
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Lukáš Marek

Instrumentation and Evaluation for

Dynamic Program Analysis

Department of Distributed and Dependable Systems

Advisor: Doc. Ing. Petr Tůma, Dr.

Study programme: Computer Science

Specialization: Software Systems

Prague 2014

Acknowledgments

I would like to thank my advisor Petr Tůma for his encouragement while
deciding what to do next after finishing my master degree and his support and
guidance through my PhD study. I would like to thank all my colleagues from the
D3S department and especially my colleagues from the room 205 for making the
study pleasant and fun experience. I would like to also thank my SCIEX-NMSch
advisor Walter Binder and his colleagues for hosting me for one beautiful year at
University of Lugano in Switzerland.

I would like to thank my family and my girlfriend Lucie for their endless
support.

I hereby declare that I have authored this doctoral thesis on my own1, using only
the cited literature and other technical sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, on

1The papers included in Part II have been written in cooperation with their respective
co-authors.

Annotations

Title

Instrumentation and Evaluation for Dynamic Program Analysis

Author

Lukáš Marek
e-mail: lukas.marek@d3s.mff.cuni.cz, phone: +420 221 914 190

Department

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University in Prague, Czech Republic

Advisor

Doc. Ing. Petr Tůma, Dr.
Department of Distributed and Dependable Systems
e-mail: petr.tuma@d3s.mff.cuni.cz, phone: +420 221 914 267

Abstract

A dynamic program analysis provides essential information during later phas-
es of an application development. It helps with debugging, profiling, perfor-
mance optimizations or vulnerability detection. Despite that, support for
creating custom dynamic analysis tools, especially in the domain of managed
languages, is rather limited.
In this thesis, we present two systems to help improve application observabil-

ity on the Java platform. DiSL is a language accompanied with a framework
allowing simple and flexible instrumentation for the dynamic program analy-
sis. DiSL provides high level abstractions to enable quick prototyping even for
programmers not possessing a knowledge of Java internals. A skilled analysis
developer gains full control over the instrumentation process, thus does not
have to worry about unwanted allocations or hidden execution overhead.
ShadowVM is a platform that provides isolation between the observed appli-

cation and the analysis environment. To reduce the amount of possible inter-
actions between the analysis and the application, ShadowVM offloads analysis
events out of the context of the application. Even though the isolation is the
primary focus of the platform, ShadowVM introduces a number of techniques
to stay performance comparable and provide a similar programming model as
existing dynamic analysis frameworks.

Keywords

Bytecode instrumentation; dynamic program analysis; aspect-oriented pro-
gramming; JVM

Anotace

Název práce

Instrumentace a vyhodnoceńı pro dynamickou analýzu aplikaćı

Autor

Lukáš Marek
e-mail: lukas.marek@d3s.mff.cuni.cz, phone: +420 221 914 190

Katedra

Katedra distribuovaných a spolehlivých systémů
Matematicko-fyzikálńı fakulta
Univerzita Karlova v Praze

Školitel

Doc. Ing. Petr Tůma, Dr.
Katedra distribuovaných a spolehlivých systémů
e-mail: petr.tuma@d3s.mff.cuni.cz, tel.: +420 221 914 267

Abstrakt:

Dynamická analýza aplikaćı zprostředkovává d̊uležité informace během poz-
děǰśıch fáźı vývoje. Napomáhá při laděni, profilováńı, výkonnostńı optima-
lizaci nebo při detekci bezpečnostńıch chyb. Nicméně, podpora pro vytvářeńı
vlastńıch nástroj̊u pro dynamickou analýzu, speciálně v oblasti ř́ızených jazyk̊u,
je poměrně omezená.
Tato práce prezentuje dva systémy, které pomáhaj́ı zlepšit sledováńı aplikaćı
na platformě Java. DiSL je jazyk a framework, který umožňuje jednoduchou
a flexibilńı instrumentaci zaměřenou na dynamickou analýzu. DiSL poskytuje
abstrakce vyšš́ı úrovně pro rychlé prototypováńı i pro vývojáře, kteř́ı nemaj́ı
znalosti interńıch systémů v Javě. Kvalifikovaný vývojář źıskává plnou kontrol
na instrumentačńım procesem, tud́ıž se nemuśı bát nevyžádaných alokaćı nebo
skryté běhové režie.
ShadowVM je platforma poskytuj́ıćı separaci mezi sledovanou aplikaćı a pros-
třed́ım pro analýzu. Pro zmı́rněńı interakćı mezi analýzou a aplikaćı, Sha-
dowVM transportuje události analýzy mimo kontext aplikace. I když je pri-
márńım ćılem platformy izolace, ShadowVM zavád́ı několik technik tak, aby
z̊ustala rychlostně srovnatelná a vytvářela obobné vývojové podmı́nky jako
existuj́ıćı frameworky pro dynamickou analýzu.

Kĺıčová slova

Bajtkódová instrumentace; dynamická analýza programů; aspektově oriento-
vané programováńı; JVM

Contents

I Introduction and Contribution Overview 3

1 Introduction 5
1.1 Thesis structure . 6
1.2 Dynamic analysis . 6
1.3 Application observability . 7

1.3.1 Observation using execution callbacks 7
1.3.2 Instrumentation . 8
1.3.3 Sampling . 8

1.4 Dynamic analysis evaluation . 8
1.4.1 In-process analysis . 9
1.4.2 Out-of-process analysis . 9

1.5 Application observability in Java 9
1.5.1 Instrumentation in Java 10

1.6 Dynamic analysis evaluation in Java 12
1.7 Dynamic analysis pitfalls . 13
1.8 Goals revisited . 16

2 Overview of Contribution 19
2.1 DiSL, domain specific language for Java bytecode instrumentation 19
2.2 ShadowVM, framework for remote dynamic analysis evaluation . . 22

II Collection of Papers 27

3 DiSL: A Domain-Specific Language for Bytecode Instrumenta-
tion 31

4 ShadowVM: Robust and Comprehensive Dynamic Program Anal-
ysis for the Java Platform 45

5 Introduction to Dynamic Program Analysis with DiSL 57

III Related Work and Conclusion 93

6 Related Work 95
6.1 Instrumentation frameworks . 95

6.1.1 Instrumentation in machine code 95
6.1.2 Instrumentation in Java 97
6.1.3 Bytecode manipulation libraries 97
6.1.4 Java instrumentation frameworks 98
6.1.5 Frameworks with predefined probes 100

6.2 Frameworks for dynamic analysis evaluation in Java 101
6.2.1 In-process analysis frameworks 101
6.2.2 Out-of-process analysis frameworks 102

1

6.3 Instrumentation and evaluation frameworks without sources . . . 105

7 Conclusion 107
7.1 Future work . 108

References 111

List of Publications 117

2

Part I

Introduction and Contribution
Overview

3

Chapter 1

Introduction

Dynamic program analysis plays an important role in software development. It
is used to uncover implementation defects or obtain various application charac-
teristics. There are many examples of sophisticated dynamic analysis such as:

Taint analysis The taint analysis observes propagation of values from an initial
set of variables through the application. The initial set typically contains variables
holding the application input received over a network, through GUI or from a
database. As a malicious input can compromise a run of the application, the
application uses specialized methods to verify/sanitize the received input. The
goal of the taint analysis is to track whether all the received data went through the
sanitization process. If the data manages, through a series of computations and
assignments, to escape the sanitization and is used as an input in a potentially
unsafe operation, the taint analysis reports the problematic data flow.

Execution time profiling Another often used dynamic analysis is the execu-
tion time profiling. The analysis measures the execution time of a method by
acquiring the timing information at the entry and at the exit of the method. The
observation coverage of execution time profiling is fully adjustable, starting from
a single method to the whole application code. As the observation often slows
down the application by orders of magnitude, limiting the coverage to only a
small part of the application brings noticeable performance gains. On the con-
trary, while observing a more complex method, it may be useful to profile the
method with a granularity of basic blocks to obtain more detailed information
about its behaviour.

Data race detection Yet another example of dynamic analysis is data race
detection in multi-threaded applications. At runtime, the data race analysis mon-
itors all field accesses and lock operations. When a non-volatile field is accessed by
multiple threads without relevant lock acquisition, the analysis reports a possible
data race.

Object lifetime analysis In long running applications, memory leaks may
deplete all available application memory. Even though the problem is typical
for languages with dedicated allocation and deallocation routines, memory leaks
may happen even in languages using garbage collector. An object is considered
a memory leak if the application is holding a reference to the object but does
not intend to use it in the future. Such object cannot be garbage-collected and
occupies memory. The object lifetime analysis tracks all manipulations with ref-
erences (pointers) and is able to determine whether an object can be deallocated,
i.e., which references on objects are held longer than necessary.

To perform such analyses, the developer often uses well known dynamic anal-
ysis tools like OProfile [32], VTune [12, 75], gprof [10, 57], JDB [18] or Visu-

5

alVM [42]. However, such tools are often crafted to collect only one or a set
of similar metrics. When a more complex analysis is required, the developer is
forced to create a custom solution.

Dynamic analysis tools are carefully designed to not interfere with the ob-
served application. Any change in the state or control flow of the application
could potentially lead to its invalid behaviour and distorted observation results.
It is therefore highly recommended to use one of the analysis frameworks such as
dtrace [48] (SystemTap [38, 74]), Valgrind [40, 70] or pin [34, 64] as they provide
safe environment for writing custom dynamic analyses. While such frameworks
exist for native applications, managed languages still lack a widely adopted solu-
tion.

One of the key aspects of a framework for building custom dynamic analyses is
the ability to inform about various types of events happening in the application
and offer rich context information while analysing these events. The analysis
should be performed in a safe environment where the developer does not have to
worry about undesired side effects on the observed application. As performance
is one of the biggest problems of dynamic analysis frameworks, induced overhead
should be minimal and fully under control of the developer. We believe that
one reason for lack of wide adoption of existing Java analysis frameworks is their
inability to deliver a satisfactory solution in all the mentioned aspects. Therefore,
the primary goal of the thesis is to create a platform that would ease development
of dynamic program analyses.

1.1 Thesis structure

The structure of the thesis is as follows. The next section gives a brief overview
of application observability in general, followed by a summary of observation
alternatives in Java. The second part of this chapter summarizes our experience
with dynamic analysis in managed runtimes and concludes with the revisited
goals of the thesis.

The second chapter summarizes our contribution starting with a high level
instrumentation language for Java called DiSL. The rest of the second chapter
introduces an environment for analysis evaluation called ShadowVM.

Chapters three, four and five list three published papers containing the details
of our work. Chapter six describes the related work. Chapter seven concludes.

1.2 Dynamic analysis

The purpose of the dynamic analysis is to observe and evaluate application be-
haviour. Figure 1.1 shows a simple architecture of a dynamic analysis platform.
During execution (1), a probe triggers an event in the observed application. The
triggered event is dispatched (2) to the analysis logic, where it is evaluated (3).

As illustrated at the bottom of Figure 1.1, we see the dynamic analysis as com-
posed from two parts. The observation part, which gathers contextual information
and triggers the evaluation events, and the evaluation part, which performs the
analysis evaluation based on the triggered events.

6

Application code

A
p

p
lic

a
tio

n
 e

xe
cu

tio
n

 (
1

)

Analysis code

E
ve

n
t

e
va

lu
a

tio
n

 (
3

)

Probe

Eve
nt d

isp
atch

 (2
)

Evaluation partObservation part

Figure 1.1: Dynamic analysis architecture.

1.3 Application observability

As an application is executed, each action like object allocation or method in-
vocation may be of interest to the analysis. Depending on the type of observed
actions, the analysis may choose from a variety of techniques to analyse the ap-
plication behaviour.

1.3.1 Observation using execution callbacks

Execution environments often provide an interface for various execution callbacks.
For example, managed languages may expose callbacks connected to class loading,
JIT compilation, garbage collection or virtual machine life cycle. Interpreted
languages may provide even more execution events related to object allocation,
exception handling, field access, method execution or synchronization.

Another kind of callbacks may be provided by hardware. Special registers in-
side the CPU allow to monitor different types of low-level performance events like
cache accesses, memory accesses, instruction execution or branch predictions. A
callback is triggered every time a number of events reaches a predefined threshold.

As the callbacks are built into a particular platform, an extension is often
problematic. Another limitation is the amount of additional information (context
information) they are able to provide. For example, an analysis may require
detailed information about an allocated object, like place of the allocation and
the size of the object. If the callback does not provide such information, the
analysis developer is forced to modify the execution environment (if possible).

A similar problem is with defining new events. As the callbacks are provided
by some of the execution environment subsystems like the interpreter or the
garbage collector, the particular subsystem has to be modified to obtain a new
type of events. Such modifications require deep knowledge of the platform and
the analysis created for the modified platform loses portability. Therefore, if the
platform does not support the required events or does not supply the necessary
context information, it is often better to choose a different observation technique.

7

1.3.2 Instrumentation

The observation technique allowing to easily define new types of events is instru-
mentation. Instrumentation allows to observe any sequence of code executed in
the observed application. During the instrumentation process (weaving), instru-
mentation code is inserted before or after the application code. When invoked,
the instrumentation code triggers an event which is passed to the analysis for eval-
uation. If processing of the event is very short, like an increment of a counter,
the evaluation logic may be included in the instrumentation code. When a more
sophisticated analysis is required, the instrumentation code invokes a separate
evaluation method.

Instrumentation weaving is possible at different stages of the application de-
ployment. Each stage has its own advantages and disadvantages. Weaving of
the application source code allows the instrumentation to easily detect high-level
language constructs and insert the instrumentation code as a text string written
in the application language. The weaving is often performed offline or during
compilation, hence access to the sources of the observed application is necessary.

Instrumentation of the application is also possible on the machine code level.
In comparison to the source code, machine code instruction set provides only
a thin level of abstraction over the hardware it operates. Detection of language
constructs like objects, classes or fields (member variables) is therefore much more
difficult.

Managed languages often support compilation into an intermediate represen-
tation (bytecode). As the bytecode is an intermediate step between the source
code and the native code waving of the bytecode has several advantages. Propri-
etary applications often does not provide source code, but they are compiled and
distributed in the bytecode form. In comparison with the native code, the inter-
mediate representation is often high-level enough to easily recognize constructs
of the original language. During execution, bytecode is optimized by an inter-
preter or a JIT compiler, hence the overhead of the instrumentation code is often
noticeably reduced.

1.3.3 Sampling

A different type of monitoring is sampling. During sampling, event processing is
not triggered based on the application behaviour. Instead, an observation method
is triggered after a given time period. Sampling is therefore useful only for certain
type of analyses like performance monitoring or collection of aggregated results.

1.4 Dynamic analysis evaluation

During execution, the application triggers various events that are of interest to
the analysis. The triggered event together with additional context information
is supplied to the main analysis logic for evaluation. During evaluation, the
analysis may perform various computations and build non-trivial data structures
to be able to track the application behaviour.

We recognize two types of analysis evaluation, based on the context in which
the evaluation is performed. An evaluation performed in the context of the anal-

8

ysed application is called in-process analysis and the analysis offloaded out of the
context of the analysed application is called out-of-process analysis.

1.4.1 In-process analysis

Events triggered during in-process analysis have the form of simple method call-
backs. It is vital that the execution environment supports some form of isolation
between the application and the analysis. Otherwise, the evaluation and the
analysed application share many resources like memory, execution threads or the
standard input and output. As the observed application is tightly coupled with
the evaluation logic, in-process analysis may introduce undesired perturbations.
Depending on the type of the perturbation, it may invalidate the analysis results
or break the application execution.

1.4.2 Out-of-process analysis

To prevent perturbation, the analysis may be offloaded out of the application
context. The main goal of offloading is to substantially reduce the amount of
code executed in the context of the observed application.

Some execution environments already provide an observation mechanism ca-
pable pf offloading the analysis events. An example of such a mechanism is the
debugging interface. If the execution environment does not provide a suitable
observation mechanism, the analysis may uses some type of inter-process com-
munication (IPC) to offload the events. The commonly used IPC techniques
include pipe, network socket, shared memory or remote procedure call.

As our implementation targets Java platform, the next section briefly overviews
the available monitoring alternatives under Java.

1.5 Application observability in Java

The more complex a system is, the more important it is that the system provides
means to monitor itself. As applications in Java are executed in a virtual machine
with a JIT compiler, garbage collector and several other service threads, it is vital
to provide an environment where the application and the VM could be safely
observed.

Historically, Java contained two low level interfaces for application and VM
monitoring. JVMPI [28] was a native interface intended for profiling and al-
lowed to observe memory allocations, execution times, locking or thread events.
The second, called JVMDI [27], was a debugging interface and allowed to set
breakpoints and watches or access class, object, method and field information.
JVMPI never reached a stable state and was always marked as experimental.
It was probably because of its many limitations, and so it was replaced [73] in
Java 1.5 by a more mature JVM Tool Interface (JVMTI) [29]. During the
transition from JVMPI to JVMTI, JVMDI was also merged into the JVMTI and
deprecated in Java 6.

As a merger of the two, JVMTI became a rich API useful for debugging,
profiling and other kinds of application analysis using different types of monitoring

9

techniques like sampling, instrumentation or predefined callbacks. JVMTI also
allows to monitor various JVM resources and events connected with garbage
collection, class loading, compilation or JVM lifecycle.

JVMTI is a part of a collection of interfaces called Java Platform Debug-
ger Architecture (JPDA) [25, 26]. Apart from JVMTI, JPDA also contains
high-level a Java language interface for remote debugging called Java Debug-
ger Interface (JDI) [19] and a protocol describing communication between
a debugger and a debugged JVM called Java Debug Wire Protocol (JD-
WP) [20]. Compared to JVMTI, JDI provides Java interface and its communi-
cation model assumes that events are processed in different JVM, thus it is easier
to use and potentially safer. Nevertheless, JDI is not as versatile as JVMTI.
As the name suggests, JDI is mainly targeted on real-time debugging and is not
designed for application wide monitoring.

JVMTI is very powerful, however working in a native code may be seen as too
complicated for simple dynamic analysis. For that reason, Java also provides a
java.lang.instrument 1 package for instrumentation directly from Java space.
The instrument interface does not provide any predefined callbacks or sampling
interface but can be easily used for instrumentation based analysis.

A bit different type of monitoring offers technology called Java Manage-
ment Extensions (JMX) [23]. JMX is a framework, which allows to monitor
and control the application using objects called Managed Beans (MBean in short).
MBeans do not use instrumentation to trigger events instead, they are developed
directly as a part of an application. The MBean object controls a component
(resource) of the application and allows to read the component state, set and get
its configuration and register event notification listeners.

During application execution, MBeans are registered in JMX framework wait-
ing for a remote connection. As MBean is required to implement one of the prede-
fined JMX interfaces, it can be accessed through Java VisualVM [42] monitoring
tool. Alternatively, custom monitoring tools can be used.

1.5.1 Instrumentation in Java

As mentioned in the thesis goals, the monitoring interface should provide flexibil-
ity in definition of new observation events. The predefined callbacks in JVMTI
and JDI provide only a fixed set of events, with no options for extensibility. JMX
provides custom monitoring but only if the MBean objects are designed during
the application development. Creating MBeans for an existing application means
to modify its source code or bytecode, which effectively means to instrument it.
As the instrumentation provides the highest flexibility when defining new events,
we will discuss its applicability in Java in more detail.

Instrumentation allows to intercept application behaviour based on execution
of an arbitrary bytecode pattern. It is therefore possible to intercept object allo-
cations, method executions, exception handling of field access. Instrumentation is
able to capture execution patterns with various granularity. It is not a problem to
instrument method entry and method exit. It is also possible to instrument a sin-

1http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/

package-summary.html

10

http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html

gle instruction like an evaluation of a conditional statement or a data conversion
of a numeric value.

Instrumentation of an application written in Java can be done either offline,
online using a Java level java.lang.instrument interface, or online using native
JVMTI. Each solution has its advantages and disadvantages. We discuss them
in turn.

Offline instrumentation

Offline instrumentation does not have any direct support in Java. Every offline
instrumentation framework needs to load whole application and library code from
a persistent storage, traverse the code and apply the instrumentation. The in-
strumentation can be done either on source code or pre-compiled bytecode.

Although the offline instrumentation does not have any direct support in Java,
it has the highest flexibility of all. During the instrumentation, a class can be
renamed, split into several parts and a class hierarchy can be modified. Classes
can be freely traversed and re-instrumented several times, which is useful in cases
where some sort of static analysis of the whole application should be performed
before the main instrumentation. Offline instrumentation does not delay a start
of the application.

The disadvantage of offline instrumentation is in coverage. There is no possi-
bility to instrument dynamically generated classes and also classes that are not
specified directly on the class path, for example classes loaded by a custom class-
loader over a network. As the instrumentation is done on classes stored on a
filesystem, it can be unintentionally applied more than once.

java.lang.instrument interface

A convenient online instrumentation is accessible through a java.lang.instrument
instrumentation API. Java Virtual Machine automatically intercepts loaded class-
es and passes them through the instrumentation interface to a custom Java agent
in a form of bytecode. Java does not provide any support for parsing and chang-
ing the bytecode, but the agent is able to use some widely adopted bytecode
manipulation library like ASM [2, 47], BCEL [4, 53] or Javassist [17, 49], thus
source code of the resulting agent is usually compact.

As the Java agent is running in the same context as the observed application,
the instrumentation process may introduce several undesirable side-effects.

The instrumentation agent is written in pure Java and it requires an already
initialized JVM to be able to run. During the initialization (JVM bootstrap
phase), JVM loads an initial set of core classes before loading the instrumenta-
tion agent. The core classes escape instrumentation and the only option how
to instrument them is a process called retransformation [14]. During retrans-
formation, JVM replaces code of a loaded class with an altered code. As the
class is already known to JVM and can be already instantiated, retransformation
imposes strict rules on introduced changes. During retransformation, fields and
methods must not be added, modified or renamed. It is also forbidden to change
method signatures or change class inheritance. As a consequence, the Java agent
approach allows only a limited set of modifications to the classes loaded during
the JVM bootstrap phase.

11

Another problem is hidden in the instrumentation process itself. During the
instrumentation, the Java agent is allowed to use any class from the Java Class
Library. When requested, the JVM loads the class, bypassing the Java agent in-
strumentation callback. Instrumentation callback has to be bypassed, otherwise
the agent could request the same class and trigger another class loading intro-
ducing infinite recursion. The loaded class is however immediately visible also
to the application. The agent is able to retransform the class when it finishes
the ongoing instrumentation process, however the un-instrumented class may be
already used by the application.

JVMTI interface

Another option for performing online instrumentation is a JVM Tool Interface
(JVMTI). JVMTI is a native interface and allows to instrument every class loaded
by JVM. There is no need to bypass the instrumentation process in specific sce-
narios like in the case of the java.lang.instrument interface and there is (almost)
no unintended interaction between the instrumentation code and the observed
application.

The instrumentation process may however influence initialization during a
JVM bootstrap phase. Instrumentation from native space allows to intercept
and instrument all loaded classes, even classes loaded during the JVM bootstrap
phase. JVM does not permit arbitrary modification to the classes loaded during
bootstrap phase and so, instrumentation code may crash the JVM. The rules on
permitted instrumentation are not documented and differs from version to version
of JVM. It is therefore hard to judge, if the problem is a JVM bug or a limitation
of JVMTI.

Applying instrumentation directly in native code can be challenging. To our
knowledge, there is no widely adopted C/C++ library for bytecode manipulation.
Resulting code responsible for performing the instrumentation is therefore many
times bigger (in the terms of lines of code) than a similar solution done using the
java.lang.instrument interface.

1.6 Dynamic analysis evaluation in Java

We consider two types of the dynamic analysis evaluation, the in-process analysis
and the out-of-process analysis.

Java does not provide any isolation specifically to support the in-process anal-
ysis. During the in-process analysis, the analysis and the observed application
share many resources like service threads, the heap, garbage collector, or the Java
Class Library. As a consequence, the evaluation may create a lot of perturbation
in the observed application. Various problems that may arise are discussed in
more detail in the following section.

Contrary to in-process analysis, Java provides several interfaces to support
out-of-process analysis. All main observation interfaces offload the events out
of the application context. JDI and JMX offload the events into another Java
process, whereas JVMTI offloads the events into native code.

Another option for offloading events is the Java Native Interface (JNI) [24].

12

JNI allows the Java code to invoke native methods. Therefore, JNI can be used
to transport events to native code.

1.7 Dynamic analysis pitfalls

Following subsections summarize variety of perturbations we have encountered
while developing dynamic analysis tools. Even though the problems are tackled
by almost every dynamic analysis, they are often not mentioned in the literature.
Hence, there is only limited knowledge among the developers about possible dan-
gers connected to the dynamic analysis development.

Our list is not meant to be complete as it is in general hard to predict what
parts of the application will be influenced by the observation. The perturbations
are often discovered later on as an inconsistency in the observed results or as a
failed execution of the observation application.

Execution time

A presence of additional code in the observed application may already cause
perturbation. An execution time is probably the most visible one, where a high
amount of instrumented sites may extend the time of execution by orders of
magnitude.

The size of inserted code may additionally influence code optimisations made
by a JIT compiler. The JIT compiler inlines small methods to eliminate a cost
of a method call and to apply more advanced optimizations. If the method size
grows over a certain threshold, the JIT compiler does not perform inlining as the
resulting code would be too large.

Object allocation strategy

Another useful JIT compiler optimization is called scalar replacement. The scalar
replacement optimization uses escape analysis to decide whether it can allocate
objects directly on the execution stack. Such optimization can be done only if
an object reference does not escape out of the scope of the method where it was
allocated. However, if the instrumentation code exports the reference outside of
the method, the object has to be allocated on the application heap and later on
collected by a garbage collector.

Available memory

During in-process analysis, the application and the analysis evaluation share a
single memory heap. Frequent allocations by the evaluation influence the overall
memory consumption and subsequently increase the frequency of garbage collec-
tor runs. If the evaluation stores a substantial amount of data, it may deplete all
available memory and crash the observed application.

Triggering of events

The in-process analysis and the observed application not only share the memory
heap or the execution threads but also the set of loaded classes. Most of the load-

13

ed classes are used only by the application or by the analysis but some classes
like third party libraries or classes from the Java Class Library may be shared.
Methods of such shared libraries should behave differently depending on the con-
text from which they are invoked. If a method is invoked from the application
code, it should generate the analysis events. On the contrary, if invoked from the
analysis code, the instrumentation code should be skipped.

A solution for the third party libraries is to load the classes by different class
loaders where the application class loader loads an instrumented version of the
class and the analysis class loader loads an uninstrumented version. Unfortunate-
ly, such solution is not applicable on classes from the Java Class Library, as they
can be loaded only by the system class loader. Therefore, code in the Java Class
Library requires a different solution for switchable event triggering. One of such
mechanisms is called dynamic bypass [67].

From a technical side, the dynamic bypass is a simple flag indicating whether
the current execution originates from the application or from the analysis. Every
inserted instrumentation code is wrapped by a branching condition checking the
state of the dynamic bypass flag. If the dynamic bypass flag is set (indicating
the code is called from the analysis code), it skips the instrumentation code, i.e.
it does not generate additional events.

Shared state corruption

The dynamic bypass mechanism described above only works for reentrant code.
If the code is not reentrant, the analysis may damage the state of the shared
class.

We illustrate the problem on the printing method. An application uses the
printing method which protects data of each stream with a lock. The application
starts printing into a stream and successfully acquires a lock. Let us assume
that the stream is the standard output stream, so it is easily accessible from the
application and also from the analysis. During the printing, the instrumenta-
tion code is invoked and execution is transferred to the analysis to evaluate a
triggered event. After evaluation, the analysis starts printing the results to the
standard output. As the execution thread already holds the output lock acquired
by the application code, it is allowed to enter into a protected part of the printing
method. The printing method invoked from the application left the stream in an
inconsistent state and the subsequent call damages the state of the stream.

Method size limit and class loading

Methods in Java are limited in size to 64 KiB of bytecode. The limit constrains the
amount of instrumentation code that can be directly inlined into a method body.
As the analysis developer cannot generally predict the size of the instrumented
method, the instrumentation code should contain only essential code to trigger
an event. All other code connected to the event evaluation should be extracted
into a separate class.

Classes containing the evaluation logic are not application classes, therefore
they have to be loaded separately. Loading extra classes can be problematic in a
case of certain class loaders, used for example in OSGI [33], where the class loader
supports loading of classes from predefined packages only. In OSGI, the standard

14

delegation of the class loading process to a parent class loader is allowed only
for classes from the Java Class Library. This behaviour provides better isolation
between the application components, but poses severe problems for application
monitoring. When the instrumentation code invokes a method in an evaluation
class, the application class loader fails to load the class and generates an excep-
tion. In the worst case, the exception is handled by the observed application, not
producing any error but corrupting the application behaviour.

Static initializers

While the Java code is being executed, it gradually loads additional application
and library classes. After a class is loaded, a static initializer is invoked to ini-
tialize the class.

The dynamic bypass (described above) prevents triggering of events during
execution of the analysis code. This mechanism is also active when the analysis
code triggers class loading. Such behaviour is correct only if the loaded class is
exclusively used by the analysis. If the application uses the loaded class, the static
initializer is not invoked and the analysis misses events that would otherwise be
part of the application execution.

Analysing events triggered by analysis

To ensure correct results of the analysis, an instrumented run of the application
should produce exactly the same events as the uninstrumented one. Below, we
describe a situation, where usage of specific Java classes may result in observation
of additional events; events not triggered by the observed application.

The application and the analysis can both take advantage of a WeakReference2

class in conjunction with a ReferenceQueue3 container. Weak references are use-
ful for object caching and analysis often uses weak references for object lifetime
tracking. The dynamic bypass mechanism can prevent triggering of events while
the WeakReference object is manipulated directly, but operations on Reference-
Queue are handled by a special service thread created by the JVM. The analysis
should monitor events created by the service thread as the work of the thread
is triggered by the application. Nevertheless, the service thread is also process-
ing weak references created by the analysis, thus triggering additional events not
related to the application behavior.

Introduction of deadlock

While analysing multi-threaded applications, the analysis should never change
synchronization behaviour in the observed application. In other words, the anal-
ysis should never acquire a lock that could be potentially held by the application
as it could lead to a deadlock. An obvious problem is an invocation of methods on
a shared object (like printing into standard output), where the analysis and the
application compete for one shared lock. However, the analysis may introduce a
deadlock even if it does not invoke such a shared object directly.

2http://docs.oracle.com/javase/7/docs/api/java/lang/ref/WeakReference.html
3http://docs.oracle.com/javase/7/docs/api/java/lang/ref/ReferenceQueue.html

15

http://docs.oracle.com/javase/7/docs/api/java/lang/ref/WeakReference.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ref/ReferenceQueue.html

Execution trace of thread A

Evaluation of an event

Thread acquires LA (analysis lock)

Evaluation triggers class loading

Thread waits on LC (class loading lock)

Execution trace of thread B

Loading of a class

Thread acquires LC (class loading lock)

Evaluation of a class loading event

Thread waits on LA (analysis lock)

Figure 1.2: An application deadlock caused by analysis evaluation. Text written
in black denotes application execution, blue italic text denotes analysis execution,
and bold red text denotes lock acquisition.

Figure 1.2 illustrates an execution trace leading to a deadlock in a multi-
threaded application caused by the analysis evaluation. The analysis is observing
the multi-threaded application and uses a lock to protect consistency of its data.
The application is a standard multi-threaded application with two threads, A
and B. Thread A is currently evaluating a triggered analysis event. Thread B is
loading a new application class. Thread A is holding a lock LA as it is currently
modifying the analysis data. Thread B is holding a lock LC as the standard Java
class loader implementation is synchronized.

Among other events, the analysis is observing the class loading behaviour.
Therefore, thread B triggers an event and starts waiting on the analysis evaluation
lock LA already held by thread A. Meanwhile, analysis code executed by thread
A triggers class loading. The class loading process invokes the class loader to load
a new class. Thread A starts waiting on the class loading lock LC and creates
deadlock.

1.8 Goals revisited

The primary goal of the thesis is to define a platform that would ease the devel-
opment of dynamic program analyses. The platform is essentially composed of
two parts, the event observation and the event evaluation. The event observation
should be flexible enough to support implementation of a wide range of dynamic
analyses. The event evaluation should provide an isolated environment allow-
ing the analysis developer to write the evaluation logic without worrying about
possible perturbation of the observed application.

Looking closer at the target platform of our initial implementation, the instru-
mentation provides the most flexible and portable interface. Java exposes two
distinct interfaces for bytecode instrumentation, JVMTI and Java level instru-
mentation. JVMTI provides instrumentation on the native code level, hence the
developer is required to have a deep knowledge about the whole managed infras-
tructure (virtual machine). The java level agent can instrument directly in the
managed code, but the instrumentation process may disturb the observed appli-
cation. Offline instrumentation is also possible, nevertheless the instrumentation
process may leave libraries and dynamically loaded classes un-instrumented.

The validity of the performed analysis is our primary focus, therefore neither
Java level agent nor offline instrumentation is suitable. The remaining option is

16

instrumentation using JVMTI. As JVMTI is a native interface, the goal will be
to provide an event specification method that hides the complexity of the native
level instrumentation.

Java itself does not provide any support for isolation inside one process. To
prevent undesired perturbation, the event evaluation needs to be offloaded out of
the Java context.

In 1.6, we mentioned three (JDI, JMX, JVMTI) interfaces for offloading events
out of the application context. JMX and JDI do not provide capabilities we
require. Especially they are not designed to transfer bigger amounts (tens of
megabytes per second) of data.

JVMTI provides the interface to observe only a predefined set of JVM events
in the native space. However, the instrumentation produced using JVMTI is
able to trigger custom events in the observed application, therefore we require
a solution allowing to offload custom events out of the Java space. JNI allows
to call an arbitrary native method from Java, thus it can offload any event into
the native space. As we aim to ease the development of the dynamic analyses,
our goal will be to pass the event out of the native space into a more convenient
environment for the event evaluation.

After summarizing the monitoring capabilities of the target platform, we are
ready to expand the initial goals as follows.

The primary goal of the thesis is to create a platform that would ease the de-
velopment of dynamic program analyses. Such a platform should support simple
but flexible method for capturing events originating in the observed application.
The events of interest should be specified using an instrumentation language with
the following attributes:

• High-level language constructs enable a developer not familiar with instru-
mentation internals to create a custom dynamic analysis.

• A skilled developer should be allowed to define new constructs to capture
arbitrary application behaviour.

• The language should provide rich access to static and dynamic context
information.

• As the dynamic analysis often requires processing of large amount of events,
incurred overhead of the instrumentation code should be minimal and fully
in the hands of the analysis developer.

The platform should provide an isolated environment, where the evaluation
of the captured events does not cause perturbation in the observed application.
The environment for event evaluation should have the following properties:

• Isolation of the observed application limits perturbation caused by the dy-
namic analysis.

