ||x|| = 1,

||(A�B)3x|| ≤ (1− δ2

8
)(1 + 8/L1/2)9 + δ2

8
||((I ⊗ J)Â(I ⊗ J))x||+ 2/L1/2

It remains to observe that (I ⊗ J)Â(I ⊗ J) = A ⊗ J . Then, by Proposition
2.6.7, for any x, ||x|| = 1 such that Σi, xi (and so Jx = 0) we have:

||(I ⊗ J)Â(I ⊗ J)x|| = ||(A⊗ J)x|| ≤ (1− ε)((1 + 6/L)2 + 1/L) + 3/L1/2

Finally, (I⊗J)Â(I⊗J) is the random-walk matrix of a graph with the number
of edges between its nodes (i, j) and (i′, j′) being the number of k’s in [D] for
which there is k′ such that Ĝ(i, k) = (i′, k′). That is,

((I ⊗ J)Â(I ⊗ J))(i,j),(i′,j′) = 1
D
ai,i′ = (A⊗ J)(i,j),(i,j′)

2.6.5 The construction of the (n, d, λ)-graphs

Finally, we are ready to construct the (n, d, λ)-graphs in the theory PV1, see
Arora-Barak [1, Chapter 21] for the history of the result. However, we will do it
just for n’s of the form ck where c is a constant and k ∈ LogLog. It is possible to
extend the construction to any n (cf. [1]) but at least a straightforward applica-
tion of the extension requires algebraic techniques which we are avoiding. More
specifically, it uses a converse of Proposition 2.6.3 which in turn uses facts about
eigenvectors derived from the fundamental theorem of algebra. Nevertheless, the
weaker construction is sufficient to derive the PCP theorem in PV1.

Proposition 2.6.9. For any rational c ∈ (0, 1) there are d, b and L (the constant
from the definition of λ(G)) such that PV1 proves that for each k ∈ LogLog and
n = (2d)100k there is a (2d)b-regular graph Gn with n vertices and λ(Gn) < c.

Proof. For c ∈ (0, 1), let e be such that 1/2e < c and b be a sufficiently big
constant. Then, define ((2d)100k, (2d)b, 1/2e)-graphs in PV1 as follows.

1. Let H be a ((2d)100, d, 0.01)-graph where d is a sufficiently big constant so
that such a graph exists. Let G1 be a ((2d)100, (2d)b, 1

2b
)-graph and G2 be a

((2d)200, (2d)b, 1
2b

)-graph. These graphs can be found by brute force, cf. [1].

2. For (2d)100k with k > 2, define Gk := ((Gb(k−1)/2c ⊗Gd(k−1)/2e)�H)b

Note that for given (2d)100k, Gk is produced by a specific p-time computation
which exists provably in PV1.

Claim. For every (2d)100k, Gk is a ((2d)100k, (2d)b, 1/2e)-graph.

The claim is proved by Πb
1(PV)-LPIND induction. As graphs Gk are con-

structed by a p-time function, the statement we want to obtain is ∀Σb
1. Hence, by

∀Σb
1-conservativity of S1

2 over PV1, we can work in the theory S1
2 (which proves

Πb
1(PV)-LPIND).

For k = 1, 2, PV1 can verify the claim directly. For (2d)100k with k > 2, let
nk be the number of vertices of Gk. If nb(k−1)/2c = (2d)100b(k−1)/2c and
nd(k−1)/2e = (2d)100d(k−1)/2e, then nk = nb(k−1)/2cnd(k−1)/2e(2d)100 = (2d)100k.

62

Considering the degree, if G = Gb(k−1)/2c has degree (2d)b, then (G⊗G) has
degree (2d)2b, (G⊗G)�H has degree 2d and Gk has degree (2d)b.

The eigenvalue analysis: if λ(G) ≤ 1/2e (which is a Πb
1(PV)-formula), then

assuming L is sufficiently big, 1/2e ∈ Q/(Ln2) and by Proposition 2.6.7, we have
λ(G⊗G) ≤ 2/2e. Hence, by Proposition 2.6.8,

λ(((G⊗G)�H)3) ≤ (1− (1− 2/2e)
(0.99)2

8
)(1 + 8/L1/2)9 +

(0.99)2

2L1/2
+ 2/L1/2

and λ(((G⊗G)�H)b) ≤ 1/2e.

The last inequality is a consequence of the fact that the assumption λ(G) ≤ λ
implies λ(Gb) ≤ λb(1 + 4/L) + 5db/L1/2. To see this, note that as in Propo-
sition 2.6.4, assuming λ(G) ≤ λ, for any x ∈ Qn/((Ln7)nn) with 〈x,1〉 = 0,
we have ||Abx|| ≤ λb||x|| where Ab ∈ Qn×n/db is the random-walk matrix of
Gb. If x /∈ Qn/((Ln7)nn), ||x|| = 1, 〈x, 1〉 = 0, we can approximate x by
vector c ∈ Qn/((Ln7)nn): for each i, |xi| ≤ 1 so we can find ci ∈ Q/(Ln7)
such that |xi − ci| ≤ 1/(Ln6) and 〈c, 1〉 = 0. Then ||c||2 ≤ 1 + 3/(Ln5) and
for each j, |Abj,ix − Abj,ic| ≤ db/(Ln6). Hence, |(Abx)j − (Abc)j| ≤ db/(Ln5).
Since (Abx)j, (A

bc)j ≤ 3dbn, we have |||Abx||2 − ||Abc||2| ≤ 12d2b/(Ln3) and
||Abx||2 is at most λ2b(||c||2 + 1/L) + 12d2b/L ≤ λ2b(1 + 4/L) + 12d2b/L. Thus,
||Abx|| ≤ λb(1 + 4/L) + 5db/L1/2.

