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Kazda and Jakub Opršal. A significant amount of credit is due to my family and
friends for their continuous support during my graduate studies.



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, 10th July 2014 Jakub Buĺın



Název práce: CSP, grafy a algebry

Autor: Jakub Buĺın
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Department: Department of Algebra

Supervisor: Mgr. Libor Barto, Ph.D., Department of Algebra

Abstract: This thesis consists of three papers in the area of algebraic approach
to the constraint satisfaction problem. In the first paper, a joint work with Delić,
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Introduction

Many decision problems from diverse areas of computer science (eg. graph theory,
database theory, artificial intelligence, scheduling) can be naturally expressed in a
common framework, as Constraint Satisfaction Problems (CSPs). In a CSP, one
seeks to assign values to variables subject to constraints on possible evaluations
of tuples of variables. The history of this problem dates back to 1970s and it has
been central to the development of theoretical computer science in the past few
decades.

Constraint satisfaction problems are NP-complete in general; it is natural to
impose restrictions on the constraints allowed to appear in an instance. The so-
called fixed template CSP can then be expressed as the homomorphism problem
for a fixed relational structure:

Definition. For a fixed relational structure A1, the constraint satisfaction prob-
lem with template A is the membership problem for the class

CSP(A) = {X | X→ A}

of structures (of the same type as A) admitting a homomorphism to A. For a
(directed) graph H, CSP(H) is also known as the H-coloring problem.

A lot of interest in this class of problems was sparked by a seminal work of
Feder and Vardi [18], in which the authors conjectured fixed template CSPs to be
the (in some sense) “largest natural” class of NP decision problems avoiding the
complexity classes strictly between P and NP-complete (assuming that P 6=NP).

The CSP dichotomy conjecture. For every relational structure A, CSP(A)
is in P or NP-complete.

A major breakthrough towards this conjecture followed the discovery of a
rather intimate connection of decision CSPs to universal algebra [23, 13]. Each
structure A can be associated with a finite algebra, built up from operations pre-
serving the relations of A, the so called “polymorphisms”. The variety generated
by this algebra of polymorphisms of A then controls complexity (as well as other
properties) of CSP(A) in the following fashion: Either the variety satisfies some
“nice” identities (or Maltsev conditions) which manifest themselves (usually in a
highly non-trivial way) in structural properties and can be exploited algorithmi-
cally, or there is a “bad” member in the variety which can be used to show that
CSP(A) can encode a “hard” problem (for various meanings of “hardness”).

Examples include the conjectured classifications of CSPs solvable in P [13],
NL and L [24], or classes of problems solvable by certain types of algorithms, e.g.

1We only consider finite relational structures.
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local consistency checking [6] (so-called bounded width; the characterization was
conjectured, and the “hardness” part proved, in [25]) or “generalized Gaussian
elimination” [10]. Other important results built upon this algebraic approach
include dichotomies for three-element templates [12] (generalizing Schaefer’s di-
chotomy theorem for the boolean case [26]), for conservative structures [11] (see
also [3]) and for digraphs with no sources and no sinks [8] (generalizing the pre-
algebraic dichotomy for undirected graphs [21]).

This thesis consists of three contributions in the area of algebraic approach
to the constraint satisfaction problem, based on the following papers:

(1) Buĺın, J., Delić, D., Jackson, M., Niven, T.: A finer reduction of constraint
problems to digraphs. Preprint (2014),
http://arxiv.org/abs/1406.6413

A subset of the results is already published, in proceedings of the 19th Interna-
tional Conference on Principles and Practice of Constraint Programming [16].

(2) Buĺın, J.: Decidability of absorption in relational structures of bounded
width. Algebra Universalis, published electronically (2014),
http://dx.doi.org/10.1007/s00012-014-0283-2

(3) Buĺın, J.: On the complexity of H-coloring for special oriented trees. Preprint
(2014),
http://arxiv.org/abs/1407.1779

Below we briefly present contents of these papers. All three parts are more or
less self-contained, inside the reader will find more motivation and discussion of
the results as well as definitions of the notions used in this introduction.

Part I – Reduction to digraphs

This part is based on the paper [17]. Feder and Vardi in their paper [18] not only
conjectured the CSP dichotomy, but also reduced the conjecture to the particular
case of digraphs. Specifically, for every structure A they constructed a digraph
D(A) such that CSP(A) and CSP(D(A)) are polynomial-time equivalent.

In this paper, a joint work with Delić, Jackson and Niven, we present a simple
variant of such a construction and prove that (under our construction2) CSP(A)
and CSP(D(A)) are, in fact, logspace equivalent and most properties relevant to
(algebraic approach to) the CSP carry over from A to D(A). The main results
from this paper are summarized in the following theorem:

Theorem. For every relational structure A there exists a digraph D(A) such that
the following holds:

(i) CSP(A) and CSP(D(A)) are logspace equivalent.

(ii) A is a core if and only if D(A) is a core.3

2It is shown in [22] that there are other constructions of D(A) under which the reduction
from CSP(D(A)) to CSP(A) is still polynomial-time, but which are not as well behaved as ours.

3A finite relational structure A is a core, if every endomorphism of A is an automorphism.
The algebraic approach works well only for cores, but it is easy to prove that for every A there
exists a core A′ such that CSP(A) = CSP(A′).
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(iii) If Σ is a linear idempotent set of identities such that the algebra of polymor-
phisms of the oriented path •→ •← •→ • satisfies Σ and each identity
in Σ is either balanced or contains at most two variables, then

A |= Σ if and only if D(A) |= Σ.

The condition on Σ in item (iii) is not very restrictive: it includes almost all
of the commonly encountered properties relevant to the CSP. Indeed, to date,
these include all Maltsev conditions that are conjectured to divide differing levels
of tractability and hardness, as well as all the main tractable algorithmic classes
(e.g. few subpowers, bounded width, bounded strict width, etc.). In particular,
it follows that the algebraic conjectures characterizing CSPs in P [13], NL and
L [24] are equivalent to their restrictions to the case of digraphs.

In the conference version [16] we proved that the conjecture characterizing
CSPs solvable in P (the so-called Algebraic CSP dichotomy conjecture) is equiv-
alent to its restriction to digraphs. This was established by showing that our
construction preserves a particular Maltsev condition, namely existence of a weak
near-unanimity polymorphism. In this paper the result is extended to include
many more Maltsev conditions; and the logspace reduction from CSP(D(A)) to
CSP(A) is also new.

Part II – Decidability of absorption

This part is based on the paper [14]. An essential idea of the proof of the so-called
Bounded Width Theorem [6] is that an instance of CSP(A) can be reduced to
certain subsets of the template A, the absorbing subuniverses of its algebra of
polymorphisms.

Definition. Let A be an algebra and B ≤ A. We say that B is an absorbing
subuniverse of A, if there exists an idempotent term operation t of A such that

t(A,B,B, . . . , B,B) ⊆ B,

t(B,A,B, . . . , B,B) ⊆ B,

...

t(B,B,B, . . . , B,A) ⊆ B.

The notion of absorbing subuniverse was motivated by algebras with a near
unanimity operation. Jónsson terms (characterizing congruence distributivity)
generalize in a similar fashion to Jónsson-absorbing subuniverses.

The idea of absorption has proven to be very useful in a number of other
problems related to the CSP and structure of finite algebras in general. We refer
the reader to [5, 9] for some of the applications.

In [3], Barto used absorption to provide a new algorithm for the CSP for
conservative templates (i.e., relational structures containing all subsets as unary
relations), significantly simplifying the result of Bulatov [11]. The new algorithm
uses knowledge of absorbing subuniverses of the algebra of polymorphisms as a
black box, which led Barto to formulate the following problem.
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Problem (Problem 24 in [1]). Given a finite relational structure A and a subset
B ⊆ A, is it decidable whether B is an absorbing subuniverse of the algebra of
polymorphisms of A?

The main result of this part is the following theorem:

Theorem. Let A be a core relational structure of bounded width and B ⊆ A.

(i) If B is a Jónsson-absorbing subuniverse of the algebra of polymorphisms of
A, then it is an absorbing subuniverse.

(ii) If B is an absorbing subuniverse of the algebra of polymorphisms of A, then

this absorption is realized via some polymorphism of arity at most 48|A|k
+1,

where k is the maximum arity of a relation of A.

The proof is based on techniques developed for the proof of the Zádori con-
jecture by Barto [2]. As a corollary, we provide a partial solution to the above
problem.

Corollary. Given a core relational structure A of bounded width and B ⊆ A,
there is a co-NEXPTIME algorithm that checks whether B is an absorbing
subuniverse of the algebra of polymorphisms of A.

In the rest of the paper [14] we show that some questions about absorption in
relational structures can be reduced to digraphs. For that, we use the construc-
tion from Part I and prove that it preserves the property of being an absorbing
subuniverse as well as the arity of absorbing terms and also, in a sense, it pre-
serves the absorption-free subuniverses. We conclude by discussing the problem
of characterizing finite algebras which generate a pseudovariety containing no
absorption-free members, another open problem in absorption theory.

Part III – Oriented trees

This part is based on the paper [15], and continues a line of research started in a
joint work with Barto [4]. Using the algebraic approach, Barto, Kozik and Niven
confirmed the conjecture of Bang-Jensen and Hell and established the H-coloring
dichotomy for smooth digraphs (i.e., digraphs with no sources and no sinks) [8].

Our paper is concerned with H-coloring for oriented trees. In the class of all
digraphs, oriented trees are in some sense very far from smooth digraphs, and the
algebraic tools seem to be not yet developed enough to deal with them. Hence
oriented trees serve as a good field-test for new methods.

Except the oriented paths (which are all tractable), the simplest class of ori-
ented trees are triads (i.e., oriented trees with one vertex of degree 3 and all other
vertices of degree 2 or 1). Unfortunately, the CSP dichotomy conjecture remains
open even for triads. Among the triads, Hell, Nešetřil and Zhu [19, 20] identified
a (fairly restricted) subclass, the special triads, which allowed them to handle at
least some examples.

In [7], Barto et al used algebraic methods to prove that every special triad
has NP-complete H-coloring or a compatible majority operation (so-called strict
width 2 ) or compatible totally symmetric idempotent operations of all arities
(so-called width 1 ). In [4], the author and Barto established the CSP dichotomy
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conjecture for special polyads, a generalization of special triads where the one
vertex of degree > 2 is allowed to have an arbitrary degree. In particular, every
tractable core special polyad has bounded width. However, there are special
polyads which have bounded width, but neither bounded strict width nor width 1.

In this paper we study special trees, a fairly broad generalization of special
triads and special polyads. Special trees have an underlying structure of a height 1
oriented tree and while for special triads it has only 7 vertices and for special
polyads it has radius 2, for general special trees it can be arbitrary.

Definition. A special tree (of height h) is an oriented tree obtained from some
oriented tree T = (T ;E) of height 1 by replacing every edge (a, b) ∈ E with some
minimal4 path P(a,b) of height h, preserving orientation. (That is, identifying the
initial vertex of P(a,b) with a and the terminal vertex with b.)

We confirm the CSP dichotomy conjecture for special trees and, moreover,
prove that every tractable core special tree has bounded width:

Theorem. Let H be a special tree. If the algebra of idempotent polymorphisms
of H is Taylor, then it is congruence meet-semidistributive.

Corollary. The CSP dichotomy conjecture holds for special trees. For every core
special tree H, CSP(H) is NP-complete or H has bounded width.

The proof uses modern tools from the algebraic approach to the CSP (in
particular, absorption and pointing operations [9]) and is somewhat simpler and
more natural than the proofs in [7] and [4]. Therefore we believe that there
is hope for further generalization. In particular, we conjecture that tractability
implies bounded width for all oriented trees.

In our terminology, the digraphs D(A) constructed in Part I are special bal-
anced digraphs and the reader may notice similarities with some of the proofs
from Part I. We hope that some of our techniques can be adapted to obtain
interesting results about special balanced digraphs as well.

We conclude this introduction with an illustration of a special triad from [7],
which has NP-complete H-coloring and is conjectured to be the smallest oriented
tree with this property (vertices from the bottom and top level are marked by �
and �, respectively).

4An oriented path is minimal, if its initial vertex has level 0, its terminal vertex has the
maximum level and all other vertices lie strictly in between those two levels.
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[15] Buĺın, J.: On the complexity of H-coloring for special oriented trees. Preprint
(2014),
http://arxiv.org/abs/1407.1779
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[21] Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combina-
torial Theory, Series B 48(1), 92–110 (1990)

[22] Jackson, M., Kowalski, T., Niven, T.: Digraph related constructions and the
complexity of digraph homomorphism problems. Manuscript (2013),
http://arxiv.org/abs/1304.4986

[23] Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Jour-
nal of the ACM 44(4), 527–548 (1997)

[24] Larose, B., Tesson, P.: Universal algebra and hardness results for constraint
satisfaction problems. Theoretical Computer Science 410(18), 1629–1647
(2009)

[25] Larose, B., Zádori, L.: Bounded width problems and algebras. Algebra uni-
versalis 56(3-4), 439–466 (2007)

[26] Schaefer, T.J.: The complexity of satisfiability problems. Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pp.
216–226 (1978)

7



Part I

Reduction to digraphs



A finer reduction of constraint problems
to digraphs

J. Buĺın, D. Delić, M. Jackson and T. Niven

Abstract

It is well known that the constraint satisfaction problem over a gen-
eral relational structure A is polynomial time equivalent to the constraint
problem over some associated digraph. We present a variant of this con-
struction and show that the corresponding constraint satisfaction problem
is logspace equivalent to that over A. Moreover, we show that almost all of
the commonly encountered polymorphism properties are held equivalently
on the A and the constructed digraph. As a consequence, the Algebraic
CSP dichotomy conjecture as well as the conjectures characterizing CSPs
solvable in logspace and in nondeterministic logspace are equivalent to their
restriction to digraphs.

Introduction

A fundamental problem in constraint programming is to understand the com-
putational complexity of constraint satisfaction problems (CSPs). While it is
well known that constraint satisfaction problems can be NP-complete in general,
there are many subclasses of problems for which there are efficient solving meth-
ods. One way to restrict the instances is to only allow a fixed set of constraint
relations, often referred to as a constraint language [9] or fixed template. Classify-
ing the computational complexity of fixed template CSPs has been a major focus
in the theoretical study of constraint satisfaction. In particular it is of interest to
know which templates produce polynomial time solvable problems to help provide
more efficient solution techniques.

The study of fixed template CSPs dates back to the 1970’s with the work
of Montanari [35] and Schaefer [39]. A standout result from this era is that of
Schaefer who showed that the CSPs arising from constraint languages over 2-
element domains satisfy a dichotomy. The decision problems for fixed template
CSPs over finite domains belong to the class NP, and Schaefer showed that in
the 2-element domain case, a constraint language is either solvable in polynomial
time or NP-complete. Dichotomies cannot be expected for decision problems in
general, since (under the assumption that P 6=NP) there are many problems in
NP that are neither solvable in polynomial time, nor NP-complete [31]. Another
important dichotomy was proved by Hell and Nešetřil [19]. They showed that if
a fixed template is a finite simple graph (the vertices make up the domain and
the edge relation is the only allowed constraint), then the corresponding CSP
is either polynomial time solvable or NP-complete. The decision problem for a
graph constraint language can be rephrased as a graph homomorphism problem (a

9



graph homomorphism is a function from the vertices of one graph to another such
that the edges are preserved). Specifically, given a fixed graph H (the constraint
language), an instance is a graph G together with the question “Is there a graph
homomorphism from G to H?”. In this sense, 3-colorability corresponds to H
being the complete graph on 3 vertices. The notion of graph homomorphism
problems naturally extends to directed graph (digraph) homomorphism problems
and to relational structure homomorphism problems.

These early examples of dichotomies, by Schaefer, Hell and Nešetřil, form the
basis of a larger project of classifying the complexity of fixed template CSPs.
Of particular importance in this project is to prove the so-called CSP dichotomy
conjecture of Feder and Vardi [18] dating back to 1993. It states that the CSPs
related to a fixed constraint language over a finite domain are either polynomial
time solvable or NP-complete. To date this conjecture remains unanswered, but
it has driven major advances in the study of CSPs.

One such advance is the algebraic connection revealed by Jeavons, Cohen
and Gyssens [27] and later refined by Bulatov, Jeavons and Krokhin [9]. This
connection associates with each finite domain constraint language A a finite al-
gebraic structure, the so-called algebra of polymorphisms. The properties of this
algebraic structure are deeply linked with the computational complexity of the
constraint language. In particular, for a fixed core constraint language A, if
the algebra of polymorphisms of A does not satisfy a certain natural property,
sometimes called being Taylor, then the class of problems determined by A is
NP-complete. Bulatov, Jeavons and Krokhin [9] go on to conjecture that all
constraint languages (over finite domains) whose algebras of polymorphisms are
Taylor determine polynomial time CSPs (a stronger form of the CSP dichotomy
conjecture, since it describes where the split between polynomial time and NP-
completeness lies). This conjecture is often referred to as the Algebraic CSP
dichotomy conjecture.

Many important results have been built upon this algebraic connection. Bu-
latov [10] extended Schaefer’s [39] result on 2-element domains to prove the CSP
dichotomy conjecture for 3-element domains. Barto, Kozik and Niven [4] ex-
tended Hell and Nešetřil’s result [19] on simple graphs to constraint languages
consisting of a finite digraph with no sources and no sinks. Barto and Kozik [3]
gave a complete algebraic description of the constraint languages over finite do-
mains that are solvable by local consistency methods (these problems are said to
be of bounded width) and as a consequence it is decidable to determine whether
a constraint language can be solved by such methods.

The algebraic approach was also succesfully applied to study finer complexity
classification of CSPs. Larose and Tesson [33] conjectured a natural algebraic
characterization of templates giving rise to CSPs solvable in logspace (L) and in
nondeterministic logspace (NL). In both cases they established the hardness part
of the conjecture.

In their seminal paper, Feder and Vardi [18] not only conjectured a P vs.
NP-complete dichotomy, they also reduced the problem of proving the dichotomy
conjecture to the particular case of digraph homomorphism problems, and even to
digraph homomorphism problems where the digraph is balanced (here balanced
means that its vertices can be partitioned into levels). Specifically, for every
template A (a finite relational structure of finite type) there is a balanced digraph

10



D(A) such that the CSP over A is polynomial time equivalent to that over D(A).
In this paper we present a variant of such a construction and prove that

(under our construction) CSP over D(A) is logspace equivalent to CSP over A
and that the algebra of polymorphisms of the digraph D(A) retains almost all
relevant properties. For example, D(A) has bounded width, if and only if A
does. In particular, it follows that the Algebraic CSP dichotomy conjecture, the
conjectures characterizing CSPs in L and NL as well as other open questions
reduce to the case of digraphs.

In a conference version of this article [12], the authors showed that the Al-
gebraic CSP dichotomy conjecture is equivalent to its restriction to the case of
digraphs. This was established by showing that our construction preserves a
particular kind of algebraic property, namely existence of a weak near-unanimity
polymorphism.

Organization of the paper

In Section 1 we present the main results of this paper. Section 2 introduces our
notation and the necessary notions concerning relational structures, digraphs and
the algebraic approach to the CSP. In Section 3 we describe the construction of
D(A). Sections 4 and 5 are devoted to proving that the construction preserves
cores and a large part of the equational properties satisfied by the algebra of poly-
morphisms. Section 6 contains the logspace reduction of CSP(D(A)) to CSP(A).
In Section 7 we discuss a few applications of our result and related open problems.

1 The main results

In general, fixed template CSPs can be modelled as relational structure homo-
morphism problems [18]. For detailed definitions of relational structures, homo-
morphisms and other notions used in this section, see Section 2.

Let A be a finite structure with signature R (the fixed template). Then the
constraint satisfaction problem for A is the following decision problem.

Constraint satisfaction problem for A.

CSP(A)

INSTANCE: A finite R-structure X.
QUESTION: Is there a homomorphism from X to A?

The dichotomy conjecture [18] can be stated as follows:

CSP dichotomy conjecture. Let A be a finite relational structure. Then
CSP(A) is solvable in polynomial time or NP-complete.

Every finite relational structure A has a unique core substructure A′ (see Sec-
tion 2.4 for the precise definition) such that CSP(A) and CSP(A′) are identical
problems, i.e., the “yes” and “no” instances are precisely the same. The algebraic
dichotomy conjecture [9] is the following:

Algebraic CSP dichotomy conjecture. Let A be a finite relational structure
that is a core. If the algebra of polymorphisms of A is Taylor, then CSP(A) is
solvable in polynomial time, otherwise CSP(A) is NP-complete.
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Indeed, perhaps the above conjecture should be called the algebraic tractability
conjecture since it is known that if the algebra of polymorphisms of a core A is
not Taylor, then CSP(A) is NP-complete [9].

Larose and Tesson [33] conjectured a similar characterization of finite rela-
tional structures with the corresponding CSP solvable in L and in NL. In the
same paper they also proved the hardness part of boths claims. Their conjecture
is widely discussed in the following slightly stronger form (equivalent modulo
reasonable complexity-theoretic assumptions; see the discussion in [25]).

Finer CSP complexity conjectures. Let A be a finite relational structure that
is a core. Then the following hold.

(i) CSP(A) is solvable in nondeterministic logspace, if and only if the algebra
of polymorphisms of A is congruence join-semidistributive.

(ii) CSP(A) is solvable in logspace, if and only if the algebra of polymorphisms
of A is congruence join-semidistributive and congruence n-permutable for
some n.

Feder and Vardi [18] proved that every fixed template CSP is polynomial time
equivalent to a digraph CSP. Thus the CSP dichotomy conjecture is equivalent to
its restriction to digraphs. In this paper we investigate a construction similar to
theirs. The main results of this paper are summarized in the following theorem.

Theorem 1.1. For every finite relational structure A there exists a finite di-
graph D(A) such that the following holds:

(i) CSP(A) and CSP(D(A)) are logspace equivalent.

(ii) A is a core if and only if D(A) is a core.

(iii) If Σ is a linear idempotent set of identities such that the algebra of polymor-
phisms of the oriented path •→ •← •→ • satisfies Σ and each identity
in Σ is either balanced or contains at most two variables, then

A |= Σ if and only if D(A) |= Σ.

Proof. Item (i) is Theorem 6.1, (ii) is Corollary 4.2 and (iii) is Theorem 5.1.

The construction of D(A) is described in Section 3, for a bound on the size of
D(A) see Remark 3. The condition on Σ in item (iii) is not very restrictive:
it includes almost all of the commonly encountered properties relevant to the
CSP. A number of these are listed in Corollary 5.2. Note that the list includes
the properties of being Taylor, congruence join-semidistributive and congruence
n-permutable (for n ≥ 3); hence we have the following corollary.

Corollary 1.2. The Algebraic CSP dichotomy conjecture and the Finer CSP
complexity conjectures are also equivalent to their restrictions to digraphs.
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2 Background and definitions

We approach fixed template constraint satisfaction problems from the “homomor-
phism problem” point of view. For background on the homomorphism approach
to CSPs, see [18], and for background on the algebraic approach to CSPs, see [9].

A relational signature R is a (in our case finite) set of relation symbols Ri,
each with an associated arity ki. A (finite) relational structure A over relational
signature R (called an R-structure) is a finite set A (the domain) together with
a relation Ri ⊆ Aki , for each relation symbol Ri of arity ki in R. A CSP template
is a fixed finite R-structure, for some signature R.