• The isolation is achieved by processing analysis events out of the context of
the observed application.

17

• A programming model of the evaluation environment should be close to the
programming model of the hosting language.

• The isolation poses a reasonable overhead so that the implemented dynamic
analysis stays performance competitive.

• As we aim for a solution that will be applicable in practice, the implemen-
tation should be usable in production JVMs.

18

Chapter 2

Overview of Contribution

This chapter summarizes the work we have done to ease development and reduce
the incurred perturbation while observing a runtime behaviour of an application.

The presented observation platform is composed from two parts. The first
called DiSL, is a language for instrumentation specifically designed for dynam-
ic program analysis. The second called ShadowVM, is a system for offloading
dynamic analysis out of the context of an observed application.

Combined together, DiSL and ShadowVM provide a feature complete infras-
tructure for creating custom dynamic analyses of Java applications while improv-
ing the development efficiency, minimizing induced perturbation and providing
competitive performance compared to similar frameworks. Although most of the
problems solved by DiSL and ShadowVM are generic to all managed runtimes,
both systems are tightly coupled with the Java environment.

2.1 DiSL, domain specific language for Java byte-

code instrumentation

DiSL is a language for rapid development of instrumentation targeted on the do-
main of dynamic program analysis. The key concepts beside the development
efficiency are small runtime overhead, simple extensibility, and observation cov-
erage of the whole Java Class Library.

The DiSL language is hosted in Java and uses Java annotations to guide
the instrumentation process. The language is inspired by the Aspect Oriented
Programing [61] and adopts AOP’s three basic concepts: shadow, join-point,
and advice. The DiSL instrumentation framework is implemented on top of
ASM [2, 47], a widely adopted Java instrumentation library.

The Instrumentation in DiSL is written as a standard Java class where meth-
ods are annotated by a custom DiSL annotation. A method contains instrumen-
tation code that will be inlined into the application. The annotation specifies
whether the instrumentation code will be inserted before or after a defined block
of code and includes additional parameters for the instrumentation process like
scoping.

Markers

In DiSL, instrumentation code is inserted before or after a block of code marked
by a construct called Marker. DiSL provides a library of predefined Markers
to easily insert instrumentation code before or after a method body, a method
invocation or a single bytecode instruction. Custom Marker allows to define
arbitrary block that may be of interest to the instrumentation developer.

19

Context information

Providing access to static and dynamic contextual information is an essential
feature of every instrumentation framework. DiSL exposes two interfaces called
StaticContext and DynamicContext for accessing information about context in
which is an event triggered. The DynamicContext is a predefined interface provid-
ing access to local variables, variables on the Java stack, this object and method
arguments. The StaticContext is fully customizable and allows the developer to
pre-compute custom static information during weave time and access the pre-
computed information in the instrumentation code. Access to basic information
about classes and methods under instrumentation is in DiSL exposed through a
predefined library of StaticContext classes.

Instrumentation scoping

A scoping language implemented in DiSL allows to restrict the instrumentation
to particular classes or methods. A scoping pattern is expressed as a string
matching a class name, a method name and a method signature of a method to be
instrumented. The scoping pattern may additionally use wildcards to substitute
a part of the pattern value.

When more control over the scoping is needed, a Guard construct enables to
evaluate more comprehensive conditions using Java code. The Guard indicates
for each instrumented location whether the location should be instrumented or
not. The Guard is a standard Java class with one annotated method evaluating
the scoping condition. The Guard method has access to all context information
available using StaticContext and DynamicContext interfaces.

Data passing

To perform more complex analysis, the instrumentation may require to share
information across several instrumented locations. DiSL provides two distinct
mechanisms for easy and efficient data passing. A standard Java field defined in
an instrumentation class and annotated by a ThreadLocal annotation acts as a
thread local variable. The behaviour is the same as the Java thread local variable,
however DiSL translates all operations on the variable as a direct access to the
Java Thread class, thus making it more efficient.

For efficient data passing between instrumentation code inserted into the same
method body, DiSL introduces a construct called synthetic local variable. It is
again a field defined in an instrumentation class and annotated by a SyntheticLocal
annotation. In each application method with inserted instrumentation code, DiSL
creates a new local variable and translates all operations on the synthetic local
field as operations on the local variable.

Exception handling

The instrumentation written in DiSL is free to use arbitrary Java code. As the
instrumentation is meant for observation only, it is not desirable to throw any
exception out of the scope of the instrumentation. Such an exception would
otherwise propagate through the application and change its control flow. All the
inserted code is therefore automatically wrapped by a try-catch block handling

20

Observed
JVM

Instrumented
base program

Instrumented
Java class library

instrumentation process

Instrumentation
server

User-supplied
instrumentation

code

Instrumentation
framework

(+ host JVM)

observed process

JVMTI agent

Figure 2.1: An architecture of the DiSL instrumentation framework.

all exceptions introduced in the instrumentation. The wrapping can be disabled
when the instrumentation reaches production quality.

Framework architecture

DiSL contains a simple wrapper library for offline instrumentation. The limitation
of offline instrumentation is in the use of thread local variables, where special
instrumentation of java.lang.Thread is required. Besides offline instrumentation,
DiSL ships a framework for online application instrumentation. Even though the
majority of DiSL features are designed to support hotswapping constraints1 and
could potentially instrument an already running application, the framework is
currently limited to instrument classes while being loaded by the JVM.

As shown in Figure 2.1, DiSL uses two JVMs to separate the observed appli-
cation and the instrumentation. The separation reduces perturbation and allows
to instrument the whole Java Class Library without complex instrumentation
process. The instrumentation process is as follows. A native agent in the ob-
served VM is using the JVMTI interface to intercept newly loaded application
classes. The intercepted classes are sent to the second VM for instrumentation.
As the instrumentation process is separated from the observed VM, it can safely
run in Java space. When instrumented, classes are sent back and loaded by the
observed VM.

In summary, DiSL provides the language and the framework for easy and effi-
cient instrumentation programming in Java [76]. The instrumentation developer
has the ability to intercept any block of code either with a predefined library of
Markers or through the extensible marking interface. Customizable StaticCon-
text allows to pre-compute arbitrary static information during weave time and
efficiently access the computed information during runtime. The DynamicCon-
text interface exposes dynamic context information without any hidden memory

1Thread local variables in current implementation do not work without instrumentation
done in a bootstrap phase.

21

Observed
JVM

JVMTI agent

Instrumented
base program

Instrumented
Java class library

Event API

analysis process

Analysis
server

User-supplied
 analysis code

Shadow API
implementation

(+ host JVM)

observed process

Figure 2.2: An architecture of the ShadowVM dynamic analysis evaluation frame-
work.

allocation. Weave-time scope restriction is enabled using the Scope and Guard
constructs while dynamic condition evaluation can be inserted directly in instru-
mentation code.

The DiSL framework itself does not provide an environment for dynamic anal-
ysis evaluation. It provides the simple dynamic bypass mechanism to prevent trig-
gering of dynamic analysis events from the instrumentation. Even though such
mechanism offers basic protection, it does not comprehensively solve all problems
connected to in-process analysis evaluation.

The purpose of this section was to provide only a brief overview of DiSL. A
more detailed description together with an evaluation can be found in the included
paper called DiSL: A Domain-Specific Language for Bytecode Instrumentation.

2.2 ShadowVM, framework for remote dynamic

analysis evaluation

ShadowVM is a framework for offloading analysis evaluation out of the context of
the observed application. The motivation for designing ShadowVM was to resolve
all problems connected to in-process analysis evaluation [59]. The Holy Grail
would be to have a system performing evaluation outside of the context of the
observed application but still maintaining performance and context availability as
with in-process analysis. Because this is not possible without heavy modifications
to production JVMs, ShadowVM introduces several compromises to provide a
convenient evaluation environment while maintaining reasonable performance.

Figure 2.2 illustrates an architecture of ShadowVM. Similarly to DiSL, Shad-
owVM uses two virtual machines to prevent perturbation of the observed appli-
cation. One JVM (the observed VM) is running the native agent responsible
for marshaling events from the observed application, while a second JVM (Shad-
owVM) is performing the evaluation.

22

Event propagation

In the in-process analysis, the event interface between the instrumentation and
the evaluation part is often implemented as a simple method call with the context
information passed as method arguments. The evaluation has a full access to the
context of the observed application including threads, heap and class hierarchy.
In the case of the out-of-process analysis, all context information required for the
evaluation has to be transferred from the observed application to the evaluation.
In theory, the out-of-process analysis interface could be fully transparent but it
would require either to rebuild the whole state of the application in the evaluation
VM or stop the JVM so the context can be queried on request.

To significantly reduce the event offloading overhead, ShadowVM communi-
cates with the observed VM asynchronously. When an event is triggered in the
observed VM, the event data is marshaled and buffered and an application thread
is able to proceed. As the observed application starts changing its state before
the event is evaluated, the event should contain all the context information re-
quired for its processing. In other words, the analysis is not able to query any
additional2 context information during evaluation.

An interface providing event offloading on the observed VM looks like a stan-
dard method invocation. The method is just a stub for a set of java-to-native
method calls responsible for marshaling, buffering and sending of triggered events.
On ShadowVM, the event is un-marshaled and scheduled for the evaluation.

ShadowVM poses no restrictions on the transferred types, however only Java
basic types (byte, int, long, double, . . .) are transferred to ShadowVM in the same
form as they were sent. ShadowVM does not replicate field values of an object
instead, only a unique object identifier and class information are transferred.

Shadow API

On the ShadowVM side, objects and classes are accessible through Shadow API.
Upon arrival, each object is recreated as a ShadowObject. The ShadowObject
does not provide any access to the original object’s methods or fields. The only
accessible information is the identity and the class hierarchy information of the
corresponding object. If some other information like a field value is required, it
needs to be transferred separately.

The Shadow API provides special handling for references of type java.lang.String3,
java.lang.Thread4 and java.lang.Class5. Each reference is recreated as the corre-
sponding ShadowObject, providing access to additional information. The Shad-
owString object provides access to the original String value, the ShadowThread
object allows to access part of the corresponding thread information and the
ShadowClass mirrors the original java.lang.Class interface for accessing class in-
formation.

2The exception is class information, which is accessible during evaluation through the Shad-
ow API.

3http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
4http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
5http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html

23

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html

Event oredering

A threading model of the in-process analysis is usually same as of the observed
application. As the interface between the instrumentation and the evaluation
is a simple method call, application threads executing the instrumentation are
also used to perform the evaluation. In ShadowVM, the use of asynchronous
communication opens a possibility for different event ordering models during
evaluation.

ShadowVM allows to specify ordering model determining how an event is
buffered, transferred and processed. The default (per-thread) ordering guarantees
that events produced by the same thread on the observed VM are processed in
the same order in ShadowVM. This ordering is similar to in-process analysis with
an exception that no guarantees are made in respect to other events produced by
different threads, even if the threads are synchronized. When a more fine grained
control over the ordering is needed, the ShadowVM allows to specify an ordering
group for each event. The event ordering group ensures that events sharing the
same event group are processed in the same order in which they are produced.
The default per-thread ordering may be seen as a special case of group ordering
where the events produced by the same thread share the same event group. Using
event groups, the analysis developer may easily create a global ordering among
all the produced events by letting them share one global event group.

On ShadowVM, events from the same event group are processed by the same
thread. For convenience, ShadowVM maintains one-to-one mapping between
event groups and event processing threads, therefore it allows to use thread fea-
tures like thread-local variables.

Even though the ordering specification may slightly complicate the event of-
floading process, it brings benefits during event evaluation. Locking required
during event offloading is already done by the ShadowVM framework. In the
scenario, where events are buffered to only one event group (simulating total or-
dering), ShadowVM takes care about all the necessary locking. It is guaranteed,
that events are processed by a single thread no matter what threading model
is used in the observed application. In contrast, in-process analysis cannot do
any assumption about the threading model used by the observed application and
locking has to be adapted to the worst-case scenario.

Life-cycle events

During the evaluation, analysis process thousands of events resulting in thou-
sands of ShadowObjects created on the ShadowVM side. ShadowObjects may be
referenced from an analysis data structure and the structure grows infinitely as
the analysis processes more events. In-process analysis usually tracks analysed
objects using weak references and deallocates structures connected to the anal-
ysed objects at the time the object is garbage collected. It also registers shutdown
hooks to do final processing during observed VM shutdown.

To provide a similar cleanup mechanism, the Shadow API introduces two
kinds of life-cycle events. An object lifetime event is triggered every time an
object referenced by a ShadowObject is reclaimed. It is guaranteed that the
object lifetime event is triggered as the last event referencing such an object and
may be used as a cleanup event. A VM death life-cycle event is triggered at the

24

end of the analysis when the observed VM is shutting down. The VM death
life-cycle event is meant for final cleanup and no other events arrive after VM
death.

In the ShadowVM programming model, event context propagation can be seen
as limiting. Especially the propagation of object references, where the analysis
needs to propagate all requested fields of an object separately. The propagation of
object state could be automated in the framework, however it would hit another
limit where each reference stored in a field would be again only the ShadowObject
without any data. A solution would be either propagate the whole reachable state
at the time an event is generated, or propagate every observable state change of
the application. We believe that the analysis developer should have full control
over the information being transferred and an automated solution should be used
only when truly required.

To provide better isolation, ShadowVM offloads the dynamic analysis out of
the context of the observed application. The Shadow API provides access to
objects and class information and introduces life-cycle events to support long-
running analyses. ShadowVM introduces several mechanisms to improve the
performance and increase the usability of the platform. The analysis developer is
granted full control over the data being transmitted to eliminate unnecessary data
transfers. The events are transmitted and evaluated asynchronously to decrease
the execution time required for the application threads to dispatch the events. To
reduce lock contention while buffering the events, ShadowVM introduces several
event ordering models.

The purpose of this section was to provide only a brief overview of ShadowVM.
A more detailed description together with an evaluation can be found in the
included paper called ShadowVM: Robust and Comprehensive Dynamic Program
Analysis for the Java Platform.

25

26

Part II

Collection of Papers

27

Preface

Foundations of this thesis were published on several research conferences. In the
following chapters, we include full version of the selected publications.

The paper called DiSL: A Domain-Specific Language for Bytecode Instrumen-
tation describes the DiSL instrumentation language and its implementation in the
DiSL framework. The evaluation part of the paper compares DiSL to ASM and
AspectJ, often used instrumentation tools. The author of this thesis largely con-
tributed to the design of the DiSL language. He was also the lead developer and
one of the two main authors of the DiSL framework and substantially contributed
to the text of the paper.

The second paper, ShadowVM: Robust and Comprehensive Dynamic Program
Analysis for the Java Platform, describes the framework for offloading dynamic
analyses out of the context of the observed application and assess its performance
compared to the in-process analysis. The author of this thesis designed and
implemented most of the framework and substantially contributed to the text of
the paper.

The third paper, called Introduction to Dynamic Program Analysis with DiSL,
is a complete presentation of DiSL. It introduces most features of DiSL based on
examples and demonstrates the benefits of DiSL on several case studies. The
author of this thesis prepared the demonstration of DiSL and its description.
The case studies and their evaluation, together with the implementation of the
examples, were prepared by the co-authors.

A complete list of all author’s publications can be found at the end of the
thesis.

29

30

Chapter 3

DiSL: A Domain-Specific
Language for Bytecode
Instrumentation

Lukáš Marek,
Alex Villazón,
Yudi Zheng,
Danilo Ansaloni,
Walter Binder,
Zhengwei Qi

Contributed paper at the 11th Annual International Confer-
ence on Aspect-oriented Software Development (AOSD 2012).

In conference proceedings,
published by ACM,
pages 239-250,
ISBN 978-1-4503-1092-5,
March 2012.

The original version is available electronically from the publisher’s
site at http://dx.doi.org/10.1145/2162049.2162077.

31

http://dx.doi.org/10.1145/2162049.2162077

DiSL: A Domain-Specific Language for Bytecode Instrumentation

Lukáš Marek

Charles University, Czech Republic

lukas.marek@d3s.mff.cuni.cz

Alex Villazón

Universidad Privada Boliviana, Bolivia

avillazon@upb.edu

Yudi Zheng

Shanghai Jiao Tong University, China

zheng.yudi@sjtu.edu.cn

Danilo Ansaloni Walter Binder

University of Lugano, Switzerland

{danilo.ansaloni, walter.binder}@usi.ch

Zhengwei Qi

Shanghai Jiao Tong University, China

qizhwei@sjtu.edu.cn

Abstract

Many dynamic analysis tools for programs written in man-

aged languages such as Java rely on bytecode instrumenta-

tion. Tool development is often tedious because of the use

of low-level bytecode manipulation libraries. While aspect-

oriented programming (AOP) offers high-level abstractions

to concisely express certain dynamic analyses, the join point

model of mainstream AOP languages such as AspectJ is not

well suited for many analysis tasks and the code generated

by weavers in support of certain language features incurs

high overhead. In this paper we introduce DiSL (domain-

specific language for instrumentation), a new language es-

pecially designed for dynamic program analysis. DiSL of-

fers an open join point model where any region of byte-

codes can be a shadow, synthetic local variables for effi-

cient data passing, efficient access to comprehensive static

and dynamic context information, and weave-time execu-

tion of user-defined static analysis code. We demonstrate the

benefits of DiSL with a case study, recasting an existing dy-

namic analysis tool originally implemented in AspectJ. We

show that the DiSL version offers better code coverage, in-

curs significantly less overhead, and eases the integration of

new analysis features that could not be expressed in AspectJ.

Categories and Subject Descriptors D.3.3 [Program-

ming Languages]: Language Constructs and Features—

Frameworks

General Terms Languages, Measurement, Performance

Keywords Bytecode instrumentation, dynamic program

analysis, aspect-oriented programming, JVM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright © 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

1. Introduction

Dynamic program analysis tools support numerous software

engineering tasks, including profiling, debugging, testing,

program comprehension, and reverse engineering. Despite

of the importance of dynamic analysis, prevailing techniques

for building dynamic analysis tools are based on low-level

abstractions that make tool development, maintenance, and

customization tedious, error-prone, and hence expensive.

For example, many dynamic analysis tools for the Java Vir-

tual Machine (JVM) rely on bytecode instrumentation, sup-

ported by a variety of bytecode engineering libraries that of-

fer low-level APIs resulting in verbose implementation code.

In an attempt to simplify the development of dy-

namic analysis tools, researchers have explored the use of

aspect-oriented programming (AOP) languages, such as As-

pectJ [16]. Examples of aspect-based dynamic analysis tools

are the DJProf profilers [20], the RacerAJ data-race detec-

tor [10], and the Senseo Eclipse plugin for augmenting static

source code views with dynamic information [21]. However,

as neither mainstream AOP languages nor the correspond-

ing weavers have been designed to meet the requirements

of dynamic program analysis, the success of using AOP for

dynamic analysis remains limited. For example, in AspectJ,

join points that are important for dynamic program analysis

(e.g., the execution of bytecodes or basic blocks) are miss-

ing, access to reflective dynamic join point information is

expensive, data passing between woven advice in local vari-

ables is not supported, and the mixing of low-level bytecode

instrumentation and high-level AOP code is not foreseen.

In this paper, we introduce DiSL, a new domain-specific

language for bytecode instrumentation. DiSL relies on AOP

principles for concisely expressing efficient dynamic analy-

sis tools. The language provides an open join point model

defined by an extensible set of bytecode markers, efficient

access to static and dynamic context information, optimized

processing of method1 arguments, and synthetic local vari-

1 In this paper, “method” stands for “method or constructor”.

32

ables for efficient data passing. While DiSL significantly

raises the abstraction level when compared to prevailing

bytecode manipulation libraries, it also exposes a low-level

API to implement new bytecode markers. The DiSL weaver

guarantees complete bytecode coverage to ensure that anal-

ysis results represent overall program execution. DiSL fol-

lows similar design principles as @J [8], an AOP lan-

guage for dynamic analysis, which however lacks an open

join point model and efficient access to method arguments.

Compared to high-level dynamic analysis frameworks

such as RoadRunner [13] or jchord2 that restrict the loca-

tions that can be instrumented, DiSL offers the developer

fine-grained control over the inserted bytecode; that is, DiSL

is not tailored for any specify dynamic analysis task, but pro-

vides constructs for concisely expressing any bytecode in-

strumentation. Instrumentation sites can be specified with a

combination of bytecode markers, scoping expressions, and

guards; guards represent static analyses executed at weave-

time. Instrumentation code is provided in the form of snip-

pets, that is, code templates that are instantiated for each se-

lected instrumentation site and inlined. Snippets may access

synthetic local variables to pass data from one instrumenta-

tion site to another. Snippets may access any static or dy-

namic context information; they may also process an arbi-

trary number of method arguments in a custom way.

The scientific contributions of this paper are twofold:

1. We present our design goals, the DiSL language con-

structs, and the implementation of the DiSL weaver.

2. We present a case study to illustrate the benefits of DiSL.

We recast Senseo [21, 22] in DiSL; Senseo is an AspectJ-

based profiling tool that supports various software main-

tenance tasks. In contrast to the former AspectJ imple-

mentation, the DiSL version of the tool features complete

bytecode coverage, introduces significantly less over-

head, and can be easily extended to collect additional dy-

namic metrics on the intra-procedural control flow.

This paper is structured as follows: Section 2 describes

the design goals underlying DiSL. Section 3 gives a detailed

overview of the DiSL language constructs. The software ar-

chitecture of the DiSL weaver and its implementation are

discussed in Section 4. Our case study is introduced in Sec-

tion 5 and evaluated in Section 6. Section 7 discusses related

work, Section 8 summarizes the strengths and limitations of

DiSL, and Section 9 concludes.

2. Design of DiSL

Designing a good language for instrumentation-based dy-

namic program analysis is challenging, because we need

to reconcile three conflicting design goals: (1) high expres-

siveness of the language, (2) a convenient, high-level pro-

gramming model, and (3) high efficiency of the developed

2 http://code.google.com/p/jchord/

analysis tools. On the one hand, existing bytecode manip-

ulation libraries meet the first and the third goal, but pro-

vide only low-level abstractions that make tool development

cumbersome. On the other hand, mainstreamAOP languages

achieve the second goal, but lack expressiveness (e.g., lack

of join points that would allow tracing the intra-procedural

control flow) and suffer from inefficiencies (e.g., access to

dynamic reflective join point information may require the

allocation of unnecessary objects). The design of DiSL aims

at bridging the gap between low-level bytecode manipula-

tion frameworks and high-level AOP. Below, we motivate

the main design choices underlying DiSL.

Open join point model. DiSL allows any region of byte-

codes to be used as a join point, thus following an open

join point model. That is, the set of supported join point

shadows [15] is not hard-coded. To enable the definition of

new join points, DiSL provides an extensible mechanism for

marking user-defined bytecode regions (i.e., shadows).

Compatibility with Java and the JVM. DiSL is a domain-

specific embedded language which has Java as its host lan-

guage. DiSL instrumentations are implemented in Java, and

annotations are used to express where programs are to be in-

strumented. Dynamic analysis tools written in DiSL can be

compiled with any Java compiler and executed on any JVM.

Advice inlining and data passing in synthetic local vari-

ables. Advice in DiSL are expressed in the form of code

snippets that are inlined, giving the developer fine-grained

control over the inserted code. DiSL instrumentations (cor-

responding to aspects in AOP) describe where snippets are to

be inserted into the base program. Thanks to inlining, snip-

pets woven into the same method are able to efficiently com-

municate data through synthetic local variables [6].

Efficient access to complete static and dynamic context in-

formation. In DiSL, all static context information is exposed

to the developer. This feature is similar to AspectJ’s static

reflective join point information (offering class and method

properties), but exposes additional information at the basic

block and bytecode level. DiSL also supports user-defined

static analysis to compute further static context information

at weave-time. In addition, DiSL provides a simple, yet pow-

erful reflective API to gather dynamic context information

which gives access to local variables and to the operand

stack, supporting also efficient access to an arbitrary num-

ber of method arguments.

No support for around advice. Mainstream AOP lan-

guages support advice execution before, after, and around

join points. Three common use cases of around advice are

(1) passing data around a join point, (2) skipping a join point,

and (3) executing a join point multiple times. As we assume

that instrumentations do not alter the control flow in the base

program, only the first use is relevant for us. However, for

the first use case, the same behavior can be achieved with

before and after advice using synthetic local variables [6].

33

Hence, DiSL only supports before and after advice, which

helps keep the weaver simple.

Complete bytecode coverage. DiSL is designed for weaving

with complete bytecode coverage. That is, the DiSL weaver

ensures that all methods that have a bytecode representation

can be woven, including methods in the standard Java class

library. To this end, the DiSL weaver relies on implementa-

tion techniques developed in previous work [19].

3. Language Features

In this section we give an overview of the language features

of DiSL. In Section 3.1 we introduce DiSL instrumentations

specified in the form of snippets; markers determine where

snippets are woven in the bytecode. The mechanism to con-

trol the inlining order of snippets is explained in Section 3.2.

Synthetic local variables for efficiently passing data between

woven snippets are presented in Section 3.3, and efficient ac-

cess to thread-local variables is discussed in Section 3.4. In

Section 3.5 we introduce static context to provide static re-

flective information, and we present the reflective API for

obtaining dynamic context information in Section 3.6. In

Section 3.7 we explain DiSL’s support for method argu-

ments processing. In Section 3.8 we introduce guards that

enable the evaluation of conditionals at weave-time to decide

whether a join point is to be captured, as well as a scoping

construct to restrict weaving.

3.1 Instrumentations, Snippets, and Markers

DiSL instrumentations are Java classes. An instrumenta-

tion can only have snippets that are static methods an-

notated with @Before, @After, @AfterReturning, or

@AfterThrowing. Snippets are defined as static methods,

because their body is used as a template that is instantiated

and inlined at the matching join points in the base program.

Snippets do not return any value and must not throw any ex-

ception (that is not caught by a handler in the snippet).

Because of DiSL’s open join point model, pointcuts are

not hardcoded in the language but defined by an extensible

library of markers. Markers are standard Java classes im-

plementing a special interface for join point selection. DiSL

provides a rich library of markers including those for method

body, basic block, individual bytecode, and exception han-

dler. In addition, the developer may extend existing markers

or implement new markers from scratch.

The marker class is specified in the marker attribute in

the snippet annotation. The weaver takes care of instantiating

the selected marker, matching the corresponding join points,

and weaving the snippets.

In addition to the predefined markers, DiSL offers join

point extensibility by exposing the internal representation of

method bodies to the developer, who has to implement code

to mark the bytecode regions defining the shadows for the

new join points.

3.2 Control of Snippet Order

It is common that several shadows coincide in the start-

ing instruction, that is, several snippets may apply to the

same join point. Similar to AspectJ’s advice precedence

resolution, DiSL provides a simple mechanism to control

snippet ordering through the order attribute in the snip-

pet annotation. The order is specified as a non-negative

integer value. For @Before, snippets with higher order

are inlined before snippets with lower order. For @After,

@AfterReturning, and @AfterThrowing, snippets with

lower order are inlined before snippets with higher order.

Thus, the order indicates “how close” to the shadow the snip-

pet shall be inlined.

3.3 Synthetic Local Variables

DiSL provides an efficient communication mechanism to

pass arbitrary data between snippets. The mechanism relies

on inlining so as to store the data in a local variable, which

is therefore visible in the scope of the woven method body.

DiSL provides the @SyntheticLocal annotation to spec-

ify the holder variable. Synthetic local variables must be de-

clared as static fields and can be used in any snippet. The

weaver takes care of translating the static field declared in

the instrumentation into a local variable in each instrumented

method, and of replacing the bytecodes that access the static

field with bytecodes that access the introduced local vari-

able. For details, we refer to [6].

3.4 Thread-local Variables

DiSL supports thread-local variables with the

@ThreadLocal annotation. This mechanism extends

java.lang.Thread by inserting the annotated field. While

the inserted fields are instance fields, thread-local variables

must be declared as static fields in the instrumentation class,

similar to synthetic local variables. These fields must be

initialized to the default value of the field’s type.3 The DiSL

weaver translates all access to thread-local variables in snip-

pets into bytecodes that access the corresponding field of the

currently executing thread. An inheritable flag can be

set in the @ThreadLocal annotation such that new threads

“inherit” the value of a thread-local variable from the creat-

ing thread. Note that the standard Java class library offers

classes with similar semantics (java.lang.ThreadLocal
and java.lang.InheritableThreadLocal). However,

accessing fields directly inserted into java.lang.Thread
results in more efficient code.

3.5 Static Context Information

Accessing static context information is essential for dy-

namic analyses, for example, gathering information about

3During JVM bootstrapping, in general, inserted code cannot be executed

because it may introduce class dependencies that can violate JVM assump-

tions concerning the class initialization order. Hence, threads created during

bootstrapping could not initialize inserted thread-local fields in the begin-

ning.

34

������

����������	���

���������

�	����

��������
������

����	���	�������

��������
������

����	���

������

���������

�����	��

�������

�	��	����
��������

������

�	����

�!�����������������"���������

���� 	�����������������������

����������

� ���������	��������

Figure 1. Gathering static context information at weave-

time

the method, basic block, or bytecode instruction that is exe-

cuted. Because of the open join point model of DiSL, there

is no bound static part of a join point as in AspectJ. In

DiSL, the programmer can gather reflective static informa-

tion at weave-time by using various static contexts. DiSL

provides a library of commonly used static contexts such

as MethodStaticContext, BasicBlockStaticContext,

and BytecodeStaticContext. The developer may also

implement custom static context classes.

For every snippet, the programmer can specify any num-

ber of static contexts as argument. Each static context

class implements the StaticContext interface and pro-

vides methods without argument that must return a value of

a Java primitive type or a string. The reason for this restric-

tion is that DiSL stores the results of static context methods

directly in the constant pool of the woven class. Static con-

texts receive read-only access to the shadow containing the

following reflective information: the class and method under

instrumentation, the snippet, and the beginning and ending

positions of the current shadow.

Figure 1 depicts the reflective approach for gathering

static context information. After shadow marking according

to the selected marker, the snippet is parsed to locate invo-

cations to static context methods (step 1). Static contexts

are then instantiated by the weaver and the corresponding

methods are invoked for every shadow (step 2). Static con-

text methods access the exposed reflective data to compute

the static information to be returned (step 3). The weaver

replaces the invocation of the static context methods in the

snippet with bytecodes to access the computed static infor-

mation (step 4). The snippet code is inlined before or after

the matching shadows (step 5).

Figure 2 shows how static contexts are used in an in-

strumentation for calling context-aware basic block analysis.

The goal is to help developers find hotspots in their programs

taking both the inter- and intra-procedural control flow into

public class CallingContextBBAnalysis {

@ThreadLocal

static CCTNode currentNode;

@SyntheticLocal

static CCTNode callerNode;

@Before(marker = BodyMarker.class, order = 1)

static void onMethodEntry(MethodStaticContext msc) {

if ((callerNode = currentNode) == null)

callerNode = CCTNode.getRoot();

currentNode =

callerNode.profileCall(msc.thisMethodFullName());

}

@After(marker = BodyMarker.class)

static void onMethodCompletion() {

currentNode = callerNode;

}

@Before(marker = BasicBlockMarker.class, order = 0)

static void onBasicBlock(BasicBlockStaticContext bbsc) {

currentNode.profileBB(bbsc.getBBIndex());

}

}

Figure 2. Sample instrumentation for calling context-aware

basic block profiling (class CCTNode is not shown)

account. The presented instrumentation collects statistics on

basic block execution for each calling context.

For storing inter-procedural calling context information,

a Calling Context Tree (CCT) [3] is used. For each thread,

the current CCT node is kept in the thread-local variable

currentNode that is updated upon method entry and com-

pletion (onMethodEntry(...) and onMethodCompletion()
snippets using the BodyMarker). The synthetic local vari-

able callerNode is used to store the CCT node correspond-

ing to the caller. The CCTNode.getRoot() method returns

the root node of the CCT. The method profileCall(...)
takes a method identifier as argument and returns the corre-

sponding callee node in the CCT. The method identifier is

obtained from the MethodStaticContext; it is inserted as

a string in the constant pool of the woven class.4

The onBasicBlock() snippet captures all basic block

join points using the BasicBlockMarker. The idea is to

count how many times each basic block is executed, so as

to detect hot basic blocks. To this end, the snippet uses the

BasicBlockStaticContext for gathering the index of the

captured basic block. This value is used to increment the

corresponding counter in the CCT node (not shown). Note

that the order of the @Before snippets ensures that the

initialization of the synthetic local variable callerNode and

the update of the thread-local variable currentNode are

done at the very beginning of the method body, before they

are accessed in the first basic block.

3.6 Dynamic Context Information

Access to dynamic join point information (e.g., getThis(),
getTarget(), and getArgs() in AspectJ) requires gath-

ering data from local variables and from the operand

4 This is similar to the use of JoinPoint.StaticPart in AspectJ. While

AspectJ inserts static fields in the woven class to hold reflective static join

point information, DiSL avoids structural modifications of the woven class.

35

public interface DynamicContext {

<T> T getLocalVariableValue(int index,

Class<T> valueType);

<T> T getStackValue(int distance, Class<T> valueType);

Object getThis();

}

Figure 3. DynamicContext interface

public class ArrayAccessAnalysis {

@Before(marker = BytecodeMarker.class, args = "aastore")

static void beforeArrayStore(DynamicContext dc) {

Object array = dc.getStackValue(2, Object.class);

int index = dc.getStackValue(1, int.class);

Object stored = dc.getStackValue(0, Object.class);

Analysis.process(array, index, stored); // not shown

}

}

Figure 4. Profiling array access

stack [15]. DiSL provides an API to explicitly access

this information. Figure 3 shows the DynamicContext

API which provides reflective information through the

getLocalVariableValue(...) to access a local variable,

getStackValue(...) to access a stack value, and getThis()
returning this object or null in the case of a static method.

Similar to static contexts, the DynamicContext can be

passed to snippets as an argument. The programmer must

provide the index and the type of the data to access. Note

that the use of DynamicContext is not restricted to any par-

ticular marker. The developer must know how to access the

correct data from local variables or from the operand stack.

The weaver takes care of translating calls to the API methods

into bytecode sequences to retrieve the desired values.

An example of the use of DynamicContext is access

to the return value of a method, which is on top of the

stack upon normal method completion. The programmer

may implement an @AfterReturning snippet with the

BytecodeMarker (for different return bytecodes) and use

getStackValue(0, ...) to retrieve the return value. The in-

dex zero indicates the top of the stack.

The combination of DynamicContext with the

BytecodeMarker provides a powerful mechanism to

gather join point information for implementing dynamic

analysis tools, such as memory profilers. For example,

Figure 4 shows how to capture array accesses, which is

not possible in AspectJ. The beforeArrayStore(...)
snippet captures all objects being stored in arrays, where the

element type is a reference type. The profiler can keep track

which object has been stored at which position of an array.