Note that in the previous proposition, d does not depend on L and b can be
chosen arbitrarily big.

2.7 The PCP theorem in PV1

The PCP theorem obtained in Arora-Safra [2] and Arora et.al. [3] (see Arora-
Barak [1, Chapter 22] for the history of the theorem) is a strengthening of the
exponential PCP theorem in which the verifier D uses only O(log n) random bits.
Using these random bits, D asks for at most O(1) bits of the given proof π. Hence,
π can be seen as a string of size poly(n). In particular, it can be represented by
a binary string in our formalization.

We will follow Dinur’s [10] simplified proof of the PCP theorem as it is pre-
sented in Arora-Barak [1]. This will go rather smoothly (once we have a suitable
formalization of the (n, d, λ)-graphs) because the proof is combinatorial and it
needs to count only sets of polynomial size. These are subsets of {1, ..., poly(n)}
where n ∈ Log for which we assume to have exact counting in PV1 defined in a
natural way.

Recall the verifier Dπ,w(x) from Definition 2.3.5. In the standard definition,
π would be allowed to be a string of arbitrary length and D would have an
oracular access to π, it could ask for any bit of π. Then, for a language L,
L ∈ PCP (log n, 1) standardly means that there is a p-time algorithm D such
that:

1. If x ∈ L, then there is a string π such that D with input x of length n
and O(log n) random bits asks for at most O(1) bits of π and accepts (with
probability 1);

63

2. If x /∈ L, then for any π, D with input x of length n and O(log n) random
bits asks for at most O(1) bits of π and accepts with probability ≤ 1/2.

The PCP theorem says that NP = PCP (log n, 1). In our formalization,
proofs π will be represented by p-size strings, hence, the statement of the PCP
theorem is modified accordingly. As in the case of the exponential PCP theorem,
we could alternatively represent proofs π by oracles which would maybe better
reflect the nature of the PCP theorem but then we would need to formalize the
PCP theorem in a theory extended by such oracles.

In this Section we use the notion of probability Pr on spaces of polynomial
size poly(n) which is assumed to be defined in a natural way using the exact
counting of sets of polynomial size in PV1. This should not be confused with the
definition of Pr in APC1.

First we formalize the easier implication of the PCP theorem:
PCP (log n, 1) ⊆ NP .

Theorem 2.7.1. Let c, d, k be arbitrary constants, then PV1 proves that for any
knk-time algorithm D there exists 2kcn2kc-time algorithm M such that for each
x ∈ {0, 1}n:

∃π ∈ {0, 1}dnc ∀w < nc, Dπ,w(x) = 1→ ∃y ∈ {0, 1}dnc

M(x, y) = 1

∀π ∈ {0, 1}dnc

Prw<nc [Dπ,w(x) = 1] ≤ 1/2→ ∀y ∈ {0, 1}dnc

M(x, y) = 0

Proof. Given a knk-time algorithm D, define the algorithm M as follows. M
accepts x, y if and only if y = (y0, ..., ync−1) ∈ {0, 1}dnc

with yi’s in {0, 1}d and
for all the yi’s the algorithm D on input x, random bits i and with access to π
which results in d bits yi accepts.

Suppose there is π ∈ {0, 1}dnc
such that for each w < nc, D on input x

with bits rw ∈ {0, 1}d obtained from d-times accessing π accepts. Then for
y = (y0, ..., ync−1) with yw = rw we have that for each yi ∈ y the algorithm D
on input x and with access to π which results in d bits yi accepts. Therefore,
M(x, y) = 1.

Now assume that for any π ∈ {0, 1}dnc
, Prw<nc [Dπ,w(x) = 1] �0 1/2. Then for

any y = (y0, ..., ync−1) with yi’s in {0, 1}d there is yi such that D on x, random bits
i, and with access to π resulting in yi rejects. Otherwise, for some π ∈ {0, 1}dnc

we have {w < nc|Dπ,w(x) = 1} = nc contradicting the assumption. Hence,
M(x, y) = 0 .

As the NP-completeness of SAT is provable in PV1, the important implication
of the PCP theorem, PCP (log n, 1) ⊆ NP , can be stated in PV1 as Theorem 2.7.

Theorem 2.7 (The PCP theorem in PV1). There are constants d, k, c and a
knk-time algorithm D (given as a PV-function) computing as in Definition 2.3.5
such that PV1 proves that for any n ∈ Log and x ∈ {0, 1}n, n ∈ Log:

∃ySAT (x, y)→ ∃π ∈ {0, 1}dnc ∀w < nc Dπ,w(x) = 1

∀y¬SAT (x, y)→ ∀π ∈ {0, 1}dnc

Prw<nc [Dπ,w(x) = 1] ≤ 1/2

64

The proof is summarized at the end of this section. It is a sequence of cer-
tain reductions between the so called CSP instances so we need to start with a
reformulation of Theorem 2.7 in terms of these reductions.

Definition 2.7.1 (in PV1). Let q,W be constants, and n,m ∈ Log. A qCSPW
instance φ is a collection of circuits φ1, ..., φm (called constraints) mapping [W]n

to {0, 1}. Each φi is encoded by a binary string, it has n inputs which are taking
values that are bit strings in {0, 1}logW but depends on at most q of them: for
every i ∈ [m] there exist f1, ..., fq ∈ [n] and f : {0, 1}q 7→ {0, 1} such that
φi(u) = f(uf1 , ..., ufq) for every u ∈ [W]n. We say that q is the arity of φ. By
qCSP instance we mean a qCSP instance with binary alphabet.