For simplicity we do not distinguish the relation with its associated relation
symbol. However, to avoid ambiguity, we sometimes write RA to indicate that R
is interpreted in A. We will often refer to the domain of a relational structure A
simply by A. When referring to a fixed relational structure, we may simply specify
it as A = (A;R1, R2, . . . , Rn). For technical reasons we require that signatures
are nonempty and that all the relations of a relational structure are nonempty.

2.1 Notation

For a positive integer n we denote the set {1, 2, . . . , n} by [n]. We write tuples
using boldface notation, e.g. a = (a1, a2, . . . , ak) ∈ Ak and when ranging over
tuples we use superscript notation, e.g. (r1, r2, . . . , rl) ∈ Rl ⊆ (Ak)l, where
ri = (ri1, r

i
2, . . . , r

i
k), for i = 1, . . . , l.

Let Ri ⊆ Aki be relations of arity ki, for i = 1, . . . , n. Let k =
∑n

i=1 ki and
li =

∑
j<i kj. We write R1 × · · · ×Rn to mean the k-ary relation

{(a1, . . . , ak) ∈ Ak | (ali+1, . . . , ali+ki) ∈ Ri for i = 1, . . . , n}.

An n-ary operation on a set A is simply a mapping f : An → A; the number
n is the arity of f . Let f be an n-ary operation on A and let k > 0. We write
f (k) to denote the n-ary operation obtained by applying f coordinatewise on Ak.
That is, we define the n-ary operation f (k) on Ak by

f (k)(a1, . . . , an) = (f(a1
1, . . . , a

n
1 ), . . . , f(a1

k, . . . , a
n
k)),

for a1, . . . , an ∈ Ak.
We will be particularly interested in so-called idempotent operations. An n-

ary operation f is said to be idempotent if it satisfies the equation f(x, x, . . . , x) =
x.

2.2 Homomorphisms, cores and polymorphisms

We begin with the notion of a relational structure homomorphism.

Definition 2.1. Let A and B be relational structures in the same signature R. A
homomorphism from A to B is a mapping ϕ from A to B such that for each k-ary
relation symbol R in R and each k-tuple a ∈ Ak, if a ∈ RA, then ϕ(k)(a) ∈ RB.

We write ϕ : A → B to mean that ϕ is a homomorphism from A to B, and
A→ B to mean that there exists a homomorphism from A to B.
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An isomorphism is a bijective homomorphism ϕ such that ϕ−1 is also a ho-
momorphism. A homomorphism A→ A is called an endomorphism. An isomor-
phism from A to A is an automorphism. It is an easy fact that if A is finite, then
every surjective endomorphism is an automorphism.

A finite relational structure A′ is a core if every endomorphism A′ → A′ is
surjective (and therefore an automorphism). For every A there exists a relational
structure A′ such that A → A′ and A′ → A and A′ is minimal with respect to
these properties; that structure A′ is called the core of A. The core of A is unique
(up to isomorphism) and CSP(A) and CSP(A′) are the same decision problems.
Equivalently, the core of A can be defined as a minimal induced substructure
that A retracts onto. (See [20] for details on cores for graphs, cores for relational
structures are a natural generalization.)

The notion of polymorphism is central in the so-called algebraic approach to
CSP. Polymorphisms are a natural generalization of endomorphisms to higher
arity operations.

Definition 2.2. Given an R-structure A, an n-ary polymorphism of A is an
n-ary operation f on A such that f preserves the relations of A. That is, if
a1, . . . , an ∈ R, for some k-ary relation R in R, then f (k)(a1, . . . , an) ∈ R.

Thus, an endomorphism is a unary polymorphism. Polymorphisms satisfying
certain identities has been used extensively in the algebraic study of CSPs.

2.3 Algebra

Given a finite relational structure A, let PolA denote the set of all polymorphisms
of A. The algebra of polymorphisms of A is simply the algebra with the same
universe whose operations are all polymorphisms of A. A subset B ⊆ A is a
subuniverse of A, denoted by B ≤ A, if it is a subuniverse of the algebra of
polymorphisms of A, i.e., it is closed under all f ∈ PolA.

An (operational) signature is a (possibly infinite) set of operation symbols
with arities assigned to them. By an identity we mean an expression u ≈ v where
u and v are terms in some signature. An identity u ≈ v is linear if both u and
v involve at most one occurrence of an operation symbol (e.g. f(x, y) ≈ g(x), or
h(x, y, x) ≈ x); and balanced if the sets of variables occuring in u and in v are
the same (e.g. f(x, x, y) ≈ g(y, x, x)).

A set of identities Σ is linear if it contains only linear identities; balanced if
all the identities in Σ are balanced; and idempotent if for each operation symbol
f appearing in an identity of Σ, the identity f(x, x, . . . , x) ≈ x is in Σ. 1 For
example, the identities p(y, x, x) ≈ y, p(x, x, y) ≈ y, p(x, x, x) ≈ x (defining the
so-called Maltsev operation) form a linear idempotent set of identities which is
not balanced.

The strong Maltsev condition, a notion usual in universal algebra, can be
defined in this context as a finite set of identities. A Maltsev condition is an
increasing chain of strong Maltsev conditions, ordered by syntactical consequence.
In all results from this paper, “set of identities” can be replaced with “Maltsev
condition”.

1We can relax this condition and require the identity f(x, x, . . . , x) ≈ x only to be a syntac-
tical consequence of identities in Σ.
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Let Σ be a set of identities in a signature with operation symbols F = {fλ |
λ ∈ Λ}. We say that a relational structure A satisfies Σ (and write A |= Σ), if
for every λ ∈ Λ there is a polymorphism fA

λ ∈ PolA such that the identities in Σ
hold universally in A when for each λ ∈ Λ the symbol fλ is interpreted as fA

λ .
For example, a weak near-unanimity (WNU ) is an n-ary (n ≥ 2) idempotent

operation ω satisfying the identities

ω(x, . . . , x, y) = ω(x, . . . , x, y, x) = · · · = ω(y, x, . . . , x).

Thus, having an n-ary weak near-unanimity is definable by a linear balanced
idempotent set of identities. Existence of WNU polymorphisms influences CSP(A)
to a great extent. The following characterization was discovered in [34]: a finite
algebra (or relational structure) is called

• Taylor, if it has a weak near-unanimity operation of some arity, and

• congruence meet-semidistributive if it has WNU operations of all but finitely
many arities.

The Algebraic CSP dichotomy conjecture asserts that being Taylor is what dis-
tinguishes tractable (core) relational structures from the NP-complete ones, and
a similar split is known for congruence meet-semidistributivity and solvability by
local consistency checking (the so-called bounded width):

Bounded width theorem. [3] Let A be a finite relational structure that is a
core. Then CSP(A) is solvable by local consistency checking, if and only if the
algebra of polymorphisms of A is congruence meet-semidistributive.

The properties of congruence join-semidistributivity as well as congruence n-
permutability, which appear in the finer CSP complexity conjectures, are also
definable by linear idempotent sets of identities, albeit more complicated ones;
we refer the reader to [23]. We will introduce more Maltsev conditions and their
connection to the CSP in Section 5.

2.4 Primitive positive definability

A first order formula is called primitive positive if it is an existential conjunction
of atomic formulæ. Since we only refer to relational signatures, a primitive pos-
itive formula is simply an existential conjunct of formulæ of the form x = y or
(x1, x2, . . . , xk) ∈ R, where R is a relation symbol of arity k.

For example, if we have a binary relation symbol E in our signature, then the
formula

ψ(x, y) = (∃z)((x, z) ∈ E ∧ (z, y) ∈ E)

pp-defines a binary relation in which elements a, b are related if there is a directed
path of length 2 from a to b in E.

Definition 2.3. A relational structure B is primitive positive definable in A
(or A pp-defines B) if

(i) the set B is a subset of A and is definable by a primitive positive formula
interpreted in A, and
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(ii) each relation R in the signature of B is definable on the set B by a primitive
positive formula interpreted in A.

The following result relates the above definition to the complexity of CSPs.
The connection is originally due to Jeavons, Cohen and Gyssens [27], though
the logspace form stated and used here can be found in Larose and Tesson [33,
Theorem 2.1].

Lemma 2.4. Let A be a finite relational structure that pp-defines B. Then,
CSP(B) is logspace reducible to CSP(A).

It so happens that, if A pp-defines B, then B inherits the polymorphisms of
A. See [9] for a detailed explanation.

Lemma 2.5. [9] Let A be a finite relational structure that pp-defines B. If ϕ is
a polymorphism of A, then its restriction to B is a polymorphism of B.

In particular, as an easy consequence of this lemma, if A pp-defines B and A
satisfies a set of identities Σ, then B also satisfies Σ.

In the case that A pp-defines B and B pp-defines A, we say that A and B are
pp-equivalent. In this case, CSP(A) and CSP(B) are essentially the same problems
(they are logspace equivalent) and A and B have the same polymorphisms.

Example 2.6. Let A = (A;R1, . . . , Rn), where each Ri is ki-ary, and define
R = R1 × · · · ×Rn. Then the structure A′ = (A;R) is pp-equivalent to A.

Indeed, let k =
∑n

i=1 ki be the arity of R and li =
∑

j<i kj for i = 1, . . . , n.
The relation R is pp-definable from R1, . . . , Rn using the formula

Ψ(x1, . . . , xk) =
n∧

i=1

(xli+1, . . . , xli+ki) ∈ Ri.

The relation R1 can be defined from R by the primitive positive formula

Ψ(x1, . . . , xk1) = (∃yk1+1, . . . ,∃yk)((x1, . . . , xk1 , yk1+1, . . . , yk) ∈ R)

and the remaining Ri’s can be defined similarly.

Example 2.6 shows that when proving Theorem 1.1 we can restrict ourselves
to relational structures with a single relation.

2.5 Digraphs

A directed graph, or digraph, is a relational structure G with a single binary
relation symbol E as its signature. We typically call the members of G and EG

vertices and edges, respectively. We usually write a → b to mean (a, b) ∈ EG, if
there is no ambiguity.

A special case of relational structure homomorphism (see Definition 2.1), is
that of digraph homomorphism. That is, given digraphs G and H, a function
ϕ : G→ H is a homomorphism if (ϕ(a), ϕ(b)) ∈ EH whenever (a, b) ∈ EG.
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Definition 2.7. For i = 1, . . . , n, let Gi = (Gi, Ei) be digraphs. The direct
product of G1, . . . ,Gn, denoted by

∏n
i=1 Gi, is the digraph with vertices

∏n
i=1Gi

(the cartesian product of the sets Gi) and edge relation

{(a,b) ∈ (
n∏

i=1

Gi)
2 | (ai, bi) ∈ Ei for i = 1 . . . , n}.

If G1 = · · · = Gn = G then we write Gn to mean
∏n

i=1 Gi.

With the above definition in mind, an n-ary polymorphism on a digraph G is
simply a digraph homomorphism from Gn to G.

Definition 2.8. A digraph P is an oriented path if it consists of a sequence of
vertices v0, v1, . . . , vk such that precisely one of (vi−1, vi), (vi, vi−1) is an edge, for
each i = 1, . . . , k. We require oriented paths to have a direction; we denote the
initial vertex v0 and the terminal vertex vk by ιP and τP, respectively.

Given a digraph G and an oriented path P, we write a
P−→ b to mean that

we can walk in G from a following P to b, i.e., there exists a homomorphism
ϕ : P→ G such that ϕ(ιP) = a and ϕ(τP) = b. Note that for every P there exists

a primitive positive formula ψ(x, y) such that a
P−→ b if and only if ψ(a, b) is true

in G. If there exists an oriented path P such that a
P−→ b, we say that a and b are

connected. If vertices a and b are connected, then the distance from a to b is the
number of edges in the shortest oriented path connecting them. Connectedness
forms an equivalence relation on G; its classes are called the connected components
of G. We say that a digraph is connected if it consists of a single connected
component.

A connected digraph is balanced if it admits a level function lvl : G→ N∪{0},
where lvl(b) = lvl(a) + 1 whenever (a, b) is an edge, and the minimum level is 0.
The maximum level is called the height of the digraph. Oriented paths are natural
examples of balanced digraphs.

By a zigzag we mean the oriented path •→ •← •→ • and a single edge is
the path •→ •. For oriented paths P and P′, the concatenation of P and P′,
denoted by Pu P′, is the oriented path obtained by identifying τP with ιP′.

Our digraph reduction as described in Section 3 relies on oriented paths ob-
tained by concatenation of zigzags and single edges. For example, the path in
Figure 1 is a concatenation of a single edge followed by two zigzags and two more
single edges (for clarity, we organize its vertices into levels).

Figure 1: A minimal oriented path
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3 The reduction to digraphs

In this section we take an arbitrary finite relational structure A and construct a
balanced digraph D(A) such that CSP(A) and CSP(D(A)) are logspace equiva-
lent.

Let A = (A;R1, . . . , Rn) be a finite relational structure, where Ri is of arity ki,
for i = 1, . . . , n. Let k =

∑n
i=1 ki and let R be the k-ary relation R1 × · · · × Rn.

For I ⊆ [k] define QI,l to be a single edge if l ∈ I, and a zigzag if l ∈ [k] \ I.
We define the oriented path QI (of height k + 2) by

QI = •→ •u QI,1 u QI,2 u . . . u QI,k u •→ •

Instead of Q∅,Q∅,l we write just Q,Ql, respectively. For example, the oriented
path in Figure 1 is QI where k = 3 and I = {3}. We will need the following
observation.

Observation. Let I,J ⊆ [k]. A homomorphism ϕ : QI → QJ exists, if and
only if I ⊆ J . In particular Q→ QI for all I ⊆ [k]. Moreover, if ϕ exists, it is
unique and surjective.

We are now ready to define the digraph D(A).

Definition 3.1. For every e = (a, r) ∈ A×R we define Pe to be the path Q{i | a=ri}.
The digraph D(A) is obtained from the digraph (A∪R;A×R) by replacing every
e = (a, r) ∈ A × R by the oriented path Pe (identifying ιPe with a and τPe with
r).

(We often write Pe,l to mean QI,l where Pe = QI .)

Example 3.2. Consider the relational structure A = ({0, 1};R) where R =
{(0, 1), (1, 0)}, i.e., A is the directed 2-cycle. Figure 2 is a visual representation
of D(A).

0

(0,1)

1

(1,0)

Figure 2: D(A) where A is the directed 2-cycle

Remark. The number of vertices in D(A) is (3k + 1)|R||A|+ (1− 2k)|R|+ |A|
and the number of edges is (3k+ 2)|R||A|− 2k|R|. The construction of D(A) can
be performed in logspace (under any reasonable encoding).
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Proof. The vertices of D(A) consist of the elements of A ∪ R, along with ver-
tices from the connecting paths. The number of vertices lying strictly within
the connecting paths would be (3k + 1)|R||A| if every Pe was Q. We need to
deduct 2 vertices whenever there is a single edge instead of a zigzag and there are∑

(a,r)∈A×R |{i | a = ri}| = k|R| such instances. The number of edges is counted
very similarly.

Remark. Note that if we apply this construction to itself (that is, D(D(A)))
then we obtain balanced digraphs of height 4. When applied to digraphs, the D
construction is identical to that given by Feder and Vardi [18, Theorem 13].

The following lemma, together with Lemma 2.4, shows that CSP(A) reduces
to CSP(D(A)) in logspace.

Lemma 3.3. A is pp-definable from D(A).

Proof. Example 2.6 demonstrates that A is pp-equivalent to (A;R). We now
show that D(A) pp-defines (A;R), from which it follows that D(A) pp-defines A.

Note that Q → Pe for all e ∈ A × R, and Q{i} → P(a,r) if and only if a = ri.

The set A is pp-definable in D(A) by A = {x | (∃y)(x
Q−→ y)} and the relation R

can be defined as the set {(x1, . . . , xk) | (∃y)(xi
Q{i}−→ y for all i ∈ [k])}, which is

also a primitive positive definition.

It is not, in general, possible to pp-define D(A) from A.1 Nonetheless the
following lemma is true.

Lemma 3.4. CSP(D(A)) reduces in logspace to CSP(A).

The proof of Lemma 3.4 is rather technical, though broadly follows the poly-
nomial process described in the proof of [18, Theorem 13] (as mentioned, our
construction coincides with theirs in the case of digraphs). Details of the argu-
ment are provided in Section 6.

4 Preserving cores

In what follows, let A be a fixed finite relational structure. Without loss of
generality we may assume that A = (A;R), where R is a k-ary relation (see
Example 2.6).

Lemma 4.1. The endomorphisms of A and D(A) are in one-to-one correspon-
dence.

Proof. We first show that every endomorphism ϕ of A can be extended to an
endomorphism ϕ of D(A). Let ϕ(a) = ϕ(a) for a ∈ A, and let ϕ(r) = ϕ(k)(r) for
r ∈ R. Note that ϕ(k)(r) ∈ R since ϕ is an endomorphism of A.

Let c ∈ D(A) \ (A ∪ R) and let e = (a, r) be such that c ∈ Pe. Define
e′ = (ϕ(a), ϕ(k)(r)). If Pe,l is a single edge for some l ∈ [k], then rl = a and

1Using the definition of pp-definability as described in this paper, this is true for cardinality
reasons. However, a result of Kazda [28] can be used to show that the statement remains true
even for more general definitions of pp-definability.
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ϕ(rl) = ϕ(a), and therefore Pe′,l is a single edge. Thus there exists a (unique)
homomorphism Pe → Pe′ . Define ϕ(c) to be the image of c under this homomor-
phism, completing the definition of ϕ.

We now show that every endomorphism Φ of D(A) is of the form ϕ, for some
endomorphism ϕ of A. Let Φ be an endomorphism of D(A). Let ϕ be the
restriction of Φ to A. By Lemma 2.5 and Lemma 3.3, ϕ is an endomorphism of
A. For every e = (a, r), the endomorphism Φ maps Pe onto P(ϕ(a),Φ(r)). If we set
a = rl, then Pe,l is a single edge. In this case it follows that P(ϕ(a),Φ(r)),l is also
a single edge. Thus, by the construction of D(A) the lth coordinate of Φ(r) is
ϕ(a) = ϕ(rl). This proves that the restriction of Φ to R is ϕ(k) and therefore
Φ = ϕ.

The following corollary is Theorem 1.1 (ii).

Corollary 4.2. A is a core if and only if D(A) is a core.

Proof. To prove the corollary we need to show that an endomorphism ϕ of A is
surjective if and only if ϕ (from Lemma 4.1) is surjective. Clearly, if ϕ is surjective
then so is ϕ.

Assume ϕ is surjective (and therefore an automorphism of A). It follows
that ϕ(k) is surjective on R and therefore ϕ is a bijection when restricted to the
set A ∪ R. Let a ∈ A and r ∈ R. By definition we know that ϕ maps P(a,r)

homomorphically onto P(ϕ(a),ϕ(k)(r)). Since ϕ has an inverse ϕ−1, it follows that

ϕ−1 maps P(ϕ(a),ϕ(k)(r)) homomorphically onto P(a,r). Thus P(a,r) and P(ϕ(a),ϕ(k)(r))

are isomorphic, completing the proof.

Using similar arguments it is not hard to prove a bit more, namely that the
monoids of endomorphisms of A andD(A) are isomorphic. Since endormorphisms
are just the unary part of the algebra of polymorphisms, this section can be viewed
as a “baby case” to the more involved proof in the next section.

5 Preserving Maltsev conditions

Given a finite relational structure A, we are interested in the following question:
How similar are the algebras of polymorphisms of A and D(A)? More precisely,
which equational properties (or Maltsev conditions) do they share? In this section
we provide a quite broad range of Maltsev conditions that hold equivalently in
A and D(A). Indeed, to date, these include all Maltsev conditions that are
conjectured to divide differing levels of tractability and hardness, as well as all
the main tractable algorithmic classes (e.g. few subpowers and bounded width).

5.1 The result

We start by an overview and statement of the main result of this section. Since
A is pp-definable from the digraph D(A) (see Lemma 3.3), it follows that A and
R are subuniverses of D(A) and for any f ∈ PolD(A), the restriction f |A is a
polymorphism of A. Consequently, for any set of identities Σ,

D(A) |= Σ implies that A |= Σ.
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The theorem below, which is a restatement of Theorem 1.1 (iii), provides a partial
converse of the above implication.

Theorem 5.1. Let A be a finite relational structure. Let Σ be a linear idempotent
set of identities such that the algebra of polymorphisms of the zigzag satisfies Σ
and each identity in Σ is either balanced or contains at most two variables. Then

D(A) |= Σ if and only if A |= Σ.

The following corollary lists some popular properties that can be expressed
as sets of identities satisfying the above assumptions. Indeed, they include many
commonly encountered Maltsev conditions.

Corollary 5.2. Let A be a finite relational structure. Then each of the following
hold equivalently on (the polymorphism algebra of ) A and D(A).

(1) Being Taylor or equivalently having a weak near-unanimity (WNU ) opera-
tion [34] or equivalently a cyclic operation [2] (conjectured to be equivalent
to being in P if A is a core [9]);

(2) Congruence join-semidistributivity (SD(∨)) (conjectured to be equivalent to
NL if A is a core [33]);

(3) (For n ≥ 3) congruence n-permutability (CnP) (together with (2) conjec-
tured to be equivalent to L if A is a core [33]).

(4) Congruence meet-semidistributivity (SD(∧)) (equiv. to bounded width [3]);

(5) (For k ≥ 4) k-ary edge operation (equivalent to few subpowers [5], [24]);

(6) k-ary near-unanimity operation (equivalent to strict width [18]);

(7) Totally symmetric idempotent (TSI ) operations of all arities (equivalent to
width 1 [16], [18]);

(8) Hobby-McKenzie operations (equivalent to the corresponding variety satis-
fying a non-trivial congruence lattice identity);

(9) Congruence modularity (CM );

(10) Congruence distributivity (CD);

Items (2) and (3) above, together with Theorem 1.1 (i) and (ii), show that the
Finer CSP complexity conjectures need only be established in the case of digraphs
to obtain a resolution in the general case.

Note that the above list includes all six conditions for omitting types in the
sense of Tame Congruence Theory [23]. Figure 3, taken from [25], presents a
diagram of what might be called the “universal algebraic geography of CSPs”.

We will prove Theorem 5.1 and Corollary 5.2 in subsection 5.3.
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Taylor
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Figure 3: The universal algebraic geography of tractable CSPs.

5.2 Polymorphisms of the zigzag

In the following, let Z be a zigzag with vertices 00, 01, 10 and 11 (i.e., the oriented
path 00→ 01← 10→ 11). Let us denote by ≤Z the linear order on Z given by
00 <Z 01 <Z 10 <Z 11.

Note that the subset {00, 10} is closed under all polymorphisms of Z (as it is
pp-definable using the formula (∃y)(x → y), see Lemma 2.5). The same holds
for {01, 11}. We will use this fact later in our proof.

The digraph Z satisfies most of the important Maltsev conditions (an excep-
tion being congruence 2-permutability, i.e., having a Maltsev polymorphism). We
need the following.

Lemma 5.3. The following holds.

(i) Z has a majority polymorphism,

(ii) Z satisfies any balanced set of identities,

(iii) Z is congruence 3-permutable.

Proof. Let x∧y and x∨y denote the binary operations of minimum and maximum
with respect to ≤Z, respectively. That is, x ∧ y is the vertex from {x, y} closer
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to 00 and x ∨ y the vertex closer to 11. It can be easily seen that ∧,∨ are
polymorphisms of Z and form a distributive lattice. Note that it follows that
Z satisfies any set of identities which holds in the variety of distributive lattices
(equivalently, in the two-element lattice).

