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jeme dva modely tieni: Tresciv a Coulombuv zékon ti¥eni, kde ovsem koeficient
tfeni muze zaviset na velikosti neznamého teéného posunuti. V diskretizované
uloze je kontaktni hranice popsana koneénym poctem parametri, tzv. navrhovy
vektor, a stavovou ulohu tvoii (v obou uvazovanych piipadech) kone¢né-dimenzio-
nalni implicitni varia¢ni nerovnice druhého druhu, parametrizovana timto navrho-
vym vektorem. V praci ukdzeme, ze v jisté piipustné mnoziné optimalni tvar
existuje pro libovolnou "rozumnou"cenovou funkci, a navrhneme vhodnou meto-
du pro jeho vypocet. Ta je zalozena na kombinaci implicitniho programovéani a
analyze citlivosti, kterd umoznuje pouziti efektivnich minimalizac¢nich algoritmu.
Aplikovatelnost zvoleného piistupu je demonstroviana na nékolika konkrétnich
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Abstract: The aim of the present thesis is to find an optimal shape of an elastic
body that is in (static) contact with a rigid obstacle. On the contact boundary we
assume two models of friction: the Tresca and Coulomb laws of friction, in which
the coefficient of friction may depend on the unknown tangential displacement.
In the discretized problem the contact boundary is described by a finite number
of parameters, the so-called design vector, and the state problem is represented
by a finite-dimensional implicit variational inequality of the second kind, that is
parametrized by the design vector. We show that, given a suitable admissible set,
an optimal shape exists for every "reasonable'"cost functional, and propose an
algorithm for its computation. To this end we combine the implicit programming
approach with sensitivity analysis, facilitating the use of effective minimization
methods. The applicability of the proposed method is demonstrated on several
numerical examples.
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Notation

Sets

B, (x)

X xY
Xn
A
0A

relint A
conv A

{$i}z‘ela {$(i)}z‘ef

empty set

set of positive integers {1,2,3,...}

set of nonnegative integers {0,1,2,...}
set, of real numbers (—oo, +00)

set of nonnegative real numbers [0, +00)
set of nonpositive real numbers (—o0, 0]
open interval in R

closed interval in R

closed ball of radius » > 0 and center x € R”
Cartesian product of the sets X and Y
XXX x---xX

n times

closure of A C X (in the topology of X)
topological boundary of A C X

relative interior of A C X

convex hull of A

sequence of elements (I C N)



Functions and mappings

f: X—=R
f: X—->R"
F:R*"= R"

z— f(z)
Q)

0071(9)
Lr()
L=(€)
HY(Q)

div f

Vf

Vf

of

of

of

D*Q
dist(x, S)

real-valued function from X into R

vector-valued mapping from X into R”
multifunction (or set-valued mapping); a mapping
from R™ into subsets of R™

function (mapping) f

space of functions having continuous derivatives on
Q up to order k € Ny

space of Lipschitz functions on €2

Lebesgue integrable functions of order p > 1 on 2
essentially bounded measurable functions on 2
Sobolev space W12(Q) of functions belonging together with
their distributional derivatives into L*((2)
divergence operator

gradient of a real-valued function

Jacobian matrix of a vector-valued function
Clarke’s subgradient of a real-valued f

Clarke’s generalized Jacobian of vector-valued f
limiting subdifferential of the real-valued function f
limiting coderivative of the multifunction @
distance of € R" from the set S C R

Linear algebra

Rn

x € R"
Ty
Rnxm

Euclidean space of dimension n

column vector = (x1,...,7,)"

1th component of x € R"

space of matrices of type n x m

unit matrix

transposed matrix

inverse matrix

= >, z;y;; Euclidean scalar product on R™
— (- 2)"?; Euclidean norm on R”

=max{|x;| | i =1,...,n}; max-norm on R"

= (2191, . . -, Tpyn)T; componentwise product on R”

= (z1/y1, ..., %n/yn)T; componentwise division on R"
= (|z1], - -, |za])?; componentwise absolute value
componentwise comparison, i.e. x; > y; Vi =1,...,n;

= > i1 2y AijBij; scalar product on R™™



Abbreviations

AGE
BT
CP
GE
ImP
MPEC
NLP
SRC

adjoint generalized equation

bundle trust

cutting plane

generalized equation

implicit programming

mathematical program with equilibrium constraints
nonlinear program

strong regularity condition



Introduction

There is virtually no area of mechanical engineering where one would not en-
counter the problem of determining the motion/position of several deformable
bodies that are or may become in contact, but cannot penetrate one another.
Moreover, in many applications it is simply not possible to neglect the action
of friction forces on the contacting surfaces. These frictional effects may be wel-
comed, e.g. in machine tools, or undesirable, e.g. because they cause wear in the
material and thus shorten the lifecycle of the contacting parts. In either case,
engineers have always tried to maximize the desired effects just by altering the
geometry of the modelled elements—this is the topic of contact shape optimiza-
tion.

From the mathematical point of view, shape optimization is the branch of
optimal control theory, where the control variable (also called design variable in
the context of shape optimization) is connected to the geometry of the problem. A
fundamental role in shape optimization problems is played by the control-to-state
mapping (or solution map) S, which assigns to each feasible value of the design
variable the set of solutions to the state problem. Thus, any shape optimization
problem can be written in the following general form:

minimize J(«,y),
subj. to  y € S(a), (1)
a € U,

where the real-valued function J is called the cost functional, U,q signifies an ad-
missible set of design variables o and S usually represents an equilibrium problem.
Typically, the state variable y is sought in a function space V («), where o deter-
mines the domain of definition of y. After suitable discretization, (I turns into a
(finite-dimensional) mathematical program with equilibrium constraints (MPEC),
where o € U,y C R™, y € R" and S : R™ == R". If the state problems hap-
pen to be uniquely solvable for each «, i.e. S is single-valued, we can substitute
y = S(a) and solve the MPEC as a standard nonlinear optimization problem.
This is called the implicit programming (ImP) approach, since the composite cost
functional J : a — J(a,S(«)) involves the implicitly defined control-to-state
mapping. Fast minimization algorithms may be applied provided one is able to
compute (sub)gradients of 7. As it turns out, this is a major problem whenever
S is complicated enough.

Due to its importance, shape optimization in contact problems has been sub-
ject to research for quite some time—let us mention the monographs |15} 16, 52|
and the references therein. For example, in [16] the two-dimensional (2D) Sig-
norini problem is considered without friction and with Tresca friction; the papers
[3] and [4] analyse the same problem with Coulomb friction in two and three di-
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mensions, respectively. In the present thesis we aim at generalizing these results
to 2D contact problems with Tresca and Coulomb laws of friction, where the co-
efficient of friction may depend on the magnitude of the tangential displacement.
By means of it one can model, e.g., in dynamic contact problems the transition
from the static friction coefficient to the dynamic one, or the stick-slip motion
during earthquakes—see e.g. [49]. In their weak formulation, contact problems
with Tresca friction and a solution-dependent coefficient of friction take the form
of an implicit variational inequality of the second kind, similarly as for the lo-
cal Coulomb law in 2D in [3]; however, in our case it cannot be proved that
the control-to-state mapping S is piecewise smooth, unless imposing additional
smoothness assumptions on the coefficient of friction. Therefore, when perform-
ing sensitivity analysis we follow rather [4] and employ the generalized differential
calculus of B. Mordukhovich to derive first order sensitivities of .S. Moreover, in
contrast to the Coulomb case, the discretized state problem is formulated as a
generalized equation with a control-dependent multivalued part, which is a rather
uncommon model in the literature. Things get even more complicated as the local
Coulomb law of friction is coupled with a solution-dependent friction coefficient;
nevertheless, the established approach proved to be successful also in this case.

The thesis consists of four chapters and an appendix. In Chapter 1 we intro-
duce the state problems while keeping the design variable a fixed. We deal with
frictional contact problems and their various variational formulations, discretiza-
tion and solvability with respect to the coefficient of friction.

Chapter 2 deals with shape optimization in contact problems with the Tresca
model of friction and a solution-dependent coefficient of friction. After recalling
briefly the main results of [43] we move onto the discrete shape optimization
problem, prove its solvability and conduct sensitivity analysis based on modern
tools from variational analysis.

The structure of Chapter 3, where we investigate shape opimization in contact
problems with Coulomb friction and a solution-dependent coefficient of friction,
very much resembles that of Chapter 2. However, in this case we treat only the
discretized shape optimization problem: Lipschitz continuity of .S and solvability
of the shape optimization problem is proved. Again, sensitivity analysis represents
the core of the chapter, providing for a subgradient of the cost functional in
numerical experiments.