An assignment u ∈ [W]n satisfies φi if φi(u) = 1, and instance φ is satisfiable

if val(φ) := maxu∈[W]n
Σm

i=1φi(u)

m
= 1.

We will not need to prove the totality of the function val(φ) in PV1. It will
be sufficient for us to work with formulas of the form val(φ) ≤ y which are Πb

1.

Definition 2.7.2 (in PV1). Let q, q′,W,W ′ be arbitrary constants. A p-time
function f (given as a PV-function) mapping qCSPW instances to q′CSPW ′ in-
stances, abbreviated as f : qCSPW → q′CSPW ′, is a CL-reduction (short for
complete linear-blowup reduction) if for every qCSPW instance φ:

• Completeness: If φ is satisfiable then so is f(φ).

• Linear blowup: If there are m constraints in φ, then f(φ) has at most Cm
constraints and alphabet W ′, where C and W ′ can depend on q (but not on
m or the number of variables in φ).

For a constant k, a function f is CLk-reduction if it is a CL-reduction com-
putable in time knk.

Theorem 2.7 then follows from the following proposition.

Proposition 2.7.1. There are constants q0 ≥ 3, ε0 > 0 and a CL-reduction
f : q0CSP → q0CSP such that PV1 proves that for every q0CSP instance φ,
every ε < ε0,

val(φ) ≤ 1− ε→ val(f(φ)) ≤ 1− 2ε

Proof. (of Theorem 2.7 from Proposition 2.7.1) The statement we want to derive
is a ∀Σb

1-formula. Hence, we can work in the theory S1
2 . As q0 ≥ 3, q0CSP is a gen-

eralization of 3SAT and by the NP-completeness of 3SAT (derived similarly as the
NP-completeness of SAT), for some k′, there is a k′nk

′
-time function h mapping

propositional formulas to q0CSP instances such that for any x ∈ {0, 1}n, n ∈ Log
∃ySAT (x, y)→ val(h(x)) = 1 and ∀y¬SAT (x, y)→ val(h(x)) ≤ 1− 1/m where
m ∈ Log is the number of constraints in h(x). Applying Proposition 2.7.1 we
obtain a knk-time function f logm ◦ h for some constant k such that

∃ySAT (x, y)→ val(f logm ◦ h(x)) = 1

∀y¬SAT (x, y)→ val(f logm ◦ h(x)) ≤ 1− ε0
Here, we used Πb

1-LLIND (available in S1
2) for Πb

1-formulas val(f i(φ)) ≤ 1 − 2iε
where i ≤ |m|. Therefore, for some constants d′, c′, and an algorithm D′ which

65

given any formula x and proof π accepts if and only if π encodes a satisfying
assignment to randomly chosen constraint in f logm ◦ h(x) we have:

∃ySAT (x, y)→ ∃π ∈ {0, 1}d′nc′ ∀wD′π,w(x) = 1

∀y¬SAT (x, y)→ ∀π ∈ {0, 1}d′nc′

Prw[D′π,w(x) = 1] ≤ 1− ε0
The gap can be amplified to 1/2 by choosing sufficiently many (but constant
number of) constraints in f logm ◦ h(x) and accepting if and only if π encodes
satisfying assignments to all of them. This requires Chernoff’s bound but only
over sets of polynomial size for which we have exact counting in PV1.

Proposition 2.7.1 is an immediate consequence of the following two statements.
The first one provides us a CL-reduction producing CSP instances which increase
the gap between 0 and the minimal number of unsatisfied constraints. However,
the alphabet of the resulting instances increases too. The second statement takes
it back to binary while loosing just a factor of 3 in the gap.

Proposition 2.7.2 (Gap amplification in PV1). For every l, q there are W, ε0
and a CL-reduction gl,q : qCSP → 2CSPW such that PV1 proves that for every
qCSP instance φ and for every ε < ε0

val(φ) ≤ 1− ε→ val(gl,q(φ)) ≤ 1− lε

Proposition 2.7.3 (Alphabet reduction in PV1). There is d such that for any
W there is a CL-reduction h : 2CSPW → dCSP such that PV1 proves that for
every 2CSPW instance φ, and for each ε

val(φ) ≤ 1− ε→ val(h(φ)) ≤ 1− ε/3

Proposition 2.7.1 can be obtained from previous two propositions by taking
l = 6 in Proposition 2.7.2 and q = max{d, 3} for d from Proposition 2.7.3.

We firstly derive Proposition 2.7.3 using the following application of the expo-
nential PCP theorem which is scaled down so that we need to reason only about
sets of constant size.

Proposition 2.7.4. There are constants d, k′ and an algorithm D such that for
every s, PV1 proves: given any s-size circuit C with 2n1 inputs, D runs in time
sk
′
, examines ≤ d bits in the provided strings and

1. If C(u1, u2) = 1 for u1, u2 ∈ {0, 1}n1, there is a string π3 of size 2s
k′

such that

∀w < 2s
k′
D(WH(u1),WH(u2),π3),w(C) = 1.

