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Miroslav Zelený for the fruitful cooperation, as well as express my hope that we
will work together again in the future.

Throughout my doctoral studies, my research was supported by the grants
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Abstrakt: Tato práce sestává ze čtyř odborných článk̊u. V prvńım článku
studujeme pojem σ-zdola pórovitých množin; hlavńım výsledkem je konstrukce
uzavřených množin A,B ⊂ R, které nejsou σ-zdola pórovité a jejichž součin v R2

je zdola pórovitý. Ve druhém a třet́ım článku použ́ıváme množinově-teoretickou
metodu založenou na Löwenheim-Skolemově větě (tzv. metodu elementárńıch
submodel̊u) k d̊ukazu separabilńı determinovanosti jistých σ-ideál̊u množin v Ba-
nachových prostorech. Čińıme tak nejprve pro pojmy σ-pórovitosti a σ-zdola
pórovitosti (v článku druhém) a zjemněńım použitých metod pak ve třet́ım článku
dostaneme separabilńı determinovanost daľśıch vlastnost́ı. V obou př́ıpadech
dostáváme zaj́ımavé d̊usledky v podobě rozš́ı̌reńı vět známých pro separabilńı
prostory do kontextu neseparabilńıho; např́ıklad: Libovolná spojitá konvexńı
funkce na Asplundově prostoru je fréchetovsky diferencovatelná ve všech bodech
mimo kuželově malou (cone small) množinu. Čtvrtý článek zavád́ı následuj́ıćı
pojem. Řekneme, že uzavřená množina A ⊂ R je c-odstranitelná, jestliže plat́ı:
Reálná funkce f je konvexńı na Rd, kdykoliv je spojitá na Rd a lokálně konvexńı
na Rd \ A. Podáváme nové postačuj́ıćı podmı́nky pro c-odstranitelnost společně
s d̊ukazem, že tyto jsou silněǰśı než postačuj́ıćı podmı́nky známé dř́ıve.
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we study the notion of σ-lower porous set; our main result is the existence of
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Introduction

This introduction consists of three sections. The aim of the first two sections is
to provide a brief overview of historical development of the part of mathematical
analysis to which this thesis contributes. No attempt was made to make this
overview complete in any sense. The third section introduces the mathematical
content of the present thesis.

0.1 Historical motivation

In mathematics, one often encounters the question of existence of certain objects,
a question which can generally by approached from two directions: Either one can
prove the existence of the object at question by providing a method for creating it
from other objects whose existence has already been established (or assumed), or
one can avoid explicit construction, often by proving that not only an object with
desired properties exists, but that there is in fact an abundance of such objects.

It is probably clear to the reader that the former refers to what we call the
constructive proof while the latter refers to the so-called non-constructive (or
existence) proof. The distinction between the two is related to a number of
philosophical questions, which we are not going to discuss here; note that con-
structivism is a mathematical philosophy that rejects all but constructive proofs
by questioning basic principles such as the axiom of choice, the axiom of infinity
or even the law of the excluded middle. In our branch of mathematics, however,
it is sometimes impossible to avoid a non-constructive proof.

By non-constructive proof we usually mean one that makes use of the axiom
of choice. Another example of non-constructive proof could be proof by con-
tradiction. In this introduction we are more interested in the non-constructive
scheme of proof indicated in the first paragraph: Proving that there are many ob-
jects with desired properties without providing an example. The following three
classical examples illustrate our point:

(a) Cardinality: In 1874 Georg Cantor published the first proof of uncount-
ability of real numbers. As a consequence he obtained that there are uncountably
many transcendental numbers as it was easy to show that there are only countably
many algebraic ones. This was a new proof of Liouville’s result that there exist
transcendental numbers. As a matter of fact, Cantor’s work essentially contains
two proofs of this fact which are closely related, but one is considered constructive
(as it gives an explicit algorithm to find transcendental numbers), whereas the
one based on the aforementioned cardinality argument is non-constructive. For
us the important case is the latter.

(b) Category: In the beginning of the 19th century a lot of attention was
given to the notions of limit, continuity and derivative, and their precise defini-
tions were gradually worked out and studied—most notably by Bernard Bolzano,
Augustine-Louis Cauchy and later by Karl Weierstrass who gave the first “ε-δ
definition” of limit (in the 1840s). In fact, the very notion of function still lacked
a precise and universally accepted definition, and so did the field of real numbers.
Basic facts, such as the Bolzano theorem asserting that a continuous real function
of one real variable enjoys the intermediate value property, were provided with
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their first (almost) rigorous proofs.
In his publication from 1837, J. P. G. Lejeune Dirichlet was probably the first

to give the now standard general definition of a function: y is a function of x when
to each value of x in a given interval there corresponds a unique value of y. He had
already given a good example in 1829: The famous Dirichlet function is defined
as the characteristic function of rationals and it is clearly not continuous at any
point. It served mainly as an example of function which is not defined by a “nice”
formula; at the time, such functions were by many considered abominations not
worthy of study, or were simply disregarded as singular cases not interesting for
applications. Nonetheless, it slowly became apparent that the classical definitions
of functions were too restrictive.

A natural question which arose from the use of more general and more precise
definitions was whether any continuous real function has (many) points of dif-
ferentiability. Despite the increasing level of rigor in mathematics, Cauchy and
nearly all mathematicians of his era believed (and “proved”) that a continuous
function must be differentiable except at isolated points. An early exception
was Bolzano who did understand the distinction between continuity and differ-
entiability, and already in 1834 published an example of a continuous nowhere
differentiable function (which he had constructed in an unpublished manuscript
from around 1820). His work, however, went unnoticed until after Weierstrass’
famous example from 1874 (the Weierstrass Monster). There were a number of
other examples of similar pathological functions given in the second half of the
19th century.

All of the existence results for various pathological functions had one thing
in common: They all gave explicit formulas, and were therefore constructive.
Of course, in this case it was impossible to use a cardinality argument as in our
example (a) to provide analogous non-constructive proof: The set of differentiable
functions has the same cardinality as that of continuous ones. A more refined
notion of “size” of sets was required for that—one that took into account the
topological structure of the space of continuous functions.

In 1931 Stefan Banach and Stefan Mazurkiewicz independently proved the
following:

Theorem B (Banach, Mazurkiewicz). Let C[0, 1] be the space of continuous real
functions on [0, 1] endowed with the supremum norm. Then the set of all functions
which are differentiable at some point in [0, 1] is of the first category in C[0, 1].

Consequently, the set of nowhere differentiable continuous functions is nonemp-
ty by the Baire category theorem (proved by René-Louis Baire in his thesis in
1899). In other words, we obtain the existence result using a Baire category
argument.

Similarly as in case (a) this does not only show the mere existence of such
functions; in fact, the result says that “most” continuous functions are differen-
tiable at no point. In the modern terminology we say that a typical continuous
function is nowhere differentiable.

(c) Measure: In final decades of the 19th century the theory of functions
of real variable started to grow, motivated by the study of differentiation and
integration properties of functions. However, no efforts in the direction of creating
a more general theory of integration were made: The general opinion was that
the concept of Riemann integral could not be generalized any further.
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Nonetheless, the study of sets of discontinuities of functions led to the idea
of quantifying how large these (or any other) sets are. The first attempts in this
direction led to different concepts of content, most notably to the Jordan content
(also Peano-Jordan measure). This is a set function which is an extension of the
notion of size (length, area, volume) from line segments, squares or cubes to more
general “well-behaved” shapes. Unfortunately, the family of “measurable sets”
was unsatisfactorily small.

The next important step in the theory of content was made by Émile Borel who
was the first to explicitly formulate the idea of σ-additivity as opposed to mere
finite additivity. In his work from 1898 he essentially constructed by transfinite
induction a σ-additive measure (in the modern sense) defined on Borel subsets of
the real line such that the measure of each interval was its length.

For Borel, the purpose of this construction was to study sets of convergence of
certain series; he did not think of using his idea in the theory of integral. The final
step was done by Borel’s student Henri Lebesgue in his thesis, which he published
in 1902. Lebesgue constructed a general σ-additive measure on the real line (the
Lebesgue measure), defined corresponding measurable sets and functions, and
proved that the resulting notion of Lebesgue integral is more general than that of
Riemann. The advantages of this new concept of integral followed largely from
the σ-additivity of the measure, and the consequent large class of measurable
functions.

Lebesgue devoted most of his efforts to the study of the connection between
integral and primitive function. In particular, he was interested in the question
for which functions f : [a, b]→ R holds the well-known formula

∫ b

a

f ′(t)dt = f(b)− f(a).

Thus he came to the following theorem which is important for us:

Theorem C (Lebesgue). A monotone function f : [a, b]→ R is differentiable in
[a, b] except for a Lebesgue null set.

Consequently, all functions of bounded variation (in particular all Lipschitz
functions) are differentiable almost everywhere. Indeed, for an L-Lipschitz func-
tion f : [a, b] → R it is enough to consider the monotone function g : x 7→
f(x) + Lx. To obtain the result for functions of bounded variation, one needs to
know that every such function can be expressed as the difference of two mono-
tone functions. The statement then follows from the fact that the union of two
Lebesgue null sets is Lebesgue null. Though trivial in this case, this sort of
argument will be useful to keep in mind later in this introduction.

Theorem C was the first general result on existence of derivatives of functions.
It is interesting to note that unlike almost all the analogous results in higher
dimensions which we shall mention in the sequel, this particular theorem for
Lipschitz functions is optimal in the sense of the following result of Z. Zahorski
[28]:

Theorem Z. A subset of R is the set of points of non-differentiability of a Lip-
schitz function f : R→ R if and only if it is Gδσ-set of Lebesgue measure zero.
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Since there exists a Lebesgue null Gδ-set which is residual (i.e. its complement
is of the first category), it is clear that the Baire category method is not suitable
to study sets of non-differentiability of Lipschitz function.

In the sequel we shall mention a number of similar “almost everywhere differ-
entiability results for Lipschitz functions” and we shall usually refer to them as
Rademacher type theorems (see below).

All three main results formulated in (a), (b) and (c) are existence results in the
sense that they do not explicitly construct the objects at question, they simply
state that objects with the desired property are, in fact, prevalent.

In case (a), “most” numbers are transcendental. Here “most” means “up to
countably many”.

In case (b), “most” continuous functions are nowhere differentiable. Here
“most” means “up to a set of the first category”.

Finally, in case (c), “most” points from the domain of a given Lipschitz func-
tion are points of differentiability. Here “most” means “up to a Lebesgue null
set”.

In all three cases we use some notion of “smallness of sets” and we use this
notion to describe exactly how small the sets of “exceptional objects” are (in par-
ticular we obtain that they do not contain everything, thus proving the existence
of objects with the opposite property). The main topic of this thesis is the study
of certain notions of smallness of sets and the use of these notions to describe how
small certain exceptional sets (i.e. sets of exceptional points) are. Probably the
most important case of exceptional sets is that of points of non-differentiability
of Lipschitz functions, and we will discuss this case in various settings. We shall
often use the notion of σ-ideal:

Definition. Let X be a set and S be a system of subsets of X. We say S is a
σ-ideal of subsets of X if the following are true:

(i) If A ∈ S and B ⊂ A, then B ∈ S;

(ii) If An ∈ S for each n, then
⋃∞

n=1An ∈ S.

A σ-ideal S of subsets of X is called nontrivial if X /∈ S.

In all interesting situations discussed in this thesis (including (a), (b) and
(c)), “smallness” of sets is understood with respect to some nontrivial σ-ideal S
of sets, that is, a set A will be considered “small” if A ∈ S.

Let us recall also the definitions of two most important notions of derivative
used in Banach spaces, the Gâteaux derivative and the Fréchet derivative.

Definition. Let X and Y be Banach spaces and f : X → Y be a mapping.
The Gâteaux derivative of f at a point x0 ∈ X is a bounded linear operator
T : X → Y such that for every u ∈ X,

lim
t→0

f(x0 + tu)− f(x0)

t
= Tu. (1)

The operator T is called the Fréchet derivative of f at x0 if it is the Gâteaux
derivative of f at x0 and the limit in (1) is uniform with respect to u from the
unit ball (or unit sphere) in X.
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The next important example of theorem stating the existence of (many) points
of differentiability is the following theorem of Hans Rademacher from 1919:

Theorem R (Rademacher). Let f : Rn → R be Lipschitz. Then f is differen-
tiable almost everywhere.

The notions of Fréchet differentiability and Gâteaux differentiability coincide
for Lipschitz functions on finite-dimensional spaces, and so we do not have to
specify in which sense we understand the word “differentiable”. Later on, we will
always specify which of the two notions we mean.

Theorem R is not optimal as can be seen from the following (nontrivial) fact
(see [18]):

There exists a measure-zero set A ⊂ R2 such that each Lipschitz function on
R2 has a point of differentiability in A.

Questions related to sharpness of Rademacher theorem (in Rn) have recently
received considerable attention, but we are ultimately interested in the infinite-
dimensional situation. Before we turn our attention to the intricacies of infinite
dimension, it is, perhaps, worth to mention the following two theorems in the
finite-dimensional setting:

Theorem (V. Stepanov, 1923). Any function f : Rn → R is Fréchet differentiable
at almost all points at which it is Lipschitz. That is, the set

{

x ∈ Rn; lim sup
y→x

|f(y)− f(x)|
‖y − x‖ <∞ & f ′(x) does not exist

}

is Lebesgue null.

It is often possible to obtain a Stepanov type theorem from the correspond-
ing Rademacher type theorem (in various infinite-dimensional settings; see e.g.
the unpublished paper of J. Malý, L. Zaj́ıček: On Stepanov type differentiability
theorems).

The last example of differentiability theorem in finite dimension which we want
to mention is due to F. Mignot and can be found in [20]. It states that a monotone
multifunction on Rn is differentiable almost everywhere. It is interesting to note
that unlike the Rademacher theorem, this theorem of Mignot has no infinite-
dimensional analogue.

0.2 Modern development in infinite dimension

In order to even formulate a statement similar to the Rademacher theorem for
functions defined on an infinite-dimensional Banach space X, we first need to
define what do we mean by “almost everywhere”. This is always done using some
nontrivial σ-ideal S of subsets of X, and so the Rademacher type theorems are
of the following form:

Let f : X → Y be a Lipschitz mapping. Then f is differentiable S-almost
everywhere. That is, there exists A ∈ S such that f is differentiable at each
x ∈ X \ A.

One can formulate various statements of this type by imposing additional
assumptions on the spaces X and Y , by specifying in which sense do we mean
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the word “differentiable”, by specifying the σ-ideal S, or by assuming that f is
convex instead of Lipschitz. We shall now discuss some of the true statements of
this form. The first theorems proved in the infinite-dimensional setting concerned
continuous convex functions on (some) separable spaces:

Theorem (S. Mazur, 1933). Let X be a separable Banach space. Then each
continuous convex function on X is Gâteaux differentiable on a dense Gδ-subset
of X.

Theorem (E. Asplund, 1968, [2]). Let X be a Banach space with separable dual.
Then each continuous convex function on X is Fréchet differentiable on a dense
Gδ-subset of X.

The latter theorem was proved for separable reflexive spaces already in 1963
by Joram Lindenstrauss, [14]. Note that both results are of the “Baire category
type”; in the modern terminology of Luděk Zaj́ıček, they are also called generic
results. Note also that the assumption of X having a separable dual cannot be
relaxed to X separable. Indeed (see e.g. [9] or [11]):

On any separable Banach space with nonseparable dual there exists a nowhere
Fréchet differentiable equivalent norm.

It follows from Theorem Z and the remark below it that no generic result
can hold for Fréchet derivatives of Lipschitz functions, and so Asplund’s theorem
cannot be generalized in this direction either. However, the statement can be
strengthened by considering a smaller σ-ideal or nonseparable Asplund spaces as
we shall see later.

Since the 1960s, a large number of similar results were proved by many math-
ematicians who used (or invented for that purpose) various methods in functional
analysis, descriptive set theory, geometric measure theory, and recently even set
theory and mathematical logic. Besides the fact that the question of generalizing
the Rademacher theorem to infinite dimension is quite natural and interesting,
there are two main reasons why there are so many results of this type: First,
there are many settings in which one can consider the problem. It is possible
to alter assumptions on the Banach spaces (with much more variety than in
the finite-dimensional case) or the functions, or one can study different kinds of
differentiability. We shall briefly discuss some of the branches in the sequel. Sec-
ond, the infinite-dimensional problem is simply much more difficult; consequently,
there are many partial results or results which strengthen or generalize previous
ones. To give a taste of how complicated the situation is, let us state probably
the most important of related open problems, which seems strikingly basic:

Problem. Let H be an infinite-dimensional Hilbert space. Is it true that any
three real-valued Lipschitz functions on H have a common point of Fréchet dif-
ferentiability?

Of course, the fact that this problem is still open means that it is not known
whether in every Hilbert space there exists a σ-ideal of sets such that the cor-
responding Rademacher theorem for Fréchet derivative holds. What is known,
however (and it is a highly non-trivial result of Joram Lindenstrauss, David Preiss
and Jaroslav Tǐser, [18, Chapters 13 and 16]), is that the answer is positive if we
only consider two functions instead of three.
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On the other hand, in 2003 J. Lindenstrauss and D. Preiss [16] proved a
Rademacher type theorem for Fréchet derivative of Lipschitz functions on a class
of Banach spaces including c0 (see Case (7) below). The theorem is very deep
and it works with the σ-ideal of Γ-null sets, which is tailor-made for the purpose
by combining the notions of smallness in the sense of measure and category. One
can readily see from the theorem that countably many Lipschitz functions on c0
have a common point of Fréchet differentiability.

Let us now briefly discuss the most important aspects of the infinite-
dimensional situation and the differences between diverse settings:

Target space: One of the possible ways to generalize Theorem C is to con-
sider a target space more general than R. But it was recognized already in
1930 that for some spaces Y the differentiation theorem can fail even for Lips-
chitz functions from the unit interval to Y . For example, consider the function
f : [0, 1] → L1[0, 1] defined by f : t 7→ 1[0,1] where 1[0,t] is the characteristic
function of [0, t]. One can readily check that f is an isometry (hence Lipschitz)
and it is not differentiable at any point in [0, 1].

It follows that no Banach space containing a copy of L1[0, 1] can serve as the
target space in any Rademacher type theorem, and the same goes for c0. The
class of Banach spaces where a similar pathology does not appear was described
and characterized already in the 1930s:

A Banach space X is said to have the Radon-Nikodým property (we say also
RNP-space for short) if every absolutely continuous f : [0, 1]→ X is differentiable
almost everywhere.

There are many equivalent definitions of very different kinds which we are not
going to discuss, but it is certainly useful to remember that all separable dual
spaces enjoy the RNP (for more details see e.g. [11], [3] or [5]). It is obvious from
the definition that Y having the RNP is a necessary condition for any Rademacher
type theorem with target space Y to hold.

Domain space: In dealing with Fréchet differentiability it turns out that we
also have to restrict the class of Banach spaces which can serve as domain spaces.
For example, the norm on ℓ1 (which is a continuous convex function) is not Fréchet
differentiable at any point. This shows that even when dealing with continuous
convex functions (which are a subclass of locally Lipschitz functions), not all
separable Banach spaces can be domain spaces in Rademacher type theorems for
Fréchet derivative. The class of Asplund spaces is, in fact, defined by the validity
of a Rademacher type theorem:

A Banach space X is called Asplund space if each continuous convex function
on X is Fréchet differentiable on a residual set.

It is known that X is Asplund if and only if each separable subspace has
separable dual; in particular, if X is separable, then X is Asplund if and only if
X∗ is separable. Similarly as the RNP, the property of being Asplund has many
characterizations. As a matter of fact, X is Asplund if and only if X∗ has the
RNP.

No Rademacher type theorems for Fréchet differentiability can hold for non-
Asplund spaces because on any non-Asplund Banach space there exists an equiv-
alent norm which is nowhere Fréchet differentiable (see [11]).

For more details on Asplund spaces see e.g. [11] or [9].
Discussion of possible settings: The property of being Asplund and the
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RNP aside, we have to answer four main questions in order to specify in which
branch of the theory are we interested:

(i) Are we interested in continuous convex or Lipschitz functions?

(ii) Do we study Gâteaux or Fréchet differentiability?

(iii) Is the domain space separable or nonseparable?

(iv) Is the target space the real line or is it infinite-dimensional?

Obviously, it is easier to deal with continuous convex functions than general
Lipschitz functions, it is easier to obtain Gâteaux than Fréchet differentiability,
it is easier to work in separable spaces than in nonseparable ones, and it is easier
to consider real-valued functions. Here by the word “easier” we mean that one is
more likely to obtain strong results in that setting.

There are sixteen possible combinations of these assumptions, which makes the
situation quite complicated already, and we are only considering the most basic
cases (for instance, one can study other notions of derivative, e.g. the Hadamard
derivative etc.). Fortunately, some cases are not extremely difficult (and have
already been solved to a satisfactory degree), and strong results in some of the
easier settings follow from more difficult ones. In the following discussion we
are also going to avoid question (iv), touching it only very briefly at some points.
This leaves us with eight different settings which we list using abbreviations; note
that in cases with Fréchet differentiability we only consider Asplund spaces:

(1) Continuous convex & Gâteaux & separable;

(2) Continuous convex & Gâteaux & nonseparable;

(3) Continuous convex & Fréchet & separable Asplund;

(4) Continuous convex & Fréchet & nonseparable Asplund;

(5) Lipschitz & Gâteaux & separable;

(6) Lipschitz & Gâteaux & nonseparable;

(7) Lipschitz & Fréchet & separable Asplund;

(8) Lipschitz & Fréchet & nonseparable Asplund.

Case (1): Probably the easiest case; we have already mentioned Mazur’s
theorem from 1933 which in itself could be somewhat satisfactory. However, the
current understanding of the matter is fairly complete thanks to the following
theorem:

Theorem (L. Zaj́ıček, [30]). : Let X be a separable Banach space and A ⊂ X.
There is a convex continuous real-valued function on X which is nowhere Gâteaux
differentiable on A if and only if A is contained in a countable union of graphs
of δ-convex functions.
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Case (2): The situation is much more complicated than in the separable case.
A Banach space is called weak Asplund if every continuous convex function on X
is Gâteaux differentiable on a residual set. There is no interesting characterization
of weak Asplund spaces currently known; various sufficient conditions and related
topics are studied in detail in the book [12]. It is obvious from the definition that
every Asplund space is weak Asplund, and it follows from Mazur’s 1933 theorem
that every separable Banach space is weak Asplund. A less trivial example of
a subclass of weak Asplund spaces is the class of weakly compactly generated
spaces (WCG; see [12] for more details). The study of weak Asplund spaces is
more topology oriented, and not too much related to the study of σ-ideals of
small sets in Banach spaces.

Case (3): We already mentioned the result of Asplund from 1968 which
states the generic differentiability of any continuous convex function on a Banach
space with separable dual. This result was later improved on by L. Zaj́ıček and
D. Preiss who used more restrictive notions of smallness of sets. In particular,
their joint work [24] introduces the notion of angle small sets in Banach spaces
and establishes the corresponding super-generic result (i.e. a result where the
notion of null sets is understood with respect to some σ-ideal of sets smaller than
that of sets of the first category) which is close to being optimal (however the
optimal result is not known even for Hilbert spaces). Angle small sets are in
separable Banach spaces exactly the same as cone small sets which are studied
and used in this thesis; see Definition 3.5.1.

In 2008 L. Zaj́ıček considered the wider class of approximately convex functions
(see Definition 3.6.1) and in [34] proved (among many other related results) the
following super-generic result:

Theorem (L. Zaj́ıček, [34]). Let X be a Banach space with separable dual, G ⊂ X
be an open set and f : G → R be a continuous approximately convex function.
Then the set NF (f) of all points x ∈ G at which f is not Fréchet differentiable
is angle small.

Case (4): The situation in nonseparable spaces is always trickier to handle,
but in this case the above theorem of L. Zaj́ıček can be extended to general
Asplund spaces. This is proved in Chapter 3 of this thesis, Theorem 3.6.3. Note
that this theorem uses the notion of cone smallness which in separable Banach
spaces is equivalent to angle smallness (not so in nonseparable spaces). We shall
discuss this result in more detail later in this introduction.

We remark that even for higher-dimensional target spaces Y (i.e. dim(Y ) > 1)
it is possible to consider convex mappings if Y is an ordered Banach space (this is
necessary in order to formulate a definition of convex operator to Y ). This setting
was studied in the 80s by Jonathan M. Borwein (see e.g. [4]) who obtained generic
differentiability results (i.e. differentiability up to a set of the first category) and
more recently by L. Zaj́ıček and Libor Veselý (see [27]) with super-generic results.