Chapter 4 introduces first the tools used for the numerical realization of con-
tact shape optimization problems: the bundle trust minimization algorithm, solu-
tion of the state problems and the adjoint equations, then finally several examples
are presented.

For the sake of completeness and convenience of the reader, we provide a sum-
mary of those basic tools from nonsmooth and variational analysis (Clarke’s and
Mordukhovich’s calculus) in Appendix A that are used extensively throughout
Chapters 2 and 3.



Chapter 1

Contact problems with various
models of friction

In the following introductory chapter we describe the state problems, paramet-
rized by the geometry of the underlying domain. This will play central role in the
subsequent chapters dealing with finding an optimal value of this parameter. We
start our exposition with the classical Signorini problem in linearized elasticity
(posed originally in [51] and solved in [13] 4], paving the ground for the theory
of variational inequalities) combined with the most basic model of friction, the
so-called Tresca law. Due to its simplicity, this problem has been thoroughly an-
alyzed and questions concerning its (unique) solvability answered satisfactorily
(see e.g. the monographs [11] 22, 24] on unilateral contact problems). Based on
the aforementioned problem we introduce and analyze properties of contact prob-
lems with “generalized” Tresca and Coulomb laws of friction, where we allow the
coefficient of friction § to depend on the unknown solution (see also [19, 20] and
[30, B1] for the three-dimensional case). In particular, the classical and weak for-
mulations of these frictional contact problems shall be presented, followed by their
finite element discretization. Conditions guaranteeing existence and uniqueness
of the corresponding solutions will be recalled. Note, that in shape optimization
one does not deal with a particular state problem, but rather a family of prob-
lems, which differ in their geometry, i.e. the domain of definition of the unknown
solution. Therefore, throughout the presentation below a parameter a will occur,
that determines the shape of the underlying domain. Special attention will paid
to the unique solvability of the discrete state problems with respect to «.

1.1 The Signorini problem with given friction

We start with some basic notions from the theory of linearized elasticity and
contact mechanics. Let a planar, elastic body, in its reference configuration, be
represented by the domain  C R? with Lipschitz boundary 92 (later the geome-
try of Q will be further specified). Assume that 0€2 is composed of three nonempty,
pairwise disjoint and relatively open parts I'p, I'y, I'c so that 9Q = T pUT y UT¢.
The body € is subject to volume forces of density F : Q — R? and surface trac-
tions of density P : 'y — R2, while € is clamped on I'p. The classical Signorini
problem consists in finding a displacement field w : Q@ — R? such that the de-
formed body is in equilibrium with the forces acting upon it, whereas, in addition,



one assumes the presence of a perfectly rigid obstacle = C R? (i.e., = does not
undergo any deformation). The so-called contact boundary I'c is the part of 0,
where Q) may become in contact with =, but can not penetrate into it (see Fig-
ure [LT)). In the classical Signorini problem the contact along I'c is assumed to be
frictionless, but it will not be our case.

Figure 1.1: 2D Signorini problem.

In order to present the differential equations the unknown displacement field
u has to satisfy, we introduce the following notation: £(u) := 3(Vu + (Vu)7)
shall denote the linearized strain tensor; the stress tensor o : Q0 — R?*2 will be
linked to € by means of a linear Hooke’s law, determined by the fourth-order
stiffness tensor C : R?*? — R2?*2, Denoting by v : 9Q — R? the unit outward
normal to J€), one defines the normal component of the displacement along 02
as U, := (u)aq) - v and the stress vector as T := ov. The normal stress is defined
as the normal component of the stress vector, i.e. T,, := ov - v and the tangential
stressas T, ;=T — T, v.

By the classical solution to the Signorini problem with Tresca friction we mean
any displacement field u : Q — R? satisfying the following system of differential
equations and boundary conditions (abbreviated as b.c. below):

(equilibrium equation)

dive+F =0 in (), (1.1)
(Hooke’s law)

o =Ce(u) in Q, (1.2)

(Dirichlet b.c.)
u=0 onIp, (1.3)

(Neumann b.c.)
T=P only, (1.4)

(unilateral b.c.)
u, <d, T,<0, T,(u,—d)=0 on Tg, (1.5)

(frictional b.c.)

Uy

T <TFg, u#0 = T,= -3y

on Pc. (16)
[l
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The function d : I'c — R, appearing in (LI is called the gap (or distance)
function and the first inequality (IL5l); models the fact that the gap between
the deformed body and the rigid obstacle is positive or equal to zero; by (L)
we exclude adhesion (only compression is allowed); finally, the complementarity
condition (LI)3 says that pressure may occur only at points of contact. Here we
complement the contact boundary conditions on I'c with the simplest model of
friction, the Tresca law, or the so-called model with given friction (LG). It says
that no slip occurs until the shear stress does not attain a certain threshold value,
given by the product of the coefficient of friction § : I'c — R, and an a priori
given function g : T'c — R, called the slip bound. Note that (I.6]) is merely a
simplification of the physically more relevant and widely used Coulomb law of
friction, that will be introduced and discussed later in this chapter.

Now we specify the geometrical setting of the contact problem that will be
dealt with in the sequel. In particular, we assume that the rigid obstacle is flat
and the elastic body is represented by a “rectangle” with curved contact zone
only (since our goal is to optimize the contact boundary, this does not represent
a relevant simplification)-see Figure [[L2 Therefore, by a suitable choice of the
coordinate system, = = R x R_ (recall, that = denotes the obstacle) and 2 C
Q := (0,a) x (0,b), as shown in Figure 2 Further, we assume that I can be
described by one Lipschitz continuous function «, i.e. T = Gr . This parameter

T2
b
Q)
Co |-
I'e(a) = Gra
T
0 a

Figure 1.2: Geometry of our contact problem.

a, called the design variable in context of optimal shape design, is going to be
subject to optimization in the forthcoming chapters. An optimal o will be sought
in the admissible set

Uy = {a c %[0, a)) ‘ 0<a<(Cy in [0,a],
ld'| < Cy ae.in (0,a), (1.7)

Cy < / a(xy) dry < 022}-
0

We assume that the positive constants Cy, C;, Cy1, Css are given in such a way
that U,q # (). Thus the elastic body Q with I'c = Gr a becomes

Q=Q(a) = {(v1,72) €ER* |0 < 21 < a, a(z;) < x5 < b}
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and the third condition in (L7) translates to 6’21 < meas Q(a) < 522 with 6’21 =
ab — Cyy and Csy = ab — Cy;. In particular, by setting Cy; = Cy one may enforce
that all admissible bodies in

O :={Qa) | a € Upq}

have the same volume.

Next, let us reformulate the general contact conditions (5] and (L6]), exploit-
ing the special geometry described above. First of all, note that the inequality
(L), represents only an approximation of the nonpenetration condition between
two bodies in the framework of small deformations. In general, (I.H); does not
guarantee that the deformed body stays above the obstacle, e.g. Figure[L.3depicts
an example of () penetrating into =. Therefore, we will consider a modified ver-

Figure 1.3: Penetration into the obstacle.

sion of the complementarity system (L)), which ensures nonpenetration ezactly,
along the whole I'c:

— uz(m) S T2, TQ(Q?) Z O, Tg(m)(ug(m) + 1‘2) =0 for xe€ Pc. (18)
The corresponding friction conditions then take the form:

71| <Fg, w1 #0 = Ty =—Fgsgn(u;) on T¢. (1.9)

Convention. Note that (L8)—(L9) and (LH)—(LE) are equivalent, provided that
v(z) = (0,—1)T Vx € T¢ in the chosen coordinate system, i.e. if T'¢ is affine.
Therefore, given any vector field v : I'c — R?, we will sometimes use the more
illustrative terms of tangential and normal component for the coordinate functions
V1, Uy, respectively.

Although until the end of this chapter the parameter o € U,y will be fixed
(unless stated otherwise), the notation shall highlight the fact, that a given quan-
tity depends on this parameter. To this end, we will write e.g. ['c(«), Ly, u(a),
etc.
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1.1.1 Primal variational formulation

Let us proceed with the weak formulation of (LI)-(T4) and (L8)-(L9). In order
to do so, let us introduce the following function spaces:

Via):={ve H(Q(a)) | v=0o0nTp(a)},
Via):=V(a) x V(a),
K(a)={veV(a)| —vy <d, onTc(a)},

where the equality and inequality conditions on parts of the boundary 0Q(«) are
meant in the sense of traces, and the distance function d, is given by (cf. (L.8))):

do(x) = a(z1) Ve eTlo(a).