2. For bit strings π1, π2, π3 where π1, π2 ∈ {0, 1}2n1 , π3 ∈ {0, 1}2s
k′

if Pr
w<2sk

′ [D(π1,π2,π3),w(C) = 1] ≥ 1/2, then
Prw<22

n1 [(π1)w = WH(u1)(w)] ≥ 0.99 and
Prw<22

n1 [(π2)w = WH(u2)(w)] ≥ 0.99
for some u1, u2 ∈ {0, 1}n1 such that C(u1, u2) = 1.

66

Proof. (of Proposition 2.7.3 from Proposition 2.7.4) The CL-reduction h works
as follows. Let φ be a 2CSPW instance with constraints φ1, φ2, ..., φm on variables
u1, ..., un which are taking values that are in {0, 1}logW . Each constraint φS(ui, uj)
is a circuit applied to the bit strings representing ui, uj. Without loss of generality
s ≤ 24 logW is an upper bound on the size of this circuit.

Given such φ, h replaces each variable ui by a sequence Ui = (Ui,1, ..., Ui,2W) of
2W binary variables. Then, for each constraint φS(ui, uj) it applies Proposition
2.7.4 where φS(ui, uj) is the circuit whose assignment is being verified. The

resulting sk
′
-time algorithm D can be represented as a 2s

O(1)
-size dCSP instance

ψS(Ui, Uj,ΠS) where Ui, Uj play the role of π1, π2 and 2s
k′

new binary variables ΠS

play the role of π3. The arity d of ψS(Ui, Uj,ΠS) is the number of bits D reads
in the proof which is a fixed constant independent of W and ε. The instance
ψS(Ui, Uj,ΠS) contains one constraint for each possible random string in D, so
the fraction of its satisfied constraints is the acceptance probability of D. The
CL-reduction h thus maps 2CSPW instances φ to dCSP instances ψ where each
φS(ui, uj) is replaced by a dCSP instance ψS(Ui, Uj,ΠS). As 2s

O(1)
is a constant

independent of m and n, linear blowup is preserved.

If φ is satisfiable, then by property 1 in Proposition 2.7.4 so is ψ. We want to
show that if some assignment satisfies more than 1−ε/3 fraction of the constraints
in ψ, then we can construct an assignment for φ satisfying more then 1−ε fraction
of its constraints: For each i, if Ui is 0.99-close to some linear functionWH(ai), i.e.
Prx[Ui,x = WH(ai)(x)] ≥ 0.99, then use (the determined) ai as the assignment
for ui, and otherwise use arbitrary string. The algorithm is p-time because the
size of each Ui is constant. If the decodings ai, aj of Ui, Uj do not satisfy φS(ui, uj),
then by property 2 in Proposition 2.7.4 at least half of constraints in ψS is not
satisfied. Hence, the fraction of unsatisfied constraints in φ is < 2ε/3.

Proof. (of Proposition 2.7.4) PV1 can prove the statement from Proposition 2.7.4
simply by examining all possible cases of which there is a constant number. Hence,
the provability of the statement follows from it being true. Nevertheless, we
present also the standard proof itself.

The algorithmD firstly reduces the problem of satisfiability of the given circuit
C with s wires (inputs are considered as wires in the circuit) to the question of
solvability of a set of quadratic equations with t = sO(1) variables similarly as
in the proof of the exponential PCP theorem. D expects π3 to contain linear
functions f, g which are WH(z) and WH(z ⊗ z) respectively for z ∈ {0, 1}t
satisfying the set of quadratic equations and checks these functions as in the
exponential PCP theorem. Moreover, D checks that π1 and π2 are 0.99-close
to some linear functions. That is, if the algorithm D accepts π1, π2, π3 with
probability at least 1/2, it is because the set of quadratic equations is satisfiable
and Prw[(π1)w = WH(u1)(w)] ≥ 0.99, Prw[(π2)w = WH(u2)(w)] ≥ 0.99 for
some u1, u2 ∈ {0, 1}n1 .

Finally, D checks that π1, π2 encode strings whose concatenation is the same
as the first 2n1 bits of the string encoded by f (without loss of generality the
first 2n1 bits encode satisfying assignement for C) by performing the following
concatenation test:

67

Pick random x, y ∈ {0, 1}n1 and denote by XY ∈ {0, 1}t the string whose first
n1 bits are x, the next n1 bits are y and the remaining bits are all 0. Accept if
and only if f(XY) = π1(x) + π2(y).

The algorithm D runs in time sk
′

and examines ≤ d bits in π1, π2, π3 for some
constants k′, d. It satisfies the first property from Proposition 2.7.4. Moreover,
assuming that π1 = WH(u), π2 = WH(v) and z is the string encoded by a linear
function f , the concatenation test rejects with probability 1/2 if u, v differs from
the first 2n1 bits of z. Hence, if D accepts π1, π2, π2 with probability ≥ 1/2,
it is because π1, π2 are 0.99-close to linear functions encoding u1, u2 such that
C(u1, u2) = 1.

In the rest of this section we derive Proposition 2.7.2. To do this, we will need
two facts about probability:

Proposition 2.7.5. 1. Let t be a square and St be the binomial distribution over
t fair coins, i.e. Pr[St = k] = t!/((t − k)!k!)2−t. Then for i ∈ {0, 1} and any δ
such that 0 ≤ δ < 1, PV1 proves:

Σk|Pr[St = k]− Pr[St+(−1)ibδ
√
tc = k]| ≤ 20δ

2. For any k, PV1 proves that for each n ∈ Log, if V is a nonnegative random
variable defined on a sample space of size nk, then Pr[V > 0] ≥ E[V]2/E[V 2].