Before every aastore bytecode, the snippet gets the array,

the index5 where the element will be stored, and the object

to be stored from the operand stack (at positions 2, 1, and

0, respectively). The process(. . .) method processes the

collected information (not shown).

5 The use of Java generics in the API results in autoboxing of primitive

values (e.g., index) in the compiled snippet. The DiSL weaver removes the

unnecessary boxing code before inlining.

public interface ArgumentProcessorContext {

Object getReceiver(ArgumentProcessorMode mode);

Object[] getArgs(ArgumentProcessorMode mode);

void apply(Class<?> argumentProcessor,

ArgumentProcessorMode mode);

}

public enum ArgumentProcessorMode {

METHOD_ARGS, CALLSITE_ARGS

}

Figure 5. Argument processor API

3.7 Argument Processors

Method arguments are retrieved from local variables or,

in the case of call sites, from the operand stack. DiSL’s

DynamicContext can be used to access these values when

the argument index and type are known, which is not always

the case. DiSL also provides a reflective mechanism, called

argument processor, to process all arguments by their types.

The ArgumentProcessorContext interface (see Fig-

ure 5) can be used within snippets to access method

arguments; it is to be passed to snippets as an ar-

gument, similar to static contexts or DynamicContext.

Two modes can be specified, to process either ar-

guments of the method where the snippet is inlined

(METHOD ARGS), or arguments of a method invocation

(CALLSITE ARGS). The getReceiver(...) method returns

the receiver, or null for static methods. The getArgs(...)
method returns all arguments in an object array, similar to

JoinPoint.getArgs() in AspectJ for execution respec-

tively call pointcuts. However, if the programmer needs to

selectively access arguments, or does not want them to be

wrapped in an object array (e.g., for performance reasons

or to preserve the original type for arguments of primitive

types), the API provides the apply(...) method, where the

programmer can specify an argument processor class that

handles the generation of code to access the arguments.

Argument processors are classes annotated with

@ArgumentProcessor. At weave-time, DiSL checks

which argument processor is selected in the snippet, and for

each matching join point, generates the code to process the

arguments according to their types.

Argument processors must implement static void meth-

ods, where the first parameter is required and additional (op-

tional) parameters may be passed. The type of the first pa-

rameter selects the type of argument to be captured. The

first parameter’s type can only be java.lang.Object or a

primitive type. For each argument of the woven method,

the weaver checks whether the selected argument proces-

sor has a method where the first parameter type matches

the current method argument type. In this case, the weaver

generates the code to access the corresponding argument,

which is eventually inlined within the snippet. As additional

parameters, the argument processor method can take any

static context, DynamicContext, or ArgumentContext.

ArgumentContext is an interface to access argument type,

argument position, and the total number of arguments.

36

� �!��$������ ����-�� �$��(����#��� ��� �% ���(�+.�/�

0�

���-�����(������ ��(������.�

����	��

1������-�+�.�

� �!��$��������-���#��� ������������ �% ���.�

����
�����	������

***�

��*�� ����!��-.�55�2�

$���55��3�

��*�� ����!��-.�55�4�

$���55��4�

�����	�����

�������	�

��������	���

+�

��*����&-	� �������������*�����(����������������������������

�������#��� ���������
���*
�����,���.)�

+�

Figure 6. Processing of integer arguments

Figure 6 illustrates the weaving of a snippet before a

join point in method foo(...). In this example, the devel-

oper only wants to process arguments of type int. For

method foo(...), only two of the arguments will match

the intProc(...) processor method (i1 and i2). First, the

weaver finds out which argument processor and mode should

be applied to the snippet (step 1). Then, the invocation

to apply(...) in the snippet is replaced with the expanded

method bodies of the processor for each matching argument

(step 2). In the example, the generated code will give ac-

cess to the two integer arguments, i.e., the snippet will con-

tain expanded processor code to access the values i1 and

i2. Finally, the expanded snippet is inlined (step 3). For

METHOD ARGS, the generated code retrieves the arguments

from local variables; for CALLSITE ARGS, the arguments are

taken from the operand stack. The use of CALLSITE ARGS

throws a weave-time error if the snippet is not woven before

a method invocation bytecode.

There are several advantages of using argument proces-

sors compared to, for example, JoinPoint.getArgs() in

AspectJ. Firstly, there is no need for creating objects that

hold dynamic join point information. DiSL efficiently takes

the correct values directly from local variables or from the

stack. Secondly, argument types are preserved. The values

of primitive types are not boxed as in AspectJ. Finally, it is

straightforward to apply argument processors to a subset of

arguments, without requiring complex pointcuts to be writ-

ten. We will illustrate these advantages in more detail with

our case study and evaluation in Sections 5 and 6.

3.8 Guards and Scope

DiSL provides two complementary mechanisms for restrict-

ing the application of snippets. The first one, guard, is based

on weave-time evaluation of conditionals. The second one,

scope, is based on method signature matching.

Guards allow us to evaluate complex weave-time restric-

tions for individual join points. A guard has to implement

a static method annotated with @GuardMethod. The guard

method may take any number of static contexts as argu-

ments. The guard method returns a boolean value indicating

whether the current joint point is to be instrumented. Static

public class ArgumentAnalysis {

@Before(marker = BodyMarker.class,

guard = MethodReturnsRef.class)

static void onMethodEntry {

... // inlined only if the method returns an object

}

}

public class MethodReturnsRef {

@GuardMethod

static boolean evalGuard(ReturnTypeStaticContext rtsc) {

return !rtsc.isPrimitive();

}

}

Figure 7. Snippet guard restricting weaving to methods that

return objects

contexts can be used to expose reflective weave-time infor-

mation to the guard. The guard has to be specified with the

guard attribute of the snippet annotation.

In contrast to AspectJ’s if pointcut, the evaluation of

guards is done for each join point at weave-time. This avoids

runtime overhead due to the evaluation of statically known

conditionals. To illustrate this point, let’s consider the ex-

ample shown in Figure 7. The programmer wants to re-

strict weaving only to methods returning objects; methods

returning values of primitive types (or void, which we

consider a primitive type here) shall not be woven. The

evalGuard(...) method of the MethodReturnsRef guard

uses ReturnTypeStaticContext to determine whether

the return type of the instrumented method is primitive.

Because this evaluation is performed at weave-time, the

onMethodEntry(...) snippet will be inlined only in meth-

ods that return objects.

Another interesting example of weave-time conditional

evaluation is the use of data flow analysis within guards. This

feature helps avoid inlining snippets that would otherwise

access uninitialized objects (passing an uninitialized object

to another method as argument would be illegal and cause a

verification failure). For example, the programmer may cap-

ture all putfield bytecodes in constructors, where the tar-

get is a properly initialized object. Consequently, putfield

bytecodes that write to the object under initialization before

invocation of the superclass constructor will not be captured.

Even though guards are expressive, in many common

cases, a more concise scoping expression is sufficient. In

DiSL, scope is a simplified signature pattern matching point-

cut designator. The scope attribute of the snippet annotation

specifies which methods shall be instrumented. Scope ex-

pressions specify method, class, or package names and may

contain wildcards (e.g., scope= ”∗ java.io.∗ (..)”). Typ-
ically, scope evaluation is faster than guard evaluation, as it

is done only once for each method. In contrary, a guard has

to be invoked (using reflection) for each join point in the

method. The best combination is the usage of scope expres-

sions for fast method filtering and of guards for fine-grained

joint point selection.

37

4. Implementation

DiSL is implemented in Java using the ASM6 bytecode

manipulation library in about 100 classes and 8000 lines

of code. The DiSL weaver7 runs on top of jBORAT8, a

lightweight toolkit providing support for instrumentation

with complete bytecode coverage [19]. jBORAT uses two

JVMs: an instrumentation JVM where bytecode instrumen-

tation is performed and an application JVM that executes

the instrumented application. This separation of the instru-

mentation logic from the instrumented application reduces

perturbations in the application JVM (e.g., class loading and

initialization triggered by jBORAT or by the DiSL weaver

do not happen within the application JVM). DiSL simpli-

fies deployment with scripts, hiding the complex JVM setup

from the user.

Figure 8 gives an overview of the DiSL weaver running

on top of jBORAT. During initialization, DiSL parses all

instrumentation classes (step 1). Then it creates an inter-

nal representation for snippets and initializes the used mark-

ers, guards, static contexts, and argument processors. When

DiSL receives a class from jBORAT (step 2), the weaving

process starts with the snippet selection. The selection is

done in two phases, starting with scope matching (step 3)

and followed by shadow creation and selection. Shadows

are created using the markers associated with the snippets

selected in the previous scope matching phase. Shadows

are evaluated by guards and only snippets with at least one

valid shadow are selected (step 4). At this point, all snippets

that will be used for weaving are known. Static contexts are

used to compute the static information required by snippets

(step 5). Argument processors are evaluated for snippets, and

argument processor methods that match method arguments

are selected (step 6). All the collected information is finally

used for weaving (step 7). Argument processors are applied,

and calls to static contexts are replaced with the computed

static information. The weaver also generates the bytecodes

to access dynamic context information. Finally, the woven

class is emitted and passed back to jBORAT (step 8).

5. Case Study: Senseo

In this section, we illustrate the benefits of DiSL by recasting

Senseo [21], a dynamic analysis tool for code comprehen-

sion and profiling. Senseo uses an aspect written in AspectJ

for collecting calling context-sensitive dynamic information

for each invoked method, including statistics on the runtime

types of method arguments and return values, the number

of method invocations, and the number of allocated objects.

These metrics are visualized by an Eclipse plugin9 that en-

6 http://asm.ow2.org/

7 http://disl.origo.ethz.ch/

8 jBORAT stands for Java Bytecode Overall Rewriting and Analysis

Toolkit.
9 http://scg.unibe.ch/research/senseo

!"#$%#&' ()"*+'+,-)%.)&'

!"#$%&'

/"#0%)'

+1"&&'

2%"34-0'

2,3%-'

)"#0%)'

+1"&&'

(+,5%'

6")+74-0'

()"*+'+,-)%.)'

%3"18"*,-'

(7"9,:'

6"#$4-0'

(-455%)'

5"#&4-0'

()*+''

,-./-0'

;<='

;>='
;?='

;@=' ;A='

;B='

;C='

D#,+%&&,#'

&%1%+*,-'

E-&)#86%-)"*,-&'

D#,+%&&,#&'F8"#9&'

;G='

Figure 8. Overview of DiSL weaving process

riches the static source code views with the collected dy-

namic information. Senseo helps developers understand the

dynamic behavior of applications and locate performance

problems.

The original version of Senseo has two main limita-

tions: (1) lack of intra-procedural profiling and (2) high

overhead for metrics collection. Both limitations stem from

the use of AspectJ to express the instrumentation. Be-

cause of the absence of join points at the level of ba-

sic blocks, dynamic metrics on the intra-procedural con-

trol flow are missing, making it difficult for the developer

to locate hot methods with complex intra-procedural con-

trol flow that are not invoked frequently. Moreover, ac-

cess to dynamic join point information is inefficient due

to the boxing of primitive values and because of the allo-

cation of object arrays, notably for processing method ar-

guments. For example, although only the first argument of

method paint(Object o, int x, int y) could receive ob-

jects of different runtime types, the AspectJ implementation

of Senseo collects the runtime types of all three arguments

upon each invocation, because JoinPoint.getArgs() re-

turns all arguments in a newly created object array, boxing

values of primitive types.

Figure 9 shows the (simplified) DiSL instrumenta-

tion Senseo2 that overcomes the limitations of the pre-

vious AspectJ implementation. To collect dynamic met-

rics for each calling context, the onMethodEntry(...) and

onMethodCompletion() snippets reify the calling context

in a similar way as explained in Section 3.5 (Figure 2). Each

CCT node stores the dynamic information collected within

the corresponding calling context, as explained below.

Number of method executions. The counting of method ex-

ecutions is subsumed in the onMethodEntry(...) snippet

and performed in the profileCall(...) method by incre-

menting a counter. This information is used to compute the

number of method calls for each calling context.

Number of allocated objects and arrays. To count the num-

ber of allocated objects and arrays, the onAllocation()

38

public class Senseo2 {

@ThreadLocal

static CCTNode currentNode;

@SyntheticLocal

static CCTNode callerNode;

@Before(marker = BodyMarker.class, order = 1)

static void onMethodEntry(MethodStaticContext msc,

ArgumentProcessorContext proc) {

if ((callerNode = currentNode) == null)

callerNode = CCTNode.getRoot();

currentNode =

callerNode.profileCall(msc.thisMethodFullName());

proc.apply(ReferenceProcessor.class,

ProcessorMode.METHOD_ARGS);

}

@After(marker = BodyMarker.class, order = 2)

static void onMethodCompletion() {

currentNode = callerNode;

}

@AfterReturning(marker = BodyMarker.class, order = 1,

guard = MethodReturnsRef.class)

static void onReturnRef(DynamicContext dc) {

Object obj = dc.getStackValue(0, Object.class);

currentNode.profileReturn(obj);

}

@AfterReturning(marker=BytecodeMarker.class, order=0,

args = "new,newarray,anewarray,multianewarray")

static void onAllocation() {

currentNode.profileAllocation();

}

@Before(marker = BasicBlockMarker.class, order = 0)

static void onBasicBlock(BasicBlockStaticContext bbsc){

currentNode.profileBB(bbsc.getBBIndex());

}

}

@ArgumentProcessor

public class ReferenceProcessor {

static void objProc(Object obj, ArgumentContext ac) {

Senseo2.currentNode.profileArgument(ac.getPosition(),

obj);

}

}

Figure 9. DiSL instrumentation for collecting runtime in-

formation for Senseo

snippet uses the BytecodeMarker to capture allo-

cation bytecodes for both objects (new) and arrays

(newarray, anewarray, and multianewarray). The

profileAllocation() method updates an allocation

counter in the current CCT node.

Runtime argument and return types. To collect runtime

type information only for arguments of reference types, the

onMethodEntry(...) snippet uses the argument processor

ReferenceProcessor. Since this argument processor only

defines the objProc(...) method to process arguments of

reference types, all arguments with primitive types are au-

tomatically skipped. The objProc(...) method invokes the

profileArgument(...) method of the current CCT node,

passing the position of the argument and the reference.

For collecting runtime return types, the

onReturnRef(...) snippet uses the MethodReturnsRef

guard (see Figure 7 in Section 3.8) to ensure that the

DiSL AspectJ ASM

Physical lines-of-code 74 44 489
Logical lines-of-code 44 19 338

Table 1. Lines-of-code for three implementations of Senseo

return type of a woven method is a reference type. Because

the returned object reference is on top of the operand

stack upon method completion, it is accessed with the

DynamicContext API.

Basic-block metrics. As the execution of basic blocks

cannot be captured with AspectJ, the following in-

formation is collected only by the DiSL version of

Senseo. The onBasicBlock(...) snippet captures ev-

ery basic block using the BasicBlockMarker; the

BasicBlockStaticContext provides the index of the cap-

tured basic block (getBBIndex()). This allows us to keep

track how many times a basic block is executed in each call-

ing context.

Comparing different Senseo implementations. For a com-

parison of DiSL with low-level bytecode manipulation li-

braries and with AOP, it is interesting to consider the

lines-of-code (LOC) used in the different implementations

of the same tool. Hence, we implemented a third version

of Senseo with the ASM bytecode manipulation library and

compared the source code of the DiSL, AspectJ, and ASM

versions. In contrast to the DiSL and ASM versions, the As-

pectJ version lacks basic block profiling, that is, it offers less

functionality.

Table 1 summarizes the physical and logical LOC met-

rics of the three implementations, considering only the code

related to the actual instrumentation logic (and disregard-

ing the Java code for analysis at runtime, which is com-

mon to all three implementations). Compared to ASM, the

DiSL and AspectJ versions are significantly smaller, as the

direct manipulation of bytecodes requires much more devel-

opment effort than relying on the high-level pointcut/advice

mechanism of AspectJ and DiSL. The higher LOC number

of the DiSL implementation compared to the AspectJ ver-

sion is mainly due to the separation of the code that is eval-

uated at weave-time (guards) from the instrumentation code

(snippets). However, weave-time evaluation brings signifi-

cant performance gains as we will show in Section 6.

In summary, our case study illustrates how DiSL enables

the concise implementation of a practical dynamic analysis

tool, thanks to DiSL’s open join point model, efficient access

to both static and dynamic context information, weave-time

evaluation of conditionals, and argument processors. Dy-

namic analysis tools written in DiSL are much more concise

than equivalent tools developed with bytecode manipulation

libraries.

6. Performance Evaluation

In this section, we evaluate the runtime performance of the

DiSL instrumentation presented in the Senseo case study.

39

Reference
SenseoAJ SenseoDiSL Senseo2

application only application only full coverage application only full coverage
[s] [s] ovh. [s] ovh. [s] ovh. [s] ovh. [s] ovh.

avrora 5.11 30.96 6.06 12.61 2.47 12.41 2.43 13.66 2.67 14.62 2.86
batik 1.28 2.70 2.11 1.78 1.39 2.47 1.93 2.14 1.67 3.09 2.41

eclipse 16.16 152.92 9.46 70.73 4.38 81.52 5.04 152.41 9.43 163.36 10.11
fop 0.35 3.36 9.60 1.68 4.80 3.09 8.83 2.07 5.91 3.93 11.23
h2 5.84 63.25 10.83 25.27 4.33 31.78 5.44 29.55 5.06 41.81 7.16

jython 2.67 5.70 2.13 3.89 1.46 28.28 10.59 4.29 1.61 34.21 12.81
luindex 0.90 7.06 7.84 2.71 3.01 3.31 3.68 3.45 3.83 4.30 4.78
lusearch 1.98 13.09 6.61 5.49 2.77 6.57 3.32 6.19 3.13 8.85 4.47

pmd 2.05 10.09 4.92 5.10 2.49 7.60 3.71 6.54 3.19 10.31 5.03
sunflow 3.45 57.24 16.59 21.44 6.21 20.49 5.94 24.57 7.12 25.37 7.35
tomcat 1.97 4.46 2.26 3.16 1.60 6.70 3.40 3.87 1.96 9.32 4.73

tradebeans 5.56 71.48 12.86 30.76 5.53 76.43 13.75 42.90 7.72 117.40 21.12
tradesoap 6.77 25.40 3.75 12.80 1.89 53.60 7.92 17.30 2.56 76.12 11.24

xalan 1.11 20.39 18.37 8.15 7.34 11.38 10.25 10.08 9.08 17.33 15.61

geo. mean 6.47 3.09 5.26 3.91 7.19

Table 2. Execution times and overhead factors for SenseoAJ, SenseoDiSL, and Senseo2

First, we compare the previous AspectJ implementation with

an equivalent DiSL instrumentation (i.e., without basic block

metrics). In addition, we evaluate our DiSL instrumentation

with full bytecode coverage, collecting also basic block met-

rics. Second, we explore the different sources of the mea-

sured overhead. Third, we investigate the differences in the

collected profiles, considering the number of intercepted

join points, when weaving only application code, respec-

tively when weaving with full bytecode coverage. Fourth,

we study weaving time and overall class loading latency due

to jBORAT and DiSL.

For our measurements, both the DiSL weaver and the

AspectJ weaver run on top of jBORAT. This ensures ex-

actly the same weaving coverage for application code (oth-

erwise, the AspectJ load-time weaver would exclude some

application classes from weaving). Both the instrumentation

JVM and the application JVM run on the same host. We use

the benchmarks in the DaCapo suite (dacapo-9.12-bach)10

as base programs in our evaluation. All measurements cor-

respond to the median of 15 benchmark runs within the

same application JVM. The measurement machine is an In-

tel Core2 Quad Q9650 (3.0 GHz, 8 GB RAM) that runs

Ubuntu GNU/Linux 10.04 64-bit. We use AspectJ 1.6.1111,

DiSL pre-release version 0.9, and Oracle’s JDK 1.6.0 27

Hotspot Server VM (64-bit) with 7 GB maximum heap size.

Table 2 reports the runtime overhead for the original

AspectJ version of Senseo (SenseoAJ), for the equivalent

instrumentation in DiSL, that is, without basic block metrics

(SenseoDiSL), and for the DiSL instrumentation including

basic block metrics (Senseo2). On average (geometric mean

for DaCapo), the overhead factor introduced by SenseoAJ

is 6.47, while for SenseoDiSL, with the same code cover-

age, the overhead is only a factor of 3.09. With full byte-

code coverage, the average overhead of SenseoDiSL is a

factor of 5.26; surprisingly, the overhead is still lower than

for SenseoAJ covering only application code. Finally, the

average overhead introduced by Senseo2 is a factor of 7.19.

10 http://www.dacapobench.org/

11 http://eclipse.org/aspectj/

!"#$%

&"$#%

&"'(%

#")*%
#"&(%

&"&(%

&"*!% &"!+%

&"+#%

!"$(%

&"##%

&"(&% &"(*%

$"(!%

&%

$%

#%

!%

)%

*%

,,-% .//01.2034% 567853%

9./864%

:67;0<%

.5=8:6374%

>.4?1@>/01A%

:675?14%

B
9
6
5;
6
.
<
%1
0
3
75
?>
8
2
0
3
%

C4D617E%.DD"%03/F% G?HI%.DD"%03/F% G?HI%J8//%10965.=6%

Figure 10. Contributions to the average overhead factor for

different versions of Senseo

application only full coverage increase [%]

Method bodies 5.60E+09 8.84E+09 57.75

Methods returning a ref. 1.76E+08 3.44E+08 95.28

Methods with ref. arg. 1.78E+09 2.57E+09 44.56

Object and array alloc. 1.14E+09 2.00E+09 76.11

Basic blocks 2.21E+10 3.34E+10 51.26

Table 3. Total number of intercepted join points for a single

iteration of the whole DaCapo suite

Figure 10 quantifies the different overhead contribu-

tions. For CCT reification, the DiSL implementation ben-

efits from efficient access to static context information,

from data passing in synthetic local variables, and from

the use of an @ThreadLocal variable (compared to a

java.lang.ThreadLocal variable in SenseoAJ). The over-
heads for capturing allocations and runtime types of return

values are relatively small for both implementations. The

biggest difference between the two implementations is ob-

served for the processing of method arguments; the DiSL in-

strumentation leverages an argument processor, whereas the

AspectJ implementation relies on JoinPoint.getArgs().
As shown in Figure 10, argument processing in the AspectJ

version introduces more than 6 times the overhead of the

equivalent DiSL instrumentation.

Table 3 summarizes the number of intercepted join points

for a single iteration of each considered benchmark, weaving

only application code, respectively weaving with full byte-

40

SenseoAJ SenseoDiSL Senseo2
app. only app. only full cov. app. only full cov.

Weaving [s] 54.97 43.28 134.17 65.61 174.73
Latency [s] 66.42 53.86 155.25 75.06 213.71

Table 4. Total weaving time and latency for a single itera-

tion of the whole DaCapo suite

code coverage. For all kinds of join points, full bytecode

coverage results in an increase of 45–95% in the number of

intercepted join points. These results confirm that support-

ing weaving with full bytecode coverage is essential in the

context of dynamic program analysis.

Finally, we compare the total time required to weave

the complete benchmark suite. Table 4 reports (a) the to-

tal weaving time measured in the instrumentation JVM,

and (b) the total weaving latency observed by the applica-

tion JVM. This allows us to know the latency introduced

by jBORAT. Overall, for application only, SenseoAJ is wo-

ven in 54.97s, whereas SenseoDiSL requires only 43.28s.

The DiSL weaver outperforms the AspectJ weaver by a fac-

tor 1.27. With full coverage, SenseoDiSL requires 134.17s,

and adding basic block metrics with Senseo2 increases the

weaving time to 65.61s for application code, and to 174.73s

with full coverage. The latency contribution of jBORAT is

between 14% and 24%, due to client-server communication.

Our evaluation confirms that DiSL enables the develop-

ment of efficient dynamic analysis tools, which often can-

not be achieved with general-purpose AOP languages. For

our case study, the DiSL instrumentation reduces the over-

head by more than factor 2 in comparison with the previous

AspectJ version. Even with full bytecode coverage, the DiSL

instrumentation still outperforms the AspectJ version.

7. Related Work

In previous work, we presented @J [8], a Java annotation-

based AOP language for simplifying dynamic analysis. Sim-

ilar to DiSL, @J uses snippet inlining and provides con-

structs for basic block analysis. However, @J lacks the open

join point model of DiSL (i.e., @J does not support custom

join point definitions), reflective access to weave-time infor-

mation, and support for efficient access to reflective dynamic

join point information (i.e., @J lacks argument processors).

@J supports staged advice where weave-time evaluation of

advice yields runtime residues that are woven. While this

feature can be used to emulate guards in DiSL, it requires the

use of additional synthetic local variables and more complex

composition of snippets.

In [7] we discussed some early ideas on a high-level

declarative domain-specific aspect language (DSAL) for dy-

namic analysis. DiSL provides all necessary language con-

structs to express the dynamic analyses that could be spec-

ified in the DSAL. That is, in the future, DiSL can serve as

an intermediate language to which the higher-level DSAL

programs are compiled.

High-level dynamic analysis frameworks such as

RoadRunner [13] or jchord12 ease composition of a set of

common dynamic analyses. In contrast, DiSL is not tailored

for any specify dynamic analysis task and offers the devel-

oper fine-grained control over the inserted bytecode.

The use of AOP for dynamic analysis [10, 20–22] has re-

vealed some limitations in general-purpose AOP languages

for that particular domain. In [1], a meta-aspect protocol

(MAP) for dynamic analysis is proposed to overcome these

limitations. Similar to our approach, the authors propose a

flexible join point model where shadows are accessible in

advice. Code snippets are used to inject callbacks to advice.

MAP uses a meta object to reify context at runtime. While

MAP allows fast prototyping of dynamic analyses, it does

not focus on high efficiency of the developed analysis tools.

In contrast, DiSL avoids any indirections to efficiently ac-

cess static and dynamic context information.

The AspectBench Compiler (abc) [5] eases the imple-

mentation of AspectJ extensions. As intermediate represen-

tation, abc uses Jimple to define shadows. Jimple has no in-

formation where blocks, statements and control structures

start and end, thus requiring extensions to support new point-

cuts for dynamic analysis. In contrast, DiSL provides an ex-

tensible library of markers without requiring extensions of

the intermediate representation.

Prevailing AspectJ weavers lack support for embedding

custom static analysis in the weaving process. In [18]

compile-time statically executable advice is proposed, which

is similar to static context in DiSL. SCoPE [4] is an AspectJ

extension that allows analysis-based conditional pointcuts.

However, advice code together with the evaluated condi-

tional is always inserted, relying on the just-in-time compiler

to remove dead code. DiSL’s guards together with static con-

text allows weave-time conditional evaluation and can pre-

vent the insertion of dead code.

In [2], the notion of region pointcut is introduced. Be-

cause a region pointcut potentially refers to several com-

bined but spread join points, an external object shared be-

tween the join points holds the values to be passed between

them. DiSL’s markers provide a similar mechanism, and syn-

thetic local variables help avoid passing data through an

external object. In addition, region pointcuts are implicitly

bound to the block structure of the program. In contrast,

DiSL allows arbitrary regions to be marked.

Javassist [11] is a load-time bytecode manipulation li-

brary allowing definition of classes at runtime. The API al-

lows two different levels of abstraction: source-level and

bytecode-level. In particular, the source-level abstraction

does not require any knowledge of the Java bytecode struc-

ture and allows insertion of code fragments given as source

text. Compared to DiSL, Javassist does not follow a point-

cut/advice model and does not provide built-in support for

synthetic local variables.

12 http://code.google.com/p/jchord/

41

Josh [12] is an AspectJ-like language that allows devel-

opers to define domain-specific extensions to the pointcut

language. Similar to guards, Josh provides static pointcut

designators that can access reflective static information at

weave-time. However, the join point model of Josh does not

include arbitrary bytecodes and basic blocks as in DiSL.

The approach described in [17] enables customized point-

cuts that are partially evaluated at weave-time. It uses a

declarative language to synthesize shadows. Because only a

subset of bytecodes is converted to the declarative language,

it is not possible to define basic block pointcuts as in DiSL.

Steamloom [9, 14] provides AOP support at the JVM

level and improves performance of advice execution by opti-

mizing dynamic pointcut evaluation. In DiSL, performance

gains stem from static contexts combined with efficient ac-

cess to dynamic context information. No JVM support is

needed.

8. Discussion

In this section we discuss the strengths and limitations of

DiSL for implementing dynamic analysis tools, comparing

DiSL with the mainstream AOP language AspectJ [16] and

with the low-level bytecode manipulation library ASM.

Expressiveness. AspectJ lacks certain join points that are

important for some dynamic analysis tasks (e.g., bytecode-

level and basic block-level join points). Thus, it is not

possible to implement analysis tools that trace the intra-

procedural control flow. In DiSL, any bytecode region can

be a shadow, thanks to the support for custom markers. Like-

wise, with ASM, any bytecode location can be instrumented.

In AspectJ, the programmer has no control over the in-

serted bytecode. The AspectJ weaver inserts invocations to

advice methods; inlining of advice is not foreseen. In con-

trast, the DiSL programmer writes snippets that are always

inlined. If desired, it is trivial to mimic the behavior of the

AspectJ weaver by writing snippet code that invokes “ad-

vice” methods. Still, if DiSL code is written in Java and

compiled with a Java compiler, the snippets cannot contain

arbitrary bytecode sequences. For example, it is not possible

to write a snippet in Java that yields a single dup bytecode

when inlined. Using ASM, there are no restrictions concern-

ing the inserted bytecode.

Level of abstraction. In comparison with AspectJ, DiSL of-

fers a lower abstraction level. The DiSL programmer needs

to be aware of bytecode semantics, whereas AspectJ does

not expose any bytecode-level details to the programmer.

Nonetheless, DiSL relieves the developer from dealing with

low-level bytecode manipulations such as producing spe-

cific bytecode sequences, introducing local variables, copy-

ing data from the operand stack, etc. Using ASM, the pro-

grammer also needs to deal with such low-level details, re-

sulting in verbose tool implementations.

Compliance of the generated bytecode with the JVM spec-

ification. Weaving any aspect written in AspectJ results in

valid bytecode that passes verification. In contrast, woven

DiSL code may fail bytecode verification; it is up to the pro-

grammer to ensure that the inserted code is valid. For in-

stance, synthetic local variables must be initialized before

they are read, and the stack locations and local variables ac-

cessed through DynamicContext must be valid. Similarly,

bytecode instrumented with tools written in ASM may fail

verification.

While it is usually desirable that woven code passes veri-

fication, violating certain constraints on bytecode sometimes

simplifies analysis tasks. For example, if the analysis needs

to keep track of objects that are currently being initialized

by a thread, the programmer may want to store uninitialized

objects in a data structure on the heap, although the resulting

bytecode would be illegal. Nonetheless, the analysis can be

successfully executed by explicitly disabling bytecode veri-

fication. With AspectJ, such tricks are not possible.

Interference of inserted code with the base program. With

ASM, local variables or data on the operand stack belong-

ing to the base program may be unintentionally altered by

inserted code. In contrast, AspectJ and DiSL guarantee that

instrumentations cannot modify local variables or stack lo-

cations of the base program.

Bytecode coverage. For many analysis tasks, it is essential

that the overall execution of the base program can be an-

alyzed. However, prevailing AspectJ weavers do not sup-

port weaving the Java class library. In contrast, DiSL has

been designed for weaving with complete bytecode cover-

age, which does not introduce any extra effort for the devel-

oper. With ASM, it is possible to develop tools that support

complete bytecode coverage. However, the ASM program-

mer has to manually deal with the intricacies of bootstrap-

ping the JVM with a modified class library and preventing

infinite regression when inserted bytecode calls methods in

the instrumented class library.

9. Conclusion

In this paper we presented DiSL, a new domain-specific lan-

guage for bytecode instrumentation. The language is embed-

ded in Java and makes use of annotations. DiSL allows the

programmer to express a wide range of dynamic program

analysis tasks in a concise manner. DiSL has been inspired

by the pointcut/advice mechanism of mainstream AOP lan-

guages such as AspectJ. On the one hand, DiSL omits certain

AOP language features that are not needed for expressing

instrumentations (e.g., around advice and explicit structural

modifications of classes). On the other hand, DiSL offers

an open join point model, synthetic local variables, compre-

hensive and efficient access to static and dynamic context

information, and support for weave-time execution of static

analyses. These language features allow expressing byte-

code transformations in the form of code snippets that are in-

42

lined before or after bytecode shadows as indicated by (cus-

tom) markers, if user-defined constraints specified as guards

are satisfied. As case study, we recasted the dynamic analysis

tool Senseo in DiSL and compared it with the previous im-

plementation in AspectJ. In contrast to the AspectJ version,

the DiSL implementation ensures complete bytecode cov-

erage, reduces overhead, and allows us to gather additional

intra-procedural execution statistics.

In an ongoing research project, we are working on ad-

vanced static checkers for DiSL instrumentations to help de-

tect errors before weaving, on partial evaluation of instanti-

ated snippets before inlining, and on general techniques to

split overlong methods that exceed the maximum method

size imposed by the JVM. In addition, we are exploring the

use of higher-level, declarative domain-specific languages

for dynamic program analysis. We plan to compile such

higher-level languages to DiSL, which will serve us as a con-

venient intermediate language.

Acknowledgments

The research presented here was conducted while L. Marek,

A. Villazón, and Y. Zheng were with the University of

Lugano. It was supported by the Scientific Exchange Pro-

gramme NMS–CH (project code 10.165), by a Sino-Swiss

Science and Technology Cooperation (SSSTC) Exchange

Grant (project no. EG26–032010) and Institutional Part-

nership (project no. IP04–092010), by the Swiss National

Science Foundation (project CRSII2 136225), and by the

Czech Science Foundation (project GACR P202/10/J042).

The authors thank Aibek Sarimbekov and Achille Peternier

for their help with jBORAT, and Andreas Sewe for testing

DiSL and providing detailed feedback.

References

[1] M. Achenbach and K. Ostermann. A meta-aspect protocol for de-

veloping dynamic analyses. In Proceedings of the First Interna-

tional Conference on Runtime Verification, RV’10, pages 153–167.

Springer-Verlag, 2010.

[2] S. Akai, S. Chiba, and M. Nishizawa. Region pointcut for AspectJ.

In ACP4IS ’09: Proceedings of the 8th Workshop on Aspects, Compo-

nents, and Patterns for Infrastructure Software, pages 43–48. ACM,

2009.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-

mance counters with flow and context sensitive profiling. In PLDI

’97: Proceedings of the ACM SIGPLAN 1997 conference on Program-

ming language design and implementation, pages 85–96. ACM, 1997.