As usual, the weak formulation of the problem (LI)—(L4), (L8)—(L9) can be
easily derived by multiplying (1)) by (v — u) for some v € K («), applying the
Green theorem and using the fact that T - (v — w) = T1(v1 — uy) + To(ve — us).
In the end, one arrives at the following definition:

Definition 1. By a weak solution to the Signorini problem with given friction
we mean any function u := u(a) € K(«) satisfying the following variational
inequality:

Find u € K(«a) such that:

ao(u, v — u) + jo(v) — jo(u) > Lo(v —u) Vv € K(a), } (A(a))

where the bilinear form a,, linear form L, and convex, proper functional j,,
respectively, are given by:

o (u,v) ::/ Ce(u) : e(v)dx Yu,v € H (Q(a)), (1.10)
Q(e)

Ly(v) :== /Q(a) F - -vdx + /FN(Q) P-vds Yve H (Q)), (1.11)

Ja(v) ::/F ( )§g|vl| ds Yv e H'(Q(a)). (1.12)

Concerning the regularity of the data, we will assume the following:
(D1) F e L*(Q),
(D2) P e H'(Q),

(D3) C = (Cijkl)?jk > Where ¢ € Lw(ﬁ) and satisfy the usual symmetry and
ellipticity conditions:

Cijkl = Cjikl = Criij V4,7, k, 1 € {1,2},
3Cyell >0: Cg : g Z Cell||€||2 v§ € R2X27€T = g

Moreover, to ensure uniform coercivity of a, on V(a) x V(«) with respect to
a € U,q, we will assume that

13



(A4) Jep > 0 Va € Uyg : meas(I'p(ar)) > ep.

The symbols C, F, P, appearing in (L.I0) and (LII) are then to be understood
as restrictions of the mappings declared in (D1)—(D3) onto Q(«) and I'y(a),
respectively. Conditions on § and g, guaranteeing existence of a weak solution,
are specified below.

Theorem 1. Let § € L™(T¢(a)), § > 0 and g € L*(Tc(a)), g > 0 be given.
Then (A(a)) has a unique solution u € K («). Moreover, uw may be equivalently
characterized as the (unique) solution of the variational problem

T | -
minimize §aa(’v, V) + ja(v) — La(v) (1.13)
subj. to v € K(a).

Proof. See e.g. [22]. O

1.1.2 Mixed variational formulation

Yet another reformulation of (A(«)) (or (LI3])) is the so-called mized formulation,
involving Lagrange multipliers for releasing the nonpenetration condition. This
way the constrained minimization problem ([LI3)) can be turned into a saddle-
point problem (for more details on the Lagrange multiplier technique in convex
optimization the reader is kindly referred to [12]). Before giving the anounced
mixed formulation, we will need some more notation to introduce the Lagrange
multiplier space:

X(a)={pc L*T¢(a)) | e V(a): v=yonTc(a)},
Xi(a) :={peX(a)[¢=0o0nTc(a)},

X'(a) denotes the topological dual to X (),

Xi(@) = {p € X'(a) [ (1, ) x7(),x(a) = 0 Yoo € Xy (a)}.

It can be easily seen that
ve K(o) & veVia)and (u,vs+ do) x(a),x() = 0V € X! ().

In light of the above characterization of the closed, convex cone K («), the La-
grangian corresponding to (L.I3) is given for each (v, ) € V(o) x X! (a) by

1 )
‘Ca(va M) = 5(104(’0’ ’U) +joz(’v) - La(’U) - <M7'U2 + da>X/(a),X(a)-

Let us recall that by a saddle-point of L, we mean a pair (u,\) € V(a) x X! (a)
satisfying:

Lo(u,p) < Lo(u,X) < Lo(v,A) Y(v,p) € V() x X\ ().

In the context of mixed variational formulations, v is called the primal variable
and p the dual variable, explaining also the title of the previous section.
Concerning the existence of saddle-points of the Lagrangian, we may state fol-
lowing result.
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Theorem 2. Let the assumptions of Theorem [ be fulfilled. Then L, has exactly
one saddle-point (u, \) € K(a) x X! («), that is also the only solution of:

Find (u,\) € V(a) x X', () such that:
o (U, v — ) + jo(v) — jo(u)

> Lo(v—u) + (A, v2 — Ug) x/(a),x() VYV € V(a),
(=X s+ da) xr(a),x(@) 2 0 Vp € X ().

(A(a))

Moreover, the first component of the saddle-point satisfies: uw € K(«) and is the

unique solution of (A(w))), whereas A = To(u).

Proof. Existence and uniqueness of the saddle-point follows from [12]; for the
second assertion see [22]. O

The saddle-point system (A(«)) is called the mized formulation of (A(«)]) and

it is this formulation we will consider in our state problems, since it allows for
the direct computation of the normal contact stress 75, as well.

1.1.3 Approximation
Now we present a discretization of the contact problems (A(a)]) and (A(«))) by the

finite element method. Throughout this section let the discretization parameter
h:=a/(p—1), for some p € N,p > 2, be fixed, and denote by A, = {0 = a! <
a’ < -+ < aP = a} the equidistant partition of [0,d], i.e. @’ := (i — 1)h Vi =
1,...,p. Let the symbol P;(Aj) stand for the set of all piecewise affine functions
over A, and let a; € U, := Pi(A) N U, be given (nonemptiness of UM, is
implicitly assumed). On the polygonal domain Q(ay,) we introduce a triangulation
Tn(ay), that meets the following requirements:

(T1) the nodes of Ty(ay) lie on the lines {a'} x R, i =1,...,p for all oy, € U";

(T2) the number of nodes in 7,(cy,) as well as the neighbours of each triangle
from 7y (cy,) are the same for all oy, € u[;d;

(T3) the position of nodes of T;(cy) depends smoothly on changes of oy, € UM;

(T4) the triangulations Ty, (cy,) are compatible with the decomposition of 0Q(ay,)
into Cc(ay), Tp(ap) and Ty (ay) for all oy, € UM,

The triangulations Ty (ay) from the system {7y (au) | i, € UM} satisfying (T2)-
(T4) are called topologically equivalent. On Tp(ay,) we define the standard, con-
forming piecewise linear finite element space

Vh(ah) = Pl(ﬁl) N V(Ozh) = {Uh € C(ﬁ(ah)) | Uh|K € Pl(K) VK c E(ah),

vy, =0 on Tp(ay)}

and
Vh(ah) = Vh(ah) X Vh(ah).

Let further:

Kh(ozh) = Vh(ah) N K(Ozh) = {’Uh € Vh(ozh) | —Vpo < dah on Fc(ah)},
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where, for simplicity of presentation, we assume that I'p(a,) NTe(ay) = 0, i.e. all
nodes A’ = (a*, ay,(a’)), i = 1,. .., p are contact nodes, for each oy, € U",. Notice,
that since both vy, and d,, are piecewise linear over the same partition of I'c(ay),
it holds that K(ay) # 0. Finally, let r, : C(Tc(ap)) — Py (Th(an)|re(an)) N
C(I'c(ay)) denote the piecewise linear Lagrange interpolation operator on the
partition 7y (c)|ro(ay) of To(an). Now we state the discretized version of our
contact problem as follows.

Definition 2. By a discrete solution of the Signorini problem with given friction
we mean any function u, € Kp(oy,) satisfying:

Find u;, € Kp(ay,) such that for all v, € Kp(ay,) :

Aoy, (Uh, U — W) + Jhay (VR) = Jhay (Wh) > Lo, (v — up),

} (An(an))

where

Jhay, (VR) 1= / Sgrnlvni|ds Yo, € Vi(ayp). (1.18)
Fe(an)

Remark 1. The use of the Lagrange interpolation operator in (LI8) might seem
unjustified. Nevertheless, it will make more sense in the model with Coulomb’s law
of friction. At this point just let us note, that the convex functional j, in (LI2)
can be defined with g € X'(a) as well: j,(v) = (89, [v1]) x/(a),x(a) YV € V(). Tts
discretization then involves a functional g, € X/ (ay,), where the definition of the
discrete trace space X (ay) is analogous to (LI4) (see also below).

Since the discretization introduced above is conforming, i.e. Vi (ay) C V(ay)
and Ky (ap) C K(ay), and jj,, is convex, lower semicontinuous, the following
theorem is obvious (compare with Theorem [I]).