In particular, to prove (i), note that the ternary operation defined by

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

(the median) is a majority polymorphism. To prove (ii), let Σ be a balanced set
of identities. For every operation symbol f (say k-ary) occurring in Σ, we define
fZ(x1, . . . , xk) =

∧k
i=1 xi. It is easy to check that fZ is a polymorphism and that

such a construction satisfies any balanced identity.
To prove (iii), we directly construct the ternary polymorphisms p1 and p2

witnessing 3-permutability:

p1(x, y, z) =





01 if y 6= z and 01 ∈ {x, y, z},
10 if y 6= z and 10 ∈ {x, y, z} and 01 /∈ {x, y, z},
x otherwise,

p2(x, y, z) =





01 if x 6= y and 01 ∈ {x, y, z},
10 if x 6= y and 10 ∈ {x, y, z} and 01 /∈ {x, y, z},
z if x = y.

x otherwise

The identities p1(x, y, y) ≈ x and p2(x, x, y) ≈ y follow directly from the con-
struction. To verify p1(x, x, y) ≈ p2(x, y, y) we can assume that x 6= y. If 01 or
10 are in {x, y}, then p1 and p2 agree (the result is 01 if 01 ∈ {x, y} and 10 else).
If not, then p1(x, x, y) = p2(x, y, y) = x.

Finally, we prove that p1 is a polymorphism of Z; a similar argument works
for p2. If we have triples a,b ∈ Z3 such that ai → bi, for i = 1, 2, 3, then
{a1, a2, a3} ⊆ {00, 10} and {b1, b2, b3} ⊆ {01, 11}. Thus also p1(a) ∈ {00, 10}
and p1(b) ∈ {01, 11}. If p1(a) = 10, then p1(a) → p1(b) follows immediately. If
p1(a) = 00, then a = (00, 10, 10) or a = (00, 00, 00). In both cases b1 = 01 which
gives p1(b) = 01 and p1(a)→ p1(b).

5.3 The proof

In this subsection we prove Theorem 5.1 and Corollary 5.2. Fix a finite relational
structure; without loss of generality we can assume that A = (A;R), where R is
a k-ary relation (see Example 2.6).

First we need to gather a few facts about connected components of powers of
D(A). This is because when constructing an m-ary polymorphism, one can define
it independently on different connected components of D(A)m without violating
the polymorphism condition.

We start with the diagonal component: since D(A) is connected, it follows
that for every m > 0 the diagonal (i.e., the set {(c, c, . . . , c) | c ∈ D(A)}) is
connected in D(A)m. We denote by ∆m the connected component of D(A)m

containing the diagonal.

Lemma 5.4. For every m > 0, both Am ⊆ ∆m and Rm ⊆ ∆m.

23



Proof. Fix an arbitrary element a ∈ A. Let (r1, . . . , rm) ∈ Rm and for every i ∈
[m] let ϕi : Q → P(a,ri). The homomorphism defined by x 7→ (ϕ1(x), . . . , ϕm(x))

witnesses (a, . . . , a)
Q−→ (r1, . . . , rm) in D(A)m. This proves that Rm ⊆ ∆m; a

similar argument gives Am ⊆ ∆m.

The next lemma shows that there is only one non-trivial connected component
of D(A)m that contains tuples (whose entries are) on the same level in D(A);
namely ∆m. All other such components are singleton.

Lemma 5.5. Let m > 0 and let Γ be a connected component of D(A)m containing
an element c such that lvl(c1) = · · · = lvl(cm). Then every element d ∈ Γ is of
the form lvl(d1) = · · · = lvl(dm) and the following hold.

(i) If c → d is an edge in Γ such that c /∈ Am and d /∈ Rm, then there exist
e1, . . . , em ∈ A×R and l ∈ [k] such that c,d ∈∏m

i=1 Pei,l.

(ii) Either Γ = ∆m or Γ is one-element.

Proof. First observe that if an element d is connected in D(A)m to an element c

with lvl(c1) = · · · = lvl(cm), then there is an oriented path Q′ such that c
Q′
→ d

from which it follows that lvl(d1) = · · · = lvl(dm). To prove (i), let c → d be
an edge in Γ such that c /∈ Am and d /∈ Rm. For i = 1, . . . ,m let ei be such
that ci ∈ Pei and let l = lvl(c1). The claim now follows immediately from the
construction of D(A).

It remains to prove (ii). If |Γ| > 1, then there is an edge c → d in Γ. If
c ∈ Am or d ∈ Rm, then the claim follows from Lemma 5.4. Otherwise, from (i),
there exists l ∈ [k] and ei = (ai, r

i) such that c,d ∈ ∏m
i=1 Pei,l. For every

i ∈ [m] we can walk from ci to ιPei,l following the path •→ •← •; and so c and
(ιPe1,l, . . . , ιPem,l) are connected. For every i ∈ [m] there exists a homomorphism
ϕi : Q → Pei such that ϕi(ιQ) = ai and ϕi(ιQl) = ιPei,l. The homomorphism
Q → D(A)m defined by x 7→ (ϕ1(x), . . . , ϕm(x)) shows that (a1, . . . , am) and
(ιPe1,l, . . . , ιPem,l) are connected. By transitivity, (a1, . . . , am) is connected to c
and therefore (a1, . . . , am) ∈ Γ. Using (i) we obtain Γ = ∆m.

In order to deal with connected components that contain tuples of varying
levels, we need to define two linear orders v,v? on D(A). These linear orders
will then be used to choose elements from input tuples of the polymorphisms
under construction in a “uniform” way.

Fix an arbitrary linear order � on A. It induces lexicographic orders on
relations on A. We will use �LEX on R, A × R and also on R × A. (Note the
difference!) We define the linear order v on D(A) by putting x @ y if either of
the following five conditions holds:

(1) x, y ∈ A and x ≺ y, or

(2) x, y ∈ R and x ≺LEX y, or

(3) lvl(x) < lvl(y),

or lvl(x) = lvl(y), x, y /∈ A ∪R, say x ∈ P(a,r), y ∈ P(b,s), and

(4) (a, r) = (b, s) and x is closer to ιP(a,r) than y, or
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(5) (a, r) ≺LEX (b, s).

We also define the linear order v?, which will serve as a “dual” to v in some
sense. The definition is almost identical, we put x @? y if one of (1), (2), (3), (4)
or (5?) holds, where

(5?) (r, a) ≺LEX (s, b).

The last ingredient is the following lemma; v and v? were taylored to satisfy it.

Lemma 5.6. Let C and D be subsets of D(A) such that

• for every x ∈ C there exists y′ ∈ D such that x→ y′, and

• for every y ∈ D there exists x′ ∈ C such that x′→ y.

Then the following is true.

(i) If D * R and c and d are the v-minimal elements of C and D, respectively,
then c→ d.

(ii) If C * A and c and d are the v?-maximal elements of C and D, respectively,
then c→ d.

Proof. We will prove item (ii); the proof of (i) is similar. Let c′, d′ be such that
c→ d′ and c′ → d. There exist (a, r), (b, s) ∈ A × R such that c, d′ ∈ P(a,r) and
c′, d ∈ P(b,s). Suppose for contradiction that c 6→ d. In particular, c 6= c′ and
d 6= d′. Note that the assumptions of c, c′, d, d′ and item (3) of the definition of v?
give lvl(c′) + 1 = lvl(d) ≥ lvl(d′) = lvl(c) + 1 ≥ lvl(c′) + 1, so that lvl(c) = lvl(c′)
and lvl(d) = lvl(d′). So, the reason for d′ @? d must be one of items (2), (4)
or (5?).

If it is (2), then d′ = r and d = s with r ≺LEX s. Therefore (r, a) ≺LEX (s, b)
and (5?) gives us c @? c′, a contradiction with the maximality of c. If it is (4),
then (a, r) = (b, s) and c → d′ ← c′ → d form a zigzag. By (4) we again get
c @? c′. In case the reason for d′ @? d is (5?), the same item gives c @? c′. (Here
we need the assumption that C * A, otherwise we could have c = a, c′ = b, b ≺ a
and c′ @? c by (1) even though (r, a) ≺LEX (s, b).)

Proof of Theorem 5.1

Let Σ be a set of identities in operation symbols {fλ : λ ∈ Λ} satisfying the
assumptions. Let {fA

λ | λ ∈ Λ} and {fZ
λ | λ ∈ Λ} be interpretations of the

operation symbols witnessing A |= Σ and Z |= Σ, respectively.

We will now define polymorphisms {fD(A)
λ | λ ∈ Λ} witnessing that D(A) |= Σ.

Fix λ ∈ Λ and assume that fλ ism-ary. We split the definition of f
D(A)
λ into several

cases and subcases. Let c ∈ D(A)m be an input tuple.

Case 1. c ∈ Am ∪Rm.

1a If c ∈ Am, we define f
D(A)
λ (c) = fA

λ (c).

1b If c ∈ Rm, we define f
D(A)
λ (c) = (fA

λ )(k)(c).

Case 2. c ∈ ∆m \ (Am ∪Rm).
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Let ci ∈ Pei and define e = (fA
λ )(k+1)(e1, . . . , em). Let l ∈ [k] be minimal such

that ci ∈ Pei,l for all i ∈ [m]. (Its existence is guaranteed by Lemma 5.5 (i).)

2a If Pe,l is a single edge, then we define f
D(A)
λ (c) to be the vertex from Pe,l

having the same level as all the ci’s.

If Pe,l is a zigzag, then at least one of the Pei,l’s is a zigzag as well. (This follows
from the construction of D(A) and the fact that fA

λ preserves R.) For every
i ∈ [m] such that Pei,l is a zigzag let Φi : Pei,l → Z be the (unique) isomorphism.
Let Φ denote the isomorphism from Pe,l to Z.

2b If all of the Pei,l’s are zigzags, then the value of f
D(A)
λ is defined as follows:

f
D(A)
λ (c) = Φ−1(fZ

λ (Φ1(c1), . . . ,Φm(cm))).

2c Otherwise, we define f
D(A)
λ (c) to be the v-minimal element from the set

{Φ−1(Φi(ci)) | Pei,l is a zigzag}.

(Equivalently, f
D(A)
λ (c) = Φ−1(z), where z is the ≤Z-minimal element from the

set {(Φi(ci) | Pei,l is a zigzag}.)
Case 3. c /∈ ∆m.

3a If |{lvl(ci) | i ∈ [m]}| = 1 and the ci’s lie on precisely two paths (say,
{c1, . . . , cm} ⊆ Pe ∪ Pe′ with e ≺LEX e′, the lexicographic order of A × R), then
we define the mapping Ψ : {c1, . . . , cm} → {00, 10} as follows:

Ψ(ci) =

{
00 if ci ∈ Pe,
10 if ci ∈ Pe′ .

We define f
D(A)
λ (c) to be the v-minimal element from the set

{ci : Ψ(ci) = fZ
λ (Ψ(c1), . . . ,Ψ(cm))}.

3b If |{lvl(ci) | i ∈ [m]}| = 2 (say, lvl(ci) ∈ {l, l′} for all i ∈ [m] and l < l′), then
we define the mapping Θ : {c1, . . . , cm} → {00, 10} as follows:

Θ(ci) =

{
00 if lvl(ci) = l

10 if lvl(ci) = l′.

We set z = fZ
λ (Θ(c1), . . . ,Θ(cm)) and C ′ = {ci : Θ(ci) = z} and define

f
D(A)
λ (c) =

{
the v-minimal element from C ′ if z = 00

the v?-maximal element from C ′ if z = 10.

3c In all other cases we define f
D(A)
λ (c) to be the v-minimal element from the

set {c1, . . . , cm}.
While the construction is a bit technical, the ideas behind it are not so com-

plicated. Case 1 gives us no choice. In Case 2 we use fA to determine on which
path Pe should the result lie, and we are left with a choice of at most two possible
elements (when Pe,l is a zigzag). In Case 3 we cannot use fA anymore. Instead,
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we choose the result as a minimal element from (a subset of) the input elements
under a suitable linear order v. This choice typically does not depend on order
or repetition of the input elements, which allows us to satisfy balanced identities
“for free”. The trickiest part is to deal with connected components which can
contain tuples with just two distinct elements, as these can play a role in some
non-balanced identity (in two variables) which we need to satisfy. We need to
employ fZ to choose from two possibilities: a result which is the right element
(in subcase 2c), from the right path (in 3a) or from the right level (in 3b). We
then use v to choose the result from the “good” elements (and as a technical
nuisance, to maintain the polymorphism property, in 3b we sometimes need to
use v?-maximal elements instead).

We need to verify that the operations we constructed are polymorphisms and
that they satisfy all identities from Σ. We divide the proof into three claims.

Claim 5.7. For every λ ∈ Λ, f
D(A)
λ is a polymorphism of D(A).

Proof. Let c→ d be an edge in D(A)m. Note that c ∈ ∆m if and only if d ∈ ∆m.
The tuple c cannot fall under subcase 1b or under 3a, because these cases both
prevent an outgoing edge from c (see Lemma 5.5 (ii) for why this is true for 3a).

We first consider the situation where c falls under subcase 1a of the definition.
Then d falls under case 2 and, moreover, di = ιPei,1 for all i ∈ [m]. It is not hard

to verify that f
D(A)
λ (d) = ιPe,1. (In subcase 2b we need the fact that fZ

λ is idem-

potent.) Therefore f
D(A)
λ (c) = ιPe → ιPe,1 = f

D(A)
λ (d) and the polymorphism

condition holds. The argument is similar when d falls under subcase 1b (and so
c under case 2).

Consider now that c falls under case 2. Then d falls either under subcase 1b,
which was handled in the above paragraph, or also under case 2. The elements
e1, . . . , em and e are the same for both c and d. By Lemma 5.5 (i), there exists
l ∈ [k] such that ci, di ∈ Pei,l for all i ∈ [m].

If the value of l is also the same for both c and d, then f
D(A)
λ (c)→ f

D(A)
λ (d)

follows easily; in subcase 2a trivially, in 2b from the fact that fZ
λ is a polymorphism

of Z and in 2c from Lemma 5.6.
It may be the case that this l is not minimal for the tuple c, that is, that

ci ∈ Pei,l−1 ∩ Pei,l for all i ∈ [m]. But then ci = τPei,l−1 = ιPei,l and thus

f
D(A)
λ (c) = ιPei,l (again, using idempotency of fZ

λ in subcase 2b). Knowing this
allows for the same argument as in the above paragraph.

If c falls under one of the subcases 3b or 3c, then d falls under the same
subcase. In subcase 3c we apply 5.6 (i) with {c1, . . . , cm} and {d1, . . . , dm} in the
roles of C and D, respectively. In subcase 3b our construction “chooses” either
the lower or the higher level, and it is easy to see that this choice (i.e., the element
z) is the same for both c and d. We then apply Lemma 5.6 (i) or (ii) (depending
on z, note that the assumptions are satisfied) with C ′ = {ci : Θ(ci) = z} and
D′ = {di : Θ(di) = z} in the role of C and D, respectively. In both cases we get

f
D(A)
λ (c)→ f

D(A)
λ (d).

Claim 5.8. The f
D(A)
λ ’s satisfy every balanced identity from Σ.

Proof. Let fλ(u) ≈ fµ(v) ∈ Σ be a balanced identity in s distinct variables
{x1, . . . , xs}. Let E : {x1, . . . , xs} → D(A) be some evaluation of the variables.
Let uE and vE denote the corresponding evaluation of these tuples.
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Note that both f
D(A)
λ (uE) and f

D(A)
µ (vE) fall under the same subcase of the

definition. The subcase to be applied depends only on the set of elements occuring
in the input tuple, except for case two, where the choice of e matters as well.
However, since the identity fλ(u) ≈ fµ(v) holds in A, this e is the same for

both uE and vE . Therefore, to verify that f
D(A)
λ (uE) = f

D(A)
µ (vE), it is enough to

consider the individual subcases separately.
In case 1 it follows immediately from the fact that the identity holds in A.

In case 2 it is easily seen that both f
D(A)
λ (uE) and f

D(A)
µ (vE) have the same level,

and since the identity holds in A, they also lie on the same path Pe,l. To see that
these two elements are equal, note that in subcase 2a it is trivial, in 2b it follows
directly from the fact that the identity holds in Z, and in 2c we use the fact that
the identity is balanced: they are both the v-minimal element of the same set.

Similar arguments can be used in case 3. In 3a we choose one of the paths

Pe, Pe′ ; the choice is the same because fλ(u) ≈ fµ(v) holds in Z. Both f
D(A)
λ (uE)

and f
D(A)
µ (vE) then evaluate to the same element, namely the v-minimal ele-

ment from {E(x1), . . . , E(xs)} intersected with the chosen path. In 3b the cho-
sen level is the same for both of them (since the identity holds in Z) and they
are both the v-minimal, or v?-maximal, element of the set of elements from
{E(x1), . . . , E(xs)} lying on that level. In 3c both are the v-minimal element of
the same set {E(x1), . . . , E(xs)}.

Claim 5.9. The f
D(A)
λ ’s satisfy every identity from Σ in at most two variables.

Proof. Balanced identities fall under the scope of the previous claim. Since Σ
is idempotent, we may without loss of generality consider only identities of the
form fλ(u) ≈ x, where u ∈ {x, y}m. Suppose that x and y evaluate to c and d in
D(A), respectively, and let c ∈ {c, d}n be the corresponding evaluation of u. We

want to prove that f
D(A)
λ (c) = c.

The tuple c cannot fall into subcase 3c of the definition of f
D(A)
λ . If it falls

into case 1, the equality follows from the fact that the identity holds in A, while
in subcases 3a and 3b we use the fact that it holds in Z. (The linear orders v,v?
do not matter, since we only choose elements from singleton sets.)

In case 2 it is easily seen that f
D(A)
λ (c) lies on the same path Pe,l as c (using

that the identity holds in A) as well as on the same level of this path. In 2a it

is trivial that f
D(A)
λ (c) = c while in 2b it follows from the fact that the identity

holds in Z. If c falls under subcase 2c, then c ∈ Pe,l, which is a zigzag, and

d ∈ Pe′,l, which must be a single edge. Therefore f
D(A)
λ (c) is defined to be the

v-minimal element from the singleton set {c}.

Proof of Corollary 5.2

All items are expressible by linear idempotent sets of identities. In all items
except (7) they are in at most two variables, in item (7) the defining identities
are balanced. It remains to check that all these conditions are satisfied in the
zigzag, which follows from Lemma 5.3 (iii) for item (3), Lemma 5.3 (ii) for item
(7) and Lemma 5.3 (i) for all other items.
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6 The logspace reduction

In this section, we give the proof of Lemma 3.4, by showing that CSP(D(A))
reduces in logspace to CSP(A). A sketch of a polymomial time reduction is given
in the proof of [18, Theorem 13]; technically, that argument is for the special
case where A is itself already a digraph, but the arguments can be broadened
to cover our case. To perform this process in logspace is rather technical, with
many of the difficulties lying in details that are omitted in the polymomial time
description in the proof of [18, Theorem 13]. We wish to thank Barnaby Martin
for encouraging us to pursue Lemma 3.4.

The following theorem is an immediate consequence of Lemmata 3.3 and 3.4.
As this improves the oft-mentioned polynomial time equivalence of general CSPs
with digraph CSPs, we now present it as stand-alone statement.

Theorem 6.1. Every fixed finite template CSP is logspace equivalent to the CSP
over some finite digraph.

6.1 Outline of the algorithm

We first assume that CSP(A) is itself not trivial (that is, that there is at least
one no instance and one yes instance): this uninteresting restriction is necessary
because CSP(D(A)) will have no instances always. Now let G be an instance
of CSP(D(A)). Also, let n denote the height of D(A) and k the arity of the
single fundamental relation R of A: so, n = k + 2. Recall that the vertices of
D(A) include those of A as well as the elements in R. The rough outline of the
algorithm is as follows.

(Stage 1.) Some initial analysis of G is performed to decide if it is broadly of
the right kind of digraph to be a possible yes instance. If not, some fixed no
instance of CSP(A) is output.

(Stage 2.) It is convenient to remove any components of G that are too small.
These are considered directly, and in logspace we determine whether or not they
are YES or NO instances of CSP(D(A)). If all are YES we ignore them. If one
returns NO we reject the entire instance and return some fixed NO instance of
CSP(A).

(Stage 3.) Now it may be assumed that G is roughly similar to a digraph
of the form D(B) (for some structure B), but where some vertices at level
0 have been lost, and other vertices at this level and at level n have been
split into numerous copies, with each possibly containing different parts of the
information in the connecting edges of D(B). Essentially, the required B is a
kind of quotient of an object definable from G, though some extra vertices must
be added (this is similar to the addition of vertices to account for existentially
quantified variables in a primitive positive definition of a relation: only new
vertices are added, and they are essentially unconstrained beyond the specific
purpose for which they are added). To construct B in logspace, we work in two
steps: we describe a logspace construction of some intermediate information.
Then we describe a logspace reduction from strings of suitable information of
this kind to B. The overall process is logspace because a composition of two
logspace processes is logspace.
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(Stage 3A.) From G we output a list of “generalized hyperedges”. These are
k-tuples consisting of sets of vertices of G plus some newly added vertices.
Moreover, they sometimes include a labelling to record how they were created.

(Step 3B.) The actual structure B is constructed from the generalized hyper-
edges in the previous step. The input consists of generalized hyperedges. To
create B, numerous undirected graph reachability checks are performed. The
final “vertices” of B are in fact sets of vertices of G, so that the generalized
hyperedges become actual hyperedges in the conventional sense (k-tuples of
“vertices”, now consisting of sets of vertices of G). This may be reduced to
an adjacency matrix description as a separate logspace process, but that is
routine.

Stage 1 is described in Subsection 6.3, while Stage 2 is described in Subsection
6.4. The most involved part of the algorithm is stage 3A. In Subsection 6.5 we give
some preliminary discussion on how the process is to proceed: an elaboration on
the item listed in the present subsection. In particular a number of definitions are
introduced to aid the description of Stage 3A. The actual algorithm is detailed in
Subsection 6.6. Step 3B is described in Subsection 6.7. After a brief discussion of
why the algorithm is a valid reduction from CSP(D(A)) to CSP(A), we present an
example of Stages 3A and 3B in action. This example may be a useful reference
while reading Subsection 6.6 and 6.7.

Before we begin describing the algorithm we recall some basic logspace process
that we will use frequently.

6.2 Subroutines

The algorithm we describe makes numerous calls on other logspace computable
processes. Our algorithm may be thought of as running on an oracle machine,
with several query tapes. Each query tape verifies membership in some logspace
solvable problem. It is well known that LL = L, and this enables all of the query
tapes to be eliminated within logspace. For the sake of clarity, we briefly recall
some basic information on logspace on an oracle machine. An oracle program
with logspace query language U has access to an input tape, a working tape (or
tapes) and an output tape. Unlimited reading may be done from the input, but
no writing. Unlimited writing may be done to the output tape, but no reading.
Unlimited writing may be done to the query tape, but no reading. Once the query
state is reached however, the current word written to the query tape is tested for
membership in the language U (at the cost of one step of computation), and a
(correct) answer of either yes or no is received by the program, and the query tape
is immediately erased. The space used is measured only from the working tape,
where both reading and writing is allowed. If such a program runs in logspace,
then it can be emulated by an actual logspace program (with no oracle), so that
LL = L. The argument is essentially the fact that a composition of logspace
reductions is a logspace reduction: each query to the oracle (of a string w for
instance) during the computation is treated as a fresh instance of a reduction
to the membership problem of U , which is then composed with the logspace
algorithm for U (which is, as usual, done without ever writing any more than
around one symbol of w at a time—plus a short counter—which is why space
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used on the oracle tape does not matter in the oracle formulation of logspace,
and why we may assume that the query tape may be erased after completion of
the query).