The first part of Proposition 2.7.5 is an estimation of a so called statistical
distance of two binomial distributions which is known to hold (see [1] page 469)
and as all its parameters are quantified outside of the theory PV1, it is trivially
provable by an explicit ”brute force” enumeration.

The second part is obtained from a simple expansion:

(E[X])2 = (E[X · 1X>0])2 ≤ E[X2]E[(1X>0)2] = E[X2]Pr[X > 0]

where we used a form of Cauchy-Schwarz inequality E[XY]2 ≤ E[X2]E[Y 2] which
can be derived in the same way as our Cauchy-Schwarz inequality from Section
2.6 but with 〈x, y〉 := E[XY].

The proof of Proposition 2.7.2 is divided into two parts. The first part shows
how to reduce any qCSP instance into a 2CSPW instance which is nice (in a sense
defined below) and the second part gives us a CL-reduction from nice instances
which amplifies the gap as it is required in Proposition 2.7.2.

Definition 2.7.3. (in PV1) A qCSPW instance φ is nice if q = 2 and the fol-
lowing holds,

1. Let the constraint graph of φ be the graph G with vertex set [n] where for
every constraint φ depending on the variables ui, uj, the graph G has the edge
(i, j). G is allowed to have parallel edges and self-loops. Then G is d-regular
for some constant d independent of W , and at every node, at least half the edges
incident to it are self-loops.

2. The constraint graph of φ satisfies λ(G) ≤ 0.9

The reduction into nice instances which we need is a consequence of the fol-
lowing three Propositions.

68

Proposition 2.7.6. There is a constant k such that for every q there is a CLk-
reduction h : qCSP → 2CSP2q such that PV1 proves that for any qCSP instance
φ and any ε

val(φ) ≤ 1− ε→ val(h(φ)) ≤ 1− ε/q

Proof. The CLk reduction works as follows. Given qCSP instance φ over n
variables u1, ..., un with m constraints, it produces 2CSP2q instance ψ over the
variables u1, ..., un, y1, ..., ym such that for each φi in φ depending on the variables
u1, ..., uq, ψ contains q constraints ψi,j, j = 1, ..., q where ψi,j(yi, uj) is true iff yi
encodes an assignment to u1, ..., uq satisfying φi and uj ∈ {0, 1} agrees with the
assignment yi.

The number of constraints in ψ is qm and if ψ is satisfiable, then so is ψ.
Suppose that val(φ) ≤ 1− ε and let u1, ..., un, y1, ..., ym be any assignment to ψ.
By the assumtion, there is a set S ⊆ [m] of size ≥ εm such that all constraints
φi, i ∈ S are violated by u1, ..., un. Then, for any i ∈ S there is j ∈ [q] such that
ψi,j is violated.

Proposition 2.7.7. There are constants d, e, k such that for every W there is a
CLk-reduction h : 2CSPW → 2CSPW such that PV1 proves that for any 2CSPW
instance φ, and any ε

val(φ) ≤ 1− ε→ val(h(φ)) ≤ 1− ε/(100Wed)

and the constraint graph of h(φ) is d-regular.

Proof. By Propositions 2.6.9 and 2.6.3 there are constants d, e such that for each
et, t ∈ LogLog, there is a d-regular graph Get which for any S ⊆ V, |S| ≤ et

satisfies |E(S, V − S)| ≥ d|S|/4 − 1/8. In particular, for each W and S ⊆ V ,
|S| ≤ et/2, we have (∗): |E(S, V − S)| ≥ |S|/(10W).

The CLk-reduction h works as follows.

Let φ be a 2CSPW instance. First, erase variables in φ that do not appear
in any constraint. Suppose next that ul is a variable that appears in c′ ≥ 1
constraints. Put c := et for the smallest natural t such that c′ ≤ et. Replace
ul by c variables y1

l , ..., y
c
l so that in each constraint ul originally appeared in we

have different yfl . Add a constraint requiring that yjl ↔ yj
′

l for every edge (j, j′)
in the graph Gc. Do this for every variable in φ until each variable appears in
d + 1 constraints, d equality constraints and one original constraint resp. a null
constraint that always accepts which is added if necessary. Denote the resulting
2CSPW instance as ψ (= h(φ)).

If φ has m constraints, ψ has ≤ m+2dem+2em constraints. If φ is satisfiable,
then so is ψ. Suppose that val(φ) ≤ 1 − ε and let y be any assignment to ψ.
Consider then the plurality assignment u to φ’s variables: ui gets the most likely
value that is claimed for it by y1

i , ..., y
c
i . Define ti to be the number of yji ’s that

disagree with the plurality value of ui.

If Σn
i=1ti ≥ εm/2, then by (∗) there are ≥ εm/(20W) equality constraints

violated in ψ.
Suppose that Σn

i=1ti < εm/2. Since val(φ) ≤ 1− ε, there are ≥ εm constraints
in φ violated by u. All of these constraints are also present in ψ. If more than
εm/2 of them were assigned a different value by y than by u, then Σn

i ti ≥ εm/2.
Thus y violates ≥ εm/2 constraints in ψ.

69

Note that all the sets we counted had polynomial size so we had exact counting
for them in PV1.

Proposition 2.7.8. There are constants d, e, k such that for any d′,W there is
a CLk-reduction h : 2CSPW → 2CSPW such that PV1 proves that for any any
2CSPW instance φ with d′-regular constraint graph for d ≥ d′ and for any ε,

val(φ) ≤ 1− ε→ val(h(φ)) ≤ 1− ε/(10de)

Moreover, the constraint graph G of h(φ) is 4d-regular with at least half the edges
coming out of each vertex being self-loops and λ(G) ≤ 0.9.

