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ABSTRACT IN ENGLISH 

 

The ischemia-reperfusion (I/R) injury, which is a consequence of myocardial infarction, 

represents a major cause of death worldwide. One of the most effective cardioprotective 

interventions increasing the resistance of hearts to the I/R injury is the adaptation to a 

chronic hypoxia (CH). However, the molecular mechanisms of CH are still not well 

understood. The most important factors responsible for the I/R injury are reactive oxygen 

species (ROS) produced by complexes I and III within the mitochondrial electron 

transport chain. Potential candidates maintaining ROS at a low level are mitochondrial 

creatine kinase (mtCK) and two hexokinase isoforms (HK1 and HK2). These enzymes 

highly support the mitochondrial oxidative phosphorylation by increasing the availability 

of ADP for complex V of the respiratory chain. In addition, the HK binding to 

mitochondria inhibits binding of the pro-apoptotic protein BAX, thereby protecting 

cardiac cells against apoptosis. Besides the mitochondrial CK isoform, there are two 

cytosolic CK (CKM and CKB) present in cardiomyocytes that help to maintain energy 

homeostasis. Based on the known anatomical and physiological differences between the 

left (LV) and the right (RV) ventricles, the first study focused on the comparing 

ventricles in terms of the energy metabolism and the HK co-localization with 

mitochondria. Further, the level of activated AKT kinase, which facilitates interaction of 

HK2 with mitochondrial membrane, was determined. The results of this study indicate 

that the RV has a higher activity of aerobic glycolytic metabolism and may be able to 

respond faster and more powerfully to stressful stimuli than the LV. The results also 

suggest that AKT activation is a necessary but not a sufficient condition for the 

enhancement of the interaction of HK2 with mitochondria and that yet another 

mechanism may be involved. Next, this study aimed at the effect of the normobaric 

hypoxia on the CK and HK expressions and enzyme activities and the HK co-localization 

with mitochondria in both ventricles. Rats were adapted for 3 weeks to protective and 

non-protective regimens of 10% normobaric hypoxia. The results showed that the 

adaptation to the normobaric hypoxia leads to the activation of glycolysis and 

phosphocreatine (PCr)/CK system to maintain energy homeostasis under the reduced 

oxygen concentration. This may suggest that CK and HK can be involved in the 
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stimulation of the oxidative phosphorylation, which reduces the production of ROS. 

Although no differences were found between protective and non-protective phenotypes, it 

cannot be ruled out that CK and HK may play a role in the cardioprotective mechanisms 

induced by the normobaric hypoxia. Interestingly, HK1 and HK2 co-localizations with 

mitochondria remained unchanged in the LV as well as in the RV after adaptation of rats 

to a protective regimen, continuous normobaric hypoxia (CNH), suggesting a 

stabilization of the HK bond with mitochondria. Then, rats adapted to CNH were 

subjected to the I/R insult. The HK activity significantly increased in the CNH LV after 

the I/R insult, which can suggest that the HK can possibly participate in the establishment 

of the ischemia-resistant phenotype of chronically hypoxic hearts. Finally, the last 

objective of the study was to investigate the role of CK and HK enzymes in the LV and 

RV of rats adapted to a hypobaric hypoxia (7000 m). The hypobaric hypoxia represents a 

greater stress for the myocardium compared to the normobaric hypoxia. The results 

verified the response of energy metabolism to the reduced oxygen level independently on 

the degree of stress. In addition, the HK1 and HK2 co-localizations with mitochondria 

markedly increased in both ventricles after adaptation of rats to hypobaric hypoxia, which 

was confirmed by the immunofluorescence technique as well as by the fractionation and 

Western blot method. In conclusion, the protective mechanism of the HK, which lies in 

its binding with mitochondria, seems to be activated under the hypoxia which is marginal 

for the fatal cell damage, representing by present hypobaric model. This dissertation 

study provides a novel insight in the CK and HK function and co-operation under 

different hypoxic adaptations. And it also provides new information related to 

cardioprotective mechanisms of adaptation to hypobaric hypoxia, which includes 

increased binding of the HK with mitochondria. Targeting the HK binding with 

mitochondria thus represents a potential approach for future therapeutic uses. 
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ABSTRACT IN CZECH 

 

Ischemicko-reperfúzní (I/R) po%kození, které je d&sledkem infarktu myokardu, 

p#edstavuje hlavní p#í'inu úmrtí po celém sv(t(. Jedním z nejú'inn(j%ích 

kardioprotektivních intervencí zvy%ujících odolnost srdce k I/R po%kození je adaptace na 

chronickou hypoxii (CH). Av%ak molekulární mechanismy CH nejsou zcela objasn(ny. 

Mezi nejd&le)it(j%í faktory zodpov(dné za I/R po%kození pat#í reaktivní formy kyslíku 

(ROS) produkované komplexy I a III mitochondriálního elektronového transportního 

#et(zce. Potenciálními kandidáty udr)ující ROS na nízké úrovni jsou mitochondriální 

kreatinkináza (mtCKs) a dv( isoformy hexokinázy (HK1 a HK2). Tyto enzymy 

v$znamn( podporují mitochondriální oxidativní fosforylaci tím, )e zv$%ují dostupnost 

ADP pro komplex V d$chacího #et(zce. Navíc HK navázaná na mitochondrie inhibuje 

navázání pro-apoptotického proteinu BAX, 'ím) chrání srde'ní bu*ky v&'i apoptóze. 

Krom( mitochondriální isoformy CK jsou v kardiomyocytech také p#ítomny dv( 

cytosolické isoformy CK (CKM a CKB), které pomáhají udr)ovat energetickou 

homeostázu. Na základ( znám$ch anatomick$ch a fyziologick$ch rozdíl& mezi levou 

(LV) a pravou (RV) komorou se první studie zam(#ila na porovnání t(chto komor z 

hlediska energetického metabolismu a ko-lokalizace isoforem HK s mitochondriemi. 

Také byla stanovena hladina aktivované formy AKT kinázy, která napomáhá interakci 

HK2 s mitochondriální membránou. V$sledky této studie nazna'ují, )e RV má vy%%í 

aktivitu aerobního glykolytického metabolismu a je tedy schopna reagovat rychleji a 

siln(ji na stresující podn(ty ne) LV. Dále bylo zji%t(no, )e aktivace AKT je nutnou, 

nikoli v%ak posta'ující podmínkou pro stimulaci interakce HK2 s mitochondriemi a )e je 

zde pravd(podobn( zapojen je%t( jin$ mechanismus. Dal%ím cílem studie bylo stanovit 

vliv normobarické hypoxie na expresi a enzymatickou aktivitu CK a HK a ko-lokalizaci 

HK s mitochondriemi u obou komor. Potkani byli adaptováni po dobu 3 t$dn& na 

protektivní a neprotektivní re)imy 10% normobarické hypoxie. V$sledky ukázaly, )e 

adaptace na normobarickou hypoxii vede k aktivaci glykol$zy a kreatinfosfát (PCr)/CK 

systému udr)ujícího energetickou homeostázu i za sní)ené koncentrace kyslíku. Dá se 

tedy usuzovat, )e CK a HK by se mohly podílet na stimulaci oxidativní forforylace a tím 

na sní)ení produkce ROS. I kdy) nebyly zji%t(ny )ádné rozdíly mezi protektivními a 
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neprotektivními fenotypy, nelze vylou'it, )e CK a HK mohou hrát roli v 

kardioprotektivních mechanismech vyvolan$ch adaptací na normobarickou hypoxii. Je 

zajímavé, )e ko-lokalizace HK1 a HK2 s mitochondriemi z&staly nezm(n(ny v LV i v 

RV po adaptaci potkan& na protektivní re)im, kontinuální normobarickou hypoxii 

(CNH), co) sv(d'í o stabilizaci vazby HK s mitochondriemi. Následn( byli potkani 

adaptovaní na CNH vystaveni I/R inzultu. Celková aktivita HK v CNH LV se v$razn( 

zv$%ila po I/R inzultu, co) by mohlo vypovídat o zapojení HK v mechanismech 

ischemicko-rezistentního fenotypu u chronicky hypoxick$ch srdcí. Posledním cílem této 

studie bylo ur'it roli CK a HK enyzym& v LV a RV potkan& adaptovan$ch na 

hypobarickou hypoxii (7000 m). Hypobarická hypoxie p#edstavuje vy%%í stres na 

myokard ve srovnání s normobarickou hypoxií. V$sledky potvrdily reakci energetického 

metabolismu na sní)enou koncentraci kyslíku nezávisle na mí#e stresu. Navíc byla 

pozorována zv$%ená vazba HK1 a HK2 s mitochondriemi v obou komorách po adaptaci 

potkan& na hypobarickou hypoxii, která byla potvzena jak pomocí imunofluorescen'ních 

technik, tak i pomocí frakcionace a metody Western blot. Záv(rem lze #íci, )e protektivní 

mechanismus HK, kter$ souvisí s mírou vazby tohoto enzymu na mitochondriích, se zdá 

b$t aktivován v hypoxii, která je na hranici po%kození bun(k, co) p#edstavuje práv( 

hypobarick$ model. Tato diserta'ní práce poskytuje nov$ pohled na funkci CK a HK a 

jejich vzájemnou spolupráci v adaptaci na r&zné modely hypoxie. A zárove* p#iná%í nové 

poznatky o mechanismu kardiprotektivního p&sobení hypobarické hypoxie, kter$ 

zahrnuje zv$%enou vazbu HK s mitochondriemi. Studium vazby HK s mitochondriemi 

tak p#edstavuje potenciální cestu pro budoucí terapeutické vyu)ití. 
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1. INTRODUCTION 
 

1.1 Energy metabolism of the heart 
 

The heart is a unique highly dynamic organ that supplies oxygen and necessary 

nutrients to the other tissues throughout the life. Maintaining the continuous contraction, ionic 

homeostasis, and cell signaling requires large amounts of energy and unconditional continuous 

supply thereof. The primary source of energy for the heart is represented by the adenosine 

5’triphosphate (ATP) molecule. As the heart is a primarily aerobic organ containing a large 

number of mitochondria, almost all (~ 95%) of the generated ATP comes from the oxidative 

phosphorylation. The rate of ATP production is closely linked to the rate of ATP consumption 

so that the level of ATP remains constant even with an intense cardiac workload (reviewed in 

Stanley et al., 2005). The mammalian heart preferentially utilizes free fatty acids (FFA) as the 

major energy substrates, because their complete oxidation is a highly exergonic process, which 

accounts for ~ 60–90% of the total ATP production. Carbohydrates, mainly glucose, lactate, 

and pyruvate, contribute the remaining 10–40% of the total ATP production (Bing et al., 1954; 

Lopaschuk et al., 1994; van der Vusse et al., 2000; Wisneski et al., 1987). 

 

1.1.1 Glucose fatty acid cycle 

 

The glucose fatty acid cycle, also called the “Randle cycle”, was discovered and 

described in the rat heart by Phillip Randle. It shows the relationship between glucose and 

FFA oxidation and their mutual regulation (Randle, 1998). Generally, the resting heart 

metabolism is highly economic, the FFA oxidation predominates and the glucose oxidation 

pathway is partially reduced. The reduction of glucose metabolism is performed on three 

levels: i) limitation of glucose uptake, ii) suppression of glycolytic enzymes activities, and iii) 

inhibition of glucose oxidation. The high concentration of the FFA in blood decreases the 

glucose uptake into cardiac cells (Nuutila et al., 1992; Randle et al., 1964), which leads to low 

intracellular concentration of glucose and to a decrease in hexokinase (HK) activity. The HK 

activity can be inhibited by its product glucose-6-phosphate (G-6-P), which is not further 

metabolized through glycolysis due to an inhibition of the phosphofructokinase 1 (PFK1). The 
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G-6-P can be further incorporated into glycogen due to a stimulation of glycogen synthase 

(McNulty et al., 1995; Villar-Palasi and Guinovart, 1997) or degraded via the pentose 

phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) 

required for the FFA biosynthesis. The PFK1 activity is limited by an increased concentration 

of the citrate generated from the acetyl coenzym A (acetyl-CoA) during FFA oxidation 

(Garland et al., 1963). The massive production of the acetyl-CoA and the nicotinamide 

adenine dinucleotide (NADH) during the FFA oxidation also results in the suppression of the 

pyruvate dehydrogenase (PDH) activity, which blocks the formation of acetyl-CoA from 

pyruvate, thereby inhibiting the glucose oxidation. In addition, the acetyl-CoA and the NADH 

indirectly activates the pyruvate dehydrogenase kinase complex (PDC), which phosphorylates 

and thus inactivates the PDH (Kerbey et al., 1976; Randle and Priestman, 1996).  

On the other hand, increased cardiac workload, e.g., under physical exercise or 

hypoxia, results in the increase of glucose uptake into cells. The intracellular glucose is 

immediately phosphorylated by the HK to produce the G-6-P, which is directly degraded in 

the glycolytic pathway. The PFK1 is strongly activated by the increased intracellular levels of 

the adenosine 5’monophosphate (AMP), adenosine 5’diphosphate (ADP), iorganic phopshate 

(Pi), or fructose-2,6-bisphosphate (F-2,6-P). The F-2,6-P is a by-product of the glycolysis 

forming from the fructose-6-phosphate by the enzyme phosphofruktokinase 2 (PFK2) (Kantor 

et al., 2001; Katz, 2006). The PFK2 can be stimulated via phosphorylation by the 5’AMP-

activated protein kinase (AMPK), whose activity increases with the rise in the AMP/ATP ratio 

(Marsin et al., 2000, 2002). 

The fatty acid cycle is primarily controlled by the ATP production, which depends on 

an adequate supply of electrons for the respiratory chain generating a force for the ATP 

synthase. Thus, the NADH/NAD+ ratio represents one of the main regulators, which is 

maintained by the combined action of glycolysis and tricarboxylic acid cycle (TCA cycle). 

The increase in the NADH/NAD+ ratio leads to an increase in the ATP/ADP ratio, which 

under decreased energy demands results in the inhibition of enzymes in the TCA cycle and 

glycolysis. An increased concentration of the ATP also inhibits the AMPK and thus reduces 

the FFA oxidation in favor of the FFA biosynthesis occurring in liver and the triacylglycerol 

synthesis in the adipose tissue. Conversely, under increased energy demands, the TCA cycle 
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and the glycolysis are stimulated by an increased concentration of free ADP and Ca2+ ions 

(Voet and Voet, 2010).  

However, the fatty acid cycle is also affected by the substrate availability, 

(patho)physiological interventions, and hormones. Therefore, the regulation of the substrate 

contribution to the total ATP production represents a far more complex mechanism, including 

the allosteric control, phosphorylation/dephosphorylation system, and the regulation of gene 

expression (discussed in more detail in Hue and Taegtmeyer, 2009). 

 

1.1.2 Substrate utilization 

 

The heart possesses a metabolic flexibility and ability to utilize different substrates 

depending on the specific conditions and the actual substrate availability. While the 

metabolism of the fetal heart is predominantly glycolytic, the metabolism of the adult heart is 

highly oxidative. However, the adult heart is able to switch its preferences to glucose 

utilization under low oxygen supply, such as under increased workload, hypoxia, or ischemia. 

Under these conditions, the glucose coming from the glycogen breakdown and from blood, 

due to an increased glucose uptake, is metabolized in anaerobic glycolysis. The lactate from 

blood also becomes a preferential fuel of the heart under these conditions (Opie, 2004) and can 

contribute between 5 and 10% of the total ATP production depending on workload (Allard et 

al., 1994). An increased intracellular level of lactate can inhibit the glucose oxidation via the 

inhibition of PDH and under the severe oxygen deprivation even glycolysis via the inhibition 

of PFK1 (Depre et al., 1993, 1998b). Beside the conditions dependent on the oxygen 

concentration, the high carbohydrate diet leads to a higher consumption of the glucose. The 

heart can also utilize amino acids and ketone bodies, mainly during the prolonged starvation 

and diabetic acidosis (Voet and Voet, 2010). 

 

1.1.3 Hormonal regulation 

 

The fatty acid cycle is also controlled by the pancreatic hormones, insulin and 

glucagon, together with the adrenal hormones, adrenaline and noradrenaline. The glucagon is 

secreted during the fasting and energy demand states, when the blood glucose concentration is 
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lowering under the 5 mM. The glucagon and adrenaline promotes glycogenolysis by the 

activating adenylate cyclase signaling pathway. An increased concentration of the 3'-5'-cyclic 

adenosine monophosphate (cAMP) activates the protein kinase A (PKA), which accelerates, 

through the phosphorylation-dephosphorylation cascade, the glycogen breakdown and inhibits 

the glycogen synthesis (Goodwin et al., 1995). The glucagon and adrenaline also regulate the 

FFA metabolism via the cAMP-dependent phosphorylation cascade. They stimulate 

expression and activity of FFA oxidation enzymes and decrease the expression and activity of 

enzymes involved in the lipid biosynthesis. In the adipose tissue, there is an increased 

hydrolysis of triacylglycerols leading to the raise of blood FFA levels, which increases the 

entry of the FFA into target tissues and activates the ,-oxidation pathway. The energy demand 

states bring an increasing AMP concentration resulting in the elevation of the active AMPK, 

which blocks the malonyl-CoA inhibition of the fatty acyl-CoA transport into mitochondria. 

The malonyl-CoA is a product of the acetyl-CoA-carboxylase, which regulates the FFA 

oxidation in the heart (Awan and Saggerson, 1993). Adrenaline also promotes the 

glycogenolysis by stimulating the phospholipase C (PLC) and by increasing concentration of 

related second messengers, such as the inositol-1,4,5-triphosphate (IP3), diacylglycerol 

(DAG), and Ca2+ ions. In contrast to glucagon, the insulin is secreted during the fed and 

resting states, when the blood concentration of glucose is increasing above 5 mM. The insulin 

has the opposite effect causing the stimulation of glucose transport into the cell and its 

utilization together with the glycogen formation. The insulin also supports the synthesis of the 

FFA and triacylglycerols, while reducing the glycogenolysis and the FFA oxidation (Lawson 

and Uyeda, 1987; Moule and Denton, 1997; Watanabe et al., 1984; Witters et al., 1988). In 

addition to glucagon-insulin system, the hormonal regulation of the fatty acid cycle can also 

include thyroid hormones, sex hormones, and growth hormone (reviewed in Clegg, 2012; 

McAninch and Bianco, 2014; Møller and Jørgensen, 2009; Randle, 1964). 
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1.2 Creatine kinase 
 

The creatine kinase (CK) represents a major phosphagen system transporting the ATP 

in the heart. The impaired CK function is thus a sign of many human diseases, including 

cardiovascular disorders. The substantial reduction or loss of the CK activity or creatine 

content cause the insufficiency of energy metabolism observed in the heart failure or the 

myocardial infarction (Bottomley et al., 2009). 

The CK catalyzes a reversible reaction: phosphocreatine (PCr2-) + MgADP- + protons 

(H+) / MgATP2- + creatine (Cr) (Kenyon and Reed, 1983; Watts, 1973), thus in the case of 

acute energy needs the CK regenerates the ATP for muscle contraction and, on the other hand, 

the CK provides supply of the PCr. The PCr is a unique molecule, which possesses a higher 

phosphoryl transfer potential than the ATP and therefore represents a major source of 

phosphoryl groups for immediate ATP regeneration. Another advantage of PCr molecule is 

that it is much smaller than the ATP and can easily and faster diffuse between sites of its 

production and consumption. The PCr is also metabolically inert and thus it can accumulate in 

the cell to high concentrations without affecting regulatory feedback loops. The concentration 

of PCr in the resting muscle is ~ 25 mM, 6-fold higher than the ATP concentration (Ingwall, 

2002), which covers the first ten seconds of the high performance before the ATP production 

by glycolysis and oxidative phosphorylation is activated.  

Mammalian tissues express four CK isoforms: the cytoplasmic muscle CK (CKM), 

cytoplasmic brain CK (CKB), ubiquitous mitochondrial CK (mtCKu), and sarcomeric 

mitochondrial CK isoform (mtCKs) (reviewed in Wallimann et al., 1992, 1998). The cytosolic 

CK isoforms are mainly located in close proximity of ATPases, where they keep a high local 

ATP/ADP ratio and optimal pH for ATPase activities. The mitochondrial CK isoforms highly 

support mitochondrial oxidative phosphorylation by increasing the ADP availability for 

complex V of the respiratory chain, which can protect cells against apoptosis (Meyer et al., 

2006; Santiago et al., 2008). All CK isoforms create together a highly compartmentalized 

phosphocreatine/creatine kinase (PCr/CK) system, which transports energy from sites of 

production, mitochondria, to various sites of utilization, including the sarcomere, sarcoplasmic 

reticulum, and plasma membrane (Figure 1) (Bessman and Carpenter, 1985; Rossi et al., 

1990), and thus controls the energy flow within cells. Therefore, the PCr/CK system functions 
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as a spatial and temporal energy buffer maintaining the cellular energy homeostasis (reviewed 

in Saks et al., 1996; Schlattner et al., 2006; Ventura-Clapier et al., 1994; Wallimann et al., 

1992).  

 

 
Figure 1: The PCr/CK system transporting energy from sites of production (mitochondria) to sites of utilization 

(sarcomere, sarcoplasmic reticulum, and sarcolemma). The CK, creatine kinase; PCr, phosphocreatine; Cr, 

creatine. 
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1.2.1 Cytosolic CK isoforms 

 

The cytosolic isoforms CKM and CKB are encoded by ckm and ckb genes (Bertin et 

al., 2007; National Center for Biotechnology Information, NCBI), respectively. The CKM 

gene is located on the chromosome 19 in human tissues (NCBI #1158) (Nigro et al., 1987; 

Stallings et al., 1988) and on the chromosome 1 in rat tissues (NCBI #24265). The CKB gene 

is located on the chromosome 14 in human tissues (NCBI #1152) (Chern et al., 1980) and on 

the chromosome 6 in rat tissues (NCBI #24264). Both of these isoforms create homo-dimers 

CKMM and CKBB or the hetero-dimer CKMB. The CKM is predominantly expressed in the 

heart and skeletal muscles, while the CKB is abundantly expressed in the brain, heart, smooth 

muscle, uterus, placenta, colon (Trask et al., 1988), as well as in tumors (Gazdar et al., 1981) 

and most permanent cell lines (Kuzhikandathil and Molloy, 1994; Ritchie et al., 1991). In the 

skeletal muscle, the CKB expression is very low and an absolute absence of the CKB is 

observed in bone marrow (Mariman et al., 1987).  

In the adult cardiac muscle, the CKM represents a major isoform, whereas the minor 

isoform CKB is predominantly expressed in early developmental stages of the heart. In 

adulthood it functions as a backup enzyme, which is over-expressed under conditions of 

metabolic challenge occurring during the hypertrophy (Ingwall, 1984; Smith et al., 1990), 

hypertension (Fontanet et al., 1991; Pauletto et al., 1989; Smith et al., 1990), and hypoxia 

(Letout et al., 2005; Pissarek et al., 1997; Waskova-Arnostova et al., 2014). At the cellular 

level, the CKB is present in the cytosol as a solubilized molecule unable to bind with 

intracellular structures in contrast to the CKM, which can associate with intracellular 

structures through its NH(2)-terminal lysine charge-clamps (Figure 2) (Hornemann et al., 

2000). 

 



!

! %,!

 
Figure 2: The x-ray structure of the (A) rabbit CKM isoenzyme dimer (Rao et al., 1998) and the (B) chicken CKB 

isoenzyme dimer (Eder et al., 1999). The lysine residues K8, K24, K104, K115, which have been identified to be 

responsible for the isoenzyme-specific interaction of the CKM with the M-line are shown in yellow (A) and the 

homologous residues in the CKB isoform L8, V24, E104, and Q115 are depicted in green (B). The figure is 

reprinted from ©2000. Hornemann et al. Journal of Cell Biology. 149:1225-1234, with permission from Dr. 

Hornemann and Rockefeller University Press. 

 

The CKM was found to bind into the myofibrillar M-line of the sarcomere (Turner et 

al., 1973; Wallimann et al., 1977, 1978, 1983a; b), where it is functionally coupled to the acto-

myosin ATPase (Gregor et al., 2003; Wallimann et al., 1984) and regenerates the ATP for 

cardiac contraction (Ventura-Clapier et al., 1987a; b). The CKM delivers preferentially ~ 40% 

of the ATP to this ATPase and the maximal efficiency of this process is in a slightly acidic pH 

(Gregor et al., 2003; Zurmanova et al., 2007). This privileged exchange of substrates and 

products is called a “substrate channeling”, which is also observed in mitochondrial CK 

isoforms. The CKM is also located within I-band of the sarcomere (Wegmann et al., 1992), 

where it is functionally linked to the glycolysis and glycogenolysis (Scopes, 1973; Van 

Waarde et al., 1990). The functional coupling between the CKM and the pyruvate kinase (PK) 

has been reported as the exchange of the phosphate between the PCr and the 

phosphoenolpyruvate without a change in the ATP (Dillon and Clark, 1990). The direct 

association of the CKM with the PFK at low pH, which occurs for example under increased 
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workload, has also been described (Kraft et al., 2000). Other glycolytic enzymes, such as the 

aldolase, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase 

(LDH), and phosphoglycerate kinase (PGK) are also able to interact with the F-actin-

tropomyosin complex (Arnold and Pette, 1970; Bronstein and Knull, 1981). The potential 

involvement of these enzymes in the functional coupling of the CKM with glycolysis could be 

speculated.  

The CKM have been found to be associated with the sarcoplasmic reticulum (Baskin 

and Deamer, 1970; Khan et al., 1972; Rossi et al., 1990; Sharov et al., 1977), where it is 

functionally coupled to the ATP-dependent Ca2+ pump (Korge et al., 1993) regulating local 

ATP/ADP ratios and supporting Ca2+ release (Rossi et al., 1990) due to the fact that IP3 

receptor is allosterically regulated by intracellular concentration of the ATP (Ferris et al., 

1990). In addition, the CKM also regenerates the ATP for the Ca2+ ATPase (SERCA) in the 

sarcoplasmic reticulum, enabling a faster Ca2+ re-uptake and thereby causing a faster cardiac 

relaxation. 

Some amounts of CKM have also been found at the sarcolemma membrane (Saks et 

al., 1977), where it is functionally coupled to the ATP-dependent Na+/K+ pump (Grosse et al., 

1980; Saks et al., 1977) optimizing the Na+/K+ antiport across the membrane due to the 

immediate re-phosphorylation of the ADP produced in the Na+/K+ ATPase reaction. The CKM 

also physically binds to the sarcolemmal ATP-dependent K+ (KATP) channel and inhibits its 

opening, i.e., K+ flux across the membrane, via maintaining a high ATP level within the close 

proximity of the channel (Crawford et al., 2002). It has been recently described that the CKM 

is able to interact with the Na+/Ca2+ exchanger (NCX) and regulates its activity (Yang et al., 

2010). It is well known that the antiport of Na+ and Ca2+ ions is not dependent on the ATP. 

However, it has been shown that the NCX activity is stimulated by the ATP (Collins et al., 

1992), thus the CKM may be involved in the regulation of the NCX activity via increasing the 

ATP/ADP ratio around this exchanger.  

Given these observations, the CKM is critically involved in the regulation of ion fluxes 

taking place during the excitation-contraction coupling and plays an important role in the 

synchronizing electrical signals on the membrane with cellular metabolic states. 
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1.2.2 Mitochondrial CK isoforms 

 

Two mtCK isoforms are encoded by three genes in human and by two genes in rat 

tissues. While the mtCKu isoform is encoded by two genes ckmt1A (NCBI #548596) and 

ckmt1B (NCBI #1159), located near each other on the chromosome 15 in human tissues, only 

a single gene ckmt1 on the chromosome 3 has been identified in rat tissues (NCBI #29593). 

The mtCKs isoform is encoded in human and rat tissues by a single gene ckmt2 located on the 

chromosome 5 (NCBI #1160) and 2 (NCBI #688698), respectively (Bertin et al., 2007). The 

mitochondrial mtCKu is abundantly expressed in conjunction with the CKB in the intestine, 

brain, kidney, placenta, and during pregnancy in uterus (Friedman and Perryman, 1991; Payne 

et al., 1993). A very low expression level of the mtCKu was detected in aorta and in 

sarcomeric tissues. No expression was detected for liver and lung. The mtCKs isoform is 

expressed only in slow-oxidative and fast-oxidative-glycolytic skeletal muscles and in the 

heart, but not in any other organs.  

The mtCK is located in the cristae and in the intermembrane space of mitochondria 

(Figure 3) (Beutner et al., 1998; Brdiczka et al., 1998).  
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Figure 3: The mtCK localization in the cristae and in the intermembrane space of mitochondria. The MtCK, 

mitochondrial CK; ANT, adenine nucleotide translocase; VDAC, voltage dependent anion channel; NDPK-D, 

nucleoside dihosphate kinase D. The figure is reprinted and slightly modified from the paper Mitochondrial 

kinases and their molecular interaction with cardiolipin, Schlattner et al., 2009, Biochim Biophys Acta. 2009 

Oct;1788(10):2032-47, Figure 2 and 3. The figure is republished with kind permission from Prof. Schlattner and 

Elsevier B.V. 