In this subsection we describe the basic checks that are employed during our
algorithm.

Undirected reachability. Given an undirected graph and two vertices u, v,
there is a logspace algorithm to determine if u is reachable from v (Reingold
[36, 37]). In the case of a directed graph we may use this to determine if two
vertices are connected by some oriented path (simply treat the digraph as an
undirected graph, and use undirected reachability). This means, for example,
that we can construct, in logspace, the smallest equivalence relation containing
some input binary relation.

A second process we frequently perform is reachability checks involving edges
that are not precisely those of the current input digraph. A typical instance
might be where we have some fixed vertex u in consideration, and we wish to
test if some vertex v can be reached from u by an oriented path consisting only
of vertices satisfying some property Q, where Q is a logspace testable property.
This is undirected graph reachability, except that as well as ignoring the edge
direction, we must also ignore any vertex failing property Q. This can be per-
formed in logspace on an oracle machine running an algorithm for undirected
graph reachability and whose query tape tests property Q.

Component checking. Undirected graph reachability is also fundamental
to checking properties of induced subgraphs. In a typical situation we have some
induced subgraph C of G (containing some vertex u, say) and we want to test if
it satisfies some property P . Membership of vertices in C is itself determined by
some property Q, testable in logspace. It is convenient to assume that the query
tape for P expects inputs that consist of a list of directed edges (if adjacency
matrix is preferred, then this involves one further nested logspace process, but
the argument is routine). We may construct a list of the directed edges in the
component C on a logspace machine with a query tape for P , for undirected
graph reachability and for Q. We write C to the query tape for P as follows.
Systematically enumerate pairs of vertices v1, v2 of G (re-using some fixed portion
of work tape for each pair), in each case testing for undirected reachability of both
v1 and v2 from u, and also for satisfaction of property Q. If both are reachable,
and if (v1, v2) is an edge of G then we output the edge (v1, v2) to the query tape
for P . After the last pair has been considered, we may finally query P .

Testing for interpretability in paths. By an interpretation of a digraph C
in another digraph Q we mean simply a graph homomorphism from C to Q. The
basic properties we wish to test of components usually concern interpretability
within some fixed finite family of directed paths. We consider the paths QS,
where S is some subset of [k] = {1, . . . , k}: recall (Section 3) that these have
zigzags in a position i when i /∈ S (so that a small S corresponds to a large
number of zigzags, while Q[k] itself is simply the directed path on k + 3 vertices,
with no zigzags).

It is not hard to see that a balanced digraph of height n = k + 2 admits a
homomorphism into QS if and only if it admits a homomorphism into each of
Q[k]\{i} for i /∈ S (this is discussed further in the proof of the next lemma). For
balanced digraphs of smaller height this may fail, as the interpretations in the
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various Q[k]\{i} need not be at the same levels. To circumvent this, we say that
(for S ⊆ [k]) a balanced connected digraph H is interpretable in QS at level i,
if it is interpretable in QS with a vertex of height 0 in H taking the value of a
height i vertex of QS.

Lemma 6.2. Let H be a connected balanced digraph. Then H is interpretable in
QS at height i if and only if for each j /∈ S we have H interpretable in Q[k]\{j}
at height i. For fixed i and connected balanced digraph H of height at most n− i,
there is a unique minimum set S ⊆ [k] with H interpretable in QS at height i.

Proof. The second statement follows immediately from the first, as we may suc-
cessively test for interpretability (at height i) in Q[k]\{j} for j = 1, . . . , k. The
bound n − i is simply to account for the fact that if H has height greater than
n− i, then it is not even interpretable in Q[k] at height i (yet this does not imply
that S = [k]). For the first statement, observe that if j /∈ S, then there is a
height-preserving homomorphism from QS onto Q[k]\{j} (as S ⊆ [k]\{j}). So it
suffices to show that if H is interpretable in Q[k]\{j} at height i for each j /∈ S then
it is interpretable in QS at height i. This is routine, because the single zigzag in
Q[k]\{j} (based at height j) for j /∈ S matches the corresponding zigzag based at
height j in QS. More formally, in the direct product

∏
j /∈S Q[k]\{j}, the component

connecting the tuple of initial vertices to terminal vertices maps homomorphically
onto QS.

Definition 6.3. The smallest set S ⊆ [k] for which a connected balanced digraph
H is interpretable in QS at height i is denoted by Γ(H)(i). When i is implicit,
then we write simply Γ(H).

Lemma 6.4. 1. CSP(Q[k]) is solvable in logspace, even with singleton unary
relations added.

2. If H is connected and balanced of height at most n, then for any vertex u
and v, the height of v relative to that of u may be computed in logspace.

3. CSP(Q[k]\{i}) is solvable in logspace for any i ∈ {1, . . . , k}, even when sin-
gleton unary relations are added.

4. For any S ⊆ {1, . . . , k} the problem CSP(QS) is solvable in logspace, even
when singleton unary relations are added.

5. For a balanced connected digraph H of height at most n, we may test mem-
bership of numbers j in the set Γ(H)(i) in logspace.

6. If QS1, QS2,. . . , QS`
is a family of connecting paths in D(A), then the CSP

over the digraph formed by amalgamating the QSi
at either all the initial

points, or at all the terminal points is logspace solvable.

Proof. (1) Note that Q[k] has both a Maltsev polymorphism and a majority, hence
is solvable in logspace even when unary singleton relations are added [15].

(2) For each 0 ≤ i, j ≤ n (the possible heights) we may test for interpretability
of H in Q[k] with u constrained to lie at height i and v constrained to lie at height
j. As H is balanced of height at most n, at least one such instance is interpretable,
and the number j − i is the relative height of v above u.
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(3) Note that as Q[k]\{i} is a core, we have CSP(Q[k]\{i}) logspace equivalent
to the CSP over Q[k]\{i} with all unary singletons added (see [9]).

Given an input digraph H, we first test if H is interpretable in Q[k] (which ver-
ifies that H is balanced, and of sufficiently small height). Reject if NO. Otherwise
we may assume that H is a single component (because it suffices to interpret each
component, and component checking has been described as logspace in earlier
discussion).

We successively search for an interpretation of H in Q[k]\{i} at heights 0, 1, . . . ,
n; in each case, item (2) shows that we have access to a suitable notion of height
for the vertices of H. The remaining part of this proof concerns an attempt at
interpretation at one particular height. Now, if there is to be an interpretation of
H in Q[k]\{i} at the given height, then any vertices of the same height j /∈ {i, i+1}
will be identified. We need only ensure there is no directed path of vertices of
heights i − 1, i, i + 1, i + 2. So it suffices to enumerate all 4-tuples of vertices
u1, . . . , u4, check if u1 → u2 → u3 → u4, and if so, check that the height of u1 is
not i− 1. If it is, then reject. Otherwise accept.

(4) & (5) These follow immediately from Lemma 6.2, and part (3) of the
present lemma.

(6) We refer to a digraph formed by amalgamating paths in one of the two
described fashions, a fan. Consider some instance H. As above, we may assume
that H is connected, balanced and is of sufficiently small height. We may first use
item (4) to test if H is interpretable in one of the individual paths QS1 , QS2 ,. . . .
If one of these returns a positive answer, then H is a YES instance. Otherwise,
remove all level 0 vertices of H, and successively test each individual component C
of the resulting digraph for interpretability in QS1 , QS2 ,. . . , with an additional
condition: the vertices of C which were adjacent to a level 0 vertex in H must be
interpreted at the level 1 vertex of QSi

adjacent to the initial vertex. Provided
each such C is interpretable in at least one of these paths in the described way,
then H is interpretable in the fan (with the level 0 vertices of H interpreted at
the amalgamated initial vertices). Otherwise, H is not interpretable in the fan
and is a NO instance.

6.3 Stage 1: Verification that G is balanced and a test for
height

If G is not balanced of height at most n, then we can output some fixed NO
instance. The logspace test for this property is Lemma 6.4 part (1). From this
point on, we will assume that G is balanced and of height at most n.

6.4 Stage 2: Elimination of “short components”

If G contains some component of height strictly less than n, then we will test
directly whether or not this component is a YES or NO instance of CSP(D(A))
(this is explained in the next paragraph). If any are NO instances, then so is G
and we can output some fixed NO instance of CSP(A). Otherwise (if all are YES
instances), we may simply ignore these short components. If G itself has height
less than n, then instead of ignoring all components of G we can output some
fixed YES instance of CSP(A), completing the reduction.
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The process for testing membership of a short component H in CSP(D(A)) is
as follows. In any satisfying interpretation of H in D(A), we must either interpret
within some single path QS connecting A to R in D(A), or at some fan of such
paths emanating from some vertex in A or some vertex in R. There are a fixed
finite number of such subgraphs of D(A), and we may use Lemma 6.4(6) for each
one.

For the remainder of the algorithm we will assume that all connected compo-
nents have height n.

6.5 Stage 3: All components of G have height n

In this case we will eventually output an actual structure B with the property that
G is a YES instance of CSP(D(A)) if and only if B is a YES instance of CSP(A).
In fact we focus on the production of a preliminary construction B′ that is not
specifically a relational structure, but holds all the information for constructing
B using undirected graph reachability checks. The output B′ will consist of a list
of “generalized hyperedges”, that will (in step 3B) eventually become the actual
hyperedges of B.

For the remainder of the argument, an internal component of G means a
connected component of the induced subgraph of G obtained by removing all
vertices of height 0 and n. Note that we have already described that testing
for height can be done in logspace. A base vertex for such a component C is a
vertex at height 0 that is adjacent to C, and a top vertex for C is a level n vertex
adjacent to C. Note that an internal component may have none, one, or more
than one base vertices, and similarly for top vertices. Every internal component
must have at least one of a base vertex or a top vertex however, because we have
already considered the case of “short” components in Stage 2.

Let C be an internal component. In a satisfying interpretation of G in D(A),
the component C must be satisfied within some single connecting path (of the
form QS for some S ⊆ [k]), with any vertices adjacent to the base of C (or to a
top of C) being interpreted adjacent to the initial point of the path (or adjacent
to the terminal point of the path, respectively). We may identify the smallest set
S ⊆ [k] for which C is interpretable in QS: it is Γ(C) introduced in Definition
6.3, and by Lemma 6.4(5) we can, in logspace, verify membership of numbers up
to k in the set Γ(C). (Note that we omit the superscript “(i)” in the notation, as
there is no ambiguity as to what level C is to be satisfied at: it is either i = 1, or
dually, measured one down from the top, i = n− 1.) These internal components
of D(A) are in essence encoding positions of base level vertices in hyperedges,
and Lemma 6.4(5) supplies, in logspace, the positions which are being asserted as
“filled” by a given internal component C. If G itself is the path QI for example,
then the single internal component C has Γ(C) = I.

6.6 Stage 3A: Constructing the approximation B′ to B
To being with we do not output B itself, but rather some approximation B′ to B.
This piece of information consists of a list of “generalized hyperedges” plus a list
of equalities. These generalized hyperedges consist of k-tuples of lists of vertex
names: vertices in the same list will later be identified to create B, but this is
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a separate construction. Some hyperedges also encode some extra vertex of G
from which they were created. So a typical generalized hyperedge may look like
[V1, V2, . . . , Vk]e, where e is some vertex of G (at height n) used for book-keeping
purposes and the Vi are lists consisting of some vertices of G (of height 0) and
some new vertices we create during the algorithm. Other hyperedges may not
require the special book-keeping subscript.

Note that any new vertices created during the algorithm should be different
each time (even though we often use x to denote such a vertex): we should use
some counter on a fixed spare piece of tape for the entire algorithm; this counter is
incremented at each creation of a new variable, and its value recorded within the
new vertex name. (There will be only polynomially many new variables created,
so only logspace used to store this one counter.)

1 To output the generalized hyperedges. There are two causes for writing gen-
eralized hyperedges to the output: the first is due to vertices at height n, and
the second is due to vertices at height 0 that are the base vertex for some
internal component with no top vertices. The generalized hyperedges will be
written in such a way as to record some extra information that will be used
for identifications.

For each vertex e at height n we will need to output a generalized hyperedge,
however there may be many different vertices placed at a given position: these
vertices will later be identified. We will also record in the encoding that
the generalized hyperedge is created from vertex e. The following process is
performed for each height n vertex e and in each case, we perform the following
process for i = 1 to k.

1.1 Systematically search for an internal component C in which i ∈ Γ(C) and for
which e is a top vertex. These searches involve the following: we systematically
search through all vertices of G until some u is found to be undirected-reachable
from e amongst vertices not at height 0 or n. To avoid unnecessary duplication,
we may also check that u does not lie in the same internal component as some
earlier vertex (in which case we may ignore u: this internal component has
already been considered). Then we proceed to systematically search through
all vertices of G to identify the internal component Cu of G containing u. This
component is then checked using Lemma 6.4(5) for whether i ∈ Γ(Cu). If
i ∈ Γ(C) we go to substep 1.1.1. If i /∈ Γ(Cu) we increment u and continue
our search for an internal component C with e as top and with i ∈ Γ(C). If
no such components are encountered we proceed to substep 1.1.2.

1.1.1 We have identified an internal component C with i ∈ Γ(C) and for which
e is a top vertex. If C has base vertices b1, . . . , bj then these will be
written to the vertex set for the ith coordinate of the output hyperedge.
If C does not have base vertices, then we will create some new vertex x
and write the vertex set {x} to the ith coordinate.

1.1.2 No internal component C is found with i ∈ Γ(C) and for which e is a
top vertex. In this case only one vertex will appear in the vertex set for
coordinate i of this generalized hyperedge: a new vertex x.
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1.2 Generalized hyperedges may also be created because of level 0 vertices. The
following is performed for each level 0 vertex b and for each internal component
C for which b is the base vertex and such that C has no top vertex. (If none
are found there is nothing to do and no generalized hyperedge is written at
step 1.2 for b.) We create a generalized hyperedge by performing the following
checks for i = 1, . . . , k.

1.2.1 If i ∈ Γ(C) then {b} is placed in position i of the generalized hyperedge,

1.2.2 If i /∈ Γ(C) then a new vertex x is created and {x} is placed in position i
of the generalized hyperedge.

2 Finally we output information that will later be used to find certain vertices
that will be forced to be identified in any satisfying interpretation of G.

2.1 For each pair of distinct height n vertices e, f , if e and f are the top
vertex for the same internal component, then we write e = f to the
output tape.

2.2 For each pair of distinct height 0 vertices b, c, if b and c are base vertices
for the same internal component we write b = c.

This completes the construction of B′. There are clearly further identifications
that will be forced: for example, if b appears in the list of position i vertices for
some generalized hyperedge e, and c appears in the list of position i vertices for
some generalized hyperedge f , and if e = f has been output, then we must have
b and c identified. Accounting for these is stage 3B.

6.7 Stage 3B: construction of B
We now need to construct B from the list of generalized hyperedges and equalities.
The actual vertices of B will consist of sets of the vertices currently stated. If
desired, this could be simplified as a later separate logspace process (such as by
using only the earliest vertex from each set). Currently the input consists of
generalized hyperedges where the entry in a given position is a set of vertices
of G or new vertices. To create B we only need to amalgamate these sets, also
taking into account the equality constraints.

In the following, a “vertex” refers to an element of some set within the position
of some hyperedge. A “vertex set” consists of a set of vertices. The actual
vertices of B will be vertex sets, produced from those appearing within B′ by
amalgamation.

The amalgamation process involves considering an undirected graph on the
vertices, which we refer to as the equality graph. The undirected edges of the
equality graph arise in several different ways.

(i) There will be an undirected edge from a vertex a to a vertex b if a and b lie
within the same vertex set somewhere in the input list.

(ii) There will be an undirected edge from a vertex a to a vertex b if a = b has
been written as an equality constraint.
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(iii) Recall that a hyperedge created from a height n vertex e records the vertex
e in its description. We include an undirected edge between a and b if they
appear in vertex sets at position i of two generalized hyperedges, either
with the same label e, or with different labels e, f but where e = f appears
in the input.

There are logspace checks to recognise these undirected edges, and using the
logspace solvability of undirected graph reachability we may determine if two
vertices identified within our list of generalized hyperedges are connected in the
equality graph, all within logspace.

For each vertex u we first check if there is some lexicographically earlier vertex
v for which u and v are connected in the equality graph. If an earlier vertex is
discovered, then we ignore u and continue to the next vertex. Otherwise, if
no earlier vertex is discovered, we proceed to write down the vertex set of the
component of the equality graph containing u. For each v lexicographically later
than u, we check whether v is reachable from u (in the equality graph) and if
so include it in vertex set of u. For the actual hyperedges of B we may simply
write the existing generalized hyperedges (removing the book-keeping subscript),
which can be read in the following way. A vertex set U appears in the ith position
of a hyperedge E if the intersection of U with the vertices listed for position i in
E is nontrivial. Some hyperedges may be repeated in this output and obviously
this could also be neatened by following with a totally new logspace reduction
(even to an adjacency matrix).

6.8 If and only if

Any homomorphism φ from B (the amalgamated “vertex sets”) into A, determines
a function Φ from the height 0 vertices of G to the height 0 vertices of D(A).
The construction of the hyperedges of B exactly reflects the satisfiability of the
internal components of G, so that the function Φ extends to cover all of G (this
ignores any “short components” that we considered directly in stage 2A: but they
cannot have been NO instances, as otherwise B was already created in stage 2 to
be some fixed NO instance).

The converse is also true. First, we only grouped vertices together in vertex
sets and their later amalgamation if they were forced to be identified in any possi-
ble interpretation in D(A). So any homomorphism f from G to D(A) determines
a function F from the “vertices” of B to the vertices of A. The hyperedges of B
were determined by the internal components of G, which f is satisfying within the
encoding (in D(A)) of the hyperedges of A. So the B hyperedges are preserved
by F .

6.9 An example

The following diagram depicts a reasonably general instance G of CSP(D(A)) in
the case that A itself is a digraph, so that k = 2. We are considering stage 3,
so that G is a single connected digraph of height 4. The vertices at height 0 are
b1, . . . , b6, and the vertices at height 4 are e1, . . . , e4. The shaded regions depict
internal components: each is labelled by a subset of {1, 2}, depicting Γ(C).
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Let us examine how Stage 3A proceeds. We arrive at the first height 4 vertex
e1. For i = 1, discover no internal components with e1 as the top, and with
1 ∈ Γ(C) (both have Γ(C) = ∅, so we are in case 1.1.2) and therefore return
{x1} for the vertex set in the coordinate 1. For i = 2, we have the same outcome,
so the generalized hyperedge that is actually written is [{x1}, {x2}]e1 .

Then we proceed to the next height 4 vertex e2. We encounter just one
internal component C with 1 ∈ Γ(C), and its base vertices are {b2} (so this is
in case 1.1.1). For i = 2 we also find just one internal component whose Γ value
contains 2, and it has {b3} as the base vertices (also case 1.1.1). The generalized
hyperedge [{b2}, {b3}]e3 is written.

For e3 and i = 1 we encounter two internal components producing base ver-
tices. We find b2 as the only base vertex of the first, and b4 for the second (case
1.1.1), so the first coordinate of the generalized hyperedge is {b2, b4}. For i = 2,
no internal components yield a base vertex (case 1.1.2), so we output {x3}. The
actual generalized hyperedge written is [{b2, b4}, {x3}]e2 .

The vertex e4 similarly results in the generalized hyperedge [{b4, x4}, {x5}]e4 .
This completes step 1.1 and we continue with step 1.2. We discover the height

0 vertex b1 as the base of an internal component C with no top. We find 1 /∈ Γ(C),
so {x6} is written to the first coordinate of a generalized hyperedge (step 1.2.2
for i = 1). For i = 2 we find 2 ∈ Γ(C) so return {b1} for the second coordinate.
The actual output written is [{x6}, {b1}] (there are no subscripts to hyperedges
from step 1.2). Level 0 vertices b4 and b5 also lead to the creation of generalized
hyperedges. The overall output after the completion of steps 1.1 and 1.2 is

[{x1}, {x2}]e1 (from e1, step 1.1)

[{b2}, {b3}]e2 (from e2, step 1.1)

[{b2, b4}, {x3}]e3 (from e3, step 1.1)

[{b4, x4}, {x5}]e4 (from e4, step 1.1)

[{x6}, {b1}] (from b1, step 1.2)

[{x7}, {x8}] (from b4, step 1.2)

[{x9}, {x10}] (from b5, step 1.2)

[{b5}, {x11}] (from b5, step 1.2)

[{b6}, {x12}] (from b6, step 1.2)

For step 2 of the algorithm, we output the following equalities

e1 = e2, (from 2.1)

b4 = b5, b5 = b6 (from 2.2)
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This completes Stage 3A: the list just given is B′. We note that hyperedges such
as [{x7}, {x8}] will be no hinderance to satisfiability of B in A, and we could word
our algorithm to avoid writing these altogether.

Stage 3B then produces the digraph B with hyperedges

[{b2, b4, b5, b6, x1, x4}, {b3, x2}]
[{b2, b4, b5, b6, x1, x4}, {b3, x2}]
[{b2, b4, b5, b6, x1, x4}, {x3}]
[{b2, b4, b5, b6, x1, x4}, {x5}]
[{x6}, {b1}]
[{x7}, {x8}]
[{x9}, {x10}]
[{b2, b4, b5, b6, x1, x4}, {x11}]
[{b2, b4, b5, b6, x1, x4}, {x12}]

Which is a digraph with 12 vertices (namely, the 12 different sets of vertices
appearing in hyperedges).

The algorithm itself is the composite of stage 3A and stage 3B.

7 Discussion

We conclude our paper with some applications and further research directions.

An example

Our construction allows us to create examples (and counterexamples) of digraph
CSPs with certain desired properties, which were previously unknown or signifi-
cantly harder to construct.

Example 7.1. Let A be the structure on {0, 1} with a single 4-ary relation

R = {(0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)}.

Clearly A is a core. Using the fact that R = {(w, x, y, z) ∈ A4 | w⊕x = y & z =
1} (where ⊕ denotes addition modulo 2), it can be shown that the polymorphisms
of A are the idempotent term functions of the two element group, and from this
it follows that CSP(A) is solvable by the few subpowers algorithm of [24], but is
not bounded width. Then the CSP over the digraph D(A) is also solvable by few
subpowers but is not bounded width (that is, is not solvable by local consistency
check).

Prior to the announcement of this example it had been temporarily conjec-
tured by some researchers that solvability by the few subpowers algorithm implied
solvability by local consistency check in the case of digraphs (this was the opening
conjecture in Maróti’s keynote presentation at the Second International Confer-
ence on Order, Algebra and Logics in Krakow 2011 for example). With 78 vertices
and 80 edges, Example 7.1 also serves as a simpler alternative to the 368-vertex,

39



432-edge digraph whose CSP was shown by Atserias in [1, §4.2] to be tractable
but not solvable by local consistency check.

In [25], Example 7.1, Corollary 5.2 and some fresh results on polymorphisms
are used to construct digraph CSPs with every possible combination of the main
polymorphism properties related to decision CSPs (allowing for Kazda’s Maltsev
implies majority result [28]).