Case (5): The simplest case for Lipschitz functions had its versions of
Rademacher type theorems in the 70s:

Let X be a separable Banach space and Y be a RNP-space. Then every Lips-
chitz function f : X → Y is Gâteaux differentiable outside a null set.
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Jens P. R. Christensen in 1972 proved this theorem for Haar null sets (which
he introduced for the first time in non-locally compact abelian groups) in [6]. He
was followed by Piotr Mankiewicz [19], Nachman Aronszajn [1] and Robert R.
Phelps [21] who obtained the theorem for the σ-ideals of cube null sets, Aron-
szajn null sets and Gauss null sets respectively. These latter three σ-ideals are
defined in quite different ways and it is a deep (and surprising) result of Marianna
Csörnyei [7] that the three σ-ideals coincide in separable Banach spaces.

Although for some time it was thought that these results could not be strength-
ened, there were stronger results eventually obtained e.g. by D. Preiss and
L. Zaj́ıček in [25] and recently by D. Preiss in his paper Gâteaux differentiabil-
ity of cone-monotone and pointwise Lipschitz functions where he proves results
which are shown to be (close to) optimal.

Case (6): This setting seems to be rather open as some of the best results
trivially follow from much stronger results on Fréchet differentiability. One of
the reasons lies in the fact that results on Gâteaux differentiability cannot be
separably reduced (a method which in some cases allows to deduce a nonseparable
theorem from its separable version), a fact which lies in the non-uniform nature
of Gâteaux derivative.

Case (7): Proving the existence of Fréchet derivatives is much more difficult
and, in fact, for some time it was thought impossible: In the literature there
were several published examples showing that Lipschitz functions need not be
differentiable at any point even on separable Hilbert spaces. However, in 1979
R. R. Phelps and S. Fitzpatrick went through all such examples and found out
they were all incorrect.

In 1990 D. Preiss published the main known result in this setting, the following
celebrated theorem:

Theorem (D. Preiss, [22]). Let X be a Banach space with separable dual and
f : X → R be Lipschitz. Then f is Fréchet differentiable on a dense set.

However, this is not an “almost everywhere” type result (indeed, recall the
problem stated in the beginning of this section).

So far the only Rademacher type theorems in this setting were given in [16]:

Theorem (J. Lindenstrauss and D. Preiss, [16]). The following spaces have the
property that every Lipschitz mapping of them into a RNP-space is Fréchet dif-
ferentiable everywhere except on a Γ-null set: C(K) for countable compact K,
subspaces of c0, the Tsirelson space.

Case (8): The nonseparable situation does not attract a lot of attention in
this case either. Probably the most interesting result is due to Marek Cúth [8,
Theorem 6.18]: Using the separable reduction method of elementary submodels
(which we explain and use in chapters 2 and 3 of this thesis) he generalized the
above theorem of J. Lindenstrauss and D. Preiss to C(K) for scattered compact
K and subspaces of c0(Γ) for arbitrary set Γ.

Of course, differentiation theorems are not the only kind of results which
appear in this theory. There are a number of other results which contribute to
our understanding of the matter. For instance, many results arose from the study
of relations between and the properties of various σ-ideals of small sets. A good
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overview of properties of σ-ideals offers the book [3]; more recent results can
be found in [18]. A good starting point on differentiation theorems of Lipschitz
functions on Banach spaces offers the slightly outdated survey article [15].

Before we move on to discuss σ-porous sets, let us note the following aspect
which most of the σ-ideals mentioned above have in common: They approximate
the sets of non-differentiability “from above”. For example, assume that N is the
family of all sets of points of non-Gâteaux differentiability of Lipschitz functions
on a given separable Banach space X. Assume also that a Rademacher type
theorem holds in this setting with respect to a σ-ideal M. Then N ⊂ M. In a
sense, σ-porous sets can play the opposite role.

σ-porous sets: It is not a coincidence that different notions of σ-porosity
have enjoyed decades of perpetual attention from many mathematicians who
work in fields related to differentiation theory. A systematic study of σ-porous
sets started in 1967 in [10], although the first to use some form of them (under a
different terminology) was Arnaud Denjoy already in 1920. Today there is a vast
theory developed around various notions of σ-porosity and related σ-ideals (see
[31] and [33] for surveys of the area; note also the article [17]). They were studied
from many angles, and found many interesting applications in real analysis and
functional analysis.

An easy observation which could shed some light on the reasons for the use-
fulness of σ-porous functions is the following observation, which also explains in
what sense do σ-porous sets play the opposite role to the previously discussed
σ-ideals:

Let X be a Banach space. A set E ⊂ X is porous if and only if the function
x 7→ dist(x,E) is not Fréchet differentiable at any point of E.

In fact, the following is also true (cf. [23] or [18]):
Let E be a σ-porous subset of a separable Banach space X. Then there is a

Lipschitz function f : X → R which is not Fréchet differentiable at any point of
E.

Assume that M is a σ-ideal for which holds a Rademacher type theorem for
Fréchet derivative and X separable. Then it follows from the above facts thatM
contains all σ-porous sets.

We remark that the notion of σ-directional porosity (cf. [33]) corresponds to
Gâteaux differentiability in the same way as σ-porosity corresponds to Fréchet
differentiability.

0.3 Contributions of this thesis

The mathematical content of the present thesis is divided into four separate chap-
ters. Each chapter corresponds to a research paper containing original results.
We shall now briefly introduce each chapter.

Chapter 1.

In the first chapter we study Cartesian products of σ-lower porous sets (a
notion of porosity defined via limes inferior; see Definition 1.2.1). The work is
motivated by a paper of L. Zaj́ıček [32] where the following theorem is proved:

Theorem ([32, Theorem 1]). Let (X, ρ) and (Y, σ) be topologically complete met-
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ric spaces and let A ⊆ X and B ⊆ Y be non-σ-porous Gδ-sets. Then the Carte-
sian product A × B is non-σ-porous in the space (X × Y, ρm) where ρm is the
maximum metric.

It is a natural question to ask whether an analogous statement holds for lower
porosity. We present a counterexample, showing that the answer is negative.

Theorem. There exist closed non-σ-lower porous sets A ⊆ R and B ⊆ R such
that the Cartesian product A× B is lower porous in R2.

However, if we strengthen the assumptions of the original conjecture, we ob-
tain the following theorem. These two theorems together give us a fairly complete
answer to our question.

Theorem. Let (X, ρ) and (Y, σ) be topologically complete metric spaces. Assume
that A ⊆ X and B ⊆ Y are Souslin sets in their respective spaces. If A is non-σ-
lower porous in X and B is non-σ-porous in Y then the Cartesian product A×B
is non-σ-lower porous in X × Y (with the maximum metric).

Chapter 2.

In this chapter we establish separable determination theorems for σ-upper
porous sets (the word “upper” can be omitted) and for σ-lower porous sets. We
do so by employing the so-called method of elementary submodels. This is a set-
theoretical method which involves the use of countable elementary structures and
can be used in various branches of mathematics. This method has several advan-
tages; most importantly it allows us to conveniently combine results obtained by
this method. A disadvantage is the fact that in some areas of mathematics (in-
cluding the study of σ-porous sets) it is not standard and requires a lot of getting
used to. Further, theorems obtained by this method are formulated in a specific
language, and thus are sometimes difficult to use or even correctly interpret.

Nevertheless, the method allowed us to obtain interesting new results whose
statements do not involve elementary submodels. A very basic (and probably
not very useful) example of separable determination result which we are able to
obtain is the following:

Theorem. Let X be a Banach space and let A ⊂ X be a Souslin set. Then for
every separable subspace V0 ⊂ X there exists a closed separable space V ⊂ X such
that V0 ⊂ V and

(i) A is σ-upper porous if and only if A ∩ V is σ-upper porous in V ;

(ii) A is σ-lower porous if and only if A ∩ V is σ-lower porous in V .

Note that this theorem essentially tells us that for any given Souslin set A ⊂ X
(whose porosity properties are not a priori known to us) we can find an “arbitrarily
large” separable subspace which determines both the σ-upper porosity and σ-
lower porosity of A. (Of course, this subspace depends on A.)

What is interesting is precisely the fact that the separable subspace V can
be found in such a way that it reflects both the aforementioned properties at
the same time, and we achieve this desirable situation for free: The method of
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elementary submodels allows us to combine the (originally separate) results on
σ-upper porosity and σ-lower porosity together.

As an application we combine the main result of this chapter on separable
determination of σ-upper porosity with several auxiliary results (also obtained by
the method of elementary submodels) from [8] to extend the following theorem
of L. Zaj́ıček to general Asplund spaces:

Theorem ([29, Theorem 2]). Let X be a Banach space with separable dual space
and let G ⊂ X be an open set. Let f be a Lipschitz function on G and let A be
the set of all the points x ∈ G such that f is Fréchet superdifferentiable at x and
f is not Fréchet differentiable at x. Then A is σ-upper porous.

Let us briefly describe the steps in which we prove the result on separable
determination of σ-upper porosity. Simplifying the situation, we can say that our
aim is to prove that for a given set A we can find a subspace V such that the
following is true:

A is σ-upper porous in X ⇐⇒ A ∩ V is σ-upper porous in V .
In applications of similar theorems, however, one only needs to use the impli-

cation (⇐=) (also, variants of the converse were known before). Let us rewrite
what we want to prove:

(+) A is non-σ-porous in X =⇒ A ∩ V is non-σ-porous in V .
The obstacle in “separably reducing” non-σ-upper porosity is in the presence

of the “σ” which makes the property somewhat global rather than described
pointwise. In fact, it is quite non-trivial to prove non-σ-upper porosity of sets
(not surprisingly, it is considerably harder than proving non-σ-lower porosity).

The standard tool, developed for that purpose by L. Zaj́ıček, is the so-called
Foran lemma which essentially states that if we have a system of sets intertwined
in the “right” way (a Foran system), then each element of this system is non-
σ-porous (cf. [32]). Most importantly, the “right” way in which the sets are
intertwined is described by a condition which only involves pointwise porosity.
This makes a Foran system (which by the Foran lemma consists only of non-σ-
porous sets) actually easier to separably reduce than a single non-σ-porous set.

The proof of (+) now consists of the following steps:

(i) We have the non-σ-porous set A; find to it a Foran system F which contains
(a part of) A. This means proving a “partial converse of the Foran lemma”.

(ii) Separably reduce the Foran system F . That is, find the subspace V in such
a way that the system FV := {F ∩ V ; F ∈ F} is a Foran system for upper
porosity in V .

(iii) The Foran lemma applied on FV now yields that all elements of FV are
non-σ-porous in V . In particular, A∩V is non-σ-porous in V and the proof
is finished.

Chapter 3.

The third chapter can be considered a loose continuation of Chapter 2. We
use similar (but more refined) methods to obtain similar kinds of results. Our
main aim is to further investigate separable determination of various properties
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of sets and functions in metric spaces (especially Banach spaces). This means,
given a nonseparable metric space X and a property of sets (or functions etc.) in
X, we are interested whether certain statements about a property hold, provided
that they hold in (some) separable subspaces of X.

The key method we use to obtain separable determination results uses count-
able elementary structures which we call elementary submodels. The reader ought
to note, however, that there are other ways to tackle this topic. An example is
the use of rich families of Banach spaces, which is described in detail e.g. in [18,
Section 3.6]. Sometimes one can also opt to prove this sort of results in an “ele-
mentary way”, in a sense imitating parts of the proof of the Löwenheim-Skolem
theorem. This approach would be in many cases very complicated, but it can
give a deeper insight.

We concentrated on the notion of cone smallness (see Definition 3.5.1) of
subsets of Banach spaces, and succeeded in proving its separable determination.
The proof goes in similar steps as the one used in Chapter 2 to prove the separable
determination of σ-upper porosity, but this time we do not work with Foran
systems, but rather with the new notion of Foran-Zaj́ıček scheme, which is more
refined. It essentially is a Souslin scheme on which we impose such additional
assumptions that the proof of Foran lemma goes through. As a result we obtain
an analogue for both the Foran lemma and its partial converse used in previous
chapter, which works for a wider class of porosity-like relations and moreover
works for general Souslin sets.

As an application of our result on separable determination of cone smallness
we obtained the following:

Theorem. Let X be an Asplund space and G ⊂ X be open. Let f : G→ R be a
continuous and approximately convex function. Then the set of all points of G at
which f is not Fréchet differentiable is cone small.

This is an example of a separable reduction theorem which means that it was
proved by reduction to the separable case, which was already known to be true.

Chapter 4.

The last chapter of this thesis is not related to the study of σ-ideals of sets.
We study the existence and uniqueness of convex extensions of functions which
are locally convex outside a given closed set in Rd, an area of research which is
surprisingly unexplored. We introduce the following notion:

Definition. We say that a closed set A ⊂ Rd is c-removable if the following is
true: Every real function f on Rd is convex whenever it is continuous on Rd and
locally convex on Rd \ A.

Intuitively, c-removable sets are “negligible” for convexity of continuous func-
tions, and thus could also be called exceptional.

One of our aims in this chapter is to provide a sufficient condition for a closed
subset of Rd to be c-removable which is more general than that of interval thinness
of sets established (and introduced) in the article [26]. By doing so we solve an
open problem posed in the same article. For more details on the motivation of
this work and its connection to [26], see the rather detailed introduction to the
chapter.
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It could be interesting to note, that there are well-known examples of similar
removability problems in mathematics. For example the notion of removability
of compact subsets of C related to the Vitushkin’s conjecture (see [13, Section
12.2]) is defined as follows:

A compact set F ⊂ C is said to be removable if, given any bounded open
domain V ⊂ C containing F and any bounded analytic (i.e. differentiable in the
complex sense) function f : V \ F → C, then f has an analytic extension to the
whole of V .

The two definitions are rather similar, so it is, perhaps, not very surprising
that the geometric measure theory is useful in the study of both these notions.

Finally, let us remark, that even though we were able to make some progress,
our results are far from final and there are several interesting open problems.
In particular, it is not clear to us whether there is a closed totally disconnected
Lebesgue null set in R2 which is not c-removable (we prove that such sets exist if
we do not require zero measure).
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Products of Non-σ-Lower Porous Sets
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Abstract

In the present article we provide an example of two closed non-σ-lower
porous sets A,B ⊆ R such that the product A × B is lower porous. On
the other hand, we prove the following: Let X and Y be topologically
complete metric spaces, let A ⊆ X be a non-σ-lower porous Souslin set
and let B ⊆ Y be a non-σ-porous Souslin set. Then the product A × B

is non-σ-lower porous. We also provide a brief summary of some basic
properties of lower porosity, including a simple characterization of Souslin
non-σ-lower porous sets in topologically complete metric spaces.
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1.1 Introduction

In the present article we deal with Cartesian products of σ-lower porous sets.
The work is motivated by a paper of L. Zaj́ıček [5] where the following theorem
is proved:

Theorem Z ([5, Theorem 1]). Let (X, ρ) and (Y, σ) be topologically complete
metric spaces and let A ⊆ X and B ⊆ Y be non-σ-porous Gδ-sets. Then the
Cartesian product A × B is non-σ-porous in the space (X × Y, ρm) where ρm is
the maximum metric.

It is a natural question to ask whether an analogous statement holds for lower
porosity (i.e. the notion of porosity defined by limes inferior rather than limes
superior). In Section 4 we present a counterexample, showing that the answer is
negative.

Theorem 1. There exist closed non-σ-lower porous sets A ⊆ R and B ⊆ R such
that the Cartesian product A× B is lower porous in R2.

However, if we strengthen the assumptions of the original conjecture, we ob-
tain the following theorem. These two theorems together give us a fairly complete
answer to our question.

Theorem 2. Let (X, ρ) and (Y, σ) be topologically complete metric spaces. As-
sume that A ⊆ X and B ⊆ Y are Souslin sets in their respective spaces. If A is
non-σ-lower porous in X and B is non-σ-porous in Y then the Cartesian product
A×B is non-σ-lower porous in X × Y (with the maximum metric).

It is easy to see that both aforementioned notions of σ-porosity are invari-
ant with respect to bilipschitz homeomorphisms. Therefore, in all the previous
theorems we can equip the product spaces with any metric which is “bilipschitz
equivalent” to the maximum metric and the resulting statement will be true.

It is also fitting to give an explanation as to why in Theorem 2 we only require
the sets A and B to be Souslin while in Theorem Z these are assumed to be of
the type Gδ. The reason is that we use two inscribing theorems (see 1.2.5 and
1.2.6) which, at the time Theorem Z was proved, had not yet been discovered.
Of course, this means Theorem Z can be generalized to Souslin sets.

1.2 Some facts about σ-lower porosity and ab-

stract porosity

The main aim of this section is to provide the reader with a self-contained col-
lection of some basic facts about σ-lower porous sets (with some references to
related articles). It might be of some independent interest, but we shall use these
facts to prove our main results.

Notation. In the whole paper we shall denote by B(x, r) the open ball with
centre x and radius r, by A the closure of the set A, and by ∂A the boundary of
A. As usual, for a set X the symbol 2X denotes the power set of X.
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Convention. Unless stated otherwise, we shall consider all product spaces
equipped with the maximum metric (i.e. for x1, x2 ∈ (X, ρ) and y1, y2 ∈ (Y, σ),
ρm(〈x1, y1〉, 〈x2, y2〉) = max {ρ(x1, x2), σ(y1, y2)}).

The following standard definitions of σ-porosity originate in a work of A.
Denjoy from 1920; however, a systematic investigation of these sets (and the usage
of the current nomenclature) has begun in 1967 with an article of E. P. Dolzhenko.
For extensive information about σ-porous sets from various viewpoints we refer
the reader to L. Zaj́ıček’s survey articles [3] and [6]. The notion of abstract
porosity is defined for example in [5].

Definition 1.2.1. Let (X, ρ) be a metric space, M ⊆ X, x ∈ X and R > 0. We
define

γ(x,R,M) = sup {r > 0 : for some z ∈ X, B(z, r) ⊆ B(x,R) \M} ,

p(M,x) = lim sup
R→0+

2 · γ(x,R,M)

R
, p(M,x) = lim inf

R→0+

2 · γ(x,R,M)

R
.

A set M ⊆ X is (upper) porous at x if p(M,x) > 0 and lower porous at x if
p(M,x) > 0.

Now assume P is a relation between points and subsets of X (i.e. P ⊆ X×2X).
The symbol P(x,A) where x ∈ X and A ⊆ X means that 〈x,A〉 ∈ P. We say
that P is an abstract porosity on X if the following conditions are satisfied (for
all A ⊆ X, B ⊆ X and x ∈ X):

(A1) If A ⊆ B ⊆ X, x ∈ X and P(x,B), then P(x,A).

(A2) P(x,A) if and only if there is an r > 0 such that P(x,A ∩ B(x, r)).

(A3) P(x,A) if and only if P(x,A).

Note that the relations which correspond (in the sense of the first point of the
following list) to the notions of porosity and lower porosity are clearly abstract
porosities. Let P be an abstract porosity on X. We say that A ⊆ X is

• P-porous at x ∈ X if P(x,A),

• P-porous (in X) if A is P-porous at each of its points,

• σ-P-porous (in X) if A is a countable union of P-porous sets,

• σ-P-porous at x ∈ X if there is an r > 0 such that A∩B(x, r) is σ-P-porous.

In case P corresponds to lower porosity we say A is lower porous, σ-lower
porous or σ-lower porous at x. If P corresponds to ordinary (upper) porosity, we
simply omit the symbol P and write A is porous etc. (however, in some cases we
tend to add “upper” to avoid confusion).

Remark 1.2.2. If (X, ρ) is a metric space and P is an abstract porosity on X, it
is well-known that the family I of all σ-P-porous sets in X satisfies the following
conditions:
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(i) If A ⊆ B and B ∈ I then A ∈ I.

(ii) If An ∈ I for all n ∈ N then
⋃∞

n=1An ∈ I.

The following two propositions are well-known (see the survey article [6]), but
we shall provide the proofs for the sake of completeness. Proposition 1.2.4 gives
us a method to recognize non-σ-lower porous sets

Proposition 1.2.3. Let (X, ρ) be a metric space and let A ⊆ X be σ-lower
porous. Then A can be covered by a countable family of closed lower porous sets.

Proof. Without loss of generality we can assume the set A is lower porous. From
the definition of lower porosity it is clear that for any x ∈ A we can choose a
positive number h0 = h0(x) such that for all h ∈ (0, h0(x)):

2 · γ(x, h, A)

h
>
p(x,A)

2
.

Thus we have chosen a function h0 : A −→ (0,∞). Set

An :=
{

x ∈ A : h0(x) >
1

n
and p(x,A) >

1

n

}

;

then, clearly, A =
⋃∞

n=1An. We shall now prove that for each n ∈ N the set An

is lower porous. And since it is obvious that for any x ∈ X, R > 0 and M ⊆ X
the equality γ(x,R,M) = γ(x,R,M) is true, we only need to show that the set
An is lower porous at each point x ∈ An \ An.

To that end, choose a natural number n and a point x ∈ An \An. Now, for an
arbitrary h ∈

(

0, 1
n

)

there is a point y ∈ B
(

x, h
2

)

∩An and from the definition of
An it follows that there is a point z ∈ B

(

y, h
2

)

such that B
(

z, h
8n

)

⊆ B
(

y, h
2

)

\An.
Thus γ(x, h, An) ≥ h

8n
and

lim inf
h→0+

2 · γ(x, h, An)

h
≥ 1

4n
> 0.

Proposition 1.2.4. Let (X, ρ) be a metric space and let F ⊆ X be a topologically
complete subspace. Let there exist a set D ⊆ F dense in F such that F is lower
porous (in X) at no point of D. Then F is not σ-lower porous in X.

Proof. Assume to the contrary that F is σ-lower porous. Proposition 1.2.3 gives
us closed lower porous sets Fn (n ∈ N) such that F ⊆ ⋃∞

n=1 Fn. Hence F =
⋃∞

n=1(Fn ∩ F ) and the set Fn ∩ F is closed in F for each natural n. Using the
Baire theorem in the topologically complete space F we obtain an open set G ⊆ X
such that ∅ 6= G∩F ⊆ Fn0

∩F for some natural number n0. Thus G∩F (being a
subset of Fn0

) is lower porous in X and it follows that F is lower porous at every
point x ∈ G ∩ F (for G is an open set). But the set D is dense in F so there
exists a point x ∈ D ∩G ∩ F which is a contradiction with the assumption that
F is lower porous at no point of D.

Now we formulate two rather deep inscribing theorems which will be used on
various occasions throughout the paper. Their purpose is to obtain some of our
statements about non-σ-porous and non-σ-lower porous sets for all Souslin sets
instead of closed (or Gδ) sets only.
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Theorem 1.2.5 ([8, Theorem 3.1]). Let (X, ρ) be a topologically complete metric
space and let S ⊆ X be a non-σ-porous Souslin set. Then there exists a closed
non-σ-porous set F ⊆ S.

Theorem 1.2.6 ([7, Corollary 3.4]). Let (X, ρ) be a topologically complete metric
space and let S ⊆ X be a non-σ-lower porous Souslin set. Then there exists a
closed non-σ-lower porous set F ⊆ S.

We continue by recalling several basic definitions (cf. e.g. [4] and [1]) which
we need in the following.

Definition 1.2.7. Let (X, ρ) be a metric space and let P be an abstract porosity
on X. If A ⊆ X then by KP(A) we denote the set of all x ∈ A such that A is
not σ-P-porous at x.

Recall that a family of sets M⊆ 2X is called

• locally finite if for each x ∈ X there is an r > 0 such that the ball B(x, r)
intersects at most finitely many elements of M,

• discrete if for each x ∈ X there is an r > 0 such that the ball B(x, r)
intersects at most one element of M,

• σ-discrete if it is a countable union of discrete families.

We say M is a cover of X if
⋃M = X. Let U and V be two covers of X.

Then V is a refinement of U if for each B ∈ V there is a set A ∈ U such that
B ⊆ A.

An elementary proof of the following Proposition 1.2.9 can be found as the
proof of Lemma 3 in the article [4]; we give an alternative proof which is more
transparent, but is not elementary since it uses the famous theorem of A. H. Stone
about the paracompactness of metric spaces ([1, Theorem 4.4.1]). We will use
the following easy lemma.

Lemma 1.2.8. Let (X, ρ) be a metric space and let P be an abstract porosity on
X. Then:

(i) IfM is a discrete family of P-porous sets, then
⋃M is P-porous.

(ii) IfM is a σ-discrete family of σ-P-porous sets, then
⋃M is σ-P-porous.

Proof. First, we shall prove assertion (i). LetM be a discrete family of P-porous
sets and let x ∈ ⋃M be an arbitrary point; we shall prove that

⋃M is P-porous
at x. Since the family M is discrete, there is an r > 0 and M ∈M such that

(

⋃

M
)

∩ B(x, r) = M ∩ B(x, r). (1.1)

The set M is P-porous and from (A1) (see 1.2.1) we have that so is M ∩B(x, r).
It follows from (1.1) and (A2) that also the sum

⋃M is P-porous at x.
To prove the second assertion, assume (clearly without loss of generality) M

is a discrete family of σ-P-porous sets. Each M ∈M can be written in the form
M =

⋃∞
n=1A

M
n where the set AM

n is P-porous for any n ∈ N. It is obvious that
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for each n ∈ N the family
{

AM
n : M ∈M

}

is discrete. Thus, using the first part
of this lemma, we obtain the σ-P-porosity of

⋃

M =
∞
⋃

n=1

⋃

M∈M
AM

n .

