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Introduction

Open bosonic string theory plays a similar role in string theory as free scalar �eld
in quantum �eld theory. It is not a model that we are ultimately interested in
since it does not have some physical properties that we observe, most importantly
such model does not have any fermions. But it is relatively simple and it captures
a lot of structure of the framework we are working in. By studying it, we can
develop useful tools and learn valuable lessons that will be put to use when we
will study the theory of main interest, which is superstring theory.

In this thesis, we will focus on open strings whose ends are connected to a space
�lling D25-brane. The most important aspect of this theory for our purposes is
the existence of tachyonic ground state of open string. As we know from quantum
�eld theory, negative mass squared is not pathological to a �eld theory, it just
means that the vacuum we are expanding the theory around is unstable, and the
�eld will make a transition into a stable vacuum. The instability due to existence
of tachyon was reconciled by Ashoke Sen, who identi�ed it with the instability of
the space �lling D-brane. The transition to a stable vacuum (tachyon vacuum) is
known as tachyon condensation.

A great bit of progress in this subject was due to Ashoke Sen, who postulated
three conjectures about this process. These conjectures state the following [13],
[14]:

• The energy di�erence between the original vacuum and the tachyon vacuum
exactly matches the D25-brane tension, and therefore the space-�lling brane
ceases to exist.

• There are no physical perturbative open strings around tachyon vacuum.

• Lower dimensional D-branes can be obtained as solitonic solutions.

Since the transition between the vacua is a non-perturbative process, we need
to formulate a second quantized theory. This is the string �eld theory that was
�rst proposed by Edward Witten in [19]. In this framework, Sen's conjectures have
been tested by many calculations and two of them were even proven analytically
by Schnabl and Ellwood [11],[7].

Aside from the qualitative aspects of tachyon condensation, the dynamics of
such process can also be studied. Solutions describing this transition have never
been acquired in full generality only with some additional ansatz. Most of the
work done assumed space homogeneity. However, this does not seem to be so
physically relevant case as was argued by Schnabl and Hellerman in [8]. Instead,
they proposed that the �eld depends only on one lightcone coordinate. Such
solution represents a planar wave propagating through spacetime with speed of
light leaving the tachyon vacuum behind it. For technical reasons such solution
requires a nontrivial dilaton background. In this thesis, we will calculate the
boundary state of such solution from gauge invariant overlaps using the Kudrna-
Maca�ari-Schnabl construction [6].

Our thesis is mostly an introductory material for the study of string �eld
theory. The �rst chapter is dedicated to conformal �eld theory, which is the basic
tool of string theory. We utilize a special case, the free boson, to illustrate these
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methods. This particular example was chosen because the string theory action
principle, which is introduced in the second chapter, reduces to the one of free
boson. We then continue to develop few other key ideas that are essential for the
introduction of string �eld theory (SFT). In the third chapter, we �nally introduce
SFT for open strings connected to a space �lling D-brane. We comment on the
de�nitions of star product, boundary state construction as well as simple tools of
solving the equations of motion. We continue with description of how boundary
states act like sources of closed string states. At the end of this work, we construct
the boundary state for above mentioned light-like solution, using the discussed
methods.
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1. Free boson conformal �eld theory

In order to get to basic string theory and then to string �eld theory, we need to
lay down some tools that we will be using. The main tool, to which this chapter
is dedicated, is the conformal �eld theory, which is a rather rich subject on its
own. For this reason we will not present a general introduction; instead, we will
go through the particular parts that are going to be useful to us. These are
mainly fundamental de�nitions and results for the free boson CFT (conformal
�eld theory) in two �at dimensions. A broader introduction to the subject with
relevance to string theory can be found in [10],[17], which are the main sources
for this chapter.

1.1 The complex plane

Conformal �eld theory in two dimensions is rather special, as we shall see later in
this chapter, and much of this uniqueness is due to the possibility of describing
the plane by complex numbers. Before we get to any �eld theory, let us explain
how such description works.

Classical description of a �at plane is given by a metric and two Cartesian
coordinates σ1 and σ2. We already know that we want to work with �at metric,
but we can still choose between the Minkowski and the Euclidean signature. Since
we study physical theories, we should consider the Minkowski case; however, the
calculations are very similar in both cases and �nal results can be always related
through Wick rotation (substitution σ2 = iσ0). Therefore, we are free to choose
the signature, and since the Euclidean case is simpler and more elegant, we will
use it to describe the plane.

The complex coordinates are de�ned in terms of the Cartesian ones as follows:

z = σ1 + iσ2, z̄ = σ1 − iσ2. (1.1)

The holomorphic derivatives are

∂z = ∂ =
1

2
(∂1 − i∂2), ∂z̄ = ∂̄ =

1

2
(∂1 + i∂2). (1.2)

Note that these derivatives obey following relations

∂z = 1, ∂z̄ = 0, ∂̄z = 0, ∂̄z̄ = 1, (1.3)

and therefore ∂̄ annihilates holomorphic and ∂ antiholomorphic functions.
If we would wick rotate to Minkowski space, the dependence on z would be-

come the dependence on lightcone coordinate σ1 − σ0, and hence holomorphic
functions which depend only on z are sometimes called left-moving and by ana-
logous argument antiholomorphic functions are called right-moving.

The Euclidean metric in complex coordinates is

ds2 = dzdz̄ (1.4)

and the measure element is

dσ1dσ2 =
1

2
dzdz̄. (1.5)
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Since there is a factor of half in the expression for measure element, we use a
slightly di�erent de�nition for delta function∫

d2z δ(z, z̄) = 1, (1.6)

which di�ers from a standard de�nition by a factor of half coming from the
measure. It satis�es δ(z, z̄) = 1

2
δ2(σ1, σ2).

1.1.1 Conformal transformation

One of the amazing aspects of CFT in two dimensions is that the set of conformal
transformations is in one to one correspondence with the set of holomorphic
functions. To see this, we need to go a step back from our complex notation to
a general manifold, where conformal transformations are de�ned as the class of
transformations whose generators εa(x) satisfy the conformal Killing equation

∇aεb(x)−∇bεa(x) = Ω2(x)gab(x). (1.7)

By taking the trace and substituting back, we can eliminate Ω:

∇aεb(x)−∇bεa(x) =
2

d
∇cε

c(x)gab(x), (1.8)

where d is the dimension of the manifold.
Now let us restrict ourselves to the case we are interested in, the �at 2 di-

mensional plane. The covariant derivatives become partial derivatives and the
metric becomes Kronecker's delta:

∂aεb(x)− ∂bεa(x) = ∂cε
c(x)δab. (1.9)

By evaluating this equation for speci�c indices, we get two independent constrains

∂1ε2 + ∂2ε1 = 0, (1.10)
∂1ε1 − ∂2ε2 = 0. (1.11)

These are exactly the Riemann-Cauchy equations. To satisfy them, εa must be a
function of σ1 + iσ2 only or, in language of complex analysis, ε(z, z̄) is a holomor-
phic function. From the generators we can build up a �nite transformation, and
since the generators are holomorphic, the �nite transformation will be as well.
Therefore, for every holomorphic function f(z) we have a transformation given
as follows:

z → w = f(z), z̄ → w̄ = f̄(z̄). (1.12)

The measure element transforms as d2z →
∣∣df/dz∣∣2d2z.

The fact that holomorphic change of coordinates is a conformal transformation
is actually the reason why is conformal �eld theory so powerful in two dimensi-
ons. There is a conformal transformation for every holomorphic function, and
therefore the conformal group is in�nite dimensional. In such case, the confor-
mal invariance becomes so restrictive to enable solving exactly even nontrivial
interacting models. Theories on higher dimensional �at spaces always have �nite
dimensional conformal group.
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1.2 Free boson action

Dynamics of collection of free bosons in two �at dimensions with Euclidean metric
signature is given by the following Lagrangian

S =
1

4πα′

∫
d2z (∂1X

µ∂1Xµ + ∂2X
µ∂2Xµ). (1.13)

The factor of 1/4πα′ may seem a little arbitrary at the moment, but its physical
meaning will become clear when we come to string theory. In preparation for the
following chapter, we are considering a collection of D �elds indexed by µ. These
will eventually represent coordinates in so-called target spacetime. If we write
this action in terms of complex coordinates, it becomes

S =
1

2πα′

∫
d2z∂Xµ∂̄Xµ (1.14)

yielding classical equations of motion

∂∂̄Xµ(z, z̄) = 0. (1.15)

Since the derivatives are interchangeable, it follows that ∂Xµ(z, z̄) is holomorphic
and ∂̄Xµ(z, z̄) is antiholomorphic and thus justifying shorthand notation ∂Xµ(z)
and ∂̄Xµ(z̄). We can also decompose Xµ(z, z̄) into holomorphic and antiholomor-
phic part

Xµ(z, z̄) = Xµ(z) + X̄µ(z̄). (1.16)

We will often simplify formulae by writing them only for the holomorphic part
since the antiholomorphic part is completely analogous, di�ering from the holo-
morphic part only by bars over partial derivatives and by the dependence on z̄
instead of z.

1.3 Conformal properties of free boson

Now we would like to show that free boson is conformally invariant theory. That
means the action has to be conformally invariant. Consider a general confor-
mal transformation z → w = f(z). The respective terms in action transform as
follows:

∂Xµ(z)

∂z
→ ∂Xµ(f(z))

∂z
=

df

dz

∂Xµ(w)

∂w
,

d2z → d2z =
∣∣∣dz
df

∣∣∣2d2w. (1.17)

From the antiholomorphic part we would get the complex conjugate of df/dz, and
thus together with the transformation of holomorphic part we get the reciprocal
value of the Jacobian term from the measure, which as a result cancel each other.
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1.3.1 Stress energy tensor

Stress energy tensor is de�ned as a conserved current associated with translation
symmetry. We can obtain it, using the Noether's procedure. Such tensor is not
uniquely given since we can make changes to it without breaking the conservation
law (see Belinfante construction [?]). However, there is a useful trick for deriving
a symmetric stress energy tensor for a theory. Tensor given by this construction is
sometimes called covariant, and it is the one that we know from general relativity.