Which properties are preserved?

Theorem 5.1 and Corollary 5.2 demonstrate that our reduction preserves almost
all Maltsev conditions corresponding (or conjectured to be equivalent) to im-
portant algorithmic properties of decision CSPs. However, we were not able to
extend our result to include all Maltsev conditions (in particular, nonbalanced
identities in more than two variables). Is it possible to characterize Maltsev con-
ditions preserved by our construction? In particular, does it preserve all Maltsev
conditions which hold in the zigzag?

In [11] Bulatov established a dichtomy for counting CSPs (see also [17]). The
algebraic condition separating tractable (FP) problems from #P-complete ones
is called congruence singularity. It is not hard to see that the structure A from
Example 7.1 satisfies this condition and thus the corresponding counting CSP
is tractable. However, congruence singularity implies congruence permutability
(i.e., having a Maltsev polymorphism) which fails in D(A). Therefore, counting
CSP for D(A) is #P-complete. We conclude that our reduction does not preserve
the complexity of counting. In fact, counting for D(A) is essentially always hard.
Is there a reduction of general CSPs to digraph CSPs which preserves complexity
of counting?

There are several other interesting variants or generalizations of CSPs in which
algebraic conditions seem to play an important role as well. For example, infinite
template CSPs (see below), valued CSPs [13, 40], or approximability of CSPs
[14, 30]. Can our construction be applied to obtain interesting results in these
areas as well?

Infinite template CSPs

CSPs over infinite templates are widely encountered in artificial intelligence; see
[22, 29, 38] for example. Efforts to obtain a mathematical foundation for under-
standing the computational complexity of these problems have often involved as-
sumptions of model theoretic properties on the template (such as ω-categoricity),
as well as the presence of polymorphisms of certain kinds; see [6, 7, 8] for ex-
ample. The results of the present article apply for such CSPs too: the proofs of
Theorems 5.1 and 6.1 did not assume finiteness of A, only that A has only finitely
many relations.

Remark. Theorem 5.1 and Theorem 6.1 extend to infinite template CSPs consist-
ing of only finitely many relations. Furthermore, since A and D(A) are first-order
interdefinable, A is ω-categorical if and only if D(A) is ω-categorical.
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Special classes of CSPs

Hell and Rafiey [21] showed that all tractable list homomorphism problems over
digraphs have the bounded width property, and from this it follows that there
can be no translation from general CSPs to digraph CSPs preserving conserva-
tive polymorphisms (the polymorphisms related to list homomorphism problems).
Find a simple restricted class of list homomorphism problems for which there is
a polymorphism-preserving translation from general list homomorphisms to the
ones in this class.

Another class of interest are the CSPs over generalized trees. Is there a
translation from generalized trees to oriented trees that preserves CSP tractability,
or preserves polymorphism properties?

Feder and Vardi’s paper [18] also contains a polynomial reduction of general
CSPs to CSPs over bipartite graphs. Payne and Willard announced preliminary
results on a project similar to ours: to understand which Maltsev conditions are
preserved by that reduction to bipartite graphs.

First order reductions

The logspace reduction in Lemma 3.4 cannot be replaced by first order reductions.
Indeed, it is not hard to show that D(A) is never first order definable. More
generally though, the only first order definable CSPs over balanced digraphs are
the degenerate ones: over the single edge, or over a single vertex and no edges (see
[26, Theorem C]), while deciding first order definability in general is NP-complete
[32, Theorem 6.1]. Thus it seems unlikely that there is any other polynomial
time computable construction to translate general CSPs to balanced digraph
CSPs (as this would give P=NP). Is there a different construction that translates
general CSPs to (nonbalanced !) digraph CSPs with first order reductions in both
directions?

Various reductions of CSPs to digraphs

Feder and Vardi [18] and Atserias [1] provide polynomial time reductions of CSPs
to digraph CSPs. We vigorously conjecture that their reductions preserve the
properties of possessing a WNU polymorphism (and of being cores; but this is
routinely verified). Do these or other constructions preserve the precise arity of
WNU polymorphisms? What other polymorphism properties are preserved? Do
they preserve the bounded width property?

Translations from general CSPs to digraph CSPs need not in general be as
well behaved as the D construction of the present article. The third and fourth
authors with Kowalski [25] have recently shown that a minor variation of the
D construction preserves k-ary WNU polymorphisms (and thus the properties
of being Taylor and having bounded width) but always fails to preserve many
other polymorphism properties (such as those witnessing strict width, or the few
subpowers property).
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[12] Buĺın, J., Delić, D., Jackson, M., Niven, T.: On the reduction of the CSP
dichotomy conjecture to digraphs. In: Schulte, C. (ed.) CP. Lecture Notes
in Computer Science, vol. 8124, pp. 184–199. Springer (2013)

[13] Cohen, D.A., Cooper, M.C., Creed, P., Jeavons, P.G., Živný, S.: An al-
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Decidability of absorption



Decidability of absorption in relational structures
of bounded width

Jakub Buĺın

Abstract

Absorption theory of Barto and Kozik has proven to be a very useful
tool in the algebraic approach to the Constraint Satisfaction Problem and
structure of finite algebras in general. We address the following problem:
Given a finite relational structure A and a subset B ⊆ A, is it decid-
able whether B is an absorbing subuniverse? We provide an affirmative
answer in the case when A has bounded width (i.e., the algebra of poly-
morphisms of A generates a congruence meet semidistributive variety). As
a by-product we confirm that in this case the notion of Jónsson absorption
coincides with the usual absorption. We also show that several open ques-
tions about absorption in relational structures can be reduced to digraphs.

Introduction

Universal algebra has recently found a fruitful application to theoretical computer
science in the field of Constraint Satisfaction Problem (CSP). At the core of the
so-called algebraic approach to the CSP lies the fact that every relational structure
can be naturally associated with an algebra (the algebra of polymorphisms), which
allows application of deep algebraic theories to the originally purely combinato-
rial problem (see [8]). This led to a rapid progress towards the CSP dichotomy
conjecture of Feder and Vardi [10]. The interplay between constraint satisfac-
tion and universal algebra has evolved into a mutually beneficial relationship.
Studying CSPs has uncovered new (and sometimes surprising) properties of finite
algebras and tools to study their structure. A prominent example is the theory
of absorption of Barto and Kozik.

One of the milestones on the path towards the CSP dichotomy conjecture
was the problem of characterizing CSPs solvable by local consistency checking
or, equivalently, relational structures of bounded width. Larose and Zádori [11]
conjectured that a finite core relational structure has bounded width, if and only
if its algebra of polymorphisms generates a congruence meet semidistributive
(SD(∧)) variety. In the same paper they proved the “only if” part. Barto and
Kozik solved this conjecture, first in the congruence distributive (CD) case [4]
and later in the general case [5]. An essential idea of the proof of the so-called
Bounded Width Theorem is that the instance of the CSP can be reduced to certain
subsets of the relational structure, the absorbing subuniverses of its algebra of
polymorphisms. This idea can be traced back to the CD case where a similar
notion is used: Jónsson ideals.

46



The idea of absorption has proven to be very useful in a number of other
problems related to the CSP and finite algebras. We refer the reader to [3] and
[6] for some of the applications. Absorption theory is still in its beginning and
there are many open problems that need to be understood. Our paper provides
partial solutions to a few of them.

In [2] Barto used absorption to provide a new algorithm for solving conser-
vative CSPs, significantly simplifying a result of Bulatov [7]. This algorithm uses
the knowledge of absorbing subuniverses of the algebra of polymorphisms as a
blackbox, which led Barto to formulate the following problem.

Problem 1 (Problem 24 in [14]). Given a finite relational structure A and a
subset B, is it decidable whether B is an absorbing subuniverse of the algebra of
polymorphisms of A?

The main result of our paper is a partial solution to this problem. We prove
that if the algebra of polymorphisms of A generates an SD(∧) variety, then there
is a co-NEXPTIME algorithm to test for absorption (EXPTIME if one assumes that
the input subset B is always a subuniverse).

The above problem can be seen as a generalization of the following problem:
Given a finite relational structure A, is it decidable whether A admits a near
unanimity polymorphism? A positive answer to this problem was given by Barto
in [1], where he proves the Zádori conjecture: Every finite relational structure
whose algebra of polymorphisms generates a CD variety admits a near unanimity
polymorphism. Our proof mimics the proof of Barto. The idea is to encode the
problem of existence of an absorbing term as an instance of the CSP over A.

Our proof shows that every absorption in a finite SD(∧) relational structure
is realized by a term whose arity is bounded by the size of its universe and arities
of its relations. This bound is doubly exponential and Problem 25 in [14] asks for
a better bound. Also, as a by-product, we obtain a proof that in the SD(∧) case
Jónsson ideals (a generalization of the notion used in [4]) coincide with absorbing
subuniverses.

In the second part of our paper we show that many questions about absorp-
tion in relational structures can be reduced to digraphs. For that, we use the
construction from [9] and prove that it preserves the property of being an ab-
sorbing subuniverse as well as the arity of absorbing terms and also, in a sense, it
preserves the absorption free subuniverses. We conclude by discussing the prob-
lem of characterizing finite algebras which generate a pseudovariety containing
no absorption free members – another open problem in absorption theory.

1 Algebras and relational structures

In this section we briefly present notions and fix notation used throughout the
paper.

A k-ary operation on a set A is a mapping f : Ak → A. By an algebra we
mean a pair A = (A;F), where A is a set and F is a set of operations on A. A
subset B ⊆ A is a subuniverse of A (denoted by B ≤ A) if it is closed under all
operations from F . An operation is idempotent if it satisfies f(x, x, . . . , x) ≈ x.
An algebra is idempotent if all of its operations are idempotent. (Equivalently,
{a} ≤ A for every a ∈ A.)
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Term operations of A (denoted by Clo A) are operations that can be ob-
tained from F and the projection operations using composition of operations. A
semilattice operation is a binary idempotent, commutative and associative oper-
ation. A near unanimity operation is an operation (at least ternary) satisfying
the identities t(x, . . . , x, y) ≈ t(x, . . . , x, y, x) ≈ · · · ≈ t(y, x, . . . , x) ≈ x.

The variety generated by A, HSP(A), is the class of all algebras constructed
from A by taking products (P), subalgebras (S) and homomorphic images (H).
A variety is congruence meet semidistributive (SD(∧)) if the congruence lattices
of all of its members satisfy the meet semidistributive law, and similarly for con-
gruence distributivity (CD); A is said to be CD or SD(∧) if the variety generated
by A is. For A finite, the pseudovariety generated by A, HSPfin(A), is the class
of all finite members of HSP(A).

An n-ary relation on A is a subset R ⊆ An. A relational structure is a pair
A = (A;R), where A is a set and R = {R1, . . . , Rm} is a finite set of relations on
A. We say that a relation R is pp-definable from a relational structure A if there
exists a primitive positive formula ϕ (i.e., an existentially quantified conjunction
of atomic formulæ) in the language of A such that (a1, . . . , an) ∈ R if and only if
ϕ(a1, . . . an) holds in A.

A polymorphism of A is an operation on A which preserves all relations from
R. That is, if (a1

1, . . . , a
1
n), (a2

1, . . . , a
2
n), . . . , (ak1, . . . , a

k
n) ∈ R for some n-ary rela-

tion R ∈ R, then (f(a1
1, . . . , a

k
1), . . . , f(a1

n, . . . , a
k
n)) ∈ R. The set of all polymor-

phisms of A is denoted by PolA.
To every relational structure A we can associate in a natural way an algebra:

the algebra of polymorphisms of A is the algebra algA = (A; PolA). Relations
pp-definable from A are precisely subuniverses of finite powers of the algebra
algA (see [8] for details). An algebra is finitely related if it has the same term
operations as the algebra of polymorphisms of some relational structure.

A relational structure is binary if it has binary relations only. A digraph is a
binary relational structure with just one relation, the edge relation.

2 Absorption

The definitions, examples and observations in this section are standard in the
theory of absorption of Barto and Kozik (see [3], [6]). We begin with the definition
of an absorbing subuniverse.

Definition 2.1. Let A be an algebra and B ≤ A. We say that B is an absorbing
subuniverse of A (and write B E A), if there exists an idempotent t ∈ Clo A
such that

t(A,B,B, . . . , B,B) ⊆ B,

t(B,A,B, . . . , B,B) ⊆ B,

...

t(B,B,B, . . . , B,A) ⊆ B.

The notion of absorbing subuniverse was motivated by algebras with a near
unanimity operation, namely the following characterization.
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Lemma 2.2. A finite idempotent algebra A has a near unanimity term operation,
if and only if {a} E A for every a ∈ A.

Proof. The proof is easy using the same trick as in [12], Lemma 3.10. If {b} E A
via a k-ary term tb and {c} E A via an n-ary tc, then both of these absorptions
are witnessed by the kn-ary term operation

tbc(x1, . . . , xkn) = tb(tc(x1, . . . , xn), . . . , tc(x(k−1)n+1, . . . , xkn)).

Hence we can construct a term operation t witnessing {a} E A for every a ∈ A;
this is equivalent to t being a near unanimity operation.

In applications of absorption theory an important role is played by algebras
with no proper absorbing subuniverses, the absorption free algebras.

Definition 2.3. An algebra A is absorption free, if |A| > 1 and B E A implies
that B = A or B = ∅.

An example of an absorption free algebra is the two element group.
The origins of absorption theory can be traced back to the study of the CSP

for congruence distributive relational structures (see [4, Definition 6.5]). Let A
be a CD algebra with a fixed Jónsson chain p1, . . . , pn. A Jónsson ideal of A is a
subuniverse B ≤ A satisfying pi(B,A,B) ⊆ B for all i. Studying Jónsson ideals
inspired the definition of absorbing subuniverse in [5].

Kozik recently discovered a new Maltsev condition, the so-called directed
Jónsson terms, which characterizes finite CD algebras.

Theorem 2.4 (Kozik, M., personal communication, 2011). A finite algebra A is
CD, if and only if there exists a sequence of ternary idempotent terms p1, . . . , pn ∈
Clo A satisfying the following identities.

p1(x, x, y) ≈ x, pn(x, y, y) ≈ y,

pi(x, y, y) ≈ pi+1(x, x, y) for all i < n,

pi(x, y, x) ≈ x for all i ≤ n.

The notion of J -absorbing subuniverse is a generalization of a “directed”
Jónsson ideal.

Definition 2.5. Let A be an algebra and B ≤ A. We call B a J -absorbing
subuniverse of A (B EJ A), if there exists a sequence of ternary idempotent
terms p1, . . . , pn ∈ Clo A such that

p1(x, x, y) ≈ x, pn(x, y, y) ≈ y,

pi(x, y, y) ≈ pi+1(x, x, y) for all i < n

and
pi(B,A,B) ⊆ B for all i ≤ n.

J -absorbing subuniverses are sometimes also called Jónsson ideals and the cor-
responding sequence of terms a Jónsson chain (of length n).

Similarly as with absorption, the following holds.
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Lemma 2.6. A finite idempotent algebra A is CD, if and only if {a} EJ A for
every a ∈ A.

Proof. Let {b} EJ A via a Jónsson chain p1, . . . , pk and {c} EJ A via q1, . . . , qn.
If we define rij(x, y, z) = pi(x, qj(x, y, z), z) for i ≤ k and j ≤ n, then it can
be routinely verified that r11, . . . , r1n, r21, . . . , rkn is a Jónsson chain witnessing
both {b} EJ A and {c} EJ A. Consequently, we can construct a single Jónsson
chain witnessing {a} EJ A for every a ∈ A, which is equivalent to the directed
Jónsson terms from Theorem 2.4.

The next lemma shows that an absorbing subuniverse is always J -absorbing.
(The idea is the same as in the syntactical proof that an algebra with a near-
unanimity term operation is CD.)

Lemma 2.7. Let A be an algebra and B ≤ A. If B E A via an n-ary term t,
then B EJ A via a Jónsson chain of length n.

Proof. We can define the Jónsson chain in the following way: p1(x, y, z) =
t(y, x, . . . , x), pn(x, y, z) = t(z, . . . , z, y), and pi(x, y, z) = t(z, . . . , z, y, x . . . , x)
(where y is in the ith place) for 1 < i < n.

However, the converse is not true in general as we can see in the following
example.

Example (The implication algebra). Let A = ({0, 1};→), where → denotes
the logical implication (as a binary operation). It is well known that A gener-
ates a congruence distributive variety, but does not have a near unanimity term
operation. Hence both {0} and {1} are J -absorbing, but not absorbing.

In Theorem 3.1 we prove that the two notions coincide in finite, finitely re-
lated congruence meet semidistributive algebras. The precise relation between
absorption and J -absorption is yet to be understood. We conclude this section
with a notational remark.

Definition 2.8. Let A be a finite relational structure and B ⊆ A. For brevity,
we write B ≤ A, B E A and B EJ A instead of B ≤ algA, B E algA and
B EJ algA (respectively). Moreover, we say that A is SD(∧) meaning that its
algebra of polymorphisms generates a congruence meet semidistributive variety.

Throughout the rest of our paper, all results about finite relational structures
can be equivalently stated for finite, finitely related algebras.

3 Absorption in SD(∧) structures

The following theorem and its corollary state the main results of our paper.

Theorem 3.1. Let A be a finite SD(∧) relational structure and B ⊆ A. The
following holds:

(i) If B EJ A, then B E A.

(ii) If B E A, then this absorption is realized via some term of arity at most

48|A|k
+ 1, where k is the maximum arity of a relation of A.
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We will prove Theorem 3.1 in Section 5. This theorem provides an algorithm
to test absorption:

Corollary 3.2. Given a finite SD(∧) relational structure A and B ⊆ A, there
exists a co-NEXPTIME algorithm that checks whether B E A.

Proof. By the previous theorem, B E A if and only if B EJ A. Testing whether
B is a subuniverse is in co-NEXPTIME (and might even be complete for this class,
see [13]). Once this is established, we can check in EXPTIME whether there exists
a Jónsson chain witnessing B EJ A in the same manner as in [1, Corollary 7.1].
(Basically, generate all ternary polymorphisms and check for a Jónsson chain
there.)

Let us note that our proof uses the Bounded width theorem [5], and hence this
approach cannot be generalized beyond the realm of congruence meet semidis-
tributivity. (Still, the origins of absorption theory as well as a large portion of its
applications do come from this context.) See the next section for details.

The algorithm that we provide may not be optimal. Some evidence suggests
that there could be a faster algorithm (see [1, Subsection 7.1] for a related dis-
cussion). The following problem remains open.

Problem 2. Given an SD(∧) relational structure and B ⊆ A, determine the
complexity of deciding whether B E A.

Our proof gives a double exponential bound on the minimal arity of an ab-
sorbing polymorphism, which may not be optimal.

Problem 3 (Problem 25 in [14]). Given an SD(∧) relational structure and B E
A, provide a better bound on the minimal arity of a polymorphism witnessing
this absorption.

4 Instances of the CSP

In this section we briefly introduce a few definitions concerning instances of the
CSP and the key result from [1] needed for the proof of Theorem 3.1. A more
detailed treatment with proofs can be found in [1, Sections 5 and 6].

An instance of the CSP is a triple P = (V,A, C), where A and V are finite sets
(the set of variables and the domain) and C is a finite set of constraints. Each
constraint C ∈ C is a tuple C = (x̄, R), where x̄ ∈ V m and R is an m-ary relation
on A. A solution to P is a mapping ϕ : V → A such that ϕ(x̄) ∈ R for every
(x̄, R) ∈ C.

Let A be a finite idempotent algebra. An instance P = (V,A, C) is an instance
of the CSP over A if all the relations in the constraints from C are subalgebras of
finite powers of A.

Definition 4.1. Let P = (V,A, C) be an instance of the CSP.

• P is a simple binary instance, if C = {((x, y), Rx,y) | x, y ∈ V }, where
Rx,y = R−1

y,x and Rx,x ⊆ {(a, a) | a ∈ A} for all x, y ∈ V .
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• P is a (1, 2)-system with unary projections {Rx | x ∈ V }, if it is a simple
binary instance, ∅ 6= Rx ⊆ A and for all x, y ∈ V , the projection of Rx,y to
the 1st coordinate is Rx.

• P is a (2, 3)-system, if it is a (1, 2)-system and for every x, y, z ∈ V and
(a, b) ∈ Rx,y there exists c ∈ A such that (a, c) ∈ Rx,z and (b, c) ∈ Ry,z.

Let P be a simple binary instance and S = {Sx | x ∈ V } a family of subsets

of A. The restriction of P to S is the simple binary instance P|S with R
P|S
x,y =

RPx,y ∩ (Sx × Sy).

When considering simple binary instances it is natural to talk about “realiz-
ing” trees labeled by variables.

Definition 4.2. Let P = (V,A, C) be a simple binary instance of the CSP.

• A P-tree T is a tree (i.e., an undirected connected graph without cycles)
together with a labeling lbl : V(T )→ V .

• A realization of T is a mapping r : V(T ) → A such that (r(u), r(v)) ∈
Rlbl(u),lbl(v) whenever (u, v) ∈ E(T ).

The following theorem is the key to the proof of the Zádori conjecture as well
as Theorem 3.1.

Theorem 4.3. Let P = (V,A, C) be a (2, 3)-system with unary projections {Rx |
x ∈ V } over an SD(∧) algebra A and let S = {Sx | x ∈ V } be a family of

nonempty subuniverses of A such that Sx EJ Rx. If all P-trees with at most 48|A|

vertices are realizable in P|S , then P|S has a solution.

This theorem is a minor refinement of results from [1]. The proof can be
extracted from there, namely from Theorem 5.6, Proposition 5.3, Remark 5.4
and Theorem 5.7. We omit the proof, as it is quite long and technical. We are
making only two refinements:

First, we relax the condition on A from being congruence distributive to
meet semidistributive. The only time this assumption is used is when invoking
Theorem 4.5 from [5] which says that every (2, 3)-system over an SD(∧) algebra
has a solution (see [1, Remark 5.8]). In fact, this property characterizes finite
SD(∧) algebras. Note that this is the bottleneck of our method: one cannot use
this approach for relational structures without bounded width.

Second, we are working with J -absorbing subuniverses instead of Jónsson
ideals, which slightly simplifies the proof. The only place in the proof where this
difference matters is in [1, Lemma 6.1], namely in the “minimal counterexample”
situation. The proof can be easily adapted; we present the new version here.

Lemma 4.4. Let B be a finite algebra, U ⊆ B, a ∈ U , b ∈ B\U and E ≤ F ≤ B2

such that E EJ F . Assume that (a, a) ∈ E, (b, b) ∈ E and (a, b) ∈ F . Then
there exists c ∈ U and d ∈ B \ U such that (c, d) ∈ E.
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Proof. Let p1, . . . , pn be a Jónsson chain witnessing E EJ F . We define a se-
quence of elements c0, c1, . . . , cn as follows:

c0 = p1(a, a, b) = a,

ci = pi(a, b, b) = pi+1(a, a, b) for 0 < i < n,

cn = pn(a, b, b) = b.

Since (a, a), (b, b) ∈ E and (a, b) ∈ F , it follows that (pi(a, a, b), pi(a, b, b)) ∈ E,
and thus c0, c1, . . . , cn is a directed path from a to b in the digraph (B;E). As
a ∈ U and b /∈ U , there exists i such that ci−1 ∈ U and ci ∈ B \ U .

5 Proof of Theorem 3.1

In [1], the proof of the Zádori conjecture is significantly simplified by first reducing
to binary relational structures. We use the same construction.