 

The mtCK exists as two inter-convertible forms, a homodimer and a homooctamer 

(Marcillat et al., 1987). Only the octameric form of the mtCK can bind to the outer face of the 

inner mitochondrial membrane, dimers can no longer interact with anionic phospholipids 

(Rojo et al., 1991; Soboll et al., 1999). In the inner mitochondrial membrane, the mtCK binds 

with a high affinity to a phospholipid cardiolipin (Müller et al., 1985, 1986; Rojo et al., 1991; 

Schlame and Augustin, 1985; Stachowiak et al., 1996) via following a two-step mechanism. 

The first step is the electrostatically driven adsorption of positively charged lysine residues of 

mtCK exposed on the top and bottom faces of the octameric cube by the negatively charged 

cardiolipin head (Schlattner et al., 2004). The second step involves the protein insertion 

between lipids, which is generally associated with hydrophobic interactions (Maniti et al., 

2010). The cardiolipin also interacts with other proteins binding peripherally to the inner 

mitochondrial membrane, including cytochrome c (Gonzalvez et al., 2008; Rytomaa et al., 

1992; Salamon and Tollin, 1996a; b) or nucleoside diphosphate kinase (NDPK-D) (Tokarska-
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Schlattner et al., 2008), and further with trans-membrane protein complexes of the redox chain 

and transporters like the adenine nucleotide translocase (ANT), an ATP/ADP antiporter 

(Schlattner et al., 2009). The cardiolipin controls retention of the cytochrome c in the cristae 

while apoptotic stimuli induce the cardiolipin oxidation and the cytochrome c release (Kagan 

et al., 2005). During apoptosis, an oxidized cardiolipin is transferred from the inner to the 

outer mitochondrial membrane and this transfer can be facilitated by the mtCK and NDPK-D 

via liposomal vesicle bridges (Epand et al., 2007). On the outer mitochondrial membrane, the 

cardiolipin provides a recognition site for Bcl-2 pro-apoptotic proteins (Schlattner et al., 

2009), acts as a mitochondrial receptor for the tBID (Lutter et al., 2000), and regulates the 

oligomerization of pro-apoptotic BAK and BAX proteins (Kuwana et al., 2002). In fact, 

cardiolipin-protein interactions are important not only for activity and structural integrity of 

mitochondrial inner membrane proteins, but also for the subunit assembly, supercomplex 

formation, and apoptosis prevention (Claypool et al., 2008; Pfeiffer et al., 2003; Schlame et 

al., 2000; Zhang et al., 2002). The mtCK-cardiolipin interaction is very important for the 

“substrate channeling“ and for the maintaining of mitochondrial ultrastructure and 

morphology (Lenz et al., 2007; Speer et al., 2005).  

The mtCK is able to cross-link membranes to form contact sites, where it is 

functionally coupled with the ANT (Schlattner et al., 1998; Wyss et al., 1992) in the inner 

mitochondrial membrane and physically interacts with a voltage dependent anion channel 

(VDAC) in the outer mitochondrial membrane (Figure 3) (Brdiczka et al., 1994, 2006; 

Schlattner et al., 2001). Another functional property common to the mtCK is the ability to 

stimulate the respiration through local synthesis of the ADP in the intermembrane and cristae 

space via functional coupling with the ANT (Figure 3) (Dolder et al., 2001; Frey and 

Mannella, 2000; Saks et al., 2003, 2004; Vendelin et al., 2004). In peripheral contact sites, the 

co-localization of mtCK with ANT, the direct interaction of mtCK with VDAC, and possibly 

also the diffusion limitations at the outer mitochondrial membrane (Gellerich and Kunz, 1987) 

create a micro-compartment that maintains the “substrate channeling” (Dolder et al., 2003; 

Saks et al., 1985, 2007; Vendelin et al., 2004). However, the locally produced ADP is 

immediately re-imported into the mitochondrial matrix space via the ANT and the PCr is then 

released into the cytosol via the VDAC. The mitochondrial metabolism would not be regulated 

by the intracellular free ADP concentration per se, but rather by the intra-mitochondrial ADP 
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production triggered via the cytosolic Cr (Kay et al., 2000; Saks et al., 2004, 2007). This could 

indicate the presence of a factor or regulator in the outer mitochondrial membrane, which 

helps to restrict free ADP diffusion from the intermembrane space (Veksler et al., 1995). In 

cristae, the mtCK associates only with the ANT and it would still allow the “substrate 

channeling” between these two proteins. The Cr and PCr molecules, however, have to diffuse 

along the cristae space to reach the VDAC (Schlattner et al., 2009). The ATP/ADP recycling 

is restricted mostly to mitochondrial intermembrane and matrix spaces, while the Cr and PCr 

are recycled between mitochondrial intermembrane and cytoplasmic spaces (Saks et al., 2010). 

Many experimental evidences point to the role of the tubulin in regulating the VDAC (Appaix 

et al., 2003; Carre et al., 2002). Recently, functional interaction of the tubulin with the VDAC 

was revealed by applying biophysical and oxygraphic methods by Rostovtseva and colleagues 

(Rostovtseva and Bezrukov, 2008; Rostovtseva et al., 2008) and by Monge and his team 

(Monge et al., 2008). Rostovtseva and her colleagues proposed the model for the tubulin-

VDAC interaction in which the negatively charged C-terminal tail of the tubulin penetrates 

into the channel lumen due to the interaction with a positively charged domain of the VDAC 

(Rostovtseva et al., 2008). Guzun et al. (2009) showed that tubulin and other cytoskeletal 

proteins like desmin (Capetanaki, 2002; Linden et al., 2001) and plectin (Reipert et al., 1999) 

selectively limit the VDAC permeability, restricting mostly the ATP and ADP but not the Cr 

or PCr (Guzun et al., 2009). The strongly decreased permeability of the outer mitochondrial 

membrane for adenine nucleotides significantly enhances the functional coupling between the 

mtCK and ANT increasing the rate of the ADP and ATP recycling in the mitochondrial 

matrix-intermembrane space. Especially interesting and important is the significantly 

enhanced apparent affinity of the mtCK for the Cr in cells in situ (Guzun et al., 2009). It 

appeared that all ATP produced by the oxidative phosphorylation is practically completely 

used for the PCr production and the ADP is rapidly channeled back through the ANT to the 

mitochondrial matrix (Timohhina et al., 2009). The selective regulation of diffusion barrier 

functions is highly important for the structural and functional organization of the energy 

metabolism. 

The mtCK-ANT-VDAC complex highly supports the oxidative phosphorylation of 

mitochondria by the PCr pool restoration in the cytosol and by increasing the availability of 

ADP for complex V of the respiratory chain. The complex also decreases the membrane 
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potential and hyper-production of reactive oxygen species (ROS) (Jacobus and Lehninger, 

1973; Jacobus and Saks, 1982; Kernec et al., 1996; O’Gorman et al., 1996; Saks et al., 1991; 

Wyss et al., 1992), and it diminishes the opening of the mitochondrial permeability transition 

(MPT) pore, a well known trigger of apoptosis (Dolder et al., 2001, 2003; Kowaltowski et al., 

2001; Meyer et al., 2006; Saks et al., 2007). Recently, biochemical and structural studies by 

Peter Pederson’s laboratory (Chen et al., 2004; Ko et al., 2003) resulted in the discovery of the 

“ATP synthasome”, a complex consisting of the ATP synthase, phosphate carrier (PIC), and 

ANT (Ko et al., 2003). From a physiological point of view, the “ATP synthasome” (Figure 4) 

allows a continuous production of the ATP by transporting Pi and ADP into the matrix 

directly to the active sites of the ATP synthase and an immediate release of the ATP into the 

intermembrane space (Pedersen, 2007b).  

 

 
Figure 4: The ATP synthasome. The ANC, adenine nucleotide carrier; PIC, phosphate carrier; IMS, 

intermembrane space; IMM, innermitochondrial membrane. The figure is reprinted from the paper Transport 

ATPases into the year 2008: a brief overview related to types, structures, functions and roles in health and 

disease, Pedersen PL, Springer and J Bioenerg Biomembr, 2007 Dec;39(5-6):349-55, Figure 2a. The figure is 

republished with kind permission from Prof. Pedersen and Springer Science and Business Media. 

 

Therefore, there seems to be the supercomplex of ATP synthasome-mtCK-VDAC-

tubulin localized in contact sites of cardiac mitochondria, which regulates the respiration. This 

whole complex was shortly named “mitochondrial interactosome” (Figure 5) (Timohhina et 

al., 2009). 
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Figure 5: The mitochondrial interactosome. The MtCK, mitochondrial CK; VDAC, voltage dependent anion 

channel; ANC, adenine nucleotide carrier; PIC, phosphate carrier; PCr, phosphocreatine; Cr, creatine; MOM, 

mitochondrial outer membrane; IMS, intermembrane space; MIM, mitochondrial inner membrane; LP, linker 

protein. The figure is reprinted from the paper Direct measurement of energy fluxes from mitochondria into 

cytoplasm in permeabilized cardiac cells in situ: some evidence for mitochondrial interactosome, Timohhina et 

al., Springer and J Bioenerg Biomembr. 2009 Jun;41(3):259-75, Figure 9. The figure is republished with kind 

permission from Springer Science and Business Media. 

 

This mitochondrial interactosome may in some cases include also supercomplexes of 

the respiratory chain (Lenaz and Genova, 2007; Vonck and Schäfer, 2009). Along the cristae 

membranes the mitochondrial interactosome contains only the mtCK and the “ATP 

synthasome” (Timohhina et al., 2009). The mitochondrial interactosome regulates the 

interaction between mitochondrial cycles of adenine nucleotides and PCr/Cr cycles in the 

cytoplasm of the heart, skeletal muscles and brain cells. Changes in the mitochondrial 

interactosome may lead to severe pathology (Saks et al., 2010).  
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1.2.3 Regulation of CK expression and activity 

 

The expression of the CK is regulated at the transcriptional, post-transcriptional, 

translational, and the post-translational level. The cytosolic CKs and the mitochondrial CKs 

are often expressed co-ordinately: the mtCKs together with the CKM and the mtCKu with the 

CKB. The best-studied area is the development of skeletal and cardiac muscles. The most of 

the myogenic factors are involved in the expression of all CK isoforms. It is generally known, 

that during myogenesis and cardiogenesis, the cytosolic CK isoforms undergo a transition 

from the major fetal CKBB isoforms via an intermediate CKMB heterodimer to the major 

adult CKMM isoform (Adamson, 1976; Dym and Yaffe, 1979; Ingwall, 1976; Trask and 

Billadello, 1990). Transcription factors responsible for this process in skeletal and cardiac 

muscles come mainly from MyoD and MEF families of proteins, respectively (reviewed in 

Qin et al., 1998). The CKM gene expression is particularly controlled by transcription factors, 

such as the MyoD1 (Davis et al., 1987), myogenin (Edmondson and Olson, 1989; Wright et 

al., 1989), Myf5 (Braun et al., 1989), and MRF4/herculin/Myf6 (Braun et al., 1990; Miner and 

Wold, 1990; Rhodes and Konieczny, 1989), and by transcription enhancers MEF1, MEF2, and 

MADS box (Buskin et al., 1985; Molkentin et al., 1995). The CKB contains the same common 

TA-rich recognition protein-binding regulatory elements as the CKM (Horlick et al., 1990), 

thus the CKB expression can be controlled by the same transcription MEF enhancers that are 

expressed in the brain (Lin et al., 1996; Lyons et al., 1995). However, it has been observed 

that the MyoD1 and myogenin by themselves did not result in a significant increase in the 

CKM expression during skeletal myogenesis, suggesting that the presence of other 

transcription factors and enhancers is required (Amacher et al., 1993; Lyons et al., 1991). 

These may include the homeodomain transcription factor Six4, which was found as a trans-

activator of the CKM enhancer (Himeda et al., 2004). Another important transcriptional 

regulator is the p53, which is activated during the myoblast differentiation and together with 

the MyoD stimulates the CKM gene expression in muscle cells (Jackson et al., 1998; Tamir 

and Bengal, 1998) and represses transcription of the CKB (Zhao et al., 1994). These findings 

may suggest the possible explanation for the switch between cytosolic CK isoforms during 

development stages. Another developmental factor described as a negative regulator of the 

CKB gene expression is the PARP-1 (Chen et al., 2010). The CKB up-regulation is related to 
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an impaired energy supply occurring during pathophysiological states and diseases (Fontanet 

et al., 1991; Ingwall, 1984; Letout et al., 2005; Neubauer et al., 1998; Pauletto et al., 1989; 

Pissarek et al., 1997; Smith et al., 1990), when the CKM is mostly inhibited. It has been 

shown that an ischemia (Mehta et al., 1988) or a mechanical overload (Tsika et al., 1995) lead 

to a significant decrease in the CKM expression. The CKM activity was also lower in the 

failing human myocardium compared to the physiological status (Nascimben et al., 1996). In 

the study of Boheler and Dillmann (1988), two in vitro translation products of the CKM, 

CKMa and CKMb, representing the more acidic and basic forms, respectively, have been 

found, but only the CKMb isoform decreased with cardiac hypertrophy. The isoelectric micro-

heterogenity for the CKM has been also described in other studies both in vitro and in vivo 

(Rosenberg et al., 1982; Schweinfest et al., 1982), suggesting that the transcriptional or 

translational control for the CKM is much far more complicated than previously believed and 

that multiple mRNAs could arise from the alternative splicing (Boheler and Dillmann, 1988) 

under stress conditions. The ,-adrenergic stimulation by the isoproterenol induced a switch in 

the CK gene expression from the CKM to the CKB, which is characteristic for the 

hypertrophied or failing heart. This may be interpreted as an adaptive mechanism making 

energy transduction via the CK more efficient at times of increased metabolic demand 

(Hammerschmidt et al., 2000). These findings could be explained by the stimulation of the 

signaling pathway via the cAMP and PKA to activate transcription of the CKB (Korge et al., 

1993; Korge and Campbell, 1994; Kuzhikandathil and Molloy, 1994; Minajeva et al., 1996; 

Rossi et al., 1990). Willis et al. (2005) have first reported a role for the AP2 factor, which is 

activated by the cAMP, in the regulation of the CKB transcription (Willis et al., 2005). The 

transcription factor Sp1, acting through the estrogen signaling pathway, was also found to 

regulate the CKB gene expression (Wu-Peng et al., 1992). Moreover, Ch’ng et al. (1990) have 

suggested that translation of the CKB is regulated by the binding of a soluble factor or factors 

to the 3' UTR (Ch’ng et al., 1990). The post-translational regulation of the CKB is controlled 

by the protein kinase C (PKC)-mediated phosphorylation, which increases the CKB activity 

(Chida et al., 1990; Hemmer et al., 1993). Nevertheless, the PKC also modulates an activity of 

the CKM, but in this case the phosphorylation decreases the CKM activity (Lin et al., 2009). 

Beside the PKC, the AMPK can also phosphorylate the CKM and thus reduce its activity 

(Ponticos et al., 1998). Other post-translational modifications, such as the autophosphorylation 
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and the nucleotidylation of CK molecules, have been also identified as effective modulators of 

its catalytic function (David and Haley, 1999; Hemmer et al., 1995; Stolz et al., 2002). The 

possible physiological explanation for the up-regulation of the CKB under the stress 

conditions is that this isoform possesses unique characteristics relevant to the maintenance of 

ATP concentrations in specialized instances of high energy demand (Mahadevan et al., 1984). 

The phosphorylated CKB has an increased affinity for the PCr (Quest et al., 1990). This higher 

affinity may increase the CKB ability to transfer the high-energy phosphate from the PCr to 

the ADP, thereby providing a higher ATP supply for ATP-requiring processes at low PCr 

levels (Hemmer et al., 1993). The CK isoforms are highly susceptible to an oxidative stress 

and to a free radical damage (Konorev et al., 1998; Koufen et al., 1999; Mekhfi et al., 1996; 

Wendt et al., 2003). It has been reported that the CKM activity was depressed after the 

incubation of myofibrils with ROS (Mekhfi et al., 1996). These results suggest that ROS 

mainly alters the myofibril-bound CKM probably by the oxidation of -SH bonds between 

cysteine residues in each CK monomer, which may be followed by the CKM dissociation 

from the M-line. The interaction of the myofibrillar CKM in the M-line is strongly pH 

dependent (Zurmanova et al., 2007), which is reflected in the “substrate channeling” between 

the CKM and the myosin ATPase (Gregor et al., 2003). Such CKM inactivation results in a 

decrease in the intra-myofibrillar ATP/ADP ratio (Mekhfi et al., 1996), leading to a higher 

concentration of the ADP and Pi, which causes an inhibition of ATPases. In addition, Zhao et 

al. (2007) have observed that the CKM exists in two forms, in the reduced form (R-CK) and in 

the oxidized form (O-CK). In contrast to the R-CK, the O-CK contains an intra-chain disulfide 

bond in each subunit and it has decreased catalytic activity. Surprisingly, the O-CK, unlike the 

R-CK, cannot interact with the M-line protein myomesin and can be rapidly ubiquitinylated. 

The O-CK has been also shown to be a negative regulator of the R-CK (Zhao et al., 2007). 

Likewise the CKM, the mtCK can be ubiquitinylated (Kwon et al., 2010) and it is also very 

sensitive to free radicals. Previous studies have described that free radicals of the X-ray-

induced water radiolysis and peroxynitrite cause the dissociation of mtCK octamers into 

dimers, which are unable to bind into the mitochondrial membrane (Koufen et al., 1999; 

Wendt et al., 2003). The dissociation of the mtCK from mitochondria results in an impairment 

of the mitochondrial architecture and the oxidative phosphorylation (Soboll et al., 1999). A 

comparison of the mtCKu with the mtCKs revealed that the mtCKu is much stable and less 
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susceptible to the peroxynitrite than the mtCKs (Wendt et al., 2003). The study of Kaasik et al. 

(1999) showed that a nitric oxide (NO) is able to inhibit cardiac energy production via 

inhibition of the mtCK (Kaasik et al., 1999). On the other hand, it has been reported that 

expression and activity of the mtCKs increased after a chronic stress, such as hypoxia 

(Waskova-Arnostova et al., 2014). The activation of mtCKs indicated that the energy supply 

was damaged after a chronic stress and the complementary mechanism had to operate to 

protect cardiomyocytes from a stress-induced injury (Liu et al., 2004). The CK catalytic 

activity or the reversibility of the CK reaction can be further regulated by the availability of its 

cofactors, such as Mg2+ and Mn2+ (Noda, 1958), or inhibited by –SH group reagents (Font et 

al., 1983), -SO42- (Cain and Davies, 1962), as well as by iron ions concentration (Korge and 

Campbell, 1993).  

 

1.2.4 Intracellular phosphotransfer network 

 

The PCr/CK system represents a major phosphotransfer system contributing to 89% of 

the total ATP turnover rate in the heart (Dzeja et al., 1996). The adenylate kinase (AK) 

phosphagen system also facilitates the transfer of high-energy phosphoryls and the signal 

communication between mitochondria and sites of utilization. The AK catalyzes the reversible 

reaction: 2 ADP / ATP + AMP and contributes to 10% of the total ATP turnover rate (Dzeja 

et al., 1996; Zeleznikar et al., 1990). Under the conditions, when the CK is inactive or absent, 

the AK can partially substitute its function to maintain the intracellular phosphotransfer. It has 

been reported an increased contribution of the AK-catalyzed phosphotransfer to the total ATP 

turnover in the failing heart, when the contribution by the CK dropped to 40%. However, the 

compensation provided by the AK was only partial, the CK and the AK together contributed 

only 60% to 65% of the total ATP turnover in failing hearts (Dzeja et al., 1999). The rest 35-

40% of the ATP turnover may be mediated by other phosphotransfer enzymes. Beside the 

phosphotransfer role, the AK also facilitates communication of mitochondrial signals to the 

sarcolemmal KATP channel under the stress conditions, such as the hypoxia or ischemia 

(Carrasco et al., 2001; Deutsch et al., 1991). The AK promotes opening of the KATP channel by 

hydrolyzing the ATP and producing the ADP around the channel environment and thus 

increases the flux of K+ ions from cells (Carrasco et al., 2001), which is associated with their 
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electrical instability (O’Rourke et al., 1994; Wilde and Janse, 1994). Studies on genetically 

manipulated animals lacking the gene for one of the CK isoforms or for both major CK 

isoforms have revealed increased phosphotransfer enzymes enabled to compensate the CK 

deficiency.  

The CKM absence, which eliminates ~ 71% of the total CK activity (Dzeja et al., 

2011), does not cause any changes in cardiac energy metabolism or left ventricular contractile 

function, even during an increased cardiac workload (Saupe et al., 1998). The CKM function 

is compensated by an increased phosphotransfer through the CKB isoform and glycolytic 

enzymes, such as the HK. The AK phosphotransfer flux remains unchanged in this case (Dzeja 

et al., 2011). It has been also described that mitochondria of CKM knockout mice had a higher 

sensitivity to the cellular ADP and thus a higher permeability of the outer mitochondrial 

membrane, indicating a greater participation of the mtCKs in cytosolic processes (Veksler et 

al., 1995) and its higher phosphotransfer activity (Dzeja et al., 2011). However, it should be 

also mentioned that Saupe et al. (2000) have demonstrated no compensatory increase in the 

CKB isoform in hearts lacking the CKM (Saupe et al., 2000). Comparing the heart and 

skeletal muscles, which possess nearly undetectable amount of the CKB and conversely nearly 

100% of the CKM, the CKM deficiency is mainly compensated by an increased contribution 

of the cytosolic AK1 and also glycolytic phosphotransfers, such as the GAPDH, PK, and 

PGK, to the total cellular ATP turnover (Dzeja et al., 2004; Ventura-Clapier et al., 1995). 

Studies on fast-twich skeletal muscles of mice deficient in the CKM have also shown an 

increase in the mitochondrial volume (Kaasik et al., 2003; van Deursen et al., 1993) and 

respiration rate (Veksler et al., 1995) to accelerate delivery and production of the ATP 

required for the muscle contraction. However, this adaptation cannot fully compensate the lack 

of the CKM and as a result, it leads to a weak communication between the ATP synthase and 

acto-myosin ATPase associated with a lower energetic efficiency.  

The combined loss of the CKM and the mtCKs is in the heart still well compensated 

due to the activation of other phosphotransfer systems. Double CK-knockout is associated 

with a significant decrease, by over 88%, of the total CK-phosphoryl capability, which 

eliminates ~ 96% of the total CK activity. The remaining CKB represents only 12% of this 

phosphoryl capability. Kassik et al. (2001) suggested that the combined knockout of the CKM 

and mtCKs results in a direct channeling between mitochondria and ATP-utilizing structures 
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(Kaasik et al., 2001). These authors have later observed an increased content of the 

intermyofibrillar mitochondria, an increased oxidative capacity and aerobic metabolism, 

which supports their previous findings (Kaasik et al., 2003). It is generally known that the 

heart has a much higher content of mitochondria, which is needed for a greater capacity of the 

aerobic ATP synthesis. Nevertheless, the recent work of Dzeja et al. (2011) showed that the 

combined loss of the CKM and mtCKs led to the involvement of more phosphotranfer 

systems. They have observed an increased phosphotransfer flux through the CKB and the 

glycolytic phosphotransfer system, primarily via the HK, further an increased phosphotransfer 

flux through the AK system, and also elevated guanosine 5’triphosphate (GTP) turnover 

through the nucleoside monophosphate kinase (NMPK) and NDPK (Dzeja et al., 2011). Like 

the CK, glycolytic enzymes are also involved in the regulation of the KATP channels (Dzeja 

and Terzic, 1998; Weiss and Lamp, 1987) and they are able to support the SERCA activity 

(Boehm et al., 2000; Xu et al., 1995). Beside the maintaining of the high-phosphoryl group 

transfer, the enzyme carbonic anhydrase maintains the H+ and pH homeostasis and reduces H+ 

concentration around ATPases, protecting them against inhibition (Dodgson et al., 1980; 

Geers and Gros, 1991; Stewart et al., 1999). This way, the carbonic anhydrase substitutes the 

CK role in CKM/mtCKs-deficient hearts. These results demonstrate the existence of 

comprehensive compensation mechanisms keeping the energy homeostasis in hearts with 

partial CK deficiency. However, the communication between ATP-consuming and ATP-

generating cellular sites is compromised, being reflected in the increased cardiac workload. 

The heart lacking both major CK isoforms, the CKM and mtCKs, has a reduced ability to 

respond to ,-adrenergic stimulation (Crozatier et al., 2002) and is more vulnerable to 

ischemia-reperfusion (I/R) injury (Spindler et al., 2004). 

The deletion of the mtCKs alone resulted in similar changes in the high-energy 

phosphate metabolism as observed in CKM/mtCKs knockout animals, suggesting that the 

mtCKs is an enzyme primarily responsible for the energy homeostasis in the heart (Spindler et 

al., 2002). This is in contrary with results from mtCKs-deficient skeletal muscles, where the 

deletion of the mtCKs has no significant effect on the deterioration or change in the PCr/CK 

system and the ATP turnover. This suggests that the mtCKs role in the stimulation of 

oxidative phosphorylation is well compensated by an alternate process including the 

mitochondrial NDPK-D, AK2 or AK3, and glycolytic enzymes (Dzeja et al., 2004). The 
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opposite findings between cardiac and skeletal muscles could be related to the different 

proportion of two major CK isoforms to the total CK activity. The CKM and the mtCKs 

constitute 61% and 25% of the total CK activity in the heart, respectively, while 98% and 2% 

in skeletal muscles, respectively (Bittl et al., 1987). Therefore, the heart and skeletal muscles 

differ significantly in response to the absence of any of the major CK isoforms. The lack of 

both CKM and mtCKs in skeletal muscles causes also progressive changes in the energy 

homeostasis (Momken et al., 2005; Steeghs et al., 1997, 1998), even in the decrease of PCr 

turnover and the Pi compartmentalization. Hereby, the skeletal muscles become more sensitive 

to metabolic stress, like the heart (Dzeja et al., 2004). These observations indicate the 

importance of the PCr/CK system as a central phosphotransfer system in excitable tissues. 

Taken together, the intracellular phosphotransfer network, including the PCr/CK 

system, AK, glycolytic enzymes, guanine nucleotide system, and carbonic anhydrase, 

represents a functional cellular bioenergetics infrastructure supporting an efficient high-energy 

phosphoryl transfer, ionic homeostasis, and metabolic signal communication (Figure 6) 

(reviewed in Dzeja and Terzic, 2003). The disruption of this network leads to many serious 

cardiovascular diseases (Bottomley et al., 2009; Dzeja et al., 1999; Ingwall et al., 1985; 

Ingwall, 2009; Janssen et al., 2000; Pucar et al., 2002). 
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Figure 6: The intracellular phosphotransfer network. The GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 

1,3 bis-P-Gl, 1,3 bis-phosphoglycerate; Gl-3-P, glyceraldehyde-3-phosphate; CA, carbonic anhydrase; CK, 

creatine kinase; Cr, creatine; CrP, phosphocreatine; AK, adenylate kinase; PGK, phosphoglycerate kinase; 3-P-

Gl, 3-phosphoglycerate; PK, pyruvate kinase; HEX, hexokinase; G-6-P, glucose-6-phosphate; PFK, 

phosphofructokinase; F-6-P, fructose-6-phosphate; PEP, phosphoenol pyruvate; PYR, pyruvate. The figure is 

republished with permission of Prof. Dzeja and The FASEB Journal from the paper Phosphotransfer networks 

and cellular energetics, Dzeja and Terzic, J Exp Biol. 2003 Jun;206(Pt 12):2039-47, Figure 3; permission 

conveyed through Copyright Clearance Center, Inc. 
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1.3 Hexokinase 
 

The Hexokinase is a key glycolytic enzyme, which keeps the intracellular glucose 

concentration at a low level by phosphorylating glucose to G-6-P, thereby regulating glucose 

fluxes into cardiomyocytes. The HK is thus essential for the regulation of the glucose 

utilization and for the maintenance of the glucose uptake (Wilson, 2003). Depending on the 

current conditions, the produced G-6-P is further metabolized via triosa-phosphate pathway, 

which is the primary glycolytic pathway for the ATP generation. Alternatively, it can be 

processed through the pentosa-phosphate pathway to generate NADPH and precursors for 

biosynthetic reactions or it may be used for a glycogen synthesis (Voet and Voet, 2010). As 

mentioned previously, the HK is an integral part of the intracellular phosphotransfer network, 

where it tightly co-operates with the CK and in some cases can compensates the CK function. 

Beside its metabolic function, the HK also plays an important role in anti-apoptotic processes. 