Suppose that the theory is minimally coupled to the worldsheet metric gab and
that the theory no longer necessarily sits on �at space. Thus, we get following
Langrangian

S =
1

2πα′

∫
d2z
√
g∂aX

µ∂bXµg
ab, (1.18)

where the indeces a and b run through z and z̄. For such theory, the stress energy
tensor given by the Noether's procedure can be obtained as:

Tab =
−2π
√
g

∂L
∂gab

, (1.19)

where L is the Lagrangian density. For more comments on how this works see
[16]. After calculating this quantity in this generalized theory, we get:

Tab = − 1

α′

(
∂aXµ∂bXµ −

1

2
gab∂cX

µ∂cXµ

)
. (1.20)

Now to get the stress-energy tensor of our theory, we substitute for gab the �at
metric 1.4. By doing so, we �nd out that Tzz̄ = Tz̄z = 0 and

Tzz = − 1

α′
∂Xµ∂Xµ, (1.21)

Tz̄z̄ = − 1

α′
∂̄Xµ∂̄Xµ. (1.22)

One of basic consequences of conformal symmetry is that the trace of the
energy momentum tensor vanishes (this is actually result of scale invariance).
The tracelessness of Tab translates in complex coordinates as Tzz̄ = 0, which, as
we have seen, holds for the tensor we just derived. The energy-momentum tensor
is a conserved current, therefore we have ∂aT ab = 0. Together with tracelessness
this gives us ∂̄Tzz = ∂Tz̄z̄ = 0. Being so we see that Tzz(z, z̄) is a holomorphic
function, so we adapt a shorthand notation Tzz(z, z̄) = T (z). Similarly, Tz̄z̄ is
antiholomorphic and will be from now on referred to as T̄ (z̄).

1.4 Quantum aspects of free boson

So far we have only dealt with classical aspects of our �eld theory. Now we would
like to get into the quantum theory. Before we do so, let us stress out a di�erence
in terminology from QFT (quantum �eld theory). In QFT, when we are talking
about �elds, we mean various physical �elds that are present in action and are
integrated over in path integrals. In CFT any local expression is referred to as
a �eld. For example, the various �elds that have role in free boson CFT would
be Xµ(z, z̄), ∂nXµ(z) or even composite expressions like eiX

0
(z, z̄). We could as
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well consider any sums or products of these simple expressions. When we turn
to quantum theory, �elds are promoted to local operators, and the quantities
of interest are the expectation values of such operators. The expectation values
are de�ned as path integrals with time ordered insertions of corresponding local
functionals: 〈

F [X]
〉

=

∫
d[X]F [X]e−S[X]. (1.23)

Expressions like this are often called, by analogy with statistical mechanics, corre-
lation functions. Correlation function usually has a di�erent normalization. For
example, it could be divided by a path integral with insertion of identity.

As we mentioned earlier, we can also multiply local operators. We have already
seen an important operator of this type: the stress-energy tensor. However, as
we have seen many times in quantum �eld theory, if we naively promote the
Hamiltonian to an operator and evaluate the expectation value, we �nd out that
it is in�nite. Thus, we introduce a notion of normal ordering de�ned in terms of
raising and lowering operators to subtract the in�nities. Here we face a similar
problem: If we calculate the expectation value of ∂Xµ(z)∂Xµ(w), we �nd out
that it diverges as w → z. As a consequence, we would like to introduce normal
ordering, but we have not made any contact with raising and lowering operators,
thus we need a di�erent notion of normal ordering. In order to do so, let us �rst
calculate a typically divergent quantity: the propagator.

1.4.1 Normal ordering

To derive propagator of the theory
〈
Xµ(z, z̄)Xν(w, w̄)

〉
, we use the property of

path integral that it annihilates total derivatives. Using this, we get:

0 =

∫
d[X]

δ

δXµ(z, z̄)

[
e−S[X]Xν(w, w̄)

]
=

∫
d[X]e−S[X]

[
ηµνδ(z − w, z̄ − w̄) +

1

πα′
∂∂̄Xµ(z, z̄)Xν(w, w̄)

]
=
〈
ηµνδ(z − w, z̄ − w̄) +

1

πα′
∂∂̄Xµ(z, z̄)Xν(w, w̄)

〉
, (1.24)

and thus we obtain〈
∂∂̄Xµ(z, z̄)Xν(w, w̄)

〉
= −

〈
πα′ηµνδ(z − w, z̄ − w̄)

〉
. (1.25)

This equation can be viewed as a di�erential equation for the propagator. By
using following standard result

∂∂̄ln|z − w|2 = 2πδ(z − w, z̄ − w̄), (1.26)

we get the propagator〈
Xµ(z, z̄)Xν(w, w̄)

〉
= −α

′

2
ηµν

〈
ln|z − w|2

〉
. (1.27)

As we would expect, the propagator diverges as w → z. This expression is exactly
of the type we had problem with, and we even know how it diverges. As a result,
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a straight forward ordering is at hand, we just subtract the divergent piece. Ac-
cordingly, we use the following expression as the de�nition of normal ordering,
which will be denoted by enclosure in colons:

: Xµ(z, z̄)Xν(w, w̄) := Xµ(z, z̄)Xν(w, w̄) +
α′

2
ηµν ln|z − w|2. (1.28)

Such normal ordering is distributive over addition and commutes with di�eren-
tiation. We can also understand this expression as a de�nition of a contraction,
and thus generalize it, using Wick's theorem onto composite operators.

Normal ordered products have an important property, they satisfy the quan-
tum analogue of equations of motion. In order to derive them, we use the same
trick as in the derivation of propagator. We thus get the following:

0 =

∫
d[X]

δ

δXµ(z, z̄)
e−S[X]

= −
∫

d[X]e−S[X] δS

δXµ(z, z̄)

= −
〈 δS

δXµ(z, z̄)

〉
=

1

πα′

〈
∂∂̄Xµ(z, z̄)

〉
. (1.29)

This is the content of Ehrenfest theorem. In other words: Expectation values obey
the classical equations of motions. We could do the same calculation with other
insertions in the path integral. As long as these insertions are su�ciently far from
(z, z̄), the calculation would proceed exactly the same. However, this is no longer
true if the insertions are at (z, z̄). We have already seen this in equation 1.25.
The additional operator gave rise to a delta function, and therefore it no longer
satis�ed the equations of motion. But if we act with ∂∂̄ on 1.27, we get:〈

∂∂̄ : Xµ(z, z̄)Xν(w, w̄) :
〉

= 0, (1.30)

and thus we see that such normal ordered product obeys the equations of motion.
This has a very important consequence: Functions

〈
: Xµ(z, z̄)Xν(w, w̄) :

〉
are

harmonic, and therefore they have no singularities. This will become important
later. The fact that normal ordered products satisfy the equations of motion is a
general property, which holds for any string of local operators. Some authors even
consider it the de�ning property. Applying our results to the energy-momentum
tensor, we get:

T (z) = − 1

α′
: ∂Xµ(z)∂Xµ(z) : (1.31)

and similarly for the antiholomorphic T̄ (z̄). These �elds have zero expectation
value.

1.4.2 Operator product expansion

The operator product expansion (OPE) is a statement describing how local ope-
rators act when they approach each other inside of correlation function. The
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main idea is to approximate a pair of operators by a possibly in�nite sum of
local operators with factors that depend only on the former pair of operators and
their separation. Suppose that we have a given operator basis {Oi(z, z̄)}i, then
equations we would like to obtain are of the following form:

Oi(z, z̄)Oj(w, w̄) =
∑
k

ckij(z − w, z̄ − w̄)Ok(w, w̄). (1.32)

It is important to stress out how should we understand this: The equation at hand
is an operator equation, and therefore it is meant to hold inside of time ordered
correlation functions even though the brackets signifying it are not present.

In order to derive such expressions, we will make use of the property that
normal ordered strings of operators satisfy the equations of motion as we showed
earlier. Let us demonstrate how this works on an example where we already know
how normal ordering looks. Given two operators Xµ(z, z̄) and Xν(w, w̄), we get

Xµ(z, z̄)Xµ(w, w̄) = − 2

α′
ηµν ln|z − w|2+ : Xµ(z, z̄)Xµ(w, w̄) : . (1.33)

Now we can treat the normal ordered pair of operators as a function of two
variables z and w, and Laurent expand the dependence on z around the point
w. When we do this, the quantum equation of motion 1.28 guarantees that this
expansion will have no terms with mixed derivatives and no singularities, therefore
all negative powers of z − w drop out. Applying this, we get

Xµ(z, z̄)Xν(w, w̄) =− 2

α′
ηµν ln|z − w|2+ : Xµ(w, w̄)Xµ(w, w̄) :

+
∞∑
n=1

(z − w)n

n!
: ∂nXµ(w, w̄)Xν(w, w̄) :

+
∞∑
n=1

(z̄ − w̄)n

n!
: ∂̄nXµ(w, w̄)Xν(w, w̄) :, (1.34)

which is equation of type 1.32. Note that the important part of these expressions
is the one that has singular behavior.

1.4.3 Examples of OPE

Using Wick's theorem and the procedure above, we can derive the OPE for other
local operators that will be of interest to us. These calculations are fairly simple,
so we will not carry them out explicitly. The following is a list of OPEs that will
be important later on.

The TT OPE:

T (z)T (w) =
D/4

(z − w)4
+

T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . (1.35)

T̄ (z̄)T̄ (w̄) =
D/4

(z̄ − w̄)4
+

T̄ (w̄)

(z̄ − w̄)2
+
∂̄T̄ (w̄)

z̄ − w̄
+ . . . (1.36)

Dots at the end signify presence of non-singular terms. The factor in front of
1/4(z − w)4 is called central charge (usually denoted c), and the fact that in
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this case it is equal to the number of �elds is due to the type of theory we are
working with. For the antiholomorphic part the factor may be di�erent. It is
analogically called antiholomorphic central charge and is denoted c̄. It should
be stressed out that the bar here is only a notation device and does not signify
complex conjugation. The T (z)T̄ (w̄) OPE is non-singular.

The ∂XµT OPE:

T (z)∂Xµ(w) =
∂Xµ(w)

(z − w)2
+
∂2Xµ(w)

z − w
+ . . . (1.37)

The ∂̄XµT̄ OPE:

T̄ (z̄)∂̄Xµ(w̄) =
∂̄Xµ(w)

(z̄ − w̄)2
+
∂̄2Xµ(w)

z̄ − w̄
+ . . . (1.38)

The : eikµX
µ

: OPE with T and T̄ :

T (z) : eikµX
µ

: (w, w̄) =
α′kµk

µ

4

: eikµX
µ

: (w, w̄)

(z − w)2
+
∂ : eikµX

µ
: (w, w̄)

z − w
+ . . .