Proof. By Proposition 2.6.9 there are constants d, e such that for each et where
t ∈ LogLog, there is a d-regular graph Get in PV1 with λ(Get) ≤ 0.1. The
CLk-reduction h works as follows.

Let φ be a 2CSPW -instance with n variables, m constraints, and d′-regular
constraint graph G′ for d′ ≤ d. Without loss of generality 2m ≥ n. Otherwise, φ
contains variables that are not in any constraint so d′ = 0 and φ is empty. Add
new vertices and self-loops to G′ so that it becomes d-regular with et vertices for
the smallest et ≥ n. For each of these new vertices add new variables and for the
new self-loops add null constraints that always accept. Then add null constraints
for every edge in the graph Get . Finally, add 2d null constraints forming self-loops
for each vertex in Get .

The resulting istance ψ(=h(φ)) has 4d-regular constraint graph with ≤ 2den
constraints, and at least half the edges coming out of each vertex being self-loops.
Assuming val(φ) < 1 − ε, there are ≥ εm ≥ ε2den/(4de) violated constraints in
ψ.

Let G be ψ’s constraint graph and A its random-walk matrix. Then A is
3/4B+C/4 for C the random-walk matrix of Get and B the random walk matrix
of a 3d-regular graph. In Section 2.6.3, we observed that for any x ∈ Qn/m,
||Ax|| ≤ 3/4||Bx|| + 1/4||Cx|| + 1/L1/2 and by Proposition 2.6.2, for any δ > 0,
λ(B) ≤ 1 + δ+ 1/L. Thus, assuming δ is sufficiently small and L sufficiently big,
λ(G) ≤ 3/4(1 + δ + 1/L1/2) + 1/4λ(Get) + 1/L ≤ 0.9.

Note that the constant d from Proposition 2.7.8 can be chosen so that it is
bigger than the constant d from Proposition 2.7.7. Therefore, Propositions 2.7.6,
2.7.7 and 2.7.8 show that there are constants d, e, k such that for any q (and
W = 2q) there is a CLk-reduction h : qCSP → 2CSP2q such that PV1 proves
that h maps any qCSP instance into an instance which is nice with the constraint
graph being d-regular while the fraction of violated constraints is reduced by a
factor at most 1/(1000We2d2q). This shows that to derive Proposition 2.7.2 it
suffices to prove the following powering proposition:

Proposition 2.7.9. There is k such that for any W > 0 and sufficiently big
square t ≥ 1 there is an algorithm A with properties described below such that
PV1 proves that for any nice 2CSPW instance ψ with n variables with n ∈ Log
the algorithm A produces a 2CSPW ′ instance ψt such that:

1. W ′ ≤ W d5t, where d is the degree of ψ’s constraint graph. The instance ψt has
≤ d5tn constraints.

70

2. If ψ is satisfiable, then so is ψt.
3. For every ε < 1/(d

√
t),

val(ψ) ≤ 1− ε→ val(ψt) ≤ 1− ε
√
t/(106dW 5)

4. The formula ψt is produced from ψ (by A) in time (nd)kW kd5t.

Proof. Let ψ be a 2CSPW instance with n variables u1, ..., un and m ≤ nd/2
constraints and let G denote the constraint graph of ψ.

The formula ψt will have n variables y1, ..., yn over an alphabet of size
W ′ = W d5t . A value of a variable yi is a d5t-tuple of values in {0, ...,W − 1} and
we will think of it as giving a value yi(uj) in {0, ...,W − 1} to every variable uj
in ψ where j can be reached from i using a path of ≤ t+

√
t steps in G. Since G

is d-regular the number of such nodes is ≤ dt+
√
t+1 ≤ d5t.

For every path p = 〈i1, ..., i2t+2〉 in G we will have a constraint Cp in ψt

depending on variables yi1 and yi2t+2 which outputs 0 if and only if there is some
j ∈ [2t+ 1] such that

1. ij can be reached from i1 using a path of ≤ t+
√
t steps in G

2. ij+1 can be reached from i2t+2 using a path of ≤ t+
√
t steps n G

3. yi1(uij), yi2t+2(uij+1
) violate the constraint in ψ depending on uij and uij+1

The 2CSPW ′ instance ψt can be produced in time (nd)kW kd5t and has ≤ d5tn
constraints. Any assignment u1, ..., un satisfying ψ induces an assignment y1, ..., yn
satisfying ψt: each yi encodes values uj for j’s that can be reached from i by
≤ t +

√
t steps in G. Therefore, it remains to show that for ε < 1/(d

√
t),

val(ψ) ≤ 1− ε→ val(ψt) ≤ 1− ε
√
t/(106dW 5).

Every assignment y for ψt induces the so called plurality assignment u for ψ:
ui gets the value σy(ui) which is the most likely value yk(ui) for yk’s where k is
obtained by taking a t-step random walk from i in G. If more than one value is
most likely, take the lexicographically first one.

Suppose that val(ψ) ≤ 1− ε, then there is a set F of εm constraints violated
by the plurality assignment.

Pick a random path p = 〈i1, ..., i2t+2〉 in G. For j ∈ {1, ..., 2t+ 1} we say that
the edge (ij, ij+1) in p is truthful if yi1(uij) = σy(uij) and yi2t+2(uij+1

) = σy(uij+1
).