Proposition 1.2.9. Let (X, ρ) be a metric space and let P be an abstract porosity
on X. Assume the set A ⊆ X is σ-P-porous at each of its points. Then A is
σ-P-porous.

Proof. Set An :=
{

x ∈ A : B
(

x, 1
n

)

∩ A is σ-P-porous
}

; by the assumption, A =
⋃∞

n=1An. Let us fix an arbitrary k ∈ N and prove that Ak is σ-P-porous.
To that end, we define the open cover U of X as U :=

{

B
(

x, 1
2k

)

: x ∈ X
}

; it
is easy to see that for each B ∈ U the set B ∩Ak is σ-P-porous. Using the Stone
Paracompactness Theorem we obtain a σ-discrete refinement V of U . Since V is
a refinement of U , we have that for each G ∈ V the set G∩Ak is σ-P-porous and
it follows from Lemma 1.2.8 that Ak =

⋃ {G ∩ Ak : G ∈ V} is σ-P-porous. This
concludes the proof.

An immediate consequence of this result is the following.

Corollary 1.2.10. Let (X, ρ) be a metric space and let P be an abstract porosity
on X. Assume the set A ⊆ X is not σ-P-porous. Then:

(i) KP(A) is nonempty and closed in A.

(ii) The set A \KP(A) is σ-P-porous.

(iii) KP(KP(A)) = KP(A) (i.e. KP(A) is σ-P-porous at none of its points).

(iv) The set of all points at which KP(A) is not P-porous is dense in KP(A).

The proposition that follows now, provides a simple characterization of non-
σ-lower porous Souslin sets. It can be regarded as an analogue for lower porosity
to a partial converse of the Foran lemma which was proved by L. Zaj́ıček (see
[5, Corollary 1]); the mentioned result works for upper porosity and Gδ sets (but
can, of course, be generalized to Souslin sets via Theorem 1.2.5).

Proposition 1.2.11. Let (X, ρ) be a topologically complete metric space and let
A ⊆ X be a Souslin set. Then the following statements are equivalent:

(i) A is not σ-lower porous.

(ii) There exists a closed set F ⊆ A and a set D ⊆ F dense in F such that F
is lower porous at no point of D.

Proof. To prove the implication (i)⇒(ii) assume A is a non-σ-lower porous Souslin
set; using Theorem 1.2.6 we can assume without loss of generality that A is closed.
Let P be the abstract porosity which corresponds to lower porosity in X. Now
it suffices to take F := KP(A), as all the desired properties of F follow from
Corollary 1.2.10.

To prove (ii)⇒(i) suppose that (ii) holds. Then Proposition 1.2.4 gives that
F is non-σ-lower porous, and thus so is A.
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Remark 1.2.12.

(a) It could be interesting to note a connection of Proposition 1.2.11 to the article
[2] (especially Section 5) where the notion of P-reducible sets is defined and
studied. If P is an abstract porosity on a metric space X, we say that A ⊆ X
is P-reducible if each nonempty closed set F ⊆ A contains a P-porous subset
with nonempty relative interior in F . Now the statement of Proposition
1.2.11 can be reformulated as follows:

If X is topologically complete and L is the relation corresponding to the
notion of lower porosity on X, then a Souslin set A ⊆ X is σ-lower porous if
and only if it is L-reducible.

(b) Now let us briefly turn our attention to the general case. As Corollary 1.2.10
(iv) holds for any abstract porosity P, the following is true:

Let P be any abstract porosity on a metric space X and let A ⊆ X be closed.
Then:

A is non-σ-P-porous =⇒ A is not P-reducible.

If X is topologically complete and P corresponds to upper porosity on X, it
suffices to assume the set A to be Souslin (due to Theorem 1.2.5).

However, if P is such that an analogue of Proposition 1.2.4 for P does not
hold (e.g., the upper porosity), then the other implication in the previous
statement does not necessarily hold (see Example 3.1 or Corollary 5.3 with
Proposition 5.1 of [2]). That is the reason why a more elaborate method of
recognizing non-σ-upper porous sets had to be developed in order to prove
Theorem Z from the introduction (the method of the Foran Lemma and its
partial converse).

1.3 One positive result

Theorem 1.3.1. Let (X, ρ) and (Y, σ) be topologically complete metric spaces.
Assume the Souslin set A ⊆ X is not σ-lower porous and the Souslin set B ⊆ Y
is not σ-porous. Then the Cartesian product A× B is not σ-lower porous in the
space X × Y (with the maximum metric).

Proof. Let L ⊆ X × 2X be the relation corresponding to the notion of lower
porosity on X (i.e. L(x, C) if and only if C is lower porous at x) and let U ⊆
Y × 2Y be the relation corresponding to upper porosity on Y . Since both these
relations are abstract porosities, from Corollary 1.2.10 we know that KL(A) 6= ∅
and KU(B) 6= ∅; without loss of generality we shall now assume that A = KL(A)
and B = KU(B) and using Theorem 1.2.5 and Theorem 1.2.6 we may also assume
that the sets A and B are closed in their spaces.

Denote by A1 the set of all points of A at which A is not lower porous and
by B1 the set of all points of B at which B is not porous. From 1.2.10 we know
that A1 is dense in A and B1 is dense in B; thus A1 × B1 is dense in A × B.
By Proposition 1.2.4, it suffices to prove that A× B is lower porous at no point
of A1 × B1. However, this is true due to Corollary 1.4.8, hence the proof is
complete.
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1.4 Counterexample

Definition 1.4.1. Denote D0 := ∅ and for each n ∈ N we define the open set
Dn ⊆ (0, 1) as

Dn :=
3n−1−1
⋃

i=0

(1 + 3i

3n
,
2 + 3i

3n

)

.

Furthermore, for each n ∈ N ∪ {0} we define

Mn := ∂Dn, An := [0, 1] \Dn.

Finally, if I ⊆ N is nonempty, we define

DI :=
⋃

n∈I
Dn, MI :=

⋃

n∈I
Mn, AI := [0, 1] \DI .

Definition 1.4.2. Let (X, ρ) be a metric space and let ε > 0. Recall that
M ⊆ X is an ε-net in X, if for each point x ∈ X there exists some y ∈ M such
that ρ(x, y) ≤ ε.

The following facts are easy to see.

Observation 1.4.3.

(i) For each n ∈ N the set Mn is a 3−n-net in the interval [0, 1].

(ii) If I ⊆ N is infinite, then

• MI = [0, 1],

• AI is porous.

(iii) Whenever m,n ∈ N, m 6= n, then we have Mm ∩Mn = ∅.

(iv) Mn ∩Dm 6= ∅ if and only if m < n.

(v) AN is the ternary Cantor set.

Lemma 1.4.4. Let I ⊆ N be infinite and let ∅ 6= J ⊆ N. Then MI ∩AJ is dense
in AJ .

Proof. Choose an arbitrary y ∈ AJ and ε > 0. Now find an n0 ∈ I such that
2 · 3−n0 < ε and denote K := J ∩ (0, n0). On account of 1.4.3 (iv) it is true
that Mn0

∩ AK = Mn0
∩ AJ . Setting n1 := max(K ∪ {0}) we have n1 < n0 and

it is obvious that the components of AK are closed intervals whose length is at
least 3−n1 . The set Mn0

is a 3−n0-net in [0, 1] (1.4.3 (i)) and 3−n1 > 2 · 3−n0 ;
from these two facts now easily follows that Mn0

is a (2 · 3−n0)-net in AK . This
implies the existence of a point z ∈Mn0

∩AK = Mn0
∩AJ ⊆MI ∩AJ such that

|z − y| ≤ 2 · 3−n0 < ε, which concludes the proof.

Definition 1.4.5. Let (X, ρ) be a metric space, let A ⊆ X and let x ∈ X. We
define the function δA,x : (0,∞) −→ [0,∞) as

δA,x(h) :=
2 · γ(x, h, A)

h
.
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Lemma 1.4.6. Assume I ⊆ N is nonempty and let x ∈ AI and n ∈ I. Then for
each h ∈

[

4
3n+1 ,

4
3n

]

we have that δAI ,x(h) ≥ 1
4
.

Proof. Let I ⊆ N, x ∈ AI and n ∈ I be given. Since n ∈ I, we have that
AI ⊆ [0, 1] \ Dn and thus x ∈ [0, 1] \ Dn. From 1.4.3 (i) we know that the set
Mn = ∂Dn is a 3−n-net in the interval [0, 1] which implies that dist(x,Dn) ≤ 3−n.
From this and from the fact that Dn consists of pairwise disjoint open intervals
of length 3−n, it follows that for all h ∈

[

1
3n
, 2
3n

]

holds the inequality

2 · γ(x, h, [0, 1] \Dn) ≥ h− 1

3n
.

What is more, for any h > 2
3n

2 · γ(x, h, [0, 1] \Dn) ≥ 1

3n
.

Consequently

δAI ,x(h) ≥ 2 · γ(x, h, [0, 1] \Dn)

h
≥

≥
{

1
h

(

h− 1
3n

)

≥ 1− 3n+1

4
· 1
3n

= 1
4

for h ∈
[

4
3n+1 ,

2
3n

]

,
1
h
· 1
3n
≥ 3n

4
· 1
3n

= 1
4

for h ∈
[

2
3n
, 4
3n

]

.

Proposition 1.4.7. Let (X, ρ) and (Y, σ) be metric spaces and let us have sets
A ⊆ X and B ⊆ Y . Finally, let there be given points x ∈ X and y ∈ Y . Then:

(i) γ(〈x, y〉, h, A×B) = max{γ(x, h, A) , γ(y, h, B)} for any h > 0.

(ii) δA×B,〈x,y〉 = max{δA,x , δB,y}.
Proof. We shall prove assertion (i). Without loss of generality we may assume
that α := max{γ(x, h, A) , γ(y, h, B)} = γ(x, h, A) > 0. Choose arbitrary h > 0
and ε ∈ (0, α). By the definition of γ(x, h, A), there exists a point x1 ∈ X such
that B(x1, α− ε) ⊆ B(x, h) \ A. Thus,

B(〈x1, y〉, α− ε) ⊆ B(〈x, y〉, h) \ A×B
and this means that

γ(〈x, y〉, h, A× B) ≥ α− ε = max{γ(x, h, A) , γ(y, h, B)} − ε.
To prove the opposite inequality we take arbitrary h > 0 and ε > 0 again.
Setting β := γ(〈x, y〉, h, A × B), we can assume that ε < β. Now find a point
〈x1, y1〉 ∈ X × Y such that

G := B(〈x1, y1〉, β − ε) ⊆ B(〈x, y〉, h) \ A×B.
Taking into account that G = B(x1, β − ε) × B(y1, β − ε) (for we consider the
space X × Y with the maximum metric), this yields that

B(x1, β − ε) ⊆ B(x, h) \ A or B(y1, β − ε) ⊆ B(y, h) \B.
This implies the following inequality which concludes the proof of (i):

max{γ(x, h, A) , γ(y, h, B)} ≥ β − ε = γ(〈x, y〉, h, A×B)− ε.
The second assertion follows immediately from (i).
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Corollary 1.4.8. Under the assumptions of Proposition 1.4.7 we have that if A
is not lower porous at x and B is not porous at y, then A×B is not lower porous
at 〈x, y〉.

Proof. Let x and y be as above. Then

lim inf
h→0+

δA,x(h) = 0 and lim sup
h→0+

δB,y(h) = 0.

From Proposition 1.4.7 we know that δA×B,〈x,y〉 = max{δA,x , δB,y}, and so it is
easy to see that lim infh→0+ δA×B,〈x,y〉 = 0, i.e., A × B is not lower porous at
〈x, y〉.

Remark 1.4.9. Let (X, ρ) be a metric space. If the set A ⊆ X is not porous
then neither is A2 = A× A porous in X2. The same statement is true for lower
porosity or, in general, for any notion of porosity which is determined solely by
the function δA,x(h).

Indeed, if we assume that the set A is not porous at a certain point x ∈ A,
then, since δA,x = δA2,〈x,x〉, it is clear that A2 is not porous at 〈x, x〉. Clearly, the
same argument works for many other notions of porosity – including, for example,
lower porosity.

We shall now prove the main result of this section which implies Theorem 1
from the Introduction.

Theorem 1.4.10. Let the set I ⊆ N be defined by the formula

I :=
∞
⋃

i=1

[

i2, i2 + i
)

∩ N

and let J = N \ I. Then none of the closed sets AI and AJ is σ-lower porous
while the product AI × AJ is lower porous.

Proof. First, we shall prove that the set AJ is not σ-lower porous; of course,
the proof for AI would be analogous. Being a closed subspace of R, AJ is a
topologically complete space. Hence, according to Proposition 1.2.4 it suffices to
find a dense subset of AJ at whose points the set AJ is not lower porous. We
claim that MI ∩ AJ is such a set. Indeed, by Lemma 1.4.4, MI ∩ AJ is dense in
AJ ; it only remains to be shown that AJ is lower porous at no point of MI ∩AJ .

To prove that, choose an arbitrary point x ∈ MI ∩ AJ and let n0 ∈ I be the
unique natural number such that x ∈ Mn0

(the uniqueness of n0 is clear from
1.4.3 (iii)). Now x can be written in the form k

3n0
, where k ∈ N is not divisible

by 3. It follows that for each natural j > n0

dist(x,Dj) =
1

3j
. (1.2)

Moreover, since x ∈MI ∩ AJ , for each natural j < n0 we have

dist(x,Dj) ≥
1

3n0
. (1.3)
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Now fix a natural number i0 such that i20 > n0 and choose an arbitrary i > i0.
The inequalities (1.2) and (1.3) imply that

dist
(

x,
⋃

{Dn : n ∈ J, n ≤ i2 − 1}
)

=
1

3i2−1
. (1.4)

From the definition of J we see that {i2, i2 + 1, . . . , i2 + i− 1}∩J = ∅. This fact,
together with (1.4), implies that the longest interval contained in

(

x− 1

3i2−1
, x+

1

3i2−1

)

and disjoint with AJ is a component of Di2+i (as i2 + i ∈ J), and therefore its
length is 3−(i2+i). That is,

δAJ ,x

( 1

3i2−1

)

= 3i2−1 · 1

3i2+i
=

1

3i+1
;

it follows that lim infh→0+ δAJ ,x(h) = 0 which means that AJ is not lower porous
at x.

To prove that the product AI ×AJ is lower porous, choose an arbitrary point
〈x, y〉 ∈ AI × AJ . By Lemma 1.4.6 we have

δAI ,x(h) ≥ 1

4
, whenever h ∈

⋃

n∈I

[ 4

3n+1
,

4

3n

]

=: FI ,

and also δAJ ,y(h) ≥ 1

4
, whenever h ∈

⋃

n∈J

[ 4

3n+1
,

4

3n

]

=: FJ .

But I ∪ J = N, so FI ∪ FJ =
(

0, 4
3

]

, and it immediately follows from Proposition
1.4.7 that lim infh→0+ δAI×AJ ,〈x,y〉(h) ≥ 1

4
, concluding the proof.
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I would like to thank Prof. Luděk Zaj́ıček for suggesting the topic of this article
and many useful remarks.

30



Bibliography

[1] Ryszard Engelking. General topology, volume 6 of Sigma Series in Pure Math-
ematics. Heldermann Verlag, Berlin, second edition, 1989. Translated from
the Polish by the author.
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2.1 Introduction

The aim of this article is to obtain separable reduction theorems for some classes
of σ-porous sets by employing the method of elementary submodels. This is a
set-theoretical method which can be used in various branches of mathematics.
A. Dow in [2] illustrated the use of this method in topology, W. Kubís in [4] used
it in functional analysis, namely to construct projections on Banach spaces.

In this article we shall use the method of elementary submodels to prove
Theorem 2.5.1 and Theorem 2.5.4 which have as a consequence for example the
following:

Theorem 2.1.1. Let (X, ‖·‖) be a Banach space and let A ⊂ X be a Souslin set.
Then for every separable subspace V0 ⊂ X there exists a closed separable space
V ⊂ X such that V0 ⊂ V and

(i) A is σ-upper porous if and only if A ∩ V is σ-upper porous in the space V ,

(ii) A is σ-lower porous if and only if A ∩ V is σ-lower porous in the space V .

As a consequence of Theorem 2.5.1 and [1, Theorem 5.7] we get the following:

Theorem 2.1.2. Let X, Y be Banach spaces, G ⊂ X an open subset and f : G→
Y be a function. Then for every separable subspace V0 ⊂ X there exists a closed
separable space V ⊂ X such that V0 ⊂ V and that the following two conditions
are equivalent:

(i) the set of the points where f is not Fréchet differentiable is σ-upper porous,

(ii) the set of the points where f ↾ V is not Fréchet differentiable is σ-upper
porous in V .

The first result is in a certain sense an improvement of the result of J. Linden-
strauss, D.Preiss and J.Tǐser [6, Corrolary 3.6.7], from where only the implication
(i)→ (ii) follows. Moreover, we are able to easily extend results concerning points
of non-differentiability from separable Banach spaces to the non-separable case.
An example of such a result is Theorem 2.5.5 which has been proved in the article
[9] – the generalization is in Theorem 2.5.6.

Let us recall the most relevant notions, definitions and notations:

Notation. We denote by ω the set of all natural numbers (including 0), by N

the set ω \ {0}, by R+ the interval (0,∞) and Q+ stands for R+ ∩Q. Whenever
we say that a set is countable, we mean that the set is either finite or infinite
and countable. If f is a mapping then we denote by Rng f the range of f and
by Dom f the domain of f . By writing f : X → Y we mean that f is a mapping
with Dom f = X and Rng f ⊂ Y . By the symbol f ↾Z we denote the restriction
of the mapping f to the set Z.

If (X, ρ) is a metric space, we denote by U(x, r) the open ball (i.e. the set
{y ∈ X : ρ(x, y) < r}) and by d(x,A) the distance function from a set A ⊂ X
(i.e. d(x,A) = inf{ρ(x, a); a ∈ A}). We shall consider normed linear spaces over
the field of real numbers (but many results hold for complex spaces as well). If
X is a normed linear space, X∗ stands for the (continuous) dual space of X.
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2.2 Elementary submodels

The method of elementary submodels enables us to find specific separable sub-
spaces (of Banach spaces) which can be used for proofs of separable reduction
theorems. In this section we briefly describe this method and recall some basic
notions. More information can be found in [1] where this method is described in
greater detail.

First, let us recall some definitions:
Let N be a fixed set and φ a formula in the language of ZFC. Then the

relativization of φ to N is the formula φN which is obtained from φ by replacing
each quantifier of the form “∀x” by “∀x ∈ N” and each quantifier of the form
“∃x” by “∃x ∈ N”.

For example, if
φ = ∀x ∀y ∃z ((x ∈ z) ∧ (y ∈ z))

and N = {a, b}, then the relativization of φ to N is

φN = ∀x ∈ N ∀y ∈ N ∃z ∈ N ((x ∈ z) ∧ (y ∈ z)).

It is clear that φ is satisfied, but φN is not.
If φ(x1, . . . , xn) is a formula with all free variables shown (i.e. a formula whose

free variables are exactly x1, . . . , xn) then φ is absolute for N if and only if

∀a1, . . . , an ∈ N (φN(a1, . . . , an)↔ φ(a1, . . . , an)).

The method is based mainly on the following set-theoretical theorem (a proof
can be found in [5, Chapter IV, Theorem 7.8]).

Theorem 2.2.1. Let φ1, . . . , φn be any formulas and X any set. Then there
exists a set M ⊃ X such, that

(φ1, . . . , φn are absolute for M) ∧ (|M | ≤ max(ω, |X|)).

Since the previous theorem will often be used throughout the paper, the fol-
lowing notation is useful.

Definition. Let φ1, . . . , φn be any formulas and let X be any countable set. Let
M ⊃ X be a countable set satisfying that φ1, . . . , φn are absolute for M . Then
we say that M is an elementary submodel for φ1, . . . , φn containing X. This is
denoted by M ≺ (φ1, ..., φn; X).

Let φ(x1, . . . , xn) be a formula with all free variables shown and let M be some
elementary submodel for φ. To use the absoluteness of φ for M efficiently, we need
to know that many sets are elements of M . The reason is that for a1, . . . , an ∈M
we have φ(a1, . . . , an) if and only if φM(a1, . . . , an). Using the following lemma we
can force the elementary submodel M to contain all the required objects created
(uniquely) from elements of M (for a proof see [1, Lemma 2.5]).

Lemma 2.2.2. Let φ(y, x1, . . . , xn) be a formula with all free variables shown and
let X be a countable set. LetM be a fixed set,M ≺ (φ, ∃y φ(y, x1, . . . , xn); X) and
let a1, . . . , an ∈M be such that there exists only one set u satisfying φ(u, a1, . . . , an).
Then u ∈M .
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It would be very laborious and pointless to use only the basic language of the
set theory. For example, we often write x < y and we know that this is in fact
a shortcut for the formula ϕ(x, y,<) with all free variables shown. Therefore, in
the following text we use this extended language of the set theory as we are used
to. We shall also use the following convention.

Convention 2.2.3. Whenever we say

for any suitable elementary submodel M (the following holds...),

we mean that

there exists a list of formulas φ1, . . . , φn and a countable set Y such that for every
M ≺ (φ1, . . . , φn; Y ) (the following holds...).

By using this new terminology we lose the information about the formulas
φ1, . . . , φn and the set Y . This is, however, not important in applications.

Remark 2.2.4. We are able to combine any finite number of results we have
proved using the technique of elementary submodels. This includes all the theo-
rems starting with “For any suitable elementary submodelM the following holds:”
More precisely:

Let us have sentences T1(a), . . . , Tn(a). Assume that whenever an
i ∈ {1, . . . , n} is given, then for any suitable elementary submodel Mi the sen-
tence Ti(Mi) is satisfied. Then it is easy to verify that for any suitable model M
the sentence

T1(M) ∧ . . . ∧ Tn(M)

is satisfied (it suffices to combine all the lists of formulas and all the sets from
the definition above).

Let us recall several more results about suitable elementary submodels (proofs
can be found in [1, Chapters 2 and 3]):

Proposition 2.2.5. For any suitable elementary submodelM the following holds:

(i) If A,B ∈M , then A ∩ B ∈M , B \ A ∈M and A ∪B ∈M .

(ii) Let f be a function such that f ∈ M . Then Dom f ∈ M , Rng f ∈ M and
for every x ∈ Dom f ∩M , f(x) ∈M .

(iii) Let S be a finite set. Then S ∈M if and only if S ⊂M .

(iv) Let S ∈M be a countable set. Then S ⊂M .

(v) For every natural number n > 0 and for arbitrary (n+ 1) sets a0, . . . , an it
is true,that

a0, . . . , an ∈M ↔ 〈a0, . . . , an〉 ∈M.

Notation 2.2.6.

• If A is a set, then by saying that an elementary model M contains A we
mean that A ∈M .
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• If (X, ρ) is a metric space (resp. (X,+, ·, ‖·‖) is a normed linear space) and
M an elementary submodel, then by saying M contains X (or by writing
X ∈M) we mean that (X, ρ) ∈M (resp. (X,+, ·, ‖·‖) ∈M).

• If X is a topological space and M an elementary submodel, then we denote
by XM the set X ∩M .

Proposition 2.2.7. For any suitable elementary submodelM the following holds:

(i) If X is a metric space then whenever M contains X, it is true that

∀r ∈ R+ ∩M ∀x ∈ X ∩M U(x, r) ∈M.

(ii) If X is a normed linear space then whenever M contains X, it is true that

XM is closed separable subspace of X.

Convention 2.2.8. The proofs in the following text often begin in the same way.
To avoid unnecessary repetitions, by saying “Let us fix a (∗)-elementary submodel
M [containing A1, . . . , An]” we will understand the following:

Let us have formulas ϕ1, . . . , ϕm and a countable set Y such that the elementary
submodel M ≺ (ϕ1, . . . , ϕm; Y ) is suitable for all the propositions from [1]. Add
to them formulas marked with (∗) in all the preceding proofs from this paper and
formulas marked with (∗) in the proof below (and all their subformulas). Denote
such a list of formulas by φ1, . . . , φk. Let us fix a countable set X containing the
sets Y , ω, Z, Q, Q+, R, R+ and all the common operations and relations on real
numbers (+, −, ·, :, <). Fix an elementary submodel M for formulas φ1, . . . , φk

containing X [such that A1, . . . , An ∈M ].

Thus, any (∗)-elementary submodel M is suitable for the results from [1] and
all the preceding theorems and propositions from this paper, making it possible
to use all of these results for M .

In order to demonstrate how this technique works, we prove the following two
easy lemmas which we use later (the proof of the second lemma is also contained
in the proof of Proposition 4.1 in [1]).