(1.39)

T̄ (z̄) : eikµX
µ

: (w, w̄) =
α′kµk

µ

4

: eikµX
µ

: (w, w̄)

(z̄ − w̄)2
+
∂̄ : eikµX

µ
: (w, w̄)

z̄ − w̄
+ . . .

(1.40)

1.4.4 Classi�cation of operators

Now we would like to classify local operators of our theory by their transformation
properties. These properties are, in two dimensions, very tightly connected to a
particular form of OPEs with conserved current associated with a symmetry
at hand, in our case the conformal symmetry. This connection is due to Ward
identities and their special form in two dimensions. We will not go into details of
this, but it can be found in [10].

1.4.5 Quasi-primary operators

Let us consider following map that is proportional to parameter ε:

z → (1 + ε)z, z̄ → (1 + ε̄)z̄. (1.41)

We say that an operator is quasi-primary of weight (h, h̃) if it transforms (in
leading order of epsilon) as

O → (1− ε(h+ z∂)− ε̄(h̃+ z̄∂̄))O. (1.42)

As we mentioned earlier, transformation properties of operators translate into
their OPE with stress-energy tensor. Transformation 1.42 implies following form
of OPEs

T (z)O(w, w̄) = · · ·+ h
O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . . (1.43)

T̄ (z̄)O(w, w̄) = · · ·+ h̃
O(w, w̄)

(z̄ − w̄)2
+
∂̄O(w, w̄)

z̄ − w̄
+ . . . (1.44)
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Note that all of the OPEs that we have shown are of this type. Therefore, all
operators mentioned above were quasi-primary.

Under �nite transformation given by function f(z), quasi-primary operators
transform as follows:

O(z, z̄)→ O(f(z), f̄(z̄)) =
(∂f
∂z

)−h(∂f̄
∂z̄

)−h̃
O(z, z̄). (1.45)

Conformal weights are closely connected to scaling dimension ∆ and spin s,
namely they are the di�erence and sum:

h =
1

2
(∆ + s), (1.46)

h̃ =
1

2
(∆− s). (1.47)

1.4.6 Primary operators

Primary operators are de�ned by the following form of OPEs

T (z)O(w, w̄) = h
O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . . (1.48)

T̄ (z̄)O(w, w̄) = h̃
O(w, w̄)

(z̄ − w̄)2
+
∂̄O(w, w̄)

z̄ − w̄
+ . . . (1.49)

Comparing these with 1.44, we �nd out that all primary operators are also quasi-
primary. Note that operators : eikµX

µ
:, ∂Xµ and ∂̄Xµ are all primary operators

as we can check from the OPEs above. Conformal weights can be read from them
as well.

1.4.7 Correlation functions

As we mentioned earlier, correlation functions are proportional to path integrals
with insertions. We can evaluate them, using path integral methods. However, the
conformal symmetry of the theory presents us with another option. The require-
ment of conformal invariance constrains the form of simple correlation functions.
Thus, we can calculate them without any reference to path integrals or even action
principles. Let us now look how this works for the simplest nontrivial correlator.
Consider following correlation function of quasi-primary operators O1 and O2:〈

O1(z1, z̄1)O2(z2, z̄2)
〉
. (1.50)

Since the theory is invariant under translations and rotations, we obtain〈
O1(z1, z̄1)O2(z2, z̄2)

〉
= f(|z1 − z2|), (1.51)

where f is an undetermined function. Now we can consider another symmetry of
the theory, the scale invariance z → λz. Using 1.42, we get〈
O1(λz1, λz̄1)O2(λz2, λz̄2)

〉
=
(∂λz
∂z

)−h1−h2(∂λz̄
∂z̄

)−h̃1−h̃2〈
O(z,1 z̄1)O(z2, z̄2)

〉
= λ−h1−h̃1−h2−h̃2

〈
O(z,1 z̄1)O(z2, z̄2)

〉
. (1.52)
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We learn that
f(|z1 − z2|) = λh1+h̃1+h2+h̃2f(λ|z1 − z2|). (1.53)

The only function that scales like this is C12|z1 − z2|−h1−h̃1−h2−h̃2 , where C12 is
multiplicative constant (structure constant), and thus we get

f(|z1 − z2|) =
C12

|z1 − z2|h1+h̃1+h2+h̃2
. (1.54)

Since the correlator has to be rotational invariant, the total spin within it has to
add up to zero. Therefore, the conformal weights have to satisfy h1 = h2 = h and
h̃1 = h̃2 = h̃ [9]. Otherwise the correlator vanishes.

Analogically, we could do this for a correlator with three insertions and arrive
at a similar result. The form of correlations is not entirely �xed for four or higher
point functions. Concrete results can be found in [9].

As we mentioned earlier, correlation functions can be calculated, using path
integral methods, one of which is the generating functional method. We de�ne
such functional as:

Z[J ] =
〈

exp
(
2i

∫
d2zJµ(z, z̄)Xµ(z, z̄)

)〉
. (1.55)

Calculation of such functional is quite technical, and we will not go through it.
Instead, we will leave you with chosen correlator calculated by this method in [10]
in order to illustrate the nature of their form. Note that the complex plane has
the topology of a two-dimensional sphere. Other topologies will lead to di�erent
correlations. Therefore, we denote the topology as a subscript of the correlator.
A correlator of product of exponentials : eikµX

µ
: obtained by this methods gives

us: 〈∏
i

: eik
µ
i Xµ : (zi, z̄i)

〉
S2

= iCS2(2π)DδD(
∑
i

kµi )
∏
i<j

|zi − zj|α
′kµkµ , (1.56)

where CS2 is a constant, which will not be of immediate interest to us. The
delta function constrains the sum of ks to be zero. This can be interpreted as
momentum conservation when we turn to string theory.

1.5 Hilbert space formalism

So far we have only considered local operators and their expectation values de�ned
through path integrals. Now we would like to talk about states of the theory. To
do so, we have to quantize it. However, we will not do it by means of canonical
quantization; instead, we will introduce so called radial quantization.

1.5.1 Radial quantization

Let us consider a little change in our theory accompanied by a change of descrip-
tion. Consider a theory de�ned on a cylinder instead of a plane. We will introduce
a complex coordinate describing such cylinder

ω = σ + iτ. (1.57)
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The τ ∈ (−∞,∞) coordinate is associated with time-like direction while σ ∈ [0, 2π]
is space-like, with endpoints identi�ed. The choice of time-like coordinate on a
cylinder is not unique, and this ambiguity has some consequences; however, we
will not discuss them in this thesis.

We can consider a conformal mapping z = e−iω, which takes us from cylinder
to the whole complex plane. Under this transformation the past in�nity maps to
the origin, lines of constant σ are now rays originating at zero shooting radially
away, and lines of constant τ become concentric circles around the origin. Let us

Figure 1.1: Mapping from a cylinder to the complex plane

now clarify why we have moved our theory from a �at plane to a cylinder and
then mapped it back.

When quantizing a theory, we expand the �eld of interest into its Fourier
modes and promote them to operators. Consider a holomorphic quasi-primary
�eld φ of weight h:

φ(ω) =
∑
k

ake
ikω. (1.58)

Now we apply the map from cylinder to a plane, the above expression then be-
comes:

φ(z) =
∑
k

ak
zk+h

, (1.59)

which is nothing but a Laurent expansion of the �eld φ de�ned on a plane. The
upshot of this is that instead of Fourier coe�cients we promote to operators the
Laurent coe�cients. Note that the labeling is shifted by h, so the zeroth mode
φ0 does not scale. This is not a conventional relabeling of the coe�cients, the
shift comes from the transformation properties of quasi primary operator under
a conformal mapping 1.42.

Before we continue, there is one more thing that needs to be stressed out.
When we de�ne states on a plane, we have to remember that these states really
live on a cylinder, where their evolution is governed by a Hamiltonian. After we
map to a plane, the Hamiltonian becomes the dilation operator. This should not
be surprising since scaling on a plane corresponds to shifts in τ back on cylinder.
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1.5.2 Virasoro algebra

Let us now apply radial quantization on the holomorphic component of stress
energy tensor T (z).

T (z) =
∑
m

Lm
zm+2

(1.60)

The above expression can be inverted by a contour integral:

Lm =
1

2πi

∮
dzzm+1T (z). (1.61)

The coe�cients Lm are called Virasoro generators, and they satisfy the Virasoro
algebra:

[Lm, Ln] = Lm+n(m− n) + δm+n,0(m2 − 1)m
c

12
, (1.62)

where c is central charge. There is a corresponding set of operators L̄m coming
from the quantization of T̄ (z̄). These commute with unbarred Ls.

The dilation operator D can be expressed in terms of these generators as

D = L0 + L̄0. (1.63)

1.5.3 State operator map

A very important aspect of conformal �eld theory in two dimension is the exis-
tence of a map between states and local operators. To see how this works, let us
�rst comment on the states themselves.

In non-relativistic quantum theory of a point particle, a state of a system can
be described using a wave function. Such wave function has a simple interpretati-
on, it is the amplitude of locating the particle at point x. Given that we know
the state of the system at time ti, we can calculate the con�guration at any time
as

ψ(xf , tf ) =

∫
dxiG(xf , xi, tf , ti)ψ(xi, ti), (1.64)

where G(xf , xi, tf , ti) is the propagator. We see that the wave function describing
the initial state acts as a weighting factor. In the case of �eld theory, we do not
have a wave function but a wave functional Ψ[X] that describes amplitudes for
the �eld con�gurations. Similarly, we can calculate the wave functional at later
times, given that we know it at another.