The HK bound to mitochondria also stimulates oxidative phosphorylation and thus prevents 

ROS over-production and oxidative stress similarly as the mtCKs. In addition, the HK 

competes with pro-apoptotic proteins for particular binding site on the mitochondria, thereby 

inhibiting apoptosis. Dysfunction of the HK results in decreased cardiac function and heart is 

then more susceptible to the I/R injury (Wu et al., 2011). The dissociation of HK2 from 

mitochondria is associated with an extensive decrease in the tolerance of the heart to the I/R 

insult (Smeele et al., 2011). The reduced HK2 also impairs the function of skeletal muscles 

(Smeele et al., 2010, 2012). On the other hand, the over-expression of the HK2 protects the 

cancer cells against cell death (Ahmad et al., 2002; Azoulay-Zohar et al., 2004; Sun et al., 

2008). Therefore this enzyme could be a potential candidate for therapeutic interventions in 

cardiovascular as well as in cancer research. The experimental intervention directed at 

increasing and/or maintaining of the HK bond with mitochondria appears to be a promising 

cardioprotective approach.  
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1.3.1 Glucose transport 

 

The glucose represents one of the important energy substrates in cardiac and skeletal 

muscles. The glucose is transported into cardiomyocytes by facilitative glucose transporters 

(GLUTs), which are developmentally and hormonally regulated (reviewed in Abel, 2004). The 

predominant GLUTs expressed in the heart are GLUT1 and GLUT4 isoforms. The GLUT1 is 

the most abundant isoform in the embryonic heart, whereas the GLUT4 predominates in the 

adult heart (Smoak and Branch, 2000; Studelska et al., 1992). Regulation of the GLUT1 

transcription is mediated by similar transcription factors involved in the CKB transcription 

regulation. The GLUT4 transcription is controlled by transcription MEF enhancers, as the 

CKM gene expression, and mainly by thyroid hormones. After the birth the circulation of 

thyroid hormones significantly increases (Lompre et al., 1984), which results in increased 

GLUT4 expression. The GLUT1 and GLUT4 expressions are also regulated by the insulin, 

however, the GLUT4 is the major regulator of insulin stimulated glucose uptake in the heart 

(Kraegen et al., 1993). During fasting, when the insulin is low, cardiac FFA utilization 

increases and glucose utilization decreases, leading to repression of both GLUT1 and GLUT4 

expressions. However, the isoforms can differ in their response to pathophysiological 

conditions. Up-regulation of GLUT1 is associated with hypertrophy (Tian et al., 2001), 

hypoxia (Sivitz et al., 1992), or ischemia (Brosius et al., 1997). The regulation of the GLUT1 

expression during hypoxia and ischemia could probably be mediated by the AMPK (Tian et 

al., 2001) or by hypoxia inducible factor, HIF1 (Chen et al., 2001a). Generally, hypoxia 

activates the expression of fetal genes including also the myosin heavy chain (MyHC) , and 

the CKB (Letout et al., 2005; Pissarek et al., 1997; Waskova-Arnostova et al., 2014). The 

GLUT4 expression is elevated by endurance exercise (Ren et al., 1994) and conversely is 

down-regulated by hypertrophy (Paternostro et al., 1995). The effect of hypoxia or ischemia 

on the GLUT4 expression probably depends on the duration and intensity of the stimulus. The 

more pronounced changes have been observed in the translocation of GLUTs into the plasma 

membrane. Under the resting conditions, the GLUT1 and GLUT4 are located in the 

intracellular vesicles and are recruited into plasma membranes under an increased level of 

catecholamines and adrenergic activation (Egert et al., 1999a; Rattigan et al., 1991), under 

ischemia, hypoxia, and increased concentration of insulin (Egert et al., 1999b; Sun et al., 
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1994). Beside GLUT1 and GLUT4 isoforms, other members of the glucose transporter family 

have been determined in the heart. The GLUT3 in the fetal heart (Grover-McKay et al., 1999) 

and the GLUT12, which is insulin-responsive (Macheda et al., 2002; Rogers et al., 2002), 

GLUT11 (Doege et al., 2001; Wu et al., 2002b), GLUT8 (Doege et al., 2000), and GLUT10 

(Dawson et al., 2001) in the adult heart. 

 

1.3.2 Hexokinase isoforms 

 

The mammalian tissues express four isoforms of hexokinase: HK1, HK2, HK3, and 

HK4 (Gonzalez et al., 1964; Katzen and Schimke, 1965), which differ in their kinetic and 

regulatory properties, transcriptional regulation, tissues distribution, and subcellular location. 

HK1, HK2, and HK3 are 100 kDa molecules, while HK4 is only 50 kDa molecule. It has been 

speculated that 100 kDa HKs arose by duplication and fusion from an ancestral 50 kDa HK, 

while HK4 probably separated before this process and therefore remains smaller than other 

mammalian HK isoforms (Cardenas et al., 1998). Each of the three 100 kDa HKs consist of 

two parts: C-terminal half, which is catalytically active, and N-terminal half of whose function 

differs between isoforms. While HK1 and HK2 possess the 15 hydrophobic amino acid 

residues on their N-terminal half enabling them to interact with mitochondria (Fiek et al., 

1982; Kurokawa et al., 1982; Linden et al., 1982; Rose and Warms, 1967), HK3 lacks this 

sequence and is mainly soluble. The HK3 has been also found in a perinuclear compartment 

(Preller and Wilson, 1992; Wilson, 2003), but its specific metabolic role remains unclear. In 

addition, HK2 contains two active sites, one on the C-terminal half, as HK1 and HK3, and the 

second one on the N-terminal half (Ardehali et al., 1996; Printz et al., 1997; Tsai and Wilson, 

1996), which again points to a distinct function. The structural features are naturally related to 

kinetic parameters of the enzyme. All 100 kDa HK isoforms are inhibited by their product G-

6-P. Only HK1 inhibition can be antagonized by a low Pi concentration. The regulatory effect 

of the Pi is based on the direct competitive inhibitory mechanism attenuating the G-6-P 

binding to the N-terminal half of the enzyme at physiological concentrations (Ellison et al., 

1974, 1975; Rose and Warms, 1967; Tsai and Wilson, 1995) and an indirect displacement of 

the G-6-P from the catalytic site on the C-terminal half (Fang et al., 1998). The HK2 is more 

sensitive to the inhibition by its G-6-P product, because it is not antagonized by the Pi at the 
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N-terminal domain (Lueck and Fromm, 1974). The HK3 is also inhibited by the Pi at all 

concentrations (Wilson, 2003) and moreover, the HK3 may be also inhibited by a high 

concentration of glucose (above 0.2 mM), but the physiological significance has not been 

completely resolved (Radojkovic and Ureta, 1987). On the other hand, the HK4 cannot be 

physiologically inhibited by its product G-6-P. The HK4 has the highest Km for glucose from 

all four HKs, thus it requires a high concentration of glucose for the reaction, which is related 

to a high value of Vmax indicating a low concentration of G-6-P (Niemeyer et al., 1975; Storer 

and Cornish-Bowden, 1977). The HK4 also phosphorylates glucose faster than other three 

HKs, which can be due to a different interaction of ATP molecule within a binding site of the 

enzyme (Kumar et al., 2012). The structural, kinetic, and regulatory differences are associated 

with tissue distribution. The HK4 is mainly expressed in liver and pancreatic tissue, where it 

acts as a glucose sensor. However, some studies have reported no HK4 activity in liver of 

several species (Ureta et al., 1973, 1975), even mammals (Ureta et al., 1981). The lack of the 

HK4 in liver could represent the adaptive phenotype based on the diet that is high in protein 

and low in carbohydrate content and thus these species, particularly carnivores, have mild 

glucose intolerance and reduced insulin sensitivity (discussed in more detail in Schermerhorn, 

2013). The HK4 has also different promoters in liver and pancreas, allowing tissue-specific 

gene regulation (Andreone et al., 1989; Magnuson and Shelton, 1989). The HK3 has the 

highest level in lung, kidney, and liver, in other tissues is absent or present in very low 

concentrations (Ureta, 1982). The HK1 is expressed in most tissues, but predominantly in 

brain and muscles. The increased energy demand activates glycolysis, thereby increasing the 

Pi/G-6-P ratio, which prevents the inhibition of HK1, i.e., its activity increases. Moreover, the 

low Km for glucose allows to retain more than 70% of full HK1 activity at glucose 

concentration as low as 0.1 mM (Niemeyer et al., 1975; Storer and Cornish-Bowden, 1977). 

This is important especially for brain, which is almost entirely dependent on glucose 

metabolism (Clarke and Sokoloff, 1999). The HK2 predominates in insulin-sensitive tissues, 

such as skeletal muscles, heart, and adipose tissue. This isoform is also expressed at high 

levels in many tumors (Shinohara et al., 1991) that exhibits a “Warburg effect”, metabolizes 

glucose to lactic acid at a high rate even in the presence of oxygen (Warburg, 1956). 

The heart expresses two HK isoforms, HK1 and HK2 (Aubert-Foucher et al., 1984; 

Burcelin et al., 1993). HK1 and HK2 isoforms are encoded by hk1 and hk2 genes, 
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respectively. The HK1 gene is located on the chromosome 10 in human tissues (NCBI #3098) 

and on the chromosome 20 in rat tissues (NCBI #25058). The HK2 gene is located on the 

chromosome 2 in human tissues (NCBI #3099) and on the chromosome 4 in rat tissues (NCBI 

#25059). The HK1 and HK2 share a high degree of functional similarity but there are some 

differences. As already mentioned, they differ in their substrate affinity and subcellular 

localization reflecting their different metabolic roles (John et al., 2011; Mathupala et al., 2009; 

White and Wilson, 1990). It has been suggested that under the physiological conditions, the 

HK1 is predominantly bound to the outer mitochondrial membrane and channels glucose 

towards glycolysis (Wilson, 1997, 2003), whereas the HK2 is mainly soluble and controls 

glycogen formation (John et al., 2011; Sebastian et al., 2000; Wilson, 2003). Distribution of 

the HK2 between the cytosol and the mitochondria is dynamically regulated by the glucose 

availability (John et al., 2011). Increasing glucose uptake via the main glucose transporter 

GLUT4 (Abel, 2004; Postic et al., 1994) mediates the interaction of the HK2 with the outer 

mitochondrial membrane (Figure 7) (Southworth et al., 2007). This interaction enhances the 

affinity of HK2 to the ATP (Aubert-Foucher et al., 1984; Bustamante and Pedersen, 1977; 

Depre et al., 1998b; Wilson, 1997) and makes the HK2 less sensitive to inhibition by its 

product G-6-P, which is further metabolized in the glycolytic pathway (Bustamante and 

Pedersen, 1977; Bustamante et al., 1981; Depre et al., 1998b).  
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Figure 7: The intracellular distribution of HK1 and HK2 isoforms. The HK1, hexokinase1; HK2, hexokinase 2; 

GLUT, glucose transporter; Glucose-6-P, glucose-6-phosphate. 

 

Both HK isoforms bind to mitochondria via VDAC (Anflous-Pharayra et al., 2007; 

Rosano, 2011; Shoshan-Barmatz et al., 2009), where highly support oxidative phosphorylation 

by increasing the availability of ADP for complex V of the respiratory chain (Chen et al., 

2001b). This helps to maintain a suitably low membrane potential and prevent the over-

production of ROS (da-Silva et al., 2004; Santiago et al., 2008). Recently, the existence of a 

complex VDAC-HK2-ATP synthasome (Ko et al., 2003) in cancer cells has been shown 

allowing the HK2 a preferential access to mitochondrially generated ATP, thus enhancing 

oxidative phosphorylation as well as glycolysis (Figure 8) (Chen et al., 2004; Pedersen, 

2007b; a, 2008).  
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Figure 8: The complex of the VDAC, HK2, and ATP synthasome. The HK2, hexokinase 2; VDAC, voltage 

dependent anion channel; ANC, adenine nucleotide carrier; PIC, phosphate carrier; MOM, mitochondrial outer 

membrane; IMS, intermembrane space; MIM, mitochondrial inner membrane. The figure is reprinted from the 

paper Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ 

most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen, Pedersen PL, 

Springer and J Bioenerg Biomembr. 2007 Jun;39(3):211-22, Figure 1g. The figure is republished with kind 

permission from Prof. Pedersen and Springer Science and Business Media. 

 

The HK bound to mitochondria also reduces the probability of apoptosis initiation 

(Azoulay-Zohar et al., 2004; Majewski et al., 2004a; Pastorino and Hoek, 2003) by inhibiting 

the binding of the pro-apoptotic protein BAX to the outer mitochondrial membrane (Pastorino 

et al., 2002), thereby preventing MPT pore opening and cytochrome c release (Azoulay-Zohar 

et al., 2004; Beutner et al., 1998; Miyamoto et al., 2008). It has been shown that the HK1 can 

also inhibit the formation of active pro-apoptotic caspases and block the mitochondrial step of 

tumor necrosis factor (TNF)-mediated cell death (Schindler and Foley, 2010). These 

observations suggest that, besides its critical involvement in the regulation of glucose 

metabolism, the HK could play a crucial role in protective signaling pathways. It has also been 

shown that the over-expression of full-length HK results in protection against cell death 

(Ahmad et al., 2002; Azoulay-Zohar et al., 2004; Sun et al., 2008). Both HK isoforms are 

essential for the normal physiological function of the heart and are not mutually substitutable. 

The depletion of the HK1 isoform results in caspase-8-dependent cell death in response to the 

TNF (Schindler and Foley, 2010), which indicates a strong pro-survival function of this 

enzyme. The physiological importance of the HK1 probably lies to a high degree in the 

association of this isoform with mitochondria, because its function in glycolysis could be 
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replaced by HK2. Accordingly, the binding of the HK2 to mitochondria has been shown to be 

necessary for the normal function of mitochondria. A recent study demonstrated that the 

displacement of the HK2 from isolated mitochondria using an artificial peptide resulted in the 

enhanced release of cytochrome c upon treatment with the recombinant tBID, a membrane-

targeted death ligand (Shulga et al., 2009). In addition, the disruption of the HK2 binding to 

mitochondria blocks ischemic preconditioning and may cause myocardial necrosis (Smeele et 

al., 2011) or apoptosis (Chiara et al., 2008). 

 

1.3.3 Regulation of HK expression and activity 

 

The regulation of the HK expression is different between tissues and depends on the 

availability of substrates (Griffin et al., 1991). The HK1 and HK2 also differ in their 

subcellular locations and affinities for their substrates (John et al., 2011; Mathupala et al., 

2009; White and Wilson, 1990), which can be reflected by their distinct and varying responses 

to actual conditions. In Addition, promoter regions of the HK1 and HK2 are distinct in 

character and responsive to different transcription factors (Heikkinen et al., 2000; Liu and 

Wilson, 1997; Mathupala et al., 1995; Osawa et al., 1996a; b; White et al., 1996). The 

regulatory mechanism of the HK1 gene expression is not completely understood. It has been 

demonstrated that Sp sites may have the functional significance as cis-regulatory elements in 

this case (Liu and Wilson, 1997; White et al., 1996). The Sp factors are also involved in the 

regulation of the GLUT1 transcription (Santalucia et al., 1999). This could indicate a 

relationship in the regulation of gene expression between the HK1 and GLUT1. There could 

therefore be a similar relationship between the HK2 and GLUT4. Studies focused on the HK2 

promoter from normal and cancer cells have revealed that the hypoxic conditions, glucose, 

insulin, glucagon, catecholamines, cAMP, and p53 activate the HK2 transcription (Mathupala 

et al., 1995, 1997, 2001; Rempel et al., 1996; Osawa et al., 1995, 1996a). From these 

transcription factors, only the insulin and hypoxia also increase the GLUT4 transcription 

(Chou et al., 2004; Olson and Pessin, 1995), while the cAMP decreases the GLUT4 gene 

expression (Flores-Riveros et al., 1993). A common transcription factor for the HK2 and 

GLUT4 could be the AMPK, which is activated during endurance training (Stephens et al., 

2002) as well as hypoxia (Emerling et al., 2009; Jing et al., 2008; Mungai et al., 2011), under 
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the same conditions as the expression of the HK2 (Koval et al., 1998; Waskova-Arnostova et 

al., 2014) and the GLUT4 (Chou et al., 2004; Ren et al., 1994). Moreover, a chronic activation 

of the AMPK by the adenosine analog, 5-aminoimidazole-4-carboxamide ribonucleoside 

(AICAR), led to an increased expression of the HK2 (Stoppani et al., 2002) as well as GLUT4 

(Holmes et al., 1999). In addition to expression, the AMPK also increases the HK activity 

(Holmes et al., 1999), which demonstrates a more complex role of this kinase. The main 

regulator of the HK2 is the HIF1 (Riddle et al., 2000), which together with other co-activators, 

such as Myc, activates the HK2 transcription (Kenneth and Rocha, 2008). The HIF1 also 

positively regulates the transcription of the HK1, GLUT1, GLUT4, and other glycolytic 

enzymes (reviewed in (Marin-Hernandez et al., 2009; Semenza et al., 1994). Recent study has 

described the translocation of the HK2 into nucleus in cancer cells (Neary and Pastorino, 

2010), which has so far been observed only in yeast (Randez-Gil et al., 1998). Experiments on 

Saccharomyces cerevisiae revealed that the HK2 can activate its own transcription and repress 

transcription of the HK1 (Rodriguez et al., 2001), suggesting its role as a transcription factor. 

However, this regulatory mechanism has not yet been described in mammalian cells. It has 

been shown that other multifunctional kinase, the AKT kinase, also regulates the expression of 

HK2 at the transcriptional level via the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT 

kinase (PI3K/AKT) signaling pathway (Osawa et al., 1996b) stimulated by the insulin (Printz 

et al., 1993). 

However, the more important role of the AKT is related to the post-translational 

regulation of the HK. Recently, it has been reported that the AKT kinase phosphorylates the 

HK2 at the Thr473 residue and stimulates its translocation into the mitochondria (Miyamoto et 

al., 2008). The interaction of the HK2 with the outer mitochondrial membrane enhances its 

binding affinity for the ATP (Bustamante and Pedersen, 1980) and the HK2 thus becomes less 

sensitive to inhibition by the G-6-P (Bustamante and Pedersen, 1977; Bustamante et al., 1981) 

and it gains preferential access to mitochondrial generated ATP (Arora and Pedersen, 1988). 

The effect of the AKT requires the presence of glucose (Majewski et al., 2004b). Therefore, 

both glucose and AKT signaling promote the binding of the HK2 to the mitochondria, thereby 

favoring glucose catabolism over glycogen synthesis (John et al., 2011). The association of the 

HK with mitochondria is enhanced under ischemic conditions (Southworth et al., 2007), by an 

increased level of insulin (Southworth et al., 2007; Zuurbier et al., 2005), after morphine 
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administration (Zuurbier et al., 2005), or under increased concentration of glucose (John et al., 

2011). Nevertheless, association of the HK with mitochondria under hypoxic conditions has 

not yet been elucidated. The subcellular distribution of the HK2 can be also regulated by 

intracellular stimuli, such as pH changes. The shift of pH toward basic values increases the 

interaction of the HK2 with mitochondria, conversely, the acidic pH decreases this interaction 

(Miccoli et al., 1996). Another regulator is lactate, whose effect on the HK localization is 

tissue specific. In skeletal muscles, lactate can promote dissociation of the HK from 

mitochondria and thus also indirectly inhibits its activity, whereas in the heart, lactate does not 

affect neither the HK distribution, nor activity (Leite et al., 2011). This could be explained by 

the ability of the heart to metabolize lactate in contrast to fast-twich skeletal muscles (Voet 

and Voet, 2010). The same authors have also reported the inhibition of the HK activity and 

alteration in the distribution mediated by lactate in liver tissue, which is the main tissue for 

lactate degradation in Cori cycle, but independent on the glucose concentration used in the 

study (Leite et al., 2011). These observations suggest that lactate can also act as a positive 

modulator of gluconeogenesis and represent thus the universal molecule.  

The HK activity differs among species and exhibits the transmural gradient in the heart 

(De Tata et al., 1986, 1988). The HK exhibits the maximal enzyme activity in the heart during 

the fetal period and only moderate changes occur during postnatal life (Andres et al., 1984; 

Bass et al., 2001). Changes in the total HK activity correlate with specific changes in the 

activity of the HK2 rather than with the activity of the HK1 (Riddle et al., 2000). The higher 

HK activity is associated with the binding of the HK to the mitochondria. It has been 

demonstrated that the HK activity doubled during the first hour after the HK translocation into 

the mitochondria and continued to rise thereafter (Parra et al., 1997). Mechanisms involved in 

the enhancement of the enzyme activity induced by the HK interaction with the mitochondria 

include conformational changes of the HK molecule and the Pi competition with the G-6-P at 

its binding site. The HK2 forms dimers in the cytosol, while the interaction of the HK2 with 

mitochondria requires the HK in a tetrameric form, as well as the HK1-mitochondria 

interaction (Mulichak et al., 1998; Wilson, 1995). Dimers or tetramers may differ in their 

activity (Hoggett and Kellett, 1992). Post-translational modifications, such as sumoylation 

(Aslanukov et al., 2006) and ubiquitinylation (Magnani et al., 1994), may affect the enzyme 

activity of the HK and cause its degradation. The majority of soluble HK1 in brain tissue has 
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been found to be ubiquitinylated at the N-terminal portion of the molecule, which may 

increase its susceptibility to degradation (Magnani et al., 1994) and affect its enzyme activity 

(Pastorino and Hoek, 2003). The HK monomer-dimer-tetramer transition and their interactions 

with mitochondria can further affect the conformational state of the monomers and thus 

change their substrate-binding affinity resulting in the increased activity of the whole 

complex.  

The HK activity can be also affected by hormones, such as insulin (Pilkis, 1970), 

thyroid hormones (Kubista et al., 1971; Rosa et al., 1992), growth hormones (Bernstein and 

Kipnis, 1973a), and estrogen (Kostanyan and Nazaryan, 1992; Moorthy et al., 2004), further 

by exercise (Koval et al., 1998; O’Doherty et al., 1996), hypoxia (Daneshrad et al., 2000; 

Rumsey et al., 1999; Waskova-Arnostova et al., 2014), and also by age (Bernstein and Kipnis, 

1973b; Ding et al., 2013). Interestingly, most studies have showed substantial changes in the 

HK2 isoform instead of the HK1 isoform, which emphasizes the importance of the HK2 

isoform in the glycolytic metabolism control. 

 

1.3.4 AKT kinase and glucose metabolism 

 

The AKT kinase is involved in variety cellular processes such as cellular metabolism, 

cell survival, cell growth and proliferation, angiogenesis, cell migration and invasion, and it 

also cross-talks with other signaling pathways (reviewed in Hanada et al., 2004; Manning and 

Cantley, 2007; Sussman et al., 2011). The activation of the AKT kinase is a multi-step process 

that may be promoted by a number of stimuli. The most studied activation has been the PI3-

kinase dependent activation of the AKT (Burgering and Coffer, 1995; Franke et al., 1995) 

shown in Figure 9 (Shen et al., 2013). 
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Figure 9: The activation of the AKT kinase. The PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PIP2, 

phosphatidylinositol (4,5) bisphosphate; PIP3, phosphatidylinositol (3,4,5) trisphosphate; PDK1, 

phosphoinositide-dependent kinase1; mTOR C2, mammalian target of rapamycin complex 2. The figure is 

reprinted from the paper Dual fluorescent molecular substrates selectively report the activation, sustainability 

and reversibility of cellular PKB/Akt activity, Shen et al. 2013, Sci Rep. 2013;3:1697, Figure 4. The figure is 

republished with kind permission from Prof. Achilefu and Nature Publishing Group. This paper is licensed under 

a Creative Commons Attribution-Noncommercial 2.5 International License. 

 

In the insulin-sensitive tissues, such as cardiac and skeletal muscles, liver, and adipose 

tissue, the PI3-kinase dependent activation of the AKT1 stimulates metabolic pathways 

including the translocation of the GLUT4 to the plasma membrane facilitating glucose uptake. 

The PI3-kinase produces the phosphatidylinositol (3,4,5) trisphosphate (PIP3), which interacts 

with the pleckstrin homology (PH) domain of the AKT1 mediating a translocation of the 

AKT1 to the plasma membrane. This translocation enables the phosphoinositide-dependent 

kinase1 (PDK1) to phosphorylate the AKT1 at the Thr308 residue in the activation loop 

(Alessi et al., 1996) and the mammalian target of rapamycin complex 2 (mTORC2) to 

phosphorylate the AKT1 at the Ser473 residue in the hydrophobic motif (Sarbassov et al., 

2005). These two phosphorylated sites are necessary and sufficient for full activation of the 

AKT. Phosphorylation either Thr308 or Ser473 leads to a partial activation of the AKT1 in 

vitro and phosphorylation of both residues results in a synergistic activation of the enzyme 

(Alessi et al., 1996). Alessi and his colleagues have also demonstrated that phosphorylation of 

Thr308 and Ser473 phosphorylation are independent of each other in 293 cells (Alessi et al., 
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1996). The Ser473 may be also phosphorylated by the mitogen-activated protein kinase-

activated protein kinase 2 (MAPKAP-K2) (Alessi et al., 1996), but MAPKAP-K2 activation is 

not induced by stimuli which activate the AKT, such as the insulin-like growth factor 1 

(IGF1). The MAPKAP-K2 activation is also not dependent on the PI3-kinase activation, 

suggesting that this kinase may not be a major kinase for the AKT Ser473 phosphorylation 

(Shaw et al., 1998). The Ser473 phosphorylation can dictate the differential substrate 

utilization (Alessi et al., 1996; Guertin et al., 2006; Jacinto et al., 2006). However, so far any 

specific factors or kinases that result in the Thr308 phosphorylation in the absence of the 

Ser473 phosphorylation have not yet been discovered (Manning and Cantley, 2007). One of 

the most important physiological functions of the AKT is to acutely stimulate glucose uptake 

in response to insulin. The AKT2, the primary isoform in insulin-responsive tissues, has been 

found to associate with the GLUT4 containing vesicles upon insulin stimulation of adipocytes 

(Calera et al., 1998), and the AKT activation leads to the GLUT4 translocation to the plasma 

membrane (Kohn et al., 1996). The current model is that the AKT-mediated phosphorylation 

of some combination of the sites on the AS160 inhibits its GAP activity. This allows a Rab-

family GTPase to become GTP loaded to stimulate the GLUT4 vesicle translocation. 

However, recent studies suggested the AS160-independent mechanisms of regulation of this 

process (Bai et al., 2007), and other AKT substrates involved in various steps of the GLUT4 

translocation have been identified, including the FYVE zinc finger domain kinase binding 

phosphatidylinositol 3-phosphate (PIKfyve kinase) (Berwick et al., 2004). The activated 

phospho-AKT further phosphorylates the HK2 and thus stimulates the HK2 translocation into 

the outer mitochondrial membrane, where the HK2 inhibits the binding of BAX protein and 

opening of the MPT pore. Another glycolytic enzyme phosphorylated and activated by the 

AKT is the cardiac-specific isoform of PFK2. The AKT phosphorylates the PFK2 on Ser466, 

which results in the promotion of glycolysis (Deprez et al., 1997). Another major substrate for 

AKT is the glycogen synthase kinase 3 (GSK3), which phosphorylates and inactivates 

glycogen synthase in response to insulin stimulation (Burgering and Coffer, 1995). The AKT 

kinase can also regulate the intracellular level of cyclic nucleotides in response to insulin. It 

phosphorylates the phosphodiesterase 3B (PDE3B) on Ser273, which leads to decrease of the 

cAMP (Kitamura et al., 1999). The anti-apoptotic effects of the AKT are related to the BAD 

phosphorylation on Ser136 resulting in the BAD dissociation from the Bcl-2 and Bcl-x 
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proteins and in the inhibition of the BAD apoptotic activity (Downward, 1999). The AKT 

signaling also leads to an increased production of the HIF1+ and HIF2+ transcription factors, 

at least in part, through the mTORC1-dependent translation (reviewed in Gordan and Simon, 

2007; Semenza, 2003). Recently, it has been reported that both HIF1+ and HIF2+ are also 

dependent on the mTORC2 and in addition, the HIF2+ gene expression is specifically 

dependent on the AKT2 signaling (Toschi et al., 2008). 

The heart contains three AKT isoforms, AKT1, AKT2, and AKT3, but the most 

abundant are the AKT1 and AKT2 (Matsui and Rosenzweig, 2005). The AKT1 is mainly 

present in the cytosol, the AKT2 and AKT3 are localized in the mitochondrial membrane and 

the nucleus, respectively (Santi and Lee, 2010). The distinct subcellular localization of AKT 

isoforms is associated with different metabolic roles and could suggest different modes of 

activation and different downstream targets (discussed in more detail in Gonzalez and 

McGraw, 2009). The AKT1 regulates the cell proliferation and cardiac growth (Chang et al., 

2010; DeBosch et al., 2006b) and plays a critical role in a cell survival (Chen et al., 2001b). 