[4] T. Aotani and H. Masuhara. SCoPE: an AspectJ compiler for support-

ing user-defined analysis-based pointcuts. In AOSD ’07: Proceedings

of the 6th international conference on Aspect-oriented software devel-

opment, pages 161–172. ACM, 2007.

[5] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták,

O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc:

An extensible AspectJ compiler. In AOSD ’05: Proceedings of the 4th

International Conference on Aspect-Oriented Software Development,

pages 87–98. ACM, 2005.

[6] W. Binder, D. Ansaloni, A. Villazón, and P. Moret. Flexible and effi-

cient profiling with aspect-oriented programming. Concurrency and

Computation: Practice and Experience, 23(15):1749–1773, 2011.

[7] W. Binder, P. Moret, D. Ansaloni, A. Sarimbekov, A. Yokokawa, and

E. Tanter. Towards a domain-specific aspect language for dynamic

program analysis: position paper. In Proceedings of the sixth annual

workshop on Domain-specific aspect languages, DSAL ’11, pages 9–

11. ACM, 2011.

[8] W. Binder, A. Villazón, D. Ansaloni, and P. Moret. @J - Towards

rapid development of dynamic analysis tools for the Java Virtual

Machine. In VMIL ’09: Proceedings of the 3th Workshop on Virtual

Machines and Intermediate Languages, pages 1–9. ACM, 2009.

[9] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual ma-

chine support for dynamic join points. In AOSD ’04: Proceedings of

the 3rd international conference on Aspect-oriented software devel-

opment, pages 83–92. ACM, 2004.

[10] E. Bodden and K. Havelund. Aspect-oriented Race Detection in Java.

IEEE Transactions on Software Engineering, 36(4):509–527, 2010.

[11] S. Chiba. Load-time structural reflection in Java. In Proceedings

of the 14th European Conference on Object-Oriented Programming

(ECOOP’2000), volume 1850 of Lecture Notes in Computer Science,

pages 313–336. Springer Verlag, Cannes, France, June 2000.

[12] S. Chiba and K. Nakagawa. Josh: An open AspectJ-like language.

In AOSD ’04: Proceedings of the 3rd International Conference on

Aspect-Oriented Software Development, pages 102–111. ACM, 2004.

[13] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis

framework for concurrent programs. In Proceedings of the 9th ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, PASTE ’10, pages 1–8. ACM, 2010.

[14] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker, M. Eichberg, and

M. Krebs. An execution layer for aspect-oriented programming lan-

guages. In VEE ’05: Proceedings of the 1st ACM/USENIX interna-

tional conference on Virtual execution environments, pages 142–152.

ACM, 2005.

[15] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In AOSD ’04:

Proceedings of the 3rd International Conference on Aspect-Oriented

Software Development, pages 26–35. ACM, 2004.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold. An overview of AspectJ. In Proceedings of the 15th Eu-

ropean Conference on Object-Oriented Programming, ECOOP ’01,

pages 327–353. Springer-Verlag, 2001.

[17] K. Klose, K. Ostermann, and M. Leuschel. Partial evaluation of point-

cuts. In Practical Aspects of Declarative Languages, volume 4354 of

Lecture Notes in Computer Science, pages 320–334. Springer-Verlag,

2007.

[18] K. Lieberherr, D. H. Lorenz, and P. Wu. A case for statically ex-

ecutable advice: Checking the law of Demeter with AspectJ. In

Proceedings of the 2nd International Conference on Aspect-Oriented

Software Development, AOSD ’03, pages 40–49. ACM, 2003.

[19] P. Moret, W. Binder, and É. Tanter. Polymorphic bytecode instru-

mentation. In AOSD ’11: Proceedings of the 10th International Con-

ference on Aspect-Oriented Software Development, pages 129–140.

ACM, Mar. 2011.

[20] D. J. Pearce, M. Webster, R. Berry, and P. H. J. Kelly. Profiling with

AspectJ. Software: Practice and Experience, 37(7):747–777, June

2007.

[21] D. Röthlisberger, M. Härry, W. Binder, P. Moret, D. Ansaloni, A. Vil-

lazón, and O. Nierstrasz. Exploiting dynamic information in IDEs

improves speed and correctness of software maintenance tasks. IEEE

Transactions on Software Engineering, PrePrint, 2011.

[22] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni, W. Binder,

O. Nierstrasz, and P. Moret. Augmenting static source views in IDEs

with dynamic metrics. In ICSM ’09: Proceedings of the 25th IEEE

International Conference on Software Maintenance, pages 253–262,

Edmonton, Alberta, Canada, 2009. IEEE Computer Society.

43

44

Chapter 4

ShadowVM: Robust and
Comprehensive Dynamic
Program Analysis for the Java
Platform

Lukáš Marek,
Stephen Kell,
Yudi Zheng,
Lubomı́r Bulej,
Walter Binder,
Petr Tůma,
Danilo Ansaloni,
Aibek Sarimbekov,
Andreas Sewe

Contributed paper at the 12th International Conference on
Generative Programming: Concepts & Experiences (GPCE
2013).

In conference proceedings,
published by ACM,
pages 105-114,
ISBN 978-1-4503-2373-4,
October 2013.

The original version is available electronically from the publisher’s
site at http://dx.doi.org/10.1145/2517208.2517219.

45

http://dx.doi.org/10.1145/2517208.2517219

ShadowVM: Robust and Comprehensive
Dynamic Program Analysis for the Java Platform

Lukáš Marek
Faculty of Mathematics and Physics
Charles University, Czech Republic

lukas.marek@d3s.mff.cuni.cz

Stephen Kell Yudi Zheng
Faculty of Informatics

University of Lugano, Switzerland
firstname.lastname@usi.ch

Lubomı́r Bulej Walter Binder
Faculty of Informatics

University of Lugano, Switzerland
firstname.lastname@usi.ch

Petr Tůma
Faculty of Mathematics and Physics
Charles University, Czech Republic

petr.tuma@d3s.mff.cuni.cz

Danilo Ansaloni Aibek Sarimbekov
Faculty of Informatics

University of Lugano, Switzerland
firstname.lastname@usi.ch

Andreas Sewe
Software Technology Group

TU Darmstadt, Germany
andreas.sewe@cs.tu-darmstadt.de

Abstract
Dynamic analysis tools are often implemented using instrumenta-
tion, particularly on managed runtimes including the Java Virtual
Machine (JVM). Performing instrumentation robustly is especially
complex on such runtimes: existing frameworks offer limited cov-
erage and poor isolation, while previous work has shown that ap-
parently innocuous instrumentation can cause deadlocks or crashes
in the observed application. This paper describes ShadowVM, a
system for instrumentation-based dynamic analyses on the JVM
which combines a number of techniques to greatly improve both
isolation and coverage. These centre on the offload of analysis to
a separate process; we believe our design is the first system to en-
able genuinely full bytecode coverage on the JVM. We describe a
working implementation, and use a case study to demonstrate its
improved coverage and to evaluate its runtime overhead.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

Keywords Dynamic analysis; JVM; instrumentation

1. Introduction
To gain insight about how to optimise, debug, extend and refactor
large systems, programmers depend on analysis tools. One popular
class of tools is dynamic program analysis tools, which observe a
program in execution and report additional data about that execu-
tion. Many popular bug-finding and profiling tools are of this form,
including the Valgrind suite [19], DTrace [2], and GProf [12]. Mean-
while, research continues to devise more complex and specialised
tools, for race detection [10], white-box testing [25], security policy
enforcement [28] and more.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GPCE’13, October 27 - 28 2013, Indianapolis, IN, USA.
Copyright © 2013 ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2517208.2517219

Developing dynamic analyses is difficult. One approach is to
invasively modify the host runtime system, but this is an expert
task yielding a non-portable solution. Alternatively, instrumentation
frameworks including Pin [6] and DynamoRIO [5] (exporting
a roughly compiler-style intermediate representation), and also
Javassist [7], Soot [21] and DiSL [16] (targeting Java bytecode), are
highly general. However, using them can be challenging, since they
require deep understanding of both the intermediate representation
and the host runtime environment. More constrained frameworks [2,
11] provide stronger properties with less user effort, but each caters
to a smaller set of use cases. Outwith these use cases, developing a
high-quality dynamic analysis remains a Herculean task, plagued by
the recurrence of three mutually antagonistic requirements: isolation,
meaning roughly that observing the program does not cause it to
deviate from the path it would ordinarily take; coverage, meaning
the ability to observe all relevant events during execution, including
both user code and system code; and performance, meaning the
minimisation of slowdown caused by the analysis.

In this paper we present ShadowVM1, a system for dynamic anal-
ysis of programs running within the Java Virtual Machine (JVM)
which advances on prior work by simultaneously combining strong
isolation and high coverage. Analyses execute asynchronously with
respect to the observed program, allowing parallelism to mitigate
isolation-induced slowdowns. To our knowledge, ours is the first
complete dynamic analysis framework offering asynchronous execu-
tion without effectively serializing heavily instrumented workloads.
It does so by exploiting heterogeneity among dynamic analyses,
which typically only need to preserve the order of observed events
for particular subsets of events. In summary, this paper presents the
following contributions:

• We describe an architecture and programming model for dy-
namic analyses of Java bytecode which enforces isolation by
performing all analysis computation in a separate process. This
enables asynchronous remote evaluation while permitting a fa-
miliar programming model similar to that of existing instrumen-
tation frameworks.

• We summarise the state of the art regarding coverage on the JVM,
identifying challenges which so far limit the coverage available
under existing systems, and explaining how our implementation

1 Sources available at http://disl.ow2.org

46

circumvents these challenges. We believe our system to be the
first offering truly complete bytecode coverage on the JVM.

• We evaluate the isolation and coverage of our implementation
compared to classic in-process analysis and provide experimen-
tal evidence of reduced perturbation and improved coverage. To
quantify the cost of the improved isolation in terms of perfor-
mance, we evaluate the runtime overhead and scalability of our
solution with parallel workloads.

We begin by motivating our approach in greater depth.

2. Motivation
A popular mechanism used by dynamic analysis tools to observe
applications on the Java platform is bytecode instrumentation. The
analysis tool inserts “hooks”, in the form of bytecode snippets, into
locations of interest in the application code. When the application
execution reaches a particular location, the corresponding hook
is executed as a part of the application. Compared to alternative
observation mechanisms, such as debugging interfaces or virtual
machine modifications, bytecode instrumentation is often more
portable, less complex, and offers higher performance. However,
observation through bytecode instrumentation also exhibits two
significant problems: one concerning the safety of high coverage
analyses, and another concerning the semantics of asynchronously
executing analysis tools. We discuss these in turn.

2.1 Coverage versus isolation
Observation through bytecode instrumentation necessarily mixes the
application code with (at least some of) the analysis code. This can
lead to problems achieving high coverage in analyses, i.e. to observe
program activity in all code, including sensitive bytecode regions
such as system-level libraries. Java analysis tools usually cannot
avoid calling these libraries from within the analysis code, because
the libraries offer the standard or even the only means of perform-
ing many essential operations—including input and output (e.g. for
exporting the analysis results), reflective acquisition of metadata
(e.g. for inspecting the class and field information pertaining to the
instrumented event), and keeping references to program objects (e.g.
through the weak reference mechanism). When the libraries offer-
ing these functions are themselves instrumented, library-internal
resources become shared between the application and the analysis
in an uncoordinated way. Consequently, even very basic instrumen-
tation scenarios can suffer from subtle problems including state
corruption (from introduced reentrancy), deadlocks (from lock or-
der violations), and memory exhaustion (from sharing the weak
reference queue handler) [22].

A cheap way to avoid this interference, i.e. to improve the iso-
lation between analysis and the application, is to exclude common
library code from instrumentation. This exclusion technique is com-
monly used in various dynamic analysis frameworks; Figure 1 shows
three examples from well-known frameworks. Exclusion limits the
observation power of the analysis, since it can no longer analyse
library operations—resource usage by library code is invisible, data
flow through library code cannot be tracked, and so on. Managed
runtimes, notably the Java platform, suffer particularly because core
functionality, including class loading and some aspects of memory
management, is implemented in bytecode and cannot be cleanly and
effectively replaced or virtualized to isolate the base program from
the analysis.

Instead of sacrificing coverage by using exclusion to achieve
isolation, we prefer to perform the analysis “outside” the observed
program. Doing so in native code appears feasible (given appro-
priate care to inadvertent sharing of state through native method
implementations). Unlike bytecode, native code can safely perform
input and output operations through the operating system interfaces,

thread t
1

thread t
2

lock(l);
i ← 1;
unlock(l);

lock(l);
i ← 2;
unlock(l);

Event generation Buffering, transport

happens-before

i ← 1

i ← 2

Analysis

program
execution
(time)

buffers flushed
in arbitrary order

+ i ← 2 i ← 1

Figure 2. Multiple buffering can cause reordering of observations.
Here, two assignments ordered by synchronization in the program
are nevertheless reordered in the event stream fed to the analysis.

access object references through the virtual machine API, and im-
plement out-of-band reflection. We pursue this approach; details in
the context of our tool are in §4.2 and §6.

Writing analyses in native code requires knowledge of C or
C++ and the associated virtual machine and system API. This can
become a practical obstacle for Java developers. We therefore seek
a programming environment where analyses are written at the same
level of abstraction as when using plain bytecode instrumentation,
but with improved coverage and isolation. For example, it should be
possible to safely perform Java-style reflection, to keep references
to objects in the observed program, and to freely use existing library
code when implementing the analysis. This environment should also
provide specialised mechanisms for common analysis tasks, such
as associating analysis state with application objects. We describe
such an environment in §4.

2.2 Resource lifecycle events
Even with the best coverage possible, bytecode instrumentation
can only observe bytecode execution events. In some cases this is
incomplete—not only because the application can execute native
code, but also because the events of interest can occur inside the code
of the virtual machine itself, rather than in the application. Some
events are not associated with particular bytecode execution (such
as virtual machine startup and shutdown) yet are highly relevant
to analyses (e.g. for purposes of state management). Frameworks
focusing solely on bytecode instrumentation neglect such events.
This class of events can be viewed as events in the lifecycles of the
basic system resources: program objects, threads, and the virtual
machine itself. They contrast with the usual state transitions within
a given system resource, such as within objects (field updates) and
within threads (calls, returns, computations on the operand stack),
which are cleanly captured by bytecode. Although hooks for several
lifecycle events are available through either the Java API or the
virtual machine API, their use from within the analysis is compli-
cated by isolation and synchronization issues. For example, with the
standard JVM shutdown notification API (in java.lang.Runtime),
the shutdown hooks run concurrently with other hooks and with dae-
mon threads, which execute application code. An analysis therefore
cannot rely on the virtual machine shutdown event being the last
event observed. Another example is the JVM reference handling
mechanism, used for notification of object death. This mechanism
cannot be safely used by analysis that also observes the application
reference handling behavior [22]. In general, the problem is that
these hooks are neither isolated from the application nor ordered
relative to other observed events. §4.4 explains how our program-
ming model avoids these problems by introducing lifecycle event
ordering guarantees.

47

RoadRunner’s default exclusion list
java ..∗
javax ..∗
com.sun..∗
org.objectweb.asm..∗
sun..∗

// Chord’s implicit exclusion logic :
public boolean isImplicitlyExcluded (String cName) {

return cName.equals(”java.lang.J9VMInternals”) ||
cName.startsWith(”sun. reflect .Generated”) ||
cName.startsWith(”java.lang . ref .”);

}

// BTrace excludes ” sensitive ” classes
private static boolean isSensitiveClass (String name) {

return name.equals(”java/lang/Object”) ||
name.startsWith(”java/lang/ThreadLocal”) ||
name.startsWith(”sun/ reflect ”) ||
name.equals(”sun/misc/Unsafe”) ||
name.startsWith(”sun/security/”) ||
name.equals(”java/lang/ VerifyError ”);

}

Figure 1. Exclusion lists from the RoadRunner [11], Chord [18] and BTrace (http://kenai.com/projects/btrace) frameworks. Such
exclusions are found in prevailing bytecode-level dynamic analysis frameworks, limiting the coverage available to tools built with them.

2.3 Asynchronous analysis
To exploit modern multiprocessor hardware, designs which relax
synchronisation between application and analysis are increasingly
desirable. Several existing systems and techniques, such as Shadow
Profiling [26], SuperPin [29], and CAB [14], support offloading the
analysis to separate cores for parallel processing. So far, however,
little attention has been paid to the impact of asynchronous analysis
design on the ability to observe application event ordering.

With a synchronous design, the hooks inserted through bytecode
instrumentation execute the analysis code as a part of the application,
synchronously (with respect to the thread running the inserted
bytecode). The virtual machine applies the semantic rules governing
program execution to both the analysis and the application together—
in particular, the analysis actions are ordered with the program
actions using the intra-thread semantics of the Java language and
the happens-before relation of the Java Memory Model.

In contrast, an asynchronous analysis design separates the hooks
from the analysis code. The hooks still execute as a part of the
application and are therefore still ordered with the program actions.
However, instead of executing the analysis code directly, the hooks
notify the analysis code through asynchronous communication.
The analysis code executes in a separate thread or even a separate
process, and the communication involved may easily change the
order in which the individual actions are ultimately observed by
the analysis. Figure 2 shows an example of this reordering, where
the instrumentation uses multiple thread-local buffers to avoid
contention. Since these are flushed to an output stream in a non-
deterministic order (e.g. when the buffer is full), the original program
ordering is lost. Dynamic program analyses differ in their sensitivity
to these changes: count-based analyses tend to work with any
ordering; thread-local analyses may require ordering guarantees
from the thread perspective; other analyses are yet more demanding.
Because additional ordering guarantees bring additional costs, an
efficient instrumentation framework should exploit the heterogeneity
of the analyses and provide only the ordering that is required. We
consider this further in §4.3.

3. ShadowVM design goals
ShadowVM addresses some of the issues that make the development
of high-quality dynamic analyses difficult. It has several goals, each
corresponding to one or more features in the design.

Isolation. We wish to avoid sharing state with the observed program
to the greatest extent possible. This is necessary both generally to
reduce perturbation and specifically to avoid various known classes
of bugs which less well-isolated approaches inherently risk intro-
ducing [22]. Our design’s hook–analysis separation achieves this
by factoring analyses into a remotely executed part and short local
“hooks” inserted by bytecode instrumentation, which trap imme-
diately to native code. Although this pattern has been advocated,
e.g. in the JVMTI documentation, we know of few dynamic anal-

Observed
JVM

JVMTI agent

Instrumented
base program

Instrumented
Java class library

Event API

instrumentation process

Instrumentation
server

User-supplied
instrumentation

code

Instrumentation
framework

(+ host JVM)

2

analysis process

Analysis
server

User-supplied
 analysis code

Shadow API
implementation

(+ host JVM)

3

observed process

1

Figure 3. ShadowVM architecture at a high level.

yses which actually follow it. This undoubtedly owes to a lack of
supporting infrastructure—a lack which our work addresses.

High coverage. We wish to allow instrumentation of both user-
level application code and system-level core libraries. Previous
approaches have provided only partial solutions. There is a fun-
damental tension with isolation, since achieving coverage deep in
the system-level libraries risks perturbing core JVM behaviour. We
explore these difficulties in §5. Our approach combines several im-
plementation techniques, notably out-of-process analysis and the
aforementioned “straight to native” hooks. These are able to cover
all bytecode execution. To our knowledge, ours is the first system
offering genuinely complete bytecode coverage on the JVM.

Performance. We require dynamic analyses to perform well in spite
of the additional level of isolation provided by our system. To this
end, our asynchronous analysis design exploits the availability
of spare CPU cores. Meanwhile, our flexible ordering models
help extract latent parallelism while preserving the event ordering
relationships on which the analysis’ functional correctness depends.

Productivity. We wish to allow instrumentation and analysis to be
free of unnecessary constraints on how they may be programmed. In
particular, it must be possible to implement them in Java code,
rather than only in native code. We also require that they may
be expressed in terms of a well-defined and convenient API. We
define a “shadow API” for this purpose. Two notable features are its
convenient associative shadow state abstraction and the ordering
guarantees it offers, which reflect the selected ordering model.

4. Writing analyses using ShadowVM
Writing a dynamic analysis using ShadowVM is in many ways sim-
ilar to the use of a bytecode-level instrumentation system such as
DiSL, BTrace or (the dynamic analysis part of) Chord. However, our
design differs to improve the robustness of the resulting tool. The
most significant difference is a “hook–analysis separation”: since
analysis code does not run in the same process as the observed
program, instrumentation is strongly separated from analysis by a
generated stub layer which notifies the remote analysis of events of
interest. Figure 3 shows the high-level architecture of the system.

48

1 / / −−−−−− r u n s i n t h e o b s e r v e d VM
2 p u b l i c c l a s s AllocCounterStub {
3 / / i n s t r u m e n t : s n i p p e t i n s e r t e d a f t e r e a c h ”new” b y t e c o d e
4 @AfterReturning(marker=BytecodeMarker. c l a s s , args="new")
5 p u b l i c s t a t i c v o i d allocSnippet(
6 DynamicContext dc, AllocationSiteStaticContext sc) {
7 / / t r a n s m i t e v e n t t o a n a l y s i s
8 AllocCounterRE.onAlloc(
9 dc.getStackValue (0, Object. c l a s s), / / o b j e c t a l l o c a t e d

10 sc.getAllocationSite ()); / / a l l o c s i t e
11 }
12 }
13 / / −−−−−−− r u n s i n t h e a n a l y s i s VM
14 p u b l i c c l a s s AllocCounter i m p l e m e n t s AllocAnalysis {
15 AtomicLong counter = new AtomicLong ();
16 p u b l i c v o i d onAlloc(
17 ShadowObject o, ShadowString allocSite) {
18 counter.incrementAndGet ();
19 }
20 }

Figure 4. This simple analysis counts object allocations by alloca-
tion site. For simplicity, this code only instruments the new bytecode.
Other bytecodes allocating objects would require similar treatment.

Whereas the instrumented base program is executed by the JVM
within the observed process, a second process performs all bytecode
instrumentation. This process separation is essentially hidden from
the user. A third process performs the analysis itself; this separation
is much more apparent. Finally, we note that since in our implemen-
tation, both analysis and instrumentation are implemented in Java,
each process runs its own JVM.2

Three other distinctions of our programming model are: its
flexible approach to analysis-visible object state (in which the user
controls how objects in the observed program are represented for
analysis); notification ordering (in which more relaxed orderings
can be requested, offering improved performance); and resource
lifecycle events, which allow notifications not directly available
through Java bytecode instrumentation. We discuss each of these,
beginning with an example.

4.1 Introductory example
Figure 4 shows a simple example analysis implemented using
ShadowVM. It consists of an instrumentation part and an analysis
part. The instrumentation part, lines 2–12, uses a pre-existing
annotation-based instrumentation language, DiSL [16], to define
a “hook” as a code snippet woven into the program on the events
of interest (here execution of the new bytecode). This hook simply
extracts the information from the instrumentation context (here
the object allocated, retrieved from the top of the stack using
getStackValue(0, Object.class)) and calls into an onAlloc
method of the AllocCounterRE class. The definition of this method
is not shown because it is a stub routine generated from the
AllocAnalysis interface exposed by the analysis part. The stub
simply notifies the analysis VM of the event. The analysis part,
lines 14–20, defines the analysis computation, its interface being a
single onAlloc method.

The hook runs in the observed VM, whereas the analysis runs in
the analysis VM. Unlike other bytecode instrumentation systems,
under our design the hook only invokes native notification calls,
which marshal their arguments into a wire representation that is sent
over a socket to the analysis VM. The analysis VM runs an event
loop which receives the notifications and dispatches them to the
appropriate analysis method. (The dispatch logic is also responsible
for creating analysis threads; we describe this in §6.4.)

4.2 Shadow API and object representation
In the analysis VM, analyses are clients of the Shadow API, shown
in Figure 5. This API provides methods for reflecting on the class

2 We use “instrumentation VM” and “instrumentation process” interchange-
ably. Similarly, the “observed” and “analysis” processes are also “VMs”.

ShadowThread

+ getName ():String

+ isDaemon ():boolean

ShadowClass

+ getName ():String

... type information methods ...

+ getSuperclass ():ShadowClass

+ getClassLoader ():ShadowObject

ShadowString

+ toString ():String

ShadowObject

+ getId ():long

+ getState ():Object

+ setState (state :Object):void

+ getShadowClass ():ShadowClass

Figure 5. The Shadow API provides an analysis-friendly view of
objects and threads in the observed program. Shadow objects are
in bijection with the subset of objects in the observed program that
have been passed to the analysis. Each object allows association of
shadow state, which can be used to store arbitrary data.

metadata in the observed program, and for associating analysis state
with objects in the base program. Each object is reified as a shadow
object which provides an associative API but (by default) does not
replicate the fields of the original object—only object identity and
class information are available by default. This design reflects the
fact that object contents are not required by many analyses (e.g. most
profilers). Meanwhile, many that are sensitive to object contents (e.g.
a shape analysis over heap structure) may benefit from a customised
representation of the fields (e.g. only recording distinct pointer fields,
rather than every field). To replicate object contents, the analysis
must receive field write events from the observed VM, and associate
these field values with the shadow objects.

The use of distinct “shadow” object, thread and string classes
necessitates some translation in the mapping from analysis APIs
to notification (stub) APIs. Whereas the analysis API’s method
signatures must be in terms of ShadowObject, ShadowString etc.
(and primitive types), in the observed VM these will appear as the
usual Object, String, etc. Instances of java.lang.Class are also
shadowed specially: every class loaded in the observed VM has
corresponding “shadow class” metadata available in the analysis
VM. This is essential because many analyses generate output in
terms of the structure of the program (profiles per class or per
method, backtraces on events of interest, etc.).

4.3 Threading and ordering
Analysis code runs according to a particular threading model, where
different models are suitable for different analyses. The analysis
VM creates threads for processing incoming notifications. Different
analyses have different requirements concerning in what order
they must process notifications. These requirements reflect the
dependency structure of the analysis computation. For example,
just as profilers rarely require object contents, many profilers are
insensitive to reordering of events of the same kind, because they
effectively perform counting (counter increments are commutative).

In general, the developer needs to be aware of the ordering
requirements of a particular analysis, and choose an appropriate im-
plementation strategy for the analysis code. ShadowVM’s most con-
servative ordering yields similar behaviour to the existing dynamic
analysis frameworks such as Chord, where the observed program
is effectively serialized for analysis.3 However, ShadowVM also
provides higher-performance (but more relaxed) ordering configura-
tions, for use when appropriate.

3 Although strictly speaking, nothing in Chord’s design serializes the pro-
gram, ordering is handled by contending for a lock on a unique shared buffer.
Frequent contention for this lock in all threads, as generated by any moderate
or heavy instrumentation, effectively serializes the program.

49

We describe ordering using the following terminology. Program
actions are state transitions in the observed process. A subset of
these are of interest to the analysis, so are hooked. This generates an
event, which is a message encapsulating the values gathered by the
hook code, and which is transmitted to the analysis VM. Notification
is the receipt of an event by the analysis VM from the observed VM.
We say that the hooked program action in the observed VM triggers
a notification in the analysis VM. The ordering of notifications is
not, in general, the same as the ordering of the program actions
that triggered them. The different ordering models we now describe
cause different subsets of the ordering of program actions to be
preserved in the ordering of notifications. (We note that the “ground
truth” ordering of program actions is determined by the behaviour
of the host system. In our case, since the host system is a JVM, this
behaviour is circumscribed by the Java standard.)

Per-thread configuration. In this configuration, notifications are
ordered by the (per-thread) program order in the observed program.
Events from each thread are stored in a dedicated FIFO buffer pool
by the agent, the pools are flushed in arbitrary order with respect to
each other. Notifications are dispatched to multiple analysis threads
corresponding to the threads that trigger the events in the observed
program.

Per-group configuration. This is the most flexible configuration.
The developer specifies a group identifier to be used with each
hook. Each group has its own FIFO buffer pool for notifications. It
can be seen as a generalisation of per-thread ordering where pools
need not map to threads. For example, a group could map to a set
of threads, a single object, code in a particular set of classes, and
so on. Similar to the per-thread configuration, the analysis server
dispatches notifications to the corresponding analysis methods in
multiple threads, one thread per group.

Global-ordering configuration. This is the most conservative con-
figuration. Conceptually, it can be thought of as per-group configura-
tion with a single group identifier. A single buffer pool is used, and
the analysis server dispatches all notifications to the corresponding
analysis methods in a single thread.

4.4 Resource lifecycle events
ShadowVM analyses can request notifications for special events
which do not correspond to execution of bytecodes. Rather, they
relate to some unit of resource in the program, where these resources
can be threads, objects or the VM itself. These special events mark
the end of resource lifetimes. For example, the user can request
notification of object death (which occurs in the garbage collector,
so has no corresponding bytecode). Our attention to ordering
guarantees extends to these events. Specifically, we guarantee that
following a notification of the death of a thread, object or the VM,
no further notifications referencing that entity will occur. In the case
of the VM, a “VM death” notification is the last one of the execution.

This contrasts with existing APIs which might be used
for such purposes, such as finalizers, or the Java library’s
Runtime.addShutdownHook method. These APIs offer few or no
guarantees about the scheduling of hook code, making them difficult
to employ from analyses without risking loss of coverage. For exam-
ple, although an analysis could register its own shutdown hook, there
is no guarantee that some user-supplied hook would not run after
it. A similar lack of guarantee applies to object finalizers (which, in
any case, need not mark the end of an object’s lifetime, owing to
resurrection [4]). Meanwhile, there is no portable way to identify
the bytecode representing the precise end of a thread’s execution.

As with other notifications, these ordering guarantees are en-
forced in the buffer management code. For all ordering configura-

tions, ShadowVM ensures that the lifecycle events are delivered in
proper order related to the notifications produced by hooks.

5. Coverage challenges
In any instrumentation-based design, isolating the analysed program
from the analysis is inherently in tension with coverage, because
the inserted code necessarily shares an execution context with the
analysed program code. By default, therefore, it is not isolated from
it. Isolation can only be provided by adopting a discipline which
restricts what is done from the inserted code, yet still provides anal-
yses with essential functionality such as allocating memory, keeping
references to objects in the observed program, and performing I/O.
In this section we summarise the specific difficulties of achieving
this on the Java platform, and the extent to which existing solutions
have (and have not) overcome them.

Exclusion list. A simple way to avoid isolation difficulties is to
sacrifice coverage, by omitting instrumentation of core classes. This
avoids bootstrapping problems, interference between program and
analysis (through shared library state), and infinite regress (if these
libraries are used from instrumentation). We saw some exclusion
lists in Figure 1.

Load–instrument gaps. High coverage relies on intercepting the
loading of a high proportion of the base program code, so that an
instrumented version can be substituted. Many naive instrumentation
implementations on the Java platform miss some coverage by
missing load events (therefore never instrumenting the loaded code),
or by allowing execution of uninstrumented versions of the code for
some time. The Java instrumentation API in java.lang.instrument
suffers from this problem because it does not allow applying the
instrumentation during JVM start. Moreover, since the Java code
performing the instrumentation may itself trigger additional classes
to be loaded (which cannot be transformed at that point), it leaves the
untransformed version available for use by other threads. We avoid
this by performing instrumentation outside the observed VM (in
a separate process) using JVMTI’s ClassFileLoad hook (which
does not lead to concurrent use of the uninstrumented code).

Missed initializers. Possibly the most obvious problem with instru-
menting core libraries is infinite regress when those libraries are
invoked from the inserted code. It is easily avoided using a per-
thread “bypass” flag [17]. However, a side-effect of bypass is that
initializers for classes used by the analysis are run while the bypass
is active and so are not analysed; if the same classes are used later
by the program, their initializers will not be re-run, and so will not
be covered. ShadowVM does not suffer from this problem because
the only classes referenced by its implementation are Object and
String which are preloaded by the JVM bootstrap long before the
first bytecode is executed.

Avoiding bootstrap bypass. Special-case handling is inevitably
required for instrumentation affecting the very earliest bytecode
that the JVM executes, a.k.a. the “bootstrap phase”. The hook code
snippets as well as our generated stub classes are carefully restricted
to a safe subset of bytecode operations. For example, it is not safe
to allocate objects in inserted code that might be invoked from
Object. < clinit > (causing a stack overflow). Since our stubs
need only call a static native method, this careful construction is
possible—the fact that calls to our native stub code can be called so
early owes to the fact that an initial set of classes, including Object
and Class, is necessarily special-cased by the JVM.4

4 The JVM’s definition of a class being “loaded” implies that a Class object
exists for it [13, §12.2]—yet, to instantiate the Class object for class Object
under these rules, both Class and its superclass Object would (circularly)

50

Reference handling. The standard way for an analysis to main-
tain references to objects in the observed program is to use
WeakReferences. Usually, one shared reference handler thread
(or a garbage collection thread) processes cleared reference objects
(WeakReference, SoftReference, PhantomReference) on be-
half of all other threads. If this thread’s code is instrumented, it may
create a self-sustaining allocation cycle, because the inserted code
within the reference handler may allocate more WeakReferences.
Excluding the reference handling code avoids this problem, but
loses coverage of reference handling on behalf of the observed pro-
gram. Our design avoids using WeakReferences and thus avoids
this problem.

6. ShadowVM Architecture
We have summarized the high-level, multi-process architecture of
ShadowVM earlier in §4. Here, we review the key architectural
elements in greater detail. In general, the architecture is driven by the
design goals elaborated in §3, and the ShadowVM responsibilities
are split between three processes, as shown in Figure 3.

Firstly, the observed VM (augmented with a JVMTI agent)
contains the instrumented base program and class library. The
inserted hook code is responsible for producing base program
events that are of interest to the analysis. The agent has two key
responsibilities: installing instrumented base program code in the
observed VM, and forwarding events produced by the hooks in the
base program to the analysis.

A second VM contains the instrumentation server, itself written
in Java. The instrumentation server performs all bytecode instru-
mentation, communicating Java bytecode with the observed VM’s
agent via a socket.

The third VM contains the analysis server, which hosts the
analysis written against the Shadow API. The analysis server is
responsible for dispatching event notifications received via socket
from the observed VM’s agent to the analysis code, while respecting
the selected ordering configuration.

We now review the various responsibilities in turn.

6.1 Load-time instrumentation
To ensure load-time instrumentation of the base program, the agent
intercepts all class loading events in the observed VM and requests
instrumented versions from the instrumentation VM. The use of
a separate VM to perform instrumentation avoids the substantial
perturbation which would be caused if instrumentation were per-
formed within the observed VM. For example, doing so would bring
forth a significant amount of class loading and initialization activ-
ity, which would then not be analysed at the proper point in the
observed program’s execution. Besides reducing perturbation, this
separation is also essential to enable high-coverage instrumentation
encompassing the Java Class Library (JCL).