Theorem 3. Let the assumptions of Theorem/[d hold. Then (A («ay)|) has exactly
one solution u, € Ky(ay). Moreover, uy, is the unique solution of the following
conver optimization problem:

| -
minimize 5 aa, (Vn, V1) + Jhao, (Vn) = Lay (V1) (1.19)
subj. to v, € Kp(ay).

Next we turn to the discretization of the mixed problem (A(ay)). One of
the advantages of the mixed variational formulation is that it allows the (almost)
independent approximation of the primal and dual variables, i.e. the displacement
u and normal contact stress A in our case. We will present, two examples. However,
before being able to do so, we need to introduce the discrete counterparts of the

spaces (ILI4)—(TI7).

Convention. For any function ¢ € I'c(8) — R, defined on the contact boundary
Lc(B) for some 5 € Uyg, we will denote by @ : (0,a) — R its transport onto (0, a),

i.e. p(xy) := (a1, B(xy)) for x1 € (0,a).
Keeping this convention in mind, let (compare with (LI4)-(L.I3) in the con-
tinuous setting):
Xy, = {on € L*(0,a) | 3a, € U, Fv, € Vi(ow) : Dn = @ in (0,a)},
Xpy o= {¢n € X, | o> 01in (0,a)}.
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Tt is easy to see, that X}, is actually independent of ay, and X, = Py (AL)NC([0, al)
(recall our assumption that I'p(ay) N Te(an) = 0). Notice that in particular
an € Xpo holds.

The Lagrange multiplier set X/, («), defined in (II7), shall be approximated
in the following manner. Let L u be a finite dimensional space that is in duality
with )/(\'h and denote by (-, ) gy, : EH X )/(\'h — R a duality pairing between the two
spaces. Then, let KH denote the cone of all nonnegative elements of ZH, i.e. for
each uy € Ay it holds that: (g, on)yan > 0 Yoy, € )A(h+. The only requirement
concerning L g we shall need, is the following stability property:

s on)in =0 Vo € ] =y =0, (1.20)

Now, the discrete Lagrangian on V' (ay,) X Ay is given by:

1

Lo, (Vn, forr) == Eaah('vha V) + Jhay, (Un) — Lo, (Vn) — (b, Une + an) -

The next result should be compared to Theorem

Theorem 4. Let the assumptions of Theorem [ and the condition (L20) hold
true. Then Lnp ., has exactly one saddle-point (wp, Ag) € V(o) X Ag. It can
be determined as the unique solution of the saddle-point system.:

Find (up, Agy) € Vip(ap) X JAXH such that:

o, (Why Vi = UR) + Jhay, (VR) = Jhoay, (Un) (Apm(an))
> Lo, (vn — up) + (Mg, Up2 — Un2)un - Vor € Viu(an),

(i — Ao o + ondmn >0 Vg € Ay

Moreover, the first component wy, of the saddle-point is the (unique) solution of
the variational inequality:

Find uy, € Kpy(ay) such that:

Ay, (Uhy Vi — Up) + Jhiay, (VR) = Thia, (Un) (Anm(an))
> Lah (’Uh — uh) V'Uh S KhH(ah)a

where:

Kpu(an) = {vn € Vilan) | =, On2)an < (s an)mn Yo € A}, (1.21)

The second component Ay of the saddle-point is the Lagrange multiplier releasing
the constraint u, € Kpy(ay).

Proof. Follows from [12] and (L20). O

Notice that the “primal” variational inequality (Ang(ay)) is, in general, dif-
ferent from ((Ay(ay,)), as demonstrated by the following two examples.

Example 1. First, we construct a “conforming” discretization of (A(«a)). To this
end, let §' denote the Dirac measure concentrated in the ith node of the partition
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Ap,i=1,...,p and define Ly = span {&', ..., 6"}, endowed with the standard
duality pairing. Hence

-~

p
AH:{MHELH’MH:Zﬂi(sia pi € Ry WIL---J?}
i=1

and the stability condition (I20) holds true. In addition:

KhH<Oéh) = {’Uh € Vh<Oéh) | —/ﬁhg(ai) < CYh(CLi) Vi = 1,... ,p}
= Kh(ah) C K(Oéh).

Therefore, in this case the first component of the solution to :AhHiahE) is also
the unique solution to the primal variational inequality (A (ap))).

Example 2. In this example we consider a more regular approximation for the
Lagrange multiplier space, such that Ay C L?(0,a) holds. Given the equidistant
partition A, of [0, a], we construct another partition Ay := {0 = a'/2 < %2 <

- < aP™/? = a} by setting a't/? := (' + o) Vi =1,...,p— 1 as shown in
Figure [L4l Now let S7 := (a/~'/2,a’*'/2) and x’ be the characteristic function of

Ay : 0=all? a3/? /2 aP—1/2 gpt1/2 —

Figure 1.4: Partition Ay.
S, 5 =1,...,p. Then we define

Ly = Po(Ay) = span {x', ..., X"}

to be the space of piecewise constant functions over Ay and
Ay = {MH € Ly ) P = me’, pi € Ry, Vi= 1,---,p}-
i=1

Taking the L*(0, a)-scalar product as the duality pairing between Ly and )?h, we
see that the stability condition (L20) is satisfied. On the other hand, one gets:

Khulan) = {'vh e Vilan) ‘ _ /

/ﬁthﬂfl S/ Oéhdl’l VJ = 1,...,])},
SJ S

i.e. the first component of the saddle-point satisfies the nonpenetration condition
only in the sense of integral averages. Since Kppu(a) € K (o), we speak of an
external approximation of K (o).
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1.1.4 Algebraic formulation

When deriving the algebraic form of the discretized mixed-type contact problem
, i.e. in terms of algebraic equations and inequalities, we proceed as
follows. First, let us denote n := dim V',(ay,) Il and by construction we have
p = dim X n. Denoting the Lagrange basis functions of these piecewise linear finite
element spaces by {¢},...,¢n} and {¢},..., ¢V}, respectively, we immediately
see that V'j,(ay,) is homeomorphic to R™, and the discrete admissible set U", can
be identified with the convex, compact set

Uad::{aeR{; 0<a<CoVi=1,....p,

i =i < CihVi=1,....p =1, (1.22)

2 i 9
5021 < ;(Oﬁ + a;q1) < ECZQ}-

In the sequel, unless stated otherwise, a € U,y will be fixed and we will consid-
er the mixed problem , where a;, € U", has the coordinates o with
respect to the basis {¢}, ..., ¢} For up, v, € Vi (ay) denote their coordinates
with respect to {¢},..., o7} by u € R" and v € R", respectively. The coor-
dinates of Uy, Upo € X, with respect to {¢f,...,¢"} shall be denoted in order
by v, € R? and v, € RP. Tt is easy to see that (v,); = vpi(a’, an(a’)) and
(v,); = vpa(a’, ap(a®)) for every @ = 1,...,p, which means that v, and v, are
actually subvectors of v. This justifies their notation, and we shall call v, and v,
the tangential and normal component of v along the contact zone.

Further, we will denote by A(a) € R™*™ and L(a) € R” the stiffness matriz
and load vector, respectively, given by

A(@) = (a0, (£ 20,51, and L(@) = (Lo, (2}); - Ly (91))

As the triangulations Ty, («y,) satisfy (T2) and (T3), the mappings A : U,y — R™*"
and L : U,q — R™ are smooth, i.e. C*. Moreover, the matrices A(a) are symmetric
and uniformly positive definite:

Iy>0: (Ala)v,v), >7|v]2 Vv eR"Va € Uy, (1.23)

as follows from Korn’s inequality and the topological equivalence (T2)—(T4) of
the triangulations, ensuring that the mapping a — A(a) is smooth.

For the evaluation of the nonlinear frictional term jj o, , defined by (LIS),
we will use numerical integration, namely, the compound rectangle rule over the
“refined” partition A, U Ap of [0,a] with a® € Ay, i =1,...,p as the integration
nodes. This means that for every : =1,...,p:

S| On | )2 dry =~ \/h2 (vic1 — @)*Bigil(v7)il,  (1.24)

where §; = F(a', an(a?)), g := g(a’,an(a’)) and 7, : C([0,a]) — Pi(Ay) N
C([0,a]) stands for the piecewise linear Lagrange interpolation operator defined

!Note, that due to condition (T2), satisfied by the triagulations 73 (), n is independent of
ap € ufd.
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on Ay,. Obviously: 7,0 = m,p for every p € C(T¢(ay)) and oy, € U",. Similarly
to (L24) we write the quadrature rule on [a’,a’"'/?] and sum both expressions
fori=1,...,p to obtain:

Ihan (V) sz )Sigil(vr)i, (1.25)
where
%\/h2+(041—042)2 ifi=1,
wila) = ¢ (VB2 + (i1 — )2+ /B2 + (o — ai1)?) if2<i<p—1,
VP2 + (ap1 —a,)? if i = p.
(1.26)

For the discrete Lagrange multiplier space EH we choose the piecewise con-
stant functions over Ay as described in Example 2 of the previous section and
apply the same quadrature rule as above to evaluate the terms (upy,Vn2)mn,

g € Ap. Denoting the coordinates of py with respect to the basis {xs1,..., Xs» }
by p € R, we have:

p
(Do = Y hipti(v,)i,
i=1
where h; := h/2 if i = 1 or i = p, and h; := h otherwise. However, instead of the

quantities u; > 0, we will be computing (h;u;) > 0, as follows from the definition
of the algebraic problem below.