Ψ[Xf ](tf ) =

∫
d[Xi]G[Xf , Xi](ti)Ψ[Xi, ti]

=

∫
d[Xi]

∫ X(tf )=Xf

X(ti)=Xi

d[X]e−S[X]Ψ[Xi, ti] (1.65)

In radial quantization, time corresponds to a radial distance from the origin. In
order to describe a con�guration, we have to specify a weight along a circle of
the radius corresponding with the initial time. This involves a non-local operator
since it acts everywhere on a time slice. However, as we move to past in�nity, the
circles get smaller and smaller till they are mapped into the origin. But that is
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just a single point. By operating at this point, we can change the weighting, and
thus specify the state at past in�nity. We get

Ψ[Xf ](tf ) =

∫ X(tf )=Xf

d[X]e−S[X]O(0, 0). (1.66)

We will denote states corresponding to an operator as |O〉. The simplest operator
we have is the identity, and the resulting state plays a privileged role as well, it
is the vacuum state of the theory denoted in the same spirit as |1〉. Acting with
a local operator on states constructed this way means including them in path
integral. Thus, it follows that |O〉 = O(0, 0) |1〉. Note that multiple insertions
away from origin also represent states since we can use OPEs to move them into
the origin.

Hand in hand with vacuum state, there comes a linear form 〈1| de�ned by its
action on an arbitrary state given in terms of local operators:

〈1|
∏
i

Oi(zi, z̄i) |1〉 =
〈∏

i

Oi(zi, z̄i)
〉
. (1.67)

1.5.4 Inner product

To every quasi primary state in our theory, we can construct a Hermitian con-
jugate. When we do this in Minkowski space, the space-time coordinates remain
unchanged. In Euclidean space the situation is di�erent. Time-like coordinate is
now de�ned as Wick rotation of the time-like coordinate of Minkowski space-
time, and thus carries an extra factor of i. This factor picks up a minus sign when
Hermitian conjugated, and thus the time has to reverse its direction so that the
original coordinate remains unchanged. In radial quantization this corresponds
to inversion r → 1/r, where r is the distance from origin. In complex coordinates
this becomes z → 1/z̄. Hence, we de�ne a Hermitian conjugate as

[O(z, z̄)]† = z̄−2hz−2h̃O(1/z̄, 1/z). (1.68)

Now we are ready to de�ne Hermitian conjugate of a state

[O(z, z̄ |1〉]† = 〈1| [O(z, z̄]†

= z̄2hz2h̃ 〈1| O(1/z̄, 1/z). (1.69)

When we conjugate operator that is inserted at the origin, the inversion takes it
to in�nity. For such case we de�ne the insertion in terms of a limit.

Let us now check that inner product de�ned by such conjugation is a reaso-
nable quantity. Consider two states |φ〉1 , |φ〉2, then the inner product with itself
is

〈φ1|φ2〉 = lim
z,z̄→0

z̄−2hz−2h̃ 〈1|φ1(1/z̄, 1/z)φ2(0, 0) |1〉

= lim
w,w̄→∞

w̄2hw2h̃ 〈1|φ1(w̄, w)φ2(0, 0) |1〉

= lim
w,w̄→∞

w̄2hw2h̃
〈
φ1(w̄, w)φ2(0, 0)

〉
. (1.70)
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If we plugged in the two point function 1.54, all the w dependence would vanish,
and thus the limit would be trivial. Therefore we see, that the inner product is
well de�ned.

There is another inner product that is often used, the so called BPZ (Belavin-
Polyakov-Zamolodchikov) product. It is de�ned by the following (for quasi pri-
mary operators):

〈φ1|φ2〉 = lim
z→0

(1

z

)2h1〈
φ1(−1/z)φ2(0)

〉
. (1.71)

Again, by using 1.54, we �nd out that the limit is well de�ned.
Both products are sometimes normalized to remove the structure constant

coming from the correlator.

1.5.5 More on states and operators

Let us now examine the nature of states corresponding to particular operators. To
interpret them, we need to expand them into modes where the interpretation is
clear. In radial quantization we need to Laurent expand. The holomorphic �elds
that we have come across were the components of the stress energy tensor and
the holomorphic and antiholomorphic derivatives of �eld Xµ. We have already
seen the expansion of the stress energy tensor, the Virasoro generators, therefore
we will only examine ∂Xµ(z). We will not go through the antiholomorphic part
since it is analogous.

∂Xµ(z) =
∑
k

αµk
zk+1

(1.72)

Let us now look how αµs act on the vacuum state given by the state operator
map as the insertion of identity. Note that the state |1〉 really stands for 1.66 with
O = 1.

αµk |1〉 =
1

2πi

∮
dz∂Xµ(z)zk |1〉

=

∫ Xf

d[X]e−S[X] 1

2πi

∮
dz∂Xµ(z)zk

(1.73)

In the case of k ≥ 0, smooth functions ∂Xµ are annihilated by the contour
integral. On the other hand any singularities cause the action to be in�nite and
thus vanish because of the weighting factor e−S[X] [17]. Therefore we obtain

αµk |1〉 = 0 ∀m ≥ 0. (1.74)

The zeroth mode αµ0 corresponds to a uniform increase of Xµ with time. When
we get to string theory, this will have the interpretation of uniform movement
through space, and thus it is identi�ed (except for a constant) with the momentum
operator. Since the vacuum state |1〉 is annihilated by α0, we know that it carries
zero momentum. In order to encapsulate this into our description, we invent a
new label for our states |φ, p〉 that keeps track of momenta. We will stray from
our operator based notation of states in case of the vacuum. Instead of 1 denoting
the insertion we will use standard 0. The original vacuum |1〉 will now be written
as |0, 0〉.
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One can easily check that the operator that changes the momentum is :
eikµX

µ
:. It satis�es

: eikµX
µ

: (0, 0) |0, 0〉 = |0, k〉 . (1.75)

1.6 Boundary CFT

Instead of a cylinder, we will now examine a theory de�ned on an in�nite strip wi-
th Neumann boundary conditions. Conformal theories with boundaries are called
boundary conformal theories (BCFT). The description of a strip is completely
analogous with cylinder except that we do not make the σ coordinate periodic.
It is conventional to consider σ ∈ [0, π]. With this choice the exact same map
that took us from a cylinder to the complex plane now takes us to the upper half
plane (UHP) with the real axis being the boundary. The analysis then continues
very similarly. There are of course di�erences, which will be pointed out in this
section.

1.6.1 Translation symmetry

One of the most obvious di�erences is the breakdown of translation invariance in
direction normal to the boundary. We are still equipped with the stress energy
tensor; however, it does not satisfy the full conservation law. Only the transverse
part Tabtb satis�es it, where tb is a vector parallel to the boundary. Neumann
boundary conditions are implemented by requiring that no energy �ows through
the edge. This translates to the following condition

Tabt
bna(z) = 0 ∀Imz = 0, (1.76)

where the vector na is normal to the boundary. In components this becomes

T (z) = T̄ (z̄) ∀Imz = 0. (1.77)

Since these components are holomorphic and antiholomorphic, they can be ana-
lytically continued to the other half of the plane. However, they have to satisfy
the above condition on the real axis, and thus the continuation is

T (z) = T̄ (z̄). (1.78)

We found out that we have only independent component of the stress-energy
tensor and only one set of Virasoro generators. What we have done here is known
as the doubling trick and similar procedure can be applied in other cases as well.
For example when calculating the propagator the following condition arises

∂σG(z, z̄, w, w̄) = 0 for σ = 0. (1.79)

Such problem can be solved by inclusion of an image charge. Doing so leaves us
with

G(z, z̄, w, w̄) = −α
′

2
ln|z − w|2 − α′

2
ln|z − w̄|2. (1.80)

Note that it was the particular form of the divergence of the propagator that have
lead us to the de�nition of normal ordering. With a di�erent propagator there is
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also a di�erent normal ordering - so called boundary normal ordering. Operators
inserted on the boundary are always ordered this way. We denote this ordering
by enclosure in ?

?
?
?
.

?
?
Xµ(y1)Xν(y2) ?

?
= Xµ(y1)Xν(y2) + 2α′ln|y1 − y2| (1.81)

Note that ys are real since they are on the boundary. It is conventional to denote
positions on the boundary by y and insertions away from it by z. It should be
stressed out that the weight of boundary ordered operator is di�erent from the
normal ordered.

States can be constructed by state operator map in the same way as on the
cylinder; however, origin lies on the boundary, so these operators are now boun-
dary ordered.

There is yet another conformal mapping that is often used when working with
theories on UHP. Using

f(z) = i
z − i
z + i

, (1.82)

we can map UHP onto a unit disc. Under this transformation the past in�nity
maps into −i, the future in�nity maps into i.

1.6.2 Boundary state

Theory on the strip is in many ways similar to the one on the cylinder. They are
both governed by the same action, and thus their dynamics are the same away
from boundary. At the boundary the theory on the strip gets constrained and
so does the space of possible �eld con�gurations. It is not hard to see that the
unbounded theory contains all con�gurations of the bounded case plus more. This
is re�ected by the fact that on the strip we only have one set of Virasoro generators
in comparison to the cylinder where there are two of them. This leads us to the
notion of describing the boundary �eld theory as unbounded while projecting out
the con�gurations that do not satisfy imposed boundary conditions. In calculation
of expectation values this would mean〈

O
〉
→
〈
O
〉
B

(1.83)

for any operator O of the theory. The index B signi�es that we are requiring
corresponding boundary conditions on the real axis. The boundary state is de�ned
to do just this

〈〈B|| O〉 =
〈
O
〉
B
. (1.84)

1.7 Linear dilaton background

When we discussed the stress energy tensor, we have mentioned that there are
changes that can be made to it without breaking the conservation law. However,
this changes the conformal weights of quasi-primary operators, and thus we are
dealing with a di�erent theory. In this section we will review the results for this
modi�ed theory.
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The modi�ed stress-energy tensor is given as

T (z) = − 1

α′
: ∂Xµ∂Xµ : +V µ∂2Xµ, (1.85)

T̄ (z̄) = − 1

α′
: ∂̄Xµ∂̄Xµ : +V µ∂̄2Xµ, (1.86)

where V µ is a �xed D-vector. Since there is a preferred direction, the theory is
no longer covariant.

Changing the stress-energy tensor also changes the transformation properties
of the �elds. Under conformal mapping z → f(z) the �eld Xµ now transforms as

Xµ(z, z̄)→ Xµ(f(z), f(z)∗) +
α′

2
V µ ln

∣∣∣df
dz

∣∣∣2. (1.87)

If we impose Neumann boundary conditions, as we did on the strip, our symmetry
group gets restricted only to transformations that satisfy additional condition
f(z)∗ = f(z̄). This way the boundary remains intact. The �elds on the boundary
transform as

Xµ(y)→ Xµ(f(y)) + α′V µ ln
∣∣∣df
dy

∣∣∣2. (1.88)

Since the central charge and the weights of quasi-primary operators were de-
termined by calculating the OPE with stress-energy tensor, it should not be
surprising that they change as well. For example, the weight of : eikµX

µ
: is now

h = α′
(k2

4
+ i

V µkµ
2

)
. (1.89)

Boundary ordered exponential ?
?
eikµX

µ
?
?
has weight

h = α′
(
k2 + iV µkµ

)
. (1.90)

Correlators of the theory remain the same except that the momentum con-
servation gets modi�ed. Let us illustrate this on a correlator of boundary inserti-
ons of exponentials on a disc.〈∏

i

?
?
eik

µ
i Xµ ?