Lemma 2.2.9. For any suitable elementary submodel M the following holds:
Whenever A ∈M is a nonempty set, then A ∩M is nonempty.

Proof. Let us fix a (∗)-elementary submodel Mand fix some nonempty set A ∈M .
Then

∃x (x ∈ A). (∗)
This formula has only one free variable A and the set A is contained in M . Thus,
due to the absoluteness of the formula above, there exists an x ∈ M such that
x ∈ A.

Lemma 2.2.10. For any suitable elementary submodel M the following holds:
Let (X, ρ) be a metric space, B ⊂ X. Then whenever M contains X, B and a
set D ⊂ B, it is true that

D is dense in B → D ∩M is dense in B ∩XM .
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Proof. Let us fix a (∗)-elementary submodelM containingX such thatB,D ∈M .
If the set B is empty then the proposition is obvious. Otherwise fix b ∈ B ∩XM

and r > 0. Choose some b0 ∈ U(b, r
2
)∩M and a rational number q ∈ (ρ(b, b0),

r
2
).

Then U(b0, q) ⊂ U(b, r) and

∃d ∈ D (d ∈ U(b0, q)). (∗)

In the preceding formula we use the shortcut d ∈ U(b0, q) which stands for d ∈
X ∧ ρ(d, b0) < q. Free variables in this formula are X, ρ,<,D, b0, q. Those are
contained in M and thus we can use the absoluteness to find a d ∈ D ∩M such
that (d ∈ U(b0, q))

M . Using the absoluteness again we obtain that d is an element
of U(b0, q). Consequently,

U(b, r) ∩D ∩M ⊃ U(b0, q) ∩D ∩M 6= ∅

and so the set D ∩M is dense in B ∩XM .

2.3 σ-porous sets

In this section we compile several known results concerning different notions of σ-
porous sets. The usefulness of these facts for our needs will be apparent later; for
more information about properties and applications of different types of porosity
we refer the reader to survey articles [10] and [13]. On some occasions we shall
also refer to the paper [8].

Let us begin by stating several basic definitions.

Definition. Let (X, ρ) be a metric space, A ⊂ X, x ∈ X and R > 0. Then we
denote by γ(x,R,A) the supremum of all r ≥ 0 for which there exists z ∈ X such
that U(z, r) ⊂ U(x,R) \A. The set A is called upper porous at x in the space X
if

lim sup
R→0+

γ(x,R,A)

R
> 0.

In most cases it is clear which space X we have in mind. Therefore we often
omit the words “in the space X”. (We shall apply this convention to other notions
as well.)

Let g be a strictly increasing and continuous real-valued function defined on
[0, h) (where h > 0) with g(0) = 0. We call such a function porosity function.
We say that A is 〈g〉-porous at x (in the space X) if there exists a sequence of
open balls {U(cn, rn)} such that cn → x, U(ck, rk) ∩ A = ∅ and x ∈ U(ck, g(rk))
for each k.

We say the set A is 〈g〉-porous if it is 〈g〉-porous at each of its points and σ-
〈g〉-porous if it is a countable union of 〈g〉-porous sets. The set A is upper-porous
if it is upper-porous at each of its points and σ-upper porous if it is a countable
union of upper-porous sets.

Definition. Let (X, ρ) be a topologically complete metric space and let g be a
porosity function. We say that F is a Foran system for 〈g〉-porosity in X if the
following conditions hold:

(i) F is a nonempty family of nonempty Gδ subsets of X.
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(ii) For each S ∈ F and each open set G ⊂ X with S ∩ G 6= ∅ there exists
S∗ ∈ F such that S∗ ⊂ S ∩G and S is 〈g〉-porous at no point of S∗.

Proposition 2.3.1 (Foran Lemma). Let (X, ρ) be a topologically complete metric
space and let F be a Foran system for 〈g〉-porosity in X. Then no member of F
is σ-〈g〉-porous.

This is a special case of the general Foran Lemma (see [12, Proposition 1])
which works for any porosity-like relation. Our definition of Foran system is,
therefore, accordingly simplified as well. We also need the following.

Notation 2.3.2. By 3-porosity we mean 〈g〉-porosity where g(x) = 3x for x ∈ R.

Lemma 2.3.3 ([12, Lemma E]). Let (X, ρ) be a metric space and let A ⊂ X.
Then A is σ-upper porous if and only if it is σ-3-porous.

Another result from [12] which we shall use is the following partial converse
of the Foran Lemma. For ordinary σ-upper porosity we can extend its validity
from Gδ sets to Souslin sets using the inscribing Theorem 2.3.5 of J. Pelant and
M. Zelený from the work [14].

It could be interesting to note that in case our metric space X is locally com-
pact, we can use a different inscribing theorem due to L. Zaj́ıček and M. Zelený
[15, Theorem 5.2] and obtain an extension of 2.3.4 to analytic sets for general
σ-〈g〉-porosity.

Lemma 2.3.4 ([12, Corollary 1]). Let (X, ρ) be a topologically complete metric
space, let ∅ 6= A ⊂ X be Gδ and let g be a porosity function. Then A is not σ-
〈g〉-porous if and only if it contains a member of a Foran system for 〈g〉-porosity.

Theorem 2.3.5 ([14, Theorem 3.1]). Let (X, ρ) be a topologically complete metric
space and let S ⊆ X be a non-σ-upper porous Souslin set. Then there exists a
closed non-σ-upper porous set F ⊆ S.

Definition. Let (X, ρ) be a metric space, A ⊂ X and x ∈ X. We say that A is
lower porous at x if

lim inf
R→0+

γ(x,R,A)

R
> 0.

The set A is lower porous if it is lower porous at each of its points and σ-lower
porous if it is a countable union of lower porous sets.

Even though the Foran Lemma can be used for any notion of porosity, we have
to use a different approach in the case of lower porosity. The reason is that unlike
in the case of upper porosity, we were unable to separably reduce the property of
not being lower porous at a point. Therefore, we use the following proposition.

Proposition 2.3.6 ([7, Proposition 2.11]). Let (X, ρ) be a topologically complete
metric space and let A ⊆ X be a Souslin set. Then the following propositions are
equivalent:

(i) A is not σ-lower porous.

(ii) There exists a closed set F ⊆ A and a set D ⊆ F dense in F such that F
is lower porous at no point of D.
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2.4 Auxiliary results

In this section we prove some preliminary statements which will be of use later.
In general, for a space X and a set A ⊂ X, we are trying to find a separable
subspace XM ⊂ X with certain special properties. The first desired property is:
Whenever A is a member of a Foran system in X then A ∩XM is a member of
a Foran system in XM . Together with Lemma 2.3.4 this will be essential to the
proof of Theorem 2.5.1 about σ-upper porosity.

Also, in order to prove a result similar to 2.5.1 for σ-lower porosity, two
auxiliary propositions (based on the ideas from [1]) are collected.

Proposition 2.4.1. For any suitable elementary submodelM the following holds:
Let (X, ρ) be a metric space and g a porosity function. Then wheneverM contains
X and a set A ⊂ X, it is true that for every x ∈ XM

A is not 〈g〉-porous at x→ A ∩XM is not 〈g〉-porous at x in the space XM .

If M contains also g, then

A is not 〈g〉-porous→ A ∩XM is not 〈g〉-porous in the space XM .

Proof. Let us fix a (∗)-elementary submodel M containing X and A and fix some
x ∈ XM such that A is not 〈g〉-porous at x. Take sequences {cn}n∈N ⊂ XM and
{rn}n∈N ⊂ (0,∞) such that cn → x and x ∈ U(cn, g(rn)) for all n ∈ N. It is
sufficient to show that there exists an n ∈ N satisfying U(cn, rn) ∩ A ∩XM 6= ∅.
Since A is not 〈g〉-porous, we can fix some n ∈ N such that U(cn, rn) ∩ A 6= ∅.
Take some a ∈ A ∩ U(cn, rn) and choose an ε > 0 such that ρ(a, cn) + 2ε < rn.
Then take a point c ∈ X ∩M ∩U(cn, ε) and qn ∈ Q∩ (ρ(a, cn)+ε, rn−ε). Hence,

∃a ∈ A (ρ(a, c) < qn). (∗)

Thus, by the absoluteness, there exists an a ∈ A ∩M such that

ρ(a, cn) ≤ ρ(a, c) + ε < qn + ε < rn.

Consequently, a ∈ A ∩ U(cn, rn) ∩M and thus the set A ∩XM is not 〈g〉-porous
at x in the space XM .

If A is not 〈g〉-porous then

∃x ∈ A (A is not 〈g〉-porous at x). (∗)

Using the absoluteness and the already proved part we obtain an x ∈ A∩M such
that A ∩XM is not 〈g〉-porous at x in the space XM .

Proposition 2.4.2. For any suitable elementary submodelM the following holds:
Let (X, ρ) be a topologically complete metric space and g a porosity function. Then
whenever M contains X, g and a set A ⊂ X, it is true that if A is a member
of a Foran system for 〈g〉-porosity in X, then A ∩ XM is a member of a Foran
system for 〈g〉-porosity in XM .
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Proof. Let us fix a (∗)-elementary submodel M containing X such that A ∈ M
and let the following formula be true

∃F (F is a Foran system for 〈g〉-porosity in X such that A ∈ F). (∗)

Notice that the preceding is a formula with all parameters in M . Thus, by the
absoluteness, there exists an F ∈ M which is a Foran system for 〈g〉-porosity in
X with A ∈ F . Set

F ′ := {S ∩XM : S ∈ F ∩M, S ∩XM 6= ∅}.

First we notice that, by Lemma 2.2.9, the set A ∩ M is nonempty; it follows
that A ∩ XM ∈ F ′. Thus it suffices to establish that F ′ is a Foran system for
〈g〉-porosity in XM . Clearly, F ′ is a nonempty family of nonempty Gδ subsets of
XM so there only remains to be verified the second condition from the definition
of Foran system.

To that end, take some S ∈ F ∩M such that S ∩XM 6= ∅ (denote by SM the
set S ∩XM). Then take an arbitrary open set G ⊂ X with SM ∩ G 6= ∅ and fix
some x ∈ SM ∩G and r ∈ Q+ such that U(x, r) ⊂ G. Choose x0 ∈ U(x, r

2
) ∩M .

Then x ∈ U(x0,
r
2
) ⊂ U(x, r); thus, S ∩ U(x0,

r
2
) 6= ∅. Using Propositions 2.2.5

and 2.2.7 we obtain that S ∩ U(x0,
r
2
) ∈M .

Now, as F is a Foran system (in X), the following formula is true:

∃S∗ ∈ F : (S∗ ⊂ S ∩ U(x0,
r
2
), S is 〈g〉-porous at no point of S∗) (∗)

By the absoluteness, there exists an S∗ ∈M satisfying the formula above. Using
Lemma 2.2.9 we can see that S∗∩M 6= ∅. Thus, S∗ is a member of F ′, S∗∩XM ⊂
SM ∩ U(x0,

r
2
) ⊂ SM ∩G and by Proposition 2.4.1 above, SM is 〈g〉-porous at no

point of S∗∩XM . Consequently, A∩XM is, indeed, a member of a Foran system
for 〈g〉-porosity in XM – the system F ′.

Remark 2.4.3. Note that the last proof depends solely on our ability to separably
reduce 〈g〉-porosity of a set at a point. It would work for any other type of porosity
which fulfils this condition, e.g., the (g)-porosity (for the definition see [8] or [10]).

Before proceeding to the last section where we use the propositions above, let
us briefly turn our attention to the matter of lower porosity and formulate two
related facts:

Lemma 2.4.4. For any suitable elementary submodel M the following holds:
Let (X, ρ) be a metric space, A ⊂ X and d(·, A) : X → R the function defined
by the formula d(·, A)(x) := d(x,A). Then whenever M contains X and A then
d(·, A) is an element of M .

Proof. Let us fix a (∗)-elementary submodel M containing X such that A ∈ M .
Then the lemma follows immediately from Lemma 2.2.2 and from the absoluteness
of the following formula and its subformulas

∃d(·, A) (d(·, A) is a function which maps every

x ∈ X to the real number inf{ρ(x, a); a ∈ A}). (∗)

40



Finally, we present the following proposition (its proof is contained in the
proof of Proposition 4.10 in [1]).

Proposition 2.4.5. For any suitable elementary submodelM the following holds:
Let (X, ρ) be a metric space and A ⊂ X. Then whenever M contains X and A,
it is true that for every x ∈ A ∩M

A is not lower porous at x→ A∩XM is not lower porous at x in the space XM .

Note, that this is exactly the moment, where we were unable to reduce the
property of not being lower porous at a point. However, thanks to Proposition
2.3.6, this proposition will be sufficient.

2.5 Main results

In the main part of this article we show that the set properties “to be σ-upper
porous” and “to be σ-lower porous” are separably determined. We formulate the
related theorems in the language of elementary submodels (which is useful when
we want to combine several results concerning elementary submodels together).
However, we also formulate a corollary of these results in such a setting that no
knowledge of elementary submodels is required (see Theorem 2.1.1).

Next, we show that these results may be useful for proving that some re-
sults concerning separable spaces hold in a nonseparable setting as well. This is
demonstrated in Theorem 2.5.6.

First, let us show that σ-upper porosity is a separably determined notion.

Theorem 2.5.1. For any suitable elementary submodel M the following holds:
Let (X, ρ) be a topologically complete metric space, g a porosity function and
A ⊂ X a Souslin set. Then whenever M contains X and A, it is true that

A is σ-upper porous in X ↔ A ∩XM is σ-upper porous in XM .

Moreover, if A is Gδ and M contains also g, then

A is not σ-〈g〉-porous in X → A ∩XM is not σ-〈g〉-porous in XM .

Proof. Let us fix a (∗)-elementary submodel M containing X such that g, A ∈
M . Assume the set A is of the type Gδ; we shall prove the second part of the
proposition first. Due to Lemma 2.3.4 and the absoluteness of the formula (and
its subformulas)

∃B (B ⊂ A and B is a member of a Foran system for 〈g〉-porosity), (∗)

we can assume that the set A is a member of a Foran system F for 〈g〉-porosity.
Hence the set A ∩XM is a member of a Foran system F ′ for 〈g〉-porosity in XM

(Proposition 2.4.2) and thus is not σ-〈g〉-porous in XM (Proposition 2.3.1).
The implication from the left to the right for σ-upper porosity follows imme-

diately from Lemma 2.4.4 and [1, Corollary 4.13].
We shall prove the other implication indirectly; owing to Theorem 2.3.5 we

can assume that A is Gδ again (even closed). The result now follows from the
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already proved part and Lemma 2.3.3, using the absoluteness of the formula (and
its subformulas)

∃g (g : R→ R is a function such that for all x ∈ R is g(x) = 3x). (∗)

Remark 2.5.2. It is not known to the authors whether the other implication for
σ-〈g〉-porosity holds. However, under the assumptions of the preceding theorem,
it is true that whenever A is σ-〈g〉-porous then A ∩XM is σ-〈dg〉-porous in XM

for any d > 2. This may be established in the following way:
First, using the ideas presented in [1] (mainly Proposition 4.12 and Corrolary

4.13), we are able to see that if A is σ-(g, c)-porous in X (where c > 0; the
definition is natural – see [8]), then A∩XM is σ-(g, c/2)-porous in the space XM .

Now let us assume the set A is σ-〈g〉-porous in X. Then [8, Lemma 3.1(ii)]
implies it is σ-(g, 1/2)-porous in X and thus A ∩XM is σ-(g, 1/4)-porous in the
space XM . In the nontrivial case when there exists a δ > 0 such that g(x) > x for
all x ∈ (0, δ) (if that is not the case, then the notion of 〈g〉-porosity is usually not
very interesting) it is not difficult to prove that g satisfies the assumption from
[8, Proposition 4.4]. Thus A∩XM is σ-(g, c)-porous for any c ∈ (0, 1/2). To pass
back to 〈·〉-porosity, we use a slightly refined version of [8, Lemma 3.1(i)] which
for any d > 1 states that (f, d)-porosity of a given set N at a given point x implies
〈f〉-porosity of N at x. We easily obtain that the set A ∩ XM is σ-〈dg〉-porous
for any d > 2.

Moreover, under the additional assumption that there exists a d > 2 and a
δ > 0 such that g(x) > dx for any x ∈ (0, δ), we are able to prove (similarly as
above) that whenever A is σ-〈g〉-porous then A ∩XM is σ-〈g〉-porous in XM .

Remark 2.5.3. Under the assumptions of Theorem 2.5.1 the following holds:
If g is a porosity function such that for some c > 0 there is a δ > 0 such that
cg(x) > x for all x ∈ (0, δ), then

A is σ-(g)-porous in X ↔ A ∩XM is σ-(g)-porous in XM .

This can be established as follows: Let d = 12c and let A be non-σ-(g)-porous
in X. Then it is non-σ-(dg, 1)-porous and thus A is non-σ-

〈

d
2
g
〉

-porous in X.
Theorem 2.5.1 asserts that the same holds also for A∩XM in XM . Hence, A∩XM

is non-σ-
(

d
2
g, 2
)

-porous ([8, Lemma 3.1(i)]), i.e., it is non σ-
(

d
12
g, 1

3

)

-porous (in
XM). Now, since the function d

12
g = cg satisfies the assumption of [8, Proposition

4.4], we obtain that A ∩XM is not σ-(g)-porous in XM .
For the proof of the other implication assume that the set A is σ-(g)-porous.

It is easy to see that there exist (g, cn)-porous sets An (with cn > 0 for each
n ∈ N) such that A =

⋃∞
n=1An. In the same way as in the previous remark

we obtain that An ∩XM is
(

g, cn
2

)

-porous in XM for each n. Hence, A ∩ XM is
σ-(g)-porous in XM .

We shall now turn our attention to σ-lower porosity and show it is separably
determined.

Theorem 2.5.4. For any suitable elementary submodel M the following holds:
Let (X, ρ) be a topologically complete metric space and let A ⊂ X be a Souslin
set. Then whenever M contains X and A, it is true that

A is σ-lower porous in X ↔ A ∩XM is σ-lower porous in XM .
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Proof. Let us fix a (∗)-elementary submodel M containing X such that A ∈ M .
Then the implication from the left to the right follows from [1, Corollary 4.13]
and from Lemma 2.4.4.

To prove the opposite implication we use Proposition 2.3.6. Let us assume
that the set A is not σ-lower porous in X. Then

∃F ∃D (F ⊂ A is a nonempty closed set such that D ⊂ F is dense in F

and F is not lower porous at any point of D).
(∗)

By the absoluteness of this formula (and its subformulas) above, we are able
to find sets F,D ∈ M satisfying the conditions above. Using Lemma 2.2.9 and
Lemma 2.2.10 we can see that F∩M 6= ∅ and D∩M is dense in F∩XM . Moreover,
by Proposition 2.4.5, F ∩XM is not lower porous at any point of D ∩M . Thus,
from Proposition 2.3.6 it follows that the set A∩XM is not σ-lower porous in the
space XM .

Theorem 2.1.1 from the introduction is just an easy consequence of Theorem
2.5.1, Theorem 2.5.4 and Proposition 2.2.7 since Convention 2.2.3 allows us to
combine these three results; by doing that we obtain a theorem in the setting of
Banach spaces which concerns both types of porosity. In a similar way, Theorem
2.1.2 follows from the Theorem 2.5.1, Theorem 5.7 in [1] and Proposition 2.2.7
(because the set of the points where a function is Fréchet differentiable is a Fσδ

set - see for example [1, Theorem 5.8]) ).
Finally, we give the following application of our results. In [9] the following

theorem is proved (we use the more common terminology from [3]).

Definition. Let (X, ‖·‖) be a Banach space and let f be a real function defined
on X. We say that f is Fréchet superdifferentiable at x ∈ X if and only if there
exists x∗ ∈ X∗ such that

lim sup
h→0

(f(x+ h)− f(x)− x∗(h))

‖h‖ ≤ 0.

Theorem 2.5.5 ([9, Theorem 2]). Let (X, ‖·‖) be a Banach space with separable
dual space and let G ⊂ X be an open set. Let f be a Lipschitz function on G and
let A be the set of all the points x ∈ G such that f is Fréchet superdifferentiable
at x and f is not Fréchet differentiable at x. Then A is σ-upper porous.

Using the method of elementary submodels, it is now easy to extend the
validity of this result to general Asplund spaces.

Theorem 2.5.6. Let (X, ‖·‖) be an Asplund space and let G ⊂ X be an open set.
Let f be a Lipschitz function on G and let A be the set of all the points x ∈ G
such that f is Fréchet superdifferentiable at x and f is not Fréchet differentiable
at x. Then A is σ-upper porous.

Proof. Let us denote by D(f) the set of points where f is Fréchet differentiable
and by S(f) the set of points where f is Fréchet superdifferentiable. It easily
follows from the article [11] (Section 4, Lemma 3 and Lemma 4) that the set
S(f) is Souslin. Now, using Theorem 2.5.1, Proposition 2.2.7 and [1, Theorem
5.7], take an elementary submodel M satisfying:
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• XM is a separable subspace of X,

• D(f) ∩XM = D(f ↾XM
),

• A is σ-upper porous if and only if A ∩XM is σ-upper porous in the space
XM .

Note that A ∩ XM ⊂ {x ∈ XM ; x ∈ S(f ↾XM
) \ D(f ↾XM

)} and that the set on
the right side is σ-upper porous (because XM is a separable space with separable
dual); thus the set A is σ-upper porous.
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Mat., 101(4):350–359, 1976.
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3.1 Introduction

The present paper could be considered as a sequel to the articles [1] and [3]. Our
main aim is to further investigate separable determination of various properties
of sets and functions in metric spaces (especially Banach spaces). This means,
given a nonseparable metric space X and a property of sets (or functions etc.) in
X, we are interested whether certain statements about a property hold, provided
that they hold in (some) separable subspaces of X. More concretely, if X is a
metric space, we are interested in σ-P-porous sets in X, where P is a porosity-like
relation on X (see the definition below).

The key method we use to obtain separable determination results uses count-
able elementary structures which we call elementary submodels. This method is
described in Section 3.2. Further details and examples of the use of this method
can be found in [1] and [3]. However, the reader ought to note that there are
other ways to tackle this topic. An example is the use of rich families of Banach
spaces, which is described in detail e.g. in [7, Section 3.6]. Sometimes one can
also opt to prove this sort of results in an “elementary way”, in a sense imitating
parts of the proof of the Löwenheim-Skolem theorem. This approach would be
in many cases very complicated, but it can give a deeper insight.

In the rather technical Section 3.3 we prove auxiliary results which we use
in Section 3.4 to prove our general separable determination result, Proposition
3.4.6. The general scheme of our proof is rather similar to that of separable
determination of σ-upper porosity of sets in [3] and involves the Foran lemma and
its partial converse. The difference is that here we need no inscribing theorems
as in [3] to prove the statement for all Souslin sets.

Section 3.5 contains the main result of this article, the separable determination
of the notion of cone small sets in Asplund spaces (Theorem 3.5.10). In the last
section we provide several applications of our results, most notably Theorem
3.6.3.

We recall the most relevant notions, definitions, and notations. We denote by
ω the set of all natural numbers (including 0), by N the set ω\{0}, by Q the set of
all rational numbers, by R the set of all real numbers, by R+ the interval (0,∞),
and Q+ stands for R+ ∩ Q. We denote by ω<ω the set of all finite sequences of
elements of ω including the empty one, and by ωω the set of all infinite sequences
in ω. We use the convention that countable sets can be also finite. If f is a
mapping then we denote by Rng f the range of f and by Dom f the domain of
f . By writing f : X → Y we mean that f is a mapping with Dom f = X and
Rng f ⊂ Y . By the symbol f ↾Z we denote the restriction of the mapping f to a
set Z ⊂ X.

Let (X, ρ) be for a while a metric space. We denote by UX(x, r) the open ball
with centre x and radius r > 0, i.e., the set {y ∈ X; ρ(x, y) < r}. We often
write U(x, r) instead of UX(x, r). If A,B ⊂ X are nonempty sets, we denote by
d(A,B) the distance between A and B, i.e., d(A,B) := inf{ρ(a, b); a ∈ A, b ∈ B}.
We shall consider normed linear spaces over the field of real numbers. If Y is a
normed linear space, Y ∗ stands for the dual space of Y .

By a point-set relation on X we understand any subset of the product X×2X .
If R ⊂ X × 2X , then, instead of (x,A) ∈ R, we shall write R(x,A). A relation
P ⊂ X × 2X is called porosity-like if
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(i) if A ⊂ B and P(x,B), then P(x,A),

(ii) P(x,A) if and only if there is r > 0 such that P(x,A ∩ U(x, r)),

(iii) P(x,A) if and only if P(x,A).

We then say that a set A is P-porous, if P(x,A) for every x ∈ A. A set A is
called σ-P-porous, if it is the union of countably many P-porous sets.