6.2 Base-program event generation
The user-defined hooks in the base program are responsible for
generating the events of interest for a particular analysis. The hooks
are expressed as DiSL [16] snippets. However, unlike conventional
analyses based on bytecode instrumentation (including ordinary
uses of DiSL), the hook code is always of the same restricted
form: invoking a native helper method (event API) provided by
the observed VM’s agent, passing as arguments values capturing
the program state that is relevant to the instrumented event. Beyond
this point, the reified event is the responsibility of the agent, and
in this paper we do not concern ourselves further with how the
instrumentation itself is expressed or performed. We simply assume

already need to be loaded and initialized. All JVMs therefore employ some
kind of special-casing to avoid this circularity.

that the events of interest at bytecode level can be intercepted
and handled appropriately, and to simplify hook development, we
provide a library of snippets for various event types.

6.3 Event forwarding
The agent natively implements an event API, into which hooks call
during the execution of the instrumented base program, producing
base program events. The methods of this API marshal their argu-
ments into buffers and the agent delivers the event notifications in
an asynchronous manner to the analysis server executing on the
analysis VM. This separation is crucial to achieve high coverage and
isolation, because it allows instrumenting the base program without
any bypass mechanisms. It also allows using extra computing power
for analysis without perturbing the base-program execution.

The communication between observed and analysis processes re-
quires carefully designed buffering and threading strategies in order
to yield high-performance asynchronous analyses while respecting
ordering constraints (introduced in §4.3). Events produced by base
program threads are stored and marshaled into buffers in the context
of the event API invocations. Object references in the buffers are
processed by a separate thread that ensures, with the help of object
tagging, that objects have unique identity and that it is preserved on
the analysis server. Another thread then sends the completed buffers
to the analysis VM.

6.4 Notification delivery
Recall that the analysis code runs in a separate JVM (analysis VM).
Base program event notifications are sent via socket to the analysis
server. Dispatch logic in the analysis server consumes from this
socket, performs appropriate unmarshaling, and invokes methods of
the analysis.

Apart from the threading model described in §4.3, which is
exposed to the analysis, the analysis server has to cooperate with
the agent to maintain notification ordering mandated by the selected
ordering configuration. The internal threading model of the analysis
server was designed to properly order resource lifecycle notifications
with respect to base program event notifications. In addition to the
threads dispatching base program notifications, the analysis server
also creates a dedicated thread to deliver resource lifecycle event
notifications to the analysis.

7. Evaluation
We consider the high degree of isolation and full bytecode coverage
to be the key benefits of ShadowVM. We therefore aim at evaluating
the difference in perturbation and analysis coverage when a base
program is subjected to a heavy-weight dynamic analysis—once im-
plemented in the classic in-process manner, and once implemented
using ShadowVM.

With respect to performance, the distributed nature of the
ShadowVM approach comes with an inherent overhead due to reifi-
cation and forwarding of events to the analysis VM. However, the
ShadowVM approach also has an inherent scaling potential, which
hinges on the ability of a particular analysis to execute in multi-
ple threads mirroring the base-program threads. We therefore aim
at quantifying the overhead of a ShadowVM-based analysis com-
pared to classic in-process analysis and to assess the scalability of
ShadowVM with parallel workloads.

As case study for our evaluation, we chose the field immutability
analysis (FIA) by Sewe et al. [1]5. In summary, FIA tracks all
object allocations and field accesses and maintains a per-field “state-
machine” that describes the mutability of that field. If a field is
written outside the dynamic extent of an object’s constructor, it is

5 The sources are available at http://www.disl.scalabench.org/modules/
immutability-disl-analysis/.

51

Benchmark Uninstrumented In-process FIA ShadowVM FIA

avrora 1020 1221 1022
batik 2042 2248 2044
fop 1868 2129 1870
h2 919 1120 921

jython 2651 2828 2653
luindex 783 984 785
lusearch 680 886 682

pmd 1194 1387 1196
sunflow 938 1104 940
xalan 1168 1389 1170

Table 1. Comparison of class loading perturbation. The table
presents the number of classes loaded by the observed VM.

marked mutable. Explicit field initialization during construction
and reliance on implicit zeroing of fields by the VM are taken into
account. Overall, the analysis is relatively heavy-weight and would
be a typical candidate for offloading to a separate VM.

We recast the original in-process FIA to ShadowVM and evaluate
the differences in perturbation, coverage, and performance. To assess
scalability of FIA under ShadowVM, we run it with both per-thread
(which suffices for FIA) and global ordering configurations. The
base programs for our evaluation come from the DaCapo suite [23]
(release 9.12). Of the fourteen benchmarks in the suite, we excluded
tomcat, tradebeans, and tradesoap due to well known issues
unrelated to ShadowVM.6 We also excluded eclipse, which exhibits
too non-deterministic behaviour under instrumentation and thus
prevents fair comparison.

All experiments were run on a 64-bit multi-core platform with
Oracle Hotspot Server VM7, and with all non-essential system
services disabled.

7.1 Perturbation
With respect to perturbation, the ShadowVM approach should
improve on classic in-process analysis thanks to the isolation from
the observed VM. Consequently, a ShadowVM-based analysis
should exhibit minimal (if any) influence on class loading or garbage
collections triggered by the base-program.

7.1.1 Class loading perturbation
We first evaluate the class loading perturbation caused by a dynamic
analysis. To this end, we simply capture the sequence of classes
loaded by the observed VM in response to base-program execution.
The data collected when running the uninstrumented base program
serve as a reference for comparison with the data collected when
running with either the in-process or ShadowVM-based FIA imple-
mentation.

Table 1 lists the numbers of classes loaded by the observed VM
when running base programs from the DaCapo suite. We note that in
the case of the ShadowVM-based FIA implementation, the observed
VM loads exactly two more classes than the uninstrumented version.
These two classes wrap the native methods designated for reifying
the base-program events in the observed VM’s agent. In contrast,
the in-process FIA implementation loads significantly more classes,
because it is implemented using those classes.

7.1.2 Garbage collection perturbation
Next, we evaluate the perturbation in garbage collection behavior.
Ideally, an analysis should not influence the memory allocation

6 See bug ID 2955469 and 2934521 in the DaCapo bug tracker at http:
//sourceforge.net/tracker/?group id=172498&atid=861957.
7 2x Intel Xeon X5650 2.67GHz with 24 cores, 48 GB of RAM, OpenJDK
1.7.0 09-icedtea 64-Bit Server VM (build 23.2-b09) running on Fedora 18

patterns imposed on the JVM by the observed base program. The
experimental setup is similar to that of the previous evaluation,
except we collect information on garbage collections performed by
the JVM during the execution of the base program. The maximum
heap size is limited to two gigabytes and the actual heap size never
reaches the limit. Apart from the maximum heap size, the JVM is in
default configuration. Again, the data collected when running the
uninstrumented base program serve as a reference for comparison.

Table 2 lists the numbers of garbage collections in the young and
old generation spaces, the amount of allocated (garbage collected)
memory, and the final heap size including the sizes of the young and
old generation spaces.

We note that regarding memory consumption and garbage col-
lection, the ShadowVM FIA implementation exhibits very similar
behavior compared to that of the uninstrumented base program.
There is a slight increase in the total amount of allocated memory,
which can be attributed to the FIA tracking each allocated object
and passing its reference to the native space. This slightly increases
the lifetime of the base program’s objects and, more importantly,
effectively disables the JIT compiler optimization that converts cer-
tain heap allocations to stack allocations, resulting in increased heap
consumption. In contrast, the optimization can be still used in the
uninstrumented base program.

The in-process FIA implementation reveals a significantly higher
memory consumption, because the analysis keeps its state on the
heap shared with the base program. Consequently, the allocation
rate increases, resulting in a higher number of garbage collections.

7.2 Coverage
With respect to coverage, a ShadowVM-based analysis should
improve on classic in-process analysis, because there is no need
for a “bypass” mechanism, which enables complete instrumentation
of the base program, including the JCL, and including the JVM
bootstrap phase. To evaluate the difference in coverage between
the two FIA implementations, we compare the total number of
object allocations observed by the respective implementation, along
with a breakdown of allocations observed by one and not the other
implementation. Since the original in-process FIA implementation
uses DiSL for base-program instrumentation, it already has a near-
complete coverage, with only a small exclusion list. We therefore
expect the difference to be small, but still in favor of the ShadowVM-
based FIA implementation.

Even though the designers of the DaCapo suite took great care
to avoid non-determinism in the benchmarks [23], the allocation
profiles vary slightly between benchmark runs, regardless of the FIA
implementation used to analyze them. To assess the variability, we
have configured the benchmarks for small workload and executed
each benchmark ten times with both FIA implementations, collect-
ing the allocation profiles observed during the first iteration in each
of the ten runs.

Table 3 shows the number of object allocations observed by both
FIA implementations for each of the benchmarks. The variation
in the allocation volume is under 0.5% in all benchmarks except
h2, where it fits under 0.7%. With the exception of jython, the
ShadowVM-based FIA implementation observes slightly more
object allocations than the original in-process implementation.

However, in all cases, there are several thousands of objects that
are observed by one FIA implementation and not the other. This
effect is visible in Table 4 and there are several reasons for the
difference, each contributing to the result.

First, there is a slight variability in the allocation profiles between
benchmark runs, indicating that the benchmarks do not always
allocate the same objects.

Second, the in-process analysis starts tracking object allocations
only after the JVM has been initialized, does not track allocations

52

Uninstrumented In-process FIA ShadowVM FIA

Benchmark GC Allocated Final GC Allocated Final GC Allocated Final
young/old memory heap size young/old memory heap size young/old memory heap size

avrora 1/1 65 906 740 480 218/1 26 675 365 639 456 1/1 66 548 740 480
batik 1/1 122 865 740 480 10/1 2 230 259 997 792 1/1 127 293 740 480
fop 1/1 62 600 740 480 4/1 887 367 856 371 1/1 68 568 740 480
h2 3/1 956 686 933 632 92/1 49 247 450 1 124 621 5/1 1 076 014 740 480

jython 1/1 172 068 740 480 73/1 12 023 437 1 075 930 1/1 177 161 740 480
luindex 1/1 32 029 740 480 2/1 450 167 740 480 1/1 39 170 740 480
lusearch 4/1 729 793 933 632 14/1 6 835 034 1 168 493 4/1 721 823 740 480

pmd 1/1 35 912 740 480 2/1 271 791 740 480 1/1 38 070 740 480
sunflow 2/1 306 649 740 480 22/1 11 953 069 1 174 035 2/1 218 245 740 480
xalan 1/1 190 011 740 480 11/1 5 083 672 1 163 386 1/1 192 811 740 480

Table 2. Memory characteristics presented as mean over ten runs. Final heap size and allocated memory shows the size in kilobytes.

Benchmark In-process FIA ShadowVM FIA

avrora 830 972± 0.32% 849 675± 0.42%
batik 376 728± 0.29% 383 638± 0.27%
fop 352 346± 0.00% 359 032± 0.00%
h2 15 999 644± 0.66% 16 028 646± 0.57%

jython 2 449 022± 0.00% 2 443 509± 0.00%
luindex 38 528± 0.01% 42 317± 0.01%
lusearch 840 635± 0.00% 843 682± 0.00%

pmd 69 697± 0.01% 75 985± 0.01%
sunflow 2 303 802± 0.00% 2 307 116± 0.00%
xalan 694 117± 0.02% 699 041± 0.03%

Table 3. Average number of allocations observed (± sample mean
standard deviation)

originating in daemon threads to avoid triggering undefined behavior
when manipulating weak references, and bypasses the instrumenta-
tion when using JCL classes. The ShadowVM implementation, on
the other hand, tracks allocations during the whole run of the bench-
mark, including JVM initialization. Therefore, even if the same
objects are observed later, the in-process analysis cannot determine
their allocation site and they appear distinct in the comparison.

Third, the in-process analysis may perturb the benchmark state
through sharing JVM resources with the base program, resulting in
allocations unique for that analysis.

And finally, the two analyses do not have a common point at
which they stop tracking object allocations. The ShadowVM-based
implementation stops upon receiving the “VM Death” event, while
the in-process implementation ends when the JVM executes a pre-
registered shutdown hook. Unfortunately, there is no documented
relation between the two events—we observe the JVM to still
execute some bytecode after emitting the JVMTI “VM Death” event.

In our experiments, the input data of Table 4 for avrora and
h2 exhibit high variability, suggesting the reported mean value for
those benchmarks is not informative. Still, the huge difference in
observed events between the in-process and the ShadowVM FIA
implementation for avrora reflects the fact that the number of events
observed by ShadowVM is orders of magnitude higher than by
in-process analysis.

For h2, the situation is more complicated. In two thirds of
the runs, the ShadowVM FIA observes more events than the in-
process version. However, for some runs, the number of events
observed by the in-process FIA can be up to 5 times higher than
in the ShadowVM version. This might indicate some kind of state
perturbation in the in-process version, causing more objects to be
allocated.

The behavior of jython is also unexpected. It is the only bench-
mark, where the number of observed allocations is higher with the

Objects observed only by

Benchmark In-process FIA ShadowVM FIA

avrora 506 0.06% 19 209 2.26%
batik 676 0.18% 7586 1.98%
fop 872 0.25% 7559 2.11%
h2 163 690 1.02% 192 692 1.20%

jython 9483 0.39% 3971 0.16%
luindex 350 0.91% 4139 9.78%
lusearch 386 0.05% 3434 0.41%

pmd 603 0.86% 6891 9.07%
sunflow 376 0.02% 3690 0.16%
xalan 3616 0.52% 8540 1.22%

Table 4. Average number of objects observed only by one imple-
mentation of the field-immutability analysis but not the other (per-
centages relative to number of objects observed by the respective
implementation)

in-process FIA. The instrumentation coverage of the in-process ver-
sion is lower compared to the ShadowVM version. We were unable
to find the reason for five thousand unique allocations among two
and half million, and again we suspect that the in-process FIA may
cause some shared state perturbation.

In summary, the ShadowVM FIA implementation is able to
capture class loading events and daemon thread events missed by
the in-process version. The behavior of some of the benchmarks,
when observed using the in-process FIA leads us to believe that our
goal of reducing perturbation in the observed system makes sense.

7.3 Performance
In this section, we evaluate the steady-state performance of the
in-process and ShadowVM FIA implementations with the DaCapo
benchmarks. As mentioned earlier, the ShadowVM FIA implemen-
tation is used with both per-thread and global ordering to evaluate
the two main ordering configurations.

The experimental setup is identical to the previous evaluations.
To obtain mean execution time, we execute each benchmark 5 times
in a new process. To obtain steady-state results, we collect the
execution time of the fifth iteration of the benchmark during each
execution. Measuring execution time after reaching the steady-state
provides time for the JIT compiler to optimize the base program
code. The measured overhead can be then attributed only to the
execution of the inserted hook code and event forwarding.

Table 5 shows the runtime overhead of the steady-state scenario,
with the in-process FIA as the baseline. The steady state performance
of the ShadowVM FIA is typically about two times worse than the
in-process analysis, the worst observed slowdown being a factor

53

ShadowVM

In-process per-thread ordering global ordering

Benchmark [ms] [ms] overhead [ms] overhead

avrora 141 307 851 782 6.03 849 792 6.01
batik 9563 19 796 2.07 26 734 2.80
fop 5072 6240 1.23 8619 1.70
h2 82 831 157 781 1.90 233 792 2.82

jython 14 473 27 681 1.91 34 989 2.42
luindex 1491 3922 2.63 5219 3.50
lusearch 23 693 360 220 15.20 250 892 10.59

pmd 1430 1774 1.24 2359 1.65
sunflow 57 466 133 843 2.33 158 307 2.75
xalan 18 631 276 160 14.82 232 416 12.47

Table 5. Average steady-state execution time of the in-process
FIA and the ShadowVM FIA using per-thread and global ordering
configurations. The overhead of the ShadowVM FIA uses the
execution time of the in-process FIA as a reference.

ShadowVM concurrent tagging

In-process 4 bench. threads 8 bench. threads

Benchmark [ms] [ms] overhead [ms] overhead

avrora 141 307 606 356 4.29 600 930 4.25
lusearch 23 693 47 843 2.02 27 130 1.15

xalan 18 631 37 322 2.00 18 951 1.02

Table 6. Average steady-state execution time of the in-process FIA
and an experimental (concurrent tagging) ShadowVM FIA using
per-thread ordering. The ShadowVM overhead is calculated with
the in-process FIA as a reference.

of fifteen. Besides the overhead of marshaling inherent to the
ShadowVM design, the main sources of overhead are related to
object tagging and creation of global references in native code.
Both facilities are provided by the JVM, but their implementation
represents a major bottleneck for the ShadowVM use case.

A small but systematic difference is visible when comparing per-
thread and global-ordering configurations. In most cases, the relaxed
synchronization of the per-thread configuration is beneficial, how-
ever, for a few benchmarks the per-thread configuration performs
worse than global-ordering. After further investigation, we believe
this effect is caused by excessively fine-grained synchronization
between the benchmark threads inside the native code executed as a
part of the inserted analysis hooks.

To separate the synchronization effects due to Hotspot JVM from
the performance of ShadowVM, we have modified the Hotspot JVM
to support concurrent object tagging (the tags are normally kept in a
globally locked hash map). The essence of the change was replacing
the hash map with a concurrent one. Table 6 shows the performance
of a ShadowVM prototype adjusted to run with concurrent tagging
for the three benchmarks that exhibited the most pronounced syn-
chronization effects. The adjustment reduces the analysis overhead
significantly, unfortunately, requiring proprietary virtual machine
adjustments goes against many benefits of analyses based on byte-
code instrumentation. Still, we believe the illustrated benefits would
justify introducing similar adjustment into the standard Hotspot VM.

8. Related Work
Binary translation systems including Pin [6], Valgrind [19], and
DynamoRIO face similar issues of isolating analysis code from
the observed program. By performing instrumentation directly at
the machine code level, they avoid our complications in escaping

from the Java world. Conversely, they are a poor fit for observing
managed runtimes, since the abstractions of the VM (such as objects,
references to objects, reflective information, and VM threads if not
implemented natively) are not easily visible from instrumentation
code. Use of private dynamic compilation infrastructure means
that baseline slowdown is high (around 2x–5x)—especially when
instrumenting a JVM, where two levels of dynamic compilation are
now operating.

Shadow profiling [26] and SuperPin [29] support running analy-
sis code asynchronously in overlapping slices, which, given enough
cores, can together analyse all events produced by the observed
program. However, they work well only if there are no data de-
pendencies between the work done by distinct slices. In practice,
since the places where slices begin and end are dictated by rates of
production and consumption, handling slice boundaries is problem-
atic and can introduce divergence or loss of coverage [14]. The use
of fork() to create slices also limits these systems to analysis of
single-threaded applications.

Several instrumentation frameworks for Java bytecode may be
used to create dynamic analyses, including Javassist [7], Soot [21],
ASM8 and DiSL [16]. These vary in details and expressiveness, but
crucially, none assists in isolating the analysis from the observed
VM, nor supports asynchronous processing.

BTrace9 conservatively disallows all potentially dangerous in-
strumentation in its default configuration—providing a form of
isolation, but also limiting its expressiveness to simple applications
(e.g. its inability to perform reflection makes it unable to model
object fields).

A notable exception is Chord [18], which supports piping a trace
of events to a separate process for analysis. This isolates analysis
from the program and allows full coverage (§2.1). However, since
each instrumentation snippet contends for a shared buffer in this
mode, heavy instrumentation effectively serializes the program, in
contrast to our flexible approach (§4.3). In addition, Chord’s “multi-
JVM mode” offers less straightforward support API relative to the
unisolated default mode. In particular, program metadata such as
class and method names is only available by accessing files dumped
from the instrumented JVM, making it more difficult to use.

The RoadRunner dynamic analysis framework [11] caters to data
race detectors and closely related dynamic analyses. A key inno-
vation is its compositional pipe-and-filter design. However, unlike
Unix pipes, processing along the pipeline is still done synchronously.
This makes sense since race detection is highly order-sensitive. How-
ever, as a consequence, it cannot introduce parallelism, making it
unsuitable (unlike our system) for analyses with weaker ordering
requirements. Moreover, the analysis developer is offered no assis-
tance in ensuring isolation of program from analysis.

Aftersight [8] offers a platform for “decoupled” dynamic pro-
gram analyses, based on the record-replay infrastructure of the
VMware virtual machine monitor. Programs are observed under
record, generating a log, which is analysed using a special CPU
emulator (based on QEmu [3]) which replays the observed program.
Observed workloads can be run “behind” the analysis for real-time
monitoring, at a cost of slowdown, or else analysis can be run of-
fline with only modest recording overhead. The main contrast with
our work is that multiprocessor workloads are not supported: if a
multithreaded program is observed, it is implicitly serialized.

Pipa [20] is an extension of dynamic binary translators which
provides an efficient representation of profiling data suitable for fast
handoff to an asynchronous (pipelined) processing stage, together
with carefully optimised dynamic instrumentation code at the binary
level. Meanwhile, CAB [14] provides a cache-friendly buffering

8 http://asm.ow2.org/
9 http://kenai.com/projects/btrace

54

design which offers further performance improvement. Since our
current implementation lacks cache-aware buffering, uses fairly
naive data encoding, and relies on the host JVMs for dynamic
compilation, we believe CAB and Pipa to be complementary to
our work, in that these techniques could be used to further increase
the performance of our approach.

Problems related to full-coverage bytecode instrumentation are
mentioned in the literature. The “Twin Class Hierarchy” (TCH) [9]
claims to support user-defined instrumentation of the standard JCL
by replicating the full hierarchy of the instrumented JCL in a sep-
arate package. This has drawbacks in that applications need to be
instrumented to explicitly refer to the desired version of the JCL
(original or instrumented), but more importantly, that in the presence
of native code, call-backs from native code into bytecode will not
reach the instrumented code [27]. TCH is therefore not suited for
comprehensive instrumentation, as it fails to transparently instru-
ment the JCL. Saff et al. [24] deem the dynamic instrumentation of
the JCL to be impossible.

9. Conclusions and future work
ShadowVM allows developers to write dynamic analyses using
convenient high-level languages and APIs, retaining the feel of a
bytecode instrumentation system but achieving higher levels of
isolation and coverage than previous systems. Its contributions
include the disciplined use of native code to ensure isolation, the
provision of distinct ordering models to allow efficient asynchronous
analysis, and the avoidance of numerous coverage gaps that afflict
previous systems. We believe it is the first system offering genuinely
full bytecode coverage for the JVM. Despite the addition of a process
separation, its performance is acceptable for many use cases.

Considerable future work stands to further improve ShadowVM.
Coverage could be improved by allowing instrumentation of JNI
interactions with the VM, and of VM-internal events currently ex-
posed only through JVMTI callbacks. For analysing some program
behaviours, particularly memory usage, a deeper understanding of
VM-internal activity has previously been shown to be helpful [15].
A different transport strategy, perhaps based on shared memory
instead of socket communication, could potentially also improve
performance, although careful coordination with the garbage col-
lector will be required to make shared memory work reliably. We
believe that careful extensions to existing JVM implementations
could significantly improve the performance of object tagging and
global references, which have proven to be bottlenecks in the current
implementation. More generally, the optimal observation mecha-
nism will likely require invasive modifications to existing VM imple-
mentations and, indeed, their architectures. Meanwhile, ShadowVM
constitutes (to our knowledge) the most comprehensive portable
solution.

Acknowledgments
This work was supported by the Swiss National Science Foundation (project
CRSII2 136225), by a Sino-Swiss Science and Technology Cooperation
(SSSTC) Institutional Partnership (project IP04–092010), by the European
Commission (Seventh Framework Programme grant 287746), by the Grant
Agency of the Czech Republic project GACR P202/10/J042), by the EU
project ASCENS 257414, and by Charles University institutional funding
SVV-2013-267312.

References
[1] A. Sewe, et al. new Scala() instance of Java: a comparison of the

memory behaviour of Java and Scala programs. In Proc. ISMM ’12,
pages 97–108. ACM, 2012.

[2] B. Cantrill, et al. Dynamic instrumentation of production systems. In
Proc. ATEC ’04, pages 15–28. USENIX Association, 2004.

[3] F. Bellard. QEMU, a fast and portable dynamic translator. In Proc.
ATEC ’05, pages 41–41. USENIX Association, 2005.

[4] Hans-J. Boehm. Destructors, finalizers, and synchronization. In Proc.
POPL ’03, pages 262–272. ACM, 2003.

[5] D. L. Bruening. Efficient, transparent, and comprehensive runtime
code manipulation. PhD thesis, MIT, 2004. AAI0807735.

[6] C. Luk, et al. Pin: building customized program analysis tools with
dynamic instrumentation. In Proc. PLDI ’05, pages 190–200. ACM,
2005.

[7] S. Chiba. Load-time structural reflection in Java. In Proc. ECOOP’00,
pages 313–336. Springer-Verlag, 2000.

[8] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In Proc. ATC’08,
pages 1–14. USENIX Association, 2008.

[9] M. Factor, A. Schuster, and K. Shagin. Instrumentation of standard
libraries in object-oriented languages: the twin class hierarchy approach.
In Proc. OOPSLA ’04, pages 288–300. ACM, 2004.

[10] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic
race detection. In Proc. PLDI ’09, pages 121–133. ACM, 2009.

[11] C. Flanagan and S. N. Freund. The RoadRunner dynamic analysis
framework for concurrent programs. In Proc. PASTE ’10, pages 1–8.
ACM, 2010.

[12] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. In Proc. SIGPLAN ’82, pages 120–126. ACM, 1982.

[13] J. Gosling, et al. Java(TM) Language Specification, The (Java SE 7
Edition, 4th Edition). Addison-Wesley Professional, 2013.

[14] J. Ha, et al. A concurrent dynamic analysis framework for multicore
hardware. In Proc. OOPSLA ’09, pages 155–174. ACM, 2009.

[15] K. Ogata, et al. A study of Java’s non-Java memory. In Proc.
OOPSLA ’10, pages 191–204. ACM, 2010.

[16] L. Marek, et al. DiSL: a domain-specific language for bytecode
instrumentation. In Proc. AOSD ’12, pages 239–250. ACM, 2012.

[17] P. Moret, W. Binder, and É. Tanter. Polymorphic bytecode instrumenta-
tion. In Proc. AOSD ’11, pages 129–140. ACM, 2011.

[18] Mayur Naik. Chord user guide, March 2011. URL http://pag-www.
gtisc.gatech.edu/chord/user guide/. Retrieved on 2013/3/28.

[19] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, 2007.

[20] Q. Zhao, et al. Pipa: pipelined profiling and analysis on multi-core
systems. In Proc. CGO ’08, pages 185–194. ACM, 2008.

[21] R. Vallée-Rai, et al. Optimizing Java bytecode using the Soot frame-
work: Is it feasible? In Proc. CC ’00, pages 18–34. Springer-Verlag,
2000.

[22] S. Kell, et al. The JVM is not observable enough (and what to do about
it). In Proc. VMIL ’12, pages 33–38. ACM, 2012.

[23] S. M. Blackburn, et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. OOPSLA ’06, pages 169–190.
ACM, 2006.

[24] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic test
factoring for Java. In Proc. ASE ’05, pages 114–123. ACM, 2005.

[25] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine
for c. In Proc. ESEC/FSE-13, pages 263–272. ACM, 2005.

[26] T. Moseley, et al. Shadow profiling: Hiding instrumentation costs
with parallelism. In Proc. CGO ’07, pages 198–208. IEEE Computer
Society, 2007.

[27] E. Tilevich and Y. Smaragdakis. Transparent program transformations
in the presence of opaque code. In Proc. GPCE ’06, pages 89–94.
ACM, 2006.

[28] W. Enck, et al. TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proc. OSDI’10, pages
1–6. USENIX Association, 2010.

[29] S. Wallace and K. Hazelwood. Superpin: Parallelizing dynamic
instrumentation for real-time performance. In Proc. CGO ’07, pages
209–220. IEEE Computer Society, 2007.

55

56

Chapter 5

Introduction to Dynamic
Program Analysis with DiSL

Lukáš Marek,
Yudi Zheng,
Danilo Ansaloni,
Lubomı́r Bulej,
Aibek Sarimbekov,
Walter Binder,
Petr Tůma

Accepted for publication in 5th Special Issue on Experimental
Software and Toolkits

In Science of Computer Programming,
to be published by Elsevier,
In Press.

The original version is available electronically from the publisher’s
site at http://dx.doi.org/10.1016/j.scico.2014.01.003.

57

http://dx.doi.org/10.1016/j.scico.2014.01.003

Introduction to Dynamic Program Analysis with DiSL

Lukáš Mareka, Yudi Zhengb, Danilo Ansalonib, Lubomír Bulejb,
Aibek Sarimbekovb, Walter Binderb, Petr Tůmaa

aCharles University, Czech Republic
bUniversity of Lugano, Switzerland

Abstract
Dynamic program analysis (DPA) tools assist in many software engineer-
ing and development tasks, including profiling, program comprehension, and
performance model construction and calibration. On the Java platform,
many DPA tools are implemented either using aspect-oriented programming
(AOP), or rely on bytecode instrumentation to modify the base program code.
The pointcut/advice model found in AOP enables rapid tool development,
but does not allow expressing certain instrumentations due to limitations of
mainstream AOP languages—developers thus use bytecode manipulation to
gain more expressiveness and performance. However, while the existing byte-
code manipulation libraries handle some low-level details, they still make tool
development tedious and error-prone. Targeting this issue, we provide the
first complete presentation of DiSL, an open-source instrumentation frame-
work that reconciles the conciseness of the AOP pointcut/advice model and
the expressiveness and performance achievable with bytecode manipulation
libraries. Specifically, we extend our previous work to provide an overview of
the DiSL architecture, advanced features, and the programming model. We
also include case studies illustrating successful deployment of DiSL-based
DPA tools.
Keywords:
dynamic program analysis, bytecode instrumentation, aspect-oriented
programming, domain-specific languages, Java Virtual Machine

Email addresses: lukas.marek@d3s.mff.cuni.cz (Lukáš Marek),
yudi.zheng@usi.ch (Yudi Zheng), danilo.ansaloni@usi.ch (Danilo Ansaloni),
lubomir.bulej@usi.ch (Lubomír Bulej), aibek.sarimbekov@usi.ch
(Aibek Sarimbekov), walter.binder@usi.ch (Walter Binder),
petr.tuma@d3s.mff.cuni.cz (Petr Tůma)

Preprint submitted to Science of Computer Programming April 14, 2014

58

1. Introduction

With the growing complexity of software systems, there is an increased
need for tools that allow developers and software engineers to gain insight into
the dynamics and runtime behavior of those systems during execution. Such
insight is difficult to obtain from static analysis of the source code, because
the runtime behavior depends on many other factors, including program
inputs, concurrency, scheduling decisions, and availability of resources.

Software developers therefore use various dynamic program analysis
(DPA) tools, that observe a system in execution and distill additional in-
formation from its runtime behavior. The existing DPA tools can aid in a
variety of tasks, including profiling [1, 2], debugging [3, 4, 5, 6], and program
comprehension [7, 8], with increasingly sophisticated tools being introduced
by the research community.

In the context of model-driven engineering (MDE), and specifically the
area of model-based performance prediction and engineering, dynamic analy-
ses can aid in automating construction and calibration of performance mod-
els. While there is a long-lasting trend towards deriving software perfor-
mance models from other models created during development [9], a well-
designed dynamic analysis can aid in construction of performance models
for existing software and runtime platforms. Viewed from the perspective of
aspect-oriented modeling approaches [10], dynamic analyses related to run-
time performance monitoring can be considered crosscutting concerns, and
represented as model aspects [11, 12] intended for composition with primary
models.

The construction of DPA tools is difficult, in part because of the need to
rewrite the base program code to capture occurrences of important events in
the base program execution. On the Java platform, bytecode instrumentation
is the prevailing technique used by existing DPA tools to modify the base
program code. Libraries such as ASM [13] and BCEL [14] are often used to
manipulate the bytecode, raising the level of abstraction to the level of classes,
methods, and sequences of bytecode instructions, and relieving developers of
the lowest-level details, such as handling the Java class files.

However, even with the bytecode manipulation libraries, implementing
the instrumentation for a DPA tool is error-prone, requires advanced devel-
oper expertise, and results in code that is verbose, complex, and difficult to

59

maintain. While frameworks such as Soot [15], Shrike [16], or Javassist [17],
raise the level of abstraction further, they often target more general code
transformation or optimization tasks in their design, which does not neces-
sarily help in the instrumentation development.

Some researchers and authors of various DPA tools have thus turned to
aspect-oriented programming (AOP) [18], which offers a convenient, high-
level abstraction over predefined points in program execution (join points)
and allows inserting code (advice) at a declaratively specified set of join
points (pointcuts). This pointcut/advice model allows expressing certain
instrumentations in a very concise manner, thus greatly simplifying the in-
strumentation development. Tools like the DJProf profiler [19], the RacerAJ
data race detector [20], or the Senseo Eclipse plugin for augmenting static
source views with dynamic metrics [8], all implemented using AspectJ [18],
are examples of a successful application of this approach.

Despite the convenience of the AOP-based programming model, main-
stream AOP languages such as AspectJ only provide a limited selection of
join point types. The resulting lack of flexibility and expressiveness then
makes many relevant instrumentations impossible to implement, forcing re-
searchers back to using low-level bytecode manipulation libraries. Moreover,
with AOP being primarily designed for purposes other than instrumentation,
the high-level programming model and language features provided by AOP
are often expensive in terms of runtime overhead [21].

To reconcile the convenience of the pointcut/advice model found in AOP
and the expressiveness and performance attainable by using the low-level
bytecode manipulation libraries, we have previously presented DiSL [22, 23,
24], an open-source framework that enables rapid development of efficient
instrumentations for Java-based DPA tools. To raise the level of abstraction,
DiSL adopts the AOP-based pointcut/advice model, which allows one to
express instrumentations in a very concise manner, similar to AOP aspects.
To retain the flexibility of low-level bytecode manipulation libraries, DiSL
features an open join-point model, which allows any region of bytecodes to
represent a join point. To achieve the performance attainable with low-level
libraries, DiSL provides specialized features that provide constant-time access
to static information related to an instrumentation site, which is computed
at weave time, and features that allow caching and passing data between
inserted code in different places. These features enable implementation of

60

efficient instrumentations, without incurring the overhead caused by having
to resort to very high-level, but costly, AOP features.

In addition, DiSL supports complete bytecode coverage [25] and mostly
avoids1 structural modifications of classes (i.e., adding methods and fields)
that would be visible through the Java reflection API and could break the
base program.

The general contribution of this paper is in providing the first complete
presentation of the DiSL framework that serves as introduction to dynamic
program analysis with DiSL. In previous work, we presented the design and
the basic features of the DiSL framework [22, 23, 24]. Here we extend our
previous work in the following directions:

• we provide an overview of the DiSL framework architecture;

• we present the advanced features that contribute to the flexibility and
performance of the DiSL framework;

• we present case studies based on reimplementing existing tools using
DiSL;

• we provide a tutorial-style introduction to DiSL programming, to help
developers of DPA tools to get started with DiSL;

• and finally, we include step-by-step instruction on how to obtain, com-
pile, and run DiSL-based analyses on base programs.