Definition 3. By the algebraic Signorini problem with given friction we mean
the following variational inequality:
Find (u,A) € R" x R% such that:
(Al)u, v —u)y + (w(a) e F e g, [vr] — [ur|),
> (L(ar),v —u)p, + (A, v, —u,), VveR"
(B—Au,+a),>0 YueRE,

(Aar))

where the operator @ : RP x R? — RP, uw e v := (uvy,...,u,v,)", denotes the
elementwise product of vectors.

Remark 2. Suppose that (uw,X) € R" x R is a solution to (A(c))). Then:

\
(A, v,), \i(v,); = ' (v,)iwi(a m/ AalgUn2 ds,
Z Zwl(a)( ) ( ) Toan) lgVh2

i=1

p
- A\ -
where Ay, € L*(Tc(ay)) is such that Ay, = E ( )Xsi € Ay, i.e. Ay approxi-
w;l &
i—1

mates the Lagrange multiplier A € X’ («,) from the continuous problem (A(ay)).

When interpreting u, the first component of the solution to (A(a))), we find
(Al

that u € K(a) = {v € R" | —v, < a} as follows from (A(a)))2, which is a
consequence of the used integration formula. Moreover, w solves the variational
inequality:

Ald)u, v —u), + (w(a) e Feg,|v,| —|u]), > (L), v —u), YveK(a).
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In particular, we see that, as an effect of the numerical integration, one retains an
inner approximation K (ay,), i.e. the corresponding discrete solution wy, satisfies
the nonpenetration condition along I'c:(a;). On the other hand, Ay, (see previous
Remark 2]) and wy, satisfy the complementarity system only approximately.

Remark 3. The algebraic system (A(a))) is the same as if we had used the ap-
proach of Example 1 from the previous section, only the interpretation of the
multiplier vector A € RY is different-—see the explanation above.

For the sake of completeness, let us formulate the following theorem concerning

the solvability of (A(a)).

Theorem 5. Let §, g € RY be given. Then (A(a)) has a unique solution (u, X) €
R™ x RE for each o € Uyg.

In the subsequent sections and chapters we shall need the following properties
of the solutions to (A(a))), formulated in a lemma below. Before proceeding to

this lemma, however, we give another auxiliary result.

Lemma 1. There exists a constant B > 0 such that:

M, Uy
sup WDl 5 g v e R (1.27)

o£verr  ||[V]|n

Proof. Denote by N € RP*™ the matrix that represents the linear mapping v —
v,, i.e. Nv = v, Vv € R". Then one has:

B, v, N'p,v),
sup By gy OOy

ozvern [Vl ozvern [[0]]

The function p — ||[NTpul|, is nonnegative and continuous in RP, therefore it
attains its minimum on the unit sphere. Denoting this minimum value by £, it
can be immediately seen that 8 > 0 iff Ker (NT) = {0}, i.e. if N has full row rank.
In our case N has in each row exactly one element equal to 1, all other elements
are 0, and the ones appear at different indices. Thus the proof is complete. [

On the basis of the previous result, it is not difficult to derive the following
upper bounds on the solution of (A(a)).

Lemma 2. (i) Let (u,\) € R" x RE be the solution to (A(a)). Then:

faaf < 0@y < (M " 1) 1L ()]l

B

(ii) Let, in addition, (@, A) € R™ x RE be the solution to the problem ,
but with o different load vector L € R™. Then:

L — L, _ 1 /1A _
fu—af, < B =l 5y <2 (M ; 1) |L(a) - L.
o B o
Proof. See Proposition 3.2 and Proposition 3.5 in [4]. O
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Let us conclude this section on the classical Signorini problem with Tresca
friction by splitting the system of inequalities into separate relations for
the “interior” variables, i.e. the degrees of freedom corresponding to nodes lying
in the interior of Q(ay,) or on I'y(cy,), and the contact variables, i.e., the ones de-
fined on T'¢(ay,). Such a splitting reflects the structure of contact problems more:
it shows that the nonsmooth nature of these problems stems from the contact
conditions, expressed in terms of variational inequalities for w,, u,, A, whereas
the internal variables are linked to the contact ones “only” by means of a linear
mapping involving the inverse of a symmetric, positive definite matrix. Finally,
we rewrite the resulting system of equations and inequalities into a generalized
equation (GE). This form will be more suitable for the techniques involved in
sensitivity analysis to come in later chapters.

In order to derive the aforementioned form, we split the displacement fields
into two parts: v = (Vint, Veont) € R"2 x R?, where veon; = (v, v,) € R? x RP
comprises the components of v associated with the tangential and normal dis-
placement along I'c(cy,). We split the load vector similarly into “interior” and
“contact” part: L(a) = (Ljn(at), Leont(ax)); the stiffness matrix is handled ac-

cordingly:
o A CA(a) Ay
() = [Aci(a) Acc(a)]'

Resulting from the properties of A(a), the matrices A;(a) and A..(cx) are sym-
metric and uniformly positive definite, whereas A;.(a) = A (). Now, testing
the first inequality in (A(@)) by v = (Vint, Wint), Vine € R"™? arbitrary, yields:

Azz(a)umt = LGt<a) - Aic<a>ucont7 (128)

from which:

Wipt = Ai’il(a)Lmt(a) — A;l(a)Aic(a)uwm. (1.29)
On the other hand, inserting v = (Win, Veont) into (A(a))), such that v, € R?*
is arbitrary, gives:

<Aci<a)uint + Acc(a)ucontu Veont — ucont>2p + <w(a> L 3 ® g, |'v7‘ - |u7‘>p

Z <Lcont(a)7 Veont — ucont>2p + <)\7 vy, — uu>p7

which, combined with ([L29)), yields:

<AS(a)’u’conta Ucont — ucont>2p + <w(a) eFe g, |’UT| — |’U,T|>p
> <LS<a)7 Veont — ucont>2p + <)\, vy, — ’Uz,/>p. (130)
Here Ag(a) := Ac(a) — Ag(a)Aj; (o)A (a) denotes the Schur complement to

Aj(a) in A(ar) and Lg(ex) := Lcoit(a) — Aci(a)A;il(a)Lmt(a).

Further, according to the decomposition v = (v,,v,) € RP x RP, let us

split:
A(a) A (o)
AS(Oﬁ) = {Aw(a) Aw(a)} )

where the submatrices satisfy: A . (a), A, () € RP*P are symmetric and uni-
formly positive definite and A, (a) = A, (a)”. The vector Lg(c) is decomposed
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analogously into a “tangential” and “normal” part: Lg(a) = (L,(a), L,(c)).
First, we test (L30) with veone = (7, w,), v, € R? arbitrary and obtain:

(Arr(@)ur + Az (U, vr = Ur)p + (W(a) @ F @ g, [vr] — [ur|),
> (L, (), v; —u,), Yv,eRP
or equivalently:
0c A ()u, + A (a)u, — L () + Fjao(u,), (1.31)

where 0j, stands for the convex subdifferential of j,(w) := (w(ax) e F o g, |w|),,
w € RP.

In a similar fashion, by inserting v = (u,,v,), v, € RP arbitrary into
(L30), we arrive at the equation:

0=A,()u, +A,(x)u, —A— L,(cx). (1.32)

Finally, employing the notion of the convex normal cone (cf. [12]), we may
rewrite the second inequality in (4(a)), expressing the nonpenetration condition,
as:

0 € u, + o+ Ngz (A). (1.33)

To summarize, we have shown that the pair (u,A) € R™ x R% is a solu-
tion to the Signorini problem with Tresca friction if and only if u =
(Wing, Ur,w,) € R x RP x RP, where wu;,; satisfies (L29) and the contact
variables (w,,u,, A) solve the following system of GEs:

0€ A ()u, + A ()u, — Ly () + Q- (e, uy),
0=A,(0)u,+A, (x)u, —A— L,(ax), (1.34)
OEu,,+a—|—NRp()\).