Lemma 5.1. Let A be a relational structure and let k be the maximum arity of
a relation of A. There exists a binary relational structure Ā with universe Ak

satisfying the following:

(i) alg Ā = (algA)k (and hence they generate the same variety).

(ii) For any B ⊆ A, B E A via an n-ary term iff Bk E Ā via an n-ary term.
Similarly, B EJ A iff Bk EJ Ā.

Proof. For details of the construction we refer the reader to [1, Proposition 3.1].
Statement (i) is proved there and (ii) follows in the same fashion.

Using Lemma 5.1, it’s enough to prove that given a finite binary SD(∧) rela-

tional structure A and B EJ A, there exists s ∈ PolA of arity 48|A|
+ 1 such that

B E A via s. We can assume that B is nonempty, otherwise the claim is trivial.
Similarly as in [1], the idea is to encode n-ary polymorphisms witnessing

absorption as solutions to an instance of the CSP and then use Theorem 4.3 to
prove that for n “big enough” there is a solution to this instance. Let n = 48|A|

+1.
We define a simple binary instance P = (An, A, {((x, y), Rx,y) | x, y ∈ An}), where

R(a1,...,an),(b1,...,bn) = {(t(a1, . . . , an), t(b1, . . . , bn)) | t ∈ PolA, t is n-ary}.

We summarize the properties of P in a lemma.

Lemma 5.2. The following holds:

(i) P is an instance of the CSP over algA.

(ii) P is a (2, 3)-system with unary projections

R(a1,...,an) = SgalgA({a1, . . . , an}).

(iii) Solutions to P are precisely n-ary polymorphisms of A.

Proof. (i) and (ii) can be verified easily, for (iii) see [1, Proposition 4.5].
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We want to isolate those solutions of P , which witness absorption B E A. In
order to do that, we restrict P to a family S = {Sx | x ∈ An} of subsets of A
defined as follows:

S(a1,...,an) =

{
B ∩R(a1,...,an), if |{i | ai /∈ B}| ≤ 1,

R(a1,...,an), else.

Lemma 5.3. The following holds:

(i) For every x ∈ An, Sx 6= ∅ and Sx EJ Rx.

(ii) Solutions to P|S are precisely n-ary polymorphisms of A witnessing B E A.

(iii) Every P-tree with at most n− 1 vertices is realizable in P|S .

Proof. (i) is easily seen and (ii) follows from the construction of S. To prove
(iii), fix a P-tree T . Note that for every (a1, . . . , an) there exists at most one
i such that ai /∈ S(a1,...,an). As T has less than n vertices, there exists i0 such
that ai0 ∈ S(a1,...,an) whenever (a1, . . . , an) is the label of a vertex of T . The
projection to the i0th coordinate (i.e., the mapping πi0 : An → A defined by
πi0(a1, . . . , an) = ai0 , which is a polymorphism of A) provides a realization of T
in P|S .

Finally, we are ready to apply Theorem 4.3 and conclude that the instance
P|S has a solution s, which is a (48|A|

+ 1)-ary polymorphism witnessing B E A.

6 Reduction to digraphs

This section presents a way to reduce a variety of questions about absorption in
finite relational structures to digraphs. In [9] the authors introduced a construc-
tion devised to show that every CSP over a relational structure A is LOGSPACE

equivalent to the CSP over a digraph D(A) and, moreover, the algebra of poly-
morphisms of the digraph D(A) shares many interesting equational properties
(i.e., Maltsev conditions) with the algebra of polymorphisms of A.

We observe that, interestingly, this construction behaves nicely with respect
to absorption theory as well. Namely, it preserves the property of being an
(J -)absorbing subuniverse as well as the arity of a polymorphism (length of a
Jónsson chain) witnessing the (J -)absorption. Moreover, in a sense, it does not
create any new absorption-free subalgebras. Below we present the construction
in a concise form. For a more thorough description we refer the reader to [9,
Section 4].

6.1 Preliminaries

An oriented path is a digraph obtained from an undirected path by giving each
edge an orientation. We require that oriented paths have direction and hence
an initial and a terminal vertex. By a zigzag and a single edge we mean the
oriented paths •→ •← •→ • and •→ •, respectively. Let us denote by u the
concatenation of oriented paths (identifying the terminal vertex of the first one
with the initial vertex of the second one).
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Let G be a digraph and a, b ∈ G. We say that a and b are connected, if there
exists an oriented path P and a homomorphism ϕ : P → G mapping the initial
and terminal vertex of P to a and b, respectively. Connectedness is an equivalence
relation on G; its classes are the connected components of G and G is connected
if it consists of a single connected component.

A connected digraph is balanced if it admits a level function L, where L(b) =
L(a) + 1 whenever (a, b) is an edge and the minimum level is 0. The maximum
level is called the height of the digraph.

Given a digraph G = (G;E) and n > 0, the nth direct power of G is the
digraph Gn = (Gn;En), i.e., (ā, b̄) is an edge in Gn iff ai → bi for all i ≤ n. (The
direct product of possibly distinct digraphs is defined similarly.)

6.2 The construction

Let A = (A;R1, . . . , Rn) be a finite relational structure. Denote by k the sum
of arities of the relations Ri and by R the k-ary relation R1 × · · · × Rn. (As
algA = alg(A;R), we could without loss of generality assume that A has just
one relation.) We make a technical assumption that R 6= ∅.

For every e ∈ A×R, we define an oriented path Pe (of height k+ 2). Say that
e = (a, (a1, . . . , ak)), then

Pe = •→ •u Pe,1 u Pe,2 u . . . u Pe,k u •→ •

where Pe,i is a single edge if a = ai, and a zigzag else. Finally, let D(A) be the
digraph obtained from (A ∪ R;A× R) by replacing every e = (a, r) ∈ A× R by
the oriented path Pe (identifying the initial and terminal vertices of Pe with a
and r, respectively).

The digraph D(A) is balanced of height 2k + 1. For computational questions
it is useful to note that the size of D(A) is roughly k|A|k. Precise bounds can be
found in [9, Remark 1].

6.3 Results

It is straightforward to prove that A is pp-definable from D(A) (see [9, Lemma
3]). It follows that A and R are subuniverses of D(A) and for any f ∈ PolD(A),
the restriction f |A is a polymorphism of A. Consequently, for any idempotent
Maltsev condition Σ, algD(A) |= Σ implies that algA |= Σ.

The following result, which will appear in [9], provides a partial converse to
this implication.

Theorem 6.1. Let A be a finite relational structure. Let Σ be a linear idempotent
Maltsev condition such that the algebra of polymorphisms of the zigzag satisfies Σ
and each identity in Σ is either balanced or contains at most two variables. Then
algA |= Σ if and only if algD(A) |= Σ.

The above condition on Σ includes most of the Maltsev conditions commonly
encountered in the algebraic approach to the CSP (some of them are listed in [9])
with the one important exception being having a Maltsev term.

The following lemma demonstrates that the reduction to digraphs indeed
works well with the notion of absorption.
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Lemma 6.2. Let A be a finite relational structure and B ⊆ A. Then the following
holds.

(i) B E A via an m-ary polymorphism iff B E D(A) via an m-ary polymor-
phism.

(ii) B EJ A via a chain of length m iff B EJ D(A) via a chain of length m.

Proof. To prove (i), assume that B E A via an m-ary t ∈ PolA. As t is an
operation on A, it also acts coordinatewise on R. For every ā ∈ Am and r̄ ∈
Rm there exists a homomorphism from the connected component of

∏m
i=1 P(ai,ri)

containing ā to P(t(ā),t(r̄)) (see [9] for the technical details). Let us fix such a
homomorphism and call it Φā,r̄.

We define an m-ary operation t′ on D(A). Let x̄ ∈ D(A)m be arbitrary.

1. If {x1, . . . , xm} ⊆ A or {x1, . . . , xm} ⊆ R, we put t′(x̄) = t(x̄). (Note that t
acts coordinatewise on R.)

2. If L(x1) = . . .L(xm) = l for some l /∈ {0, k+ 2}, then let ai, ri be such that
xi ∈ P(ai,ri). We define t′(x̄) = Φā,r̄(x̄) if x̄ and ā are connected in D(A)m,
and t′(x̄) = x1 else.

3. If there exists i ∈ [m] and l > l′ such that L(xi) = l and L(xj) = l′ for all
j 6= i, then t′(x̄) = x2 if i = 1 and t′(x̄) = x1 else.

4. In all other cases we define t′(x̄) = x1.

The absorption condition is obviously satisfied. To verify that t′ ∈ PolD(A),
note that if xi → yi for i ∈ [m], then x̄ and ȳ fall under the same case of the
definition of t′. The rest is easy. We omit the proof of (ii), as it is similar yet
more technical. One can adapt the proof of Theorem 6.1 to obtain both (i) and
(ii).

The next lemma describes absorption free subalgebras of D(A).

Lemma 6.3. Let C ≤ D(A) be absorption free. Then there exists an absorption
free algebra B ∈ SPfin(algA) and a congruence α ∈ ConC such that B ' C/α.
Moreover, classes of α are at most two-element and possess a semilattice opera-
tion.

Proof. Let us define the following binary operation ? on D(A).

1. If L(x) > L(y), then we define x ? y = y.

2. If L(x) = L(y), x, y ∈ Pe for some e ∈ A × R and y is closer to the initial
vertex of Pe than x, then we define x ? y = y.

3. In all other cases we put x ? y = x.

It is not hard to verify that ? is a polymorphism of D(A) and that A E D(A) via
?; and so C 6= D(A).

We will prove that all the vertices from C have the same level. Let D de-
note the set of elements of C with minimum level, i.e., D = {d ∈ C | L(d) ≤
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L(c) for all c ∈ C}. Below we show that D is pp-definable from D(A), and thus
D ≤ C. Since D E C via ? and C is absorption free, it then follows that D = C.

Let D = {d1, . . . , dm} be an enumeration of all vertices from D. The tuple d̄ =
(d1, . . . , dm) cannot form a singleton connected component of D(A)m. (Otherwise
we could define for every v ∈ D(A) an m-ary polymorphism tv by setting tv(d̄) =
v and tv(x̄) = x1 for all other connected components; and so the subuniverse
generated by D would be the whole D(A).) It follows that there exist ā ∈ Am

and an oriented path P connecting ā to d̄ in D(A)m (see [9], Lemma 6). Let us
denote the initial and terminal vertex of P by p and q, respectively. The set D
can be expressed in the following way:

D = C ∩ {ϕ(q) | ϕ : P→ D(A) is a homomorphism and ϕ(p) ∈ A}.

The right hand side is definable by a primitive positive formula in D(A), which
concludes the proof that D is a subuniverse.

We may assume that neither C ≤ A nor C ≤ R, otherwise the proof is
trivial. For every c ∈ C let ac ∈ A and rc ∈ R be such that c ∈ P(ac,rc). Define
AC = {ac | c ∈ C}, RC = {rc | c ∈ C}, B = AC × RC and α = {(c, c′) ∈ C2 |
(ac, rc) = (ac′ , rc′)}.

Using a similar argument as before, it is not hard to verify that AC ≤ A
and RC ≤ R; therefore B ∈ SPfin(algA). The equivalence relation α is pp-
definable (the defining formula is either (x, y ∈ C)&(∃z)(x → z ← y) or (x, y ∈
C)&(∃z)(x ← z → y)); and so α ∈ ConC. Every α-class K is a subset of
C ∩Pe for some e ∈ A×R, so K is at most two element, and ?|K is a semilattice
operation.

The mapping ϕ : C → B defined by ϕ(c) = (ac, rc) is a surjective homo-
morphism whose kernel is α. (This is an easy exercise.) Thus, by the First
Isomorphism Theorem, C/α ' B. To conclude the proof, note that since C is
absorption free, then so is C/α ' B, that is, unless C/α is one element. However,
in that case ? is a semilattice operation on C and thus C cannot be absorption
free; a contradiction.

7 Always absorbing algebras

We conclude the paper by presenting an open problem in absorption theory that
we find particularly interesting: the problem of always absorbing algebras.

Definition 7.1. Let A be a finite idempotent algebra. We say that A is always
absorbing (AA) if for every B ≤ A there exists b ∈ B such that {b} E B.

The property of being always absorbing is inherited by all finite algebras in
the variety generated by A. The following lemma gives an equivalent defini-
tion of always absorbing algebras. (The proof is elementary; all the facts about
absorption that are needed can be found in [6].)

Lemma 7.2. A finite idempotent algebra A is always absorbing, if and only if
there exist no absorption free algebras in HSPfin(A).

Barto and Kozik recently discovered a new characterization of finite idempo-
tent SD(∧) algebras. An algebra A has a pointed term if there exists t ∈ Clo A
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(say n-ary), (a1, . . . , an) ∈ An and c ∈ A such that

t(b1, . . . , bn) = c whenever |{i | ai 6= bi}| ≤ 1.

Theorem 7.3 (to appear in [6]). A finite idempotent algebra A is SD(∧), if and
only if every B ≤ A has a pointed term.

It is easily seen that if an algebra has a singleton absorbing subuniverse, then
the term witnessing this absorption is a pointed term, which implies the following:

Corollary 7.4. Let A be a finite idempotent algebra. If A is AA, then it is
SD(∧).

Not every finite idempotent SD(∧) algebra is AA (for example, the “rock,
paper, scissors” 2-semilattice on {0, 1, 2} given by 0 < 1, 1 < 2 and 2 < 0 is
not). However, the class of AA algebras includes two important classes of SD(∧)
algebras: algebras with a near unanimity term and algebras with a semilattice
term. Moreover, several theorems, proofs and algorithms around the algebraic
approach to the CSP (a prototypical example being the Bounded width theorem
[5]) get significantly simpler when restricted to AA algebras. Hence the following
problem:

Problem 4. Characterize AA algebras, at least in the finitely related case.

Lemma 6.3 shows that the class of finitely related AA algebras is determined
by digraphs.
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[12] Maróti, M.: On the (un)decidability of a near-unanimity term. Algebra Uni-
versalis 57(2), 215-–237 (2007)

[13] Willard, R.: Testing expressibility is hard. In: Proceedings of the 16th Inter-
national Conference on Principles and Practice of Constraint Programming
(CP 2010). Lecture Notes in Computer Science 6308, 9–23 (2010)

[14] Open Problems from the Workshop on Algebra and CSPs. Fields Institute
for Research in Mathematical Sciences, Toronto (2011) http://www.karlin.
mff.cuni.cz/~barto/Articles/fields-2011-problems.pdf

59



Part III

Oriented trees



On the complexity of H-coloring for special
oriented trees

Jakub Buĺın

Abstract

For a fixed digraph H, the H-coloring problem is the problem of deciding
whether a given input digraph G admits a homomorphism to H. The CSP
dichotomy conjecture of Feder and Vardi is equivalent to proving that, for
any H, the H-coloring problem is in in P or NP-complete. We confirm this
dichotomy for a certain class of oriented trees, which we call special trees
(generalizing earlier results on special triads and polyads). Moreover, we
prove that every tractable special oriented tree has bounded width, i.e., the
corresponding H-coloring problem is solvable by local consistency check-
ing. Our proof relies on recent algebraic tools, namely characterization of
congruence meet-semidistributivity via pointing operations and absorption
theory.

Introduction

The Constraint Satisfaction Problem (CSP) provides a common framework for
various problems from theoretical computer science as well as for many real-life
applications (e.g. in graph theory, database theory, artificial intelligence, schedul-
ing). Its history dates back to 1970s and it has been central to the development
of theoretical computer science in the past few decades.

For a fixed (finite) relational structure A, the Constraint Satisfaction Problem
with template A, or CSP(A) for short, is the following decision problem:

INPUT: A relational structure X (of the same type as A).
QUESTION: Is there a homomorphism from X to A?

For a (directed) graph H, CSP(H) is also commonly referred to as the H-coloring
problem.

A lot of interest in this class of problems was sparked by a seminal work of
Feder and Vardi [20], in which the authors established a connection to computa-
tional complexity theory: they conjectured a large natural class of NP decision
problems avoiding the complexity classes strictly between P and NP-complete
(assuming that P 6=NP). Many natural decision problems, such as k-SAT, graph
k-colorability or solving systems of linear equations over finite fields belong to this
class. They also proved that each problem from this class can be reduced in poly-
nomial time to CSP(A), for some relational structure A. Hence their conjecture
can be formulated as follows.
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Conjecture 1 (The CSP dichotomy conjecture). For every (finite) relational
structure A, CSP(A) is in P or NP-complete.

At that time this conjecture was supported by two major cases: Schaefer’s
dichotomy result for two-element domains [33] and the dichotomy theorem for
undirected graphs by Hell and Nešetřil [26]. A major breakthrough followed the
work of Jeavons, Cohen and Gyssens [29], later refined by Bulatov, Jeavons and
Krokhin [15], which uncovered an intimate connection between the constraint
satisfaction problem and universal algebra. This connection brought a better
understanding of the known results as well as a number of new results which
seemed out of reach for pre-algebraic methods. The most important results in-
clude dichotomy for three-element domains [14] and for conservative structures
(i.e., containing all subsets as unary relations) [13] by Bulatov (see also [2]), a
characterization of solvability by the few subpowers algorithm (a generalization
of Gaussian elimination) by Berman et al [11, 28] and solvability by local con-
sistency checking (so-called bounded width) by Barto and Kozik [6] (conjectured
in [31]). Larose and Tesson [30] successfully applied the theory to study finer
complexity classes of CSPs.

The connection between CSPs and algebras turned out to be fruitful in both
directions; it has lead to a discovery of important structural properties of finite
algebras. Of particular importance to us is the theory of absorption by Barto
and Kozik [4, 9] and a characterization of congruence meet-semiditributivity via
pointing operations by Barto, Kozik and Stanovský [5, 9].

In the paper [20], Feder and Vardi also constructed, for every structure A,
a directed graph D(A) such that CSP(A) and CSP(D(A)) are polynomial-time
equivalent. Hence the CSP dichotomy conjecture is equivalent to its restriction
to digraphs. A variant of this reduction (which is, in fact, logspace) is studied
by the author, Delić, Jackson and Niven in [17, 18], where we prove that most
properties relevant to the CSP carry over from A to D(A). As a consequence,
the algebraic conjectures characterizing CSPs solvable in P [15], NL and L [30]
are equivalent to their restrictions to digraphs. The digraphs D(A) are, in fact,
special balanced digraphs in the terminology of this paper, a generalization of
special triads, special polyads and special trees discussed below.

Using the algebraic approach, Barto, Kozik and Niven confirmed the conjec-
ture of Bang-Jensen and Hell and proved dichotomy for smooth digraphs (i.e.,
digraphs with no sources and no sinks) [8]. The dichotomy was also established
for a number of other classes of digraphs, e.g. oriented paths (which are all
tractable) [22] or oriented cycles [19].

This paper is concerned with H-coloring for oriented trees. In the class of all
digraphs, oriented trees are in some sense very far from smooth digraphs, and the
algebraic tools seem to be not yet developed enough to deal with them. Hence
oriented trees serve as a good field-test for new methods.

Except the oriented paths, the simplest class of oriented trees are triads (i.e.,
oriented trees with one vertex of degree 3 and all other vertices of degree 2 or 1);
the CSP dichotomy remains open even for triads. Among the triads, Hell, Nešetřil
and Zhu [23, 24] identified a (fairly restricted) subclass, for which they coined the
term special triads and which allowed them to handle at least some examples.
For instance, they constructed a special triad with NP-complete H-coloring.

In [7], Barto et al used algebraic methods to prove that every special triad
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has NP-complete H-coloring, or a compatible majority operation (so-called strict
width 2 ) or compatible totally symmetric idempotent operations of all arities
(so-called width 1 ). In [3], the author and Barto established the CSP dichotomy
conjecture for special polyads, a generalization of special triads where the one
vertex of degree > 2 is allowed to have an arbitrary degree. In particular, every
tractable core special polyad has bounded width. However, there are special
polyads which have bounded width, but neither bounded strict width nor width 1.

In this paper we study special trees, a broad generalization of special triads
and special polyads. Special trees have an underlying structure of a height 1
oriented tree (see the definition in Section 1) and while for special triads it has
only 7 vertices and for special polyads it has radius 2, for general special trees it
can be arbitrary.

We confirm the CSP dichotomy conjecture for special trees and, moreover,
prove that every tractable core special tree has bounded width. The proof uses
modern tools from the algebraic approach to the CSP (in particular, absorption
and pointing operations [9]) and is somewhat simpler and more natural than
the proofs in [7] and [3]. Therefore we believe that there is hope for further
generalization. In particular, we conjecture that tractability implies bounded
width for all oriented trees.

1 Special trees & the main result

In this section we define special trees and state the main result of this paper. The
notions used here will be defined later, in Sections 2 and 3.

Definition 1.1. An oriented path P with initial vertex a and terminal vertex b
is minimal if

• lvl(a) = 0,

• lvl(b) = hgt(P), and

• 0 < lvl(v) < hgt(P) for every v ∈ P \ {a, b}.
Minimal paths have the property that their net length (the number of forward

edges minus the number of backward edges) is strictly greater than the net length
of any of their subpaths; hence the name. An example of a minimal path is
depicted in Figure 1 below.

initial vertex

terminal vertex

Figure 1: A minimal path

We will need the following well known fact. The proof can be found in [27].
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Lemma 1.2. Let P1,P2, . . .Pk be minimal paths of the same height h. There
exists a minimal path Q of height h such that for every i ∈ [k] there exists an
onto homomorphism Q→ Pi.

We are now ready to define special trees.

Definition 1.3. Let T = (T ;E) be an oriented tree of height 1. A T-special
tree of height h is an oriented tree obtained from T by replacing every edge
(a, b) ∈ E with some minimal path P(a,b) of height h, preserving orientation.
(That is, identifying the initial vertex of P(a,b) with a and the terminal vertex
with b. We require the vertex sets of the minimal paths to be pairwise disjoint
and also disjoint with T .)

• A special triad (as defined in [7]) is a T-special tree with

T =

• A special polyad (as defined in [3]) is a T-special tree with

. . .

. . .

. . .T =

• A special tree is simply a T-special tree for some height 1 oriented tree T.

As an example, in Figure 2 below we present a special triad constructed in
[7], which has NP-complete H-coloring (and is conjectured to be the smallest
oriented tree with this property). The vertices from the bottom and top level are
marked by � and �, respectively.

Figure 2: A special triad; the smallest known oriented tree with NP-complete
H-coloring problem (39 vertices).

The following theorem is the main algebraic result of our paper.
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Theorem 1.4. Let H be a special tree. If the algebra of idempotent polymorphisms
of H is Taylor, then it is congruence meet-semidistributive.

As a consequence, we confirm the dichotomy of H-coloring for special trees.

Corollary 1.5. The CSP dichotomy conjecture holds for special trees. For any
core special tree H, CSP(H) is NP-complete or H has bounded width.

We will prove Theorem 1.4 and Corollary 1.5 in Section 4.

2 Preliminaries

In this section we introduce basic notions and fix notation used throughout the
paper. We assume the reader possesses some knowledge of graph theory and basic
universal algebra.

We recommend [25] for a detailed exposition of digraphs, relational structures
(under the name “general relational systems”) and their homomorphisms as well
as an introduction to graph coloring and constraint satisfaction. For an intro-
duction to the notions from universal algebra that are not explained in detail in
this paper we invite the reader to consult [10]. Primary source for the algebraic
approach to the CSP is the paper [15].