Example 3.1.1. Let (X, ρ) be a metric space. We define a point-set relation P
by

P(x,A) if and only if A is upper porous at x.

It is easy to verify that P is a porosity-like relation on X.

3.2 Elementary submodels

In this section we recall some basic notions and statements concerning the method
of elementary submodels. A brief description of this method can be found in [3];
for a more detailed description see [1]. Let N be a fixed set and φ a formula
in the language of ZFC. By the relativization of φ to N we understand the
formula φN which is obtained from φ by replacing each symbol of the form “∀x”
by “∀x ∈ N” and each symbol of the form “∃x” by “∃x ∈ N”. Let φ(x1, . . . , xn)
be a formula with all free variables shown, i.e., a formula whose free variables are
exactly x1, . . . , xn. We say that φ is absolute for N if

∀a1, . . . , an ∈ N :
(

φN(a1, . . . , an)↔ φ(a1, . . . , an)
)

.

The method is based mainly on the following theorem (a proof can be found in
[6, Chapter IV, Theorem 7.8]). The cardinality of a set A is denoted by |A|.
Theorem 3.2.1. Let φ1, . . . , φn be any formulas, and X be any set. Then
there exists a set M ⊃ X such that φ1, . . . , φn are absolute for M and |M | ≤
max(ℵ0, |X|).

Since the set from Theorem 3.2.1 will often be used, the following notation is
useful.

Definition 3.2.2. Let φ1, . . . , φn be any formulas, and let X be any countable
set. Let M ⊃ X be a countable set such that φ1, . . . , φn are absolute for M . Then
we say that M is an elementary submodel for φ1, . . . , φn containing X. This is
denoted by M ≺ (φ1, . . . , φn;X).

Let us emphasize that an elementary submodel in our terminology is always
countable.

The fact that a certain formula is absolute for M will always be used in order
to satisfy the assumption of the following lemma. It is a statement similar to
[1, Lemma 2.6]. Using this lemma we can force the elementary submodel M to
contain all needed objects constructed (uniquely) from elements of M .

Lemma 3.2.3. Let n ∈ N, let φ(y, x1, . . . , xn) be a formula whoose all free
variables are shown, and let M be a fixed set such that both formulae φ and
∃y : φ(y, x1, . . . , xn) are absolute for M . Assume there exist a1, . . . , an ∈ M and
u satisfying φ(u, a1, . . . , an). Then there exists a ∈M such that φ(a, a1, . . . , an).
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Proof. Using the absoluteness of the formula ∃y : φ(y, x1, . . . , xn) there exists a ∈
M satisfying φM(a, a1, . . . , an). Using the absoluteness of φ we get, that for this
a ∈M the formula φ(a, a1, . . . , an) holds.

It would be very laborious and pointless to use only the basic language of the
set theory. For example, having a function f , we often write y = f(x) and we
know that this is a shortcut for a formula with free variables x, y, and f .

Indeed, consider the formula

ϕ(x, y, z) = ∀a(a ∈ z ↔ (a = x ∨ a = y)).

Then ϕ(x, y, z) is true if and only if z = {x, y}. Recall that y = f(x) means
{{x}, {x, y}} ∈ f . Hence, y = f(x) if and only if the following formula is true

∀z(∀a(a ∈ z ↔ ϕ(x, x, a) ∨ ϕ(x, y, a))⇒ z ∈ f).

Therefore, in the following text we use this extended language of the set theory
as we are used to. We shall also use the following convention.

Convention 3.2.4. Whenever we say “ for any suitable elementary submodel M
the following holds . . . ” we mean that “there exists a list of formulas φ1, . . . , φn

and a countable set Y such that for every M ≺ (φ1, . . . , φn;Y ) the following holds
. . . ”

By using this new terminology we lose the information about the formulas
φ1, . . . , φn and the set Y . However, this is not important in applications.

We recall several further results about suitable elementary submodels (all the
proofs are based on Lemma 3.2.3 and they can be found in [1, Chapters 2 and
3]).

Proposition 3.2.5. For any suitable elementary submodelM the following holds.

(i) If A,B ∈M , then A ∩ B ∈M , B \ A ∈M and A ∪B ∈M .

(ii) Let f be a function such that f ∈ M . Then Dom f ∈ M , Rng f ∈ M and
for every x ∈ Dom f ∩M we have f(x) ∈M .

(iii) Let S be a finite set. Then S ∈M if and only if S ⊂M .

(iv) Let S ∈M be a countable set. Then S ⊂M .

(v) For every n ∈ N and for arbitrary sets a0, . . . , an it is true that a0, . . . , an ∈
M if and only if n-tuple (a0, . . . , an) is in M .

Convention 3.2.6.

• If (X, ρ) is a metric space (resp. (X,+, ·, ‖ · ‖) is a normed linear space)
and M is an elementary submodel, then by writing X ∈ M we mean that
(X, ρ) ∈M (resp. (X,+, ·, ‖ · ‖) ∈M).

• If X is a topological space andM is an elementary submodel, then we denote
by XM the set X ∩M .

Proposition 3.2.7. For any suitable elementary submodelM the following holds.

49



(i) If X is a metric space then whenever X ∈M , it is true that

∀r ∈ R+ ∩M ∀x ∈ X ∩M : U(x, r) ∈M.

(ii) If X is a normed linear space and X ∈ M , then XM := X ∩M is linear
(closed and separable).

Convention 3.2.8. The proofs in the following text often begin in the same way.
To avoid unnecessary repetitions, by saying “Let us fix a (∗)-elementary submodel
M” we will understand the following.

“Let us have formulas ϕ1, . . . , ϕm and a countable set Y such that the elemen-
tary submodel M ≺ (ϕ1, . . . , ϕm;Y ) is suitable for all the propositions from [1]
and [3]. Add to them the formulas marked with (∗) in all the preceding proofs
from this paper and the formulas marked with (∗) in the proof below and all their
subformulas. Denote such a list of formulas by ψ1, . . . , ψk. Let us fix a countable
set X containing (as its elements) the sets Y , ω, ωω, ω<ω, Q, Q+, R, R+, and
all the usual operations and relations on real numbers (+, −, ·, :, <). Fix an
elementary submodel M for formulas ψ1, . . . , ψk such that X ∈M .”

Note that for the countable set X ∈M as above we get, by Proposition 3.2.5,
X ⊂ M . Therefore, Y ∈ M and, again by Proposition 3.2.5, Y ⊂ M . Thus, any
(∗)-elementary submodel M is suitable for the results from [1], [3] and all the
preceding theorems and propositions from this paper, making it possible to use
all of these results for M . In order to demonstrate how this technique works, we
prove the following lemma which we use later.

Lemma 3.2.9. For any suitable elementary submodel M the following holds. Let
(X, ρ) be a metric space and F be a countable collection of subsets of X. Then
whenever X ∈M and F ⊂M , it is true that

⋃

F is dense in X ⇒
⋃

F ∩M is dense in XM .

Proof. Let us fix a (∗)-elementary submodel M with X ∈ M such that F ⊂
P(X) ∩M and

⋃

F is dense in X. In order to see that
⋃

F ∩XM is dense in
XM , it is sufficient to prove that, for every x ∈ X ∩M and r ∈ Q+, there exists
F ∈ F such that U(x, r)∩XM ∩F 6= ∅. Fix some x ∈ X ∩M and r ∈ Q+. Then
there exists F ∈ F such that the following formula is satisfied

∃y : (y ∈ F ∧ ρ(x, y) < r). (∗)

The preceding formula has free variables F , ρ, <, x, and r. Those are in M ;
hence, by Lemma 3.2.3, there exists y ∈ M such that y ∈ F and ρ(x, y) < r.
Consequently, U(x, r) ∩XM ∩ F 6= ∅.

3.3 Foran-Zaj́ıček scheme

We employ the following notation. Given s, t ∈ ω<ω, we write s ≺ t if t is an
extension of s (not necessarily proper). The concatenation of s = (si)i<n ∈ ω<ω

and t = (ti)i<n ∈ ω<ω is the sequence ŝ t := (s0, . . . , sn−1, t0, . . . , tn−1). If s ∈ ω<ω

and i ∈ ω, we write ŝ i instead of ŝ (i). If ν = (ν0, ν1, ν2, . . . ) ∈ ωω and n ∈ ω,
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then the symbol ν|n means the finite sequence (ν0, ν1, . . . , νn−1). By ν|0 we mean
the empty sequence. If t ∈ ω<ω, then the symbol |t| denotes the length of t. By
a tree we mean any subset T of ω<ω such that for every s ∈ ω<ω and t ∈ T with
s ≺ t, we have s ∈ T . We say that a tree T is pruned if for every t ∈ T there
exists n ∈ ω such that t̂ n ∈ T .

Any family A = {A(s); s ∈ ω<ω} of sets is called a Souslin scheme. Given
such an A a Souslin operation S is defined by

S(A) :=
⋃

ν∈ωω

⋂

n∈ω
A(ν|n).

Sometimes we write Ss(A(s)) instead of S(A). A Souslin scheme {A(s); s ∈ ω<ω}
is called monotone if A(s) ⊃ A(t) whenever s, t ∈ ω<ω, and s ≺ t. Finally, a
subset Y of a topological space X is called a Souslin set (in X) if there exists a
Souslin scheme A consisting of closed subsets of X with S(A) = Y .

Setting 3.3.1. Throughout this section we will assume that (X, ρ) is a complete
metric space, P is a porosity-like relation on X, and B is a basis of open sets in
X.

Definition 3.3.2. For any A ⊂ X we define the following set operators:

kerP(A) := A \
⋃

{U ; U ⊂ X is open and U ∩ A is σ-P-porous},
NP(A) := {x ∈ A; ¬P(x,A)}.

The following lemma is easy to prove. Its assertions (i) and (ii) can be found,
e.g., in [9].

Lemma 3.3.3. Let A ⊂ X. Then we have

(i) A \ kerP(A) is σ-P-porous,

(ii) kerP(kerP(A)) = kerP(A),

(iii) if A ⊂ X is a Souslin set then kerP(A) is a Souslin set,

(iv) if A ⊂ B ⊂ X, kerP(B) = B, and B \A is σ-P-porous, then kerP(A) = A,

(v) A \NP(A) is P-porous.

Definition 3.3.4. A Souslin scheme F = {S(t); t ∈ ω<ω} consisting of nonemp-
ty subsets of X is called (B,P)-Foran-Zaj́ıček scheme in X if for every t ∈ ω<ω

and k ∈ ω we have

(i)
⋃

j∈ω S(t̂ j) is a dense subset of S(t),

(ii) S(t) is P-porous at no point of S(t̂ k),

(iii) for any ν ∈ ωω and any sequence (Gn)n∈ω of sets from B satisfying:

(a) limn→∞ diamGn = 0,

(b) Gn+1 ⊂ Gn for every n ∈ ω,

(c) S(ν|n) ∩Gn 6= ∅ for every n ∈ ω,
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we have
⋂

n∈ω

(

S(ν|n) ∩Gn

)

6= ∅.

If there is no danger of confusion we will say just Foran-Zaj́ıček scheme.

Remark 3.3.5. The definition of Foran-Zaj́ıček scheme is inspired by the notion
of Foran system in the form introduced by Zaj́ıček in [13]. Foran systems provides
a basic tool for constructions of small but non-σ-porous sets.

Lemma 3.3.6. Let F = {S(t); t ∈ ω<ω} be a Foran-Zaj́ıček scheme in X. Then
no element of F is σ-P-porous.

Proof. We mimic the standard proof which works for Foran systems, see [13,
Lemma 4.3]. Clearly, it is sufficient to prove that S(∅) is not σ-P-porous. Suppose
on the contrary that S(∅) =

⋃∞
n=1An, where each An is P-porous. We set A0 := ∅.

We will construct ν = (ν0, ν1, . . . ) ∈ ωω and a sequence of open sets (Gn)n∈ω such
that for every n ∈ ω we have

(a) diamGn < 2−n,

(b) Gn ⊂ Gn−1 if n > 0,

(c) Gn ∩ S(ν|n) 6= ∅,

(d) S(ν|n) ∩Gn ∩ An = ∅,

(e) Gn ∈ B.

We will construct inductively νn’s and Gn’s. If n = 0, then we pick an open
set G0 ∈ B intersecting S(∅) with diamG0 < 1. Then conditions (a)–(e) are
clearly satisfied. Now suppose that we have already constructed Gn and s =
(ν0, . . . , νn−1) for some fixed n ∈ ω. Note that if n = 0, then s = ∅. We
distinguish two cases.

First suppose that An+1 is not dense in S(s)∩Gn. Then we find a nonempty
open set Gn+1 ∈ B such that Gn+1∩S(s) 6= ∅, Gn+1 ⊂ Gn\An+1, and diamGn+1 <
2−(n+1). Further, using condition (i) from Definition 3.3.4 we find νn ∈ ω such
that S(ŝ νn) ∩Gn+1 6= ∅.

Now suppose that An+1 is dense in S(s) ∩Gn. Find νn ∈ ω so that S(ŝ νn) ∩
Gn 6= ∅ by condition (i) from Definition 3.3.4. We shall show that the intersection
S(ŝ νn) ∩ Gn ∩ An+1 is empty. Indeed, if there is x in this set, then using the
properties of P, we subsequently have P(x,An+1), P(x,An+1), P(x, S(s) ∩ Gn),
and finally P(x, S(s)). Now (ii) in Definition 3.3.4 says that x /∈ S(ŝ νn), a
contradiction. It remains then to pick any open set Gn+1 ∈ B such that Gn+1 ⊂
Gn, Gn+1 ∩S(ŝ νn) 6= ∅, and diamGn+1 < 2−(n+1). This finishes the construction
of ν and Gn’s.

Since F is a Foran-Zaj́ıček scheme there exists x ∈ ⋂n∈ω
(

S(ν|n) ∩ Gn

)

. By
(b) and (d) we have x ∈ S(∅) \⋃∞

n=1An = ∅, a contradiction.

Definition 3.3.7. We say that a Souslin scheme C = {C(s); s ∈ ω<ω} is subor-
dinate to a Souslin scheme A = {A(s); s ∈ ω<ω} (notation C ⊑ A) if there exists
a mapping ϕ : ω<ω → ω<ω such that for each s ∈ ω<ω we have
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• |ϕ(s)| = |s|,

• if t ∈ ω<ω, s ≺ t, then ϕ(s) ≺ ϕ(t),

• C(s) ⊂ A(ϕ(s)).

Definition 3.3.8. Let A = {A(s); s ∈ ω<ω} be a Souslin scheme. Denote
C(s) = St(A(ŝ t)), s ∈ ω<ω, i.e.,

C(s) :=
⋃

ν∈ωω

⋂

n∈ω
A(ŝ ν|n).

We say that A is P-regular if A is monotone and for every s ∈ ω<ω we have
kerP(C(s)) = C(s) 6= ∅.

Lemma 3.3.9. Let A be a Souslin scheme consisting of closed sets and C ⊂ S(A)
be a Souslin set. Then there exists a Souslin scheme C consisting of closed sets
which is subordinate to A and C = S(C).

Proof. Let L = {L(s); s ∈ ω<ω} be a Souslin scheme consisting of closed sets with
S(L) = C. Let A = {A(s); s ∈ ω<ω}. Fix a surjection ψ = (ψ1, ψ2) : ω → ω2.
We define mappings ϕ1 : ω<ω → ω<ω, ϕ2 : ω<ω → ω<ω by ϕ1(∅) = ϕ2(∅) = ∅ and

ϕ1(s) :=
(

ψ1(s0), ψ1(s1), . . . , ψ1(s|s|−1)
)

,

ϕ2(s) :=
(

ψ2(s0), ψ2(s1), . . . , ψ2(s|s|−1)
)

,

where s = (s0, . . . , s|s|−1) ∈ ω<ω \ {∅}. We define the desired scheme C by
C(s) := A(ϕ1(s)) ∩ L(ϕ2(s)). The scheme C := {C(s); s ∈ ω<ω} consists of
closed sets and is clearly subordinate to A via the mapping ϕ1.

We shall verify the equality C = S(C). Let x ∈ C. Then there exist ν, µ ∈ ωω

such that x ∈ L(ν|k) and x ∈ A(µ|k) for every k ∈ ω. Since ψ is a surjection of ω
onto ω2 we can find τ ∈ ωω such that ϕ1(τ |k) = ν|k and ϕ2(τ |k) = µ|k for every
k ∈ ω. Then we have x ∈ C(τ |k) for every k ∈ ω. Consequently, x ∈ S(C).

Let x ∈ S(C). Find τ = (t0, t1, . . . ) ∈ ωω so that x ∈ C(τ |k) for every k ∈ ω.
For i = 1, 2 we define µi := (ψi(t0), ψi(t1), . . . ) ∈ ωω. Then x ∈ A(µ1|k)∩L(µ2|k).
Consequently, x ∈ C. Thus we have proved C = S(C).

Lemma 3.3.10. Let A be a Souslin scheme consisting of closed subsets of X and
C ⊂ S(A) be a nonempty Souslin set with kerP(C) = C. Then there exists a
P-regular Souslin scheme L = {L(s); s ∈ ω<ω} consisting of closed subsets of X
such that L is subordinate to A and S(L) is a dense subset of C.

Proof. Let A = {A(s); s ∈ ω<ω}. Using Lemma 3.3.9 we find a Souslin scheme
D = {D(s); s ∈ ω<ω} consisting of closed subsets of X which is subordinate
to A and S(D) = C. Without any loss of generality we may assume that D is
monotone. Indeed, one can define a scheme D̃ = {D̃(s); s ∈ ω<ω} by

D̃(s) :=
⋂

k≤|s|
D(s|k).
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The new scheme consists of closed sets and satisfies D̃(s) ⊂ D(s), thus it is
subordinated to the scheme A. Further we have S(D) = S(D̃), since for every
α ∈ ωω we have

⋂

j∈ω
D̃(α|j) =

⋂

j∈ω

⋂

k≤j

D(α|k) =
⋂

j∈ω
D(α|j),

thus
S(D̃) =

⋃

α∈ωω

⋂

j∈ω
D̃(α|j) =

⋃

α∈ωω

⋂

j∈ω
D(α|j) = S(D).

For s ∈ ω<ω we set

E(s) := St(D(ŝ t)), H(s) := kerP(E(s)),

P (s) := H(s), and Q(s) := St(P (ŝ t)).

Our aim is to show that kerP(Q(s)) = Q(s) for every s ∈ ω<ω.
For every u ∈ ω<ω we have

E(u) =
⋃

j∈ω
E(u ĵ). (3.1)

To verify (3.1) suppose that x ∈ E(u). Then there exists α ∈ ωω such that
for every k ∈ ω we have x ∈ D(u (̂α|k)). This implies x ∈ E(uˆα(0)). Now
suppose that x ∈ E(u ĵ) for some j ∈ ω. Then there exists α ∈ ωω such that
x ∈ D(u ĵ (̂α|k)) for every k ∈ ω. We set β = jˆα. Using monotonicity of the
scheme D we obtain x ∈ D(u (̂β|l)) for every l ∈ ω, therefore x ∈ E(u).

Further, we have

H(u) \
⋃

j∈ω
H(u ĵ) ⊂ E(u) \

⋃

j∈ω
H(u ĵ)

=
(

⋃

j∈ω
E(u ĵ)

)

\
(

⋃

j∈ω
H(u ĵ)

)

⊂
⋃

j∈ω

(

E(u ĵ) \H(u ĵ)
)

.

Since E(u ĵ)\H(u ĵ) is σ-P-porous for every j ∈ ω (Lemma 3.3.3(i)), we conclude
that the set H(u) \⋃j∈ωH(u ĵ) is σ-P-porous. Fix for a while any s ∈ ω<ω. We
have

H(s) \ St(H(ŝ t)) ⊂
⋃

t∈ω<ω

(

H(ŝ t) \
⋃

j∈ω
H(ŝ t̂ j)

)

. (3.2)

Indeed, suppose that x ∈ H(s) a x /∈ ⋃t∈ω<ω

(

H(ŝ t) \ ⋃j∈ωH(ŝ t̂ j)
)

. Then
x /∈ H(s)\⋃j H(ŝ j). Thus there exists j0 ∈ ω such that x ∈ H(ŝ j0). Further we
have x /∈ H(ŝ j0)\

⋃

j H(ŝ j0 ĵ), therefore one can find j1 ∈ ω with x ∈ H(ŝ j0 ĵ1).
By induction we construct α = (j0, j1, j2, . . . ) such that x ∈ H(ŝ α|l) for every
l ∈ ω. This means that x ∈ St(H(ŝ t)) and (3.2) holds.

Using (3.2) we get that H(s) \ St(H(ŝ t)) is σ-P-porous. Therefore

kerP(St(H(ŝ t))) = St(H(ŝ t)) (3.3)

by Lemma 3.3.3(iv). For every open set V intersecting H(s) the set V ∩H(s) is
not σ-P-porous by definition. The set H(s)\St(H(ŝ t)) is σ-P-porous. It implies
that St(H(ŝ t)) is a dense subset of H(s). Observing

St(H(ŝ t)) ⊂ St(P (ŝ t)) = Q(s) ⊂ P (s) = H(s) = St(H(ŝ t)) (3.4)
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and using (3.3) we get kerP(Q(s)) = Q(s). Indeed, fix an open set U with
U ∩ Q(s) 6= ∅. Using (3.4), U ∩ St(H(ŝ t)) 6= ∅ and, by (3.3), U ∩ St(H(ŝ t)) is
not σ-P-porous set. Hence, U ∩ Q(s) is not σ-P-porous set and, as U was an
arbitrary open set intersecting Q(s), kerP(Q(s)) = Q(s).

Further, we set T := {s ∈ ω<ω; P (s) 6= ∅}. The set T is obviously a nonempty
tree. Moreover, T is pruned. Indeed, let s ∈ T , then H(s) 6= ∅ and thus E(s) is
non-σ-P-porous. We have E(s) =

⋃

n∈ω E(ŝ n) and therefore there exists m ∈ ω
such that E(ŝ m) is non-σ-P-porous. Thus P (ŝ m) 6= ∅ and so ŝ m ∈ T .

We find a mapping ϕ : ω<ω → T such that for every s ∈ ω<ω we have

• |ϕ(s)| = |s|,

• if t ∈ ω<ω, s ≺ t, then ϕ(s) ≺ ϕ(t),

• {ϕ(ŝ n); n ∈ ω} = {ϕ(s)̂ k; k ∈ ω} ∩ T .

We have ∅ ∈ T since T is nonempty. We set ϕ(∅) := ∅. Suppose that ϕ(s) ∈ T
has been already defined for some s ∈ ω<ω. The set W := {k ∈ ω; ϕ(s)̂ k ∈ T}
is nonempty since T is pruned. Thus we can find a mapping ψ : ω → ω such that
ψ(ω) = W . We define ϕ(ŝ n) := ϕ(s)̂ ψ(n). This finishes the construction of ϕ.
It is easy to check that the mapping ϕ has all the required properties.

We set L(s) := P (ϕ(s)) and L := {L(s); s ∈ ω<ω}. The scheme {E(s); s ∈
ω<ω} is monotone since D is monotone. This easily gives that the scheme L is
also monotone.

By the properties of ϕ and the definition of T we have St(L(ŝ t)) = Q(ϕ(s)) 6=
∅ for every s ∈ ω<ω. Indeed, let x ∈ Q(ϕ(s)) for some s ∈ ω<ω. Then there exists
ν ∈ ωω such that x ∈ P (ϕ(s)̂ ν|n) for every n ∈ ω. Thus P (ϕ(s)̂ ν|n) 6= ∅ for
every n ∈ ω. This means that ϕ(s)̂ ν|n ∈ T for every n ∈ ω. Using the properties
of ϕ we find µ ∈ ωω such that ϕ(ŝ µ|n) = ϕ(s)̂ ν|n for every n ∈ ω. Thus we have
x ∈ ⋂n∈ω P (ϕ(s)̂ ν|n) =

⋂

n∈ω L(ŝ µ|n) ⊂ St(L(ŝ t)). Let x ∈ St(L(ŝ t)). Then
there exists ν ∈ ωω such that x ∈ L(ŝ ν|n) = P (ϕ(ŝ ν|n)) for every n ∈ ω. Using
the properties of ϕ again, we get x ∈ ⋂n∈ω P (ϕ(ŝ ν|n)) ⊂ Q(ϕ(s)). Finally, for
s ∈ ω<ω we have H(ϕ(s)) 6= ∅ and H(ϕ(s)) \ St(H(ϕ(s)̂ t)) is σ-P-porous. Thus
St(H(ϕ(s)̂ t)) 6= ∅ and by (3.4) we get Q(ϕ(s)) 6= ∅. Thus L is P-regular.

Clearly L ⊑ D. Using the fact that D ⊑ A, we get L ⊑ A. It remains to
verify that S(L) is dense in C. Since by definition we have P (s) ⊂ D(s) for every
s ∈ ω<ω, we get Q(∅) ⊂ E(∅) = C. The set St(H(t)) is a dense subset of H(∅).
We get by (3.4) that Q(∅) is a dense subset of H(∅) = C. This concludes the
proof since S(L) = Q(∅).