Let δ = 1/(1000W) and denote by V the number of edges in
〈
it, ..., it+bδ

√
tc+1

〉
that are truthful and in F . That is, V is a nonnegative random variable defined on
a sample space of size poly(n). If there is at least one such edge, the corresponding
constraint in ψt is unsatisfied so we want to show that
Prp[V > 0] ≥ ε

√
t/(106dW 5).

For each edge e of G and each j ∈ {1, 2, ..., 2t+ 1}, Prp[e = (ij, ij+1)] = 1/m,
i.e. each edge has the same probability to be the j-th edge in p.

Claim. For any edge e of G and any j ∈ {t, ..., t+ bδ
√
tc},

Prp[(ij, ij+1) is truthful | e = (ij, ij+1)] ≥ 1/(2W 2)

71

To prove the claim, let i1 be the endpoint of a random walk p1 of length j out
of ij and i2t+2 be the endpoint of a random walk p2 of length 2t − j out of ij+1.
We need to show that

Prp1 [yi1(uij) = σy(uij)]Prp2 [yi2t+2(uij+1
) = σy(uij+1

)] ≥ 1/(2W 2)

Since half of the edges incident to each vertex are self-loops, we can see an l-step
random walk from a vertex i as follows:

1. throw l fair coins and let Sl denote the number of ”heads”;
2. take Sl non-self-loop steps on the graph.

Denote by l(p) the length of a path p not counting self-loops. Then,

Prp1 [yi1(uij) = σy(uij)] =
= ΣlPr[Sj = l]Prp1 [l(p1) = l ∧ yi1(uij) = σy(uij)]
≥ ΣlPr[St = l]Prp1 [l(p1) = l∧ yi1(uij) = σy(uij)]− 20δ by Proposition 2.7.5
≥ 1/W − 20δ

where the last inequality follows from the definition of the plurality assignment
which implies that for j = t, Prp1 [yi1(uij) = σy(uij)] ≥ 1/W . Similarly we obtain

Prp2 [yi2t+2(uij+1
) = σy(uij+1

)] ≥ (1/W − 20δ). This proves our claim.

The claim implies Prp[(ij, ij+1) is truthful and in F] ≥ |F |/(m2W 2) for any
j from {t, ..., t+bδ

√
tc}. Without a loss of generality, |{t, ..., t+bδ

√
tc}| is dδ

√
te.

Thus by linearity of expectation,

E[V] ≥ εdδ
√
te/(2W 2)

By Proposition 2.7.5 2., Pr[V > 0] ≥ E[V]2/E[V 2], so to conclude the proof
it suffices to show that E[V 2] ≤ 50dεdδ

√
te.

Denote by V ′ the number of edges in
〈
it, ..., it+bδ

√
tc+1

〉
that are in F . For any

j from {t, ..., t+ bδ
√
tc} put Ij := 1 iff (ij, ij+1) ∈ F . Further, let S be the set of

vertices contained in an edge from F . Then, assuming that the constant L from
our definition of λ(G) satisfies L > d and L > δ

√
t,

E[V 2] ≤ E[V ′2] = E[Σj,j′IjIj′] = E[ΣjI
2
j] + E[Σj 6=j′IjIj′]

= εdδ
√
te+ 2Σj<j′Prp[(ij, ij+1) ∈ F ∧ (ij′ , ij′+1) ∈ F]

≤ εdδ
√
te+ 2Σj<j′Pr(ij ,ij′)∈Gj′−j [ij ∈ S ∧ ij′ ∈ S]

≤ εdδ
√
te+ 2Σj<j′εd(εd+ 2 · 0.9j′−j) by Proposition 2.6.4

≤ εdδ
√
te+ 2ε2d2dδ

√
te2 + 40εddδ

√
te ≤ 50εddδ

√
te using ε < 1/(d

√
t)

This concludes our formalization of the PCP theorem in the theory PV1. It
can be briefly summarized as follows. In Theorem 2.7 we formulated the PCP
theorem as a ∀Σb

1-formula. Thus, by ∀Σb
1-conservativity of S1

2 over PV1 we could
afford to work instead in the theory S1

2 . Specifically, we used Πb
1-LLIND induction

available in S1
2 to show that the PCP theorem is a consequence of a statement

about CSP instances, Proposition 2.7.1. Then we observed that the CSP formu-
lation of the PCP theorem is a collorary of two propositions, Gap amplification
2.7.2 and Alphabet reduction 2.7.3. The latter one was an application of the

72

exponential PCP theorem in a scale-down setting where we needed to count only
sets of constant size, hence it was provable already in PV1. The gap amplifica-
tion was a consequence of a CL-reduction into nice CSP instances and Powering
proposition 2.7.9. The reduction to nice instances used the (n, d, λ)-graphs which
we constructed in Section 2.6. Section 2.6 contained the most challenging part
where we needed to employ certain approximating tools to reason about algebraic
definitions of pseudorandom constructions in PV1. In the remaining part of the
proof of the PCP theorem, including the powering proposition, we were mainly
verifying step by step that the reasoning used in the standard proof does not
exceed the possibilities of the theory PV1.

Acknowledgement

I would like to thank Jan Kraj́ıček for many constructive discussions during the
development of the paper. I would also like to thank Neil Thapen, Pavel Pudlák
and Emil Jeřábek for comments and suggestions during its seminar presentation.
This research was supported by grants GA UK 5732/2014 and SVV-2014-260107.

73

Bibliography

[1] Arora S., Barak B.; Computational Complexity: A Modern Approach, Cam-
bridge University Press, 2009.