?
(yi)

〉
D2

= iCD2(2π)26δ
(∑

i

kµi + iV µ
)∏
i<j

|yi− yj|2α
′kµi k

ν
j ηµν . (1.91)

Note that the fact that we are dealing with disc topology does not mean we are
indeed in the disc mapping. UHP has the same topology as a disc and is usually
used to parametrize it. Therefore the insertions are meant to be on real axis. The
delta function of complex argument is not well de�ned on its own and should be
understood in its integral form. Because of the modi�cation of the momentum
conservation, the standard de�nition of BPZ product leads to

〈0, p|0, q〉 = Cδ26(pµ + qµ + iV µ). (1.92)
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2. Basic string theory

In this chapter we will make �rst contact with string theory. We will motivate
action for a string propagating through spacetime, and we will show how such
action connects to the free boson CFT. We will also review BRST quantization
(BRST refers to Becchi, Rouet, Stora and Tyutin). We will not however go into
the spectrum of the string. This chapter mostly follows works of Polchinski [10]

2.1 Polyakov action

String theory studies physics of one dimensional object, a string. Such object, as
it propagates, sweeps out a two dimensional world-sheet embedded in spacetime
that can be described in terms of two parameters τ and σ, where σ is bounded.
The embedding is then a collection of �elds Xµ(τ, σ), one for each spacetime
direction. Since the choice of parametrization is rather arbitrary, we insist that
the action describing the dynamics of such world-sheet does not depend on this
choice, but only on the embedding itself. The simplest Poincare invariant action
satisfying this condition is the area of the world-sheet [10]:

S = − 1

2πα′

∫
M

dτdσ
√
−h, (2.1)

where M denotes the world-sheet and h = det(hab). The parameter α′ is the
Regge slope, which determines the tension of the string, but for the purposes of
this thesis it will mostly tag along the calculations without having serious impact.
hab is the induced metric on the world-sheet, given by

hab = ∂aX
µ∂bXµ. (2.2)

This is called the Nambu-Goto action and, as one can see, it is very analogous to
the action describing the motion of free point particle. However, it is rather hard
to work with because of the square root present. A more convenient alternative
is the Polyakov action, which introduces an independent metric gab on the world-
sheet. It is given by

S = − 1

4πα′

∫
M

dτdσ
√
−g∂aXµ∂bXµgab, (2.3)

where g = det(gab).
As opposed to the Nambu-Goto action, this is rather nice looking expression

and it even has an additional symmetry, the Weyl symmetry

Xµ(τ, σ)→ Xµ(τ, σ),

gab(τ, σ)→ e2ω(τ, σ)gab(τ, σ), (2.4)

along with the di�eomorphism (reparametrization) invariance and Poincare inva-
riance. However, there is a downside as well, unlike before we do not yet know
what such action represents. In order to �nd out, let us analyze the equations of
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motion that this action yields. We have two independent �elds, thus we get two
equations of motion:

0 = ∂a(
√
−g∂bXµgab) (2.5)

gab =
2

gcd∂cXν∂dXν

∂aX
µ∂bXµ. (2.6)

Substituting the equation for gab back into 2.3, we get back the original Nambu-
Goto action. Therefore, we found that as long as the equation of motion for gab
is satis�ed the Polyakov action is equivalent to the Nambu-Goto action.

2.1.1 Open strings

As we mentioned, the σ coordinate of the string world-sheet is bounded, so in
order to solve the equations of motion we have to impose boundary conditions.
One option is to impose periodicity which would give us the closed string. Open
string is achieved by imposing Dirichlet or Neumann conditions. These can di�er
for various directions of space. Dirichlet boundary conditions mean that the string
is con�ned on so called D-brane of proper dimension, corresponding to the number
of direction with Dirichlet boundary conditions. It is conventional to impose that
σ ∈ [0, 2π] for closed string and σ ∈ [0, π] for open strings. The lesson to take
from here is that the theory is not de�ned only by the action itself. But also by
the choice of boundary conditions or in other words by specifying the background
or a system of D-branes.

2.1.2 Conformal gauge

Symmetries of Polyakov action, except for Poincare invariance, are gauge sym-
metries. They re�ect the fact that we have a redundant description of the system,
and thus we can pose additional conditions on the �elds. This process is called
gauge �xing, and we can do this in a manner that will simplify our system con-
siderably.

The complication in Polyakov action is the coupling to nontrivial world-sheet
metric. However, as we can see, it does not depend on the metric so heavily since
we can always make a Weyl transformation without a�ecting the action. We would
like to use the Weyl invariance to somehow simplify this metric, ideally �atten it.
Let us see what we can do by examining how curvature transforms under Weyl
transformation. It is quite easy to check that for two metrics related by a Weyl
transformation g′ = e2ωg associated scalar curvatures satisfy [17]:√

g′R′ =
√
g(R− 2∇2ω). (2.7)

If we now set R′ to zero, we get a di�erential equation for ω that can be solved. In
general case, having zero scalar curvature does not mean that we have �attened
the spacetime; however, in two dimensions the symmetries of Riemann tensor
dictate that it is proportional to scalar curvature Rabcd = R/2(gacgbd − gadgbc).
Therefore, we can always �nd a Weyl transformation that will make the metric
�at. After that we can use reparametrization invariance to obtain the Minkowski
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metric. This choice is called the conformal gauge. By doing so, the action simpli�es
considerably:

S = − 1

4πα′

∫
M

dτdσ∂aXµ∂bXµηab. (2.8)

Thus, we e�ectively eliminated the dependence on the worldsheet metric, and
therefore instead of two equations of motion we get only one. But there is a
subtlety when performing such gauge �x. We still require that this action is
equivalent to Nambu-Goto action, and therefore we require that equation 2.6
holds. Together with equation of motion for X �elds we get:

∂a∂
aXµ = 0, (2.9)

∂τXµ∂σX
µ = 0, (2.10)

(∂τX
µ)2 + (∂σX

µ)2 = 0. (2.11)

Now we are ready to make contact with previous chapter because, apart from the
additional constraints, the action is the one of free boson on �at space and, as a
result, everything we showed earlier for free boson can now be applied to strings.

Even though we have exhausted some gauge symmetry to �x the world-sheet
metric to a �at one, there is still a lot of remnant symmetry. This should not be
surprising now that we have identi�ed the Polyakov action with the one of free
boson which exerted conformal invariance. Hence, we see that we still have full
conformal gauge symmetry at our disposal.

2.2 Polyakov path integral

Similarly as in chapter 1, we would like to de�ne expectation values of local
operators as path integrals with insertions. But in this case naive treatment like we
used before would be wrong. We are dealing with a theory with a gauge symmetry,
which means not every two �eld con�gurations are physically distinguishable.
Con�gurations related by a gauge transformation are physically equivalent and
should be counted only once. This is implemented by dividing the path integral
by a volume of local gauge symmetry group. Thus we get

Z =
1

Vol

∫
d[X]d[g]e−S[X,g]. (2.12)

Note that in order to de�ne the path integral we had to Wick rotate to Euclidean
space, otherwise it would be ill-de�ned.

Our goal now is to separate the integration over physically equivalent con�gu-
rations and over physically inequivalent ones. As in ordinary integrals, the change
of coordinates is always accompanied by an insertion of Jacobian. Something si-
milar happens in path integrals as well. The factor analogous to the Jacobian for
this special case is called the Faddeev-Popov determinant. In order to calculate
it, we adapt a simplifying notation that will combine Weyl and reparametrization
transformations together.

We will denote a general action of a gauge transformation on a metric by a
superscript ζ, which stands for the following:

gab → gζab = gcd
∂σc

∂σ′a
∂σd

∂σ′b
e2ω. (2.13)
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Integration along the gauge orbit can now be written as integration over ζ. The
measure for such integration is taken to be gauge invariant. Proof of its existence
can be found in [10].

Inside integration along ζ all gauge related con�gurations are supposed to be
counted as one. In order to implement this, we insert a delta functional inside
the integral. We have freedom to choose which con�guration out of gauge orbit
will be counted. This choice is called the �ducial metric and is denoted by ĝ. The
integral is then

∆FP (g)

∫
d[ζ]δ(g − ĝζ) = 1, (2.14)

where ∆FP (ĝ) is called Faddeev-Popov determinant.
Now we would like to show that ∆FP (g) is really the factor that we need, but

before we do that, we have to prove that ∆FP (g) is gauge invariant:

∆−1
FP (gζ) =

∫
d[ζ ′]δ(gζ − ĝζζ′)

=

∫
d[ζ ′]δ(g − ĝζ−1ζ′)

=

∫
d[ζ ′′]δ(g − ĝζ′′)

= ∆−1
FP (g) (2.15)

which concludes the proof. In second line we used that the measure is invariant.
The expression 2.14 is equal to one, and therefore we can insert it inside 2.12

to get

Z =
1

Vol

∫
d[X]d[g]d[ζ]∆FP (g)δ(g − ĝζ)e−S[X,g]. (2.16)

The delta functional constrains the metric inside the action which allows us to
carry out the integration along g:

Z =
1

Vol

∫
d[X]d[g]d[ζ]∆FP (ĝζ)δ(g − ĝζ)e−S[X,ĝζ ]

=
1

Vol

∫
d[X]d[ζ]∆FP (ĝζ)e−S[X,ĝζ ]. (2.17)

The dependence on ζ is now only inside the action and in ∆FP (g). But as we
proved ∆FP (g) is gauge invariant, and the action is also invariant. Therefore,
nothing depends on ζ and we can integrate over gauge orbits. Such integration
will give us the volume of the local gauge symmetry group which is exactly what
we need to cancel the 1/Vol factor in front of the integral. Lastly we get