The AKT2 plays a central role in the maintenance of glucose homeostasis (Cho et al., 2001) 

and also possesses an anti-apoptotic effect (DeBosch et al., 2006a). The AKT3 has been 

proposed to play a role in development and function of cardiovascular system and brain 

(Tschopp et al., 2005; Yang et al., 2005).  

 

1.4 Myocardial ischemia-reperfusion injury 
 

Cardiovascular diseases (CVDs) are one of the most common disorders of modern 

civilization and are leading causes of death in the world. According to the World Health 

Organization (WHO), the cardiovascular events cause 30% of all global deaths, representing 

over 17.3 million deaths per year and the number still increases (Mendis et al., 2011). It is 

generally accepted, that men are at greater risk of CVDs than women, but the risk for women 

increases after menopause (World Heart Federation, WHF). One of the proposed explanations 

for the gender difference is a distinct level of estrogen, which is predominant among women 

and may have protective effects on improving cardiovascular functions (Jousilahti et al., 

1999). The risk of CVDs also increases with the age. Aging is associated with physiological 

and morphological changes that alter the mechanical and structural properties of the cardiac 
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muscle and circulatory system (Jani and Rajkumar, 2006; Minaker, 2011; Schwartz and Zipes, 

2011), and thus lead to subsequently increased risk of CVDs, even in healthy asymptomatic 

individuals (Dantas et al., 2012). However, an increasing number of young people can 

develops heart problems, because of the unhealthy lifestyles, which often begins in childhood 

and the childhood obesity is now on the rise. There is an evidence that behavioral and 

metabolic factors such as tobacco smoking, physical inactivity, unhealthy diets (Finks et al., 

2012; Howard and Wylie-Rosett, 2002), and the harmful use of alcohol (Yusuf et al., 2004) 

are one of the main risk factors causing the majority of CVDs. The long-term exposure to 

these risk factors results in hypertension, diabetes, dyslipidemia, and obesity, which can 

subsequently lead to a development of other serious diseases including renal disease, chronic 

respiratory disease, or cancer (Mendis et al., 2011).  

The main diseases that fall under the umbrella of CVDs include diseases of the heart 

such as arrhythmia, cardiomyopathy, or ischemic heart disease, as well as vascular diseases of 

the brain, which include, for example, cerebrovascular disease and ischemic stroke, and finally 

diseases of blood vessels, such as hypertensive heart disease (Mendis et al., 2011). The 

ischemic heart disease and its' acute form, myocardial infarction, is the major cause of death 

and disability from all CVDs worldwide. They are responsible for nearly half of deaths caused 

by CVDs. The ischemic heart disease comprises almost three quarters of all cardiovascular 

deaths, its frequency of world mortality is ~ 13% per year, therefore it has been classified as 

the most serious cardiovascular disorder at this time (WHF). The ischemic heart disease is 

characterized by a reduced blood supply to the heart due to an atherosclerotic plaque builds up 

inside the coronary arteries, which can lead to the myocardial infarction. The subsequent 

restoration of the coronary flow, which is crucial for the viability of the myocardium, causes 

other complications such as an impaired heart contractility and reperfusion arrhythmias. This 

phenomenon is therefore termed the myocardial ischemia-reperfusion, I/R, injury and 

represents a common pathophysiological feature (Figure 10) (reviewed in Frank et al., 2012; 

Hausenloy and Yellon, 2013).  
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Figure 10: The scheme of the I/R injury. The MPTP, mitochondrial permeability transition pore; ROS, reactive 

oxygen species; SR, sarcoplasmic reticulum. The figure is reprinted and slightly modified from the paper of 

Hausenloy and Yellon 2013 with permission from prof. Yellon and The Journal of Clinical Investigation. 

Myocardial ischemia-reperfusion injury: a neglected therapeutic target 

Derek J. Hausenloy, Derek M. Yellon 

Published in Volume 123, Issue 1 

J Clin Invest. 2013; 123(1):92–100 doi:10.1172/JCI62874 

 

1.4.1 Myocardial ischemic injury 

 

The ischemia occurs when the coronary artery lumen diameter is reduced by ~ 50%. 

Necrosis of the myocardium follows when a complete loss of blood flow occurs for more than 

20 min (Kloner et al., 1983). During the prolonged ischemia, ATP levels decrease by 65% at 

15 min and by 90% at 40 min (Reimer and Jennings, 1986). The absence of oxygen switches 

cell metabolism to anaerobic glycolysis leading to an accumulation of lactate and H+. In 

contrast to the hypoxia, during the ischemia the effective removal of lactate and H+ is 

significantly decreased, which results in a marked reduction of the intracellular pH and 

subsequently in the inhibition of glycolysis (Neely and Grotyohann, 1984). The prolonged 

ischemia also causes a decrease of glucose uptake (Bricknell et al., 1981) probably mediated 

by the cyclic guanosine 5’monophosphate (cGMP) (Depre et al., 1998a), which increases in 
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the ischemic heart (Depre and Hue, 1994) because of an activation of NO synthase (NOS) 

(Depre et al., 1997). Once the glycolysis is inhibited, glucose uptake progressively decreases, 

while H+, Na+, and Ca+ continue to accumulate (Hausenloy and Yellon, 2013). The 

intracellular accumulation of H+ activates the sarcolemmal Na+/H+ ion exchanger, which 

extrudes H+ from the cell in exchange for Na+ entry. The lack of the ATP during the ischemia 

ceases the function of the sarcolemmal Na+/K+ ATPase, thereby exacerbating the intracellular 

Na+ overload. In response, the reverse activation of the sarcolemmal Na+/Ca2+ ion exchanger 

results in the intracellular Ca2+ overloading as the cell tries to extrude Na+ (Avkiran and 

Marber, 2002). The acidic conditions during the ischemia prevent the opening of the MPT 

pore and cardiomyocyte hypercontracture at this time (Hausenloy and Yellon, 2013). In 

conclusion, the ischemia inhibits oxidative phosphorylation, which leads to the depolarization 

of the mitochondrial membrane, ATP depletion, and inhibition of myocardial contractile 

function, which may further cause an acute myocardial infarction.  

 

1.4.2 Myocardial reperfusion injury 

 

During the reperfusion the physiological pH is rapidly restored by the wash out of 

lactate and H+ due to the activation of the Na+/H+ exchanger as well as the Na+/HCO- 

symporter (Lemasters et al., 1996). The resultant increase in the intracellular Na+ in turn 

activates the sarcolemmal 2Na+/Ca2+ exchanger, resulting in the exchange of the intracellular 

Na+ with the extracellular Ca2+. A high rate of the 2Na+/Ca2+ exchange can finally lead to the 

Ca2+ overload (Schäfer et al., 2001; Yellon and Hausenloy, 2007). The restoration pH leads to 

an activation of myocardial contractile function, but to a loss of the inhibitory effect on the 

MPT pore opening. The presence of oxygen activates the mitochondrial oxidative 

phosphorylation, which causes the excessive production of ROS (Ide et al., 1999, 2000; 

Simpson and Lucchesi, 1987). The ROS mediate dysfunction of sarcoplasmic reticulum 

resulting in Ca2+ release, which contributes to the intracellular Ca2+ overload (Harman and 

Maxwell, 1995). The ROS also causes a damage of membranes by lipid peroxidation, enzyme 

denaturation, and damage of DNA, which results in the ionic homeostasis instability, enzyme 

dysfunction, and impaired DNA replication and transcription (Ceconi et al., 1991; Galang et 

al., 2000). The intracellular Ca2+ overload causes a hypercontracture of cardiomyocytes 
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(Ladilov et al., 1995; Siegmund et al., 1997) and together with ROS stimulate the MPT pore 

opening and cytochrome c release leading to a cell death (Halestrap et al., 2004). The 

restoration of mitochondrial membrane potential drives Ca2+ into the mitochondria via the 

mitochondrial Ca2+ uniporter and subsequently induces the opening of the MPT pore. The 

ROS activate also an inflammatory response that leads to a further damage to viable tissue 

around infarct (reviewed in Marchant et al., 2012). The ROS promote the release of the pro-

inflammatory factors, such as the TNF+ (Cain et al., 1999; Kleinbongard et al., 2011), the 

nuclear factor kappa B (NF-B) (Gordon et al., 2011; Van der Heiden et al., 2010), toll-like 

receptors (Boyd et al., 2006), and danger–associated molecular patterns (Arslan et al., 2011). 

The presence of these chemoattractants results in the invasion of neutrophils (Jordan et al., 

1999; Williams, 1996), which produce more ROS by the NADPH oxidase activity (Babior et 

al., 2002). Other sources of the ROS include the xanthine oxidase (Brown et al., 1988; Lee et 

al., 2009) and eNOS (Vasquez-Vivar et al., 1998; Xia et al., 1998) in endothelial cells and the 

cytochrome p450 (Granville et al., 2004; Sato et al., 2011). The cytochrome p450 is activated 

by the arachidonic acid, a product of the phospholipase A2 activity, and generates other 

inflammatory molecules (Granville and Gottlieb, 2006; Levick et al., 2007). Additionally, the 

ROS also lead to inflammasome activation in cardiac fibroblasts, which results in further 

inflammatory cytokine production, such as interleukin 1 , (Kawaguchi et al., 2011). 

 

1.4.3 Cardioprotective interventions 

 

Developing new strategies to reduce the I/R injury is currently one of the main goals of 

the research in cardioprotection. In this context, the myocardial ischemic pre-conditioning and 

post-conditioning have recently been proposed as interesting cardioprotective approaches 

(reviewed in Bousselmi et al., 2014). The ischemic pre-conditioning has been first 

documented as a cardioprotective phenomenon by Murry and his colleagues (Murry et al., 

1986). The ischemic pre-conditioning is triggered by brief episodes of ischemia and 

reperfusion performed before the ischemic insult. Although it has been described to have a 

strong in vivo protective effect against the I/R injury (Kloner et al., 1998), its clinic application 

is limited. The cardioprotection persists only for hours or days (Kuzuya et al., 1993). Another 

disadvantage is direct stress to the heart and mechanical trauma to major vascular structures. 
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Another method, called the remote ischemic pre-conditioning, protects the heart indirectly via 

conditioning of other organs (Tapuria et al., 2008). Even though classical pre-conditioning 

may work in a clinical setting such as the heart surgery, it is not feasible in patients with acute 

myocardial infarction because the coronary artery is already occluded at the time of hospital 

admission of the patient. Zhao et al. (2003) was the first who described a phenomenon called 

the post-conditioning in a canine model (Zhao et al., 2003). The post-conditioning, unlike to 

the pre-conditioning, is induced by brief episodes of ischemia and reperfusion applied just 

after the ischemic insult, which allows a direct clinic application. It has been shown that the 

cardioprotection induced by the post-conditioning is as potent as that provided by the pre-

conditioning (Darling et al., 2007; Jin et al., 2007; Staat et al., 2005; Thibault et al., 2008; Xue 

et al., 2010).  

Beside ischemic conditionings, the adaptation to chronic hypoxia represents a potential 

therapeutic intervention activating similar cardioprotective mechanisms as the ischemic pre-

conditioning (Neckar et al., 2002a). In addition, the myocardial infarct-size limiting effect of 

the chronic hypoxia persists for 5 weeks of normoxic recovery compared to the ischemic pre-

conditioning (Neckar et al., 2004). Nevertheless, the adaptation to chronic hypoxia has not 

been studied as intensively as ischemic conditionings, therefore the molecular mechanisms 

responsible for the cardioprotective effect of chronic hypoxia are not still completely 

understood and need more research. 

 

1.5 Hypoxia 
 

The hypoxia is the result of disproportion between the oxygen supply and demand 

leading to the oxygen deficiency in tissues. According to the cause, four main types of 

hypoxia can be defined (reviewed in Ostadal and Kolar, 2007): 

i) The histotoxic hypoxia represents a disability of tissue to utilize oxygen due to an 

injury caused by toxic substances, such as alcohol, cobalt, or cyanide, inhibiting the 

mitochondrial respiratory chain; 

ii) The anemic hypoxia possesses the normal arterial pO2 but has a decreased level of 

erythrocytes as well as hemoglobin or impaired function of the hemoglobin. This type 
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of hypoxia is found in anemia, poisoning by carbon dioxide, or in methemoglobinemia, 

resulting from an oxidation of iron in hemoglobin; 

iii) The circulatory hypoxia has a decreased coronary blood flow leading to a lower 

oxygen as well as nutrients supply, despite the normal pO2 and hemoglobin 

concentrations. The main cause of this hypoxia is the formation of atherosclerotic 

plaques, which can lead to the development of ischemia and in case of a complete 

cessation of coronary flow it may cause a myocardial infarction; 

iv) The hypoxemic hypoxia is characterized by a low pO2 in arterial blood under an 

adequate perfusion. This hypoxia, beside its relation to some cardiovascular diseases, 

also occurs naturally during perinatal development and during staying at high altitudes. 

 

The adaptation to the high altitude hypoxia was shown to be a cardioprotective 

intervention relating to an acute form of ishemic heart disease, the myocardial infarction. It 

has been reported that populations living at high altitudes had a lower incidence of the 

myocardial infarction (Hurtado, 1960) and lower mortality rates of ischemic and coronary 

heart diseases (Mortimer et al., 1977; Voors and Johnson, 1979). Moreover, a reduced infarct 

size (Meerson et al., 1973; Turek et al., 1980), an improved recovery of the post-ischemic 

contractile function (Baker et al., 1997) and the hemodynamic function (Tajima et al., 1994), 

and a reduced incidence and severity of ischemic and reperfusion arrhythmias (Asemu et al., 

2000; Meerson et al., 1987, 1989) in high altitude-residents have been observed. The 

cardiprotective effects of chronic hypoxia (CH) were also confirmed in experimental studies 

using a model of simulated hypoxia in a normobaric (Neckar et al., 2013) or hypobaric 

chamber (McGrath and Bullard, 1968; McGrath et al., 1973; Neckar et al., 2002a; b; Poupa et 

al., 1966; Widimsky et al., 1973). In contrast to protective effects of adaptation to CH, the 

study of Joyeux-Faure et al. (2005) showed that an extreme model of CH makes the heart 

more sensitive to the ischemic injury (Joyeux-Faure et al., 2005). And similarly, the study of 

Park and Suzuki (2007) showed that the I/R-induced myocardial injury depends on the 

duration of hypoxic exposure (Park and Suzuki, 2007). From these experimental data it is 

evident that the type of hypoxia, duration, intensity, and frequency of hypoxic episodes are 

critical factors determining whether hypoxia has beneficial or harmful effect (Beguin et al., 

2005).  
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1.5.1 Experimental models of hypoxia 

 

Experimental animals can be adapted to either the hypobaric or the normobaric 

hypoxia. The hypobaric hypoxia represents conditions with a low O2 supply under a low 

barometric pressure, while the normobaric hypoxia demonstrates conditions with a low O2 

supply under a lower O2 concentration (less than 21%). Both types of hypoxia are 

cardioprotective. However, whether their effects on cardiovascular parameters are similar or 

different it is still sporadic. While Sheedy et al. (1996) have found similarities between 

normobaric and hypobaric hypoxia actions (Sheedy et al., 1996), Savourey et al., (2003) have 

observed dissimilar effects of these two hypoxias (Savourey et al., 2003). Therefore, it cannot 

be excluded that these hypoxias will differ in the activation of molecular mechanisms due to 

the effect of the barometric pressure on O2 supply into tissues.  

According to the duration of hypoxia we can distinguish an acute and a chronic 

hypoxia. These two forms differ in the anti-arrhythmic and anti-necrotic effects. Neckar and 

his colleagues have observed that the adaptation to a normobaric hypoxia for hours or few 

days led to an activation of a strong anti-arrhythmic mechanism. The reduced incidence of 

ischemic arrhythmia persists into the fifth day of the adaptation. After this time, the anti-

arrhythmic effect decreases and with increasing duration of the adaptation to hypoxia it 

disappears. In contrast, the anti-nectrotic mechanism, representing a reduced size of the 

necrotic tissue after induction of the myocardial infarction, is not visible in the first days of the 

adaptation to CH and it increases from the fifth day of the adaptation. It reaches its maximum 

at about the third or fourth week of the adaptation (Neckar et al., 2013).  

The intensity of the hypoxia also plays an important role in the cardioprotection. The 

distinct barometric pressure during the adaptation to a hypobaric hypoxia can lead to the 

activation of different mechanisms. The adaptation to a hypobaric hypoxia simulated a high 

altitude 7000 m for 5 weeks still has a cardioprotective effect (Kolar et al., 2007). The 

question arises how long exposure would still results in the cardioprotection and whether the 

7000 m is a limit altitude for the activity of survival mechanisms or not. For example, at the 

normobaric hypoxia, the adaptation to 10% O2 possesses a cardioprotective effect (Neckar et 

al., 2013), but a lower concentration of O2 can result in opposite impact (Joyeux-Faure et al., 

2005).  
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The last critical factor determining whether hypoxia is beneficial or harmful is the 

frequency of hypoxic episodes. It has been observed that the intermittent normobaric hypoxia 

with 16 hours of daily reoxygenation was cardioprotective (Figure 23) (Kasparova et al., data 

in preparation), whereas the intermittent normobaric hypoxia with 1 hour of daily 

reoxygenation abolished this effect (Neckar et al., 2013). Conversely, Milano et al. (2010) 

have published that the daily reoxygenation decreased the myocardial injury and improved the 

post-ischemic recovery after chronic hypoxia (Milano et al., 2010a). Recent studies have 

reported the cardioprotective effect of the normobaric intermittent hypoxic conditioning, 

which is characterized by several short cyles of hypoxia per day (Mallet et al., 2006; 

Manukhina et al., 2013; Maslov et al., 2013).  

In addition to the experimental models of the hypoxia, the sensitivity of the organism 

to the hypoxia has a vital role. Different species respond differently to the hypoxia. For 

example, cattle and pigs are more sensitive than rats and rabbits and these than dogs and sheep 

(Herget and Palecek, 1978; Reeves et al., 1979; Turek et al., 1975; Wauthy et al., 2004). 

Differences exist also between males and females. The female myocardium is more tolerant to 

the hypoxia than the myocardium of male (Ostadal et al., 1984b), which can be related to the 

effect of female sex hormones. And last but not least, the age affects the sensitivity of the 

organism to the hypoxia. La Padula and Costa (2005) have found that senescents rats (25 

months) are more sensitive to the hypoxia than younger adult rats (up to 18 months), which 

may be associated with worse cardiovascular system plasticity (La Padula and Costa, 2005). 

It can be generally concluded that the exposure to a moderate oxygen deprivation 

(physiological hypoxia) triggers defence mechanisms to deal with a reduced oxygen supply, 

and cardioprotective programmes. Conversely, a severe impairment of oxygen supply 

(pathophysiological hypoxia) may exceed the host organism’s defence apparatus resulting in a 

maladaptive cardiac phenotype. 

It should be also mentioned that beside the protective character, the adaptation to CH 

induces hypoxic pulmonary hypertension and right ventricle hyperthrophy, which, in case of 

an excessive hypoxic stimulus, may result in a congestive heart failure.  
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1.5.2 Adaptation to hypoxia 

 

The adaptation to the hypoxia is associated with changes in the cardiac structure and 

function to preserve an adequate contractile function in spite of a lower oxygen concentration 

in blood. The oxygen sensing mechanisms and mechanisms maintaining the energy 

homeostasis play the important role in these adaptive processes. The reduced O2 availability 

occurred during the hypoxia results in a reduced rate of electron transfer to O2 by the complex 

IV, cytochrome c oxidase (COX). This impairs transfer between the complex III, cytochrome 

bc1 complex, and the COX, which results in an increased rate of the ROS formation at the 

complex III. Interestingly, the continous hypoxia leads to an increased ROS production at the 

complex III (Chandel et al., 2000), while the intermittent hypoxia leads to an increased ROS 

generation at the complex I, NADH dehydrogenase, (Prabhakar et al., 2006). In both cases, the 

ROS function as signal molecules and activate HIF1 (Chandel et al., 2000; Guzy et al., 2005; 

Mansfield et al., 2005), the central regulator of cellular responses to chronic hypoxia 

(reviewed in Wang and Si, 2013). The HIF1 stimulates genes encoding proteins involved in 

adaptive mechanisms, which enables to cope with oxidative stress and relieve the severity of 

hypoxia.  

 

1.5.2.1 Hypoxia inducible factor 1 (HIF1) 

 

Mammalian tissues express three HIF isoforms, HIF1 (Semenza et al., 1991; Semenza 

and Wang, 1992), HIF2 (Drutel et al., 1996; Hirose et al., 1996), and HIF3 (Gu et al., 1998; 

Takahata et al., 1998), however, the most studied one is the HIF1. The HIF1 is composed of 

two subunit, + and , (Jiang et al., 1996; Wang and Semenza, 1995). The + subunit is localized 

in the cytosol (Kallio et al., 1998; Moroz et al., 2009) and is regulated by cytosolic 

hydrolylases, while the , subunit, identified as the aryl hydrocarbon nuclear translocator 

(ARNT) (Hoffman et al., 1991), is located in the nucleus (Chilov et al., 1999). The HIF1+ 

activity is regulated by the concentration of oxygen (Cockman et al., 2000; Kamura et al., 

2000; Ohh et al., 1998; Tanimoto et al., 2000; Wang et al., 1995a; b). Under normoxia (pO2 = 

0.21 bar), the HIF1+ is hydroxylated at prolines by prolylhydrolylases (PHDs) (Bruegge et al., 

2007; Fandrey et al., 2006; Gorres and Raines, 2010) and at asparagins by the asparagyl 
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hydroxylase, also called factor inhibiting HIF, FIH (Dann et al., 2002; Hewitson et al., 2002; 

Lando et al., 2002a; Linke et al., 2004; Lisy and Peet, 2008; Mahon et al., 2001; Stolze et al., 

2004). Thus hydroxylated HIF1+ is further ubiquitinylated by the proteasome complex and 

degraded (Kallio et al., 1999; Kamura et al., 2000). Under hypoxia (pO2 < 0.21 bar), the PHDs 

and the FIH are inactivated (Lancaster et al., 2004; Lando et al., 2002b) and unhydroxylated 

HIF1+ can enters the nucleus, where binds to its , subunit (Chilov et al., 1999) and co-

activators (Arany et al., 1996; Carrero et al., 2000; Ema et al., 1999) and activates 

transcription of target genes. The HIF regulates the transcription of its target genes by binding 

to the hypoxia responsive element (HRE), which may be located either in the promoter region, 

or in distant regions called enhancers. There is a suggestion that target genes of the HIF could 

be up to 500 (Benita et al., 2009), but the evidence of a direct relationship has been described 

just for 80 of them (Benita et al., 2009; Schofield and Ratcliffe, 2004). The main target genes 

related to the adaptation to CH are summarized in the reviews of Semenza (Semenza, 2007, 

2014) and the HIF1 action is illustrated on the Figure 11 and described in the paper of Goda 

and Kanai (Goda and Kanai, 2012).  
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Figure 11: The HIF1 action in cells. The GLUT, glucose transporter; PDH, pyruvate dehydrogenase; PDK, 

pyruvate dehydrogenase kinase; Acetyl-CoA, acetyl conezym A; LDHA, lactate dehydrogenase A; LON, ATP-

dependent protease in the mitochondrial matrix; COX4-1 and 4-2, cytochrome c oxidase subunit 4-1 and 4-2; 

ETC, electron transport chain; miR-210, micro RNA; TCA, tricarboxylic cycle; MXL1, max family protein; MAX, 

myc-associated factor X; BNIP3, member of the Bcl-2 family of mitochondrial proteins; PGC-1!, coactivator 1of 

peroxisome proliferator-activated receptor ". The figure is reprinted from the paper Hypoxia-inducible factors 

and their roles in energy metabolism, Goda and Kanai, Springer and Int J Hematol (2012)95:457–463, Figure 1. 

The figure is republished with kind permission from Prof. Goda and Springer Science and Business Media. 

 

The hypoxia also activates other transcription factors, which cross-talk with the HIF1 

to regulate cellular responses to hypoxia (Cummins and Taylor, 2005; Kenneth and Rocha, 

2008). For example, the NF-B modulates the HIF1 transcription (Bonello et al., 2007; Jung et 

al., 2003; van Uden et al., 2008). The co-operation between the AP1 and the HIF1 has also 

been reported (Damert et al., 1997; Michiels et al., 2001). The p53 and the HIF1 regulate to 

each other. While the HIF1 activates the p53 (Chen et al., 2003), the p53 inhibits the HIF1 

activity (Blagosklonny et al., 1998; Ravi et al., 2000). The Myc and HIF complexes can 

compete for binding sites at the promoters of target genes to alter their expression profile 
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(Koshiji et al., 2004). Beside transcription factors, the hypoxia controls transcription of target 

genes via an activation of the histone acetyltransferases or histone deacetylases and controls 

translation processes via activation of several kinases, which are responsible for the regulation 

of eukaryotic initiation factors (reviewed in Kenneth and Rocha, 2008). 

 

1.5.2.2 Oxygen sensing mechanisms in hypoxia 

 

From a physiological point of view, exposure to the hypoxia is initially associated with 

an increased respiratory rate and cardiac output, due to an increased adrenergic activity and 

elevated plasma concentration of catecholamines (Bao et al., 1997; Kumar et al., 2006; 

Ostadal et al., 1984a), to keep the adequate oxygen supply into tissues. The increased 

adrenergic activity results from the elevated carotid chemoreceptor response to a low arterial 

pO2 during the hypoxia (Fletcher et al., 1992; Peng and Prabhakar, 2003; Rey et al., 2004) that 

is mediated by the ROS and the HIF1+ signaling (Peng et al., 2006). It should be noted that 

with an acute exposure carotid chemoreceptors in humans are activated above a high altitude 

2000 m, where the alveolar pO2 is 60 mmHg and lower, while a chronic exposure can activate 

carotid chemoreceptors at lower altitudes. The carotid chemoreceptor sensor activity 

continuously increases with the length of the hypoxic exposure and reversibly decreases to a 

basal level during the normoxia (Peng et al., 2003). The initial increased cardiac output 

declines with the prolonged hypoxia to the sea-level values (Calbet, 2003). The increased 

sympathetic activity induced by the hypoxia also leads to an increase of blood pressure 

(reviewed in Fletcher, 2001; Prabhakar and Kumar, 2010). In addition, the adaptation to 

hypoxia elevates plasma levels of the vasoconstrictor endothelin 1 (Kanagy et al., 2001), 

which is also the HIF1+-target gene (Hu et al., 1998) and it increases a blood pressure via 

binding to its receptor (Allahdadi et al., 2008). The activation of the rennin-angiotensin system 

also contributes to an increased blood pressure via angiotensin II and its receptor (Fletcher et 

al., 2002). On the other hand, the HIF1 activates expression of genes and enzymes promoting 

relaxing the vascular tone (Wenger and Gassmann, 1997), such as the atrial natriuretic peptide, 

adrenomedullin (ADM), and NO synthase, which produces a known vasodilator NO, and thus 

decreases the blood pressure and peripheral resistance due to a vasodilation of arteries and 
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veins (Henley et al., 1992; Lyamina et al., 2011). Taken together, the effect of hypoxia on the 

cardiovascular system appears to be rather complex and further investigations are needed. 

Other adaptive responses are represented by an increase of hematocrit (see Table 1, 

Chapter 3) and hemoglobin concentration via the HIF1 signaling pathway. The HIF1 activates 

the transcription of erythropoietin (EPO), which stimulates erythropoiesis (Jiang et al., 1996; 

Semenza and Wang, 1992), further the transcription of transferrin and its receptor (Lok and 

Ponka, 1999; Rolfs et al., 1997; Tacchini et al., 2002), which enhances the delivery of iron to 

the bone marrow for incorporation into hemoglobin, and also the transcription of heme 

oxygenase 1 (HO1) (Wang and Semenza, 1993; Wenger and Gassmann, 1997), which 

catalyzes a degradation of hem and release of iron needed for a erythropoiesis. The higher 

expression of HO1 under hypoxia has been already observed (Han et al., 2010). These 

mechanisms increase the blood oxygen transport capacity.  

The HIF1 also regulates angiogenic processes via stimulation of the vascular 

endothelial growth factor (VEGF) and its receptor transcriptions, which mediates 

vascularization (Forsythe et al., 1996; Wenger and Gassmann, 1997) resulting in a higher 

density of coronary arteries and elevated coronary blood flow. The effect of hypoxia on the 

coronary blood flow is another controversial theme. Some authors have observed a greater 

coronary flow (Scheel et al., 1990; Turek et al., 1975) and increased capillary density (Miller 

and Hale, 1970; Zhong et al., 2002), while others have reported decreased capillary density 

(Clark and Smith, 1978; Smith and Clark, 1979) and low coronary flow (Grover and 

Alexander, 1971; Moret et al., 1972), or they have not found any changes in capillary density 

(Pietschmann and Bartels, 1985; Rakusan et al., 1981). These controversial findings observed 

across studies may be due to differences in the hypoxic model or among species. Rodents have 

relatively higher capacity for myocardial vascular growth than other mammals. Another 

important factor may be the age, since the degree of angiogenesis decreases with the age of 

animals (Tomanek et al., 2003).  
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1.5.2.3 Energy metabolism in hypoxia 

 

The decreased level of oxygen slows down the mitochondrial oxidative 

phosphorylation via decreasing the ATP synthase activity (Nouette-Gaulain et al., 2005). 