Our aim is to make the paper accessible to a wider audience outside of univer-
sal algebra. Thus we refrain from using specialist terminology wherever possible,
or move it to explanatory remarks which the reader may skip.

2.1 Notation

For a positive integer n we denote the set {1, 2, . . . , n} by [n]; we set [0] = ∅.
We write tuples using boldface notation, e.g., a = (a1, a2, . . . , ak) ∈ Ak. When
ranging over tuples we use superscripts, e.g. (a1, a2, . . . , an) ∈ (Ak)n, where
ai = (ai1, a

i
2, . . . , a

i
k), for i ∈ [n]. We sometimes write 〈a1a2 . . . 〉 to denote a

sequence of elements.

2.2 Relational structures

An n-ary relation on a set A is a subset R ⊆ An. A (finite) relational structure
A is a finite, nonempty set A equipped with finitely many relations R1 . . . Rm on
A; we write A = (A;R1, . . . , Rm).

Let B = (B;S1, . . . , Sm) be a relational structure of the same type as A (i.e.,
same number of relations and corresponding relations have the same arity). A
mapping ϕ : A → B is a homomorphism from A to B, if for each i ∈ [m] and
a ∈ Ri (say k-ary) we have (ϕ(a1), . . . , ϕ(ak)) ∈ Si. We write ϕ : A→ B to mean
that ϕ is a homomorphism from A to B, and A→ B to mean that there exists a
homomorphism from A to B.

For every A there exists a relational structure A′ such that A → A′ and
A′ → A and A′ is of minimal size with respect to these properties; that structure
A′ is called the core of A (it is unique up to isomorphism); A is a core if it is the
core of itself.

We will be almost exclusively interested in a special type of relational struc-
tures: directed graphs.
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2.3 Digraphs

A digraph (short for “directed graph”) is a relational structure G = (G;→) with
a single binary relation →⊆ G2. We call u ∈ G and (u, v) ∈→ (usually written
as u → v) vertices and edges of G, respectively. A digraph G′ = (G′;→′) is a
subgraph of G, if G′ ⊆ G and→′⊆→. It is an induced subgraph if→′=→ ∩(G′)2.

An oriented path is a digraph P which consists of a non-repeating sequence of
vertices 〈v0v1 . . . vk〉 (allowing for the degenerate case k = 0) such that precisely
one of (vi−1, vi), (vi, vi−1) is an edge, for each i ∈ [k]. We require oriented paths
to have a fixed direction, and thus an initial and a terminal vertex.

For a, b ∈ G we say that a is connected to b in G via an oriented path P, if P is
a subgraph of G and a and b are the initial and terminal vertex of P, respectively.
The distance of a and b in G is then the number of edges in the shortest oriented
path P′ connecting a to b in G. Connectivity is an equivalence relation, its classes
are components of connectivity of G and G is connected if it consists of a single
component of connectivity.

For n > 0, the nth direct power of G is the digraph Gn = (Gn,→n), i.e., its
vertices are n-tuples of vertices of G and the edge relation is

{(u,v) ∈ (Gn)2 | ui → vi for all i ∈ [n]}.
Connectivity in direct powers of digraphs will play an important role.

An oriented tree is a connected digraph containing no oriented cycles. Equiv-
alently, it is a digraph in which every two vertices are connected via a unique ori-
ented path. Oriented paths and trees are natural examples of balanced digraphs:
a connected digraph is balanced if it admits a level function lvl : G → N ∪ {0},
where lvl(b) = lvl(a) + 1 whenever (a, b) is an edge, and the minimum level is 0.
The maximum level is called height and denoted by hgt(G).

2.4 Algebras

A k-ary operation on a set A is a mapping f : Ak → A. By an algebra we mean
a pair A = (A;F), where A is a nonempty set and F is a set of operations on
A (so-called basic operations of A). We denote by Clo(A) the set of all term
operations of A (i.e., operations obtained from F together with the projection
operations by composition).

A subset B ⊆ A is a subuniverse of A (denoted by B ≤ A) if it is closed
under all (basic, or equivalently term) operations of A. A nonempty subuniverse
B is an algebra in its own right, equipped with operations of A restricted to B,
i.e., (B; {f |B | f ∈ F}). We will frequently use the fact that an intersection of
subuniverses is again a subuniverse.

An operation is idempotent if f(x, x, . . . , x) = x for all x ∈ A. An algebra is
idempotent if all of its (basic, or equivalently term) operations are idempotent.
Note that an algebra A is idempotent, if and only if {a} ≤ A for every a ∈ A.

For n > 0, the nth power of A is the algebra An = (An; {f×· · ·×f | f ∈ F})
where f ×· · ·× f means that f is applied to n-tuples of elements coordinatewise.

We write C ≤ B ≤ A to mean that both B and C are subuniverses of A and
C ⊆ B. In particular, if B and C are subuniverses of A, then E ≤ B ×C means
that E is a subuniverse of A2 contained in B × C (which is a subuniverse of A2

as well).
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All algebras we will work with will be subuniverses of a certain finite idempo-
tent algebra (or rarely of its 2nd power): the algebra of idempotent polymorphisms
of some fixed relational structure.

2.5 Algebra of idempotent polymorphisms

Note that a digraph homomorphism is simply an edge-preserving mapping. The
notion of digraph polymorphism is a natural generalization to higher arity oper-
ations:

Let G = (G;→) be a digraph. A k-ary (k > 0) operation ϕ on G is a
polymorphism of G, if it is a homomorphism from Gk to G. This means that
ϕ preserves edges in the following sense: if ai → bi for i ∈ [k], then ϕ(a) →
ϕ(b). The notions of kth direct power, preserving a relation, and polymorphism
generalize naturally to relational structures.

Let A be a relational structure. The algebra of idempotent polymorphisms of
A is the algebra algA = (A; IdPol(A)), where IdPol(A) denotes the set of all
idempotent polymorphisms of A; we write IdPolk(A) to denote its k-ary part.

A relation S ⊆ An is primitive positive definable from A with constants, if it is
definable by an existentially quantified conjunction of atomic formulæ of the form
xi = a or R(xi1 , . . . , xij), where a ∈ A and R is one of the relations of A. The
following fact, based on the Galois correspondence between clones and relational
clones [12, 21] is central to the algebraic approach to the CSP.

Lemma 2.1 (see [15, Proposition 2.21]). A relation S ⊆ An is primitive positive
definable from A with constants, if and only if S is a subuniverse of (algA)n.

The connection between universal algebra and constraint satisfaction is dis-
cussed in detail in [15, 16].

3 Algebraic tools

In this section we introduce the universal algebraic tools we will use in our proof.
Recall that for a fixed relational structure A, the Constraint satisfaction problem
for A is membership problem for the set CSP(A) = {X | X → A}. Note that if
A′ is the core of A, then CSP(A) = CSP(A′).

Of particular importance to the CSP are the following two well known classes
of finite algebras: Taylor algebras (called “active” in [10]) and congruence meet-
semidistributive (SD(∧)) algebras1. Instead of providing direct definitions, we
present the following characterization from [32].

Definition 3.1. A weak near-unanimity (WNU ) on a set A is an n-ary (n ≥ 2)
idempotent operation ω such that for all x, y ∈ A,

ω(x, . . . , x, y) = ω(x, . . . , x, y, x) = · · · = ω(y, x, . . . , x).

Theorem 3.2 ([32]). Let A be a finite algebra.

1Taylor and SD(∧) algebras are also commonly referred to as “omitting type 1” and “omit-
ting types 1, 2”; this terminology comes from Tame Congruence Theory (see [10, Chapter
8]).
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• A is Taylor, if and only if there exists a WNU operation ω ∈ Clo(A).

• A is SD(∧), if and only if there exists n0 such that for all n ≥ n0 there
exists an n-ary WNU operation ωn ∈ Clo(A).

The Algebraic CSP dichotomy conjecture ([15], see also [16, Conjecture 1])
asserts that being Taylor is what distinguishes (algebras of idempotent polymor-
phisms of) tractable core relational structures from the NP-complete ones; the
hardness part is known.

Theorem 3.3 ([15]). Let A be a core relational structure. If algA is not Taylor,
then CSP(A) is NP-complete.

A relational structure A is said to have bounded width [20], if CSP(A) is solv-
able by “local consistency checking” algorithm (or rather algorithmic principle).
We refer the reader to [6] for a detailed exposition. This property is character-
ized (for cores) by congruence meet-semidistributivity; the characterization was
conjectured, and the “only if” part proved, in [31].

Theorem 3.4 ([6],“Bounded Width Theorem”). A core relational structure A
has bounded width (implying that CSP(A) is in P), if and only if algA is SD(∧).

The proof of the Bounded Width Theorem uncovered a new characterization
of SD(∧) algebras via so-called pointing operations as well as the concept of
absorbing subuniverse, which turned out to be quite useful even outside of the
realm of congruence meet-semidistributivity (see [4, 9]).

3.1 Pointing operations

Pointing operations were first used in [5]. More details as well as a proof of the
characterization theorem we need are in the manuscript [9].

Definition 3.5. Let f be an n-ary idempotent operation on a set A and X, Y
nonempty subsets of A. We say that f weakly points X to Y , if there exist
a1, . . . , an ∈ An such that for every i ∈ [n] and x ∈ X we have

f(ai1, . . . , a
i
i−1, x, a

i
i+1, . . . , a

i
n) ∈ Y

(where x is in the ith place). We refer to a1, . . . , an as witnessing tuples.

The word “weakly” means that we can have different witnessing tuples for dif-
ferent coordinates, as opposed to (strongly) pointing operations from [9]. For
f : Ak → A and g : An → A, we denote by g <− f the kn-ary operation on A
defined by

(g<−f)(x1, . . . , xkn) = g(f(x1, . . . , xk), f(xk+1, . . . , x2k), . . . , f(x(n−1)k+1, . . . , xnk)).

We will need the following easy observation.

Observation 3.6. If f : Ak → A weakly points X to Y and g : An → A weakly
points Y to Z, then g <− f weakly points X to Z.
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Proof. Let the witnessing tuples for f weakly pointing X to Y and g weakly
pointing Y to Z be a1, . . . , ak and b1, . . . ,bn, respectively. For i ∈ [n] and
j ∈ [k] define ci,j ∈ Ank to be the following tuple:

ci,j = (bi1, b
i
1, . . . , b

i
1, b

i
2, b

i
2, . . . , b

i
2, . . . , b

i
i−1, b

i
i−1, . . . , b

i
i−1,

aj1, a
j
2, . . . , a

j
k, b

i
i+1, b

i
i+1, . . . , b

i
i+1, . . . , b

i
n, b

i
n, . . . , b

i
n),

where bil appears k-times for every l ∈ [n] \ {i}. It is straightforward to verify
(using idempotency of f) that g<−f weakly points X to Z with witnessing tuples
c1,1, c1,2, . . . , c1,k, c2,1, . . . , cn,k.

Of particular interest are term operations weakly pointing the whole alge-
bra (or a subuniverse) to a singleton, due to the following characterization of
congruence meet-semidistributivity.

Definition 3.7. Let A be a finite idempotent algebra. We say that A has a
weakly pointing operation, if there exists τ ∈ Clo A and a ∈ A such that τ weakly
points A to {a}.
Theorem 3.8 ([9, Theorem 1.3]). A finite idempotent algebra A is SD(∧), if and
only if every nonempty subuniverse B ≤ A has a weakly pointing operation.

Remark. Using this characterization it is easy to prove that given a finite idempo-
tent algebra A, the class of all SD(∧) members of the pseudovariety generated by
A (that is, quotients of subuniverses of finite powers of A) is closed under taking
products, subalgebras and quotients. In particular, we will need the following
fact.

Lemma 3.9 ([9, Proposition 2.1(6)]). Let A be a finite idempotent algebra and
B,C its nonempty subuniverses. If B and C are SD(∧), then B ×C (considered
as a subuniverse of A2) is SD(∧) as well.

3.2 Absorbing subuniverses

We briefly introduce basic notions and facts from the theory of absorption of
Barto and Kozik. For more details see [4, 9].

Definition 3.10. Let A be an algebra and B ≤ A a nonempty subuniverse. We
say that B is an absorbing subuniverse of A, and write B E A, if there exists an
idempotent τ ∈ Clo A such that

τ(A,B,B, . . . , B,B) ⊆ B,

τ(B,A,B, . . . , B,B) ⊆ B,

...

τ(B,B,B, . . . , B,A) ⊆ B.

We also say that B absorbs A via τ and call τ an absorbing operation.

Note that B absorbs A via τ (say n-ary), if and only if τ (strongly) points A to B
and any tuple b ∈ Bn can serve as a witnessing tuple for that. Hence absorption
is somewhat stronger than pointing operations.

In applications of absorption theory an important role is played by algebras
with no proper absorbing subuniverses, the absorption-free algebras.
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Definition 3.11. An algebra A is absorption-free, if |A| > 1, and B E A implies
that B = A.

The following corollary, which is an easy consequence of Theorem 3.8, will be
applied several times in our proof.

Corollary 3.12 (see [9, Corollary 2.13]). A finite idempotent algebra A is SD(∧),
if and only if every absorption-free subuniverse B ≤ A has a weakly pointing
operation.

We will use without further notice the following easy facts about absorption:

Lemma 3.13 ([4, Proposition 2.4]). Let A be a finite idempotent algebra.

• If B E A and C E B, then C E A.

• If B E A (via τ) and C ≤ A and B ∩ C 6= ∅, then B ∩ C E C (via τ |C).

4 The proof

Let us start by introducing notation used throughout the proof. Let T = (T ;E)
be an oriented tree of height 1, with T = A ∪̇ B and E ⊆ A × B. We will
sometimes write a 99K b to mean (a, b) ∈ E. Let H = (H;→) be a T-special tree
of height h such that algH is Taylor. Our aim is to prove that algH is SD(∧).
We divide the proof into several steps organized into subsections.

4.1 Reduction to the top and bottom levels

Our first step is to show that we can focus only on the top and bottom level of H,
i.e., the sets (indeed, subuniverses) A and B. This is the property that justifies
the definition of special trees. The reduction was already described in detail in
[3] (although the construction there is different).

Lemma 4.1. Both A and B are subuniverses of algH. Moreover, E ≤ A × B
(≤ (algH)2).

Proof. By Lemma 2.1, it is enough to show that A, B and E are primitive positive
definable from H with constants (although in fact, we will not need the constants).
Let Q be a minimal oriented path of height h which maps homomorphically onto
Pe for all e ∈ E, given by Lemma 1.2. Let us denote by u and v the initial and
terminal vertex of Q, respectively. The binary relation E is equal to the set

{(ϕ(u), ϕ(v)) | ϕ : Q→ H is a homomorphism},
which can be expressed by a primitive positive formula. Consequently, (∃y)(x 99K
y) and (∃y)(y 99K x) provides us with primitive positive definitions of A and B,
respectively.

It is useful to observe that an n-ary polymorphism can be defined on different
components of connectivity of Hn independently; to verify that it preserves the
edges one has to be concerned with inputs from one component at a time only.
Among the components a prominent one is the component containing the diag-
onal: For n > 0 we denote by ∆n the component of connectivity of the digraph
Hn containing the diagonal (i.e., the set {(v, . . . , v) : v ∈ H}).
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Lemma 4.2. For any n > 0, (An ∪Bn) ⊆ ∆n.

Proof. It is easily seen that the set (An ∪ Bn) is connected in the digraph Tn.
Let (a,b) be an edge in Tn (i.e., ai 99K bi for i ∈ [n]). Let Q be a minimal
oriented path of height h which maps homomorphically onto all the paths {P(ai,bi) |
i ∈ [n]}, whose existence is provided by Lemma 1.2. For every i ∈ [n] let
ϕi : Q → P(ai,bi) be a homomorphism. Then the mapping ϕ : Q → Hn given
by ϕ(x) = (ϕ1(x1), . . . , ϕn(xn)) is also a homomorphism and it maps the initial
and terminal vertex of Q to a and b, respectively. This shows that a and b are
connected in Hn (via ϕ(Q)). Consequently, the whole set (An ∪Bn) is connected
in Hn. As it intersects the diagonal, it follows that (An ∪Bn) ⊆ ∆n.

In the next lemma we prove that every polymorphism which is a WNU on
the top and bottom levels can be modified to obtain a polymorphism satisfying
the WNU property everywhere. In Corollary 4.4 below we combine this fact with
Theorem 3.2 to obtain the desired result. The assumption that n > 2 is there
only to avoid a technical nuisance; in fact, the claim is true for n = 2 as well
(see [3]).

Lemma 4.3. Let n ≥ 3 and let τ ∈ IdPoln(H) be such that τ |A and τ |B are WNU
operations on A and B, respectively. Then there exists τ ′ ∈ IdPoln(H) which is a
WNU on H.

Proof. Let us fix an arbitrary linear order≤E of the set E. We define the following
linear order v on the set H \ (A∪B): for x ∈ P(a,b) and y ∈ P(a′,b′) we put x @ y
if

• (a, b) <E (a′, b′), or

• (a, b) = (a′, b′) and x is closer to a than y (in H).

We split the definition of τ ′ into several cases. Fix x ∈ Hn.

1. If x ∈ An ∪Bn, then we set τ ′(x) = τ(x).

2. If x ∈ ∆n \ (An ∪Bn), then

(a) if {x1, . . . , xn} ⊆ P(a,b) for some (a, b) ∈ E, then we define τ ′(x) to be
the v-minimal element from {x1, . . . , xn},

(b) if there exists i ∈ [n] and e 6= e′ ∈ E such that xi ∈ Pe and xj ∈ Pe′
for all j 6= i, then we define

τ ′(x) = τ(xi, x1, . . . , xi−1, xi+1, . . . , xn),

(c) in all other cases we set τ ′(x) = τ(x).

3. If x /∈ ∆n, then

(a) if lvl(x1) = lvl(x2) = · · · = lvl(xn), then we define τ ′(x) to be the
v-minimal element from {x1, . . . , xn},

(b) if there exists i ∈ [n] and k 6= l such that lvl(xi) = k and lvl(xj) = l
for all j 6= i, then we define τ ′(x) = xi,
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(c) in all other cases we define τ ′(x) = x1.

Let us first comment on subcase (2b) of the construction. Since τ is a
polymorphism, for any (ai, bi) ∈ E, i ∈ [n], it induces a homomorphism from
∆n ∩

∏n
i=1 P(ai,bi) (as an induced subgraph of Hn) to P(τ(a),τ(b)). However, typi-

cally there are many such homomorphisms. Even if τ(a) = τ(a′), τ(b) = τ(b′)
and a′,b′ are just permutations of a,b, the two corresponding homomorphisms
induced by τ can be different. That is why we cannot simply define τ ′(x) = τ(x)
in subcase (2b); the WNU property might not hold.

We divide the proof into two separate claims.

Claim. τ ′ is a polymorphism of H.

Let (x,y) be an edge in Hn. For every i ∈ [n] let ei = (ai, bi) ∈ E be such
that xi, yi ∈ Pei . If x falls under case (1) of the construction, then τ ′(x) = τ(a),
and y falls under one of the subcases of (2). If it is (2a), then e1 = · · · = en = e
for some e = (a, b) ∈ E and y1 = · · · = yn = τ ′(y) = y, where y is the unique
vertex from Pe such that a → y. Hence τ ′(x) → τ ′(y) holds. If it is subcase
(2b), then x = a = (a, . . . , a, a′, a, . . . , a) for some a, a′ ∈ A (where a′ is in the
ith coordinate) and y = (y, . . . , y, y′, y, . . . , y). Using both that τ is a WNU and
a polymorphism we get that τ ′(x) = τ(a) = τ(a′, a, . . . , a) → τ(y′, y, . . . , y) =
τ ′(y). If y falls under subcase (2c), then for every i ∈ [n], yi is the unique
vertex from Pei such that ai → yi and since τ is a polymorphism we get that
τ ′(x) = τ(a)→ τ(y) = τ ′(y).

The argument is similar when y falls under case (1) (and so x under (2)). In
all other situations both x and y fall under the same subcase of the construction.
Note that since xi → yi and xi /∈ A, yi /∈ B (for all i ∈ [n]), it follows that there
is an edge between the v-minimal element of {x1, . . . , xn} and of {y1, . . . , yn}.
This implies τ ′(x)→ τ ′(y) for cases (2a) and (3a).

In cases (2c) and (3c) the polymorphism condition follows immediately from
the fact that τ is a polymorphism (in (2c)) and that x1 → y1 (in (3c)). For
the remaining cases, (2b) and (3b), we have to add the observation that the
distinguished coordinate i ∈ [n] is the same for both x and y.

Claim. τ ′ is a WNU on H.

Let x, y ∈ H be arbitrary. Note that all of the tuples

(y, x, . . . , x), (x, y, x, . . . , x), . . . , (x, . . . , x, y)

fall under the same case (and subcase) of the construction, and that it can be
neither (2c) nor (3c). In case (1) the WNU property follows from the fact that
τ is a WNU on A and B while in cases (2a) and (3a) from the fact that the
construction in these cases is independent of order and repetition of elements. In
case (2b) the result is τ(y, x, . . . , x) for all the tuples in question while in case
(3b) the result is always y.

Corollary 4.4. If both A and B are SD(∧), then algH is SD(∧).

Proof. By Lemma 3.9, A×B (≤ (algH)2) is SD(∧) as well. Hence, by Theorem
3.2, there exists n0 such that for every n ≥ n0 there exists τn ∈ IdPoln(H) such
that (τn×τn)|A×B is a WNU on A×B. This implies that the restrictions of τn to A
and B are WNUs. Using Lemma 4.3 we obtain, for every n ≥ max(n0, 3), a WNU
τ ′n ∈ IdPoln(H). The proof concludes by another application of Theorem 3.2.
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4.2 Singleton absorbing subuniverse

Our next step is to prove that either A or B has a singleton absorbing subuniverse.
This is the one and only place where we use the assumption that algH is Taylor.

Since algH is Taylor, by Theorem 3.2 there exists a WNU operation ω ∈
IdPol(H). Let ◦ : H2 → H be the binary polymer of the WNU ω, that is,

x ◦ y = ω(x, x, . . . , y) = · · · = ω(y, x, . . . , x)

for x, y ∈ H. Note that ◦ ∈ IdPol2(H).
We can and will assume that ω is special in the sense of [1, Definition 6.2], that

is, satisfies x◦ (x◦y) = x◦y. (Here the word special is unrelated to our definition
of special trees.) This property can be enforced by an iterated composition of ω
with itself (i.e., ω <− ω <− . . . <− ω, |H|!-times, see [1, Lemma 6.4]).

For x, y ∈ A ∪B we denote by distE(a, b) the distance of x and y in T. For a
subset C ⊆ A we define the E-neighbourhood of C, denoted by E+(C), to be the
set {b ∈ B | c 99K b for some c ∈ C}. Similarly, the E-neighbourhood of D ⊆ B
is the set E−(D) = {a ∈ A | a 99K d for some d ∈ D}. For brevity we write
E+(c), E−(d) instead of E+({c}), E−({d}). Moreover, for every k ≥ 0, C ⊆ A
and D ⊆ B we inductively define the sets Ek(C) and Ek(D) as follows:

• E0(C) = C and E0(D) = D,

• E1(C) = E+(C) and E1(D) = E−(D), and

• Ek(C) = E1(Ek−1(C)) and Ek(D) = E1(Ek−1(D)) for k > 1.