Here the multifunction @), : U,y X RP = RP? is defined as:

Q- (o, w) := Jja(w 82% )Sigi|wil

wl(a)&gﬁ\wl\

wp () pgp0|wy|

as follows from the sum rule for the subdifferential of convex functions [12], Propo-
sition 5.6]. Moreover, Theorem [l ensures that, given any &, g € R, (L34) is
uniquely solvable for each a € U,y. Once the contact displacements ..,y =
(u,,u,) have been determined, the internal ones w;,; can be computed by solv-
ing the system of linear algebraic equations (.28]).

1.2 Tresca model with a solution-dependent coef-
ficient of fricion

Up to now we have assumed that the coefficient of friction § is constant, or
depends on the spatial variable only. In some situations, as experiments show,
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it is more appropriate to model the coefficient of friction as a function of the
unknown displacement (or, better, as a function of the slip velocity in dynamic
problems) as well. Namely, we will assume that § depends on the magnitude
of the tangential displacement. The generalized version of the friction condition
(L9) on T'c(«) now reads as:

up =0 = [T1] < F(0)g,

u #0 = T = —F(Jui])g Sgn(ul)} on I'c(a), (1.35)

where § : R, — R is continuous and bounded (for sake of simplicity, we neglect
the dependence on the spatial variable); all other symbols have the same meaning
as before. As it was done for Definition [I one may proceed analogously to obtain

the weak formulation of (LI)—(T4), (L8) and (L.35):

Definition 4. By a weak solution of the Signorini problem with given friction
and a solution-dependent coefficient of friction we mean any solution of:

Find u := u(a) € K(«) such that:

o (U, v — u) + jo(u,v) — jo(u,u) > Lo(v—u) Yo € K<04)7} (P(a))

where

jalw, ) = /  Slmlgnlds Ve € H'(©(@)
I'o(a

Problem ([P(«))) is an implicit variational inequality of the second kind. Had
we known the function |u;| € X () (cf. (LID) for the definition of X, («a))
a priori, (P(a)) would turn into a standard variational inequality of the form
(A(a))). This trivial observation leads to the following equivalent characterization

of the solutions to (P(a)):
Proposition 1. For any ¢ € X (a) denote the problem (A(w)|) with the coeffi-
cient of friction Fo p € L¥(I'c(a)) by (A(e, ). Consider the mapping:

X, () = Xi(a), 9 (@)l

where u(p) is the (unique) solution of (A(a,¢)). Then u solves (P(«)|) iff w is
the solution of (A(a, ¢*)), where ©* is a fized point of the mapping ®.

On the basis of Proposition [Il and using appropriate fixed-point theorems, the
following existence and uniqueness results are not difficult to prove.

Theorem 6. Let § : R, — R, be continuous and bounded: 3C,,q, > 0 Ve € R, :
0 < F(x) < Chaas g € L2(Te()). Then ([P(a)) has at least one solution.

Proof. See [19]. O

By strengthening the assumptions on § and g, one may ensure unique solv-
ability of (P(«))), as follows from the next theorem.

Theorem 7. Let, in addition to the assumptions of Theorem [6, § be Lipschitz
continuous: 3Cy, > 0 Vr,y € Ry + [F(z) — F(w)| < Cuplr — y|, and g €
L (Te(w)). There exists a constant C > 0 such that if Clip|gl|1=re(a) € (0,C),
then ([P(a)) has exactly one solution. Moreover, C' can be chosen independently
of a € Uyy.
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Proof. See [19] and [43, Thm. 1.2], where the exact form of the bound C' is also
given. O

Assuming that the slip bound g is a restriction of a given function g € C(ﬁ)
onto I (), ||g]| Lo (re (a)) can also be estimated independently of a. In this case the
second assertion of the previous theorem yields, that the state problems (P(a)))
are uniquely solvable for all &« € U4, provided the coefficient of friction is Lipschitz
continuous with a sufficiently small modulus Cj;;,. In the sequel we will rely on
this property when dealing with the shape optimization problem.

Exploiting the fixed-point structure of , described in Proposition [I], and
using Theorem P we may write the mixed form of (P(«)) as follows.

Theorem 8. Let the assumptions of Theorem[7 hold. Then the system of varia-
tional inequalities
Find (u,\) € V(a) x X', () such that:
ao (U, v — u) + jo(u,v) — jo(u,u)
> Lo(v—u) + (A v2 — U2) x/(a),x(a) VYV € V(a),
(=X us +da) x(a),x(0) = 0 Ve X\ (a),

(M(a))

has exactly one solution. Moreover, the first component of the solution w lies in
K («) and is the unique solution of (P(«)); for the Lagrange multiplier we have:

We will call problem (M («)) the mixed formulation of (P(«)).

1.2.1 Approximation

Instead of discretizing (P(a)) and (M(«)|) directly, we define the discrete ver-
sions of these problems by means of parametrized Signorini problems with given
friction and a coefficient of friction, which does not depend on the solution. As
in Proposition [Il the value of this parameter will be a fixed-point of a suitable

mapping.
Let a discrete design variable a;, € U, be  given and recall the definition of the

finite dimensional spaces V,(ay,), Xh+ and AH For any ¢, € Xh+ let us denote
the discrete contact problem (Anp(an)) with the coefficient, of friction given by
S opn as (Anm(an, ¢n)):

Find (up, Ag) € V(o) X KH such that:

Aoy, (Uh, VR — W) + Jhoan, (P13 VR) = Jhap (On; Un) (Gorr(on. on)
> La, (v —wp) + (Mg, Uha — Un2) . Yoi € Vip(ow), P h

(e — A, Upz +doy )un >0 Yy € Ag.
As in (LI8), the functional jj ., is defined as:

T (03 0) = / Son) Tty /1 + (@) der Ve € K vn € Vilan),
0

where the first argument of jj ,, now signifies the composition of § with j.
Recall, that 7, : C([0,a]) — P1(Ay) N C([0,a]) stands for the piecewise linear
Lagrange interpolation operator defined on A,.
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Definition 5. Let us define the mapping:
Dp: Xnp = Xt o > malUni(en)],

where wy, () is the solution of (Anz(au, ¢n)). Then, by a discrete solution to
the Signorini problem with given friction and a solution-dependent coefficient of
friction we mean the solution (us, Agr) € V(o) x Ay of (Apg(an, ¢})), where
¢} is a fixed-point of @y,

Inserting the fixed-point of @), into (Apu(an, ¢})), it can be easily seen that
(un, Ag) is a discrete solution in the sense of Definition 5] whenever (uy, Ag) solves
the following system of variational inequalities:

Find (wn, Aiy) € Viu(an) x Ay such that:
Aoy, (Wh, Vi, — W) + Jhay, (ThlWn1|; VR) — Jhoay, (| Uk | wp)
> Lo, (v, — up) + (Mg, Uha — Un2) . You € Vi(an),

(it — A Tna 4 do Y in >0 Vg € Ay

(Mpp(an))

Again, due to Definition B via fixed-points and the unique solvability of
the auxiliary problems (Any(an, ¢n)) (cf. Theorem M), quantitative analysis of
(Mg (ap)) can be carried out by means of suitable fixed-point theorems applied
to ®,. This is the idea behind the proof of the following theorem and can be
found in [19)].

Theorem 9. (i) (existence) Let the assumptions of Theorem [6 be satisfied.

Then (M (ay)) has at least one solution for each oy, € UM,

(ii) (uniqueness) Let the assumptions of Theorem[q be satisfied, i.e. § is bounded
and Lipschitz continuous in R ¢ with Lipschitz modulus Cyy,, g € LY (To(an)).
Then there exists a constant Cy > 0, such that the following implication

holds: if Ciip||g|Lo(re(an) < C’g, then (Mpm(ag)) has a unique solution.
In addition, the upper bound Cy; may be chosen independently on h and

Remark 4. From [43, Thm. 1.2] and [43, Thm. A.5] it follows that Cy < C, i.e., if
Chip 1s sufficiently small, both the discrete and continuous state problems possess
a unique solution.