Z(ĝ) =

∫
d[X]∆FP (ĝ)e−S[X,ĝ]. (2.18)

This is an integral over inequivalent con�gurations of the �eld, which is what we
strove for. Note that Z does not really depend on the choice of ĝ, it just signi�es
what choice of �ducial metric we made.
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We still have to explicitly calculate the Faddev-Poppov determinant ∆FP (ĝ),
which is de�ned in 2.14. In order to do so, we have to analyze the delta functional.
Since it is localized around ĝ, it is enough to work in�nitesimally:

∆−1
FP (ĝ) =

∫
d[ζ]δ(ĝ − ĝζ)

=

∫
d[ζ]δ(δĝζ). (2.19)

The in�nitesimal change δĝζ in terms of Weyl transformation and reparametri-
zation respectively (as in 2.13) is:

δĝζab = 2ωgab +∇aδσb +∇bδσa. (2.20)

Since the integration along ζ in 2.19 contributes only around ĝ, we can integrate
along ω and δσa instead of ζ. Thus we get

∆−1
FP (ĝ) =

∫
d[ω]d[δσ]δ(2ωgab +∇aδσb +∇bδσa). (2.21)

Now we substitute the integral representation of the delta functional:

∆−1
FP (ĝ) =

∫
d[ω]d[δσ]d[β]exp

(
2πi

∫
d2σβab

√
ĝ
[
2ωgab +∇aδσb +∇bδσa

])
,

(2.22)

where β is symmetric tensor on the world-sheet. Integrating out ω leaves us with:

∆−1
FP (ĝ) =

∫
d[δσ]d[β]exp

(
4πi

∫
d2σβab

√
ĝ∇aδσb

)
δ(2βabgab). (2.23)

Outcoming delta functional forces the trace of β to be zero. We now rede�ne
β to be traceless and symmetric, and the remaining delta functional just gets
integrated to give a factor of one:

∆−1
FP (ĝ) =

∫
d[δσ]d[β]exp

(
4πi

∫
d2σβab

√
ĝ∇aδσb

)
. (2.24)

As discussed in [10], this path integral can be inverted by replacing the �elds βab
and δσa by anti-commuting ghost �elds:

βab → bab,

δσa → ca. (2.25)

This leaves us with the �nal expression for the Faddeev-Popov determinant

∆FP (ĝ) =

∫
d[b]d[c]exp

(
− 1

2π

∫
d2σ
√
ĝbab∇acb

)
, (2.26)

where we have absorbed some multiplicative factors into the de�nition of bab and
ca. By substituting this back to 2.18, we get:

∆FP (ĝ) =

∫
d[X]d[b]d[c]exp

(
− 1

2π

∫
d2σ
√
ĝbab∇acb

)
e−S[X,ĝ]. (2.27)
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Note that the ghosts are now on the same footing as the Xµ �elds, and there-
fore should be treated as such. Accordingly, we de�ne an action governing the
dynamics of these �elds as

Sg =
1

2π

∫
d2σ
√
ĝbab∇acb. (2.28)

In conformal gauge this becomes

Sg =
1

2π

∫
d2z(b∂c+ b̄∂̄c̄). (2.29)

2.3 bc ghost system

As a result of gauge �xing, we discovered new �elds, which have to be included in
path integration. Before we move on, let us brie�y examine their dynamics. The
action 2.29 yields the following equations of motion:

∂̄b = ∂b̄ = ∂̄c = ∂c̄ = 0. (2.30)

System exerts a new symmetry, the so called ghost symmetry, given by transfor-
mation δb = iεb, δc = iεc. Similarly for the antiholomorphic parts. This symmetry
gives rise to a conserved current jg =: cb + c̄b̄ :. Note that the normal ordering
here is di�erent from the one in free boson theory. It is de�ned as follows:

: b(z)c(w) := b(z)c(w)− 1

z − w
. (2.31)

We can assign ghost number to the �elds in our theory gh(c) = 1, gh(b) = −1
and gh(Xµ) = 0 which is conserved by the virtue of conservation law above.

The energy momentum tensor associated with this action is

T g(z) = 2(∂c)b+ c∂b, (2.32)
T̄ g(z̄) = 2(∂̄c̄)b̄+ c̄∂̄b̄. (2.33)

The central charge of the system is c = c̄ = −26. If we consider this system
combined with free boson theory, we will �nd out that the central charges sum up
giving us c = c̄ = D − 26. For consistency reasons that we have not mentioned,
the central charge must be equal to zero. This condition gives us the critical
dimension of bosonic string.

2.4 BRST quantization

In previous section we strove to de�ne path integral with a �xed gauge to eliminate
overcounting of physical states. By doing so, we acquired ghost �elds governed
by their own action, namely the b and c ghosts. Final path integral involves
all these new �elds, and as a result it exerts an extra symmetry, the BRST
symmetry, which mixes the �elds among themselves. With this new symmetry a
new conserved current jB appears. The current is given by [10]:

jB = cTX+ : bc∂c : +
3

2
∂2c, (2.34)
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where TX is stress energy tensor associated with Xµ �elds. The j̄B is analogical.
The BRST charge Q is then

Q =
1

2πi

∮
(dzjB − dz̄j̄B). (2.35)

In order to calculate how BRST charge acts when operating on states of the
theory, we will need to know some OPEs of jB. These are:

jB(z)c(w) =
3

(z − w)3
+

jg

(z − w)2
+
TX+g

z − w
. . . (2.36)

jB(z)b(w) =
c(w)

z − w
+ . . . (2.37)

where TX+g is sum of stress energy tensors of ghost system and of the �elds Xµ.
The �elds described by Polyakov action are sometimes referred to as matter �elds
since they were introduced to describe particles.

BRST charge has some very striking properties, �rst of them is its nilpotency:

Q2 = 0. (2.38)

This holds only when D = 26, but since that is the case we are considering, it
does not pose a problem.

Another property is that Q = Q†. If it was not so, the Hermitian conjugate
would have to correspond to a di�erent symmetry. But there is non such symme-
try.

Note that we have not yet identi�ed the Hilbert space of our theory. Not every
state that can be created from the vacuum by the action of various operators is
necessarily physical. However, physical states |ψ〉 must satisfy Q |ψ〉 = 0. By
imposing this, we �nd out that there are still two copies of the spectrum. We can
eliminate this redundancy by requiring b0 |ψ〉 = 0. Note that this does not mean
that every state satisfying these conditions is distinct physical state.

To see which states should be identi�ed, consider a physical state |ψ〉 and an
arbitrary state |χ〉. Using these, we can construct a new state:

|ψ′〉 = |ψ〉+Q |χ〉 . (2.39)

Since |ψ〉 is physical and Q nilpotent, we �nd out that |ψ′〉 is also a physical state.
Let us now examine the inner product with yet another physical state |φ〉.

〈φ|ψ′〉 = 〈φ|ψ〉+ 〈φ|Q |χ〉
= 〈φ|ψ〉+ 〈φ|Q† |χ〉
= 〈φ|ψ〉 (2.40)

We see that new state |ψ′〉 has the same inner product with all other physical
states of the theory. Therefore, states di�ering by a Q-exact term should be
identi�ed. As a result, we learn that the set of physical states is the cohomology
of Q.

Hphysical = Hclosed

/
Hexact (2.41)

Note that we still consider only states satisfying b0 |ψ〉 = 0.
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3. Open string �eld theory

The development of our understanding of particles and their interaction comes
hand in hand with means of describing them. One of the most fruitful steps in
this chain was the invention of quantum �eld theory which described particles as
disturbances of their respective �elds. This became known as second quantization,
while the classical quantum mechanical description is called �rst quantization. In
previous chapters, we have employed many methods of QFT, but ultimately the
results were of completely di�erent nature. Various disturbances of the �elds
created particle types, not multitudes of particles in space. By comparing the
perturbative string theory with point particle case, we �nd out that, despite all
the work done, we are still at the level of �rst quantized theory. String �eld theory
(SFT) is the second quantized string theory.

3.1 Analogy with QFT

Before we get to details of this framework, let us review some details about the
derivation of second quantized theory on an example of point particle. Point
particle, before second quantization, is described in terms of wave function that
gives us the probability amplitudes of locating the particle at di�erent points.
Its dynamics are governed by an equation of motion (in non-relativistic quantum
mechanics it is the Schrödinger equation) that constrains its possible evolution.
This means that there are con�gurations that can never evolve into each other.

When second quantizing, we promote the wave function to an independent
object and propose an action that would (at linearized level) reproduce the ori-
ginal equation of motion. By doing so, we make evolutions violating the equation
of motion possible. These are known as o�-shell processes while the ones that
respect the equations of motion are called on-shell. O�-shell amplitudes, as we
know from QFT, do contribute to scattering amplitudes; however, the end states
must always be on-shell. In other words, the o�-shell con�gurations are unphysi-
cal, and the original equation of motion de�nes what are the physical states. Note
that there might be many possible actions that reproduce the correct equations of
motion, the simplest of which is usually a free theory. Since such theory is of little
physical interest, we include polynomial interaction terms in assigned action.

3.2 String �eld

In analogy with above procedure, we de�ne string �eld to be an element of Hilbert
space of the underlying theory which is given by the Polyakov action combined
with bc ghost system. This however does not completely �x the theory, we also
have to impose boundary conditions. By doing so, we de�ne a reference theory,
which we will denote BCFT0. This is usually taken to be the theory of a string
connected to a space-�lling D-brane. That means imposing Neumann condition
in all directions.

In QFT each particle was associated with a distinct �eld. The same can be
done in string theory; however, since the string has an in�nite tower of particle
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states, the number of �elds is in�nite. In this manner the string �eld can be
decomposed as

|Ψ〉 =

∫
d26k

(2π)26)

[
t(k) + Aµ(k)αµ−1 +B(k)b−1c0 + . . .

]
c1 |0, k〉 . (3.1)

The �elds t(k), Aµν(k), etc. can be interpreted as Fourier transforms of �elds
corresponding to the operators they are multiplied with. Concretely t(k) is the
Fourier transform of tachyon �eld.

Now we would like to study the dynamics of string �elds. We know that in
perturbative theory the on-shell condition stated Q |Ψ〉 = 0. Accordingly, we
propose an action that would reproduce such equation of motion

S = −〈Ψ|Q |Ψ〉 , (3.2)

where 〈Ψ| is the BPZ conjugate.
One might ask what happened to the other imposed condition b0 |Ψ〉 = 0.