The rest of the paper is structured as follows: Section 2 stems from [24]
and introduces the DiSL framework using a simple execution time profiler as a
running example, pointing out the advantages of using DiSL to implement the
instrumentation. Section 3 provides an overview of the advanced features of
DiSL, which also serve as extension points of the DiSL framework. Section 4
presents the high-level architecture of DiSL and provides overview of the
instrumentation process. In Section 5 we provide an overview of selected case
studies performed during the development of DiSL, and we discuss related
work in Section 6. Section 7 concludes the paper.

1For performance reasons, DiSL modifies the java.lang.Thread class. DiSL also allows an
arbitrary user-defined class transformation to become part of the instrumentation process.
Both exceptions are discussed in Section 3.5.

61

2. DiSL by Example

A common example of a dynamic program analysis tool is a method
execution time profiler, which usually instruments the method entry and
exit join points and introduces storage for timestamps. We describe the
main features of DiSL by gradually developing the instrumentation for such
a profiler. The same instrumentation is also available on the DiSL home
page2 among the examples. For step-by-step instructions on how to run the
examples, please refer to Appendix A.

Note that we intentionally use simple code to illustrate DiSL con-
cepts, oblivious to the overhead it may cause. A developer writing a real
instrumentation-based profiler would have to be much more conscious about
the overhead introduced by the inserted code. To manage overhead, the
developer would have to avoid expensive operations such as memory alloca-
tions, string concatenations, or repeated queries for information, as much
as possible. To help with that, DiSL provides features that allow caching
and passing data between snippets (synthetic local variables and thread lo-
cal variables), and that allow moving computation of static information to
weave time (custom static context). We introduce these features shortly.

2.1. Method Execution Time Profiler
In the first version of our execution time profiler, we simply print the entry

and exit times for each method execution as it happens. For that, we need
to insert instrumentation at the method entry and method exit join points.

Each DiSL instrumentation is defined through methods declared in stan-
dard Java classes. Each method—called snippet in DiSL terminology—is
annotated so as to specify the join points where the code of the snippet shall
be inlined.3 The profiler instrumentation code on Figure 1 uses two such
snippets, the first one prints the entry time, the second one the exit time.

The code uses two annotations to direct inlining. The @Before annotation
requests the snippet to be inlined before each marked bytecode region (rep-
resenting a join point); the use of the @After annotation places the second
snippet after (both normal and abnormal) exit of each marked region. The
regions themselves are specified with the marker parameter of the annotation.
In our example, BodyMarker marks the whole method (or constructor) body.

2http://disl.ow2.org
3The method name can be arbitrarily chosen by the programmer.

62

public class SimpleProfiler {

@Before(marker=BodyMarker.class)
static void onMethodEntry() {

System.out.println("Method entry " + System.nanoTime());
}

@After(marker=BodyMarker.class)
static void onMethodExit() {

System.out.println("Method exit " + System.nanoTime());
}

}

Figure 1: Instrumenting method entry and exit

The resulting instrumentation thus prints a timestamp upon method entry
and exit.

Instead of printing the entry and exit times, we may want to print the
elapsed wall-clock time from the method entry to the method exit. The
elapsed time can be computed in the after snippet, but to perform the com-
putation, the timestamp of method entry has to be passed from the before
snippet to the after snippet.

In traditional AOP languages, which do not support efficient data ex-
change between advices, this situation would be handled using a local vari-
able within the around advice. In contrast, an instrumentation framework
such as DiSL has no need for the usual form of the around advice, which
lets the advice code decide whether to skip or proceed with the method invo-
cation [22]. DiSL therefore only supports inlining snippets before and after
a particular join point, together with a way for the snippets inlined into
the same method to exchange data using synthetic local variables [26], as
illustrated on Figure 2.

Synthetic local variables are static fields annotated as @SyntheticLocal.
The variables have the scope of a method invocation and can be accessed
by all snippets that are inlined in the method; that is, they become local
variables. Synthetic local variables are initialized to the default value of
their declared type (e.g., 0, false, null).

Next, we extend the output of our profiler to include the name of each
profiled method. In DiSL, the information about the instrumented class,

63

public class SimpleProfiler {

@SyntheticLocal
static long entryTime;

@Before(marker=BodyMarker.class)
static void onMethodEntry() {

entryTime = System.nanoTime();
}

@After(marker=BodyMarker.class)
static void onMethodExit() {

System.out.println("Method duration " + (System.nanoTime() - entryTime));
}

}

Figure 2: Passing data between snippets using a synthetic local variable

method, and bytecode region can be obtained through dedicated static con-
text interfaces. In this case, we are interested in the MethodStaticContext
interface, which provides the method name, signature, modifiers and other
static data about the intercepted method and its enclosing class. Figure 3
refines the after snippet of Figure 2 to access the fully qualified name of the
instrumented method.

@After(marker=BodyMarker.class)
static void onMethodExit(MethodStaticContext msc) {

System.out.println(msc.thisMethodFullName() + " duration "
+ (System.nanoTime() - entryTime));

}

Figure 3: Accessing the method name through static context

Static context interfaces provide information that is already available at
the instrumentation time. When inlining the snippets, DiSL therefore re-
places the calls to these interfaces with the corresponding static context in-
formation, thus improving the efficiency of the resulting tools.

DiSL provides a set of static context interfaces, which can be declared as
arguments to the snippets in any order. The default set of available interfaces
was mainly designed to make DiSL immediately useful to instrumentation
developers using AspectJ and ASM. The method static context provides

64

information available in AOP languages such as AspectJ, which we consider
to be the minimum. In addition, the set includes interfaces that provide
static context information for join points that do not exist in AspectJ, but
that we found to be often used in ASM-based DPA tools. This includes basic
block static context, which is generally needed in profiling and code coverage
analyses with fine-grained resolution, and field access and method invocation
static contexts, which are generally needed for shadowing and tracking base
program values.

The DiSL programmer may also define custom static context interfaces
to perform additional static analysis at instrumentation time or to access
information not directly provided by DiSL, but available in the underlying
ASM-based bytecode representation.

2.2. Adding Stack Trace
Sometimes knowing the name of the profiled method is not enough. We

may also want to know the context in which the method was called. Such
context is provided by the stack trace of the profiled method.

There are several ways to obtain the stack trace information in Java, such
as calling the getStackTrace() method from java.lang.Thread, but frequent
calls to this method may be expensive. Our example therefore obtains the
stack trace using instrumentation. Figure 4 shows two additional snippets
that maintain the call stack information in a shadow call stack. Upon method
entry, the method name is pushed onto the shadow call stack. Upon method
exit, the method name is popped off the shadow call stack.

Each thread maintains a separate shadow call stack, referenced by the
thread-local variable callStack.4 In our example, callStack is initialized for
each thread in the before snippet. The thread-local shadow call stack can
be accessed from all snippets through the callStack variable; for example, it
could be included in the profiler output.

To make sure all snippets observe the shadow call stack in a consistent
state, the two snippets that maintain the shadow call stack have to be in-
serted in a correct order relative to the other snippets. DiSL allows the pro-
grammer to specify the order in which snippets matching the same join point
should be inlined using the order integer parameter in the snippet annotation.

4DiSL offers a particularly efficient implementation of thread-local variables with the
@ThreadLocal annotation.

65

@ThreadLocal
static Stack<String> callStack;

@Before(marker=BodyMarker.class, order=1000)
static void pushOnMethodEntry(MethodStaticContext msc) {

if (callStack == null) { callStack = new Stack<String>(); }
callStack.push(msc.thisMethodFullName());

}

@After(marker=BodyMarker.class, order=1000)
static void popOnMethodExit() {

callStack.pop();
}

Figure 4: Reifying a thread-specific call stack using dedicated snippets

The smaller this number, the closer to the join point the snippet is inlined.
In our profiler, the time measurement snippets and the shadow call stack
snippets match the same join points (method entry, resp. method exit). We
assign a higher order value (1000) to the call stack reification snippets and
keep the lower default order value (100) of the snippets for time measure-
ment.5 Consequently, the callee name is pushed onto the shadow call stack
before the entry time is measured, and the exit time is measured before the
callee name is popped off the stack.

2.3. Profiling Object Instances
Our next extension addresses situations where the dependency of the

method execution time on the identity of the called object instance is of
interest. Figure 5 refines the after snippet of Figure 2 by computing the
identity hash code of the object instance on which the intercepted method
has been called.

The snippet uses the DynamicContext dynamic context interface to get
a reference to the current object instance. Similar to the static context in-
terfaces, the dynamic context interfaces are also exposed to the snippets as
method arguments. Unlike the static context information, which is resolved
at instrumentation time, calls to the dynamic context interface are replaced

5If snippet ordering is used, it is recommended to override the value in all snippets for
improved readability.

66

@After(marker=BodyMarker.class)
static void onMethodExit(MethodStaticContext msc, DynamicContext dc) {

int identityHC = System.identityHashCode(dc.getThis());
...

}

Figure 5: Accessing dynamic context information in a snippet

with code that obtains the required dynamic information at runtime. Be-
sides the object reference used in the example, DiSL provides access to other
dynamic context information including the local variables, the method argu-
ments, and the values on the operand stack.

2.4. Selecting Profiled Methods
Often, it is useful to restrict the instrumentation to certain methods. For

example, we may want to profile only the execution of methods that contain
loops, because such methods are likely to contribute more to the overall
execution time.

DiSL allows programmers to restrict the instrumentation scope using the
guard construct. A guard is a user-defined class whose one method carries
the @GuardMethod annotation. This method determines whether a snippet
matching a particular join point is inlined. Figure 6 shows the signature
of a guard restricting the instrumentation only to methods containing loops.
The body of the methodContainsLoop() guard method, not shown here, would
implement the detection of a loop in a method. A loop detector based on
control flow analysis is included as part of DiSL.

public class MethodsContainingLoop {

@GuardMethod
public static boolean methodContainsLoop() {

... // Loop detection based on control flow analysis
}

}

Figure 6: Skeleton of a guard for selecting only methods containing a loop

The loop guard is associated with a snippet using the guard annotation
parameter, as illustrated in Figure 7. Note that the loop guard is not used

67

in the shadow call stack snippets. We want to maintain complete stack trace
information without omitting the methods that do not contain loops.

@Before(marker=BodyMarker.class, guard=MethodsContainingLoop.class)
static void onMethodEntry() { ... }

@After(marker=BodyMarker.class, guard=MethodsContainingLoop.class)
static void onMethodExit(...) { ... }

Figure 7: Applying time measurement snippets only in methods containing a loop

3. Advanced DiSL Features

The features presented so far cover basic DiSL usage. We continue with ex-
amples illustrating the more advanced features of DiSL. These can be roughly
split into two categories.

The first category includes method argument processing, using other
markers from the DiSL marker library, and creating custom static context
implementations. These features mostly require the developer to be familiar
with DiSL, and some may need a basic knowledge of Java bytecode. The
requirements for using a custom static context depend on the actual usage.
For example, generating custom names for code locations using the informa-
tion already available in other static contexts just requires the developer to
use the existing API, and to adhere to the requirements for static context
implementations.

The second category again includes custom static context, as well as cus-
tom custom markers and bytecode transformers. Compared to the previous
case, here we consider using custom static context for more complex tasks,
such as performing a custom static analysis. Custom markers allow defi-
nition of new join points, and custom transformer are just hooks into the
instrumentation process, where anything is allowed. Using these features
basically means extending DiSL, which will require the developer to have a
solid knowledge of DiSL, ASM, and Java bytecode.

The need for features from the first category will come gradually, as a
result of using DiSL for more sophisticated instrumentations. The features
in the second category are really meant for extending DiSL, and we anticipate
that most DiSL users will never use them. We now review each of the features
in turn, in the order of increasing developer requirements.

68

3.1. Analyzing Method Arguments
DiSL provides two different mechanisms for analyzing method arguments.

The first approach provides the method arguments to the snippet in an ob-
ject array. The entire array is constructed dynamically at runtime, with
arguments of primitive types boxed. Conceptually simple, the approach re-
quires object allocation and always processes all arguments.

The second approach aims at situations where the overhead of using ob-
ject arrays is not acceptable. The approach uses code fragments called argu-
ment processors. Each argument processor analyzes only one type of method
arguments. The code of the argument processor is inlined into the snippet
where it is applied. With argument processors, it is possible to access method
arguments without object allocation.

Technically, the argument processor is an annotated Java class containing
argument processing methods. The first argument of each argument proces-
sor method is of the type being processed, that is, any basic Java type (int,
byte, double . . .), String, or an object reference. As additional arguments, the
methods can receive dynamic or static contexts, including argument context,
which is a special kind of static context available only within the argument
processor. The ArgumentContext interface exposes information about the cur-
rently processed argument and can be used to limit argument processing only
to arguments at a particular position or with a particular type. The argument
processor methods can also use thread-local or synthetic local variables.

An example of an argument processor that processes int arguments is
given in Figure 8.

@ArgumentProcessor
public class IntArgumentPrinter {

public static void printIntegerArgument (
int val, ArgumentContext ac, MethodStaticContext msc) {

System.out.printf(
"Int argument value in method %s at position %d of %d is %d\n",
msc.thisMethodFullName(), ac.getPosition(), ac.getTotalCount(), val

);
}

}

Figure 8: A simple argument processor for printing the values of integer arguments

69

The argument processor is used by applying it in an argument processor
context within a snippet. The argument processor context can apply an
argument processor in two modes. All snippets can apply the processor
on the arguments of the current method. Snippets inserted just before a
method invocation can also apply the processor on the invocation arguments.
Figure 9 shows a snippet that uses the IntArgumentPrinter argument processor
from Figure 8 to print out the values of the integer arguments of the currently
executed method.

@Before(marker = BodyMarker.class)
public static void onMethodEntry(ArgumentProcessorContext apc) {

apc.apply(IntArgumentPrinter.class, ArgumentProcessorMode.METHOD_ARGS);
}

Figure 9: Using an argument processor within a snippet

3.2. Join Point Marker Library
In all the examples presented earlier, profiles were collected with method

granularity. Such profiles may be insufficient when profiling long methods
with loops and nested invocations. In these cases, a more fine grained mea-
surement can help identify the problematic parts of the long methods.

In the profiler example, a more fine grained measurement can be achieved
using a different marker with the profiling snippets. DiSL provides a library
of markers (e.g., BasicBlockMarker, BytecodeMarker) for intercepting many
common bytecode patterns; Figure 10 illustrates the use of BasicBlockMarker
for basic block profiling.

As presented, the change only impacts the choice of the marker class.
Although the resulting instrumentation is valid, the resulting profile is of
limited use because it lacks the identification of the basic blocks being profiled.
We add this identification next.

3.3. Custom Static Context
There are multiple options for identifying a basic block in the profiler ex-

ample. We can use the ordinal number of the basic block as made available
by the BasicBlockStaticContext; however, such identification is only useful
if the information about the correspondence between the basic block num-
bers and the profiled code is available when interpreting the results. The

70

@Before(marker=BasicBlockMarker.class)
static void onBasicBlockEntry() { ... }

@After(marker=BasicBlockMarker.class)
static void onBasicBlockExit(...) { ... }

Figure 10: Writing snippets to profile entry and exit from basic blocks

source code line number is a valuable alternative when working at the source
code level, however, the identification is not necessarily unique and the need
for additional information when interpreting the results also persists. To
provide an example of custom static context, we illustrate a third option,
namely identifying the basic block by the ordinal number of its first instruc-
tion and its length, counted in the number of instructions (numbers are valid
for uninstrumented code). Implementing the other two approaches in DiSL
is of similar complexity.

The identification of a basic block is conceptually a part of the static
context of each snippet, and it would ideally be available through one of
the existing static context interfaces. In this particular case, DiSL actually
provides such an interface. However, this may not be true in general. While
we aim to equip DiSL with a rich library of static context interfaces offering
all the information that may be required by an analysis tool, we can only
guess at what information will other analyses—especially new ones—require.

In the two years of development and evaluation, we found the set of static
context interfaces provided by DiSL to be sufficient for almost all DPA tools
we recasted or developed. A notable exception was an analysis that required
static context information for loops, which required performing dominator
analysis on basic blocks at weave time. Other than that, most analyses used
tiny custom static context implementations that were difficult to generalize—
either to obtain information related to a particular type of bytecode instruc-
tions (which is easily available from the underlying ASM-based code repre-
sentation), or to precompute trace messages with static information at weave
time (to avoid string concatenation at runtime).

Consequently, DiSL contains mostly static context implementations pro-
viding information that was generally useful in the tools that we have recasted
so far, including a few that were used rarely, but had non-trivial implementa-
tion, such as the loop static context. Since we cannot anticipate what static
information will be required by all analyses, we allow DiSL users to define

71

a custom static context. However, based on our experience, we expect most
users to use a custom static context mainly for generating names at weave
time, which allows embedding these values in the snippet code as constants.

Figure 11 illustrates a custom static context that serves as the basic block
ID calculator. A custom static context is a standard Java class that extends
the AbstractStaticContext class or implements the StaticContext interface di-
rectly. The methods of the custom static context class have no arguments
and return a basic type or String. The BasicBlockID class from Figure 11
contains one such method, getID(), which computes the ID of a basic block.

The computation queries the first and the last instruction of the region
identified by the basic block marker. After that, it iterates over the code of
the entire method, first incrementing the block index until the basic block
start is reached, then incrementing the block length until the basic block end
is found. The method returns the ID as String whose first part is the index
and second part the length.

Custom static context methods can access the current static context in-
formation through a protected field called staticContextData. The available
information describes the marked region, snippet, method, and class where
the custom static context is used. The region description includes one start-
ing instruction and one or more ending instructions depending on the marker.
The snippet structure holds all the information connected to the snippet
where the static context is used. The method and class data are represented
by ASM objects MethodNode and ClassNode.

3.4. Custom Bytecode Marker
It is not always possible to profile a method by instrumenting its body.

For example, the method can be implemented in native code or can execute
remotely. To profile such methods, the instrumentation has to be placed
around the method invocation.

In DiSL, method invocation can be easily captured by the BytecodeMarker
with adequate parameters. To illustrate the extensibility of DiSL, we instead
implement a new custom marker that captures method invocations, displayed
in Figure 12.

The role of a marker is to select the bytecode regions for instrumenta-
tion. A custom bytecode marker in DiSL must implement the Marker in-
terface. Typically, the marker would not implement this interface directly,
but instead inherit from the AbstractDWRMarker abstract class, which also
takes care of correctly placing the weaving points. In our example, the

72

public class BasicBlockID extends AbstractStaticContext {
public String getID() {

// validate that the basic block has only one end
...

// get starting and ending instruction from marker
AbstractInsnNode startInsn = staticContextData.getRegionStart();
AbstractInsnNode endInsn = staticContextData.getRegionEnds().get(0);

// traverse entire method code and calculate instruction index
int bbStart = -1;
int bbLength = 0;
boolean startFound = false;
boolean endFound = false;
InsnList code = staticContextData.getMethodNode().instructions;
for(AbstractInsnNode insn = code.getFirst();

insn != null; insn = insn.getNext()) {

// increase block start index until start instruction found
if(!startFound) {

if(insn.getOpcode() != -1) ++bbStart;
startFound = (insn == startInsn);

}

if(startFound) {
// count instructions and exit when end instruction found
if(insn.getOpcode() != -1) ++bbLength;
if(insn == endInsn) {

endFound = true;
break;

}
}

}

// validate that both start and end were found
...

// construct and return the basic block ID
return bbStart + "(" + bbLength + ")";

}
}

Figure 11: Custom static context computing a basic block ID

73

public class MethodInvocationMarker extends AbstractDWRMarker {
public List<MarkedRegion> markWithDefaultWeavingReg(MethodNode method) {

List<MarkedRegion> regions = new LinkedList<MarkedRegion>();

// traverse all instructions
InsnList instructions = method.instructions;
for (AbstractInsnNode instruction : instructions.toArray()) {

// check for method invocation instructions
if (instruction instanceof MethodInsnNode) {

// add region containing one instruction (method invocation)
regions.add(new MarkedRegion(instruction, instruction));

}
}

return regions;
}

}

Figure 12: Custom marker implementing a method invocation join point

MethodInvocationMarker class traverses all instructions using ASM and cre-
ates a single-instruction region for each method invocation encountered; the
abstract marker class is used to compute all the weaving information auto-
matically.

Note that the example marker captures all method invocations. To reduce
the instrumentation scope, the developer should use either a guard or a
runtime check.

3.5. Custom Bytecode Transformer
DiSL is designed for writing tools that observe the application without

modifying its behavior. It will refuse to insert snippets that would change the
application control flow, modify fields, or insert methods or fields to classes.
The only exception is the modification of the java.lang.Thread class performed
by DiSL to provide very efficient implementation of thread-local variables.6

6DiSL adds a field to the java.lang.Thread class for every thread-local variable, which
significantly outperforms an approach based on the java.lang.ThreadLocal class. Here, the

74

� �

�����
���	

�������
���

��������
����	�

	��������

�	
����	
��
������������

�����������
������������	�����

������	�
�������

���������������� 	����������	����������

�	
����	
�
��	
���

����
�	
����	
�
��	
���������

������������	�����

���

�����������	��
�������

Figure 13: Architecture of DiSL.

However, in special cases, a tool implementation may require application
modifications beyond what DiSL allows. This may result if a tool needs to
perform structural modifications to the application code, or when the method-
level scope provided by DiSL is too narrow. In these cases, DiSL can invoke
a custom transformer to modify the class just before it is instrumented.

Custom transformers have to implement the ch.usi.dag.disl.Transformer
interface to receive raw class data from DiSL, and to return the modified
data back to DiSL. The class data is passed around as an array of bytes,
and apart from the Transformer interface, DiSL neither provides any API
for class transformation, nor mandates the use of any particular bytecode
manipulation framework. The developer is free to modify the class data in
any way, typically with the help of a bytecode manipulation framework (e.g.,
ASM), that is able to parse class from an array of bytes and return the result
in the same form.

4. DiSL Architecture and Instrumentation Process

To minimize perturbation in the observed program, DiSL performs byte-
code instrumentation within a separate Java Virtual Machine (JVM) process,

performance benefits far outweigh the chance of breaking application behavior, because
the modifications are limited to a single system class.

75

������� �����	
	������

���������	

������

	����

�������

������

	����

�	���

���	����

�����	
	�����

����������

������

�������

�������

�������

���

�	�
����	
�
��	

���������

���

���
���

� � �!�

�"�

�#�

$��	�����

����	����

���������������

	������

$��	������%�����

�&�

Figure 14: Overview of the DiSL instrumentation process.

that is, the instrumentation process. In this way, class loading and initializa-
tion triggered by the instrumentation framework do not happen within the
observed process.

As illustrated in Figure 13, a native JVMTI agent7 captures all class load-
ing events (starting with java.lang.Object) in the observed JVM and sends
every class as a byte array to the DiSL instrumentation framework through
a socket. Here, DiSL uses ASM for instrumentation and relies on polymor-
phic bytecode instrumentation [25] to ensure complete bytecode coverage. All
classes are instrumented only once, whenever they are loaded by the JVM.
While dynamic instrumentation and reinstrumentation at runtime is a work
in progress, it is currently not supported by DiSL.

Figure 14 gives an overview of the DiSL instrumentation process. Dur-
ing initialization, DiSL parses all instrumentation classes (step 1). Then it
creates an internal representation for snippets and initializes the used mark-
ers, guards, static contexts, and argument processors. When DiSL receives
a class from the JVMTI agent (step 2), the instrumentation process starts

7http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html

76

with the snippet selection. The selection is done in three phases, starting
with scope matching (step 3). Then, bytecode regions are marked using the
markers associated with the snippets selected in the previous phase. Finally,
marked bytecode regions are evaluated by guards and only snippets with at
least one valid marked region are selected (step 4).

At this point, all snippets that will be used for instrumentation are known.
Static contexts are used to compute the static information required by snip-
pets (step 5). As described in Section 3, custom static contexts allow pro-
grammers to declare expressions to be evaluated at instrumentation time.
However, if such expressions do not require custom context information, they
can simply be embedded in the snippet code. In fact, DiSL can be config-
ured to perform partial evaluation of inlined snippets [23]. This optimization
can simplify certain snippet constructs, for example it can make conditional
branching on static information in the snippet as efficient as using a guard.

Argument processors are evaluated for snippets, and argument processor
methods that match method arguments are selected (step 6). All the col-
lected information is finally used for instrumentation (step 7). Argument
processors are applied, and calls to static contexts are replaced with the com-
puted static information. The framework also generates the bytecodes to
access dynamic context information. To prevent the instrumentation code
from throwing exceptions that could modify the control flow in the observed
program, DiSL automatically inserts code intercepting all exceptions origi-
nating from the snippets, reporting an error if an exception is thrown (and
not handled) by the instrumentation. Finally, the instrumented class is re-
turned to the observed JVM (step 8) where it is linked. For a more detailed
description of the process, we refer the interested reader to [22].

5. Case Studies

To demonstrate the benefits of DiSL when developing instrumentation for
DPA tools, we present several case studies involving existing DPA tools. The
instrumentation parts of those tools were originally implemented either using
AspectJ, or the ASM bytecode manipulation library. For evaluation purposes,
we reimplemented the instrumentation part of each tool using DiSL and com-
pared both the conciseness and the performance of the DiSL-based instru-
mentation with the original implementation. We first give a short overview
of the recasted tools, and then proceed with the evaluation.

77

5.1. Tool Descriptions
JP2 [27] is a calling-context profiler for languages targeting the JVM.

JP2 uses ASM-based instrumentation to collect various static (i.e., method
names, number and sizes of basic blocks) and dynamic metrics (i.e., method
invocations, basic block executions, and number of executed bytecodes). For
each method, the metrics are associated with a corresponding node in a
calling-context tree (CCT) [28], grouped by the position of the method call-
site in the caller. The collected information can be then used for both inter-
and intra-procedural analysis of the application.

JCarder8 is a tool for finding potential deadlocks in multi-threaded Java
applications. JCarder uses ASM-based instrumentation to construct a de-
pendency graph for threads and locks at runtime, and if the graph contains
a cycle, JCarder reports a potential deadlock.

Senseo [8] is a tool for profiling and code comprehension. For each
method invocation, Senseo collects calling-context specific information, which
a plugin9 then makes available to the user via enriched code views in the
Eclipse IDE. Senseo uses AspectJ-based instrumentation to count method
invocations, object allocations, and to collect statistics on method arguments
and return types.

RacerAJ [20] is a tool for finding potential data races in multi-threaded
Java applications. RacerAJ uses AOP-based instrumentation to monitor all
field accesses and lock acquisitions/releases, and reports a potential data race
when a field is accessed from multiple threads without holding a lock that
synchronizes the accesses.

Besides recasting existing tools for evaluation purposes, we successfully
used DiSL to develop new field immutability and field sharing analyses, which
have been used to compare Java and Scala workloads [29]. These analyses
are now part of a comprehensive toolchain for workload characterization for
Java and other languages targeting the JVM [30].

5.2. Evaluating Instrumentation Conciseness
In our experience with developing DPA tools with AspectJ and ASM, we

consistently found instrumentations developed using the AOP pointcut/ad-
vice model very clear and concise—provided that an instrumentation could

8http://www.jcarder.org/
9http://scg.unibe.ch/research/senseo

78

JP2 JCarder Senseo RacerAJ
DiSL ASM DiSL ASM DiSL AspectJ DiSL AspectJ

Physical LOC 96 477 89 650 74 44 136 33
Logical LOC 64 375 64 399 44 19 78 24

Table 1: The amount of code (in source lines of code) comprising the instrumentation
parts of the analysis tools, written using DiSL, ASM, and AspectJ.

be expressed using the available join points. On the other hand, using ASM
allowed us to perform basically any kind of instrumentation with significantly
better performance, at the cost of very low-level and verbose instrumentation
code, which was rather fragile and thus difficult to maintain. With DiSL, we
strive for the simplicity and conciseness of the AOP-based instrumentations,
without sacrificing expressiveness and performance provided by ASM.

To evaluate how DiSL compares to AspectJ and ASM in terms of instru-
mentation conciseness, we consider the amount of code—measured in source
lines of code (SLOC)—that needs to be written in AspectJ, ASM, and DiSL
to implement an equivalent instrumentation for the evaluated tools. While
there is no proof that “less code” automatically translates to “better code”,
we believe that in this particular context, an implementation that is signif-
icantly shorter (i.e., more concise) due to use of better fitting abstractions
can be considered easier to write, understand, and maintain. This view is
also supported by the results of a controlled user study [31], where DiSL was
shown to reduce instrumentation development time and improve instrumen-
tation correctness compared to ASM.

Table 1 summarizes the SLOC counts10 of both the DiSL-based and the
original implementations of instrumentation for each tool. The number of
physical SLOC illustrates the overall size of the implementation, while the
number of logical SLOC captures the amount of code essential for the imple-
mentation. In our comparison, we use the logical SLOC count as an indicator
of conciseness for implementations of equivalent instrumentations.

We observe that for the evaluated DPA tools, the DiSL-based implemen-
tations of their instrumentation parts require less code than their ASM-based
equivalents. This is because because bytecode manipulation, even when using

10Calculated using Unified CodeCount by CSSE USC, rel. 2011.10,
http://sunset.usc.edu/research/CODECOUNT.

79

Benchmark Description

avrora Simulates a number of programs run on a grid of AVR microcontrollers.
batik Produces a number of Scalable Vector Graphics (SVG) images based on

the unit tests in Apache Batik.
eclipse Executes some of the (non-gui) JDT performance tests for the Eclipse

IDE.
fop Takes an XSL-FO file, parses it, formats it, and generates a PDF file.
h2 Executes a JDBCbench-like in-memory benchmark, executing a number

of transactions against a model of a banking application.
jython Inteprets a the pybench Python benchmark.
luindex Uses lucene to index a set of documents comprising the works of Shake-

speare and the King James Bible.
lusearch Uses lucene to do a keyword search over a corpus of data comprising the

works of Shakespeare and the King James Bible.
pmd Analyzes a set of Java classes for a range of source code problems.
sunflow Renders a set of images using ray tracing.
xalan Transforms XML documents into HTML.

tomcat Runs a set of queries against a Tomcat server retrieving and verifying
the resulting web pages.

tradebeans Runs the daytrader benchmark via Java Beans to a GERONIMO back-
end with an in-memory h2 as the underlying database.

tradesoap Runs the daytrader benchmark via SOAP to a GERONIMO back-end
with an in-memory h2 as the underlying database.

Table 2: Overview of benchmarks from the DaCapo suite. Benchmarks at the bottom
were excluded from evaluation due to hard-coded timeouts and well-known problems.

ASM, results in very verbose code. On the other hand, the DiSL-based instru-
mentations require more code than their AOP-based equivalents. This can
be partially attributed to DiSL being an embedded language hosted in Java,
whereas AOP has the advantage of a separate language. Moreover, DiSL in-
strumentations also include code that is evaluated at instrumentation time,
which increases the source code size, but provides significant performance
benefits at runtime [22]. However, in the context of instrumentations for
DPA, DiSL is more flexible and expressive than AOP without impairing the
performance of the resulting tools, as shown in the following section.

5.3. Evaluating Instrumentation Performance
To evaluate the instrumentation performance, we compare the execution

time of the original and the recasted tools on benchmarks from the Da-
Capo [32] suite (release 9.12). Table 2 provides an overview of the DaCapo

80

JP2 JCarder Senseo RacerAJ
ASM DiSL ASM DiSL AspectJ DiSL AspectJ DiSL

avrora 9.73 10 1.31 1.83 4.48 2.68 110.29 32.58
batik 4.77 5.5 1.05 1.05 2.18 1.43 31.23 6.64
eclipse 3.08 3.46 1.01 1.53 8.28 5.97 11.94 14.82
fop 6.17 7.94 1.1 1.32 9.9 4.54 49.06 12.56
h2 12.21 13.8 2.11 3.79 10.64 4.14 157.7 79.07
jython 26.28 30.36 7.92 4.54 2.19 1.52 236.8 104.4
luindex 2.63 2.88 1.25 1.26 9.34 3.06 60.31 16.25
lusearch 24.18 31.82 7.78 8.09 7.88 3.7 147.71 49.06
pmd 4.8 7.4 1.07 1.07 3.52 2.09 53.8 24
sunflow 10.53 9.85 1.05 1.03 39.28 12.52 398.18 211.22
xalan 27.94 26.22 26.08 28.19 29.25 5.05 68.89 29.33

geomean 8.83 10.09 2.24 2.47 7.69 3.5 81.01 32.26

Table 3: Overhead factors for original and recasted tools when run on the benchmarks
from the DaCapo suite.

benchmarks, as presented on the DaCapo suite web site.11 Of the fourteen
benchmarks present in the suite, we excluded the tradeswap, tradebeans, and
tomcat due to well known issues12 unrelated to DiSL. All experiments were
run on a multicore platform13 with all non-essential system services disabled.

We report results for steady-state performance in Table 3. For each bench-
mark, we report a steady-state overhead factor, determined from a single run
with 10 iterations of each benchmark, with the first 5 iterations excluded to
minimize the influence of startup transients and interpreted code. The num-
ber of iterations to exclude was determined by visual inspection of the data
from the benchmarks. As a summary metric, we also report the geometric
mean of overhead factors from all benchmarks.

The results in Table 3 indicate that the recasted tools are typically roughly
as fast as their ASM-based counterparts (JP2, JCarder), but never much

11http://www.dacapobench.org/benchmarks.html
12See bug ID 2955469 (hardcoded timeout in tradesoap and tradebeans) and

bug ID 2934521 (StackOverflowError in tomcat) in the DaCapo bug tracker at
http://sourceforge.net/tracker/?group_id=172498&atid=861957.

13Four quad-core Intel Xeon CPUs E7340, 2.4 GHz, 16 GB RAM, Ubuntu
GNU/Linux 11.04 64-bit with kernel 2.6.38, Oracle Java HotSpot 64-bit Server
VM 1.6.0_29.

81

slower. Significant performance improvements can be observed in the case of
AOP-based tools (Senseo, RacerAJ), which can be attributed mainly to the
fact that DiSL allows to use static information at instrumentation time to
precisely control where to insert snippet code, hence avoiding costly checks
and static information computation (often comprising string concatenations)
at runtime. Additional performance gains can be attributed to the ability of
DiSL snippets to efficiently access the constant pool and the JVM operand
stack, which is particularly relevant in comparisons with AOP-based tools.