Finally, the interpretation of the solution (wy, Ay) to the mixed-type prob-
lem (M}, (ay)) is the following. The first component u, € Kyy(ap) = {v, €
Vh(Oéh) | _<,UH76h2>Hh < <,uH, Oéh>Hh V/LH € KH} and solves the following 1rnp11(:1t
variational inequality:

Find u;, € Ky (ap) such that:

Aoy, (U, U — W) + Jnoay, (Th|Un1 ] 0R) = Jhoay (Th|Un1]; wn)
> Lo, (vp, —up) Yo, € Kypp(ap)

The second component Ay is the Lagrange multiplier releasing the discretized
nonpenetration constraint u, € Kpy(ap).
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1.2.2 Algebraic form

The algebraic form of , suitable for numerical computations, can now
be very easily derived from Definition bl and the results of Section [LT.4] where all
the necessary work has already been carried out. In the sequel we shall use the
notation introduced therein.

Let a € U,q (cf. (I22)) be given and fix one ¢ = (p1,...,¢,)7 € RE. By
(A, )) denote the mixed form of the algebraic Signorini problem with given
friction (A(c))), where the coefficient of friction is given by the vector F(p) =

(3(p1), .- ,g(gop))T e R, ie.
Find (u,A) € R" x R% such that:
(Ala)u, v —u)y + (w(a) e F(p) o g, |[v-| — |ur])y

A
> (L(a),v —u), + (A, v, —u,), YveR" (Al )
(p—ANu,+a),>0 VYpueRE,
Now, as in Definition Bl we define the mapping
U, :RE S RE U () = |u,l, (1.36)

where wu, is the subvector of the first component of (u,A) := (u(¢), A(¢)), the

solution of (A(c, ))). Note, that due to Theorem B (A(c, o)) has a unique

solution for each a € U,y and ¢ € RY | hence U, is well-defined.

Definition 6. Let ¢* be a fixed-point of ¥,, and (u*, A") the corresponding solu-

tion of (A(e, ¢*)). Then (u*, X¥) is called the solution of the algebraic Signorini
problem with Tresca friction and a solution-dependent coefficient of friction.

As in the continuous and discrete settings, (u*, A*) may be equivalently char-
acterized as a solution of the following problem (compare with (M («))), (Mg (an))):

Find (u,A) € R" x RE such that:
<A(a)’u'a U= u>n + <w(a) b 3('“’7') *g, |’U7-| - IuT|>P

> (L(a),v —u), + (A, v, —u,), VveR"
(B—Au,+a),>0 YueRE,

Since (M(a)) and (Myu(a)) are not equivalent, we will state the unique
solvability of (M ()| separately in the next theorem.

(M(c))

Theorem 10. Let § : Ry — Ry be bounded and Lipschitz continuous in Ry
with modulus Cy;, > 0. Therfi exists a constant K > 0, independent of a € Uy,
such that if Clipl|gll € (0, K), then (M(ax)) has exactly one solution for each
A Uad-

Proof. For the sake of completeness, we include a sketch of the proof. The idea is
to show that W, is contractive, whence the assertion follows immediately by the
Banach fixed-point theorem.

Let ¢ € R”, i = 1,2, be arbitrary and consider the solutions (u®, A?) €
R™ x RE to (A(a, ™)), i = 1,2. Then

u eK(a) ={veR"| —v, <a}, i=12, (1.37)
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and solve the respective implicit variational inequalities:

(Ala)u® v —u®) + (w(a) e F(e®) e g, [v.| - [ul])

. o®
> (L(a), v —u®) Vo€ K(). } (A(e, o))

Now, test the first inequality (A(c, ™)) with v := u®, the second inequality
(A(a, ?)) by v := uM) and add both inequalities. After rearranging the terms
we get:
<A(a)(u(1) — u(2))’ u® — u(2)>
< (w(a)e (F(e") = 3(¢?)) 0 g, [u?] - [ulV]) .

Using the Cauchy-Schwarz inequality and the Lipschitz continuity of §, the right-
hand side can be estimated by:

(w(a) o (§(e") = F(?)) 0 g, [u?| — [ulV]),
< [lw(@)llcllgll 1§ (™) = Tl llluf | — [ ll,
< @Cuplglloclle™ — @I, llu — u® ],

where W 1= sup,cp,, [|w(a)||- Since A(a) are uniformly positive definite, we
get:

Yl = u? |} < GCullglleclle™ — @ [pllu® — . (1.38)
Finally:

w
1alp®) — Talo )l < [ —u . < ZCiyllgllie — o,

and the assertion holds with
K :=~/&. (1.39)

O

1.3 Coulomb model with a solution-dependent co-
efficient of friction

In this section we will introduce the local Coulomb law of friction, with a coeffi-
cient of friction that is already assumed to depend on the solution, as it was the
case in the previous section. We will discuss the difference between the Tresca
and Coulomb laws of friction, pointing out also the difficulties associated with its
analysis. The structure of the present section resembles the previous one’s: after
giving the definition of our contact problem with Coulomb friction and a solution-
dependent coefficient of friction, we shall quickly move on to its discretization and
further to the algebraic formulation, that will be of our primary interest. Anal-
ogously to the Tresca friction case, conditions guaranteeing unique solvability of
the algebraic contact problems with Coulomb friction for each value of the design
variable a € U,y will be given and proved.

Let us return to what we said in the introduction, namely that the Tresca law
of friction does not model physical reality well. What are its shortcomings and how
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can they be overcome? To this end, we take a second look at the friction condition
(T3), in particular its first part, which says that sliding does not occur on the
contact boundary, until the tangential stress does not attain a certain activation
threshold. Now, the problem is that this threshold function does not distinguish
between points that will become (after deformation) in contact and points, that
will not. As a consequence, friction forces may act also at points which are not
even in contact with the obstacle-evidently, this is physically infeasible. Secondly,
one would expect from a reasonable friction condition to take into account also
the quality of contact. Namely, it should be in line with our everyday experience
that the stronger an object sticks to another, the bigger forces are needed to make
them slide. In the Tresca law of friction, the slip bound did not depend on the
pressure between the contacting surfaces. Both these deficiencies are remedied
by the so-called Coulomb law of friction, that is formulated below (taking into
account our special geometry):

71 <F(u )T, w #0 = Ty = —sgn(u)F(|u1])T2 on Te(a). (1.40)

Note, that in (IC40) the a-priori given slip bound g is replaced by the unknown
normal stress T := Ty(w). In the Coulomb law of friction (L40), if a point
x € I'c(a) will not be in contact, then Th(x) = 0, as follows from the contact
condition (L.8)), implying also T3 (x) = 0. Moreover, the activation threshold for
sliding is in this case an increasing (linear) function of the pressure T5. Finally,
remark that we have already assumed that the coefficient of friction § : R, — R,
in (L40) may also depend on the magnitude of the tangential displacement.

Thus, by the classical solution to the Signorini problem with Coulomb friction
we mean a function u : Q(a) — R? satisfying the system of equilibrium equations
and boundary conditions (LI)—(T4), (L8) and (L40).

Assuming that the classical solution is sufficiently regular and applying the
Green theorem, one may easily derive the variational inequality w satisfies (we
will stick to the notation already introduced in Section 1.1):

Find v € K(a) such that for every v € K(«) :

ao(u, v —u) +/ F(Jur|)Ta(w) (Jo1] = |uz]) ds > La(v — w).

Teo(a)

(1.41)

Since u € K(a) C H'(Q(a)) only, Th(u) ¢ L*(Tc(a)) in general, but Th(u) €
X', (o). Therefore, instead of (I.4I]) one should write:

Find v € K(«a) such that for every v € K(«)
ao(u, v —u) + (F(|lui[)T2(w), |[v1] — |ur]) x/(0) x (@) = La(v —u).

} (P(a))
Still, in order to make sense to the duality term, § and w should be smooth
enough so that F(Jui|)|v1] € X(a) Vv € V(a) (see [II]). In order to overcome
this difficulty, we will assume that Th(u) € L*(T¢()) and § is continuous in
R,. Then the duality may be replaced by the L*(T'c(«))-scalar product. Such
u € K(a), satisfying is called the weak solution. In addition, observe
that this weak solution may again be characterized as the solution of the auxiliary
problem ((A(«)) with special coefficient of friction § and slip bound g. Therefore,
as it was done in Proposition [II, for given ¢ € X (a), g € L2 (I'c(c)) denote by
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(A(a, ¢, g)) the auxiliary problem (A(«)|) with the coefficient of friction §op and
the slip bound ¢. Further, define the mapping:

€1 X () x L2(Tola) = Xo(a) x Xi(a),  (p,9) = (1(u) ol To(w),

where u = u(yp, g) is the unique solution of (A(«, ¢, g)). Now it easy to see that
u € K(a) solves iff it is the solution of (A(c, ¢*, ¢%)), with (¢*, ¢*) €
X (a) x L2(Tc(a)) being a fixed-point of ®°.