Proposition 3.3.11. Suppose that P is such that NP(A) is Souslin whenever
A ⊂ X is a Souslin set, and let S ⊂ X be a Souslin non-σ-P-porous set. Then
there exists a (B,P)-Foran-Zaj́ıček scheme F in X such that each element of F

is a subset of S.

Proof. For every n ∈ ω we will construct a P-regular Souslin scheme An =
{An(s); s ∈ ω<ω} consisting of closed sets. For s ∈ ω<ω we denote Cn(s) :=
St(An(ŝ t)). We require S(A0) ⊂ S and, for every n ∈ ω, n > 0,

• An ⊑ An−1 is witnessed by a mapping ϕn : ω<ω → ω<ω,
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• ϕn(s) = s for every s ∈ ω<ω, |s| < n.

Applying Lemma 3.3.10 to the Souslin scheme {X; s ∈ ω<ω} and the set
kerP(S) we find a P-regular Souslin scheme A0 consisting of closed sets with
S(A0) ⊂ kerP(S) ⊂ S. Suppose that n ∈ ω, n > 0, and we have already con-
structed the desired schemes Aj and the mappings ϕj, j < n. Fix s ∈ ωn−1 for
a while. The set Cn−1(s) is not σ-P-porous by P-regularity of An−1 and there-
fore kerP(NP(Cn−1(s))) is not σ-P-porous by Lemma 3.3.3(i),(v). Thus the set
kerP(NP(Cn−1(s))) is nonempty. The set Cn−1(s) is Souslin by the construction.
Using the assumption we see that NP(Cn−1(s)) is Souslin and by Lemma 3.3.3(iii)
we get that kerP(NP(Cn−1(s))) is Souslin. By Lemma 3.3.10 we find a P-regular
Souslin scheme Ls = {Ls(t); t ∈ ω<ω} such that S(Ls) is a dense subset of
kerP(NP(Cn−1(s))) and Ls ⊑ {An−1(ŝ t); t ∈ ω<ω} is witnessed by a mapping
ϕs
n : ω<ω → ω<ω. Do so for every s ∈ ωn−1.

For t = (t0, . . . , t|t|−1) ∈ ω<ω, we set

An(t) :=

{

An−1(t), |t| < n,

Lt|(n−1)(tn−1, . . . , t|t|−1), |t| ≥ n;

ϕn(t) :=

{

t, |t| < n,

t|(n− 1)̂ ϕ
t|(n−1)
n (tn−1, . . . , t|t|−1), |t| ≥ n.

Further, we set An = {An(t); t ∈ ω<ω}. For every t ∈ ω<ω, |t| < n, we have
An(t) = An−1(t) = An−1(ϕ(t)). For every t ∈ ω<ω, |t| ≥ n, we have

An(t) = Lt|(n−1)(tn−1, . . . , t|t|−1)

⊂ An−1(t|(n− 1)̂ ϕt|(n−1)
n (tn−1, . . . , t|t|−1)) = An−1(ϕn(t)).

Thus An ⊑ An−1 is witnessed by ϕn. This finishes the induction step.
We define S(s) := C |s|(s), s ∈ ω<ω, and F := {S(s); s ∈ ω<ω}. We verify

the conditions (i)–(iii) from Definition 3.3.4.
(i) Let n ∈ ω and s ∈ ωn. By definition we have An+1(ŝ t) = Ls(t) and

Cn+1(s) = St(An+1(ŝ t)). Thus we get Cn+1(s) = S(Ls). Since kerP(Cn(s)) =
Cn(s), the set kerP(NP(Cn(s))) is dense in Cn(s). Since S(Ls) is dense in
kerP(NP(Cn(s))), the set S(Ls) is dense in Cn(s). But

⋃

j∈ω
S(ŝ j) =

⋃

j∈ω
Cn+1(ŝ j) = Cn+1(s) = S(Ls)

is a dense subset of S(s) = Cn(s).
(ii) We have

C |t|+1(t̂ k) = Su(A|t|+1(t̂ kˆu)) = Su(Lt(kˆu)) ⊂ S(Lt) ⊂ kerP(NP(C |t|(t))).

Thus we can conclude S(t̂ k) = C |t|+1(t̂ k) ⊂ NP(C |t|(t)) = NP(S(t)) for every
t ∈ ω<ω and k ∈ ω.

(iii) Suppose that we have ν ∈ ωω and a sequence (Gn)n∈ω of open sets in B
such that

(a) limn→∞ diam(Gn) = 0,
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(b) Gn+1 ⊂ Gn for every n ∈ ω,

(c) S(ν|n) ∩Gn 6= ∅ for every n ∈ ω.

We have that
⋂

n∈ω Gn = {x} for some x ∈ X, since X is complete. Our task
is to show that x ∈ S(ν|m) for every m ∈ ω. Fix m ∈ ω. For each k ∈ ω we pick
yk ∈ S(ν|k) ∩Gk. We have lim yk = x. Fix k ∈ ω, k ≥ m. Observe that

Cn(ν|n) = St(An(ν|n t̂)) ⊂ An(ν|n).

Then, for every n ∈ ω, n > k, we have

yn ∈ S(ν|n) = Cn(ν|n) ⊂ An(ν|n)

⊂ An−1(ϕn(ν|n)) ⊂ · · · ⊂ Am(ϕm+1 ◦ · · · ◦ ϕn(ν|n)).
(3.5)

Since Am is a P-regular scheme, it is monotone. Using this fact and (3.5) we get

yn ∈ Am(ϕm+1 ◦ · · · ◦ ϕn(ν|n)) ⊂ Am(ϕm+1 ◦ · · · ◦ ϕn(ν|k)). (3.6)

Since ϕj(ν|k) = ν|k for every j ∈ ω, j > k, we get

Am(ϕm+1 ◦ · · · ◦ ϕn(ν|k)) = Am(ϕm+1 ◦ · · · ◦ ϕk+1(ν|k)).

Using this and (3.6) we get x ∈ Am(ϕm+1 ◦ · · · ◦ ϕk+1(ν|k)) since the latter set is
closed. Since ν|m ≺ ϕm+1 ◦ · · · ◦ϕk+1(ν|k) we can conclude that x ∈ S(ν|m). We
verified that F is a (B,P)-Foran-Zaj́ıček scheme.

3.4 Porosity-like relations

Definition 3.4.1. Let X be a metric space and R be a point-set relation on
X (i.e., R ⊆ X × P(X)). Let M be a set and R′ be a point-set relation on
XM := X ∩M . We say that the set M is a pointwise (R→ R′)-model if

∀A ∈ P(X) ∩M ∀x ∈ XM :
(

R(x,A) → R′(x,A ∩XM)
)

.

Similarly, we define the notion of a pointwise (R ← R′)-model and pointwise
(R↔ R′)-model.

Definition 3.4.2. Let X be a metric space and P be a porosity-like relation on
X. Let M be a set and P′ be a porosity-like relation on XM := X ∩M . We say
that the set M is a (P→ P′)-model if for every set A ∈ P(X) ∩M

A is P-porous in the space X → A ∩XM is P′-porous in the space XM .

We say that the set M is a (σ-P→ σ-P′)-model if for every set A ∈ P(X) ∩M

A is σ-P-porous in the space X → A ∩XM is σ-P′-porous in the space XM .

Similarly, we define the notion of (P ← P′)-model, (P ↔ P′)-model, and (σ-
P↔ σ-P′)-model.
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Proposition 3.4.3. For any suitable elementary submodelM the following holds.
Let X be a metric space, P be a porosity-like relation on X and P′ be a porosity-
like relation on XM . Assume X ∈M and P ∈M .

(i) If M is a pointwise (P→ P′)-model, then M is a (P→ P′)-model.

(ii) If M is a pointwise (P← P′)-model, then M is a (P← P′)-model.

(iii) If M is a (P→ P′)-model, then M is a (σ-P→ σ-P′)-model.

In particular, if M is a pointwise (P↔ P′)-model, then M is a (P↔ P′)-model
and a (σ-P→ σ-P′)-model.

Proof. Let us fix a (∗)-elementary submodel M with X, P ∈M .
(i) The statement follows immediately from definitions (with M an arbitrary

set, not necessarily an elementary submodel).
(ii) Let us suppose M is a pointwise (P← P′)-model and let us fix a non-P-

porous set A ∈ P(X) ∩M . Consider the formula

∃x ∈ A : (x,A) /∈ P, (∗)

with free variables A and P. Since A ∈ M , P ∈ M , and the above formula
is absolute for M , there exists by Lemma 3.2.3 a point x ∈ A ∩M such that
(x,A) /∈ P, i.e., A is not P-porous at x. Hence, by premise A ∩ XM is not
P′-porous at x. Thus, A ∩XM is not P′-porous in the space XM and (ii) holds.

(iii) Suppose that A ∈ M ∩ P(X) is σ-P-porous. Then the next formula is
satisfied

∃D :
(

D is a function with DomD = N, ∀n ∈ N :

D(n) ⊂ X is P-porous set, andA ⊂
⋃

n∈N
D(n)

)

. (∗)

Now by Lemma 3.2.3 we find D ∈M such that

D is a function with DomD = N, ∀n ∈ N :

D(n) ⊂ X is P-porous set, and A ⊂
⋃

n∈N
D(n).

By Proposition 3.2.5 (ii), we have D(n) ∈ M for every n ∈ N. Since M is a
(P→ P′)-model, we obtain that D(n)∩XM is P′-porous in XM for every n ∈ N,
hence, A ∩XM is σ-P′-porous in XM .

Lemma 3.4.4. Let (X, ̺) be a complete metric space and (Y, ̺) be a closed subset
of it. Consider sequences (yn)n∈N in Y and rn → 0 such that U(yn+1, rn+1) ∩ Y ∩
Y ⊂ U(yn, rn) for every n ∈ N. Then there exists an increasing sequence (nk)k∈N
in N such that U(ynk+1

, rnk+1
) ⊂ U(ynk

, rnk
) for every k ∈ N.

Proof. We shall prove the following statement which implies the conclusion of the
lemma: For each k ∈ N there is l ∈ N, l > k such that U(yl, rl) ⊂ U(yk, rk).

Assume this is not the case, i.e., there is a natural number n0 such that
U(yn, rn) \ U(yn0

, rn0
) 6= ∅ for each natural number n > n0. Choose a sequence

{zn}∞n=n0+1 such that zn ∈ U(yn, rn) \ U(yn0
, rn0

) for each n > n0. From the
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assumptions it is obvious that the sequence {yn}∞n=1 is Cauchy and hence it has a
limit y ∈ Y (as Y is complete). Since ̺(yn, zn) ≤ rn, it also follows from rn → 0
that limn→∞ zn = y. Consequently, y /∈ U(yn0

, rn0
) as U(yn0

, rn0
) is open and

zn /∈ U(yn0
, rn0

) for any n > n0.
On the other hand, the assumptions give that {yn; n > n0} ⊂ U(yn0+1, rn0+1)∩

Y and so y = limn→∞ yn ∈ U(yn0+1, rn0+1) ∩ Y ∩ Y ⊂ U(yn0
, rn0

). This is a con-
tradiction.

Proposition 3.4.5. For any suitable elementary submodelM the following holds.
Let X be a complete metric space, A ⊂ X and P be a porosity-like relation on X.
Let there exist a (B,P)-Foran-Zaj́ıček scheme F in X, where B := {U(x, r); x ∈
X, r ∈ R+}, such that each element of F is a subset of A. Assume that
{X,A,P} ⊂ M and M is a pointwise (P ← P′)-model for some porosity-like
relation P′ on XM .

Then there exists a (B′,P′)-Foran-Zaj́ıček scheme F ′ in XM , where B′ :=
{U(x, r) ∩ XM ; x ∈ XM , r ∈ R+}, such that each element of F ′ is a subset of
A ∩XM .

Proof. By the assumption, the following formula is true:

∃S (S : ω<ω → P(X) is such that {S(t); t ∈ ω<ω}
is a (B,P)-Foran-Zaj́ıček scheme in X and, for every t ∈ ω<ω, S(t) ⊂ A).

(∗)

Using Lemma 3.2.3 and absoluteness of the preceding formula and its subformula
for M , we find the corresponding S ∈ M . Consequently, for every t ∈ ω<ω, by
Proposition 3.2.5 (ii) we have S(t) ∈M . Now it is sufficient to prove, that

F
′ := {S(t) ∩XM ; t ∈ ω<ω}

is a (B′,P′)-Foran-Zaj́ıček scheme in XM . Fix any t ∈ ω<ω. By (i) in Definition
3.3.4 we have that

⋃

j∈ω S(t̂ j) is a dense subset of S(t). Hence, by Lemma
3.2.9 applied to the metric space S(t),

⋃

j∈ω S(t̂ j) ∩ XM is a dense subset of

S(t) ∩M . Using Lemma 3.2.9 again, S(t) ∩M is a dense subset of S(t) ∩ XM .
Thus,

⋃

j∈ω S(t̂ j)∩XM is a dense subset of S(t)∩XM and the condition (i) from
Definition 3.3.4 is satisfied.

In order to prove (ii) for F ′, fix any t ∈ ω<ω, any k ∈ ω, and any x ∈
S(t̂ k) ∩XM . From (ii) valid for F , we know that (x, S(t)) /∈ P. Realizing that
S(t) is in M , the assumption implies that (x, S(t)∩XM ) /∈ P′, that is, S(t)∩XM

is not P′-porous at x.
In order to prove that (iii) holds, let us take some ν ∈ ωω, a sequence (xn)n∈ω

of elements of XM and a sequence (rn)n∈ω of numbers from R+ such that the
open balls Gn = U(xn, rn) ∩XM satisfy conditions (a), (b), and (c) in the space
XM . It is easy to see that the radii rn can be chosen in such a way that rn →
0. Indeed, if we put r′n := diamGn + 1/n, then Gn = U(xn, r

′
n) ∩ XM and

r′n → 0. Then Lemma 3.4.4 gives the existence of an increasing sequence of
integers (nk)∞k=1 such that U(xnk+1

, rnk+1
) ⊂ U(xnk

, rnk
) for each k. Hence we

have that the sequence (U(xnk
, rnk

))∞k=1 satisfies condition (b) from Definition
3.3.4 with n := k and the condition (a) follows from our assumption that rn → 0.
Now we verify the condition (c). From the assumptions on Gn we know that
U(xn(k), rn(k)) ∩ S(ν ↾ k) ⊃ U(xn(k), rn(k)) ∩ S(ν ↾ n(k)) ∩XM 6= ∅ for every k ∈ ω
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and so (as F is a (B,P)-Foran-Zaj́ıček scheme in X) we have that there exists
x ∈ ⋂∞

k=1 U(xn(k), rn(k)) ∩ S(ν ↾ k). Since lim xn = x by (a) and (b), we have
x ∈ XM . Consequently, x ∈ ⋂∞

n=1(Gn ∩ S(ν ↾ n) ∩ XM). This verifies (iii) from
Definition 3.3.4.

Proposition 3.4.6. For any suitable elementary submodelM the following holds.
Let X be a complete metric space, P be a porosity-like relation on X, and P′ be
a porosity-like relation on XM . Suppose that P has the property that NP(S) is
a Souslin set whenever S ⊂ X is Souslin. Assume A ⊂ X is a Souslin set and
{X,P, A} ⊂ M . Then whenever M is a pointwise (P ↔ P′)-model, then the
following holds:

A is P-porous in the space X ↔ A ∩XM is P′-porous in the space XM ,

A is σ-P-porous in the space X ↔ A ∩XM is σ-P′-porous in the space XM .

Proof. By Proposition 3.4.3, it is sufficient to prove the implication from the right
to the left in the second equivalence. Let us fix a Souslin set A ⊂ X which is
not σ-P-porous and a (∗)-elementary submodel M with {X,P, A} ⊂ M . We
would like to verify that A ∩ XM is not σ-P′-porous in the space XM . Let B,
B′ be as in Proposition 3.4.5. By Proposition 3.3.11, there exists a (B,P)-Foran-
Zaj́ıček scheme F in X such that each element of F is a subset of A. Using
Proposition 3.4.5, there exists a (B′,P′)-Foran-Zaj́ıček scheme F ′ in XM such
that each element of F ′ is a subset of A∩XM . Hence, by Lemma 3.3.6, A∩XM

is not σ-P′-porous in the space XM .

Remark 3.4.7. Let X be a complete metric space and Pup be the porosity-like
relation defined by

Pup := {(x,A) ∈ X × P(X); A is upper porous at x in X}
(for the definition of upper porosity, see for example [1]). Let us fix a (∗)-
elementary submodel M with {X,Pup} ⊂ M . Denote by P′

up the porosity-like
relation defined by

P′
up := {(x,A) ∈ XM × P(XM); A is upper porous at x in XM}.

Then, by results from [1] and [3], M is a pointwise (Pup ↔ P′
up)-model. It is

easy to see that NPup
(S) is a Souslin set whenever S ⊂ X is Souslin. Thus,

by Proposition 3.4.6, σ-upper porosity is a separably determined property. This
result has already been proved in [3]. However, a nontrivial inscribing theorem
([16, Theorem 3.1]) was needed in the proof there. The method of using Foran-
Zaj́ıček scheme in the general setting (see Section 3.3) enables us to avoid the
usage of this result.

Remark 3.4.8. It is known to the authors that the notions of lower porosity,
〈g〉-porosity, and (g)-porosity satisfy also the assumptions of Proposition 3.4.6
(for definitions see [11]). Consequently, those porosities (and corresponding σ-
porosities) are separably determined when considering Souslin sets in complete
metric spaces. We do not present proofs of those results here since at this moment
we see no interesting applications of them.

In next section we prove that the notion of α-cone porosity in Asplund spaces
satisfies the assumptions of Proposition 3.4.6 and, therefore, cone smallness is
also separably determined.
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Question. Is the notion of σ-directional porosity (see [14] for the definition) is
separably determined in the sense of Corollary 3.5.11?

Note that the notion of σ-directional porosity is defined also in [7], but in a
slightly different way which is equivalent to the definition from [14] for separable
Banach spaces.

3.5 Cone porosity

In this section we prove that the notion of α-cone porosity in Asplund spaces
satisfies the assumptions of Proposition 3.4.6 and, therefore, cone smallness is
separably determined.

Definition 3.5.1. Let X be a Banach space. For x∗ ∈ X∗ \ {0} and α ∈ [0, 1)
we define the α-cone

C(x∗, α) := {x ∈ X; α‖x‖ · ‖x∗‖ < x∗(x)}.

Given α ∈ [0, 1), a set A ⊂ X is said to be α-cone porous at x ∈ X (in the space
X) if there exist R > 0 such that for each ε > 0 there exists z ∈ U(x, ε) and
x∗ ∈ X∗ \ {0} such that

U(x,R) ∩
(

z + C(x∗, α)
)

∩ A = ∅.

It is easy to observe that α-cone porosity is an example of the porosity-like rela-
tion. The corresponding relation is denoted by Pα-cone

X . A set in X is said to be
cone small if it is σ-Pα-cone

X -porous for each α ∈ (0, 1). Given α ∈ [0, 1), a set in
X is said to be (σ-)α-cone porous if it is (σ-)Pα-cone

X -porous.

The following lemma comes from [1, Lemma 4.14].

Lemma 3.5.2. For any suitable elementary submodel M the following holds.
Let (X, ρ) be a metric space and f : X → R be a function. Then whenever
{X, f} ⊂M , it is true that for every R > 0 and x ∈ XM we have

sup
u∈U(x,R)

f(u) = sup
u∈U(x,R)∩XM

f(u).

Proposition 3.5.3. For any suitable elementary submodelM the following holds.
Let X be a Banach space and α ∈ [0, 1). Then whenever {X,α} ⊂ M , M is a
pointwise (Pα-cone

X → Pα-cone
XM

)-model.

Proof. Let us fix a (∗)-elementary submodel M with {X,α} ⊂ M and a set
A ∈ P(X) ∩M . Fix some x ∈ XM such that A is α-cone porous at x. This
means that there exists a rational number R > 0 such that

∀ε > 0 ∃z ∈ U(x, ε) ∃x∗ ∈ X∗ \ {0} : U(x,R) ∩
(

z + C(x∗, α)
)

∩ A = ∅.

We will show that this formula is true in the space XM with the constant 1
4
R

instead of R. Fix ε ∈ Q+. Put δ := min{1
3
ε, 1

4
R} and pick a point x′ ∈ U(x, δ) ∩

M . Then it is easy to observe that the following formula is true

∃z′ ∈ U(x′, 2
3
ε) ∃x∗ ∈ X∗ \ {0} : U(x′, 1

2
R) ∩

(

z′ + C(x∗, α)
)

∩ A = ∅. (∗)
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(Indeed, it is enough to take a point z′ ∈ U(x, 1
3
ε) ⊂ U(x′, 2

3
ε) and x∗ ∈ X∗ \ {0}

satisfying U(x,R) ∩
(

z′ + C(x∗, α)
)

∩ A = ∅ and to observe that U(x′, 1
2
R) ⊂

U(x,R).) Using the absoluteness of this formula (and its subformulas) we find
z′′ ∈ U(x′, 2

3
ε) ∩M ⊂ U(x, ε) ∩M and f ∈ X∗ ∩M \ {0} such that

U(x′, R
2

) ∩
(

z′′ + C(f, α)
)

∩ A = ∅. (3.7)

By Lemma 3.5.2 we have ‖f‖ = ‖f ↾XM
‖. Hence, the cone C(f ↾XM

, α) in the
space XM equals to C(f, α) ∩XM . We need to verify that

U(x, R
4

) ∩
(

z′′ + C(f, α)
)

∩ A ∩XM = ∅.
Fix some a ∈ A∩XM such that ‖x−a‖ < 1

4
R. Then a is an element of U(x′, 1

2
R).

By (3.7) we conclude a /∈ z′′ + C(f ↾XM
, α) and the proof is finished.

In order to show the existence of a pointwise (Pα-cone
X ← Pα-cone

XM
)-models we

restrict our attention to Asplund spaces. We recall that a Banach space is Asplund
if and only if every separable subspace of it has separable dual, see [4]. First,
we need to prove that “functionals from a suitable elementary submodel M are
dense in (XM)∗ when X is an Asplund space”. This seems to be a nontrivial
result which might have other uses in separable reduction theorems. The proof
of it can be done using the existence of a “projectional generator with domain
X” in the dual space of an Asplund space X. In fact, it is sufficient to use only
the first part of the proof of this statement from [5].

Theorem 3.5.4. For any suitable elementary submodel M the following holds.
Let X be an Asplund space. Then whenever X ∈M , it is true that

{x∗↾XM
; x∗ ∈ X∗ ∩M} = (XM)∗.

Proof. The inclusion “⊂” is obvious. We show the opposite inclusion. It is proved
in the second step of the proof of [5, Theorem 1] that there exist continuous
mappings D(n) : X → X∗, n ∈ N, such that that, for every closed separable
subspace V ⊂ X, we have

span{D(n)(x)↾V ; n ∈ N, x ∈ V } = V ∗. (3.8)

Using the absoluteness of the following formula (and its subformula)

∃D :
(

D is a function, DomD = N, D(n) are norm to norm continuous

mappings from X into X∗ and for every closed separable subspace

V of X we have span{D(n)(x)↾V ; n ∈ N, x ∈ V } = V ∗),

(∗)

find D ∈ M such that (∗) holds; then, by Proposition 3.2.5 (ii), D(n) ∈ M for
every n ∈ N. Thus, for every n ∈ N and x ∈ X ∩M , we have, by Proposition
3.2.5 (ii), D(n)(x) ∈M . Using the continuity of D(n) for every n ∈ N, we get

{D(n)(x); n ∈ N, x ∈ XM} ⊂ {D(n)(x); n ∈ N, x ∈ X ∩M} ⊂ X∗ ∩M.

Hence, using (3.8) with V := XM , and the latter inclusion, we have

(XM)∗ = span{D(n)(x)↾XM
; n ∈ N, x ∈ XM} ⊂ {x∗↾XM

; x∗ ∈ X∗ ∩M}
⊂ {x∗↾XM

; x∗ ∈ X∗ ∩M}.
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As one can notice, the key part of the proof was the validity of (3.8). Note
that there is an alternative way of proving (3.8) based on the argument of Ch.
Stegall, see [2]. Now, we need to observe that it is enough to consider functionals
from a dense subset of X∗ in the definition of α-cone porosity.

Lemma 3.5.5. Let X be a Banach space and let E ⊂ X and D ⊂ X∗ be norm-
dense subsets. Let A ⊂ X and x ∈ X and α ∈ [0, 1). Then A is α-cone porous
at x, (if and) only if the following is true:

∃R ∈ Q+ ∀ε ∈ Q+ ∃y∗ ∈ D ∃w ∈ U(x, ε)∩E : U(x,R)∩ (w+C(y∗, α))∩A = ∅.