Therefore it is necessary to activate mechanism that can produce the ATP even in the low 

oxygen. Another indicator of energetic status is PCr/ATP ratio, which is lower in hearts of 

people from high altitudes (Hochachka et al., 1996). These observations indicate an increased 

contribution of glucose to myocardial aerobic ATP production. The glucose and lactate are 

becoming the preferred substrates for the cardiac metabolism because of their higher 

efficiency in the ATP generation. The enhanced glucose uptake and utilization have been 

observed in people living in high altitudes or adapted to high altitudes and in rats adapted to 

the hypobaric hypoxia (Holden et al., 1995; Hurford et al., 1990; Roberts et al., 1996). The 

higher glucose transport into cardiomyocytes is mediated by the GLUT1 and GLUT4, which 

translocate into the plasma membrane during the hypoxia (Zhang et al., 1999). It has been also 

observed an increased expression of the GLUT1 (Sivitz et al., 1992) directly activated by the 

HIF1 (Wenger and Gassmann, 1997). The regulation of the glycolytic metabolism is mainly 

managed by the HIF1. The HIF1 activates expression of glycolytic enzymes (reviewed in  

(Marin-Hernandez et al., 2009; Semenza et al., 1994, 1996), such as HK, G-6-P 

isomerase, PFK, aldolase, triose phosphate isomerase, GAPDH, PGK, phosphoglycerate 

mutase, enolase, and PK. The stimulated glycolysis leads to an increased production of lactate 

by the LDH, which is also an inducible target gene of the HIF1 (Firth et al., 1994, 1995; 

Wenger and Gassmann, 1997). The increased intracellular concentration of lactate activates 

the gene expression of the monocarboxylate transporter 1 (MCT1) and thus promotes lactate 

uptake (Hashimoto et al., 2007). The excessive lactate within cells is transported into blood by 

the MCT4, which is up-regulated during the hypoxia in the HIF-dependent manner (Ullah et 

al., 2006). This increased efflux of lactate from cardiomyocytes prevents further reduction of 

pH and development of lactic acidosis (McClelland and Brooks, 2002; Ullah et al., 2006). 

Despite the increased glycolytic rate, the FFAs are still metabolized, only the proportion 

between major cardiac substrates is changed. Under the normoxic conditions, the glucose 

uptake and glycolytic enzymes are inhibited by the FFA and their metabolites, while under 

hypoxia, the FFA uptake and utilization decreases, which leads to a decline in levels of FFA 
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metabolites and an activation of glycolysis. The hypoxia causes the decrease in the carnitine 

palmitoyltransferase 1 activity (Kennedy et al., 2001) via an increased malonyl-CoA 

concentration (Wang et al., 1996), which reduces the transport of the FFA into mitochondria. 

In addition, the hypoxia attenuates enzyme activities of the 3-hydroxyacyl-CoA-

dehydrogenase (Bass et al., 1989; Daneshrad et al., 2000; Kennedy et al., 2001) and the 

medium-chain acyl-CoA dehydrogenase (Ngumbela et al., 2003), which decreases the FFA 

oxidation. The expression of ,-oxidation enzymes is down-regulated by a reducing a level of 

their transcription factor the peroxisome proliferator-activated receptor (PPAR) + (Razeghi et 

al., 2001) mediated by the HIF1 (Narravula and Colgan, 2001). According to a lower ATP 

production, the cardiomyocytes switches into a slower mode by decreasing the contractility 

through the transition of myosin heavy chains from MyHC+ to MyHC,, which has a lower 

ATPase activity (Pissarek et al., 1997; Letout et al., 2005). The CK system also adapts to the 

hypoxic condition. The CKB isoform is up-regulated, which improves the PCr transfer within 

cells (Pissarek et al., 1997; Waskova-Arnostova et al., 2014). Generally, the adaptation to 

hypoxia leads to the activation of the fetal gene program.  

 

1.5.2.4 Mitochondrial respiration in hypoxia 

 

The HIF1 also regulates the mitochondrial metabolism. First, the HIF inhibits the PDH 

via activation of the PDC1 and thus inhibits the conversion of pyruvate to acetyl-CoA (Kim et 

al., 2006; Papandreou et al., 2006). The pyruvate is further converted into lactate by the LDH. 

The decreased level of the acetyl-CoA results in a decreased flux through the TCA and 

thereby reducing flux through the electron transport chain, which leads to a lower production 

of mitochondrial ROS. However, this mechanism does not have to be such effective in 

cardiomyocytes because of a high generation of the acetyl-CoA from the FFA oxidation, 

which is less, but still, active under hypoxic conditions.  

The second way the HIF1 regulates the ROS over-production is the activation of 

switch in the COX from the COX4-1 subunit to the COX4-2 subunit that increases the 

efficiency of the complex IV (Fukuda et al., 2007). 

The third posibility how to reduce the ROS production could be an activation of the 

mitochondrial autophagy. It has been recently observed, that patients with congenital heart 
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disease living at a high altitude resisted I/R injury during a cardiac surgery better than those at 

a low altitude, possibly through an elevated basal autophagy induced by the chronic hypoxia 

(Hu et al., 2014). The HIF1 activates the gene encoding BNIP3, a member of the Bcl-2 family 

of mitochondrial proteins, which triggers selective mitochondrial autophagy (Bellot et al., 

2009; Zhang et al., 2008), even in cardiomyocytes (Regula et al., 2002). In addition, the HIF1 

inhibits the mitochondrial biogenesis by repression of the c-Myc activity, which leads to an 

inhibition of the PPAR. coactivator 1 (PGC1) ,, a mediator of mitochondrial biogenesis 

(Zhang et al., 2007). This is supported by a study, which reported a reduction in the 

mitochondrial oxidative capacity after exposure to hypobaric hypoxia (Green et al., 1989). The 

autophagy may be also induced by the AMPK without the HIF1 and BNIP3 participations, but 

this has been observed under severe oxygen deprivation (< 0.01% O2) (Papandreou et al., 

2008). On the contrary, there are also some evidences that hypoxia induces mitochondrial 

biogenesis in cardiac myocytes. The proliferation of smaller mitochondria has been found in 

response to chronic hypobaric hypoxia (Costa et al., 1988; Friedman et al., 1973). Hashimoto 

et al. (2007) has reported the association between a higher lactate concentration, which occurs 

during hypoxia, and enhanced expression of the PGC1+ gene (Hashimoto et al., 2007). The 

recent study has found that the mitochondrial biogenesis is activated by the AKT kinase and 

endothelial NOS signaling pathway (Qin et al., 2014) and via activation of the PGC1+ 

expression (Zhu et al., 2010). Another study has showed that the PGC1+ expression is 

activated by the Ca2+-calmodulin-dependent protein kinase (CaMK) (Wu et al., 2002a). The 

study of Ahuja et al. (2010) has demonstrated that the c-Myc activated the mitochondrial 

biogenesis but reduced the PGC1+ level in the adult mouse heart (Ahuja et al., 2010). The 

elevated mitochondrial biogenesis has been also proposed by observed enhanced activities of 

respiratory enzymes and ATP synthesis in response to a high altitude hypoxia (Reynafarje and 

Marticorena, 2002). In addition, the PCr synthesis has been shown to be accelerated after 

adaptation to CH (Novel-Chate et al., 1995). These studies thus demonstrate how different 

models of hypoxia affect the mitochondrial metabolism and may result in distinct 

mitochondrial functional phenotypes. The activation of both autophagy and mitochondrial 

biogenesis processes may also be time dependent.  
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1.5.3 Cardioprotective mechanisms of hypoxia 

 

The adaptive mechanisms activated during hypoxia may be potential candidates 

increasing a tolerance of the myocardium to I/R injury and arrhythmias. As the principal 

regulator of cellular responses to hypoxia is the HIF1, it may be assumed that the 

cardioprotective effects of hypoxia are mediated via the HIF1 signaling. The cardioprotective 

effect of the HIF1+ has been demonstrated in numerous studies. The up-regulation and 

activation of the HIF1+ using pharmacological agents, genetically modified animals, PHD 

inhibitors, or si-RNA mediated PHD gene silencing reduce the myocardial infarct size and 

improved the post-ischemic ventricular functions (Bao et al., 2010; Cai et al., 2003, 2008; 

Czibik et al., 2009; Eckle et al., 2008; Hyvärinen et al., 2010; Kido et al., 2005; Natarajan et 

al., 2006, 2007; Ockaili et al., 2005; Raphael et al., 2008; Xi et al., 2004). In most cases, the 

cardioprotective effect has been mediated by the HIF1+ target genes, e.g. the HO1 (Ockaili et 

al., 2005), the ADM and the platelet-derived growth factor subunit B (Czibik et al., 2009), 

adenosine receptor (Eckle et al., 2008), or by the iNOS (Xi et al., 2004). However, the 

mechanism of the cardioprotective effect controlled by the HIF1+ is not well understood. Cai 

et al. (2003) were the first to describe the cardioprotective effect of the HIF1+ induced by an 

intermittent hypoxia using heterozygous knockout mice and suggest a potential role of the 

EPO (Cai et al., 2003). Recently, Wang and Si (2013) have shown the up-regulation of the 

HIF1+ and the VEGF in rat hearts and suggested their participation in the cardioprotective 

effect of a short-term intermittent normobaric hypoxia (10% O2 for 1, 7, 14, and 28 days) 

(Wang and Si, 2013). However, Forkel et al. (2004) have shown an increased mRNA of the 

HIF1+ and the eNOS, but no improvement of the post-ischemic left ventricular function of rats 

adapted to a normobaric hypoxia (10.5% O2 for 2 weeks) (Forkel et al., 2004). The study of 

Shi et al. (2002) described an increased association of the eNOS with the heat shock protein 

90 in hearts of rabbits adapted to a normobaric hypoxia (12% O2 for 9 days) and that this 

association helps to produce the NO and to limit the superoxide generation (Shi et al., 2002). 

On the other hand, the adaptation to an acute intermittent normobaric hypoxia (10% O2 for 30 

min, 2 h, or 4 h) induced the delayed cardioprotection in mice, which was triggered and 

mediated by the iNOS. This cardioprotective effect was abolished by the iNOS2 inhibitor (S-

methylisothiourea) (Xi et al., 2002). The same findings have been reported by Beguin et al. 
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(2005), who observed that the infusion of a nonselective inhibitor of the NOS, the N(omega)-

nitro-L-arginine methyl ester (L-NAME), into hearts of rats adapted to an acute intermittent 

normobaric hypoxia (5 or 10% O2 for 30 min or 4 h) before the ischemia abolished the 

cardioprotective effect of the hypoxic adaptation (Beguin et al., 2005). The contribution of the 

iNOS in the protection of rat hearts against I/R injury has been also observed after the 

adaptation to an intermittent hypobaric hypoxia (5000 m for 42 days) using the iNOS-selective 

inhibitor aminoguanidine (Ding et al., 2005). Other studies on rabbits using a model of a 

normobaric continuous hypoxia (12% O2 for 7-10 days) and the L-NAME inhibitor has also 

reported that the enhanced NOS activity is associated with a resistance to myocardial ischemia 

(Baker et al., 1999; Fitzpatrick et al., 2005). It has recently been suggested that the ROS/NO 

balance plays an important role in cardioprotective mechanisms. The adaptation of rats to a 

sub-chronic hypobaric hypoxia (7620 m for 5 days) significantly increased the NO level and 

enzyme activities of antioxidants and simultaneously markedly decreased the level of ROS 

(Singh et al., 2013). The cardioprotective effect of antioxidant enzymes has been already 

described for guinea pigs adapted to a chronic intermittent hypobaric hypoxia (5000 m for 28 

days) (Guo et al., 2009). These authors have found that the pre-treatment of control hearts with 

an antioxidant mixture containing the superoxide dismutase (SOD) and the catalase (CAT) 

caused cardioprotective effects similar to the hypoxic adaptation and that the irreversible CAT 

inhibitor aminotriazole abolished the cardioprotection of the hypoxia (Guo et al., 2009). Based 

on all these observations, the regulation of the ROS over-production and the enhancement of 

antioxidant capacity represent promising cardioprotective targets for clinical studies.  

Beside the antioxidant defense, the NO also plays a role in the regulation of a blood 

pressure via vasodilation of vessels (Archer et al., 1994). The angiotensin II and its receptor 

represent other important regulators of the blood pressure. It has been demonstrated that the 

inhibition of the angiotensin II receptor by the candesartan exhibited the cardioprotection of a 

chronic continuous normobaric hypoxia (10% O2 for 2 weeks) in part through the reduction of 

the blood pressure and cytokine expression in diabetic rats (Inamoto et al., 2006). In addition, 

the angiotensin II receptor 1 antagonist irbesartan completely abolished the improvement of 

the post-ischemic recovery of the cardiac contractile function during the reperfusion. Thus, the 

angiotensin II receptor 1 pathway plays an important role in the coronary angiogenesis and 
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improved the cardiac ischemic tolerance induced in neonatal rats by a chronic intermittent 

hypobaric hypoxia (5000 m for 10 days) (Rakusan et al., 2007).  

In addition to the ROS-mediated cell and tissue damage, the Ca2+ overload induces the 

apoptosis and inflammation. Therefore, the regulation of processes maintaining the Ca2+ 

homeostasis could be another cardioprotective tool against I/R injury. It has been 

demonstrated that the CaMKII is involved in the cardioprotection induced by the adaptation of 

rats to an intermittent hypobaric hypoxia (5000 m for 42 days) due to an administration of the 

CaMKII inhibitor, the KN-93, which significantly attenuates the protective effect of 

mentioned hypoxia (Xie et al., 2004; Yu et al., 2009). The intermittent hypobaric hypoxia 

(5000 m for 42 days) has also up-regulated the phospholamban phosphorylation site for the 

CaMKII as well as for the PKA, which may consequently contribute to the cardioprotection of 

rat hearts against the I/R injury (Xie et al., 2005). The elevated CaMKII inhibits the 

phospholamban via phosphorylation and thus activates the SERCA and the Ca2+ re-uptake 

(Mattiazzi and Kranias, 2014). Another study reported that the intermittent hypobaric hypoxia 

(5000 m for 42 days) may preserve the Ca2+ homeostasis and contraction by preserving the 

ryanodine receptors (RyRs) and the SERCA2 proteins as well as the NCX activity in isolated 

rat cardiomyocytes during the I/R injury (Chen et al., 2006). The following study has 

demonstrated that also an intermittent normobaric hypoxia (10% O2 for 3, 7, and 14 days) 

confers the cardioprotection against the I/R injury in rat cardiomyocytes by altered the Ca2+ 

handling with augmented the RyR and the NCX activities via the PKA and PKC, but not via 

the CaKMII activation (Yeung et al., 2007).  

The high intracellular concentration of Ca2+ leads to an opening of the MPT pore and 

to the subsequent apoptosis. Targeting the MPT pore and other mitochondrial pro- and anti-

apoptotic proteins may be significant protective mechanisms against the cell death. Zhu et al. 

(2006) have demonstrated that the inhibition of the MPTP opening, inducing by an 

intermittent hypobaric hypoxia (5000 m for 42 days), attenuated the intracellular as well as the 

mitochondrial Ca2+ overloading in rat cardiomyocytes, which contributed to the 

cardioprotection of this hypoxic adaptation. On the other hand, opening of the MPT pore with 

the atractyloside immediately at the reperfusion abolished these cardioprotective effects (Zhu 

et al., 2006). Moreover, the adaptation of rats to an intermittent hypobaric hypoxia (5000 m 

for 42 days) attenuated the I/R-induced apoptosis via increasing the ratio of Bcl-2/BAX, 
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especially in the membrane fraction (Dong et al., 2003). Recent study of Neckar et al. (2013) 

has reported the cardioprotective effect of a chronic continuous normobaric hypoxia (10% O2 

for 15 and 30 days) via the activation of the mitochondrial Ca2+-activated K+ (BKCa) 

channels. Authors have demonstrated that the using of the BKCa channel blocker paxilline 

attenuated the cytoprotective effect in cardiomyocytes isolated from hypoxic rat hearts 

(Neckar et al., 2013).  

Other ionic channels regulating the distribution of Ca2+ are the KATP channels. They 

control the membrane potentials, regulate membrane swelling, and maintain the optimal 

sensitivity to sympathetic signals. It has been observed that the sarcolemmal and 

mitochondrial KATP channels contribute to the cardioprotection in rabbit hearts adapted to a 

normobaric continuous hypoxia (12% O2 for 8-10 days). The activation of the KATP channels 

is associated with the resistance of rabbit hearts adapted to a normobaric continuous hypoxia 

(12% O2 for 7-10 days) to the myocardial ischemia. The application of a general KATP channel 

blocker glibenclamide (Baker et al., 1997; Fitzpatrick et al., 2005) or a selective mitochondrial 

KATP channel blocker 5-hydroxydecanoate and a sarcolemmal KATP channel blocker HMR 

1098 abolished cardioprotection in previously hypoxic hearts (Kong et al., 2001). On the other 

hand, the application of KATP channel agonist bimakalim increased the recovery of the left 

ventricular developed pressure in normoxic rabbit hearts (Baker et al., 1997). The KATP 

channels are also associated with a resistance of rat hearts to the I/R injury induced by the 

adaptation to an intermittent hypoxia (5000 m for 42 days) (Zhu et al., 2003). Authors reported 

that the glibenclamide as well as the 5-hydroxydecanoate abolished the cardioprotective and 

cytoprotective effects of the hypoxic adaptation, whereas the KATP channel opener, pinacidil, 

attenuated the Ca2+ overloading during the ischemia and reperfusion in isolated normoxic 

cardiomyocytes. However, Asemu et al. (1999) first proposed that the mitochondrial KATP 

channel, rather than the sarcolemmal KATP channel, appears to be involved in the protective 

mechanism afforded by the adaptation to an intermittent hypobaric hypoxia (5000 m for 2-3 

weeks or 5-6 weeks) (Asemu et al., 1999). They have observed an increased number of 

arrhythmias in normoxic as well as hypoxic rat hearts using a glibenclamide and in contrast, a 

decreased number of arrhythmias in the normoxic hearts using a diazoxide, the mitochondrial 

KATP channel opener. However, Suzuki et al. (2003) have reported that the diazoxide activated 

the sarcolemmal KATP channels, not the mitochondrial KATP channels in mouse hearts (Suzuki 



!

! +,!

et al., 2003). It seems that the selective KATP channel modulators might not be sufficiently 

selective under certain conditions and might be species-dependent. Results similar to those of 

Asemu et al. (1999) have been later demonstrated by Kolar et al. (2005), who have used a 

novel agent MCC-134, which inhibits the mitochondrial KATP and activates the sarcolemmal 

KATP channels, and thus found that the opening of the mitochondrial KATP channels but not the 

sarcolemmal KATP channels plays a crucial role in the mechanism by which the intermittent 

hypobaric hypoxia (7000 m, 5-6 weeks) improves the cardiac tolerance to the I/R injury in rats 

(Kolar et al., 2005). The cardioprotective effect of the mitochondrial KATP channels using a 5-

hydroxydecanoate inhibitor has been also confirmed for the intermittent hypobaric hypoxia 

(5000 m for 24-32 days or 6 weeks) (Neckar et al., 2002b; Xie et al., 2004). The mitochondrial 

KATP channels also underlie cardioprotective mechanisms in rat hearts induced by the 

adaptation to an acute intermittent normobaric hypoxia (5 or 10% O2 for 30 min or 4 h) 

(Beguin et al., 2005), as well as in rabbit hearts induced by the adaptation to a chronic 

continuous normobaric hypoxia (12% O2 for 7-10 days). This improves the mitochondrial 

bioenergetics via regulation of the ATP synthesis rate (Eells et al., 2000). It has been recently 

reported that the inhibition of the mitochondrial ATP synthase by the oligomycin abolished 

the improvements of the post-ischemic recovery of the left ventricle function, mitochondrial 

membrane potential, and respiratory control ratios in rats previously adapted to an intermittent 

hypobaric hypoxia (5000 m for 4 weeks) (Wang et al., 2012).  

The high ATP/ADP ratio is essential for the activity of ATPases. The Na+/K+ ATPase 

is one of the main consumers of the ATP (Rolfe and Brown, 1997). Therefore, any change in 

the production of the ATP has a significant impact on its function. Under the ischemia, when 

the ATP synthesis is strongly inhibited, the function of the Na+/K+ ATPase is ceased, thereby 

exacerbating the intracellular Na+ overload (Chapter 1.4). Guo et al. (2011) have shown that 

the enhancement of the Na+/K+ ATPase activity by a chronic intermittent hypobaric hypoxia 

(5000 m for 28 days) protected guinea pig hearts against the I/R injury, while the inhibition of 

the Na+/K+ ATPase activity by the oubain attenuated this protective effect (Guo et al., 2011).  

It is generally accepted that the adaptation to a hypoxia increased the level of 

catecholamines in blood resulting in the adrenergic stimulation (Bao et al., 1997; Kumar et al., 

2006; Ostadal et al., 1984a). Activation of the +1B-adrenergic receptors by its agonist 

phenylephrine has been shown to improved the post-ischemic myocardial performance in rats 
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adapted to an intermittent hypobaric hypoxia (5000 m for 4 weeks) via the PKC-0 signaling 

pathway and inhibiting the matrix metalloproteinase 2, which is involved in the breakdown of 

extracellular matrix proteins (Gao et al., 2014). Moreover, the +1B-adrenergic receptor is the 

target gene of the HIF1+ (Eckhart et al., 1997). Other study by Mallet et al. (2006) has 

demonstrated that the episodic ,1-adrenergic activation during an intermittent hypoxic 

conditioning (9.5-10% O2, 20 days) evoked a progressive development of the powerful 

resistance to the myocardial ischemia in dogs (Mallet et al., 2006). Beside the adrenergic 

activity, activation of opioids receptors by elevated levels of endogenous opioid peptides is 

responsible for the cardioprotection induced by the adaptation of rats to a chronic continuous 

normobaric hypoxia (12% O2 for 3 weeks) (Maslov et al., 2013).  

The adrenergic and other extracellular signals activate a variety of signaling cascades, 

whose central regulators are various protein kinases. It has been reported that the 

administration of the PI3K inhibitor wartmaninn in mice adapted to an intermittent normobaric 

hypoxia (6-8% O2 for 14 days) reduced also the level of the phospho-AKT and magnified the 

infarct size, indicating that the PI3K/AKT pathway is crucial for the cardioprotection induced 

by the adaptation to a hypoxia (Milano et al., 2013). It has been also described that the 

PI3K/AKT pathway have an important role in the cardioprotection mediated by a chronic 

intermittent normobaric hypoxia (10% O2) with 1 h daily reoxygenation. Moreover, the 

extracellular signal-regulated kinases 1/2 (ERK1/2) are also involved in the cardioprotective 

mechanisms of this type of hypoxia (Milano et al., 2010b). The recent study has reported that 

the cardioprotection induced by the adaptation of rats to an intermittent hypobaric hypoxia 

(5000 m for 6 weeks) is mediated by the ERK1/2 signaling, which was found in H9C2 cells 

using an ERK1/2 phosphorylation inhibitor PD98059 (Meng et al., 2014). The PKC represents 

the other kinase playing a role in cardioprotective mechanisms mediated by the adaptation of 

rats to an intermittent hypobaric hypoxia (5000 m for 42 days) (Ding et al., 2004). These 

authors have found that a PKC antagonist chelerythrine significantly inhibited the protective 

effects of the intermittent hypobaric hypoxia and that the PKC contributed to the elimination 

of Ca2+ and Na+ overloads in isolated hypoxic cardiomyocytes. This might underlie the 

mechanism of the cardiprotection. Neckar et al. (2005) have described that the chronic 

intermittent hypobaric hypoxia (7000 m for 5-6 weeks) induces the cardioprotection in the rat 

myocardium, which is partially mediated by the PKC-1. The administration of a selective 
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PKC-1 inhibitor, rottlerin, attenuated the infarct size-limiting effect of a chronic hypoxia 

(Neckar et al., 2005). A later study from the same laboratory demonstrated that the infarct 

size-limiting mechanism of this intermittent hypobaric hypoxia mediated by the PKC-1-

dependent pathway does not apparently involve the increased capacity of major antioxidant 

enzymes (Kolar et al., 2007). Wang et al. (2011) have found that the PKC-0 and AKT 

pathways may form a positive feedback loop. Both kinases mediate the ROS-dependent 

cardioprotection in rat hearts during the early reperfusion period induced by an intermittent 

hypobaric hypoxia (5000 m for 4 weeks), because the inhibition of the AKT with the 

wortmannin and the PKC-0 with the 0V1-2 abrogated the intermittent hypobaric hypoxia-

improved post-ischemic left ventricle performance (Wang et al., 2011). Other study, using 

known inhibitors wortmannin, chelerythrine, PD98059, and a selective inhibitor of the p38 

mitogen-activated protein kinases (p38 MAPK), SB203580, has reported that not the PI3K, 

but the PKC, ERK1/2, and p38 MAPK are involved in the cardioprotective effects induced by 

the adaptation of rats to an acute intermittent normobaric hypoxia (10% O2 for 4 h) (Beguin et 

al., 2007). In addition to the cardiprotective role of the PKC-0 and p38 MAPK, the activation 

of the JUN kinase signal transduction pathway may be also responsible for the 

cardioprotection in the chronically hypoxic rabbit hearts due to a fact that the inhibition of the 

JUN kinase with the curcumin abolished this cardioprotective effect (Rafiee et al., 2002).  

Given the existence of other cardioprotective mechanisms activated under different 

conditions than under the adaptation to a hypoxia, it can be assumed that more signaling 

pathways and molecules maintaining energy and ion homeostasis and preventing an excessive 

production of the ROS and the Ca2+ overload might be involved in the cardioprotection 

induced by a hypoxia.  
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2. AIMS OF THE THESIS 
 

2.1 Study 1: The comparison of the left (LV) and right (RV) ventricles 

under normoxia 
The specific objectives of Study 1 were: 

• To determine the CK and HK isoform expressions, the total CK and HK enzyme activities, 

and the co-localization of HK isoforms with mitochondria. 

• To examine the phoshorylated and non-phosphorylated AKT protein levels and the 

phoshorylated/non-phosphorylated AKT ratios.  

 

2.2 Study 2: The effect of the normobaric hypoxia and I/R insult on the CK 

and HK enzymes 
The specific objectives of Study 2 were: 

• To determine the CK and HK isoform expressions and the total CK and HK enzyme 

activities in both ventricles of rats adapted to protective and non-protective regimens of 

moderate normobaric hypoxia.  

• To investigate the co-localization of HK isoforms with mitochondria in the LV as well as 

in the RV of rats adapted to a protective regimen, continuous normobaric hypoxia.  

• To examine the effect of I/R insult on the HK isoform expressions and on the total CK and 

HK enzyme activities in the LV of rats adapted to a protective regimen, continuous 

normobaric hypoxia. 

 

2.3 Study 3: The effect of the hypobaric hypoxia on the CK and HK 

enzymes 
The specific objectives of Study 3 were: 

• To determine the CK and HK isoform expressions, the total CK and HK enzyme activities, 

and the co-localization of HK isoforms with mitochondria in the LV as well as in the RV 

of rats adapted to a severe intermittent hypobaric hypoxia. 
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3. METHODS 
 

3.1 Animals 
 

Adult male Wistar rats were obtained from breeding companies Velaz, Ltd., Czech 

Republic (Chapter 4, Chapter 5, and Chapter 6) and Charles River Laboratories, Inc., Germany 

(Chapter 5 and Chapter 6). Animals were fed a standard laboratory diet and kept at a 12/12-h 

light/dark cycle. The maintenance and handling of the experimental animals were in 

accordance with the Guide for the Care and Use of Laboratory Animals published by the US 

National Institutes of Health (NIH Publication No. 85–23, revised 1996). The experimental 

protocol was approved by the Animal Care and Use Committee of the Institute of Physiology, 

Academy of Sciences of the Czech Republic. 

 

3.2 Adaptation to normobaric hypoxia 
 

Animals were housed in a normobaric chamber equipped with hypoxic generators 

(Everest Summit, Hypoxico Inc., NY, USA), which reduced the percentage of oxygen in the 

ambient air to 10%, corresponding to a high altitude of 5500 m. Animals were exposed to a 

normobaric hypoxia for 3 weeks under the following three regimens (Figure 12): the 

continuous hypoxia for 24 h/day (CNH), the intermittent hypoxia for 23 h/day with a single 1-

h normoxic period per day (INH-23), and the intermittent hypoxia for 8 h/day with a single 

16-h normoxic period per day (INH-8). The control group (N) was kept under normoxic 

conditions for the same period of time. Animals had a free access to the water and standard 

diet for the whole time of experiments. 