Note that the above definition can be reformulated as follows:

Ek(C) = {x ∈ A ∪B | (∃ c ∈ C) distE(x, c) ≤ k & distE(x, c) ≡ k (mod 2)},

and similarly for Ek(D). We will frequently use the following easy facts (as well
as the obvious “dual” versions for D ≤ D′ ≤ B), which are all consequences of
the fact that E ≤ (algH)2. We leave the proof to the reader.

Observation 4.5. If C ≤ C ′ ≤ A, then the following holds:

• E+(C) ≤ E+(C ′) ≤ B,

• Ek(C) ≤ A for k even and Ek(C) ≤ B for k odd,

• if k ≤ l and l − k is even, then Ek(C) ≤ El(C),

• if C 6= 0, then there exists k such that Ek(C) = A and Ek+1(C) = B, and

• if C E C ′, then for every k ≥ 0, Ek(C) E Ek(C
′) as well and, moreover,

the absorption is via the same τ ∈ IdPol(H). 2

We are now ready to prove that either A or B has a singleton absorbing sub-
universe and, moreover, that this absorption is realized via the WNU operation ω.

Lemma 4.6. There exists o ∈ A ∪B such that {o} E E2(o) via ω.

2Technically, the absorbing operation is τ |C′ in the first case while it is τ |Ek(C′) in the second
case, but we will neglect this formality.
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Proof. Suppose for contradiction that no such element exists. It follows that for
every u ∈ A∪B there exists w ∈ E2(u) such that u ◦w = v 6= u. Since the WNU
ω is special, we have that u ◦ v = u ◦ (u ◦ w) = u ◦ w = v. Consider the binary
relation � on A ∪B defined by setting u� v if and only if v ∈ E2(u) \ {u} and
u ◦ v = v. We have proved that for every u ∈ A ∪ B there exists v such that
u� v.

Let k be maximal such that there exists a sequence 〈u0u1 . . . uk〉 of elements
of A ∪B with the following properties:

(1) distE(u0, ui) = i for all i ∈ [k], and

(2) ui � ui+2 for all 0 ≤ i ≤ k − 2.

Note that (1) ensures that the sequence is non-repeating and thus, by finiteness
of A ∪ B, such a maximal k exists. The previous paragraph shows that k ≥ 2:
just take 〈a, b, a′〉 for any a, a′ ∈ E−(b) such that a� a′.

Let us assume that uk ∈ A; the proof for uk ∈ B is analogous. Let u′k ∈ A
and u′k+1 ∈ B be such that uk−1 � u′k+1 and uk−1, u′k+1 ∈ E+(u′k) (see the
figure below). We will prove that the sequence 〈u0u1 . . . uk−1u′ku′k+1〉 also satisfies
properties (1) and (2); a contradiction with maximality of k.

uk−2· · · uk−1

uk

u′k u′k+1

First we prove (1). From uk−1 � u′k+1 we get that distE(uk−1, u′k) = 1 and
distE(uk−1, u′k+1) = 2. Since T is a tree, it suffices to rule out the possibility that
u′k = uk−2. In that case uk−2 99K u′k+1, uk−2 99K uk−1 and uk 99K uk−1 would give

ω(uk−2, uk−2, . . . , uk−2, uk) 99K ω(u′k+1, uk−1, . . . , uk−1, uk−1).

The left hand side is uk−2◦uk = uk while the right hand side is uk−1◦u′k+1 = u′k+1;
and so we get uk 99K u′k+1. But uk ∈ E−(uk−1) ∩ E−(u′k+1) would imply that
uk = u′k = uk−2 which contradicts uk−2 � uk.

To prove (2) we only need to establish uk−2 � u′k. From uk−2 99K uk−1,
u′k 99K u′k+1 and the fact that ◦ preserves E we get

uk−2 ◦ u′k 99K uk−1 ◦ u′k+1 = u′k+1.

On the other hand, {uk−2, u′k} ⊆ E−(uk−1), which is a subuniverse, and thus
uk−2 ◦ u′k 99K uk−1. It follows that uk−2 ◦ u′k = u′k; and uk−2 6= u′k is proved
above.

Fix o ∈ A ∪ B given by the previous lemma. To simplify the exposition
we choose that o ∈ A. The proofs are essentially the same in the other case
(moreover, note that reversing edges of H does not change algH).

Since H is an oriented tree, it follows that for every v ∈ H there exists a
unique oriented path Qo,v connecting o to v in H. We define a partial order � on
H by setting u � v if and only if u ∈ Qo,v. Note that o is the minimum element in
this order. Furthermore, for u, v ∈ A∪B, u � v implies distE(o, u) ≤ distE(o, v).
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Lemma 4.7. If a, a′ ∈ A and a � a′, then a◦a′ = a (and similarly for b, b′ ∈ B).
In particular, {o} E A via ω.

Proof. If a = a′, then a ◦ a′ = a follows trivially from idempotency of ω. Else,
there exists k ≥ 0 such that a ∈ Ek(o) and a′ ∈ Ek+2(o) \ Ek(o). From Lemma
4.6 and the last item of Observation 4.5 it follows that Ek(o)EEk+2(o) via ω and
so a ◦ a′ ∈ Ek(o). In particular, a ◦ a′ 6= a′.

Note that l = distE(a, a′) is even and that there exists a unique vertex u ∈
Qo,a′ ∩ (A ∪ B) such that distE(a, u) = distE(u, a′) = l/2. Since a, a′ ∈ El/2(u),
which is a subuniverse, we have a ◦ a′ ∈ El/2(u) while a is the �-minimal element
of El/2(u). It follows that a � a ◦ a′.

Suppose for contradiction that a 6= a◦a′. Then repeating the arguments from
the first paragraph with a ◦ a′ in the role of a′ yields a ◦ (a ◦ a′) 6= a ◦ a′ which
contradicts the fact that ω is a special WNU.

Hence we have proved that a ◦ a′ = a. The proof for b � b′ is essentially the
same. The fact that {o} E A via ω now follows immediately from the definition
of absorption and the fact that o is the �-minimum element of A.

Remark. Incidentally, the Absorption Theorem of Barto and Kozik [4, Theorem
2.3] applied to A, B and E immediately yields that either A or B has a singleton
absorbing subuniverse. We need a slightly stronger fact for our proof (namely
that the absorbing operation is a WNU); it is however likely that the claim of
the Absorption theorem can be strengthened to replace the above ad hoc argu-
ment. Our argument can be viewed as a proof of a special case of the Absorption
Theorem, where the relation E is acyclic.

Existence of the singleton absorbing subuniverse {o} already significantly re-
stricts living space for possible absorption-free subuniverses in A and B, as we
can see in the next lemma. (Of course, the dual version for D ≤ B is also true.)

Lemma 4.8. If C ≤ A is absorption-free, then there exists k > 0 such that
distE(o, c) = k for all c ∈ C.

Proof. Let k be the minimum from the set {distE(o, c) | c ∈ C}. Since {o} E A,
by Observation 4.5 we have Ek(o) E Ek(A) = A, and thus also C ∩ Ek(o) E
C ∩ A = C. Since C is absorption-free, it follows that C ∩ Ek(o) = C.

We have proved that k ≤ distE(o, c) ≤ k for all c ∈ C. Note that k > 0, since
otherwise C = {o} which is not absorption-free by definition.

4.3 E-neighbourhoods of singletons are SD(∧)

In this subsection we prove that E-neighbourhoods of elements from A ∪ B are
SD(∧). Our strategy is to show that whenever they have an absorption-free
subuniverse, it must have a weakly pointing operation (and then apply Corol-
lary 3.12). For the rest of this subsection we fix b ∈ B and an absorption-free
subuniverse C ≤ E−(b). (The proof for D ≤ E+(a) is analogous.)

From Lemma 4.8 and the fact that |C| > 1 (and that T is a tree) we see that
b ≺ c for all c ∈ C. In the first step we prove that elements from B which are
�-above C are “absorbed by b” via a certain binary operation ?. (Note that such
elements do not need to form a subuniverse, and so it is not absorption in the
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sense we defined.) Later we will use this operation to construct various binary
polymorphisms and then build up a weakly pointing operation for C from them.

Let us denote by ? the binary idempotent polymorphism of H given by

x ? y = (. . . (((x ◦y) ◦ y) ◦ . . . ◦︸ ︷︷ ︸
|H|×

y),

where the operation ◦ appears |H|-times (just for good measure).

Lemma 4.9. If d ∈ B is such that c ≺ d for some c ∈ C, then b ? d = d ? b = b.

Proof. From Lemma 4.7 we get that b ◦ d = b and thus also b ? d = b. To
prove the other equality, fix d ∈ B and c ∈ C with b ≺ c ≺ d and consider the
sequence 〈d0d1 . . . d|H|〉 of elements of B defined inductively by setting d0 = d and
di = di−1 ◦ b for i ∈ [|H|]. Observe that d|H| = d ? b which we want to equate to b.

Let ki denote the distance distE(di, b). We will prove that for every 0 ≤ i ≤
|H|, b � di and ki ≤ ki−1 (we set k−1 = k0). The proof uses induction on i; the
case i = 0 is trivial. Assume that the claim holds for some i < |H|. Following the
same argument as in the proof of Lemma 4.7, there exists ui ∈ A ∪ B such that
distE(ui, b) = distE(ui, di) = ki/2. Since b � di, it follows that b is the �-minimal
(and di a �-maximal) element of Eki/2(ui). Consequently, di+1 = di◦b ∈ Eki/2(ui)
implies that b � di+1 and ki+1 ≤ ki (see the figure below).

•
b

•c • •c′ •· · ·

...
•o

• •
...

...

......

•ui •
di+1

•

•di

C

Note that k0 < |H|, and so there must exist i < |H| such that ki = ki+1.
Denote this distance by k and suppose for contradiction that k 6= 0 (and so k ≥ 2,
since k is even). Pick any c′ ∈ C. Since c ∈ Ek−1(di), c′ ∈ E−(b) ≤ Ek−1(b),
di ◦ b = di+1 and ◦ preserves E, it follows that c ◦ c′ ∈ Ek−1(di+1). But we also
have c ◦ c′ ∈ C and Ek−1(di+1) ∩ C = {c}. Thus we have proved that c ◦ c′ = c
for all c′ ∈ C, which means that {c} E C via ω, a contradiction with C being
absorption-free. Therefore it must be the case that k = 0, which means di = b
and thus by idempotency of ◦ also d|B| = d ? b = b.

Let us denote by F the smallest set of binary operations on H satisfying

• x ? y ∈ F , y ? x ∈ F ,

• if ϕ(x, y) ∈ F , then {x ? ϕ(x, y), y ? ϕ(x, y), ϕ(x, y) ? x, ϕ(x, y) ? y} ⊆ F ,

76



• if ϕ(x, y), ϕ′(x, y) ∈ F , then (ϕ(x, y) ? ϕ′(x, y)) ∈ F .

From Lemma 4.9 and the construction of F we immediately obtain the following:

Corollary 4.10. If d ∈ B is such that c ≺ d for some c ∈ C, then ϕ(b, d) =
ϕ(d, b) = b for every ϕ ∈ F .

For every c, c′ ∈ C let Sc,c′ be the set {ϕ(c, c′) | ϕ(x, y) ∈ F} ⊆ C. We will
use the following easy facts:

• Sc,c = {c},

• Sc,c′ = Sc′,c,

• both Sc,c′ and Sc,c′ ∪ {c, c′} are closed under the operation ?,

• in particular, if x, y ∈ Sc,c′ , then Sx,y ⊆ Sc,c′ .

Remark. Alternatively, using terminology from universal algebra, we could have
defined F to be the set of all binary terms in the binary operation symbol ? which
contain both the variables x and y. Then Sc,c′ would be the image of F under the
homomorphism from the absolutely free two-generated algebra to (C; {?}) given
by x 7→ c and y 7→ c′.

Note that F ⊆ IdPol2(H). In the next lemma we prove that, in fact, H has
many more binary idempotent polymorphisms.

Lemma 4.11. Let γ : C2 → C be any binary operation such that γ(c, c′) ∈ Sc,c′
for all c, c′ ∈ C. Then there exists τ ∈ IdPol2(H) extending γ (i.e., τ |C = γ).

Proof. For every c, c′ ∈ C we fix some ϕc,c′(x, y) ∈ F witnessing that γ(c, c′) ∈
Sc,c′ . For x, y ∈ H we define τ(x, y) in the following way:

1. If there exist c, c′ ∈ C such that

• b ≺ x ≺ c or c � x,

• b ≺ y ≺ c′ or c′ � y, and

• lvl(x) = lvl(y),

then we set τ(x, y) = ϕc,c′(x, y).

2. Else, we define τ(x, y) = x ? y.

It follows immediately from the construction that τ is idempotent and τ |C = γ.
To prove that τ ∈ IdPol(H), let x→ u, y → v be arbitrary edges of H. Note that
since ? and ϕc,c′ (for any c, c′ ∈ C) are polymorphisms of H, τ(x, y) → τ(u, v)
follows immediately if both {x, y} and {u, v} fall under the same case of the
construction. If they do not, then it must be the case that {x, y} falls under
case (1) while {u, v} under case (2) (it cannot be the opposite, since if b ≺ u
and x → u, then b ≺ x as well, and similarly for the other conditions). Thus
τ(x, y) = ϕc,c′(x, y) for some c, c′ ∈ C and τ(u, v) = u ? v. Moreover it must
be the case that b � u, b � v and b ∈ {u, v}. As lvl(x) = lvl(y) implies that
lvl(u) = lvl(v), we get u, v ∈ B. It follows that τ(u, v) = u ? v = b = ϕc,c′(u, v),
either by Corollary 4.10 or by idempotency (in case that u = v = b). We conclude
that τ(x, y)→ τ(u, v) in this case as well.
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As an easy consequence of this lemma, we can prove that C has a binary
idempotent commutative operation (i.e., a binary WNU).

Corollary 4.12. There exists ϕ ∈ IdPol2(H) such that ϕ|C is commutative.

Proof. For every c, c′ ∈ C define γ(c, c′) = γ(c′, c) to be an arbitrary element from
Sc,c′ thus making γ commutative, and then apply Lemma 4.11.

The above corollary implies that |C| > 2, since a binary WNU on a 2-element
set is a semilattice operation which would violate absorption-freeness. Unfortu-
nately, a binary WNU is not enough to construct a weakly pointing operation for
C; we need a slightly more involved argument.

Lemma 4.13. C has a weakly pointing operation.

Proof. We start by showing that every two-element set is weakly pointed to a
singleton by some operation, with an additional “symmetry” property.

Claim. For every x, y ∈ C there exist ϕ ∈ IdPol(H) (say it is n-ary), z ∈ C,
c1, . . . , cn ∈ Cn and α : C → C such that the following hold:

1. ϕ|C weakly points {x, y} to {z} with witnessing tuples c1, . . . , cn.

2. For every i ∈ [n] and u ∈ C, ϕ(ci1, c
i
2, . . . , c

i
i−1, u, c

i
i+1, . . . , c

i
n) = α(u).

We will prove the claim by induction on |Sx,y ∪ {x, y}|. Assume first that
Sx,y ∩ {x, y} 6= ∅, say x ∈ Sx,y (the argument for y ∈ Sx,y is analogous). In that
case we can apply Lemma 4.11 to construct ϕ ∈ IdPol2(H) such that ϕ(x, y) =
ϕ(y, x) = ϕ(x, x) = x and ϕ|C is commutative (see the proof of Corollary 4.12).
The claim follows since ϕ|C weakly points {x, y} to {x}, the witnessing tuple is
(x, x) for both coordinates and α(u) = ϕ(u, x) for all u ∈ C. This also covers the
base step of our induction (i.e., Sx,y ⊆ {x, y}).

We can now assume that Sx,y ∩ {x, y} = ∅. Let us define c = x ? y, x′ = x ? c
and y′ = y ? c. Using Lemma 4.11 we can construct ϕ ∈ IdPol2(H) such that
ϕ(x, c) = ϕ(c, x) = x′ and ϕ(y, c) = ϕ(c, y) = y′ and ϕ|C is commutative. In
particular, ϕ|C points {x, y} to {x′, y′}, the witnessing tuple is (c, c) for both
coordinates.

Since x′, y′ ∈ Sx,y, it follows that Sx′,y′ ∪ {x′, y′} ⊆ Sx,y ( Sx,y ∪ {x, y}.
Hence, by induction assumption, the claim holds for x′, y′. Let it be witnessed
by ψ ∈ IdPol(H) weakly pointing {x′, y′} to {z} and let α′ : C → C be the
corresponding mapping from (2).

Using Observation 3.6 we get that (ψ <− ϕ)|C weakly points {x, y} to {z} and
it is not hard to see from its proof that (2) holds as well, with α : C → C given
by α(u) = α′(ϕ(u, c)), for u ∈ C. We leave the verification to the reader.

We will now compose the operations from this claim to construct a weakly
pointing operation for C; we use another induction argument.

Claim. For every nonempty X ⊆ C there exists c ∈ C and ϕ ∈ IdPol(H) such
that ϕ|C weakly points X to {c}.

We prove the claim by induction on |X|. If X = {x}, then the claim is
trivial: take any ϕ ∈ IdPol(H), z = x and witnessing tuple (x, x, . . . , x) for all
coordinates. Let |X| = k > 1 and assume that the claim holds for all at most
(k−1)-element subsets of C. Pick any x, y ∈ X, x 6= y and let ϕ ∈ IdPol(H) (say
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n-ary), z ∈ C and α : C → C be the objects given by the previous claim applied
to x and y. It is easy to see that ϕ|C weakly points X to Y = {α(x) | x ∈ X}
(this is why we need the “symmetry” property from the previous claim). Since
α(x) = z = α(y), it follows that |Y | < |X|. By induction assumption, there
exists ψ ∈ IdPol(H) and c ∈ C such that ψ|C weakly points Y to {c}. Using
Observation 3.6 we get that (ψ <− ϕ)|C weakly points X to {c} which concludes
the proof.

We have achieved the goal of this subsection, i.e., the following corollary.

Corollary 4.14. For every b ∈ B, E−(b) is SD(∧). Similarly for a ∈ A and
E+(a).

Proof. By Lemma 4.13, every absorption-free subuniverse C ≤ E−(b) has a
weakly pointing operation and so we can apply Corollary 3.12. The proof for
a ∈ A is analogous.

4.4 Absorption-free subuniverses are SD(∧)

The last step of our proof is to show that every absorption-free subuniverse C
of A or B has a weakly pointing operation. Theorem 1.4 will then follow from
Corollary 3.12 and Corollary 4.4.

Lemma 4.15. Every absorption-free subuniverse C of A or B has a weakly point-
ing operation.

Proof. Recall that by Lemma 4.8, for every absorption-free subuniverse C of A
or B there exists k > 0 such that distE(c, o) = k for all c ∈ C. We will proceed
by induction on this distance k. The base step, k = 1, follows from Lemma 4.13
from the previous subsection, since in that case C ≤ E+(o).

Let k > 1 and assume that C ≤ A (the proof for C ≤ B is analogous). Let us
denote by D the subuniverse D = E+(C) ∩ Ek−1(o) ≤ B. If D = {d} for some
d ∈ B, then C ≤ E−(d) and C has a weakly pointing operation by Lemma 4.13.
Thus we can assume that |D| > 1.

The binary relation E ∩ (C×D) induces an onto mapping η : C → D defined
by η(c) = d, where d ∈ D is unique such that (c, d) ∈ E (this is because T is a
tree; see the figure below).

C

•c • • •c′ • • •· · ·

D

•η(c) = d • •d′ •· · ·

• •· · ·

η−1(d)

The relation E ∩ (C × D) is preserved by every ϕ ∈ IdPol(H) (see Lemma
4.1). The following are easy consequences of this fact:
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• for every D′ ≤ D the set η−1(D′) is a subuniverse of C,

• if D′ E D, then η−1(D′) E C (the absorbing polymorphism is the same),

• for D′ ≤ D, D′ = D if and only if η−1(D′) = C (since η is onto).

Combining these facts together with the fact that C is absorption-free yields that
D is absorption-free. Hence by induction assumption D has a weakly pointing
operation.

Let ϕ ∈ IdPol(H) (say n-ary) be such that ϕ|D weakly points D to {d} with
witnessing tuples d1, . . . ,dn. It is easy to verify that ϕ|C weakly points C to
η−1(d); any c1, . . . , cn ∈ Cn such that η(cij) = dij (for i, j ∈ [n]) can serve as
witnessing tuples.

Since η−1(d) ≤ E−(d), it follows from Corollary 4.14 and Theorem 3.8 that
η−1(d) has a weakly pointing operation. Let ψ ∈ IdPol(H) and c ∈ η−1(d) be
such that ψ|η−1(d) weakly points η−1(d) to {c}. In particular, ψ|C weakly points
η−1(d) to {c} and thus by Observation 3.6, (ψ <− ϕ)|C weakly points C to c.

Remark. In the language of universal algebra, the relation E ∩ (C × D) is the
graph of an onto homomorphism η : C → D and thus, by the First Isomorphism
Theorem, D is isomorphic to the quotient of C over the kernel of η. The induction
step in the previous lemma follows easily from this observation.

Proof of Theorem 1.4 and Corollary 1.5. Let H be a special tree such that algH
is Taylor. In Lemma 4.15 we proved that every absorption-free subuniverse of
A or B has a weakly pointing operation. By Corollary 3.12, both A and B are
SD(∧) and thus it follows from Corollary 4.4 that algH is SD(∧).

It is easy to see that the core of a special tree is again a special tree. If H is a
core, then either algH is not Taylor, in which case CSP(H) is NP-complete by
Theorem 3.3, or algH is SD(∧) and H has bounded width by Theorem 3.4.

5 Discussion

We believe that given the evidence, it is reasonable to conjecture that our result
generalizes to all oriented trees. Moreover, we hope that the techniques developed
in this paper will be useful in pursuit of the proof.

Conjecture 2. For every oriented tree H, either algH is not Taylor or it is
SD(∧). In particular, if H is a core, then H has bounded width or CSP(H) is
NP-complete.

The reader may wonder why we need two different characterizations of SD(∧)
algebras, i.e., why we use WNU operations for the proof of Corollary 4.4. The
reason is that our techniques used later in the proof are not well suited to deal
with non-diagonal components of connectivity of powers of H. This is one obstacle
to generalizing the result to all oriented trees.

Another shortcoming is that we cannot get a good handle of polymorphisms
of higher arities than binary. For example, it follows from Corollary 4.12 that
neither A nor B can have a two-element absorption-free subuniverse and in fact,
we can prove that algH (if it is Taylor) cannot have a two-element absorption-
free subuniverse at all (we will not present the argument here, but it is similar in
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spirit to the proof of Lemma 4.3). We do not know if this result can be extended
to more than two elements. Hence the following open problem.

Problem. Let H be a (special, or any oriented) tree such that algH is Taylor.
Is algH always absorbing?

A finite idempotent algebra A is always absorbing, if for every nonempty B ≤ A
there exists b ∈ B such that {b} E B. (Equivalently, there are no absorption-
free algebras in the pseudovariety generated by A, see [9, Proposition 2.1].) By
Corollary 3.12, always absorbing algebras are SD(∧). A positive answer to this
problem would significantly simplify our proof.

Special balanced digraphs, a natural relaxation of the definition of special trees
to balanced digraphs, appear naturally in the reduction of constraint satisfaction
problems to digraph H-coloring [17, 18, 20]. The reader may notice similari-
ties with some of the proofs in [18]. Can our techniques be adapted to obtain
interesting results about special balanced digraphs?
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