Proof. The sufficiency of our condition is very easy to see. Let us, therefore,
assume that a given set A is α-cone porous at a given point x ∈ X, and deduce
from it the desired condition.

Since A is α-cone porous at x, it is easy to see that there exists R ∈ Q+ such
that

∀ε > 0 ∃x∗ ∈ X ∃z ∈ U(x, ε) : U(x,R) ∩
(

z + C(x∗, α)
)

∩ A = ∅. (3.9)

Let ε ∈ Q+. Using (3.9) we find x∗ ∈ X∗ and z ∈ B(x,min{ε, R}) such that

U(x,R) ∩ (z + C(x∗, α)) ∩ A = ∅.

Choose w ∈ U(x,min{ε, R}) ∩ (z + C(x∗, α)) ∩ E. Since w − z ∈ C(x∗, α), we
have

x∗(w − z)− α‖x∗‖‖w − z‖ > 0.

Using the last inequality and the density of D we find y∗ ∈ D such that

(a) ‖y∗‖ ≥ ‖x∗‖,

(b) ‖x∗ − y∗‖ < 1
2R

(

x∗(w − z)− α‖x∗‖‖w − z‖
)

.

Now it is sufficient to prove that

U(x,R) ∩ (w + C(y∗, α)) ⊂ z + C(x∗, α). (3.10)

Indeed, since then we have

U(x,R) ∩ (w + C(y∗, α)) ∩ A ⊂ U(x,R) ∩ (z + C(x∗, α)) ∩ A = ∅.

To verify (3.10) take u ∈ C(y∗, α) with w + u ∈ U(x,R). Then we have

‖u‖ ≤ ‖u+ w − x‖+ ‖x− w‖ ≤ 2R. (3.11)

We compute

x∗(w + u− z) = x∗(w − z) + y∗(u) + (x∗ − y∗)(u)

≥ x∗(w − z) + α‖x∗‖ · ‖u‖ − ‖x∗ − y∗‖ · 2R (by(3.11))

≥ α‖x∗‖ · ‖u‖+ α‖x∗‖ · ‖w − z‖ (by (b))

≥ α‖x∗‖ · ‖u+ w − z‖.

This shows that w + u − z ∈ C(x∗, α). Consequently, we get w + u ∈ z +
C(x∗, α).
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Now, we are ready to see the existence of a pointwise (Pα-cone
X ↔ Pα-cone

XM
)-

models in Asplund spaces.

Proposition 3.5.6. For any suitable elementary submodelM the following holds.
Let X be an Asplund space and α ∈ [0, 1) ∩ Q. Then whenever X ∈ M , M is a
pointwise (Pα-cone

X ↔ Pα-cone
XM

)-model.

Proof. Let us fix a (∗)-elementary submodel M with X ∈ M and a set A ∈
P(X) ∩M . By Proposition 3.5.3, M is a pointwise (Pα-cone

X → Pα-cone
XM

)-model.
Fix some x ∈ XM such that A is not α-cone porous at x. We will show that
A∩XM is not α-cone porous at x in the space XM . Notice that, by Lemma 3.5.2,
‖x∗↾XM

‖ = ‖x∗‖ for every x∗ ∈ X∗ ∩M . Hence, the cone C(x∗↾XM
, α) in the

space XM equals C(x∗, α)∩XM . Thus, by Lemma 3.5.5 and Theorem 3.5.4, it is
sufficient to prove that the following formula is true

∀R ∈ Q+ ∃ε ∈ Q+ ∀z ∈ U(x, ε) ∩M ∀x∗ ∈ (X∗ ∩M) \ {0} :

U(x,R) ∩XM ∩
(

z + C(x∗, α)
)

∩ A 6= ∅.

Fix R ∈ Q+. As A is not α-cone porous at x, there exists ε ∈ Q+ such that

∀z ∈ U(x, ε) ∀x∗ ∈ X∗ \ {0} : U(x, 1
3
R) ∩

(

z + C(x∗, α)
)

∩ A 6= ∅. (3.12)

Let us fix z ∈ U(x, ε)∩M and x∗ ∈ (X∗∩M)\{0}. Find some x′ ∈ U(x, 1
3
R)∩M .

Then U(x, 1
3
R) ⊂ U(x′, 2

3
R). By (3.12), the following formula is true

∃a ∈ A : a ∈
(

z + C(x∗, α)
)

∩ U(x′, 2
3
R). (∗)

Using the absoluteness of the formula (and its subformula) above, there exists
a ∈ A ∩M satisfying the formula above. Then a ∈ U(x,R) ∩

(

z + C(x∗, α)
)

.
Hence,

U(x,R) ∩XM∩
(

z + C(x∗, α)
)

∩A 6= ∅.
Thus, A ∩ XM is not α-cone porous at x in the space XM . This finishes the
proof.

In the remainder of the section we prove that the assumption on descriptive
quality of NP(S) from Proposition 3.4.6 is satisfied for the cone porosity. We
begin with the following lemma.

Lemma 3.5.7. Let X be a Banach space, x∗ ∈ X∗, α ∈ [0, 1) and take x ∈
C(x∗, α). Then d(X \ C(x∗, α), x+ C(x∗, α)) > 0.

Proof. It is easy to verify that C(x∗, α) is an open set and that it is a convex
cone in the sense that for any two points y, z from C(x∗, α) and any c > 0 the
points cy and y + z also belong to C(x∗, α). Set δ := d(x,X \ C(x∗, α)). The
number δ is positive, since C(x∗, α) is open. Take any point y ∈ x + C(x∗, α)
(then y − x ∈ C(x∗, α)). Hence, U(x, δ) ⊂ C(x∗, α), and so U(y, δ) = (y − x) +
U(x, δ) ⊂ C(x∗, α). Since y ∈ x + C(x∗, α) was chosen arbitrarily, we conclude
that d(X \ C(x∗, α), x+ C(x∗, α)) ≥ δ > 0.

Proposition 3.5.8. Let X be a Banach space, α ∈ [0, 1), and A ⊂ X be any set.
Then the set S of all points x ∈ X at which A is α-cone porous is of the type
Gδσ.
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Proof. For x, z ∈ X, R > 0, x∗ ∈ X∗ \ {0}, and α ∈ [0, 1) we set

T (x,R, z, x∗, α) := U(x,R) ∩
(

z + C(x∗, α)
)

.

First we show that

S =
⋃

R∈Q+

⋂

ε∈Q+

⋃

x∗∈X∗\{0}
G(R, ε, x∗), (3.13)

where

G(R, ε, x∗) := {x ∈ X; ∃z ∈ U(x, ε) : d(T (x,R, z, x∗, α), A) > 0}.
It is easy to see that the inclusion “⊃” holds. To prove “⊂” consider x ∈ S.
Then we can find R′ > 0 such that for every ε > 0 there are z′ ∈ U(x, ε)
and x∗ ∈ X∗ \ {0} such that T (x,R′, z′, x∗, α) ∩ A = ∅. Fix R ∈ (0, R′) ∩ Q.
Take any ε ∈ Q+. Then we find z′ ∈ U(x, ε) and x∗ ∈ X∗ \ {0} such that
T (x,R, z′, x∗, α)∩A = ∅. Pick some z ∈

(

z′ +C(x∗, α)
)

∩U(x, ε). Then we have
d(T (x,R, z, x∗, α), X \U(x,R′)) ≥ R′−R > 0 and by Lemma 3.5.7 we have that

d
(

T (x,R, z, x∗, α), X \ (z′ + C(x∗, α))
)

> 0.

Since
A ⊂

(

X \ U(x,R′)
)

∪
(

X \ (z′ + C(x∗, α)
)

,

we get x ∈ G(R, ε, x∗) and the equality (3.13) is proved.
Now it is sufficient to show that the set G(R, ε, x∗) is open. To this end fix

R > 0, ε > 0, x∗ ∈ X∗\{0} and consider x ∈ G(R, ε, x∗). There exists z ∈ U(x, ε)
with d(T (x,R, z, x∗, α), A) =: 2η > 0. Fix any x′ ∈ U(x, η). We have

T (x′, R, z + x′ − x, x∗, α) = (x′ − x) + T (x,R, z, x∗, α).

This gives d(T (x′, R, z+ x′− x, x∗, α), A) ≥ η > 0. Since z+ x′− x ∈ U(x′, ε) we
have x′ ∈ G(R, ε, x∗). This implies U(x, η) ⊂ G(R, ε, x∗) and we are done.

Corollary 3.5.9. Let X be a Banach space, α ∈ [0, 1), and A ⊂ X be a Souslin
set. Then the set NPα-cone

X
(A) is Souslin.

Theorem 3.5.10. For any suitable elementary submodel M the following holds.
Let X be an Asplund space, A ⊂ X be Souslin, and α ∈ [0, 1)∩Q. Then whenever
{X,A} ⊂M , the following are true:

A is α-cone porous in X ↔ A ∩XM is α-cone porous in XM ,

A is σ-α-cone porous in X ↔ A ∩XM is σ-α-cone porous in XM ,

A is cone small in X ↔ A ∩XM is cone small in XM .

Proof. Let us fix a (∗)-elementary submodel M with {X,A} ⊂ M . Then the
following formula is clearly true

∃R point-set relation on X ∀x ∈ X ∀B ⊂ X :

(B is α-cone porous at x↔ (x,B) ∈ R).
(∗)

The absoluteness of this formula and its subformula implies that Pα-cone
X ∈ M .

The first two parts of the theorem now follow using Propositions 3.4.6 and 3.5.6
and Corollary 3.5.9. The third equivalence follows from the second one via the
definition of the cone smallness.
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Note that no one implication in the Theorem above is trivial. However, one
can say that it is much harder to prove the implications “⇐”. The reason is
that in the proof we use the complicated notion of a Foran-Zaj́ıček scheme from
Section 3.3.

Corollary 3.5.11. Let X be an Asplund space and A ⊂ X be a Souslin set. Then
for every separable space V0 ⊂ X there exists a closed separable space V ⊂ X such
that V0 ⊂ V and

A is cone small in X ↔ A ∩ V is cone small in V.

3.6 Applications

Definition 3.6.1 ([8]). Let X be a real Banach space, G ⊂ X be open. A
function f : G → R is called approximately convex at x0 ∈ G if for every ε > 0
there exists δ > 0 such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ελ(1− λ)‖x− y‖
whenever λ ∈ [0, 1] and x, y ∈ U(x0, δ). We say that f is approximately convex
on G if it is approximately convex at each x0 ∈ G.

Remark 3.6.2. The class of approximately convex functions includes semiconvex
functions and strongly paraconvex functions (for definitions see, e.g., [15]).

We will apply our result about cone small sets to prove the following gener-
alization of [15, Theorem 5.5] to nonseparable Asplund spaces. Note that the
following theorem is also a strengthening of [15, Theorem 5.9] which states that
a continuous approximately convex function on an Asplund space is Fréchet dif-
ferentiable except for the points from the union of a cone small set and a σ-cone
supported set. Note also that, unlike [15, Theorem 5.5], our Theorem 3.6.3 states
that the exceptional set is cone small and not angle small. However, it is easy to
prove that these two notions are equivalent if X is separable.

Theorem 3.6.3. Let X be an Asplund space and G ⊂ X be open. Let f : G→ R

be a continuous and approximately convex function. Then the set of all points of
G at which f is not Fréchet differentiable is cone small.

To prove the theorem we will need several notions and a lemma. The notion
of LAN mapping is defined and studied in [12].

Definition 3.6.4. Let X be a Banach space and G ⊂ X be open. We say a
(singlevalued) mapping g : G → X∗ is LAN (locally almost nonincreasing) if for
any a ∈ G and ε > 0 there exists δ > 0 such that for any x1, x2 ∈ U(a, δ) we have

(g(x1)− g(x2))(x1 − x2) ≤ ε‖x1 − x2‖.
We say a multivalued mapping T : G → X∗ is submonotone on G if for any

a ∈ G and ε > 0 there exists δ > 0 such that for any x1, x2 ∈ U(a, δ), x∗1 ∈ T (x1),
and x∗2 ∈ T (x2) we have

(x∗1 − x∗2)(x1 − x2) ≥ −ε‖x1 − x2‖.
Observe that T is LAN if and only if −T is singlevalued and submonotone.
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The following lemma generalizes [12, Lemma 3] to general Asplund spaces.

Lemma 3.6.5. Let X be Asplund, G ⊂ X be open and g : G → X∗ be LAN.
Then g is continuous at all points of G except those which belong to a cone small
set.

Proof. Denote by A the set of all points of G at which g is not continuous (then
A is Fσ) and let us fix a (∗)-elementary submodel M with {X, g} ⊂ M . Then
XM is a Banach space with separable dual and g↾XM

is clearly LAN. Denote by
B the set of all points of G ∩XM (the intersection is nonempty) at which g↾XM

is not continuous. By [12, Lemma 3], B is angle small in XM . But [1, Theorem
5.2] gives that B = A ∩ XM and that A ∈ M . Hence, by Theorem 3.5.10, A is
cone small.

Proof of Theorem 3.6.3. By [15, Lemma 2.5 (ii) and (iii)] the multivalued map-
ping

x 7→ ∂Ff(x) :=
{

x∗ ∈ X∗; lim inf
h→0

f(x+ h)− f(x)− x∗(h)

‖h‖ ≥ 0
}

is submonotone on G. Choose any selection g of ∂Ff on G; then g is also sub-
monotone. Lemma 3.6.5 implies that g is continuous on G up to a cone small set.
Now, [15, Lemma 5.4] says that f is Fréchet differentiable at points of continuity
of g, concluding the proof.

Another possible application of Theorem 3.5.10 is the following strengthening
of [10, Proposition 4.2] (for definitions see [10]).

Proposition 3.6.6. Let Y be a countably Daniell ordered Banach space with the
Radon-Nikodým property. Assume that

(a) either X is a closed subspace of c0(∆), where ∆ is an uncountable set,

(b) or X = C(K), where K is scattered compact topological space.

Let A ⊂ X be an open convex set and f : A→ Y be a continuous convex operator.
Then f is Fréchet differentiable on A except for a cone small Γ-null set.

The only difference from the original assertion is that, instead of σ-lower
porous, we have the exceptional set cone small which is a stronger assertion. We
will, however, omit the proof, as there is no difference from the proof in [10];
one just needs to use our Theorem 3.5.10 instead of [3, Theorem 5.4] which is an
analogue of 3.5.10 for σ-lower porosity.

Note that we also obtain an analogue of [10, Proposition CR] for cone small-
ness. Since this could be of some independent interest, we formulate it below (see
also [3, Theorem 1.2]).

Proposition 3.6.7. Let X, Y be Banach spaces, G ⊂ X be an open set, and
f : G → Y an arbitrary mapping. Then for every separable space V0 ⊂ X there
exists a closed separable space V ⊂ X such that V0 ⊂ V and that the following
are equivalent:

(i) the set of all points where f is not Fréchet differentiable is cone small in
X,

(ii) the set of all points where f ↾V ∩G is not Fréchet differentiable is cone small
in V .
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[3] Marek Cúth and Martin Rmoutil. σ-porosity is separably determined.
Czechoslovak Math. J., 63(138)(1):219–234, 2013.

[4] Robert Deville, Gilles Godefroy, and Václav Zizler. Smoothness and renorm-
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In the present article we provide a sufficient condition for a closed set
F ∈ Rd to have the following property which we call c-removability: When-
ever a function f : Rd → R is locally convex on the complement of F , it
is convex on the whole Rd. We also prove that no generalized rectangle of
positive Lebesgue measure in R2 is c-removable. Our results also answer
the following question asked in an article by Jacek Tabor and Józef Tabor
[J. Math. Anal. Appl. 365 (2010)]: Assume the closed set F ⊂ Rd is such
that any locally convex function defined on Rd \ F has a unique convex
extension on Rd. Is F necessarily intervally thin (a notion of smallness
of sets defined by their “essential transparency” in every direction)? We
prove the answer is negative by finding a counterexample in R2.
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4.1 Introduction

The present article is mostly motivated by the work [5] about negligible sets for
convexity of functions in Rd, where an interesting open problem was raised. We
shall need the following notion introduced in [5].

A set A ⊂ Rd is called intervally thin if for any x, y ∈ Rd and any ε > 0 there
exist x′ ∈ B(x, ε) and y′ ∈ B(y, ε) such that [x′, y′] ∩ A = ∅.

Problem TT. Let A ⊂ Rn be closed. Suppose that for an arbitrary open set U
containing A every locally convex function f : U \ A → R has a unique locally
convex extension on U . Is it then necessarily true that A is intervally thin?

Arguably our main result is that the answer to this question is negative. Ex-
ample 4.4.3 and Remark 4.4.4 provide a closed set K which is not intervally thin,
but which enjoys the “unique extension property for convex functions” (UEP)
from Problem TT. We took the liberty of calling this set K “the Holey Devil’s
Staircase” since it is the graph of the classical Cantor function (the Devil’s Stair-
case) minus all the horizontal open line segments contained in the graph (in other
words, it is the graph of the restriction of the Cantor function to the Cantor set).

One can readily verify that the Holey Devil’s Staircase is not intervally thin.
It is enough to consider the last intersection of the graph of the Cantor function
with any line segment with endpoints in (−∞, 0) ×

(

0, 1
2

)

and (1,∞) ×
(

1
2
, 1
)

;
clearly, this intersection is an element of K.

To prove that K has the UEP, is considerably more difficult and our effort in
this direction has inspired a large part of this article.

The main result of [5] is essentially the following theorem. Note that since we
restrict our attention to convex functions (as opposed to ω-semiconvex functions
studied in [5]), we change the formulation of the theorem accordingly:

Theorem TT. Let U be an open subset of Rd and let A be a closed intervally
thin subset of U . Let f : U \ A → R be a locally convex function. Then f has a
unique locally convex extension on U .

The proof of this theorem consists of two principal steps:

(1) First, one proves that there is a unique continuous extension; this is the more
difficult part.

(2) Once one has the continuous extension, it is then easy to prove that it is
locally convex.

Our aim is to apply this scheme to our set K. It turns out that in this case
the easier step is (1); we only need a simple generalization of the corresponding
theorem from [5]—which we have in Lemma 4.4.2.

Performing step (2) for K is the crucial part and it motivates the introduction
of c-removable sets with the consequent natural question: Which sets are c-
removable?

Definition 4.1.1. We say that a closed set A ⊂ Rd is c-removable if the following
is true: Every real function f on Rd is convex whenever it is continuous on Rd

and locally convex on Rd \ A.
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A consequence of Theorem TT is that all closed intervally thin sets are c-
removable, but this fact does not help us. In R2 we were able to find a sufficient
condition more general than interval thinness which covers also the case of our
set K:

Proposition 1. Let K ⊂ R2 be compact and intervally thin in two different
directions. Assume that for a dense set of line segments L ⊂ R2 the cardinality
of K ∩ L is at most countable. Then K is c-removable.

Here interval thinness of K in a direction means that to any given line segment
in that direction we can find arbitrarily close line segments contained in the
complement of the set K. It is not difficult to see that for any closed set K
intervally thin in a direction v, any continuous function which is locally convex
outside K is necessarily convex on all lines parallel to v. Hence, the assumption of
interval thinness ofK in two directions ensures that our function is convex in those
two directions (i.e. is essentially separately convex) which we can use further in
the proof—the key Lemma 4.3.1 tells us that a separately convex function cannot
“have a concave angle” on any line.

The condition from the proposition may seem rather artificial, but it emerges
quite naturally from our method of the proof. What is more, it is easily seen to
be more general than interval thinness and is fulfilled by K. (Hence, the Holey
Devil’s Staircase is c-removable.) However, we were not able to generalize this
condition to higher dimensions; instead, we used the geometric measure theory to
obtain the following theorem which in R2 is strictly weaker than Proposition 1.

Theorem 1. Let M ⊂ Rd be a compact set which is intervally thin in d linearly
independent directions n1, . . . , nd. Suppose thatM has σ-finite (d−1)-dimensional
Hausdorff measure. Then M is c-removable.

This condition does not include interval thinness because there are intervally
thin sets of positive d-dimensional measure in Rd. For instance, in R2 one can
construct such a set by taking the full unit square and digging in it countably
many straight tunnels in such a way that the rest is intervally thin but still of
positive measure.

Among other signs, also from this fact it seems rather obvious that this the-
orem is far from being a characterization of c-removable sets. In fact, it is not
even clear whether all c-removable sets in R2 are totally disconnected; from the
considerations contained in the second part of Section 5 it seems plausible that
the Koch curve might be an example of a non-trivial c-removable continuum in
R2. (Of course, such an example has to be rather complicated as it is not difficult
to prove that no smooth curve in R2 is c-removable.)

On the other hand, we have the following.

Theorem 2. Let A,B ⊆ R be closed sets of positive Lebesgue measure. Then
A×B is not c-removable.

This theorem is interesting only for A, B totally disconnected (otherwise A×B
contains a non-degenerated line segment and the statement is trivial, as explained
in the proof). However, we do not know (and would like to know) whether e.g.
the Cantor dust (C × C where C is the Cantor set) is c-removable. As a matter
of fact, possibly the most interesting of related open problems is:
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Problem. Is there a closed totally disconnected Lebesgue null set in R2 which
is not c-removable?

It is worth pointing out that Theorem 2 is related to the recent work [4]
where a totally disconnected compact subset of R2 which is not c-removable is
constructed. The construction is rather complicated, but the witnessing function
has a compact support, making the example stronger. However, even Theorem 2
is enough to achieve the main goal of [4], which is to disprove a theorem by
L. Pasqualini from 1938 [3, Theorem 51] stating that any totally disconnected
compact set in R2 is c-removable. It was the connection to this old article what
convinced us that, of the two steps involved in the proof of Theorem TT, the
crucial one is actually the second.

4.2 Notation and basic facts

All spaces shall be equipped with the Euclidean metric. We denote by B(x, ε) the
open ball (with respect to the Euclidean metric) with the centre x and radius ε.
For a set M ⊂ Rd, by M c we mean the complement of M in Rd. Since confusion
is unlikely, the symbol (x, y) denotes an open interval in R as well as the point
in R2 with coordinates x and y. The symbol [x, y] denotes the line segment with
endpoints x and y (when x, y ∈ Rd, d ≥ 1). By Hk we denote the k-dimensional
Hausdorff measure. For M ⊂ Rd and α a countable ordinal we denote the α-th
Cantor-Bendixson derivative of M by M (α). The unit sphere in Rd is denoted by
Sd−1. For v ∈ Rd we denote the orthogonal complement of v by v⊥. The symbol
LinM denotes the linear span of M ⊂ Rd. For a fixed d ∈ N denote the standard
basis of Rd by {e1, . . . , ed}.

Let U ⊂ Rd (d ≥ 1) be open and f : U → R be a function. We say that f
is locally convex on U if for every x ∈ U there is some V ⊂ U , an open convex
neighbourhood of x, such that the function f |V is convex. It is easy to see that
a locally convex function is convex on any convex set contained in its domain.

A function f : Rd → R is said to be separately convex, if it is convex on all
lines parallel to the coordinate axes.

The set A ⊂ Rd is called k-rectifiable if there exist countably many Lipschitz
mappings fi : Rk → Rd such that

Hk

(

A \
∞
⋃

i=0

fi
(

Rk
)

)

= 0.

Since we will work only with the case k = d − 1, we will call (d − 1)-rectifiable
sets just rectifiable.

Let G(d, k) be the Grassmannian of k-dimensional linear subspaces of Rd

equipped with the unique invariant probability measure νdk . Besides the Hausdorff
measure we will also use the k-dimensional Favard measure (integralgeometric
measure) Ik on Rd which is for a Borel set M defined as

Ik(M) =
1

β(d, k)

∫

G(d,k)

∫

V

H0(M ∩ p−1
V (y)) dHk(y) dνdk(V ),

where pV is the orthogonal projection to V and the number β(d, k) is a non-zero
constant depending only on d and k whose precise value is not important for us.
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We will also need the following properties of the Favard measures. LetM ⊂ Rd

be a Borel set such that Hd−1(M) <∞. Then M can be expressed as a union of
a rectifiable set R and a set P satisfying Id−1(P ) = 0 (c.f. [1, 3.3.13]). Moreover,
each rectifiable set R ⊂ Rd satisfies Id−1(R) = Hd−1(R) (c.f. [1, 3.2.26]).

4.3 Separately convex functions

The following lemma is a variant of an unpublished observation by V. Šverák (see
[6]). For the convenience of the reader we provide a proof as we were not able to
find one in the literature.

Lemma 4.3.1. Let f : R2 → R be a separately convex function. Define g : R→ R

by g(t) = f(t, t). Then

lim inf
t→0+

g(x+ t) + g(x− t)− 2g(x)

t
≥ 0 (4.1)

for every x.

Proof. Aiming for a contradiction, assume that there is a separately convex func-
tion f on R2 and x ∈ R such that inequality (4.1) with g(t) = f(t, t) does not
hold. There is no loss of generality in assuming that x = 0 and g(0) = 0, which
in turn implies that there is a constant c such that

lim inf
t→0+

g(t) + g(−t)
t

< c < 0.