 

 
Figure 12: The scheme of the adaptation to the chronic normobaric hypoxia. The N, normoxia; INH-8, 

intermittent hypoxia for 8 h/day with a single 16-h normoxic period per day; INH-23, intermittent hypoxia for 23 

h/day with a single 1-h normoxic period per day; CNH, continuous hypoxia for 24 h/day. 
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3.3 Adaptation to hypobaric hypoxia 
 

Animals were housed in a hypobaric chamber, in which they were acclimated to a 

reduced barometric pressure for 2 weeks to reach a barometric pressure (PB), which 

corresponds to a high altitude of 7000 m (PB = 308 mm Hg, 41 kPa; pO2 = 65 mm Hg, 8.6 

kPa) (Figure 13). Thereafter, animals were exposed to a hypobaric hypoxia simulated a high 

altitude of 7000 m for 3 weeks. Animals were exposed to a hypobaric hypoxia intermittently 

for 8 hours a day (IHH-8) (Figure 14). The control group (N) was kept under normoxic 

conditions for the same period of time at PB and pO2 equivalent to an altitude of 200 m (PB = 

742 mm Hg, 99 kPa; pO2 = 155 mm Hg, 20.7 kPa). Animals had a free access to the water and 

standard diet for the whole time of experiments.  

 

 
Figure 13: The illustration of the barometric pressure reduction during the adaptation to the intermittent 

hypobaric hypoxia. The continuous acclimatization was performed for 2 weeks to reach a high altitude of 7000 

m. 

 

 

 
Figure 14: The scheme of the adaptation to the intermittent hypobaric hypoxia. The N, normoxia; IHH-8, 

intermittent hypoxia for 8 h/day with a single 16-h normoxic period per day. 
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3.4 Ischemia-reperfusion protocol 
 

The normoxic rats and rats adapted to the CNH regimen were killed by a cervical dislocation. 

Hearts were rapidly removed, placed on the Langendorff apparatus and perfused by Krebs-

Henseleit solution (118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.25 mM CaCl2, 1.2 mM 

KH2PO4, 25 mM NaHCO3, 11 mM glucose, pH 7.4) saturated by 95% O2 and 5% CO2 at the 

temperature 37°C and a constant pressure (100 cm H2O). The Langendorff hearts were divided 

into 3 groups: i) hearts stabilized for 15 min by perfusion (KN, KH); ii) hearts stabilized for 15 

min and subjected to a no-flow ischemia for 10 min (IN, IH); iii) hearts stabilized for 15 min, 

subjected to ischemia for 10 min and then subjected to reperfusion for 10 min (IRN, IRH). 

After the start of reperfusion, the effluent samples (0.5 ml) were collected at intervals: 10 s, 20 

s, 30 s, 60 s, 3 min, and 10 min to determine the LDH release as an indicator of degree of cell 

damage. The scheme of I/R protocol is shown in Figure 15. And the end of each period, hearts 

were removed from the apparatus, separated into LV, RV, and septum (S), frozen in liquid 

nitrogen, weighed (Table 1), and stored for further analyses. 

 

 
Figure 15: The scheme of the I/R protocol. The N, normoxic rats; H, rats adapted to continuous normobaric 

hypoxia; KN, stabilized normoxic hearts; KH, stabilized hypoxic hearts; IN, ischemic normoxic hearts; IH, 

ischemic hypoxic hearts; IRN, normoxic I/R hearts; IRH, hypoxic I/R hearts; LDH, lactate dehydrogenase. 



 !"#

Table 1: The weight parameters of experimental animals. The N, normoxia; INH-8, intermittent normobaric hypoxia for 8 h/day; INH-23, intermittent 

normobaric hypoxia for 23 h/day; CNH, continuous normobaric hypoxia; IHH-8, intermittent hypobaric hypoxia for 8 h/day; KN, perfused normoxic hearts; IN, 

, perfused normoxic hearts subjected to ischemia; IRN, perfused normoxic hearts subjected to I/R insult; KH, perfused hypoxic hearts; IH, perfused hypoxic 

hearts subjected to ischemia; IRH, perfused hypoxic hearts subjected to I/R insult; BW, body weight; RV, weight of the right ventricle (RV); LV, weight of the left 

ventricle (LV); S, weight of the septum; RV/BW, relative weight of the RV; LV/BW, relative weight of the LV; HW/BW, relative weight of the heart. Values are 

mean ± S.E.M.*P<0.05 vs. N, *P<0.05 vs. corresponding normoxic group, $P<0.05 vs. KN. 

Velaz, Ltd., Czech Republic 

Group BW RV LV S  RV/BW LV/BW HW/BW Hematocrit 
(g) (mg) (mg) (mg) (mg/g) (mg/g) (mg/g) (%) 

N 361 ± 9 189 ± 5 460 ± 14 201 ± 6 0.52 ± 0.01 1.28 ± 0.04 2.36 ± 0.05 42.9 ± 0.9 
INH-8 347 ± 5 224 ± 6* 472 ± 9 194 ± 3 0.65 ± 0.02* 1.36 ± 0.03 2.57 ± 0.06 54.2 ± 1.3* 

INH-23 308 ± 8* 319 ± 16* 453 ± 21 178 ± 10 1.03 ± 0.04* 1.47 ± 0.05 3.08 ± 0.10* 58.5 ± 1.7* 
CNH 311 ± 7* 351 ± 28* 451 ± 26 189 ± 12 1.12 ± 0.07* 1.45 ± 0.08 3.18 ± 0.15* 61.5 ± 1.5* 

         
N 425 ± 9 203 ± 8 539 ± 15 244 ± 11 0.48 ± 0.01 1.27 ± 0.03 2.32 ± 0.04 42.6 ± 1.4 

IHH-8 371 ± 6* 293 ± 8* 624 ± 27* 235 ± 7 0.79 ± 0.02* 1.68 ± 0.07* 3.10 ± 0.09* 59.7 ± 2.0* 

         
Charles River Laboratories, Inc., Germany  

Group BW RV LV S  RV/BW LV/BW HW/BW  
(g) (mg) (mg) (mg) (mg/g) (mg/g) (mg/g)  

N 423 ± 3 246 ± 6 528 ± 16 254 ± 13 0.58 ± 0.01 1.25 ± 0.03 2.43 ± 0.06  
IHH-8 375 ± 8* 391 ± 29* 617 ± 32 254 ± 22 1.04 ± 0.08* 1.65 ± 0.1* 3.37 ± 0.21* 

 
        

 
KN 393 ± 4 230 ± 6 684 ± 14 240 ± 8 0.59 ± 0.02 1.74 ± 0.05 2.94 ± 0.04 

!IN 390 ± 8 255 ± 10 778 ± 18 $ 272 ± 7 0.65 ± 0.02 2.00 ± 0.03 3.35 ± 0.03 
!IRN 380 ± 10 242 ± 16 645 ± 14 234 ± 9 0.63 ± 0.03 1.71 ± 0.06 2.96 ± 0.05 
!KH 354 ± 8* 454 ± 34* 682 ± 25 293 ± 10* 1.28 ± 0.08* 1.93 ± 0.07 4.04 ± 0.16* 
!IH 335 ± 3* 476 ± 43* 724 ± 25 291 ± 13 1.42 ± 0.12* 2.16 ± 0.07 4.45 ± 0.19* 
!IRH 350 ± 4 392 ± 15* 651 ± 18 273 ± 9 1.12 ± 0.05* 1.86 ± 0.05 3.76 ± 0.09* 
!
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3.5 Tissue preparation 
 

All rats were sacrificed by decapitation and the hearts were rapidly excised and washed 

in ice-cold saline. The LV and RV were dissected, immediately frozen in liquid nitrogen and 

weighed. Frozen tissue pieces were pulverized in liquid nitrogen and subsequently 

homogenized either in homogenization buffer in the ratio 1:8 (w/v) for Western blot (WB) and 

enzyme analyses or in TRIZOL Reagent (Invitrogen-Molecular Probes, Eugene, OR) for 

isolation of RNA. The homogenization buffer (pH 7.4) contained 12.5 mM TRIS, 2.5 mM 

EGTA, 1 mM EDTA, 250 mM sucrose, 5 mM DL-Dithiothreitol (DTT), and protease 

inhibitor cocktail (cOMPLETE, Roche Diagnostics). The homogenization buffer for analyses 

of phosphorylated AKT (Chapter 4) also included phosphatase inhibitor cocktail (PhosSTOP, 

Roche Diagnostics) to preserve the phosphorylation state. The 100 µl of homogenates were 

separated, aliquoted and stored at -80°C for enzyme analyses. The rest of homogenates were 

diluted 1:1 (v/v) with buffer containing 5 M urea, 2 M thiourea, 10 mM sodium pyrophosphate 

tetrabasic decahydrate, and 0.13% 2-mercaptoethanol, which enables a better solubilization of 

contractile proteins. Thereafter, homogenates with urea were diluted with a 4x concentrated 

sample loading buffer (260 mM TRIS/HCl pH 6.8, 40% glycerol, 8% SDS, 8% DTT, 0.04% 

bromophenol blue), up to concentration 3 µg/µl, aliquoted and stored at -80°C for WB 

analyses. Protein concentration was measured in both original homogenates and homogenates 

with urea using the Bradford dye binding assay (Sigma-Aldrich). 

 

3.6 RNA isolation and Real-Time quantitative RT-PCR analysis 
 

The total cellular RNA was extracted from each left and right ventricles using TRIZOL 

Reagent and cleaned up by DNA-free RNA kit (Ambion, Carlsbad, CA). The purity and 

integrity of the RNA preparations was checked using NanoDrop spectrophotometer and by 

agarose gel electrophoresis. The total RNA was converted to cDNA using a RevertAidTM H 

Minus First Strand cDNA Synthesis Kit (Fermentas UAB, Vilnius, Lithuania) with oligo(dT) 

primers according to the manufacturer’s instructions. Real-time PCR was performed on a 

LightCycler® 480 Real-Time PCR System (Roche Applied Science, Mannheim, Germany) 

using the mono color hydrolysis probe method (Roche Applied Sciences) with the appropriate 
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Probe Master kit (Roche Applied Sciences) according to the manufacturer’s protocol (Chapter 

5 and Chapter 6) or using SyberGreen protocol with the SyberGreen Master Mix (Bio-Rad) 

according to the manufacturer’s instructions (Chapter 4). Specific primers and probes for 

HK1, HK2, CKM, CKB, mtCKs, and the reference gene hypoxanthine-guanine 

phosphoribosyltransferase 1 (HPRT1) were designed using the Universal Probe Library Assay 

Design Center (Roche Applied Science). Sequences of the primers are listed in Table 2. PCR 

amplification was performed under following conditions: initial denaturation at 95°C for 10 

min, followed by 50 cycles consisting of denaturation at 95°C for 10 s, annealing at 60°C for 

10 s where fluorescence was acquired, and elongation at 72°C for 5 s. The data used for the 

calculations are the mean of the crossing point (CP) values obtained from qPCR performed in 

triplicates. The variation between triplicate determinations did not exceed 0.5 CP. Melting 

curve analysis was performed to ascertain the presence of a single amplicon for each pair of 

primers. Standard curves were generated for each pair of primers using a 3-fold serial dilution 

of cDNA. The amplification efficiency of the PCR reaction for each primer pair was then 

calculated from the standard curve in order to estimate precisely the relative transcript 

expression. Transcript levels were normalized to the level of the reference gene HPRT1 

transcript. High expression stability of HPRT1 had been established previously (Bohuslavova 

et al., 2010). The expression level of mRNA was normalized with regard to specific PCR 

efficiency (E) for each gene according to the following formula (Pfaffl, 2001): 

 

  Normalized amount = (1+E)CT reference transcript/(1+E)CT target  transcript 

 

No-template and no-RT control reactions were performed to screen for false amplification and 

to confirm the absence of DNA contamination. 
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Table 2: The specific primers designed using the Universal Probe Library (UPL) Assay Design Center (Roche 

Applied Science). The HK, hexokinase; CKM, creatine kinase muscle; CKB, creatine kinase brain; mtCKs, 

mitochondrial creatine kinase sarcomeric; HPRT1, hypoxanthine-guanine phosphoribosyl transferase1. 

 

Transcript Forward primer Reverse primer UPL probe number 

HK1 tctgggcttcaccttctcat atcaagattccacagtccaggt 121 

HK2 ccagcagaacagcctagacc agatgccttgaatccctttg 101 

CKM ccgcagcatcaagggtta cccgtcaggctgttgaga 16 

CKB ccacttcctcttcgacaagc ggaacgtcttattgtcattgtgc 84 

mtCKs gccaccccttcattaagactg caaaaaggtcagcaaacacct 83 

HPRT1 gaccggttctgtcatgtcg acctggttcatcatcactaatcac 95 

 

 

3.7 SDS-PAGE and Western blot analysis 
 

Individual homogenates from the LV and RV samples were separated by sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 10% polyacrylamide 

separating gels and 5% polyacrylamide stacking gels at constant voltage of 200 V and room 

temperature (Mini-PROTEAN TetraCell, Bio-Rad). The gel-resolved proteins were 

electrotransferred onto the nitrocellulose membrane (0.2 !m pore size, Protran BA 83, 

Whatman, Germany) at constant voltage of 100 V and 350 mA current for 1 h at 4°C (Mini 

Trans-Blot, Bio-Rad). Membranes were blocked for 1 h at room temperature with 5% non-fat 

dry milk in TRIS-buffered saline solution (TBS) containing Tween 20 (TTBS). After washing 

in TTBS (3x15min), membranes were incubated overnight at 4°C with the primary polyclonal 

antibodies (Table 3).  
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Table 3: The specific primary antibodies for the Western blot (WB) and immunofluorescence staining (IF). The 

HK, hexokinase; CKM, creatine kinase muscle; CKB, creatine kinase brain; mtCKs, mitochondrial creatine 

kinase sarcomeric; AKT, AKT kinase; pS-AKT, phosphorylated AKT on serin 473; pT-AKT, phosphorylated AKT 

on threonin 308; OXPHOS, compartments of the mitochondrial respiratory chain and ATP synthase; GAPDH, 

glycerlaldehyde 3-phosphate dehydrogenase; Bcl-2, anti-apoptotic protein from the Bcl-2 protein family; BAX, 

pro-apoptotic protein from the Bcl-2 protein family. 

Protein Primary antibody Company Specific use Dilution 

HK1 sc-28885 Santa Cruz Biotechnology WB, IF 1:2000, 1:50 

 
ab78420 Abcam WB, IF 1:1000, 1:50 

HK2 sc-28889 Santa Cruz Biotechnology WB, IF 1:800, 1:50 

 
ab78259 Abcam WB, IF 1:1000, 1:50 

CKM sc-15164 Santa Cruz Biotechnology WB 1:200 

CKB sc-15157 Santa Cruz Biotechnology WB 1:200 

mtCKs sc-15168 Santa Cruz Biotechnology WB 1:400 

AKT A00301 GenScript, Antibodies-online GmbH WB 1:2000 

pS-AKT A00272 GenScript, Antibodies-online GmbH WB 1:4000 

pT-AKT A00275 GenScript, Antibodies-online GmbH WB 1:2000 

OXPHOS ab110412 Abcam IF 1:200 

GAPDH Sc-25778 Santa Cruz Biotechnology WB 1:5000 

Bcl-2 SAB4500003 Sigma-Aldrich WB 1:1000 

BAX ab7977 Abcam WB 1:1000 
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Next day, the membranes were washed in TBS (3x10min) and incubated for 1 h at 

room temperature with appropriate anti-rabbit (GE Healthcare Amersham) or anti-goat (Santa 

Cruz Biotechnology) secondary antibody conjugated with horseradish peroxidase. Proteins 

were detected by enhanced chemiluminiscence (ECL) substrate (SuperSignal West Dura 

Extended Duration Substrate, Thermo Scientific Pierce) and visualized by the LAS-4000 

imaging system (Genetica, Fujifilm). Changes in the relative protein levels were quantified 

using the Quantity One Software (Bio-Rad). The same amount of protein (20 µg per lane) was 

loaded on the gels. Samples from each experimental group and from both ventricles were 

always run on the same gel and quantified on the same membrane. The analysis was repeated 

at least four times for each antibody and the results were normalized to the total protein. In the 

Chapter 4, GAPDH was used as a loading control to ensure that equal amount of protein was 

analyzed in each sample. Variation of the GAPDH immunoreactivity signal between the 

individual samples on each immunoblot was under 5% (Figure 16). In the Chapter 5 and 6, the 

total protein concentration was used as the most suitable referential value due to the fact that 

the housekeeping protein GAPDH is affected by chronic hypoxia (Balkova et al., 2011).  

 

 
Figure 16: The GAPDH immunoreactivity between the left (LV) and right (RV) ventricle. 

 

 

3.8 Isolation of mitochondria 
 

Normoxic rats and rats adapted to intermittent hypobaric hypoxia were killed by 

decapitation. Hearts were quickly removed and washed in ice-cold saline buffer. The LV, RV, 

and S were separated, weighed, and immediately placed in the BIOPS buffer (10 mM Ca-

EGTA buffer, 0.1 µM free calcium, 20 mM imidazole, 20 mM taurine, 50 mM K-MES, 0.5 

mM DTT, 6.56 mM MgCl2, 5.77 mM ATP, 15 mM PCr, pH 7.1). The tissue was cut to pieces 

and homogenized with homogenization buffer (0.25 M sucrose, 10 mM TRIS, 2 mM EDTA, 2 

mM EGTA, BSA (0.5mg/mL), pH 7.2) in the ratio 1:20 (w/v) using glass-teflon homogenizer 

(500-700 rpm) until the sample was homogeneous. After that, homogenates were centrifuged 
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at 600 g and 4°C for 10 min. The supernatants were filtered and centrifuged at 10,000 g and 

4°C for 10 min. Supernatants representing the cytosol were stored at -80°C for further 

analyses. Pelets were resuspended in the buffer (pH 7.2) containing 0.25 M sucrose and 10 

mM TRIS and centrifuged at 10,000 g and 4°C for 10 min to wash mitochondria. Supernatants 

were discarded and pelets were resuspended in the same buffer (0.25 M sucrose, 10 mM TRIS, 

pH 7.2). All contents were removed into glass homogenizer and shortly gently homogenized. 

Homogenates were stored at -80°C for further analyses. 

 

3.9 Enzyme analyses 
 

3.9.1 CK and HK activities 

 

The specific CK and HK enzyme activities were assessed by enzyme-coupled assays 

and measured spectrophotometrically using a multireader system SynergyTM HT (Biotek 

Instruments). Both assays were based upon the reduction of NAD+ through a coupled reaction 

with glucose-6-phosphate dehydrogenase (G6P-DH) and were determined by measuring the 

increase in absorbance at 339 nm: 

 
   CK 

PCr + ADP ! Cr +ATP 
 

       HK 
Glucose + ATP ! Glucose-6-P + ADP 

 
           G6P-DH 

Glucose + NAD+ ! Gluconate-6-P + NADH + H+ 

 

 

The specific enzyme activity of the HK was assessed according to a slightly modified 

Worthington protocol (Worthington Biochemical Corporation). The assay buffer consisted of 

0.05 M TRIS, 13.3 mM MgCl2, 0.8 mM NAD, 0.8 mM ATP, 0.5% Triton X-100, and 1 U/ml 

G-6-P dehydrogenase (pH 8.0). Samples (60 !g per well) were placed into 96-well plates. The 

167 !l of the HK assay buffer were added into each sample. The reaction was initiated after 2 

min by the addition of 33 !l of the starting solution (1.5 M glucose in TRIS-MgCl2 buffer, pH 
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8.0) and the assay was run at 30°C for 15 min. The CK activity was measured at 37°C for 10 

min using a commercial kit (CK NAC liq. SYS 1, Roche Diagnostics). Samples (42 !g per 

well) were pipetted into wells, then 200 !l of the CK working solution R1 were added and 

after 2 min incubation the 40 !l of CK working solution R2 were added. The specific enzyme 

CK and HK activities were expressed as units per gram protein (U/g) (Units of Enzyme 

Activity, 1979). 

 

3.9.2 LDH release 

 

The LDH release was determined using the LDH Liqui-UV kit (Stanbio, Boerne, TX, 

USA). The LDH assay was freshly prepared by mixing a solution of R1 and R2 in the ratio 5:1 

(v/v). The 200 µl of the assay were added into each effluent sample (10 µl). The LDH activity 

was measured at 37°C, 340 nm in 96-well plates using a multireader SynergyTM HT (Biotek 

Instruments) for 20 min and expressed as units per liter (U/L) according to manufacturer´s 

instructions. 

 

3.10. Immunofluuorescence analyses 
 

3.10.1 Native frozen section preparation 

 

Animals were killed by decapitation. Hearts were rapidly excised, washed in ice-cold 

saline and placed on Langendorff apparatus, where they were perfused by Krebs-Henseleit 

solution with 20 mM 2,3-butanedione monoxime for 2 min. After that, atria were cut out and 

ventricles were cut transversally in one third from apex and snap-frozen and stored in liquid 

nitrogen. Frozen ventricles were mounted using tissue-Tec medium and cut to cryosections (5 

to 7 !m) using a cryocut (Leica 1800). Cryosections were collected on the Super-Frost slides. 

Eight cryosections from each normoxic or hypoxic heart were used for antibodies staining and 

as negative and positive controls.  
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3.10.2 Formaldehyde perfused frozen section preparation 

 

Animals were killed by decapitation. Hearts were rapidly excised, washed in ice-cold 

saline and perfused by Tyrode solution (140 mM NaCl, 5.4 mM KCl, 1 mM Na2HPO4, 1 mM 

MgCl2.6H2O, 10 mM glucose, 5 mM HEPES, pH 7.4) without calcium for 2 min. Then, hearts 

were perfused by 4% methanol-free formaldehyde (Polysciences, Inc.) for 3 min. After that, 

hearts were incubated in 20% sucrose overnight. Then, atria were cut out, ventricles were cut 

transversally in one third from apex, snap-frozen in liquid nitrogen and stored in -80°C. The 

following steps were the same as in the previous procedure. 

 

3.10.3 Immunofluorescence staining 

 

Ventricular myocardium for immunofluorescence staining was processed as described 

previously (Hlavackova et al., 2010). The subcellular localization of HK1 and HK2 and their 

co-localization with the mitochondrial membrane in the LV and RV were investigated by 

immunofluorescence staining of apex cross cryosections followed by fluorescence 

microscopy. Cryosections were fixed in 4% methanol-free formaldehyde (Polysciences, Inc.) 

for 5 min at room temperature and permeabilized in 100% ice-cold methanol for 10 min. Non-

specific binding sites were blocked for 1 h at room temperature in an appropriate serum 

diluted in PBS containing 0.3% Triton X-100 and 0.3 M glycine (Sigma-Aldrich). 

Cryosections were incubated for 1 h at room temperature with rabbit primary polyclonal 

antibodies against HK1 and HK2 from Santa Cruz Biotechnology and from Abcam (Table 3). 

Sections were subsequently incubated for 45 min at room temperature with donkey anti-rabbit 

IgG secondary antibody (1:200) conjugated with Alexa Fluor 488 (Invitrogen, Molecular 

Probes). The mitochondrial compartment was stained with MitoProfile BlueNative OXPHOS 

Antibody Cocktail (Abcam) overnight at 4°C and subsequently with goat anti-mouse Alexa 

Fluor 647 secondary antibody (1:200) for 45 min at RT (Invitrogen, Molecular Probes). 

Sections were mounted in ProLong Gold Antifade Reagent containing a nuclei marker 4',6-

diamidino-2-phenylindole (DAPI) (Invitrogen, Molecular Probes) and stored at 4°C. 
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3.10.4 Quantitative fluorescence microscopy 

 

Representative qualitative images were captured by confocal microscopy (Leica TCS 

SP2). Images were acquired using a sequential scanning mode avoiding cross-talk between 

channels, 16 times line averaging, and noise reduction by 3 times frame averaging. For the 

purpose of quantitative analyses, images were acquired using a widefiled fluorescence 

microscope (Olympus Cell^R IX2-UCB). The objective lens magnifications were 20x 0.75 

NA Plan-Apochromat (Chapter 4) and 100x 1.4 NA Plan-Apochromat (Chapter 5 and Chapter 

6). The excitation and emission spectra corresponded to used fluochromes: DAPI (345/455), 

Alexa 488 (495/519), Alexa 647 (650/668). Images were acquired using Hamamatsu ORCA 

camera C4742-80-12AG and the fluorescence intensity was measured using Fiji ImageJ open 

source software (Schindelin et al., 2012). For the quantification of fluorescence intensity 

(Chapter 4), eight positions (four for each ventricle) on every section were captured. A time-

lapse scanning mode was used for in order to prove the stability of fluorescence during the 

sample observation and acquisition. Each position was scanned 10 times and average intensity 

for each ventricle was calculated. For the co-localization screenings, eight positions on each 

cryosection (four for each ventricle) were sequentially acquired for red (AlexaFluor 647) and 

green (AlexaFluor 488) channels. Each position was optically sectioned at 0.5 !m steps 

resulting in approximately 12 focal planes depending on specimen thickness. Each position 

was captured twice to calculate the influence of the noise of an image. Regions of interest 

(ROI) were selected as sarcoplasmic myofibrilar regions excluding nucleus, perinuclear area 

and sarcolemma. The correlation between the fluorescence signal of HK1 or HK2 isoforms 

and the mitochondrial OXPHOS complex was calculated using an ICA plugin of Fiji ImageJ 

software (Li et al., 2004). The RBNCC method (Adler et al., 2008) was applied for the 

correction of noise when calculating the Pearson’s correlation coefficient between the green 

channel representing HK1 or HK2 and the red channel representing OXPHOS complexes. 
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3.11 Statistical analyses 
 

3.11.1 Study 1: The comparison of the LV and RV under normoxia  

 

Ten rat hearts were used for WB, enzyme activities, and Real-Time RT-PCR analyses 

and 6 hearts were used for quantitative fluorescence analyses. The statistical differences 

between the ventricles were determined by the unpaired Mann Whitney test (P < 0.05 or P < 

0.001) (Chapter 4).  

 

3.11.2 Study 2: The effect of the normobaric hypoxia and I/R insult on the CK and HK 

enzymes 

 

Five hearts from each experimental group were used for WB, enzyme activities, and 

Real-Time RT-PCR analyses and 6 hearts were used for quantitative fluorescence analyses 

and I/R protocol. Statistical evaluation was performed using One-way ANOVA followed by a 

post hoc Dunett’s multiple comparison test, One-way ANOVA followed by a post hoc 

Tukey’s multiple comparison test, and Mann Whitney test. Values of P < 0.05 were 

considered statistically significant (Chapter 5). 

 

3.11.3 Study 3: The effect of the hypobaric hypoxia on the CK and HK enzymes 

 

Five hearts from each experimental group were used for WB, enzyme activities, and 

Real-Time RT-PCR analyses and 6 hearts were used for quantitative fluorescence analyses. 

The statistical differences between normoxic and hypoxic groups were determined by the 

unpaired Mann Whitney test (P < 0.05) (Chapter 6). 

 

All statistical analyses were performed using GraphPad Prism 5.00 software. All data 

are expressed as mean ± S.E.M. The degree of imunoreactivity, relative mRNA expression, 

and fluorescence intensity are expressed as a percentage of total. The co-localization of HK 

with mitochondria is expressed as the Pearson’s correlation coefficient and enzyme activities 

are expressed as U/g or U/L. 
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4. STUDY 1: The comparison of the LV and RV under normoxia 
 

4.1 Introduction 
 

The normoxic RV and LV differ in many anatomical and physiological parameters 

(reviewed in Haddad et al., 2008; Walker and Buttrick, 2009). The ventricular pressure and 

elasticity of the RV is lower than that of the LV (Davidson and Bonow, 2005; Dell’Italia and 

Walsh, 1988; Starling et al., 1987). The RV free wall is thinner than the LV free wall (Ho and 

Nihoyannopoulos, 2006; Jiang, 1994) and the mass of the RV is also less that of the LV 

(Lorenz et al., 1999). While the LV has an ellipsoidal shape, the RV is crescent shaped in 

cross-sections and appears triangular from the side view (Dell’Italia, 1991; Ho and 

Nihoyannopoulos, 2006; Jiang, 1994). It has been reported that there are regional differences 

in the size of cardiomyocytes in adult rat hearts (Gerdes et al., 1985), and that cardiomyocytes 

respond differently to changes in hemodynamic load depending on the ventricle in which they 

are located (Campbell et al., 1991). Concerning myocardial energetics, oxygen requirements 

of the RV is lower compared to the LV due to lower wall stress, resulting in larger oxygen 

supply reserve (Walker and Buttrick, 2009) making the RV less vulnerable to conditions 

associated with increased energy demands. Based on these differences, LV and RV could 

respond diversely to various physiological conditions, such as physical training, high altitude 

exposure or pregnancy, as well as to pathophysiological situations, such as systemic and 

pulmonary hypertension, sleep apnea and others (reviewed in Walker and Buttrick, 2009). 