6. Related Work

In previous work, we presented @J [21], a Java annotation-based AOP
language for simplifying dynamic analysis. Compared to DiSL, @J does not
provide an open join point model and efficient access to dynamic context
information. DiSL guards can be emulated by means of staged advice, where
weave-time evaluation of advice yields runtime residues that are woven. How-
ever, this requires the use of synthetic local variables and a more complex
composition of snippets.

In [33] we discussed some early ideas on a high-level declarative domain-
specific aspect language (DSAL) for dynamic analysis. DiSL provides all
necessary language constructs to express the dynamic analyses that can be
specified in the DSAL. That is, in the future, DiSL can serve as an interme-
diate language to which the higher-level DSAL programs are compiled.

High-level dynamic analysis frameworks such as RoadRunner [34] or
Chord14 ease composition of a set of dynamic analyses. However, such ap-
proaches do not support an open join point model and the set of context
information that can be accessed at intercepted code regions is not extensi-
ble.

In [35], a meta-aspect protocol (MAP) is proposed to separate the host
language from analysis-specific aspect languages. MAP supports an open join
point model and advanced deployment methods (i.e., global, per object, and
per block). While MAP allows fast prototyping of custom analysis languages,
it does not focus on high efficiency of the developed analysis tools.

Josh [36] is an AspectJ-like language that allows developers to define
domain-specific extensions to the pointcut language. Similar to guards, Josh

14http://pag.gatech.edu/chord/

82

provides static pointcut designators that can access reflective static informa-
tion at weave-time. However, the join point model of Josh does not include
arbitrary bytecodes and basic blocks that are readily available in DiSL.

The approach described in [37] enables customized pointcuts that are
partially evaluated at weave-time, using a declarative language to define the
bytecode regions to be marked. Because only a subset of bytecodes is con-
verted to the declarative language, it is not possible to define basic block
pointcuts as in DiSL.

Prevailing AspectJ weavers lack support for embedding custom static
analysis in the weaving process. In [38] compile-time statically executable
advice is proposed, which is similar to static context in DiSL. SCoPE [39] is an
AspectJ extension that allows analysis-based conditional pointcuts. However,
advice code together with the evaluated conditional is always inserted, relying
on the just-in-time compiler to remove dead code. DiSL’s guards, together
with static context, allow weave-time conditional evaluation and prevent the
insertion of dead code.

The AspectBench Compiler (abc) [40] eases the implementation of As-
pectJ extensions. As intermediate representation, abc uses Jimple to mark
bytecode regions. Jimple has no information on where blocks, statements and
control structures start and end, thus requiring extensions to support new
pointcuts for dynamic analysis. In contrast, DiSL provides an extensible
library of markers without requiring extensions of the intermediate represen-
tation.

Javassist [17] is a load-time bytecode manipulation library that al-
lows load-time structural reflection and definition of new classes at run-
time. The API provides two different levels of abstraction: source-level and
bytecode-level. In particular, the source-level abstraction does not require
any knowledge of the Java bytecode structure and allows insertion of code
fragments given as source text.

Shrike [16] is a bytecode instrumentation library that is part of the T.J.
Watson Libraries for Analysis (WALA) [41] and provides interesting features
to increase efficiency. For example, parsing is limited to the parts of the class
to be modified, bytecode instructions are represented by immutable objects,
and many constant instructions can be represented with a single object shared
between methods. Moreover, Shrike has a patch-based API that atomically
applies all modifications to a given method body and automatically splits up
methods larger than the limit imposed by the Java class file format. Dila [42]

83

is another library of WALA that relies on Shrike for load-time bytecode
modifications.

Compared to DiSL, Javassist and Shrike do not follow a pointcut/ad-
vice model and do not provide built-in support for basic-block analysis and
synthetic local variables.

7. Conclusion

This paper is the first complete presentation of DiSL, a domain-specific
language and framework designed specifically for instrumentation-based dy-
namic program analysis. DiSL occupies a unique position among the existing
instrumentation frameworks:

• DiSL instrumentations are concise—rather than relying on low-level
bytecode manipulation constructs, DiSL adopts a high-level point-
cut/advice model inspired by AOP, which leads to compact and read-
able code.

• DiSL instrumentations are flexible—the DiSL framework provides an
open join-point model that allows instrumenting any bytecode sequence,
coupled with techniques that extend the instrumentation coverage to
any method with bytecode representation.

• DiSL instrumentations are efficient—static context information is pre-
computed and embedded in the inserted code as constants; dynamic
context information can be accessed efficiently through special meth-
ods.

DiSL is built on top of ASM [13], the well-known bytecode manipulation
library, and is itself an open-source project.15

Various isolated aspects of the DiSL framework were presented in pre-
vious work [22, 23, 24]. This paper extends our previous presentation of
DiSL—we provide an overview of the DiSL architecture, introduce the DiSL
programming model and illustrate the basic concepts with a running example.
For advanced developers, we demonstrate the use of two extension points of
the DiSL framework—custom static contexts and custom bytecode markers.

15The project is hosted by the OW2 consortium at http://disl.ow2.org

84

These extension points allow the developers to introduce new types of static
information that can be used within snippets and guards, and to extend the
set of join points recognized by DiSL. Finally, we present several case studies
that demonstrate successful deployment of DiSL-based DPA tools.

We believe that the unique combination of the high-level programming
model with the flexibility and detailed control of low-level bytecode instru-
mentation makes DiSL a valuable tool that can reduce the effort needed
for developing new dynamic analysis tools and similar software applications
running in the JVM. Since the implementation of DiSL is specific to JVM,
it is mostly the programming language and software engineering communi-
ties targeting the JVM—both in academia and in industry—who can benefit
most from DiSL. However, none of the concepts employed in DiSL are JVM
specific, which makes it possible, given resources, to implement a similar tool
for other managed platforms, such as the Common Language Runtime.

Acknowledgments

The research presented in this paper has been supported by the Swiss
National Science Foundation (project CRSII2_136225), by the European
Commission (Seventh Framework Programme projects 287746 and 257414),
by the Czech Science Foundation (project GACR P202/10/J042), and by
the Sino-Swiss Science and Technology Cooperation (SSSTC) Institutional
Partnership (project IP04–092010).

References

[1] M. Jovic, A. Adamoli, M. Hauswirth, Catch me if you can: performance
bug detection in the wild, in: Proceedings of the 2011 ACM international
conference on Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA’11), ACM, 2011, pp. 155–170.

[2] W. Binder, J. Hulaas, P. Moret, A. Villazón, Platform-independent
profiling in a virtual execution environment, Software: Practice and
Experience 39 (2009) 47–79.

[3] M. Eaddy, A. Aho, W. Hu, P. McDonald, J. Burger, Debugging aspect-
enabled programs, in: Proceedings of the 6th international conference
on Software Composition (SC’07), Springer, 2007, pp. 200–215.

85

[4] S. Artzi, S. Kim, M. D. Ernst, ReCrash: Making software failures
reproducible by preserving object states, in: Proceedings of the 22th
European Conference on Object-Oriented Programming (ECOOP’08),
volume 5142 of Lecture Notes in Computer Science, Springer, 2008, pp.
542–565.

[5] G. Xu, A. Rountev, Precise memory leak detection for Java software
using container profiling, in: Proceedings of the 30th International Con-
ference on Software engineering (ICSE’08), ACM, 2008, pp. 151–160.

[6] F. Chen, T. F. Serbanuta, G. Rosu, jPredictor: A predictive runtime
analysis tool for Java, in: Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE’08), ACM, 2008, pp. 221–230.

[7] NetBeans, The NetBeans Profiler Project, Web pages at
http://profiler.netbeans.org/, 2012.

[8] D. Röthlisberger, M. Härry, W. Binder, P. Moret, D. Ansaloni, A. Vil-
lazon, O. Nierstrasz, Exploiting dynamic information in IDEs improves
speed and correctness of software maintenance tasks, IEEE Transactions
on Software Engineering 38 (2012) 579–591.

[9] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-based perfor-
mance prediction in software development: a survey, IEEE Transactions
on Software Engineering 30 (2004) 295–310.

[10] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger,
M. Wimmer, G. Kappel, A Survey on Aspect-Oriented Modeling Ap-
proaches, Technical Report, Vienna University of Technology, Johannes
Kepler University Linz, 2007.

[11] R. France, I. Ray, G. Georg, S. Ghosh, Aspect-oriented approach to early
design modelling, IEE Proceedings – Software 151 (2004) 173–185.

[12] D. Simmonds, A. Solberg, R. Reddy, R. France, S. Ghosh, An aspect
oriented model driven framework, in: Enterprise Computing Conference
(EDOC), pp. 119–130.

[13] OW2 Consortium, ASM – A Java bytecode engineering library, Web
pages at http://asm.ow2.org/, 2012.

86

[14] T. A. J. Project, The byte code engineering library (bcel), Web pages
at http://jakarta.apache.org/bcel/, 2012.

[15] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, V. Sun-
daresan, Optimizing Java bytecode using the Soot framework: Is it
feasible?, in: Proceedings of the 9th international conference on Com-
piler Construction (CC’00), volume 1781 of Lecture Notes in Computer
Science, Springer, 2000, pp. 18–34.

[16] IBM, Shrike Bytecode Instrumentation Library, Web pages at
http://wala.sourceforge.net/wiki/index.php/Shrike_technical_overview,
2012.

[17] S. Chiba, Load-time structural reflection in Java, in: Proceedings
of the 14th European Conference on Object-Oriented Programming
(ECOOP’2000), volume 1850 of Lecture Notes in Computer Science,
Springer, 2000, pp. 313–336.

[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, J. Irwin, Aspect-oriented programming, in: Proceed-
ings of the 11th European Conference on Object-Oriented Program-
ming (ECOOP’97), volume 1241 of Lecture Notes in Computer Science,
Springer, 1997, pp. 220–242.

[19] D. J. Pearce, M. Webster, R. Berry, P. H. J. Kelly, Profiling with
AspectJ, Software: Practice and Experience 37 (2007) 747–777.

[20] E. Bodden, K. Havelund, Aspect-oriented Race Detection in Java, IEEE
Transactions on Software Engineering 36 (2010) 509–527.

[21] W. Binder, A. Villazón, D. Ansaloni, P. Moret, @J - Towards rapid
development of dynamic analysis tools for the Java Virtual Machine, in:
Proceedings of the 3th Workshop on Virtual Machines and Intermediate
Languages (VMIL’09), ACM, 2009, pp. 1–9.

[22] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, Z. Qi, DiSL:
a domain-specific language for bytecode instrumentation, in: Proceed-
ings of the 11th international conference on Aspect-oriented Software
Development (AOSD’12), ACM, 2012, pp. 239–250.

87

[23] Y. Zheng, D. Ansaloni, L. Marek, A. Sewe, W. Binder, A. Villazón,
P. Tuma, Z. Qi, M. Mezini, Turbo DiSL: Partial evaluation for high-level
bytecode instrumentation, in: Objects, Models, Components, Patterns,
volume 7304 of Lecture Notes in Computer Science, pp. 353–368.

[24] L. Marek, Y. Zheng, D. Ansaloni, A. Sarimbekov, W. Binder, P. Tůma,
Z. Qi, Java bytecode instrumentation made easy: The DiSL framework
for dynamic program analysis, in: Proceedings of the 10th Asian Sym-
posium on Programming Languages and Systems (APLAS’12), volume
7705 of Lecture Notes in Computer Science, Springer, 2012, pp. 256–263.

[25] P. Moret, W. Binder, É. Tanter, Polymorphic bytecode instrumentation,
in: Proceedings of the 10th international conference on Aspect-Oriented
Software Development (AOSD’11), ACM, 2011, pp. 129–140.

[26] W. Binder, D. Ansaloni, A. Villazón, P. Moret, Flexible and efficient
profiling with aspect-oriented programming, Concurrency and Compu-
tation: Practice and Experience 23 (2011) 1749–1773.

[27] A. Sarimbekov, A. Sewe, W. Binder, P. Moret, M. Mezini, JP2: Call-site
aware calling context profiling for the Java Virtual Machine, Science of
Computer Programming 79 (2014) 146–157.

[28] G. Ammons, T. Ball, J. R. Larus, Exploiting hardware performance
counters with flow and context sensitive profiling, in: Proceedings of
the ACM SIGPLAN 1997 conference on Programming Language Design
and Implementation (PLDI’97), ACM, 1997, pp. 85–96.

[29] A. Sewe, M. Mezini, A. Sarimbekov, D. Ansaloni, W. Binder, N. Ricci,
S. Z. Guyer, new Scala() instanceof Java: A comparison of the memory
behaviour of Java and Scala programs, in: Proceedings of the Interna-
tional Symposium on Memory Management (ISMM’12), ACM, 2012, pp.
97–108.

[30] A. Sarimbekov, A. Sewe, S. Kell, Y. Zheng, W. Binder, L. Bulej, D. Ansa-
loni, A comprehensive toolchain for workload characterization across
JVM languages, in: Proceedings of the 11th ACM SIGPLAN-SIGSOFT
workshop on Program Analysis for Software Tools and Engineering
(PASTE’13), ACM, 2013, pp. 9–16.

88

[31] A. Sarimbekov, Y. Zheng, D. Ansaloni, L. Bulej, L. Marek, W. Binder,
P. Tůma, Z. Qi, Productive development of dynamic program analysis
tools with DiSL, in: Proceedings of the 22nd Australasian Software
Engineering Conference (ASWEC’13), IEEE, 2013, pp. 11–19.

[32] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, B. Wiedermann, The DaCapo
benchmarks: Java benchmarking development and analysis, in: Proceed-
ings of the 21st ACM intenational conference on Object-Oriented Pro-
graming, Systems, Languages, and Applications (OOPSLA’06), ACM,
2006, pp. 169–190.

[33] W. Binder, P. Moret, D. Ansaloni, A. Sarimbekov, A. Yokokawa, E. Tan-
ter, Towards a domain-specific aspect language for dynamic program
analysis: position paper, in: Proceedings of the 6th workshop on
Domain-specific Aspect Languages (DSAL’11), ACM, 2011, pp. 9–11.

[34] C. Flanagan, S. N. Freund, The RoadRunner dynamic analysis frame-
work for concurrent programs, in: Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools
and Engineering (PASTE’10), ACM, 2010, pp. 1–8.

[35] M. Achenbach, K. Ostermann, A meta-aspect protocol for developing
dynamic analyses, in: Proceedings of the 1st international conference
on Runtime Verification (RV’10), volume 6418 of Lecture Notes in Com-
puter Science, Springer, 2010, pp. 153–167.

[36] S. Chiba, K. Nakagawa, Josh: An open AspectJ-like language, in: Pro-
ceedings of the 3rd international conference on Aspect-Oriented Software
Development (AOSD’04), ACM, 2004, pp. 102–111.

[37] K. Klose, K. Ostermann, M. Leuschel, Partial evaluation of pointcuts,
in: Practical Aspects of Declarative Languages, volume 4354 of Lecture
Notes in Computer Science, Springer-Verlag, 2007, pp. 320–334.

[38] K. Lieberherr, D. H. Lorenz, P. Wu, A case for statically executable ad-
vice: Checking the law of Demeter with AspectJ, in: Proceedings of the

89

2nd international conference on Aspect-Oriented Software Development
(AOSD’03), ACM, 2003, pp. 40–49.

[39] T. Aotani, H. Masuhara, SCoPE: an AspectJ compiler for supporting
user-defined analysis-based pointcuts, in: Proceedings of the 6th interna-
tional conference on Aspect-oriented Software Development (AOSD’07),
ACM, 2007, pp. 161–172.

[40] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble, abc:
An extensible AspectJ compiler, in: Proceedings of the 4th interna-
tional conference on Aspect-Oriented Software Development (AOSD’05),
ACM, 2005, pp. 87–98.

[41] IBM, Watson Libraries for Analysis (WALA), Web pages at
http://wala.sourceforge.net/wiki/index.php/Main_Page, 2012.

[42] IBM, Dynamic Load-time Instrumentation Li-
brary for Java (Dila), Web pages at
http://wala.sourceforge.net/wiki/index.php/GettingStarted:wala.dila,
2012.

90

Appendix A. Running DiSL

This appendix provides a step-by-step guide to download, compile, and
run the DiSL framework. The current release of DiSL is tested with Java
6 and Java 7 on Linux, for which we provide scripts to compile and run
the framework. Compatibility with other platforms will be added in future
releases. To build DiSL and the examples, Java 6 or Java 7 JDK must be
installed on the system, including rudimentary tools such as ant, gcc, make,
and python.

The source code of DiSL can be downloaded from the DiSL home page16,
hosted by the OW2 Consortium. In particular, DiSL releases are available
at http://forge.ow2.org/projects/disl/files/. After downloading and extract-
ing the latest release of DiSL (i.e., disl-src-2.0.1.tar.bz2 at the time of writing,
please consult the README file in the main directory, which provides guide-
lines for compiling the framework and links to additional documentation.17

A very simple example of a DiSL instrumentation can be found in
the example/smoke directory. In this example the observed program (i.e.,
example/smoke/app/src/Main.java) prints a hello-world message, while the in-
strumentation (i.e., example/smoke/instr/src/DiSLClass.java) inlines the code
to print a message at the beginning and at the end of the main method body.

Listing 1 shows the sequence of commands needed to compile the DiSL
framework and to run the example. In line 1, we compile the DiSL framework.
Line 3 runs the example program.

Listing 1: Compiling the framework and running the included DiSL example.
1 [disl]$ ant
2 [disl]$ cd example/app/smoke
3 [disl/example/app/smoke]$ ant run

Listing 2 shows the expected output of the instrumented program. Line 2
is the message printed by the observed program, while lines 1 and 3 are the
messages printed by the instrumentation.

Listing 2: Output of the included DiSL example.
1 Instrumentation: Before method main

16http://disl.ow2.org
17http://disl.projects.ow2.org/xwiki/bin/view/Main/Doc/

91

2 Application: Inside method main
3 Instrumentation: After method main

It is possible to use the disl.py script to invoke DiSL with user-defined
instrumentations, provided the following rules are adhered to:

• All the instrumentation and the analysis classes must be packed into
a single jar file, including any external libraries used by the analysis.
Such libraries can be added to the jar file using, for example, the jarjar18

tool.

• The MANIFEST.MF file in the META-INF directory of the jar file must
list all the DiSL classes used for the instrumentation; Listing 3 shows
the manifest file of the included example. In this case, the instrumen-
tation consists of a single class (i.e., DiSLClass) that can be found in
the default package.

Run disl.py -h for information on how to use the script and to list all
available parameters.

Listing 3: Manifest file of the included DiSL example.
Manifest-Version: 1.0
DiSL-Classes: DiSLClass

An archive of all examples and tools presented in this paper (i.e.,
disl-examples-1.2.tar.bz2) can be downloaded from the DiSL release page.
This archive must be extracted within the main directory of DiSL and in-
cludes an additional README file that describes how to run the examples.
Listing 4 shows how the runExample.sh script can be used to run the example
shown in Figure 1 of this paper.

Listing 4: Running the profiler example presented in Figure 1.
[disl/examples]$./runExample.sh \
2.1-Method_Execution_Time_Profiler-Figure_1

18http://code.google.com/p/jarjar/

92

Part III

Related Work and Conclusion

93

Chapter 6

Related Work

This chapter provides an overview of the related work. The overview does not
refer to every related publication, as they are already covered in the included
papers. Instead, it provides a deeper comparison with related dynamic analy-
sis frameworks, since such comparison is normally not possible in the published
papers due to space constrains.

DiSL and ShadowVM are essentially a part of one framework, however they
were designed to be used separately. We believe that each of the parts deserves
a separate comparison. Therefore, the related work is divided into two sections.
The first one describes instrumentation (comparison with DiSL) and the second
one describes the dynamic analysis evaluation (comparison with ShadowVM).
Some mentioned frameworks solve both problems, thus span over both sections.
Even though the framework itself may be only a single tool, we compare its
instrumentation and analysis evaluation capabilities separately.

6.1 Instrumentation frameworks

This section provides an overview of the instrumentation frameworks and dis-
cusses their difference with DiSL. Initially, we will cover well-known machine
instruction level frameworks, following with a discussion of the instrumentation
frameworks targeting the Java environment.

6.1.1 Instrumentation in machine code

Although the frameworks operating on the machine instruction level are not pri-
marily designed for instrumentation of managed languages, they provide high
flexibility, high control over the instrumentation process and good isolation from
the managed environment, hence they may serve as a foundation for a more
complex observation platform.

Pin

Pin [34, 64] is a C/C++ framework providing a rich API for application instru-
mentation. Pin operates at machine instruction level, however the API provides
an abstraction over the machine architecture so the analysis written using Pin
can remain architecture-independent as much as possible. Pin instruments an
application during execution, similarly to the Just-In-Time (JIT) compiler from
the managed runtimes. It governs the execution of all new blocks of code and
gives the developer an opportunity to insert event callbacks before the code is
executed.

95

DynamicRIO

DynamicRIO [9, 46] is an instrumentation framework similar to Pin. Compared
to Pin, DynamicRIO is better suited for generic code transformations for the
price of having more complicated API.

Valgrind

Another framework for instrumentation of native programs is Valgrind [69, 70, 40].
Compared to the previous two frameworks, Valgrind provides instrumentation
capabilities for heavy weight analysis that are not supported under Pin or Dy-
namicRIO. It is suitable for analysis intercepting many events and operating on
large amount of analysis data. The distinguishing feature is its disassemble-and-
resynthesise (D&R) technique. During D&R, Valgrind reads the machine code of
the target application, translates it to an intermediate representation, applies the
requested instrumentation and translates the application back to machine code.
D&R improves an ability to control the effects of instrumentation code on the
observed application code, thus providing a safer environment for the analysis.

SystemTap

SystemTap1 [38, 74] is an instrumentation framework for GNU/Linux systems.
SystemTap collects events from user-space applications and is also capable of
monitoring a whole operating system by inserting instrumentation code directly
into the Linux kernel.

SystemTap defines its own language for describing the instrumentation and
handling the events. The event handling routines are not meant to perform the
whole analysis, especially in cases where it would require a lot of computation.
Instead, the event routine should only store the required information and quickly
return. The processing of collected data is managed by other tools.

As event handlers written using SystemTap often observe sensitive data (in
relation to stability of the system), the code of the event handlers is analyzed to
meet certain safety properties. During script compilation, SystemTap controls
properties like the length of execution, memory allocations or unsafe operations
like manipulation with the observed structures.

SystemTap provides two different options how to instrument user-space ap-
plications. One way is to compile in the instrumentation probes, i.e., include the
probes directly into the source code of the application. The other option is to
use the debug information created by compiler to determine the place where the
probes should be inserted.

Comparison with DiSL

As all of the mentioned frameworks were not primarily designed to observe man-
aged runtimes, their applicability remains limited. They have no notion of classes,
instances, synchronization primitives or a garbage collector. Machine instruction
code produced by a JIT compiler is optimized to perform well on the designated

1SystemTap is a similar solution to Dtrace, a framework for instrumentation under the
Solaris operating system.

96

CPU. Therefore, detecting high-level language patterns like field assignments or
object creations may be complicated.

Instrumentation of managed applications on the machine instruction level
assumes that the managed runtime is using a JIT compiler to translate code
to machine instructions. A virtual machine may, however use an interpreter to
execute the bytecode. An interpreted application does not have the form of the
coherent machine instruction code and cannot be easily instrumented.

Compared to them, DiSL works on Java bytecode level, which is an interme-
diate representation between the Java source code and the machine code. Thank-
fully, modern Java compilers perform almost no optimization when compiling the
Java source code to the bytecode. Without optimizations and using the specific
instruction set that is much closer to object oriented language, detection of high-
level language patterns in Java bytecode is relatively easy. To raise the level of
abstraction, DiSL provides a predefined library of markers to instrument common
execution patterns.

In summary, instrumentation on the machine instruction level requires direct
support of the target managed runtime. Without the detection of high-level lan-
guage patterns, the machine code instrumentation frameworks have no possibili-
ty to introduce high-level constructs to simplify the instrumentation of managed
languages.

6.1.2 Instrumentation in Java

In this section, we summarize tools for instrumentation under Java. The first sub-
section describes generic bytecode transformation libraries. Following subsections
concentrate on tools providing more convenient instrumentation interfaces.

6.1.3 Bytecode manipulation libraries

Bytecode transformation libraries like ASM, Soot or BCEL provide API for writ-
ing very efficient and fully customizable instrumentation. The API works directly
with a stream of bytecodes and only a small abstraction layer is provided.

ASM

ASM [2, 47] defines two distinct APIs for bytecode manipulation. The Core API
allows to inspect and modify classes using a visitor design pattern and the Tree
API represents methods, fields and bytecode in a form of an object tree (similarly
to the Java reflection API).The Core API is very fast and efficient especially in
cases where the transformation is done during a single pass through the trans-
formed class. The information about the class and method under transformation
is provided through visitor method arguments. Visitor methods are invoked for
each method, annotation and even bytecode instruction.

The Tree API is often used for more complicated transformation or bytecode
analysis. The information about classes, methods, fields and instructions are
stored in separate objects. These objects are grouped in lists and form a tree
structure. A root of the tree is a class with references to fields and methods. The
method contains list of bytecode instructions.

97

BCEL

BCEL [4, 53] is a bytecode transformation library similar to ASM. Compared to
ASM, BCEL is slower and cumbersome while working with local variables but
may require writing less code.

Soot

Soot [37, 77] is a framework for static analysis and optimization of Java byte-
code. Soot provides four intermediate representations of Java bytecode. The
first representation, called Baf, provides only a thin abstraction over the Java
bytecode. Same as a Java bytecode, it uses stack-based bytecode representation,
but its instructions are fully typed to simplify transformation and analysis. An-
other representation is a 3-address code representation called Jimple. Jimple is
a preferred form for code analysis and optimization. The third representation is
called Shimple. Shimple is a variation of Jimple using static single assignment
form. The last representation, called Grimp, allows unification of several byte-
code instructions into a tree and creating a structure similar to Java source code
suitable for human-readable outputs.

Comparison with DiSL

The bytecode engineering libraries provide a rich API for class transformations
but such an API is unnecessarily complex for dynamic analysis instrumentation.
As dynamic analysis does not require to modify the behaviour of the observed
application, the instrumentation API can be simpler and provide a higher level of
abstraction over the instrumented bytecode. DiSL provides a predefined library
of bytecode pattern markers to easily instrument for example object allocations,
basic blocks or exception handlers. To provide a similar flexibility to the low-
level transformation libraries, a DiSL developer may take an advantage of the
underlying ASM library and design a custom marker to instrument an arbitrary
execution pattern.

The bytecode engineering libraries specify the instrumentation as a series of
bytecode instructions inserted in between the bytecodes of the original method. A
developer using these libraries has to be either very skilled in bytecode program-
ming or to use additional tools to convert Java code to bytecode. In contrast,
DiSL allows to specify the instrumentation as Java code directly, abstracting the
developer from the bytecode internals and allowing to concentrate mainly on the
analysis logic.

6.1.4 Java instrumentation frameworks

The following subsections overviews instrumentation frameworks in Java. Com-
pared to the bytecode transformation libraries, the instrumentation frameworks
do not allow arbitrary class transformation, but provide high-level abstractions
to simplify the specification of the instrumentation.

98

AspectJ

One of the most commonly used tools for dynamic analysis instrumentation in
Java is AspectJ [3, 60, 61]. AspectJ is a language based on the aspect-oriented
programming paradigm, built on top of Java by extending the language with
additional keywords. Thanks to such high-level language integration, AspectJ
provides a convenient way for writing instrumentation. Compared to low-level
bytecode manipulation libraries, the programmer does not have to deal with a
stream of instructions. Instead, he writes the instrumentation code directly in
Java and uses AspectJ’s join-point model to navigate its insertion. The join-point
model in AspectJ is designed to intercept various application behaviour like field
operations or execution of method bodies and exception handlers.

The access to the static and dynamic context information is provided through
an objects created at runtime. For each join-point, AspectJ creates a corre-
sponding object to expose context information like method arguments, method
call target or accessed field value.

AspectJ supports several types of weaving. Convenient method for applying
instrumentation is to compile the application sources using the AspectJ compiler.
Another option is to use the Java instrumentation agent to perform weaving at
runtime.

AspectBench Compiler

The AspectBench Compiler (abc) [1, 45] is an AspectJ compiler designed to be
easily extensible. abc uses the Polyglot [35, 72] compiler as a front-end to easily
extend the Java language syntax, and the Soot framework (described earlier) as
the instrumentation backend.

Javassist

Javassist [17, 49] is a bytecode transformation library. Beside the low-level trans-
formation API, Javassist allows to reflect classes similarly to Java reflection API
and add fields or methods by specifying their Java code.

Comparison with DiSL

Compared to the bytecode manipulation libraries, AspectJ offers only a prede-
fined set of join-points. It does not provide any convenient extension mechanism
to instrument an arbitrary execution pattern, i.e., does not provide a mechanism
to introduce new types of events. The AspectBench Compiler (abc) was designed
to overcome this limitation. Even though abc allows extensibility of the AspectJ
language, it is still necessary to define rules for semantic checks and implement
several new core classes when creating a custom join-point or a new advice. The
amount of work depends on the type of the extension, however the AspectJ lan-
guage was never designed to be easily extensible. In contrast, DiSL was designed
with extensibility in mind and standard extensions require implementation of
only one new class.

The DiSL API allows to access the context information through pre-defined
or custom made objects. During weave time, DiSL pre-computes requested val-
ues and translates all calls to context objects into series of bytecodes direct-

99

ly fetching the required information as constant values. AspectJ also provides
object-oriented API to access context information. The objects are however not
translated into simple bytecode instructions, instead the whole object tree is ac-
cessible at runtime. When the instrumentation requests the context information,
AspectJ has to allocate and fill the objects with data. Even though the ob-
jects may be reused, such solution still requires additional allocations and creates
runtime overhead.

Overall, AspectJ does not provide any control over the internal allocations
nor helper code executed during runtime. The core principle in DiSL is to give
the instrumentation developer full control over the instrumentation process. All
constructs in DiSL are evaluated at weave-time and replaced by constants or
bytecodes. DiSL by itself never allocates new objects and introduces only small
runtime overhead2.

None of the instrumentation methods in AspectJ is able to provide full byte-
code coverage, especially instrumentation of the Java Class Library. In compari-
son to AspectJ, DiSL uses the Java native agent, allowing to instrument all loaded
bytecode classes including all classes from the Java Class Library.

Similar to AspectJ, Javassist is limited to only a predefined set of join-points
while using the high-level instrumentation API. If more fine grained instrumenta-
tion is required, a byte-code level API (similar to the low-level bytecode manip-
ulation libraries API) may be used. DiSL does not allow to modify the observed
code as it was primarily designed for program observation, but it outperforms
Javassist in flexibility of the high-level instrumentation API.

6.1.5 Frameworks with predefined probes

Following frameworks does not allow to insert arbitrary instrumentation but use
a set of predefined probes to observe the application.

Sofya

Sofya [36, 63, 62] is an instrumentation and analysis evaluation framework build
on a publish-subscribe messaging pattern. Instrumentation process in Sofya is
guided using description language called EDL. EDL supports only a selection of
basic patterns and filtering based on class or method names.

Sofya does not allow to insert arbitrary code into the observed application,
instead it provides a set of predefined probes. It is safer to not allow the developer
to modify the monitoring probes, however such restriction greatly reduces the
framework flexibility. If modifications are necessary, the developer may access an
underlying BCEL bytecode manipulation library.

Sofya provides access to static and dynamic context information, but spec-
ification of what data can be requested by the evaluation is very limited. The
specification is often reduced to a decision whether to transfer the whole context
information or not.

2A top of the code specified by a programmer, the DiSL framework inserts code to support
the dynamic bypass mechanism and check for unexpected instrumentation code exceptions. As
none of these mechanisms is mandatory for DiSL to operate, the insertion of such code can be
disabled by the programmer.

100

Chord

Chord [7, 68] is a platform for static and dynamic program analysis. It provides
load-time instrumentation and allows to instrument classes from the Java Class
Library. Chord uses a Java instrumentation agent, therefore it may potentially
miss some classes and leave them un-instrumented. The bytecode manipulation
in Chord is performed by the Javasist library. The analysis evaluation can be
performed in the context or out of the context of the observed application (to be
discussed in 6.2.2).

Same as Sofya, Chord uses a predefined set of probes to trigger various events
including method entry and exit, synchronization operations and field accesses.
For each of the probes, Chord provides a predefined context information.

Comparison with DiSL

Both frameworks are significantly limited when adding new events or extending
context information in the existing ones. As both frameworks use an underlying
bytecode manipulation library, extensions are possible. In both cases, the probes
are implemented in several layers of the framework, hence an extension would
require non-trivial modifications to several core framework classes. Furthermore,
the resulting analysis would be bound to the modified version of the framework.

In DiSL, extensions use a predefined API. Each extension is bundled together
with the instrumentation and is loaded automatically during instrumentation.

6.2 Frameworks for dynamic analysis evaluation

in Java

Frameworks for analysis evaluation are usually built on top of an instrumentation
framework and provide a supporting infrastructure to evaluate custom dynamic
analysis in a safe environment. In this work, we distinguish two types of analysis
frameworks. The first, called in-process analysis frameworks, perform analysis in
the context of the observed application and may potentially influence its execu-
tion. The second type of frameworks offloads an analysis out of the context of
an observed application to minimize possible perturbation; these we call out-of-
process analysis frameworks.

6.2.1 In-process analysis frameworks

A great advantage of in-process analysis over out-of-process analysis is the ability
to query any application context information with small overhead. Well-crafted
in-process analysis may outperform out-of-process analysis by orders of magni-
tude depending on the scenario. As the analysis may influence the observed
application, it has to be carefully designed and thoroughly tested.

AspectJ

AspectJ [3, 60, 61] is an instrumentation framework (described in 6.1.4), but is
also provides basic support for in-process analysis. In AspectJ, aspect classes

101

contain definitions of the intercepted events together with the code being invoked
when such an event is triggered. In addition, the classes may also include helper
methods and fields to separate the event logic from the main analysis logic and
to store the analysis data structures between the event invocations.

BTrace

BTrace [5] is a dynamic tracing tool for Java. It uses Java annotations to guide the
instrumentation process and Java code to express the analysis logic. As BTrace
is designed to be safe, it restricts the analysis code to only harmless operations
which cannot influence the observed application. The analysis cannot, among
other restrictions, allocate new objects, throw or catch exceptions, assign values
to fields, use class literals or contain loops. The analysis is allowed to invoke
methods only from the BTrace utility package and the helper analysis methods.
All other method calls are forbidden. BTrace allows to intercept only a predefined
set of events like method executions, field accesses or object allocations, with no
possibility of extensions.

RoadRunner

RoadRunner [39, 56] is a dynamic analysis framework for concurrent Java pro-
grams. RoadRunner concentrates on rapid prototyping where dynamic analysis
is described as a filter over a stream of predefined events. The framework allows
to compose several simple dynamic analyses into chains to create a more complex
analysis. RoadRunner intercepts events like lock acquisition, lock release, thread
start, thread interruption, thread join or thread sleep.