[2] Arora S., Safra S.; Probabilistic checking of proofs: A new characterization
of NP, J. ACM, 45(1):70-122, 1998. Preliminary version FOCS 1992.

[3] Arora S., Lund C., Motwani R., Sudan M., Szegedy M.; Proof verification
and the hardness of approximation problems, J. ACM, 45(3):501-555, 1998.
Preliminary version FOCS 1992.

[4] Buss S.R.; Bounded Arithmetic, Bibliopolis, Naples, 1986.

[5] Buss S.R., Kolodziejczyk L.A., Zdanowski K.; Collapsing Modular Counting
in Bounded Arithmetic and Constant Depth Propositional Proofs, preprint
(available at author’s webpage), 2012.

[6] Cai J.; SP2 ⊆ ZPPNP , Journal of Computer and System Sciences, 73(1):25-
35, 2007.

[7] Cobham A.; The intrinsic computational difficulty of functions, Proceedings
of the 2nd International Congress of Logic, Methodology and Philosophy of
Science, North Holland, pp. 24-30, 1965.

[8] Cook S.A.; Feasibly constructive proofs and the propositional calculus, Pro-
ceedings of the 7th Annual ACM Symposium on Theory of Computing, ACM
Press, pp. 83-97, 1975.

[9] Cook S.A., Kraj́ıček J.; Consequences of the Provability of NP⊆P/poly,
Journal of Symbolic Logic, 72:1353-1357, 2007.

[10] Dinur I.; The PCP theorem by gap amplification, J. ACM, 54(3), 2007.

[11] Dai Tri Man Le; Bounded arithmetic and formalizing probabilistic proofs,
Ph.D. thesis, University of Toronto, 2014.

[12] Imagliazzo R., Wigderson A.; P=BPP unless E has subexponential circuits:
Derandomizing the XOR Lemma, Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pp. 220-229, 1997.

[13] Jeřábek E.; Dual weak pigeonhole principle, Boolean complexity and deran-
domization, Annals of Pure and Applied Logic, 129:1-37, 2004.

[14] Jeřábek E.; Weak pigeonhole principle, and randomized computation; Ph.D.
thesis, Faculty of Mathematics and Physics, Charles University, Prague,
2005.

[15] Jeřábek E.; Approximate counting in bounded arithmetic, Journal of Sym-
bolic Logic, 72:959-993, 2007.

[16] Jeřábek E.; On independence of variants of the weak pigeonhole principle,
Journal of Logic and Computation, 17:587-604, 2007.

74

[17] Jeřábek E.; Approximate counting by hashing in bounded arithmetic, Jour-
nal of Symbolic Logic, 74:829-860, 2009.

[18] Kraj́ıček J.; Bounded arithmetic, propositional logic, and complexity theory,
Cambridge University Press, 1995.

[19] Kraj́ıček J.; Dual weak pigeonhole principle, pseudo-surjective functions and
provability of circuit lower bounds, Journal of Symbolic Logic, 69(1):265-286,
2004.

[20] Kraj́ıček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polynomial
hierarchy, Annals of Pure and Applied Logic, 52:143-153, 1991.

[21] Moshkovitz D.; Lecture notes: PCP and Hardness of Approximations,
http://people.csail.mit.edu/dmoshkov/courses/pcp-mit/4-linearity-test.pdf.

[22] Nisan N., Wigderson A.; Hardness vs. randomness, Journal of Computer and
System Sciences, 49(2):149-167, 1994.

[23] Parikh, R.; Existence and feasibility in arithmetic, Journal of Symbolic Logic,
36: 494-508, 1971.

[24] Pich J.; Circuit lower bounds in bounded arithmetics, to appear in Annals
of Pure and Applied Logic, 2013.

[25] Razborov A.A.; Bounded Arithmetic and Lower Bounds in Boolean Com-
plexity, Feasible Mathematics II, pp. 344-386, 1995.

[26] Razborov A.A; Pseudorandom Generators Hard for k-DNF Resolution and
Polynomial Calculus, preprint (available at author’s webpage), 2002-2003.

75

	Introduction
	Circuit Lower Bounds and Complexity - Theoretic Tautologies
	Facts that are hard to witness
	Bibliography

	Attachment:
	Circuit Lower Bounds in Bounded Arithmetics
	Introduction
	Formalization
	Feasible Mathematics
	More formalizations of circuit lower bounds for SAT
	Witnessing errors of p-size circuits

	Circuit Lower Bounds in S12(bit)
	Theories weaker than PV1
	Unprovability of circuit lower bounds in subtheories of PV1
	References

	Attachment:
	Logical Strength of Complexity Theory and a Formalization of the PCP Theorem in Bounded Arithmetic
	Introduction
	Formalizations in bounded arithmetic: initial notes
	Theory PV1: formalized p-time reasoning
	Theory APC1: formalized probabilistic p-time reasoning

	Previous formalizations of complexity theory and our contribution
	NP-completeness
	Randomized computation
	Circuit lower bounds
	Interactive proofs
	Cryptography
	Complexity of counting
	Derandomization
	Contribution of our paper: the PCP theorem and the (n,d,)-graphs

	The Cook-Levin theorem in PV1
	The exponential PCP theorem in APC1
	Test of linearity in APC1

	Pseudorandom constructions in PV1
	Definition and some properties of the (n,d,)-graphs
	A technical tool
	The tensor product
	The replacement product
	The construction of the (n,d,)-graphs

	The PCP theorem in PV1
	References