Some physiological studies have demonstrated that the RV is more resistant than the LV to 

toxic effect of anthracycline and to injury caused by acute ischemia (Baker et al., 1999; 

Belham et al., 2006; Dell’Italia, 1991), which may suggest the existence of some specific 

protective mechanism(s) operating in the RV.  

As mentioned previously, CK and HK play an essential role in energy homeostasis and 

possess an anti-apoptotic effect (Chapter 1.2 and 1.3). In addition, AKT enhances the pro-

survival effect of HK. Therefore, the purpose of the present study was to compare the 

expression and subcellular localization of HK isoforms, AKT kinase, and CK isoforms 

between ventricles of male Wistar rats. The similar comparison study at the protein and 

mRNA levels has not yet been examined. 
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4.2 Results 
 

The Real-Time qRT-PCR analyses showed a significantly higher mRNA levels of CK 

isoforms in the RV as compared to the LV (Figure 17), however the protein levels of all CK 

isoforms (Figure 17) as well as the total CK activity (Figure 18) remained unchanged.  

 

 
Figure 17: The expression of CK isoforms in the normoxic left (LV) and right (RV) ventricles. The relative levels 

of the CKM mRNA (top left), CKB mRNA (top middle), mtCKs mRNA (top right), CKM protein (middle left), 

CKB (middle middle), and mtCKs protein (middle right) are expressed as a percentage of total. The 

representative bands were cut out from the original gels containing also other experimental groups (bottom). 

Values are mean ± S.E.M. (n = 5). # P < 0.05 vs. LV. 
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Figure 18: The specific enzyme activities of the CK (left) and HK (right) in the normoxic left (LV) and right (RV) 

ventricles. The CK and HK activities are expressed as units per gram protein (U/g). Values are mean ± S.E.M. (n 

= 5). 

 

 

The mRNA levels of both HK1 and HK2 were significantly higher by ~ 128% and 

34%, respectively, in the RV than in the LV (Figure 19). The protein levels of the HK1 and 

HK2 followed this pattern: they were also markedly higher (by ~ 76% and 42%, respectively) 

in the RV than in the LV (Figure 19). The HK specific enzyme activity did not significantly 

differ between the ventricles (Figure 18). 
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Figure 19: The expression of HK1 and HK2 isoforms in the normoxic left (LV) and right (RV) ventricles. The 

relative levels of the HK1 mRNA (top left), HK2 mRNA (top right), HK1 protein (bottom left), and HK2 protein 

(bottom right) are expressed as a percentage of total. Values are mean ± S.E.M. (n = 10). # P < 0.05 vs. LV. 

 

 

The expression of both HK1 and HK2 isoforms in the RV was also verified by the 

immunofluorescence staining of the cross cryosections. The HK1 as well as HK2 manifested 

the significantly higher fluorescence intensity (by ~ 24% and 22%, respectively) in the RV 

compared to the LV (Figure 20).  
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Figure 20: The determination of the intensity of HK1 and HK2 fluorescence signals in the left (LV) and right 

(RV) ventricles of normoxic rat hearts. The representative micrographs show the intensity of fluorescence signals 

of HK1 in the LV (top left), HK1 in the RV (top middle), HK2 in the LV (bottom left), and HK2 in the LV (bottom 

middle). The green color corresponds to the specific HK1 and HK2 staining and the blue color indicates the 

nuclear 4',6-diamidino-2-phenylindole (DAPI) staining. The scale bar represents 13 µm. The quantification of 

the intensity of HK1 (top right) and HK2 (bottom right) fluorescence signals are expressed as a percentage of the 

total. Values are mean ± S.E.M. (n = 6). # P < 0.001 vs. LV. 

 

 

The phospho-Ser473-AKT as well as the phospho-Thr308-AKT level was significantly 

higher in the RV than in the LV (Figure 21), similarly as the ratio of the phosphorylated to 

non-phosphorylated AKT (Figure 21), indicating a higher activation of the AKT in the RV, 

which is required for the interaction of HK2 with mitochondria. 
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Figure 21: The expression of the phosporylated AKT at Ser473 residue (pS-AKT) and Thr308 residue (pT-AKT) 

and the determination of the ratio of the phosphorylated/non-phopshorylated AKT: pS-AKT/AKT (bottom left) 

and pT-AKT/AKT (bottom right) in the normoxic left (LV) and right (RV) ventricles. The relative protein levels of 

the pS-AKT (top left) and pT-AKT (top right) are expressed as a percentage of total. Values are mean ± S.E.M. (n 

= 10). # P < 0.05 vs. LV. 

 

 

It has been previously demonstrated that the higher phosphorylation of the AKT is 

usually associated with a higher co-localization of HK2 with mitochondria (Miyamoto et al., 

2008, Roberts et al., 2013). As can be seen in Figure 20, the HK isoforms displayed different 

patterns of fluorescence signals in cardiomyocytes. In contrast to a fuzzy pattern of the HK2 

distribution, the HK1 appeared to be organized rather into longitudinal arrays or chains. The 

Pearson’s correlation coefficients between the green (HK1 or HK2) and the red channels 

(OXPHOS mitochondria) were calculated to further quantify differences in the co-localization 

of HKs with mitochondria. Neither co-localization of the HK1 (0.48 ± 0.04 vs. 0.53 ± 0.04) 

nor co-localization of the HK2 (0.35 ± 0.03 vs. 0.37 ± 0.03) with mitochondria differed 
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between the LV and the RV. However, the co-localization of the HK2 with mitochondria was 

significantly lower compared to the HK1 in both ventricles (Figure 22). 

 

 
Figure 22: The representative micrographs showing the co-localization of the HK1 (top left and top middle) and 

HK2 (bottom left and bottom middle) with mitochondria in cross cryosections of the normoxic left (LV) and right 

(RV) ventricles obtained by a confocal microscope. The green color represents the specific HK1 or HK2 staining, 

the blue color indicates the nuclear 4',6-diamidino-2-phenylindole (DAPI) staining, and the red color represents 

the distribution of the OXPHOS complexes. The increase in yellow-orange color in both panels indicates an 

increased co-localization of the HK1 or HK2 with mitochondria in both LV and RV. The scale bar represents 13 

µm. The HK1 and HK2 co-localizations with mitochondria (OXPHOS complexes) were quantified using the 

Pearson´s correlation coefficients (middle right). Values are mean ± S.E.M. (n=6). +P < 0.05 vs. HK1. 
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4.3 Conclusion 
 

The present study has revealed significantly higher amounts of the HK1 and HK2 and 

the increased phosphorylation of the AKT in the RV as compared to the LV. These findings 

suggest that the AKT activation is a necessary but not a sufficient condition for the 

enhancement of the interaction of the HK2 with mitochondria and that yet another mechanism 

may exist in the RV. In conclusion, these results suggest that the RV has a higher activity of 

aerobic glycolytic metabolism and may be able to respond faster and more powerfully to 

stressful stimuli than the LV. 
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5. STUDY 2: The effect of the normobaric hypoxia and I/R insult on the CK 

and HK enzymes 
 

5.1 Introduction 
 

The adaptation to the normobaric hypoxia has been reported to impair cardiac 

energetics in humans by decreasing the PCr/ATP ratio (Holloway et al., 2011), which could 

reflect the participation of other phosphotransfer systems in the stimulation of the ATP 

production (discussed in details in Dzeja and Terzic, 2003; Dzeja et al., 2011). However, 

another study has shown that the adaptation to the normobaric hypoxia significantly increases 

the PCr synthesis in rat hearts (Novel-Chate et al., 1995), which could indicate a higher 

activity of the mtCK. The normobaric hypoxia has not been studied as much as the hypobaric 

hypoxia. So far, only one paper has been published for the CK. Novel-Chaté et al. (1998) have 

reported a significant decrease of the total CK and mtCKs isoform enzyme activities in the LV 

of rats adapted for 3 weeks to the normobaric hypoxia (10% O2). The CKM isoform activity 

also decreased but not significantly, and the CKB activity remained unchanged (Novel-Chate 

et al., 1998). The adaptation to a chronic hypoxia did not affect either the CK activity or 

alterations in the CK isoform distribution in the RV. This study, dealing with the CK under 

hypoxia, have focused only on the enzyme activity of the total CK or each CK isoform. The 

expression on the mRNA as well as protein level has not yet been investigated. The similarly 

focused papers have been also published with the HK. Rumsey et al. (1999) have reported an 

increase of the HK activity and mRNA level in the LV as well as in the RV of rats adapted to 

the normobaric hypoxia (10% O2) for 14 days and 21 days, respectively (Rumsey et al., 1999). 

Daneshrad et al. (2000) have also showed an increased HK activity in the LV and in the RV of 

rats adapted to the normobaric hypoxia (10% O2) for 3 weeks (Daneshrad et al., 2000). 

However, it is unknown whether the continuous and intermittent normobaric hypoxias have a 

different impact on the CK and HK activities and isoform profiles. It has been shown that the 

continuous normobaric hypoxia (CNH) as well as the intermittent hypoxia lasting 8 h per day 

(INH-8) increased the cardiac tolerance to the ischemic injury, while the regimen based on 23 

h of hypoxia per day interrupted with only 1 h normoxic episode (INH-23) did not induce the 

cardioprotective phenotype (Figure 23) (Kasparova et al., data in preparation; Neckar et al., 
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2013). Therefore, the purpose of the present study was to compare the protective and non-

protective regimens and to determine the CK and HK responses to the I/R insult in the LV of 

rats adapted to protective CNH regimen. 

 

 
Figure 23: The comparision of protective and non-protective regimens of normobaric hypoxia. The Cont, 

normoxic controls; CNH, continuous hypoxia; INH-23, intermittent hypoxia for 23 h/day; INH-8, intermittent 

hypoxia for 8 h/day. The infarct size is expressed as a percentage of area at risk (AR) and is shown at 

representative images below the bar chart: brown color represents normally perfused tissue stained by potassium 

permanganate; red area, tetrazolium positive, represents tissue surviving the occlusion; and pale area, 

tetrazolium negative, is infarcted tissue. The figure is adapted from Dr. Neckar with permission. 

 

5.2 Results 
 

5.2.1 The effect of the normobaric hypoxia 

 

As shown in the Table 1 (Chapter 3.5), the adaptation of rats to the INH-23 and CNH 

regimens led to a growth retardation by ~ 14% as compared to normoxic controls. The INH-8 

regimen had no significant effect on the body weight. While the hypoxia did not significantly 

affect the LV weight, it resulted in the RV hypertrophy, which was more pronounced in the 

CNH and INH-23 groups than in the INH-8 group. Similarly, the increase of the hematocrit 

was proportional to the duration of daily hypoxic exposure. 
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The adaptation to all hypoxic regimens affected neither mRNA nor protein levels of 

the CKM in both ventricles, except for a slight decrease of the LV transcript in the INH-23 

group (Figure 24). On the other hand, the normobaric hypoxia up-regulated the CKB at the 

mRNA and protein levels in both LV and RV, although only some groups exhibited a 

statistically significant difference from normoxic controls due to a rather high variability in 

this isoform level (Figure 24). The protein expression of the mtCKs was significantly 

increased in the LV after the adaptation to all hypoxic regimens (by ~ 33%, 29%, and 30% in 

the CNH, INH-23, and INH-8 groups, respectively), while the LV levels of the mtCKs mRNA 

increased only in the CNH and INH-8 groups. In contrast, no effect of the hypoxia on the 

mtCKs expression was observed in the RV (Figure 24). 

 

 
Figure 24: The expression of CK isoforms in the left (LV) and right (RV) ventricles. The relative levels of the 

CKM mRNA (top left), CKB mRNA (top middle), mtCKs mRNA (top right), CKM protein (bottom left), CKB 

protein (bottom middle), and mtCKs protein (bottom right) are expressed as a percentage of total amount 

determined in the LV and RV from normoxic rats (N), from rats adapted to the continuous normobaric hypoxia 

(CNH), intermittent normobaric hypoxia for 23 h/day (INH-23), and intermittent normobaric hypoxia for 8 h/day 

(INH-8). Values are mean ± S.E.M. (n = 5). * P < 0.05 vs. N. 
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The protein and mRNA levels of both HK isoforms were markedly higher in the 

normoxic RV than in the LV, which is in line with the previous findings (Chapter 4.2). All 

hypoxic regimens similarly increased the HK1 protein levels in the LV (by ~ 99%, 95%, and 

86% in the CNH, INH-23, and INH-8 groups, respectively), but did not affect the HK1 mRNA 

levels. Interestingly, the adaptation to a moderate normobaric hypoxia affected neither mRNA 

nor protein levels of the HK1 in the RV (Figure 25). All regimens of the hypoxia up-regulated 

both mRNA (by ~ 74-112 %) and protein (by ~ 94-113 %) level of the HK2 in the LV. In the 

RV, the protein expression of the HK2 remained unchanged and the mRNA level increased 

only in the INH-8 group (Figure 25). 

 

 
Figure 25: The expression of HK1 and HK2 isoforms in the left (LV) and right (RV) ventricles. The relative 

levels of the HK1 mRNA (top left), HK2 mRNA (top right), HK1 protein (bottom left), and HK2 protein (bottom 

right) are expressed as a percentage of total amount determined in the LV and RV from normoxic rats (N), from 

rats adapted to the continuous normobaric hypoxia (CNH), intermittent normobaric hypoxia for 23 h/day (INH-

23), and intermittent normobaric hypoxia for 8 h/day (INH-8). Values are mean ± S.E.M. (n = 5). * P < 0.05 vs. 

N; # P < 0.05 vs. corresponding LV. 
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The adaptation to a moderate normobaric hypoxia markedly increased the total CK 

activity in the LV by ~ 41% (CNH), 43% (INH-23), and 40% (INH-8), which was in 

agreement with the enhanced expression of the mtCKs and CKB proteins. In the RV, only 

adaptations to the INH-23 and INH-8 regimens significantly increased the total CK activity by 

~ 31% and 51%, respectively (Figure 26). All hypoxic regimens also significantly increased 

the HK activity in the LV by ~ 32% (CNH), 23% (INH-23), and 29% (INH-8), which was in 

line with the up-regulation of the HK1 and HK2 protein levels. The total HK activity in the 

RV was higher than in the LV already under normoxic conditions and the normobaric hypoxia 

resulted in further increases by ~ 67% (CNH), 75% (INH-23), and 21% (INH-8) (Figure 26). 

 

 
Figure 26: The specific enzyme activities of the CK and HK in the left (LV) and right (RV) ventricles. The CK 

(left) and HK (right) activities are expressed as units per gram protein (U/g) in the LV and RV from normoxic 

rats (N), from rats adapted to the continuous normobaric hypoxia (CNH), intermittent normobaric hypoxia for 23 

h/day (INH-23), and intermittent normobaric hypoxia for 8 h/day (INH-8). Values are mean ± S.E.M. (n = 5). * P 

< 0.05 vs. N; # P < 0.05 vs. corresponding LV. 

 

The fluorescence analyses showed a higher co-localization of the HK1 with 

mitochondria than the HK2 in the normoxic LV and RV, which is in accordance with the 

previous results (Chapter 4.2). In addition, a higher co-localization of the HK1 with 

mitochondria, compared to the HK2, was also observed in the RV of the CNH rats. However, 

the adaptation to the CNH did not affect the mitochondrial co-localization of both isoforms in 

the LV as well as in the RV, compared to the normoxic controls (Figure 27). 
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Figure 27: The representative qualitative images of transversal cross cryosections showing the co-localization of 

the HK1 and HK2 with mitochondria in the left (LV) and right (RV) ventricles from normoxic rats (N) and from 

rats adapted to the continuous normobaric hypoxia (CNH) (top and middle). The green color represents the 

specific HK1 or HK2 staining and the blue color indicates the nuclear 4',6-diamidino-2-phenylindole (DAPI) 

staining. The red color represents the distribution of the mitochondrial compartments (I-V complexes). The 

increase in yellow-orange color indicates an increased co-localization of the HK1 and HK2 with mitochondria 

expressed as the Pearson´s correlation coefficients (bottom). The scale bar represents 20 µm. Values are mean ± 

S.E.M. (n = 5). 
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5.2.2 The effect of the I/R insult 

 

The present I/R protocol was designed to be marginal for the fatal cell damage. The 

degree of cell damage was determined by measuring the LDH release, which occurred only 

after 30 s and 60 s of reperfusion. Nevertheless, these increases were negligible due to low 

levels of the LDH activity (Figure 28). The degree of apoptosis was determined by the Bcl-

2/BAX ratio, which remained unchanged during ischemia and I/R insult in normoxic LV. The 

ratio of the anti-apoptotic Bcl-2 protein to the pro-apoptotic BAX protein was significantly 

elevated after the I/R insult in the CNH LV, as compared to the normoxic LV (Figure 28). 

 

 
Figure 28: The degree of cell damage and apoptosis. The ratio of the Bcl-2/BAX proteins in the left ventricle 

(LV) of perfused control (KN, KH), ischemic (IN, IH), and I/R (IRN, IRH) hearts. The N, normoxic rats; H, rats 

adapted to the continuous normobaric hypoxia (left). The LDH release during the reperfusion is expressed as 

U/L (right). Values are mean ± S.E.M. (n = 6). $ P < 0.05 vs. KH; * P < 0.05 vs. corresponding normoxic group. 

 

The I/R insult did not affect the HK2 protein level in the hypoxic LV. Only ischemia 

had a tendency to increase the HK2 protein level in the hypoxic LV. The HK1 expression 

remained unchanged in all experimental groups (Figure 29).  
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Figure 29: The expression of the HK1 protein (left) and HK2 protein (right) in the left ventricle (LV) of perfused 

control (KN, KH), ischemic (IN, IH), and I/R (IRN, IRH) hearts. The N, normoxic rats; H, rats adapted to the 

continuous normobaric hypoxia. Values are mean ± S.E.M. (n = 6). 

 

The I/R insult significantly increased the total HK activity in the CNH LV compared to 

the appropriate normoxic LV. The ischemia also markedly elevated the total HK activity in the 

hypoxic LV as well as in the control LV (Figure 30). The total CK activity was not affected 

either by ischemia or by the I/R insult (Figure 30). 

 

 
Figure 30: The specific enzyme activities of the CK and HK in the left ventricle (LV) of perfused control (KN, 

KH), ischemic (IN, IH), and I/R (IRN, IRH) hearts. The N, normoxic rats; H, rats adapted to the continuous 

normobaric hypoxia. Values are mean ± S.E.M. (n = 6). $ P < 0.05 vs. KN; $ P < 0.05 vs. KH; * P < 0.05 vs. 

corresponding normoxic group. 
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5.3 Conclusion 
 

This study demonstrated similar effects of three different hypoxic regimens on CK and 

HK isoforms in the myocardium of adult rats. The up-regulation of the mitochondrial CK and 

HK and their activities may lead to a higher stimulation of the respiratory chain via ADP 

recycling, which can reduce a formation of ROS and thus help to prevent the oxidative stress 

and maintain the energy homeostasis during the normobaric hypoxia. Although any difference 

between the protective and non-protective phenotype was found, it cannot be ruled out that the 

CK and HK may play a role in the cardioprotective mechanisms induced by the adaptation to 

the normobaric hypoxia. The fluorescence analyses revealed that the CNH regimen stabilizes 

the HK bond with mitochondria in both ventricles, which can subsequently protect the HK 

dissociation from mitochondria under the I/R injury. This suggestion is supported by an 

increased HK activity in the CNH LV subjected to the I/R insult.  
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6. STUDY 3: The effect of the hypobaric hypoxia on the CK and HK 

enzymes 
 

6.1 Introduction 
 

The hypobaric hypoxia has been studied since 1950th. The first experiments has been 

carried out in the Czech Republic in 1958 by Kopecky and Daum, who have demonstrated the 

cardiprotective effect of the adaptation to the hypobaric hypoxia. However, the hypobaric 

hypoxia differ in some physiological parameters from the normobaric hypoxia (Millet et al., 

2012; Savourey et al., 2003). Surprisingly, few studies focused on the CK and HK activities 

under hypoxic conditions have been published untill now. Pissarek et al. (1997) adapted rats to 

the hypobaric hypoxia for 28 days simulating altitude 5500 m. They have observed a 

significant decrease of the total CK activity in the LV and a non-significant decrease of the 

total CK activity in the RV. The enzyme activities of CK isoforms were also changed under 

hypoxic conditions. The CKM activity significantly decreased, while the CKB activity 

significantly increased in both ventricles. The mtCKs activity significantly decreased only in 

the LV (Pissarek et al., 1997). However, more recent research has shown different results. 

Letout et al. (2005) have found that the total CK activity increased in the LV but remained 

unchanged in the RV of rats adapted to the hypobaric hypoxia (640 hPa, 3700 m) for 3 weeks. 

The CKM isoform activity increased in the LV but decreased significantly in the RV. The 

CKB activity markedly increased in both ventricles. The mtCKs had a tendency to grow in the 

LV as well in the RV (Letout et al., 2005). These different findings may be due to a distinct 

model of the hypobaric hypoxia. According to many models of the hypobaric hypoxia, it is 

very complicated to compare obtained results with published data.  

Only one paper has been published regarding hexokinase thus far. Cai et al. (2010) 

have demonstrated a decrease of the HK activity in the RV and no changes in the HK activity 

in the LV of rats adapted for 5 weeks to a hypobaric hypoxia (53 kPa, 5000 m) (Cai et al., 

2010). The present study used a model of the hypobaric hypoxia simulating a high altitude of 

7000 m, which represents greater oxidative stress and thus may have a different effect on the 

HK and CK functions. 
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6.2 Results 
 

The adaptation to the IHH-8 substantially increased the total CK activity in both 

ventricles (Figure 31), which was in agreement with the enhanced expression of mtCKs and 

CKB proteins (Figure 32). The adaptation to the IHH-8 regimen also significantly increased 

the total HK activity in both ventricles (Figure 31), which was in line with the up-regulation 

of the HK1 and mainly with the HK2 protein level (Figure 32).  

 

 
Figure 31: The specific enzyme activities of the CK and HK in the left (LV) and right (RV) ventricles. The CK 

(left) and HK (right) activities are expressed as units per gram protein (U/g) in the LV and RV from normoxic 

rats (N) and from rats adapted to the intermittent hypobaric hypoxia (IHH-8). Values are mean ± S.E.M. (n = 5). 

* P < 0.05 vs. N. 

 

 

The adaptation to the severe intermittent hypobaric hypoxia significantly decreased the 

CKM mRNA in both ventricles and the protein level in the RV. The CKM protein in the LV 

only showed a tendency to decrease. On the other hand, the IHH-8 adaptation up-regulated the 

CKB at the protein level in both LV and RV. The CKB mRNA level remained unchanged. 

The mtCKs transcript tended to fall in the LV and markedly decreased in the RV. The protein 

expression of the mtCKs significantly increased in the LV and tended to decrease in the RV 

(Figure 32). 
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Figure 32: The expression of CK isoforms in the left (LV) and right (RV) ventricles. The relative levels of CKM 

mRNA (top left), CKB mRNA (top middle), mtCKs mRNA (top right), CKM protein (middle left), CKB protein 

(middle middle), and mtCKs protein (middle right) are expressed as a percentage of total amount determined in 

the LV and RV from normoxic rats (N) and from rats adapted to the intermittent hypobaric hypoxia (IHH-8). The 

representative bands were cut out from the original gels containing also other experimental groups (bottom). 

Values are mean ± S.E.M. (n = 5). * P < 0.05 vs. N. 

 

The mRNA level of the HK1 did not change after the adaptation to the IHH-8, while 

the HK1 protein significantly increased in the LV and markedly decreased in the RV. The 

HK2 mRNA did not change, only tended to rise in the LV and decline in the RV. The protein 

expression of the HK2 substantially increased in the LV and had a tendency to increase in the 

RV (Figure 33). 
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Figure 33: The expression of HK1 and HK2 isoforms in the left (LV) and right (RV) ventricles. The relative 

levels of HK1 mRNA (top left), HK2 mRNA (top right), HK1 protein (middle left), and HK2 protein (middle right) 

are expressed as a percentage of total amount determined in the LV and RV from normoxic rats (N) and from 

rats adapted to the intermittent hypobaric hypoxia (IHH-8). The representative bands were cut out from the 

original gels containing also other experimental groups (bottom). Values are mean ± S.E.M. (n = 5). * P < 0.05 

vs. N. 

 

The fluorescence analyses showed that the adaptation to the IHH-8 significantly 

increased the co-localization of the HK1 with mitochondria as well as the co-localization of 

the HK2 with mitochondria in the LV as well as in the RV (Figure 34). These observations 

were confirmed by the fractionation and WB method showing the elevated HK1 and HK2 

protein levels in the mitochondrial fractions from the hypoxic LV and RV (Figure 35). 
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Figure 34: The representative qualitative images of transversal cross cryosections showing the co-localization of 

the HK1 and HK2 with mitochondria in the myocardial left (LV) and right (RV) ventricles from normoxic rats (N) 

and from rats adapted to the intermittent hypobaric hypoxia (IHH-8) (top and middle). The green color 

represents the specific HK1 or HK2 staining and the blue color indicates the nuclear 4',6-diamidino-2-

phenylindole (DAPI) staining. The red color represents the distribution of the mitochondrial compartments (I-V 

complexes). The increase in yellow-orange color indicates an increased co-localization of the HK1 and HK2 with 

mitochondria expressed as the Pearson´s correlation coefficients (bottom). The scale bar represents 20 µm. 

Values are mean ± S.E.M. (n = 6). * P < 0.05 vs. N. 
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Figure 35: The protein levels of the HK1 and HK2 in the mitochondrial fraction from the left (LV) and right (RV) 

ventricles. The relative levels of HK1 protein (top) and HK2 protein (bottom) are expressed as a percentage of 

total amount determined in the LV and RV from normoxic rats (N) and from rats adapted to the intermittent 

hypobaric hypoxia (IHH-8). Values are mean ± S.E.M. (n = 5). * P < 0.05 vs. N. 

 

6.3 Conclusion 
 

The present study showed the increased CK activity, which is in line with the up-

regulation of mtCKs and CKB proteins, indicating an elevated activity of PCr/CK system, 

which is responsible for maintaining energy homeostasis and ADP recycling in mitochondria. 

The up-regulation of HK1 and HK2 proteins and the total HK activity in the LV may be 

related to the protective metabolic mechanisms of hypobaric hypoxia enhancing the oxidative 

phosphorylation and consequently preventing oxidative stress. In addition, the higher HK1 as 

well as HK2 co-localization with mitochondria may suggest the activation of survival pathway 

in the heart of rats adapted to the severe intermittent hypobaric hypoxia. 
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7. DISCUSSION 
 

7.1 Study 1: The comparison of the LV and RV under normoxia 
 

The present study demonstrated a significantly higher expression of HK1 and HK2 

isoforms at mRNA as well as protein level in the RV as compared to the LV. These findings 

were confirmed by immunofluorescence staining and fluorescence microscopy analyses, 

which revealed substantially higher fluorescence signals of both HKs in the RV than in the 

LV. To this author’s knowledge, no data have been published to date comparing the 

expression and subcellular localization of HK isoforms in the RV and LV. The higher content 

of HK isoforms in the RV may suggest a higher activity of aerobic glycolytic metabolism in 

this ventricle, which can enhance oxidative phosphorylation and consequently attenuate 

oxidative stress.  

 

7.1.1 Differences in energy metabolism between ventricles 

 

The present results are supported by recent findings regarding the higher expression of 

the IGF1 in the RV than in the LV (Drake et al., 2011). The IGF1 regulates the glucose 

transport into the cells, glucose utilization and promotes glycolysis, which can be reflected in 

the increased expression of glycolytic enzymes, such as the HK (Cheng et al., 2000; Bondy 

and Cheng, 2004). It has been observed that the IGF1 induced the HK gene expression in a 

concentration and time dependent manner in two cancer cell lines (Sebastian and Kenkare, 

1997). The IGF1 also plays a role in the cardiomyocyte growth and controls cell 

differentiation and apoptosis (Takeda et al., 2010). Besides that, the RV shows a lower 

expression of both fatty acid binding protein isoforms and a higher expression of glycogen 

debranching enzyme (Phillips et al., 2011), which may favor a higher glucose utilization in the 

RV. The activity of glucose metabolism is associated with the expression of contractile 

proteins, such as MyHC" and MyHC#. MyHC" possesses a higher ATPase activity leading to 

a faster contraction, whereas MyHC# with a lower ATPase activity is associated with a slower 

contraction (Ebrecht et al., 1982; Pope et al., 1980; Schwartz et al., 1982). Interestingly, a 

lower expression of MyHC# and a higher expression of MyHC" has been observed in the RV 



!

! '(&!

as compared to the LV (Brooks et al., 1987; Sharma et al., 2003), indicating that the RV 

exhibits a faster muscle phenotype. Indeed, the shortening velocity of RV muscle is greater 

than that of the LV (Brooks et al., 1987).  