That becomes a gauge �xing condition in SFT called Feynman-Siegel gauge.
Now, to make things nontrivial, we want to introduce interaction terms. To do

so, we need to promote the Hilbert space of string �elds to an algebra by de�ning
a product * among them.

3.2.1 Star product

Star product of string �elds was �rst introduced axiomatically by Witten in [19]
and was motivated by the picture of pair of string world-sheets joining into one.
The axioms describing it are sometimes known as axioms of open string �eld
theory. They state the following [18]:

• Associativity: (|Ψ1〉 ∗ |Ψ2〉) ∗ |Ψ3〉 = |Ψ1〉 ∗ (|Ψ2〉 ∗ |Ψ3〉).

• Distributivity: |Ψ1〉 ∗ (|Ψ2〉+ |Ψ3〉) = |Ψ1〉 ∗ |Ψ2〉+ |Ψ1〉 ∗ |Ψ3〉.

• Graded Leibniz rule:Q(|Ψ1〉∗|Ψ2〉) = (Q |Ψ1〉)∗|Ψ2〉+(−1)gh1 |Ψ1〉∗(Q |Ψ2〉),
where gh1 is ghost number of |Ψ1〉.

• Cyclicity: 〈Ψ1|Ψ2 ∗Ψ3〉 = 〈Ψ3|Ψ1 ∗Ψ2〉.

There exists an identity element |I〉 of the star algebra that satis�es

|I〉 ∗ |Ψ〉 = |Ψ〉 ∗ |I〉 = |Ψ〉 . (3.3)

We will not show its explicit form. Identity string �eld is of ghost number zero.
In order to simplify our equations, we will replace |Ψ〉 by plain Ψ. However,

meaning is the same. In spirit of this notation, we will introduce so called Witten
integral, de�ned as: ∫

Ψ1 ∗Ψ2 = 〈Ψ1|Ψ2〉 . (3.4)

Thus we will not need a notation for 〈Ψ|.
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Witten integral annihilates Q exact terms as well as integrands whose total
ghost number is di�erent from three. This has an important consequence. The
action 3.2 written in terms of Witten integral is

S = −
∫

Ψ ∗QΨ. (3.5)

Consider the following expansion of string �eld Ψ:

Ψ =
∑
i

Ψi, (3.6)

where Ψi is a string �elds of ghost number i. If we now plug this expansion into
the action, all terms with ghost number di�erent from three will vanish (note
that Q has ghost number one). Thus we get:

S =

∫ ∑
i

Ψi ∗QΨ2−i. (3.7)

Every �eld except Ψ1 is linear in the action, and thus we �nd out that their
dynamics are governed only by �elds of di�erent ghost number. The only �eld
that has dynamics on its own is ghost �eld Ψ1. Therefore, we can consistently
restrict ourselves to string �eld of ghost number one.

Note that the algebra is in a way similar to the exterior algebra of forms with
Q playing the role of exterior derivative and the ghost number being the degree
of forms.

3.2.2 Interacting action

Now we are ready to introduce interacting terms into the string �eld action. In
the same line of similarity with forms, Witten proposed Chern-Simons like action
by adding a cubic vertex to action 3.2.

S = −
∫

(
1

2
Ψ ∗Ψ +

g

3
Ψ ∗Ψ ∗Ψ) (3.8)

This action yields the following equations of motion:

QΨ + Ψ ∗Ψ = 0. (3.9)

The action 3.9 exerts a gauge symmetry under the following transformation

Ψ→ Ψ +QΛ + Λ ∗Ψ−Ψ ∗ Λ, (3.10)

where Λ is any string �eld of ghost number zero.

3.2.3 Representation of the star product

There are several representations of the star product that are being used; however,
we will mention only one of them, the easiest to comprehend without the need
to introduce new frames or concepts. This representation is sometimes known as
split string formalism since it relies on a decomposition of the string to its left
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and right part. Let us know explain how this splitting works. After that we will
write explicit formula for the star product.

A string �eld can be represented as a functional Ψ[X] of the coordinates of
string. Now imagine that we split the open string into three parts: the left part,
the right part and the midpoint as follows [1]:

lµ(σ) = Xµ(σ) 0 ≤ σ <
π

2
,

rµ(σ) = Xµ(π − σ)
π

2
< σ ≤ π,

Xµ
m = Xµ

(π
2

)
. (3.11)

String �eld can be rewritten as

Ψ[Xµ]→ Ψ[xµ, lµ, rµ]. (3.12)

Note that the above expression is of matrix like form with lµ and rµ playing the
role of matrix indeces. Star product is represented as

(Ψ ∗ Φ)[xµ, lµ, rµ] =

∫
d[k]Ψ[xµ, lµ, kµ]Φ[xµ, kµ, rµ]. (3.13)

This has a very similar form as matrix multiplication. The right part of the �rst
string is identi�ed with the left part of the second string and then we sum over all
such con�gurations. The Witten integral in this representation takes the following
form ∫

Ψ ∗ Φ =

∫
d[k]d[j]dxmΨ[xµ, jµ, kµ]Φ[xµ, kµ, jµ]. (3.14)

This is again analogous to an operation on matrices - the trace.

3.3 Background independence

As we mentioned in the previous section, the underlying theory is de�ned by the
action principles, stress energy tensor and also the background present. One of
the aims of string theory is to �nd formulation that would be background inde-
pendent. String �eld theory almost does this. It is widely believed that possible
backgrounds of perturbative string theory are in one to one correspondence with
the solutions of the OSFT (open string �eld theory) equation of motion 3.9. One
way of this correspondence is already known, for a given solution we know how to
construct a boundary state which describes the background. This is the content
of following section.

3.3.1 Boundary state construction

As we just mentioned, solution of the equations of motion corresponds to the
backgrounds of the underlying string theory. Such background can be captured
in terms of boundary state, and thus we should be able to construct this state
from a given solution. There are several methods of doing this, we will however
use the method proposed by Kudrna, Maca�erri and Schnabl in [6], which utilizes
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so called Ellwood's conjecture. Let us make few comments about this conjecture
before we get to the construction itself.

Ellwood's conjecture is a hypothetical relation between the on-shell part of
the boundary state and gauge invariant quantities that are sometimes known as
Ellwood's invariants. This relation was �rst proposed by Ellwood in [2] and was
veri�ed for particular solutions. Rigorous proof is yet to be found. To state the
conjecture, we have to de�ne Ellwood's invariants

Consider a string �eld Ψ and a primary operator V = cc̄V m of ghost number
two with conformal weights (0, 0) satisfying {Q,V} = 0. Note that c and c̄ are
ghost �eld from bc ghost system. V m is an arbitrary matter primary �eld of
weight (1, 1). The Ellwood's invariant associated with Ψ and V is de�ned as

TrVΨ = 〈I| V(i) |Ψ〉 . (3.15)

Since the above de�nition is linear in Ψ, we can show its gauge invariance by
examining the respective terms of the transformation 3.10 one by one. The �rst
term gives us the original overlap. The second term is

TrVQΛ = 〈I| V(i) |QΛ〉 . (3.16)

From the de�nition of the identity it is clear that it is annihilated by Q. Then by
using the constraint on the choice of V , we can commute Q through V , and then
since Q is Hermitian, let it act on identity. Thus we get zero. The last term

TrV(Λ ∗Ψ−Ψ ∗ Λ) (3.17)

vanishes due to the cyclicity of star product.
The Ellwood's conjecture states that

TrVΨ− TrVΨTV = − 1

4πi
〈V| c−0 ||B〉〉 , (3.18)

where ΨTV is the solution for tachyon vacuum and c−0 = c0 − c̄0.
By inserting all on-shell primaries (spinless of weight 0), we can determine the

physical part of the boundary state; however, the o�-shell part remains hidden.
This problem was bypassed by the mentioned construction of Kudrna, Maca�erri
and Schnabl. In their work, they considered an auxiliary extension of the underly-
ing theory BCFT′ = BCFT0⊗BCFTaux where BCFTaux is of central charge zero.
By doing so we can consider primary operators V m with weights (1−h, 1−h) and
multiply them by operators ω from the auxiliary sector of weight (h, h). Thus,
the �nal operator is of weight (1, 1) and can be used in the Ellwood's conjectu-
re. We can do this in such way that the one point function

〈
ω(0)

〉aux
= 1. The

Ellwood's conjecture 3.18 is not yet well de�ned. We have expanded our theory,
but we did not expand the string �eld Ψ. Such extended solution is called lifted
and is denoted as Ψ̃. For the class of solutions that will be of interest to us a
particularly simple lift is possible:

|0〉 → |0〉 ⊗ |0〉aux ,
Ln → Ln + Lauxn . (3.19)
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Generalized Ellwood's conjecture states that

TrṼ(Ψ̃− Ψ̃TV ) = − 1

4πi
〈Ṽ| c−0 ||B〉〉 , (3.20)

where Ṽ = V ⊗ ω. Since this is true for any spinless matter primary �eld V , we
can reconstruct the whole boundary state [6].

3.4 K, B, c subalgebra

One of very e�ective tools for solving 3.9 is the K, B, c algebra. It is generated
by a set of three string �elds K,B and c of ghost numbers 0,−1, 1 respectively. B
and c are grassman odd and K is grassman even. These �elds satisfy the following
[4]

{B, c} = 1, [K,B] = 0, c2 = B2 = 0,

QK = 0, Qc = cKc, QB = K, (3.21)

where all multiplication is in star product sense. Their explicit form is

K = Kv
L |I〉 ,

B = Bv
L |I〉 ,

c = cvL |I〉 , (3.22)

where

Kv
L =

∫
L

dz

2πi
v(z)T (z),

Bv
L =

∫
L

dz

2πi
v(z)b(z),

cvL = − 1

v(1)
c(1). (3.23)

The integrals along L are taken to surround a positive semicircle connecting −i
a i as in �gure 3.1.

Figure 3.1: De�nitions of K, B, c [4]
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v(z) is an arbitrary holomorphic �eld subjected to the following constraints:

v(z) = z̄2v
(1

z̄

)
, (3.24)

v(±i) = 0. (3.25)

Such algebra can be supplemented by yet another �eld corresponding to an
exactly marginal operator J = cJ(1) |I〉 [3]. This �eld satis�es

J2 = 0, QJ = 0. (3.26)

3.5 Marginal deformations

In this section, we will present a simple class of solutions generated by marginal
operator (with nonsingular OPE with itself) deforming the underlying BCFT0.
These �ndings were presented in [12].