Comparison with ShadowVM

The mentioned frameworks prevent perturbation in the observed application us-
ing two distinct approaches. AspectJ and RoadRunner exclude classes from in-
strumentation. Even though it would be possible to exclude only classes shared
between the analysis and the observed application, the frameworks exclude large
part of the Java Class Library.

BTrace prevents the perturbation by restricting the evaluation to only safe op-
erations. Nevertheless, it is not always harmful to use a loop or call a pure method
and restrictions imposed by BTrace limits versatility of the analysis framework.

The ShadowVM prevents the perturbation by offloading the analysis out of
the context of the observed application and does not enforce restrictions that
would limit the versatility or the coverage of the framework.

6.2.2 Out-of-process analysis frameworks

The out-of-process analysis frameworks offload the analysis out of the managed
Java space. The two most typical approaches are either a use of Java level mar-
shaling and transportation mechanisms like JDI [19], Java beans [23] or simple
I/O API, or a use of JNI [24] with processing and transportation of events per-
formed in native space.

102

Chord

The events in Chord [7, 68] (the instrumentation part described in 6.1.5) are
serialized into a byte buffer. The events can be deserialized and evaluated in
the context of the observed application, redirected to a file on a hard drive or
streamed to another VM.

The serialization process allows to preserve only a unique identification for an
object. This is not a problem during the in-process analysis, where the analysis
can access a translation map and get a reference to the real object. If the analysis
is performed in another VM, Chord does not provide any mechanism to query
additional object data.

Sofya

Sofya [36, 63, 62] is an instrumentation (described in 6.1.5) and analysis frame-
work. Although we split the description of the instrumentation and the analysis
into two parts, they are tightly coupled. The whole Sofya’s infrastructure is com-
posed of six layers. The bottom two layers are responsible for bytecode analysis
and instrumentation. The third layer is responsible for communication between
the observed application and the evaluation part. The communication is medi-
ated by JDI [19] or a custom transfer protocol. The fourth layer dispatches the
gathered events to the analysis and the fifth layer provides various components
for event filtering. The fifth layer also dispatches events to multiple consumers,
allowing to process a single event by multiple analyses. The sixth layer contains
the main analysis logic.

Using JDI, Sofya can combine the instrumentation events together with the
Java debugging events. The main reason for such a solution is the ability to
precisely capture a correct timing of the synchronization events, which poses an
issue if captured only by the instrumentation.

Caffeine

Caffeine [6, 58] is a tool for dynamic analysis. Caffeine intercepts Java debugging
events and supplies them to the JIProlog [22] engine for analysis evaluation using
the JDI protocol. Caffeine restricts the type of available events to only basic ones
like method invocation or field access. The analysis is evaluated in the separate
JVM and the JDI provides Caffeine with good isolation between the analyzed
application and the performed analysis.

*J

*J [13, 55] is a dynamic analysis framework using a native JVMPI [28] agent
for event triggering with a separate Java analyzer for the event processing. The
analyzer runs during the measurement and parses the stream of events from a
socket. The analyzer contains a predefined set of operations such as various trans-
formations, metrics, triggers and printers to help process the stream of events.
Definition of new operation and its combinations with predefined ones is also
possible.

*J does not use instrumentation and relays entirely on the (already depre-
cated) JVMPI interface. Context information provided for each event is fixed

103

with no possibility of extensions. Even though JVMPI allows to intercept in-
structions processed by an interpreter, capturing more sophisticated bytecode
patterns would make the analysis incredibly slow.

Javana

Javana [16, 65] is a framework written in C, targeted on building analysis tools
for Java. Javana uses the DIOTA [8, 66] binary instrumentation framework to
capture various application behaviour on a machine instruction level. To be able
to analyse the Java events properly on the machine instruction level, Javana
requires several hooks to the selected JVM operations like object allocation, re-
allocaion and reclamation. The hooks have the form of JNI method calls invoked
every time the desired JVM operation occurs. As the standard JVMs do not
support such functionality, Javana uses a modified Jikes RVM [21, 44].

Javana provides only basic support for event filtering, with no possibility
to restrict monitoring to only a part of the application. Any extension of the
available events and their context information would mean to not only extend
the framework but also the accompanying JVM. As the provided events mainly
observe the lifecycle of Java objects, and the low-level application behaviour,
analyses written in Javana are mainly targeted on memory access profiling.

Comparison with ShadowVM

Sofya and Chord pre-process and dispatch events directly from the context of
the observed application. As the frameworks and the observed application share
classes necessary for buffering, network communication or file management, the
event dispatching may potentially influence the application behaviour, especially
if the shared classes are also observed.

Caffeine, *J and Javana prevent the perturbation by using Java observation
interfaces. Such a solution provide good isolation, but limits the dynamic analysis
to only predefined events.

ShadowVM prevents the perturbation by offloading the analysis out of the
context of the observed application through JNI calls. Compared to Javana,
ShadowVM is using the JNI native calls to offload arbitrary events. Javana is
using JNI to hook only memory-related JVM events.

Caffeine, Javana and Sofya3 stop the application while evaluating an event. As
all the frameworks are offloading events out of the application context, the com-
munication adds additional delay to the evaluation. Even a very small analysis
capturing only small amount of events may substantially slow down the observed
application.

*J and Chord improve the performance by buffering the events and evaluating
them asynchronously. However, each Java object is represented only as a unique
object identification without any additional information.

Similar to *J and Chord, ShadowVM evaluates the events asynchronously.
In addition, ShadowVM allows to access whole class hierarchy of an object and
provides all class information associated with a class. To furthermore improve

3When the communication is mediated through JDI.

104

the performance, ShadowVM introduces several event ordering models to reduce
lock contention while buffering the events.

6.3 Instrumentation and evaluation frameworks

without sources

To be able to provide a satisfying comparison with the related work, having access
to the source code of the described framework is a mandatory requirement as it
is often the only source of the accurate documentation. In this subsection, we
provide a list of tools for which we were unable to find the references to their
sources.

• Aftersight [52] decouples the observed application from the evaluation by
running the observed application in a dedicated virtual machine, logging
all non-deterministic inputs and replaying them on an isolated analysis
platform.

• Josh [50] is an open compiler solution for making aspect-oriented languages
easily extensible.

• MAP [43] is a meta-aspect protocol for rapid prototyping of dynamic anal-
ysis.

• ConTest [71] Listeners is an instrumentation and runtime engine for multi-
threaded systems.

• DejaVu [51] allows a deterministic replay of multi-threaded Java programs.

105

106

Chapter 7

Conclusion

Byte-code level program instrumentation is a difficult and error-prone task. Cur-
rent instrumentation tools try to provide a higher level of abstraction to simplify
the specification of the instrumented locations and the code being inserted. How-
ever, the tools still fail to provide a simple-but-versatile instrumentation API. On
one hand, there are bytecode transformation libraries able to perform arbitrary
instrumentation but not providing a high-level API which even a non-skilled1

developer could use. On the other hand, the tools providing the high-level API
to easily specify and guide instrumentation lack the flexibility and do not allow
experienced users to control the instrumentation process.

In this thesis we presented DiSL, an instrumentation framework that is trying
to bridge both worlds. DiSL provides high-level abstractions that a non-skilled
programmer can use to assemble the desired instrumentation. An experienced
developer can design custom Markers, Guards and StaticContexts to select an
arbitrary location for instrumentation and access custom context information.
Given such modularity, DiSL has the flexibility of Java bytecode transformation
libraries but also provides the high-level API where only a very limited knowledge
of bytecode is required [76].

In DiSL, the developer has a full control over the instrumentation process. No
hidden allocation or additional code is inserted without the developer’s knowl-
edge. The efficiency and the transparency during the weaving allows to better
predict possible perturbation and more easily manage the incurred overhead.

Processing of analysis events triggered by the instrumentation can have unde-
sired effects on the observed application. Observation problems such as missing
events or shared state corruption are hard to detect even for a skilled analysis
developer. ShadowVM addresses such problems by offloading the analysis out of
the context of the observed application. By running the evaluation in a separate
VM, the analysis is free to allocate memory, use all classes from the Java Class
Library or introduce arbitrary locking. The developer is thus freed from thinking
about the possible interference and is able to fully concentrate on the analysis
logic.

On the ShadowVM, the analysis accesses the object and class information
using the Shadow API. For each transferred object, the analysis may explore the
class hierarchy and retrieve arbitrary class information using the reflection-like
API. The reclamation of an object and the termination of the observed application
is announced through the Shadow API life-cycle events.

ShadowVM introduces several techniques to speed up the offloading process.
ShadowVM separates the observation and the evaluation so they can run in-
parallel. The introduced event ordering models help to decrease lock contention
while buffering the events and increase parallelism while evaluating the events.

ShadowVM uses standard JNI and JVMTI native interfaces for event offload-
ing, hence it is deployable in production JVMs.

1A developer not familiar with the Java bytecode.

107

DiSL is used in several research projects at the author’s home department,
University of Lugano and University of Darmstadt, with other universities show-
ing interest in using DiSL. After a thorough review, DiSL was accepted to the
SPEC RG tool repository2. DiSL (together with ShadowVM3) is available as
open-source under the Apache license in the OW2 software repository at http:

//disl.ow2.org/.

7.1 Future work

The following section covers various ideas and problems connected to dynamic
analysis still not solved by DiSL and ShadowVM.

DiSL

The instrumentation using DiSL is still not perfect. The analysis developer often
knows which type of the application actions he wants to instrument. However,
JVM may perform some of the actions in the native space, hence they cannot be
easily instrumented using Java bytecode instrumentation.

An example of such instrumentation is object allocation. In Java bytecode,
objects are allocated using the new4 instruction. Unfortunately, JVM may allo-
cate new objects in the native code, for example while loading new classes.

The analysis developer may decide to instrument the JNI calls responsible for
object allocation, but this is not a perfect solution. Not all objects are neces-
sary allocated using a JNI call and such a solution would be probably heavily
dependent on the particular JVM implementation.

The JVM provides an interface informing a developer about new object allo-
cations in the native code. Therefore, DiSL could combine the instrumentation
with callbacks. We believe this is not a great solution either, as the callbacks
do not provide such flexibility and context information as the instrumentation.
The adaptation of DiSL for supporting callbacks would also require to bend the
language to cooperate with specific events produced by various environments.

A solution to the problem may be in systems that currently serve only as
research platforms, namely Maxine VM [30, 78] and JikesRVM [21, 44]. The VMs
are fully implemented in Java and use only a very limited amount of native code
for bootstrap process, thus they do not hide object allocations or field assignments
in native code. Use of bytecode instrumentation to observe such a system is
therefore more thorough [41] compared to production JVMs, which are largely
implemented in native code. Fortunately, we may observe a trend [11, 54] to
move from native code to Java code even in production JVMs and hopefully, we
will see more observable VMs in the future.

Another instrumentation problem not solved by DiSL is the timing of syn-
chronization events. This is particularly problematic when observing access to
volatile variables. As the access to a volatile variable is based on atomic reads

2http://research.spec.org/tools/
3DiSL and ShadowVM are currently distributed in one software bundle.
4The new instruction has various alternatives to allocate arrays.

108

http://disl.ow2.org/
http://disl.ow2.org/
http://research.spec.org/tools/

and writes, there is no simple instrumentation5 that could observe the order of
the accesses to the variable without introduction of additional locking.

A possible solution is to use the Java Debugging Interface and intercept syn-
chronization events using data breakpoints. Another approach we are investigat-
ing is an encapsulation of the volatile variable that would allow to monitor the
synchronization order.

DiSL language would benefit from many small improvements. The instru-
mentation written in DiSL could be validated using advanced static checking for
properties like modification of the state of the observed application. The in-
strumentation scoping language and the Guard construct could be replaced with
single mechanism. The synthetic local variables and thread local variables could
support better initialization. DiSL could provide custom dynamic contexts that
would provide dynamic information based on the used Marker.

Various JVM enhancements would improve applicability of DiSL. For exam-
ple, the JVM should be more tolerant (stable) while instrumenting core classes of
the Java Class Library. The limits on the size of one method and the mandatory
Stack Map Frames [15] complicate the instrumentation process.

A feature currently missing in DiSL is instrumentation of already running
applications. DiSL was designed to support on-the-fly instrumentation, however
the implementation of some essential parts is still missing and a few technical
issues need to be resolved.

ShadowVM

A problem not entirely solved by ShadowVM is instrumentation. ShadowVM
provides a safe environment for evaluation of the analysis, but the event and its
contextual data still need to be gathered in the context of the observed appli-
cation. The instrumentation is still potentially vulnerable to all the problems
connected to in-process analysis evaluation. The advantage compared to the
traditional frameworks is a substantial reduction of the potentially harmful op-
erations. The only responsibility of the instrumentation is to obtain the data
required for the analysis, which normally means accessing variables on the (Ja-
va bytecode) stack or request the field values. All other work, including event
buffering and dispatching, is performed in the native code.

One solution is to move the context gathering to the native code. Such a
change would demand creating a framework similar to DiSL in the native space
and thoroughly explore whether the JVMTI and JNI interfaces do not interfere
with the observed application and provide enough information so the solution has
the same strength as in the Java code.

Another solution would require support from the JVM. The Multitenant
JVM [31] allows to run multiple applications inside one JVM host by separating
shared resources like heap, file and socket I/O. We believe this could be a step in
the right direction also for the analysis evaluation.

Still, the features provided by Multitenant JVM are for now insufficient for
the dynamic analysis. The analysis evaluation would be run in the Multitenant

5By simple instrumentation we mean instrumentation inserted before or after the variable
access.

109

JVM as a separate process. First, the Multitenant JVM would need to support
separation between the (un)instrumented Java Class Libraries. Also, the anal-
ysis evaluation would need to access and reflect any resource in the application
but only under a restricted mode where it cannot perform field writes or invoke
methods (that would change the state of the observed application).

In addition to the better isolation, the runtime could support copy-on-write
snapshots of the analysed application. Using the snapshot, the analysis would
obtain access to the state in which the event was triggered for the whole time of
the event evaluation. As the snapshot mechanism would be probably costly, it
would be used only in cases where the analysis requires to traverse a large part
of the heap during each event. Currently, such analyses reconstruct the whole
heap by monitoring all modifications to the heap and traverse it offline, which is
incredibly costly. Alternatively, the analysis may also traverse the heap online
when an event occurs, but the heap may be modified by other threads. Compared
to those techniques, the snapshot mechanism may provide better performance or
heap immutability while traversing a large part of the heap during evaluation.

110

References

[1] abc: The AspectBench Compiler for AspectJ. http://www.sable.mcgill.

ca/abc/.

[2] ASM. http://asm.ow2.org/.

[3] AspectJ - crosscutting objects for better modularity. http://eclipse.org/
aspectj/.

[4] BCEL - The Byte Code Engineering Library. http://commons.apache.

org/proper/commons-bcel/.

[5] BTrace. https://kenai.com/projects/btrace.

[6] Caffeine. http://www.yann-gael.gueheneuc.net/Work/Research/

Caffeine/Download/.

[7] Chord: A Program Analysis Platform for Java. http://pag.gatech.edu/

chord.

[8] DIOTA - Dynamic Instrumentation, Optimisation and Transformation of
Applications. http://www.elis.ugent.be/diota/.

[9] DynamoRIO - Dynamic Instrumentation Tool Platform. http://www.

dynamorio.org/.

[10] GNU gprof. http://sourceware.org/binutils/docs/gprof/.

[11] Graal Project. http://openjdk.java.net/projects/graal/.

[12] Intel VTune Amplifier XE 2013. http://software.intel.com/en-us/

intel-vtune-amplifier-xe.

[13] *J: A Tool for Dynamic Analysis of Java Programs. http://www.sable.

mcgill.ca/starj/.

[14] Java instrumentation interface. http://docs.oracle.com/javase/7/

docs/api/java/lang/instrument/Instrumentation.html.

[15] Java Stack Map Frame. http://docs.oracle.com/javase/specs/jvms/

se7/html/jvms-4.html#jvms-4.10.1.4.

[16] Javana. http://www.elis.ugent.be/javana/.

[17] Javassist - Java Programming Assistant. http://www.csg.ci.i.u-tokyo.

ac.jp/~chiba/javassist/.

[18] JDB: Java Debugger. http://docs.oracle.com/javase/7/docs/

technotes/tools/windows/jdb.html.

[19] JDI - Java Debug Interface. http://docs.oracle.com/javase/7/docs/

jdk/api/jpda/jdi/index.html.

111

http://www.sable.mcgill.ca/abc/
http://www.sable.mcgill.ca/abc/
http://asm.ow2.org/
http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
https://kenai.com/projects/btrace
http://www.yann-gael.gueheneuc.net/Work/Research/Caffeine/Download/
http://www.yann-gael.gueheneuc.net/Work/Research/Caffeine/Download/
http://pag.gatech.edu/chord
http://pag.gatech.edu/chord
http://www.elis.ugent.be/diota/
http://www.dynamorio.org/
http://www.dynamorio.org/
http://sourceware.org/binutils/docs/gprof/
http://openjdk.java.net/projects/graal/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.sable.mcgill.ca/starj/
http://www.sable.mcgill.ca/starj/
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10.1.4
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.10.1.4
http://www.elis.ugent.be/javana/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html

[20] JDWP - Java Debug Wire Protocol. http://docs.oracle.com/javase/1.
5.0/docs/guide/jpda/jdwp-spec.html.

[21] Jikes RVM (Research Virtual Machine). http://jikesrvm.org/.

[22] JIProlog - Java Internet Prolog. http://www.jiprolog.com/.

[23] JMX - Java Management Extensions. http://docs.oracle.com/javase/

7/docs/technotes/guides/management/.

[24] JNI - Java Native Interface. http://docs.oracle.com/javase/1.5.0/

docs/guide/jni/.

[25] JPDA - Java Platform Debugger Architecture. http://docs.oracle.com/

javase/7/docs/technotes/guides/jpda/jpda.html.

[26] JPDA - Structure Overview. http://docs.oracle.com/javase/7/docs/

technotes/guides/jpda/architecture.html.

[27] JVMDI - Java Virtual Machine Debug Interface Reference. http://www.

oracle.com/technetwork/java/javase/jvmdi-spec-135507.html.

[28] JVMPI - Java Virtual Machine Profiler Interface. http://docs.oracle.

com/javase/1.5.0/docs/guide/jvmpi/jvmpi.html.

[29] JVMTI - JVM Tool Interface. http://docs.oracle.com/javase/1.5.0/

docs/guide/jvmti/jvmti.html.

[30] Maxine VM. https://wikis.oracle.com/display/MaxineVM/Home.

[31] Multitenant JVM. http://www.ibm.com/developerworks/java/library/
j-multitenant-java/index.html?ca=drs-.

[32] OProfile. http://oprofile.sourceforge.net/.

[33] OSGi - The Dynamic Module System for Java. http://www.osgi.org.

[34] Pin - A Dynamic Binary Instrumentation Tool. http://software.intel.

com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[35] Polyglot - A compiler front end framework for building Java language exten-
sions. http://www.cs.cornell.edu/Projects/polyglot/.

[36] Sofya: A Java Bytecode Analysis Tool. http://sofya.unl.edu/.

[37] Soot: a Java Optimization Framework. http://www.sable.mcgill.ca/

soot/.

[38] SystemTap. http://sourceware.org/systemtap/.

[39] The RoadRunner Dynamic Analysis. http://dept.cs.williams.edu/

~freund/rr/.

[40] Valgrind. http://valgrind.org/.

112

http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://jikesrvm.org/
http://www.jiprolog.com/
http://docs.oracle.com/javase/7/docs/technotes/guides/management/
http://docs.oracle.com/javase/7/docs/technotes/guides/management/
http://docs.oracle.com/javase/1.5.0/docs/guide/jni/
http://docs.oracle.com/javase/1.5.0/docs/guide/jni/
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jpda.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jpda.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/architecture.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/architecture.html
http://www.oracle.com/technetwork/java/javase/jvmdi-spec-135507.html
http://www.oracle.com/technetwork/java/javase/jvmdi-spec-135507.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/jvmpi.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/jvmpi.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html
https://wikis.oracle.com/display/MaxineVM/Home
http://www.ibm.com/developerworks/java/library/j-multitenant-java/index.html?ca=drs-
http://www.ibm.com/developerworks/java/library/j-multitenant-java/index.html?ca=drs-
http://oprofile.sourceforge.net/
http://www.osgi.org
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.cs.cornell.edu/Projects/polyglot/
http://sofya.unl.edu/
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://sourceware.org/systemtap/
http://dept.cs.williams.edu/~freund/rr/
http://dept.cs.williams.edu/~freund/rr/
http://valgrind.org/

[41] Virtual Machine Level Analysis. https://wikis.oracle.com/display/

MaxineVM/Virtual+Machine+Level+Analysis.

[42] VisualVM: All-In-One Java Troubleshooting Tool. http://visualvm.java.
net/.

[43] M. Achenbach and K. Ostermann. A meta-aspect protocol for developing
dynamic analyses. In Runtime Verification, pages 153–167. Springer, 2010.

[44] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, et al. The Jalapeno virtual
machine. IBM Systems Journal, 39(1):211–238, 2000.

[45] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc:
An extensible AspectJ compiler. In Transactions on Aspect-Oriented Soft-
ware Development I, pages 293–334. Springer, 2006.

[46] D. L. Bruening. Efficient, transparent, and comprehensive runtime code ma-
nipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[47] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool
to implement adaptable systems. In Adaptable and extensible component
systems, 2002.

[48] B. Cantrill, M. W. Shapiro, A. H. Leventhal, et al. Dynamic Instrumentation
of Production Systems. In USENIX Annual Technical Conference, General
Track, pages 15–28, 2004.

[49] S. Chiba. Load-Time Structural Reflection in Java. In E. Bertino, edi-
tor, ECOOP 2000 — Object-Oriented Programming, volume 1850 of Lecture
Notes in Computer Science, pages 313–336. Springer Berlin Heidelberg, 2000.

[50] S. Chiba and K. Nakagawa. Josh: An Open AspectJ-like Language. In
Proceedings of the 3rd International Conference on Aspect-oriented Software
Development, AOSD ’04, pages 102–111, New York, NY, USA, 2004. ACM.

[51] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A
perturbation-free replay platform for cross-optimized multithreaded applica-
tions. In Parallel and Distributed Processing Symposium., Proceedings 15th
International, pages 10–pp. IEEE, 2001.

[52] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program anal-
ysis from execution in virtual environments. In USENIX 2008 Annual Tech-
nical Conference, pages 1–14, 2008.

[53] M. Dahm. Byte code engineering. In JIT’99, pages 267–277. Springer, 1999.

[54] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and
H. Mössenböck. Graal ir: An extensible declarative intermediate repre-
sentation. In Proceedings of the Asia-Pacific Programming Languages and
Compilers Workshop, 2013.

113

https://wikis.oracle.com/display/MaxineVM/Virtual+Machine+Level+Analysis
https://wikis.oracle.com/display/MaxineVM/Virtual+Machine+Level+Analysis
http://visualvm.java.net/
http://visualvm.java.net/

[55] B. Dufour, L. Hendren, and C. Verbrugge. *J: A Tool for Dynamic Anal-
ysis of Java Programs. In Companion of the 18th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA ’03, pages 306–307, New York, NY, USA, 2003. ACM.

[56] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis Frame-
work for Concurrent Programs. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing, PASTE ’10, pages 1–8, New York, NY, USA, 2010. ACM.

[57] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A Call Graph
Execution Profiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction, SIGPLAN ’82, pages 120–126, New York, NY, USA,
1982. ACM.

[58] Y.-G. Guéhéneuc, R. Douence, and N. Jussien. No Java without caffeine: A
tool for dynamic analysis of Java programs. In Automated Software Engi-
neering, 2002. Proceedings. ASE 2002. 17th IEEE International Conference
on, pages 117–126. IEEE, 2002.

[59] S. Kell, D. Ansaloni, W. Binder, and L. Marek. The JVM is Not Observable
Enough (and What to Do About It). In Proceedings of the Sixth ACM Work-
shop on Virtual Machines and Intermediate Languages, VMIL ’12, pages
33–38, New York, NY, USA, 2012. ACM.

[60] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold. An overview of AspectJ. In ECOOP 2001—Object-Oriented Program-
ming, pages 327–354. Springer, 2001.

[61] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingti-
er, and J. Irwin. Aspect-oriented programming. In ECOOP’97 — Object-
Oriented Programming, volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer Berlin Heidelberg, 1997.

[62] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: A flexible framework for
development of dynamic program analyses for Java software. CSE Technical
reports, page 20, 2006.

[63] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: Supporting Rapid
Development of Dynamic Program Analyses for Java. In Companion to the
Proceedings of the 29th International Conference on Software Engineering,
ICSE COMPANION ’07, pages 51–52, Washington, DC, USA, 2007. IEEE
Computer Society.

[64] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

114

[65] J. Maebe, D. Buytaert, L. Eeckhout, and K. De Bosschere. Javana: A
System for Building Customized Java Program Analysis Tools. SIGPLAN
Not., 41(10):153–168, Oct. 2006.

[66] J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA: Dynamic instrumen-
tation, optimization and transformation of applications. In Compendium of
Workshops and Tutorials held in conjunction with PACT’02, 2002.

[67] P. Moret, W. Binder, and E. Tanter. Polymorphic Bytecode Instrumen-
tation. In Proceedings of the Tenth International Conference on Aspect-
oriented Software Development, AOSD ’11, pages 129–140, New York, NY,
USA, 2011. ACM.

[68] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection for Java.
In Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’06, pages 308–319, New York,
NY, USA, 2006. ACM.

[69] N. Nethercote and J. Seward. Valgrind: A program supervision framework.
Electronic notes in theoretical computer science, 89(2):44–66, 2003.

[70] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’07, pages 89–100, New York, NY, USA, 2007. ACM.

[71] Y. Nir-Buchbinder and S. Ur. ConTest Listeners: A Concurrency-oriented In-
frastructure for Java Test and Heal Tools. In Fourth International Workshop
on Software Quality Assurance: In Conjunction with the 6th ESEC/FSE
Joint Meeting, SOQUA ’07, pages 9–16, New York, NY, USA, 2007. ACM.

[72] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible com-
piler framework for java. In Compiler Construction, pages 138–152. Springer,
2003.

[73] K. O’Hair. The JVMPI Transition to JVMTI. http://www.oracle.

com/technetwork/articles/javase/jvmpitransition-138768.html, Jul
2004.

[74] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and B. Chen.
Locating System Problems Using Dynamic Instrumentation. In Proceedings
2005 Ottawa Linux Symposium (OLS), Jul 2005.

[75] J. Reinders. VTune performance analyzer essentials. Intel Press, 2005.

[76] A. Sarimbekov, Y. Zheng, D. Ansaloni, L. Bulej, L. Marek, W. Binder,
P. Tuma, and Z. Qi. Productive Development of Dynamic Program Analysis
Tools with DiSL. In Software Engineering Conference (ASWEC), 2013 22nd
Australian, pages 11–19, June 2013.

[77] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot - a Java Bytecode Optimization Framework. In Proceedings of the 1999

115

http://www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html
http://www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html

Conference of the Centre for Advanced Studies on Collaborative Research,
CASCON ’99, pages 13–. IBM Press, 1999.

[78] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès, and
D. Simon. Maxine: An Approachable Virtual Machine for, and in, Java.
ACM Trans. Archit. Code Optim., 9(4):30:1–30:24, Jan. 2013.

116

List of Publications

Refereed Conference Publications

L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. DiSL:
A Domain-specific Language for Bytecode Instrumentation. In Proceedings
of the 11th Annual International Conference on Aspect-oriented Software
Development, AOSD ’12, pages 239–250, New York, NY, USA, 2012. ACM.

L. Marek, S. Kell, Y. Zheng, L. Bulej, W. Binder, P. Tůma, D. Ansaloni,
A. Sarimbekov, and A. Sewe. ShadowVM: Robust and Comprehensive Dy-
namic Program Analysis for the Java Platform. In Proceedings of the 12th
International Conference on Generative Programming: Concepts & Experi-
ences, GPCE ’13, pages 105–114, New York, NY, USA, 2013. ACM.

L. Marek, Y. Zheng, D. Ansaloni, L. Bulej, A. Sarimbekov, W. Binder, and
P. Tůma. Introduction to dynamic program analysis with DiSL. Science
of Computer Programming, 5th Special Issue on Experimental Software and
Toolkits, In Press.

L. Marek, Y. Zheng, D. Ansaloni, A. Sarimbekov, W. Binder, P. Tůma, and
Z. Qi. Java Bytecode Instrumentation Made Easy: The DiSL Framework for
Dynamic Program Analysis (Demo paper). In Programming Languages and
Systems, volume 7705 of Lecture Notes in Computer Science, pages 256–263.
Springer Berlin Heidelberg, 2012.

L. Marek, Y. Zheng, D. Ansaloni, L. Bulej, A. Sarimbekov, W. Binder, and
Z. Qi. Introduction to Dynamic Program Analysis with DiSL (Demo paper).
In Proceedings of the 4th ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’13, pages 429–430, New York, NY, USA, 2013.
ACM.

Y. Zheng, D. Ansaloni, L. Marek, A. Sewe, W. Binder, A. Villazón, P. Tuma,
Z. Qi, and M. Mezini. Turbo DiSL: Partial Evaluation for High-Level Byte-
code Instrumentation. In Objects, Models, Components, Patterns, volume
7304 of Lecture Notes in Computer Science, pages 353–368. Springer Berlin
Heidelberg, 2012.

A. Sarimbekov, Y. Zheng, D. Ansaloni, L. Bulej, L. Marek, W. Binder, P. Tuma,
and Z. Qi. Productive Development of Dynamic Program Analysis Tools with
DiSL. In Software Engineering Conference (ASWEC), 2013 22nd Australian,
pages 11–19, June 2013.

S. Kell, D. Ansaloni, W. Binder, and L. Marek. The JVM is Not Observable
Enough (and What to Do About It). In Proceedings of the Sixth ACM Work-
shop on Virtual Machines and Intermediate Languages, VMIL ’12, pages
33–38, New York, NY, USA, 2012. ACM.

D. Ansaloni, W. Binder, C. Bockisch, E. Bodden, K. Hatun, L. Marek, Z. Qi,
A. Sarimbekov, A. Sewe, P. Tůma, and Y. Zheng. Challenges for Refinement

117

and Composition of Instrumentations: Position Paper. In Software Compo-
sition, volume 7306 of Lecture Notes in Computer Science, pages 86–96.
Springer Berlin Heidelberg, 2012.

V. Babka, L. Marek, and P. Tůma. When Misses Differ: Investigating Impact

of Cache Misses on Observed Performance. In Proceedings of the 15th Inter-
national Conference on Parallel and Distributed Systems (ICPADS 2009),
pages 112–119. IEEE, December 2009.

T. Martinec, L. Marek, A. Steinhauser, P. Tůma, Q. Noorshams, A. Rentschler,
and R. Reussner. Constructing Performance Model of JMS Middleware Plat-
form. In Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ICPE ’14, pages 123–134, New York, NY, USA,
2014. ACM.

Technical Reports

V. Babka, L. Bulej, M. Děcký, J. Kraft, P. Libič, L. Marek, C. Seceleanu, and
P. Tůma. Resource usage modeling, Q-ImPrESS project deliverable D3.3.
http://www.q-impress.eu, February 2009.

V. Babka, L. Bulej, P. Libič, L. Marek, T. Martinec, A. Podzimek, and P. Tůma.
Resource impact analysis, Q-ImPrESS project deliverable D3.4. http://

www.q-impress.eu, January 2011.

V. Babka, L. Bulej, A. Ciancone, A. Filieri, M. Hauck, P. Libic, L. Marek,
J. Stammel, and P. Tuma. Prediction Validation, Q-ImPrESS Project De-
liverable D4.2. http://www.q-impress.eu/, 2010.

J. Keznikl, M. Malohlava, L. Marek, and P. Tůma. Ferdinand Project Mid-
dleware List, Tech. Report No. 2011/2. Dep. of SW Engineering, Charles
University in Prague, http://d3s.mff.cuni.cz/publications/download/
KezniklMalohlavaMarekTuma-MiddlewareList.pdf, 2011.

L. Bulej, L. Marek, and P. Tůma. Object Instance Profiling,
Tech. Report No. 2009/7. Dep. of SW Engineering, Charles Uni-
versity in Prague, http://d3s.mff.cuni.cz/publications/download/

BulejMarekTuma-Technical2009-07.pdf, 2009.

Other Publications

L. Marek, Y. Zheng, D. Ansaloni, W. Binder, Z. Qi, and P. Tuma. DiSL:
An Extensible Language for Efficient and Comprehensive Dynamic Program
Analysis. In Proceedings of the Seventh Workshop on Domain-Specific As-
pect Languages, DSAL ’12, pages 27–28, New York, NY, USA, 2012. ACM.
Invited talk at DSAL ’12.

118

http://www.q-impress.eu
http://www.q-impress.eu
http://www.q-impress.eu
http://www.q-impress.eu/
http://d3s.mff.cuni.cz/publications/download/KezniklMalohlavaMarekTuma-MiddlewareList.pdf
http://d3s.mff.cuni.cz/publications/download/KezniklMalohlavaMarekTuma-MiddlewareList.pdf
http://d3s.mff.cuni.cz/publications/download/BulejMarekTuma-Technical2009-07.pdf
http://d3s.mff.cuni.cz/publications/download/BulejMarekTuma-Technical2009-07.pdf

	I Introduction and Contribution Overview
	Introduction
	Thesis structure
	Dynamic analysis
	Application observability
	Observation using execution callbacks
	Instrumentation
	Sampling

	Dynamic analysis evaluation
	In-process analysis
	Out-of-process analysis

	Application observability in Java
	Instrumentation in Java

	Dynamic analysis evaluation in Java
	Dynamic analysis pitfalls
	Goals revisited

	Overview of Contribution
	DiSL, domain specific language for Java bytecode instrumentation
	ShadowVM, framework for remote dynamic analysis evaluation

	II Collection of Papers
	DiSL: A Domain-Specific Language for Bytecode Instrumentation
	ShadowVM: Robust and Comprehensive Dynamic Program Analysis for the Java Platform
	Introduction to Dynamic Program Analysis with DiSL

	III Related Work and Conclusion
	Related Work
	Instrumentation frameworks
	Instrumentation in machine code
	Instrumentation in Java
	Bytecode manipulation libraries
	Java instrumentation frameworks
	Frameworks with predefined probes

	Frameworks for dynamic analysis evaluation in Java
	In-process analysis frameworks
	Out-of-process analysis frameworks

	Instrumentation and evaluation frameworks without sources

	Conclusion
	Future work

	References
	List of Publications