The faster contraction requires a faster transport of the ATP provided by the CK. 

Although, mRNA levels of all CK isoforms were significantly higher in the RV than in the 

LV, no differences at protein levels of CK isoforms were found between ventricles, except for 

the CKB protein, which tended to be higher in the RV than in the LV. Similarly, total CK 

activity did not differ between ventricles. This may suggest a higher contribution of glycolysis 

to phosphotransfer network in the RV as compared to the LV.  

 

7.1.2 Coronary blood flow differences between ventricles 

 

Increased metabolism rate requires an enhanced oxygen delivery, which is provided by 

an increased coronary blood flow. It has been shown that the collagen concentration in the 

adult RV is higher than that in the LV (Caspari et al., 1975b; a; Ostadal et al., 1978). This 

higher collagen concentration in the RV is associated with a higher static elasticity of right 

myocardium (Cappelli et al., 1984) and can reflect the distribution of coronary vasculature 

(Buccino et al., 1969). The number of capillaries per mm2 is significantly greater in the RV 

than in the LV (Henquell and Honig, 1976). Experimental studies dealing with amino acid 

incorporation into the heart have also found differences between the RV and LV. The 

incorporation of 14C-Proline and 14C-Lysine into the RV was significantly higher than into the 

LV (Ostadal et al., 1978; Schreiber et al., 1966). The authors assumed that increased 

incorporation into the RV might be due to a more rapid turnover or greater coronary perfusion 

per unit of muscle mass (Ostadal et al., 1978). The higher coronary blood flow in the RV can 

be also due to a lesser systolic compression of the arteries, as compared to the LV, so the 

coronary blood flow is more continuous. Recently, Drake et al. (2011) have reported that the 

gene encoding the nuclear receptor subfamily 2, group F, member 2 (NR2F2) protein was 

found to be expressed 2-fold higher in the normal RV than in the LV (Drake et al., 2011). The 

NR2F2 is required for angiogenesis during heart development (Pereira et al., 1999) and it 

might thus correspond to the increased vascularization in the RV observed by Henquell and 

Honig (1976). 
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7.1.3 The interaction of HK isoforms with mitochondria 

 

Hexokinase represents an essential glycolytic enzyme playing an important role in 

survival pathways. Several reports have shown that an increased expression of HK is 

associated with an improved resistance of cells, including cardiomyocytes, against ischemic 

injury (Zuurbier et al., 2009) and apoptosis (Ahmad et al., 2002; Azoulay-Zohar et al., 2004; 

Chiara et al., 2008; Miyamoto et al., 2008; Pastorino et al., 2002; Sun et al., 2008). The anti-

apoptotic importance of HK lies to a high degree in the association of this enzyme with 

mitochondria. However, neither HK1 nor HK2 co-localization with mitochondria differed 

between ventricles in the present study. On the other hand, the immunofluorescence analyses 

showed that the co-localization of HK1 with mitochondria is greater than that of the HK2 in 

both ventricles. Southworth et al. (2007) have performed a very detailed study focused on the 

distribution of HK in LV cardiomyocytes using electron microscopy. They have found that in 

the heart under resting conditions, HK1 is associated with mitochondria to a much higher 

extent (10-fold) than HK2 and that the binding of each enzyme isoform to mitochondria is 

regulated differently. Interestingly, under ischemic conditions or increased level of insulin 

(Southworth et al., 2007) as well as under increased concentration of glucose (John et al., 

2011), the association of HK2 with mitochondria increased 5-fold, while that of HK1 only 2-

fold (Southworth et al., 2007).  

Recently, it has been reported that fully activated phospho-AKT stimulated HK2 

translocation to the outer mitochondrial membrane (Miyamoto et al., 2008; Roberts et al., 

2013), where HK2 inhibited the binding of the pro-apoptotic BAX protein (Pastorino et al., 

2002) and the opening of the MPT pore (Azoulay-Zohar et al., 2004; Beutner et al., 1998). 

Full activation of AKT requires phosphorylation at both Ser and Thr residues (Alessi et al., 

1996). In the present study, the expression of phospho-Ser-AKT as well as phospho-Thr-AKT 

was significantly higher in the RV than in the LV. In addition, both ratios of phospho-Ser-

AKT/non-phosphorylated AKT and phospho-Thr-AKT/non-phosphorylated AKT were 

markedly higher in the RV than in the LV. Nevertheless, the higher level of activated AKT in 

the RV did not lead to an increased co-localization of HK2 with the mitochondria. These 

findings suggest that AKT activation is a necessary but not a sufficient condition for the 

enhancement of the interaction of HK2 with mitochondria and that yet another mechanism 
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may be involved, initiated by a complex physiological processes such those associated with an 

increased concentrations of glucose or insulin, for which the increased binding of HK2 to 

mitochondria was described (John et al., 2011; Southworth et al., 2007). 

 

7.1.4 The HK enzyme activity in the LV and RV 

 

The increased binding of HK with mitochondria generally results in an increased HK 

activity because of the reduction of G-6-P inhibitory effect (Parra et al., 1997). Most studies 

dealing with HK in the heart focused only on the enzyme activity in homogenate. Although 

higher activity of HK in the RV as compared to the LV was found in young rats (Bass et al., 

2001; De Tata et al., 1988), other studies did not detect any significant right-to-left ventricular 

difference (Bass et al., 1993; Daneshrad et al., 2000; Rumsey et al., 1999). This is in accord 

with the results of the present study, supporting the co-localization findings, too. In contrast, 

the activity does not correlate with the higher expression of HK1 and HK2 observed in the RV 

as compared to the LV. This apparent discordance may be explained by the fact that 

comparable concentrations of both HK isoforms bound to mitochondria were detected in both 

ventricles. The increased total concentration of HK in the RV as compared to the LV can be 

due to higher levels of cytosolic forms of the enzyme. Taking into account that HK associated 

with mitochondria contributes principally to a higher enzyme activity, the increased levels of 

cytosolic HK in the RV may not necessarily affect the total enzyme activity. Moreover, 

changes in the total HK activity correlate with specific changes in the activity of the cytosolic 

isoform HK2 rather than with the activity of HK1, which is predominantly bound to 

mitochondria (Riddle et al., 2000).  

When comparing the expression and the activity of HK, it is important to keep in mind 

that standard WB analysis under denaturing conditions only allows the detection of the 

monomeric form of the enzyme, while the dimers or tetramers may substantially differ in their 

activity (Hoggett and Kellett, 1992). Post-translational modifications such as sumoylation 

(Aslanukov et al., 2006) and ubiquitinylation (Magnani et al., 1994) can affect the enzyme 

activity of HK and cause its degradation. Hence, the enzyme activity need not be directly 

proportional to the relative amount of HK determined by WB. Moreover, tissue 

homogenization could disrupt many of these levels of regulation, including detaching the HK 
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from mitochondria. This means that in vitro measurements of HK activity may differ from the 

real in vivo tissue activities.  

The mechanisms underlying the enhancement of enzyme activity induced by HK 

interaction with the mitochondria include conformational changes of the enzyme molecule and 

Pi competition with G-6-P at its binding site. The HK2 forms dimers in the cytosol, while the 

interaction of HK2 with mitochondria requires HK in a tetrameric form, as well as the HK1-

mitochondria interaction (Mulichak et al., 1998; Wilson, 1995). The HK monomer-dimer-

tetramer transitions and their interactions with mitochondria may further affect the 

conformational state of the monomers and thus change their substrate-binding affinity 

resulting in the increased activity of the whole complex. The question then arises how 

oligomerization of HK can change the enzyme activity of monomers. Another question is 

whether the increased enzyme activity due to its binding to the mitochondria is caused by 

product channeling (Gregor et al., 2003), i.e., by a shift of the equilibrium to the right, or 

through an increased number of active monomers formed by conformational changes induced 

by the interaction itself. Based on the different functional properties between HK1 and HK2, 

the different contribution of each HK isoform to the total HK activity can be expected. 

 

7.2 Study 2: The effect of the normobaric hypoxia and I/R insult on the CK 

and HK enzymes 
 

The present study showed significantly increased enzyme activities of CK and HK and 

expression of mtCKs, CKB and both HK isoforms in the LV induced by adaptation to the 

moderate normobaric hypoxia. The up-regulation of the mitochondrial enzymes and their 

activities may indicate a higher stimulation of the respiratory chain via ADP recycling, which 

can reduce ROS and thus help to prevent oxidative stress. 

 

7.2.1 The CK enzyme activity in the LV 

 

The CK molecule is known to be very susceptible to oxidative stress, which causes a 

dissociation of SH bonds between cystein residues in each monomer and thus affects the CK 

catalytic activity (Konorev et al., 1998; Koufen et al., 1999; Mekhfi et al., 1996; Wendt et al., 
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2003). The significant increase of the total CK activity in the LV of rats adapted to protective 

regimens of normobaric hypoxia (CNH, INH-8) suggests that the cardiac energy metabolism 

responses physiologically under these conditions, which are not associated with a severe 

oxidative stress. This is likely due to an increased capacity of the antioxidant system, which is 

responsible for the control of the ROS over-production. This is supported by the finding of an 

increased mRNA expression of major antioxidant enzymes (Kasparova et al., data in 

preparation). In addition, the total CK activity did not change in the LV during an acute I/R 

insult suggesting that the adaptation to CNH regimen preserves the CK function and possibly 

preserves the octamer-dimer transition of the mtCKs. Adaptation to normobaric hypoxia could 

thus have similar protective effects as ischemic preconditioning (Laclau et al., 2001).  

 

7.2.2 The CK expression in the LV 

 

The total CK activity represents all CK isoforms at the protein level. The adaptation to 

CNH and INH-8 regimens significantly increased expression of mtCKs and CKB isoforms, 

while did not change the CKM expression. In view of the fact that CKB represents a minor 

isoform in the mature heart (Table 4), it can be assumed that the increase of the total CK 

activity under hypoxic conditions can be attributed mainly to mtCKs.  

 
Table 4: The mRNA and protein levels of CK isoforms in the normoxic LV and RV expressed as percentage of 

total. 

 

CK isoform 
protein % mRNA % 

LV RV LV RV 

mtCKs 37.44 43.88 48.12 47.96 

CKM 54.48 49.48 51.58 51.69 

CKB 8.07 6.64 0.30 0.34 
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The mRNA level of CKB is by two orders of magnitude lower than that of mtCKs and 

CKM in the normoxic LV. The mtCKs and CKM mRNA/mRNA ratios are close to 1:1 in the 

LV suggesting equilibrium between PCr production in mitochondria and its utilization close to 

ATPases mediated by CKM under physiological conditions. It seems that increased expression 

of mtCKs under hypoxic conditions may result in an elevated PCr production in mitochondria 

leading to the increased availability of ADP for ATP synthase. The accelerated PCr synthesis 

has been already shown after adaptation to chronic hypoxia (Novel-Chate et al., 1995). 

Moreover, it has been reported that increased mtCK levels could help to sustain a high energy 

turnover, which may be beneficial under stress situations (Carter et al., 1995; Holtzman et al., 

1998) and possibly protect cells from apoptosis (Kornacker et al., 2001). It appears that the up-

regulation of mtCKs and increase of the total CK activity induced by adaptation to protective 

regimens of normobaric hypoxia can represent a compensatory mechanism engaged in 

improving oxidative energy metabolism. However, the question remains why mtCKs protein 

level and total CK activity also increased after adaptation to a non-protective regimen of 

normobaric hypoxia (INH-23). The CKB protein also tended to increase, but not significantly, 

and mRNA levels of both mtCKs and CKB remained unchanged. One of the possible 

explanations could be that the elevated total CK activity and mtCKs protein level mainly 

represent the adaptive mechanism of CK system to hypoxia, which is able to maintain 

adequate phosphotransfer homeostasis within cardiomyocytes. The cardioprotective phenotype 

of CNH and INH-8 regimens may therefore be related to the activation of other mechanisms, 

such as antioxidant system, other enzymes of energy metabolism, or pro-survival kinases.  

From the literature data it is evident that the model of normobaric continuous hypoxia 

is not as frequent as the model of hypobaric intermittent hypoxia. There is only one study 

(Novel-Chate et al., 1998) which has used the same model and focused on CK. However, this 

study has reported opposite results showing a decrease of total CK and mtCKs activities after 

adaptation to normobaric (10% O2) hypoxia for 3 weeks. However, it should be noted, that the 

authors used female rats and that significant differences may exist in the sensitivity of males 

and females to hypoxia (Ostadal et al., 1984b). 

The regulation of mtCKs gene expression still remains unclear. It is known that mtCKs 

is regulated by the same transcription factors from the MyoD and MEF2 family of proteins as 

CKM (Qin et al., 1998). Nevertheless, the results showed a discordant trend in the expression 
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between two major isoforms mtCKs and CKM in the LV of all hypoxic groups, suggesting 

different regulatory mechanisms controlling the expression of these genes during hypoxia. 

One of the possible factors playing a role in a transcriptional regulation of mtCKs is the 

mitochondrial transcription factor A (mtTFA), which is activated under impaired 

mitochondrial energy supply and is involved in mitochondrial proliferation (Wiesner et al., 

1999) stimulated also by chronic hypoxia (Nouette-Gaulain et al., 2005). 

The up-regulation of CKB induced by normobaric hypoxia seems to be controlled at 

the transcriptional (Willis et al., 2005; Wu-Peng et al., 1992) as well as translational (Ch’ng et 

al., 1990) and post-translational (Chida et al., 1990; Hemmer et al., 1993) levels. The post-

translational modification usually leads to phosphorylation of CKB mediated by kinases, such 

as PKC (Chida et al., 1990; Hemmer et al., 1993). The phosphorylated form of CKB has an 

increased affinity for PCr (Quest et al., 1990) allowing CKB to transfer the high-energy 

phosphate from PCr to ADP. This may provide a higher ATP supply for ATP-requiring 

processes at low PCr levels (Hemmer et al., 1993), which may likely occur also during 

hypoxia. Other potential candidate is the AMPK, which is activated under metabolic stress 

conditions (Emerling et al., 2009; Jing et al., 2008; Mungai et al., 2011), phosphorylates CKB 

and thus allows CKB to regulate the SERCA activity (Rios et al., 2014). The CKB is 

predominantly expressed during prenatal life and it is better adapted to stressful conditions 

(Mahadevan et al., 1984). 

 

7.2.3 The CK expression and enzyme activity in the RV 

 

Adaptation to chronic hypoxia has a beneficial effect on the LV as well as on the RV. 

Even the hypoxic RV is more tolerant of ischemia than the hypoxic LV. However, the hypoxia 

also causes a pulmonary hypertension leading to a pressure overload and hypertrophy of the 

RV (Baker et al., 1997). The degree of the hypertrophy correlates with the intensity and 

duration of the hypoxic exposure (Bonnet et al., 2001). In the present study, the relative RV 

weight increased by ~ 86% at CNH, 69% at INH-23, and only 19% at INH-8 regimen. No 

changes in the LV weight were observed (Table 1). The LV is not exposed to increased 

afterload during the moderate hypoxia. Its weight therefore remains unchanged and it may 

increase only after prolonged exposure to the severe intermittent hypoxia (Cazorla et al., 2006; 
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Kolar et al., 2007; La Padula and Costa, 2005; Neckar et al., 2005; Widimsky et al., 1973), 

which is associated with moderate systemic hypertension. Hence, chronic hypoxia acts 

differently on the LV and RV energy metabolism (Daneshrad et al., 2000; Cai et al., 2010; 

Letout et al., 2005; Nouette-Gaulain et al., 2005; Novel-Chate et al., 1998; Pissarek et al., 

1997; Rumsey et al., 1999). In the present study, the observed significant increase of the total 

CK activity in the RV at INH-8 regimen compared to CNH and INH-23 regimens may be 

possibly related to a lower oxidative stress. The protein level of mCKs was slightly higher in 

the normoxic RV compared to the LV and it remained unchanged after the adaptation to all 

hypoxic regimens, which can be possibly explained by the RV hypertrophy masking its 

potential increase. On the other hand, the same expression profile of mtCKs was found in the 

RV also at the mRNA level, so the question is whether it is due to a hypertrophy or not. This 

could also be associated with the mitochondrial biogenesis activating in the hypoxic LV and 

not in the hypoxic RV. The cytosolic CK isoforms showed a similar profile at mRNA as well 

as protein levels in both ventricles suggesting a direct effect of hypoxia on these isoforms. The 

compensation increase of CKB isoform induced by the adaptation to hypoxia has already been 

described (Letout et al., 2005; Pissarek et al., 1997). The CKB increase at protein level was 

markedly higher than that at mRNA level, which suggested the post-transcriptional or post-

translational regulation (Shen et al., 2003).  

 

7.2.4 The HK expression and enzyme activity in the LV 

 

Adaptation to chronic hypoxia causes a shift from fatty acid oxidation to a glycolysis 

(Holden et al., 1995), which was also supported by the obtained results. The present study 

demonstrated that HK1 as well as HK2 protein level significantly increased in the LV of all 

hypoxic groups. The mRNA level of HK2 also markedly increased, which is in agreement 

with results obtained by Rumsey et al. (1999) using the same model of hypoxia. However, the 

HK1 mRNA remained unchanged, which is not in line with Rumsey et al. (1999), who have 

shown a significantly increased HK1 mRNA in both ventricles (Rumsey et al., 1999). 

Interestingly, different responses of HK1 at mRNA and protein levels were observed also in 

the human lung cell line A549 adapted to hypoxia (Riddle et al., 2000), which may indicate a 

higher activity of translational machinery. While the promotor region and potential 
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transcription factors of HK1 have been described (Chapter 1.3), the mechanisms regulating 

HK1 translation are still not known. These mechanisms may include the activation of initiation 

factors and transfer RNA, or inhibition of translational repressor proteins. The regulation of 

the HK2 gene expression has been studied more intensively. One of the potential HK2 

regulators under hypoxia could be the transcriptional factor HIF1 (Riddle et al., 2000). The 

HIF1 is also activated via PI3K/AKT pathway (Gordan and Simon, 2007; Semenza, 2003), the 

same pathway, which activates HK2 expression (Osawa et al., 1996b). Adaptation to hypoxia 

leads to an increased level of catecholamines and cAMP, which may activate putative 

response elements in the HK2 promotor region (Mathupala et al., 1995; Rempel et al., 1996; 

Osawa et al., 1995, 1996a). Another important regulator is AMPK (Stoppani et al., 2002) also 

stimulating the total HK activity (Holmes et al., 1999), which in the present study increased in 

the LV after adaptation to all hypoxic regimens. The AMPK also inhibits the CKM activity 

(Ponticos et al., 1998) and, as mentioned earlier, it positively regulates CKB isoform (Rios et 

al., 2014). In addition to post-translational modification mediated by kinases, the HK activity 

could be also modulated by its substrate and product concentrations. It is known that hypoxia 

increases the glucose flux into cardiomyocytes leading to an elevation of the HK activity. This 

produces G-6-P, which is immediately metabolized in glycolysis and thus cannot reversely 

inhibit the HK activity (Chapter 1.5.2.3).  

 

7.2.5 The HK interaction with mitochondria 

 

The enhancement of the HK activity could be achieved by its greater association with 

mitochondria. It has been shown that AKT kinase phosphorylates HK2 and stimulates its 

translocation to the mitochondria (Miyamoto et al., 2008; Roberts et al., 2013). However, this 

mechanism does not seem to play a role in the stimulation of the HK activity under present 

experimental conditions, because no increase in mitochondrial co-localization of HK isoforms 

was observed after adaptation to normobaric hypoxia. Nevertheless, it should be mentioned 

that the present HK assay allowed determining the maximal specific activity of both HK 

isoforms independently of the localization of the enzyme molecules. Therefore, the 

disproportionately smaller increase of HK activity as compared to the higher increase of HK 

expressions may rather indicate the effect of post-translational modifications than changes in 
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interactions of HK with mitochondria. In addition, the conformational changes leading to a 

higher affinity of the enzyme for substrate do not have to affect the interaction of the enzyme 

with subcellular structures. Although the HK1 and HK2 co-localizations with mitochondria 

did not increase, they also did not decrease after adaptation to normobaric hypoxia. Hence, it 

seems that the present protective CNH regimen, similarly as ischemic preconditioning, could 

stabilize the binding of HK with mitochondria. Recently, Pasdois et al. (2013) have reported 

that ischemic preconditioning reduces HK2 loss from mitochondrial membrane during 

prolonged I/R insult, thereby reducing cytochrome c release, oxidative stress, and probability 

of the MPT pore opening (Pasdois et al., 2013).  

 

7.2.6 The HK expression and enzyme activity after I/R insult 

 

The present study also involves I/R experiments on isolated normoxic hearts and hearts 

from rats adapted to CNH regimen that showed a significantly increased HK activity in the 

hypoxic LV after I/R insult as compared to non-ischemic ventricles. Moreover, the Bcl-2/BAX 

ratio was markedly higher in hypoxic LVs subjected to the I/R insult than in normoxic 

ventricle. These results may suggest that adaptation to CNH regimen can preserve the binding 

of HK with mitochondria during the I/R injury, thereby reducing the probability of BAX 

binding into mitochondria to activate apoptosis. The protein level of HK1 remained 

unchanged in hypoxic LVs after the I/R insult, although a tendency to its increase was 

observed in LVs adapted to hypoxia as compared to the normoxic ones. Similar trend was also 

observed in the total HK activity and HK2 protein level. In addition, HK2 protein tended to 

increase more after ischemia in the hypoxic LV than in the normoxic LV, which may reflect 

the contribution of this HK isoform to ischemia-resistant phenotype of CNH hearts.  

 

7.2.7 The HK expression and enzyme activity in the RV 

 

Regarding the HK1 and HK2 expressions in the RV, there were not any differences 

between experimental groups. Only adaptation to INH-8 regimen significantly increased HK2 

mRNA in the RV. HK1 and HK2 protein levels were higher in the RV compared to the LV 

under normoxic condition. These findings were already confirmed and discussed previously 
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(Chapter 7.1). It was also observed a markedly higher mRNA level of HK1 in the RV as 

compared to the LV in all hypoxic regimens, which could be associated with the development 

of the RV hypertrophy. The total HK activity significantly increased in the RV of rats adapted 

to all hypoxic regimens. The marked differences between RV and LV were found in CNH and 

INH-23 groups, which can be explained by differences in the oxidative stress between these 

two hypoxic regimens. The present data are in line with other studies focused on the effect of 

normobaric hypoxia on the HK activity (Daneshrad et al., 2000; Rumsey et al., 1999). 

 

7.3 Study 3: The effect of the hypobaric hypoxia on the CK and HK 

enzymes 
 

7.3.1 The comparison of CK expression and enzyme activity with the INH-8 regimen 

 

The present study demonstrated the significantly increased total CK activity and 

elevated protein levels of mtCKs and CKB in the LV of rats adapted to IHH-8 regimen. The 

same results have been also obtained after adaptation of rats to a less severe model of 

intermittent normobaric hypoxia, INH-8 (Chapter 5.2.1). These findings showed that a 

stronger hypoxic stimulus, which is just IHH-8 adaptation, still maintains active PCr/CK 

system for optimal energy homeostasis and ADP recycling in mitochondria. In contrast, 

mtCKs and CKB mRNA levels remained unchanged in the LV of IHH-8 rats as compared to 

those adapted to milder normobaric hypoxic regimens, where mRNA levels substantially 

increased or tended to increase (Chapter 5.2.1). These observations may suggest the 

involvement of different transcriptional and post-transcriptional regulatory mechanisms. 

Moreover, the LV has to be able to maintain contractile function. Therefore most ATP is used 

for muscle contraction, whereas transcription processes are inhibited. With respect to RV, 

changes in CKB expression were similar, but the expression of mtCKs and CKM significantly 

decreased after IHH-8 as compared to INH-8 regimen. These progressive changes observed in 

the IHH-8 group can be due to a greater RV afterload imposed by pulmonary hypertension.  
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7.3.2 The comparison of the CK function with the published data 

 

Comparing present data with other studies is very complicated due to different models 

and adaptation regimens of hypoxia. In addition, other studies have determined the enzyme 

activity of CK isoforms, while the present study demonstrated the expression of CK isoforms. 

For example, Letout et al. (2005) have reported similar results related to the total CK activity 

and CKB and mtCKs activities in the LV, but they have observed an opposite results for CKM 

activity in the LV and for total CK activity and CK isoforms activities in the RV (Letout et al., 

2005). This can be explained by the fact that the authors had adapted rats to much lower 

degree of hypoxia compared to the present study, which might result in distinct cellular 

responses and the degree of RV pressure overload. Moreover, they had studied the effect of 

hypoxia on Sprague-Dawley rats, as compared to the present study on Wistar rats, which also 

may have affected the results. Another study has reported a decrease of the total CK activity 

and mtCKs activity in the LV of rats adapted to hypobaric hypoxia (Pissarek et al., 1997). In 

this case, the authors used a model of continuous hypobaric hypoxia with only 30-45 min of 

reoxygenation per day, which could be associated with a greater oxidative stress than the 

present model of intermittent hypobaric hypoxia. The increased total CK activity and elevated 

protein levels of mtCKs and CKB in the LV may result from post-translational modifications. 

 

7.3.3 The comparison of HK expression and enzyme activity with the INH-8 regimen 

 

As expected, the total HK activity also markedly increased in the LV of rats adapted to 

IHH-8 regimen, which is in line with elevated HK1 and HK2 protein levels. The HK2 mRNA 

only tended to increase and HK1 mRNA remained unchanged. The discrepancy between HK1 

mRNA and protein expression is discussed in the Chapter 7.2 and the differences between 

normoxic LV and RV in the Chapter 7.1. The up-regulation of HK1 and HK2 proteins and the 

increased total HK activity in the LV may be related to the protective metabolic mechanisms 

of hypobaric hypoxia enhancing the oxidative phosphorylation. In addition, HK1 and HK2 co-

localizations with mitochondria significantly increased after adaptation to IHH-8 regimen, 

which may indicate the activation of survival pathways in cardiomyocytes.  
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The present model of hypobaric hypoxia simulating an altitude of 7000 m seems to be 

quite extreme in terms of adaptive potential and may already result in some maladaptive 

changes. It has been shown that IHH-8 regimen, unlike less severe conditions of chronic 

hypoxia, may increase systemic blood pressure causing mild LV hypertrophy, fibrosis, and 

diastolic dysfunction in addition to focal micro-necrosis (Boussuges et al., 2000; Kjaergaard et 

al., 2006; Kolar et al., 1989; Ostadal et al., 1981; Urbanova et al., 1977; Widimsky et al., 

1980). Nevertheless, the LV myocardium of rats adapted to IHH-8 regimen still retains the 

improved resistance to the I/R injury (Kolar et al., 2007; Neckar et al., 2002a). The specific 

protective effect of HK lies in its increased binding with mitochondria, which results in the 

inhibition of apoptosis. Therefore, it seems that adaptation to IHH-8 is associated with ROS-

dependent signaling, which leads to the activation of pro-survival pathways that may possibly 

involve the HK binding to mitochondria. One of the important pro-survival pathways resulting 

in the stimulation of HK association with mitochondria is the PI3K/AKT pathway, because it 

has been found that activated AKT stimulated HK2 translocation into mitochondria 

(Miyamoto et al., 2008; Roberts et al., 2013). It has been reported that IHH-8 regimen induced 

the activation of AKT mediated by its phosphorylation in the LV but not in the RV 

(Strniskova et al., 2006). However, the present results showed substantially increased HK1 

and HK2 co-localizations with mitochondria also in the RV. This indicates that the increased 

co-localization of HK isoforms with mitochondria is directly induced by hypoxia in both 

ventricles. This supports the view that the stimulation of HK co-localization with 

mitochondria is associated with a distinct pathway independent on the AKT activation.  

 

7.4 Conclusion 
 

The results of the present study indicate that the normoxic RV has a higher activity of aerobic 

glycolytic metabolism and may be able to respond faster and more powerfully to stressful 

stimuli than the LV. Furthermore, the study demonstrates that adaptation to normobaric 

hypoxia as well as to more severe hypobaric hypoxia increases mtCKs, CKB, HK1, and HK2 

expressions and total CK and HK activities in the LV, which reflects the adaptation of energy 

metabolism to a decreased tissue oxygen concentration regardless the model and type of 

hypoxia. These results also suggest that CK and HK co-operate together to maintain energy 
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homeostasis and provide an adequate ATP production and transfer in the LV under hypoxia. 

Adaptation to hypoxia evokes apparently dissimilar metabolic responses in the LV and RV, 

which could be related to RV hypertrophy. Based on the results from co-localization 

experiments, it can be assumed that the cardioprotective role of HK lies in its interaction with 

mitochondria, which depends on the degree of oxidative stress. In particular, HK may play a 

crucial role in the caridoprotective mechanism induced by severe hypobaric hypoxia, which 

represents an extreme model of adaptation. 
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