The equations of motion 3.9 can be solved perturbatively in parameter λ. The
form of the solution is assumed to be

Ψ =
∞∑
n=1

λnφn. (3.27)

Substituting such ansatz into 3.9, we get an equation for each order of λ. At �rst
level the equations yields Qφ1 = 0. Thus, for φ1 we can choose any on-shell string
�eld. For the n-th level we get

Qφn = −(φ1φn−1 + φ2φn−2 + · · ·+ φn−1φ1). (3.28)

In order to solve such equations, the right hand side has to be Q exact. This
might not generally be the case; however, for the choice φ1 = cJ(0) |0〉, where
J(z) is exactly marginal, it is always so. Layer by layer these equations can be
solved to give us the full solution. In terms of K, B, J string �elds, this solution
can be written as [3]

Ψ = λFJ
1

1− λB F 2−1
K

J
F, (3.29)

where F is an arbitrary function of K.

3.6 The closed string source

Similarly as we second quantized theory of open strings, we can do the same with
closed strings. The procedure would be quite analogous until the point where we
add interaction terms to the action. The interaction terms that can be added to
the action are not arbitrary since particular choices will lead to inconsistencies.
The fact that the action 3.8 is so simple is rather remarkable. For closed strings
there is no such action, but we are still equipped with the non-interacting action
which is given as follows [15]

S = − 1

Kg2
s

〈Ψc| c−0 (Q+ Q̄) |Ψc〉 , (3.30)
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where K is a numerical constant, gs is closed string coupling constant and Q̄ is
the antiholomorphic component of BRST charge. In open strings, there is just one
independent component similarly as it is with stress-energy tensor. In presence
of a D-brane, the action 3.30 can be coupled to the boundary state by including
a source term

〈Ψc| c−0 ||B〉〉 . (3.31)

The closed string �eld can be decomposed as follows

|Ψc〉 =

∫
d26k

(2π)26

[
T (k)c1c̄1 +

(
hµν + bµν

)
αµ−1ᾱ

ν
−1c1c̄1 + . . .

]
c1 |0, k〉 . (3.32)

The �elds T (k), hµν = hνµ and bµν = −bνµ can be interpreted as Fourier trans-
form of the closed tachyon �eld, graviton �eld and anti-symmetric tensor �eld
respectively. Similarly, there is a general decomposition of the boundary state

||B〉〉 =

∫
d26k

(2π)26

[
F (k)+

(
Aµν(k) + Cµν(k)

)
αµ−1ᾱ

ν
−1 +B(k)(b−1c̄−1 + b̄−1c−1) + . . .

]
(c0 + c̄0)c1c̄1 |0, k〉 .boundexpan (3.33)

By substituting the above decompositions into 3.31, we obtain terms like this∫
d26k

(2π(26

[
hµν(−k)

(
B(k)ηµν + Aµν(k)

)
+ . . .

]
. (3.34)

We see that the graviton �eld couples to T µν = B(k)ηµν +Aµν(k). The dynamics
of T µν are determined by the corresponding solution of OSFT, and thus it acts
like a source term for the graviton �eld. T µν can be identi�ed as the stress-energy
tensor. Other �elds in the boundary state act like sources for other closed string
�elds.

3.7 Light-like tachyon condensation

The discussed solution for marginal deformation provides a one parameter fami-
ly of string �elds each of which satis�es the equations of motion 3.9. Using the
operator e±X

0/α′ of dimension (1, 1), we recover a class of solutions referred to
as rolling solutions. They represent the space-homogeneous decay of the underly-
ing space �lling D-brane. Another class is generated by the operator eβX

+
, where

X+ = (X0 +X1)/
√

2. Note that such operator has dimension zero for all values of
β. To remedy this, a linear dilaton background with nonzero V + can be introdu-
ced. Recalling 1.90, we can chose β = 1/α′V + so that the weight is equal to (1, 1).
This solution was proposed by Hellerman and Schnabl in [8], where they also pro-
ved that such solution relaxes to the tachyon vacuum in late time asymptotic.
They went on to calculate the source term for graviton. In this section, we will use
the aforementioned construction to to uncover the full boundary state in terms
of the original one (corresponding to Neumann boundary conditions).

3.7.1 Boundary state construction

The solution at hand can be written in form 3.29 as follows

Ψ = λFceβX
+ 1

1− λB F 2−1
K

ceβX+
F. (3.35)
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The Ellwood's invariant for this class of solutions was calculated by Kishimoto
in [5]. Given an on-shell weight zero primary �eld V = cc̄V with V being purely
matter primary, the gauge invariant overlap is given as

TrV(Ψ) = − 1

2πi

〈
V(0)c(1)

(
exp

(
− λ

∫ 2π

0

dθeβx
+

(eiθ)
)
− 1)

)〉
disk

. (3.36)

Note that the insertion points are in a unit disc frame 1.82. After subtracting the
tachyon vacuum, we obtain

TrV(Ψ−ΨTV ) = − 1

2πi

〈
V(0)c(1) exp

(
− λ

∫ 2π

0

dθeβx
+

(eiθ)
)〉

disk

. (3.37)

Following the procedure of [6], we expand our theory by a boundary �eld theory
of central charge zero BCFT′ = BCFT0 ⊗ BCFTaux. For solutions of the above
form we can always perform a very simple lifting generated by

Ψ̃→ Ψ
∣∣∣
K→K+Kaux

. (3.38)

This corresponds to the lifting 3.19. Now we will lift the operator V . We consider a
purely matter primary �eld V h of arbitrary weight h, and we multiply it by a �eld
ω from the auxiliary sector, of weight 1 − h to get Ṽ = cc̄V hω. The generalized
overlap now reads

TrṼ(Ψ̃− Ψ̃TV ) = − 1

2πi

〈
V(0)c(1) exp

(
− λ

∫ 2π

0

dθeβx
+

(eiθ)
)〉BCFT′

disk

, (3.39)

where the superscript indicates that we are integrating over both the original and
the auxiliary sector. The auxiliary, matter and ghost sectors factorize

TrṼ(Ψ̃− Ψ̃TV ) = − 1

2πi

〈
V h(0) exp

(
− λ

∫ 2π

0

dθeβx
+

(eiθ)
)〉matter

disk〈
cc̄(0)c(1)

〉ghost
disc

〈
ω(0)

〉BCFTaux

disc
. (3.40)

We can choose
〈
ω(0)

〉
= 1 as we mentioned when we introduced this construction.

The fact that the ghost sector factorizes is proven in [6]. We will use the following
identities 〈

cc̄(0)c(1)
〉ghost
disc

= −1, (3.41)〈
c−0 cc̄(0)

〉ghost
disc

= −2. (3.42)

Substituting the above into 3.20, we obtain

TrṼ(Ψ̃−Ψ̃TV ) = − 1

4πi

〈
c−0 cc̄(0)V h(0) exp

(
−λ
∫ 2π

0

dθeβx
+

(eiθ)
))〉BCFT 0

disk

. (3.43)

Substituting this into the generalized Ellwood conjecture 3.20, we get

〈Ṽ| c−0 ||B〉〉 =

〈
c−0 cc̄(0)V h(0) exp

(
− λ

∫ 2π

0

dθeβx
+

(eiθ)
)〉BCFT 0

disk

. (3.44)
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Once this is true for any level matched primary, it follows that

||B〉〉 = exp
(
− λ

∫ 2π

0

dθeβx
+

(eiθ)
)
||B0〉〉 , (3.45)

where ||B0〉〉 is the boundary state corresponding to Neumann boundary condi-
tions in all directions or in other words to the space �lling D-brane.

The boundary state is kind of an abstract object, and just by looking at its
above form untrained eye probably cannot interpret it at all. To make sense of it,
we could extract the coe�cients in the expansion ?? and match particular linear
combination with respective closed string �elds. By Fourier transforming these, we
obtain corresponding �elds. Note that these are now �elds in the 26-dimensional
spacetime, not on the 2-dimensional world-sheet. We can already picture such
objects (apart from them living in 26 dimensions) and interpret them.
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Conclusion

In order to get to the heart of this thesis, which is the study of time dependent
dynamics of an unstable space-�lling D-brane, we had to lay down some basic
tools. These are mostly the methods of conformal �eld theory which we have
illustrated on the example of free boson theory. From there, we continued to
introduce some basic perturbative string theory. By using the gauge symmetries
of the action that governs string's dynamics, we uncovered that we can �nd a
particular gauge �xing (conformal gauge) that simpli�es our work signi�cantly.
It turned out that action for string is the free boson action. The gauge symmetries
of the string had another consequence, the presence of reparametrization ghosts
b and c and the BRST invariance accompanied by a conserved charge.

String �eld theory was presented as second quantization of string theory. We
have tried to show it in analogy with QFT to make clear that this is not a stri-
kingly new concept and to justify some basic terms. From the on-shell conditions
of perturbative theory we uncovered the kinetic term of the string �eld action.
Then we proposed a new action that includes interaction terms and yet yields the
on-shell condition on linearized level. After this we presented a new outlook on
string �elds, particularly on classical solutions of the equation of motion given by
the proposed action. The solutions represent D-brane con�gurations that form
the background of perturbative string theory. This is quite spectacular �nding
since one of the aims of string theory is to �nd a background independent for-
mulation. We elaborated on this correspondence with a general construction of a
boundary state for a given solution that would describe the string's background.

Boundary states couple to closed string �elds, and thus we saw that the deca-
ying D-brane acts like a source of closed strings that would emerge in the process
of tachyon condensation. We went on to calculate such state explicitly for a par-
ticular solution describing this decay and proposed a way for further examination
- the extraction and interpretation of respective �eld from the boundary state
decomposition. The next step would be the actual calculation of the spectrum
of closed strings produced. This could yield some interesting cosmological con-
sequences.
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List of Abbreviations

CFT conformal �eld theory
BCFT boundary conformal �eld theory
SFT string �eld theory
OSFT open string �eld theory
QFT quantum �eld theory
BPZ Belavin-Polyakov-Zamolodchikov
BRST Becchi-Rouet-Stora-Tyutin
UHP upper half plane
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