We can suppose (possibly by multiplying f by 1
|c|) that c = −1. Hence, there is

a sequence tn ց 0 such that for each n ∈ N,

g(tn) + g(−tn)

tn
≤ −1. (4.2)

For t > 0 put

σ(t) := f(t,−t) + f(−t, t) and ρ(t) := f(t, t) + f(−t,−t).

Note that, since f is separately convex,

σ(t) + ρ(t) ≥ 0 (4.3)

for every t. Now we shall prove the following:
Claim: If for some p, σ(tn) ≥ ptn, for all n, then σ(tn) ≥ (p+ 2)tn for all n.

This is enough to prove the lemma since (4.3) and (4.2), together with the
above claim, imply σ(tn) ≥ L for every n and every L ∈ R, which is not possible.

To prove the claim, first observe that due to (4.2) we know that for each n,

ρ(tn) ≤ −tn.

This implies for each n,
σ(tn)− ρ(tn)

2tn
≥ p+ 1

2
.
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By separate convexity of f , we get that

f(tk, tn) + f(−tk,−tn) ≥ ρ(tk) + (tn − tk) · σ(tk)− ρ(tk)

2tk

provided k > n. If we consider k →∞, we obtain

f(0, tn) + f(0,−tn) ≥ tn
p+ 1

2
.

Using the separate convexity of f one more time together with (4.2) we get

σ(tn) ≥ f(0, tn) + f(0,−tn) + (f(0, tn) + f(0,−tn)− ρ(tn)) ≥ (p+ 2)tn.

Definition 4.3.2. The set A ⊂ Rd is called intervally thin in direction v ∈ Sd−1

if for any x, y ∈ Rd with x−y parallel to v, and any ε > 0, there exist x′ ∈ B(x, ε)
and y′ ∈ B(y, ε) such that [x′, y′] ∩ A = ∅.

Proof of Theorem 1. First we need to prove the following claim:
Claim: Let M ⊂ Rd be as in the statement of Theorem 1. For any non-convex
continuous function f : Rd → R, there is a line L ⊂ Rd such that L ∩M is (at
most) countable and f |L is non-convex. Moreover, L can be found such that its
direction v ∈ Sd−1 is not a linear combination of any d−1 vectors from n1, . . . , nd.

To prove the Claim, express M as a countable union of sets Mn satisfying
Hd−1(Mn) <∞. By [1, 3.3.13] we can express each Mn in the form Pn ∪Rn with
Id−1(Pn) = 0 and Rn rectifiable.

Fix n ∈ N. Using [1, 3.2.26] we see that

Id−1(Rn) = Hd−1(Rn) <∞.

This means, by the definition of the Favard measure, that for almost every H ∈
G(d, d−1), almost every line perpendicular to H intersects Rn in at most finitely
many points. In particular, almost every line intersects Rn in finitely many points.

So, putting P =
⋃

Pn and R =
⋃

Rn, we have that Id−1(P ) = 0, and also
that almost every line intersects R in at most countably many points. Hence,
almost every line intersects M = P ∪R in at most countably many points.

Since f is non-convex, the set A consisting of all lines L such that f |L is
non-convex has a positive measure. To finish the proof of the Claim we simply
pick a line from A such that L ∩M is at most countable, and it is obvious we
can do so in such a way that the “moreover” part of the Claim holds as well.

Having proved the Claim, we shall now prove the theorem by induction in d.
Assume first that d = 2; we shall proceed by contradiction. To that end, let there
be given a set M ⊂ R2 as in the statement of the theorem and a non-convex
continuous function f : R2 → R which is locally convex on M c. Let us fix a line
L which the Claim gives us for M and f , and let us fix a point z ∈ L.

Due to the last part of the Claim, we can suppose (possibly by composing
f with a suitable affine mapping) that ni = ei (i = 1, 2), v = 1√

2
(1, 1) (v is

the direction of L from the Claim) and that z = (0, 0). In particular, these
assumptions imply that f is separately convex.

Put K := M ∩ L; then K is a countable compact. By Lemma 4.3.1 we know
that if f |L is locally convex on L \ N for some closed set N ⊂ L, then it is
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convex on a neighbourhood of any isolated point of N . Using this observation,
one can readily prove by induction that f |L is locally convex on L\K(α) for every
countable ordinal α. But, since K is a countable compact, there is a countable
ordinal β such that K(β) = ∅ which is a contradiction with the assumption of f |L
being non-convex. This finishes the proof for d = 2.

Suppose now that the theorem is true for every d up to k − 1 ≥ 2; we will
prove that it is true for d = k as well, again by contradiction. Again, let us have
M ⊂ Rd and f : Rd → R with M as in the statement of the theorem and f a
non-convex continuous function on Rd which is locally convex on M c. As before,
we fix a corresponding line L in direction v ∈ Sd−1 from the Claim, we fix a
point z ∈ L, and assume without loss of generality that ni = ei (i = 1, . . . , d),
v = 1√

d
(1, . . . , 1) ∈ Rd and that z = (0, . . . , 0) ∈ Rd.

Put ν := 1√
d
(0, 1, 1, . . . , 1) ∈ Rd, A(p) := pe1 + Lin{e2, . . . , ed} and L(p) :=

pe1 + Lin{ν} for p ∈ R. Then it is easy to verify that one of the following two
statements is true:

(a) f |L(p) is non-convex for every p from some interval (a, b),

(b) f |L(p) is convex for every p.

Indeed, take any convergent sequence of real numbers pn → p∞ such that f |L(pn)
is convex for every n. Pick t1 < t2 < t3 with t2 = λt1 + (1 − λ)t3 and define
xiα = pαe1 + tiν for i = 1, 2, 3 and α ∈ N ∪ {∞}. For each n we have

f(x2n) ≤ λf(x1n) + (1− λ)f(x3n).

Since f is continuous and xin → xi∞ for i = 1, 2, 3, we obtain that

f(x2∞) ≤ λf(x1∞) + (1− λ)f(x3∞)

as well. Therefore the set {p ∈ R : f |L(p) is convex} is closed.
If (a) holds, then by [2, Theorem 7.7] we know that M ∩ A(q) is of σ-finite

(d− 2)-dimensional Hausdorff measure for some q ∈ (a, b). Applying the (d− 1)-
dimensional version of the theorem (which we assume to be true) to the function
f |A(q), we obtain a contradiction.

On the other hand, (b) is not possible either. Indeed, we can apply Lem-
ma 4.3.1 to f |Lin{v,e1} the same way as in the proof of the case d = 2 and obtain a
contradiction with the fact that f is non-convex on the line L which is contained
in Lin{v, e1}.

Proof of Proposition 1. Let us have a set K as in Proposition 1, and a continuous
function f : R2 → R which is locally convex on Kc. It is then easy to prove that
f is convex on all lines in the directions in which K is intervally thin (use a
limit argument similar to the one which was used in the above proof to show the
dichotomy of (a) and (b)). As in the above proof for d = 2, we can now use
Lemma 4.3.1 to show that f is convex on each line segment from the (dense) set
of line segments which intersect K in at most countably many points. It follows,
again by a limit argument, that f is convex on all line segments, i.e. f is convex
on R2.
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4.4 Extensions of locally convex functions

Definition 4.4.1. We say that a set A ⊂ Rd is totally disconnected in a direction
v ∈ Sd−1 if the set A ∩ l is totally disconnected for every line l parallel to v.

The following lemma is a refinement of [5, Theorem 3.1] (note that the non-
trivial part of the theorem is the existence of a unique continuous extension).

Lemma 4.4.2. Suppose that A ⊂ Rd is closed and both totally disconnected and
intervally thin in some direction v ∈ Sd−1. Let U ⊂ Rd be open. Then every
function locally convex on Ac ∩ U admits a continuous extension to U.

Proof. Let f : U → R be locally convex on Ac ∩ U . Choosing x ∈ U (we can
clearly assume U 6= ∅) and ε > 0, we need to prove that there is a δ > 0 such
that if |x− a|, |x− b| ≤ δ and a, b ∈ Ac ∩U , then |f(a)− f(b)| < ε. Without any
loss of generality we can suppose that x = 0 and that v is parallel to one of the
coordinate axes.

For u ∈ Rd and r > 0 put lu := u+ Lin{v} and C(u, r) := u+ [−r, r]d. Since
A is closed and totally disconnected in the direction v, we can find α > 0 and
α
2
> γ > 0 such that for y := αv we have C(y, γ) ⊂ Ac∩U , C(−y, γ) ⊂ Ac∩U , and

such that the convex hull of C(y, γ)∪C(−y, γ) is contained in U . Since f is locally
convex on Ac∩U and therefore locally Lipschitz on Ac∩U , there isK > 0 such that
f is K-Lipschitz on both C(y, γ) and C(−y, γ). Using the fact that A is totally
disconnected in the direction v again, we can find min

(

ε
25K

, α− 2γ
)

> λ > 0
such that for z := λv we have z ∈ Ac ∩U . Since f is continuous on Ac ∩U , there
is λ > δ > 0 such that for every u ∈ C(z, δ) we have |f(z)− f(u)| ≤ ε

4
.

To obtain a contradiction, suppose that there are a, b ∈ C(x, δ) ∩ Ac such
that |f(a) − f(b)| ≥ ε. Let xa and xb be the unique points in (z + v⊥) ∩ la and
(z + v⊥) ∩ lb, respectively. Then xa, xb ∈ C(z, δ) and so |f(z) − f(xa)| ≤ ε

4
and

|f(z)− f(xb)| ≤ ε
4
. Moreover, one of the inequalities

f(a)− f(z) ≥ ε

2
, f(a)− f(z) ≤ −ε

2
, f(b)− f(z) ≥ ε

2
, f(b)− f(z) ≤ −ε

2

must hold. Therefore, one of the inequalities

f(a)− f(xa) ≥
ε

4
, f(a)− f(xa) ≤ −

ε

4
, f(b)− f(xb) ≥

ε

4
, f(b)− f(xb) ≤ −

ε

4
(4.4)

must hold as well.
Now, consider for instance the inequality f(a) − f(xa) ≥ ε

4
. Since A is in-

tervally thin in the direction v, there are three collinear points sy ∈ C(−y, γ),
sa ∈ C(x, δ) and sxa

∈ C(z, δ) such that [sy, sxa
] ⊂ U \ A and such that

|f(sa)− f(a)| ≤ ε

16
and |f(sxa

)− f(xa)| ≤
ε

16
.

Then we have

|sa − sxa
| ≤ |x− z|+ 2δ = λ+ 2δ ≤ 3λ ≤ 3ε

25K
. (4.5)

Moreover,

f(sa)− f(sxa
) ≥ f(a)− f(xa)− |f(sxa

)− f(xa)| − |f(sa)− f(a)|
≥ ε

4
− ε

16
− ε

16
=
ε

8
.

(4.6)
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Using (4.5) and (4.6) we obtain

f(sa)− f(sxa
)

|sa − sxa
| ≥ ε

8
· 25K

3ε
> K. (4.7)

Choose an arbitrary w ∈ ([sy, sxa
] \ {sy}) ∩ C(−y, γ). From the convexity of f

on [sy, sxa
], the fact that [sy, w] ⊂ [sy, sa] ⊂ [sy, sxa

], (4.7) and the fact that f is
K-Lipschitz on C(−y, γ) we obtain

K <
f(sa)− f(sxa

)

|sa − sxa
| ≤ f(sy)− f(w)

|sy − w|
≤ K,

which is not possible. The remaining cases in (4.4) can be proved following the
same lines.

Example 4.4.3. There is a compact set K ⊂ R2 which is not intervally thin and
such that for every f : Kc → R locally convex on Kc there is a convex extension
F : R2 → R.

Proof. Let h : [0, 1] → [0, 1] be the classical Cantor function (the Devil’s Stair-
case) and let C ⊂ [0, 1] be the Cantor ternary set. Now define the set K as the
graph of h restricted to C (so K is the set named in the introduction as the Holey
Devil’s Staircase).

First note that H1(K) < H1(graphh) < ∞ and that K is intervally thin in
directions (1, 0) and (0, 1). Therefore using Theorem 4.1 and Lemma 4.4.2 we
obtain that K has the desired extension property and so it remains to prove that
K is not intervally thin. Define H : R→ R by H = h on [0, 1], H = 0 on (−∞, 0)
and H = 1 on (1,∞). Then R2 \ graphH has two components, say C+ and C−,
and therefore for any x± ∈ C± the line segment [x+, x−] intersects graphH. Now
take x+ ∈ B((−1

3
, 1
3
), 1

4
) and x− ∈ B((4

3
, 2
3
), 1

4
) and set

x := sup{a ∈ R : there exists b ∈ R such that (a, b) ∈ [x+, x−] ∩ graphH}.

Then (x,H(x)) ∈ K.

Remark 4.4.4. Note that the set K from Example 4.4.3 also provides an answer
to Problem TT (see the introduction) in the negative. This can be seen from the
fact that the argument used in the proof of Example 4.4.3 can be easily localized
using the self affinity of K.

4.5 Two examples

In the first part of this section we prove Theorem 2 which provides us with a very
natural class of examples of sets which are not c-removable. We shall need the
following definitions.

Let β, ε > 0. Then we define the function gβ,ε : R2 → R by

gβ,ε(x, y) :=











βy2 − 2εx− ε2, (x, y) ∈ (−∞,−ε]× R,

βy2 + x2, (x, y) ∈ (−ε, ε)× R,

βy2 + 2εx− ε2, (x, y) ∈ [ε,∞)× R.
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For w ∈ R, set

gwβ,ε(x, y) := gβ,ε(x− w, y) and hwβ,ε(x, y) := gwβ,ε(y, x).

One can readily verify that all the functions just defined are convex and C1.
The Hessian matrix of gwβ,ε in (−∞,−ε + w) × R, (−ε + w, ε + w) × R and

(ε+ w,∞)× R, respectively, is
(

0 0
0 2β

)

,

(

2 0
0 2β

)

and

(

0 0
0 2β

)

, (4.8)

and similarly the Hessian matrix of hwβ,ε in R× (−∞,−ε+w), R× (−ε+w, ε+w)
and R× (ε+ w,∞), respectively, is

(

2β 0
0 0

)

,

(

2β 0
0 2

)

and

(

2β 0
0 0

)

. (4.9)

Further, define the functions fi : R2 → R, i ∈ {1, 2, 3, 4}, as follows:

f1(x, y) :=

{

1
12
x2 + 4(y − 1)2, (x, y) ∈ R× (1,∞),

1
12
x2, (x, y) ∈ R× (−∞, 1],

and f2(x, y) := f1(x,−y), f3(x, y) := f1(y, x) and f4(x, y) := f3(−x, y).
Again, it is easy to check that the functions fi, i = 1, 2, 3, 4 are C1 and that

the Hessian matrix of (e.g.) f1 in R× (1,∞) and R× (−∞, 1), respectively, is
(

1
6

0
0 8

)

and

(

1
6

0
0 0

)

. (4.10)

It is also useful to note that the Hessian Matrix of ϕ : (x, y) 7→ −xy is
(

0 −1
−1 0

)

. (4.11)

Lemma 4.5.1. Let there, for each i ∈ N, be given εi > 0, βi ∈
(

0, 1
80

)

and
wi ∈ (−1, 1) such that

∑

βi = 1
4
,
∑

εi <
1
24

and (wi − εi, wi + εi) are pairwise
disjoint intervals contained in [−1, 1]. Denote gi := gwi

βi,εi
and hi := hwi

βi,εi
, define

the function f : R2 → R as

f(x, y) := ϕ(x, y) +
4
∑

i=1

fi(x, y) +
∞
∑

i=1

(gi(x, y) + hi(x, y)) ,

and define the set K ⊂ R as

K := [−1, 1] \
∞
⋃

i=1

(wi − εi, wi + εi).

Then f has the following properties:

1. It is non-convex, since

f(−1,−1) + f(1, 1)

2
< f(0, 0);
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2. it is locally convex on R2 \K2 and continuous on R2.

Proof. First, we need to check that f is a well-defined function. To that end, it
is sufficient to note that for any R > 1 and any i ∈ N the maximum of gi on
[−R,R]2 is attained at the point (R,R) and is less than βiR

2 +2εi2R. Obviously,
the same is true for hi, and so the infinite series in the definition of f converges
locally uniformly on R2.

Now, the Hessian matrix of f at a point (x, y) ∈ R2 \K2 need not exist; how-
ever, all the summands in the definition of f , excluding ϕ, are convex functions.
Since the sum of convex functions is convex, it is enough to prove that at any
point (x, y) outside K2 we can find finitely many fi’s, gi’s and hi’s such that their
sum together with −xy has a positively definite Hessian matrix at (x, y).

This is easy to do if (x, y) /∈ [−1, 1]2; in this case we only need to use one of
the fi’s. For example, if (x, y) ∈ R× (1,∞), then we see from (4.10) and (4.11)
that ϕ+ f1 is convex at (x, y).

The “worst case” is that (x, y) ∈ [−1, 1]2 lies in a single vertical stripe of the
form (wk − εk, wk + εk)×R (fix the k) and not in any of the horizontal stripes of
the form R× (wi − εi, wi + εi). In this case we find a finite set F ⊂ N such that
(x, y) does not lie on the boundary of any stripe of the form R× (wi− εi, wi + εi)
with i ∈ F (which can happen at most twice) and such that

αF :=
∑

i∈F
βi >

9

40
.

Let us now consider the function

fF := ϕ+
∑

i∈F
(gi + hi) +

{

gk, if k /∈ F ;

0, if k ∈ F.

Since we know that (x, y) does not lie on the boundary of any of the stripes
(horizontal or vertical) involved in the definition of fF , the Hessian matrix of fF
exists on a convex open neighbourhood U of (x, y) and it is easy to see from (4.8)
and (4.9) that its determinant satisfies

det (HfF (a, b)) ≥ 4
(

αF + α2
F

)

− 1 > 4

(

9

40
+

81

1600

)

− 1 > 0, (a, b) ∈ U.

As ∂2fF
∂x2 > 0, we obtain that fF is convex on U . On the other hand, f − fF is

convex and therefore f is convex on U ; one can check the other cases in a similar
way concluding the proof of property (b).

It remains to verify property (a). Denote

δi :=
gi(−1,−1) + gi(1, 1)

2
− gi(0, 0).

An easy computation shows that

δi = βi + 2εi(1− |wi|)
and clearly the same is also true if we substitute all the occurrences of g in the
definition of δi by h. Hence,

∞
∑

i=1

δi =
∞
∑

i=1

βi + 2
∞
∑

i=1

(εi(1− |wi|)) <
1

4
+ 2

∞
∑

i=1

εi <
1

3
.
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We also have
4
∑

i=1

(

fi(−1,−1) + fi(1, 1)

2
− fi(0, 0)

)

= 4 · 1

12
=

1

3
.

The last two facts clearly imply (a).

Proof of Theorem 2. If A×B contains a line segment then it is not c-removable
as follows from [5, Example 2.1]. From now on, assume that the sets A and B
are totally disconnected.

By the Lebesgue density theorem we can find points a ∈ R and b ∈ R which
are density points of A and B respectively. Without loss of generality assume
that a = b = 0; since A and B are both closed, 0 ∈ A ∩ B. Then 0 is clearly a
point of density of A ∩ B ∩ (−A) ∩ (−B); consequently we can further assume
that the sets A and B are symmetrical. We shall prove that (A ∩ B)2 is not
c-removable.

Take an r > 0 such that 1
2r
λ (A ∩ B ∩ (−r, r)) > 23

24
and such that r (and

therefore also −r) is in A ∩ B. Without loss of generality we can assume that
r = 1. Now, for i ∈ N take wi ∈ (−1, 1) and εi > 0 such that the intervals
(wi − εi, wi + εi) are pairwise disjoint and such that

[0, 1] \ A ∩ B =
∞
⋃

i=1

(wi − εi, wi + εi).

The assumptions of Lemma 4.5.1 are now satisfied for any choice of positive
numbers βi, i ∈ N, such that

∑

βi = 1
4
.

The following two lemmas are concerned with the Koch curve and constitute
a partial result regarding its c-removability. See also Problem 4.6.4.

Lemma 4.5.2.

lim
k→∞

(

3k

k−1
∏

j=0

3j+1 + 3

3j+1 + 1
− 2

k−1
∑

m=0

3m

m−1
∏

j=0

3j+1 + 3

3j+1 + 1

)

=∞ .

Proof. First, consider the following formula which follows easily by induction

k−1
∏

j=0

3j+1 + 3

3j+1 + 1
=

2 · 3k

3k + 1
.

Now

2

(

32k

3k + 1
− 2

k−1
∑

m=0

32m

3m + 1

)

=2

(

3k − 3k

3k + 1
− 2

k−1
∑

m=0

(

3m − 3m

3m + 1

)

)

=2

(

3k − 2
k−1
∑

m=0

3m − 3k

3k + 1
+ 2

k−1
∑

m=0

3m

3m + 1

)

≥2

(

3k − 2
3k − 1

3− 1
− 1 + 2

k−1
∑

m=0

3m

3m + 1

)

=2

(

1− 1 + 2
k−1
∑

m=0

3m

3m + 1

)

≥ 4
k−1
∑

m=0

1

2
= 2k.
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Lemma 4.5.3. Suppose that f : R2 → R is a continuous function locally convex
on the complement of the Koch curve. Then f is convex on every line parallel to
the y-axis.

Proof. First note that it is sufficient to prove the statement of the lemma for a
dense set of lines parallel to the y-axis. Due to the self similarity of the Koch curve
it is then sufficient to prove that there is no continuous function on [0, 3]× [0, 6√

3
]

such that f(3
2
, 0) + f(3

2
, 6√

3
) < 2f(3

2
, 3√

3
). Here we consider the realization of

the Koch curve with endpoints (0, 0) and (3, 0). For simplicity we will work in
coordinates where the point (3

2
, 3√

3
) is translated to the origin. For i ∈ N0 denote

ai =

(

0,−
√

3

3i+1

)

, bi =

(

1

2 · 3i
,−
√

3

3i+1

)

, ui =

(

1

2 · 3i
,−
√

3

3i+1

)

,

z =

(

0,

√
3

3

)

, si =

(

1

2 · 3i
,

√
3

3

)

and pi =

(

1

2 · 3i
, 0

)

.

Modifying f by adding an appropriate affine function and multiplying it by an
appropriate constant we can suppose that f(z) ≤ 0, f(si) ≤ 0, f(a0) = 1 and
f(pi) ≥ f(0, 0) = 1. Since f is convex on [si, bi] for every i we can write

f(bi) ≥f(ui+1) +
|bi − ui+1|
|si − ui+1|

(f(ui+1)− f(si)) ≥
(

1 +

√
3

3i+1 −
√
3

3i+2

√
3
3

+
√
3

3i+2

)

f(ui+1)

=

(

1 +
2

3i+1 + 1

)

f(ui+1) =
3i+1 + 3

3i+1 + 1
f(ui+1).

(4.12)
Moreover, since f is convex on [ai, ui] for every i we can write

f(ui) ≥f(bi) +
|bi − ui|
|bi − ai|

(f(bi)− f(ai))

≥f(bi) +

( 1
2·3i − 1

2·3i+1

1
2·3i

)

(f(bi)− 1) = 3f(bi)− 2.

(4.13)

Combining (4.12) and (4.13) we then obtain

f(bi) ≥
3i+1 + 3

3i+1 + 1
(3f(bi)− 2) ,

and iterating for every i < k,

f(bi) ≥ 3k

k−1
∏

j=0

3j+1 + 3

3j+1 + 1
f(bi+k)− 2

k−1
∑

m=0

3m

m−1
∏

j=0

3j+1 + 3

3j+1 + 1
.

Since f is convex on [si, bi] we have for every i,

f(bi) ≥ f(pi+1) +
|si − pi+1|
|bi − pi+1|

(f(pi+1)− f(si)) ≥ f(pi+1) ≥ 1.

Finally, for i = 0 and any k > 0 we obtain

f(b0) ≥ 3k

k−1
∏

j=0

3j+1 + 3

3j+1 + 1
− 2

k−1
∑

m=0

3m

m−1
∏

j=0

3j+1 + 3

3j+1 + 1

which is not possible due to Lemma 4.5.2
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4.6 Open problems

The following general question is likely to be very difficult to answer, but naturally
arises from the introduction of the notion of c-removability.

Problem 4.6.1. Is there any interesting characterization of c-removable sets?

However, there are several other interesting problems whose solutions might
contribute to our understanding of the matter.

Problem 4.6.2. Is there a closed totally disconnected Lebesgue null set in R2

which is not c-removable?

Problem 4.6.3. Is the Cantor dust c-removable?

Problem 4.6.4. Is there a non-trivial c-removable continuum in R2?

Note that if one could prove that there is a dense set of lines intersecting the
Koch curve in countably many points, the answer would be positive; this would
follow from the proof of Theorem 4.1.
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