Observe that the mixed formulation (A(«))), which will be denoted (A(a, ¢, )
in order to stress the dependence on ¢ and g, is particularly useful here: along
with the displacement u we also compute the normal stress To(u) = A, that may
be used for the fixed-point iteration in ®“. This motivates us to use the mixed
formulation to define the weak solution.

Definition 7. By a weak solution of the Signorini problem with Coulomb friction
and a solution-dependent coefficient of friction we mean the pair (u, ) € V() x
L3 (P¢()) solving uniquely the mixed problem (A(w, ¢*, g*)), where (¢*, g*) is
a fixed-point of the mapping:

1 Xy () x LA(To(a) = Xo(a) x Xi(a),  (9.9) = (I(u)lro]s A)-
Equivalently, the weak solution (u, \) satisfies the following mixed-type prob-
lem:
Find (u,\) € V(a) x L2 (T¢(a)) such that:
aa(w, v —w) + (F([ui)A, o] = |w]) xr@),x(@)
> Lo(v —u) 4+ (A, vy — Ug) x1(a),x(a) YV € V(a),
(1= A uz + da) xr(0),x(0) 2 0 V€ X (a).

(M ()

Remark 5. Unfortunately, the mapping ®¢ is not contractive and therefore the
analysis of has to be conducted in a different way—we kindly refer to
the monograph [11] for some relevant results. As we shall see, such issues are not
present in finite dimensions and Definition [7 suits well for the discretization of

(ME(a)).

1.3.1 Approximation

It should come as no surprise that the discretization will once again be based
on the fixed-point structure of the problem (M%(«a)), iterating through some
discrete mixed problems (Anx (o, on, gir))-

To this end, let oy, € U”, be fixed and let Ay C L2(0,a) be as in Example 2,
ie., Z’H is the space of all piecewise constant functions over the partition Ay
and Ay the cone of its nonnegative elements. Let ¢, € Xy, gy € Ay be given
and denote by (Ang(an, on, gr)) the discrete mixed formulation of the Signorini
problem with given friction gy and coefficient of friction § o @p:

Find (up, Ag) € Vip(ap) X KH such that:

Ao, (Wn, Vi, — W) + Jhay, (On, 915 VR) = Jhoan, (P, 91 Uh)
> Lo, (v, —up) + (A, Un2 — Un2)mn - You € Vi(ag),

(e — A, Upe + o) >0 Vg € Ay, B
(AhH(ahagphagH))
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Here the functional jp, o, is now defined as (compare with (LIS])):

jh,ah<90hagH§vh> 32/ %(soh)gﬂﬂhﬁm\ 1+(%)2d5€1-
0

Recall, that 7, stands for the piecewise linear Lagrange interpolation opertor on
Ay.

Definition 8. By a solution to the discretized Signorini problem with Coulomb
friction and a solution-dependent coefficient of friction we mean a pair (uj, A\j;) €
Vu(ap) x Ay solving the problem (A (o, ©r,g3)), where (5, g5) is a fixed-
point of the mapping

<I>f : )A(h+ X /A\H — )A(h+ X /A\H, (¢n, gu) = (7Th|ah1|, )\H),
(un, \pr) denoting the solution of (Apz(an, ©n, gm))-

Instead of dealing with existence and uniqueness of solutions to the discretized
Signorini problem with Coulomb friction and a solution-dependent coefficient of
friction (for such result the reader is kindly referred to e.g. [20, Thm. 2.1| and
[20, Thm. 2.2]) we immediately proceed with the algebraic formulation. Existence
and uniqueness in the fully algebraic setting will be investigated in more detail
with corresponding proofs.

1.3.2 Algebraic formulation

Recall that for given ¢, € )?th and gy € /A\H, with coordinates ¢ € R’ and
g € RE with respect to the basis {¢},..., ¢} and {xs1,..., xs»}, respectively,
the algebraic Signorini problem with given friction g and coefficient of friction
5(p) was defined as:

Find (u,X) € R" x RE such that:
(Al@)u,v —u), + (w(a) ¢ F(p) o g, [v7| — |u-|),
> (L(a),v —u)p, + (A, v, —u,), VveR"
(BW—Au, +a),>0 YueRE,
now labeled as in order to stress the dependence on (¢, g). In Re-

p
mark 2] it was shown that the function A\, = Z -
= wil)
Lagrange multiplier, hence it is this function we will use in the definition of ®¢.
Introducing the elementwise division operator + : R? x (R \ {0})? — R?,

(u,v) — (4, ..., Z—ﬁ)T, we define the mapping

U1

(A(e, ,9))

Xg: is the approximate

U RE xR 5 RE X RE, (p,9) = (Ju.], A+ w(a)),
where (u, A) solves (A(a, ,g)). Given a fixed-point (¢*, g*) of U<, the corre-
sponding solution (u, A) to (A(a, *, g*)) is also a solution to:
Find (u,A) € R" x R% such that:
(Alu, v —u)y + (§(|ur]) o A, 7] — |ur])y
> (L(a),v —u), + (A, v, —u,), YveR"
(w—Xu, +a), >0 VpeRE.

(M ()

We have arrived at the following definition.
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Definition 9. By the algebraic Signorini problem with Coulomb friction and a
solution-dependent coefficient of friction we mean the problem (M ()).

Observe that, equivalently, the algebraic solution (u, A) can be characterized
in yet another way, namely as the (unique) solution to the auxiliary problem:

Find (u,A) € R" x R% such that:
(A(@)u, — u)y + (3(") 0 9", [02] — -y

(L(a),v —u)y, + (A, v, —u,), YveR",
(B—Au,+a),>0 YpueR,

(Al ", g%))

where (¢*, g*) is a fixed-point of the mapping
BC: (p,g) > (Jurl, A).

The pair (u,A) in the definition of W€ is the solution of (A(c,p, g)). In other
words, one may get the solution of the algebraic contact problem with Coulomb
friction by solving the algebraic contact problem with Tresca friction, but without
w(a) in the frictional term. Although it may not be apparent at the moment, but
the fact that the control parameter a € U,y is not present in the frictional term
of will make a huge difference when it comes to conducting sensitivity
analysis.

Now, let us state and prove the following result on existence and uniqueness
of the algebraic solution.

Theorem 11. (i) Let §: Ry — R, be continuous and bounded, i.e. ICa: >

OvVr e Ry : 0 < F(2) < Chasr Then (M (a)) has at least one solution
for all a € Uyy.

(ii) Let, in addition, § be Lipschitz continuous with modulus Cyy,. If Cyyp and
Crnaz are sufficiently small, all problems (M (a)) have a unique solution.

Proof. For the sake of this proof, let us define the norm on products of Euclidean
spaces R® x R' (s, € N) by: [[(w, 2)]y21 = [[w], + [12]}.

(i) Let (p,g) € RY x R} be given and consider (u,A), the unique solution of
(A(e, ,g)). Then, from Lemma [2(7) we have immediately:

; 11 /A]
195 (@, )llpp < llulln + Al < {5 T3 (T +1) L] =R, (1.42)

where ||A[| = sup,cp., [|A(@)]], [|L|| = sup,ey,, || L()||» and hence R does not
depend on a € U,y. Thus, \i/g maps the ball By C RP x RP of radius R and
center 0 into itself. Continuity of \i/g is very easy to verify: for any convergent
sequence {(®, g} C RY x RE, (99, g¥) — (¢, g), the sequence of solutions
{(u®, X} to the problems (A(a, @, g™)),i=1,2,..., converges to the solu-
tion of the limit problem (A(ex, ¢, g)). Hence, by Brouwer’s fixed-point theorem,
the assertion follows.

(17) We proceed analogously as in the case of Tresca friction and show that ‘ilac
is contractive in Bg. To this end, consider two pairs (¢, g°), ||(¢*, g")|lprp < R,
1 = 1,2, and follow the steps of the proof of Theorem [0l to get:

YNu' —u?ll, < (F(e') 0 g' —F(0?) o g°, [ul] — |ul])y,
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where (u!,g"), (u?,g?) denote the solutions to (A(a, @', g")), (Ala, 9%, g%)),
respectively. Using the Cauchy-Schwarz inequality, adding and subtracting the
term F(4') ® g? and making use of the assumptions on § we arrive at:

1
”ul - u2”n < §<Cmaar||gl - 92||p + Clip||92||00”901 - 902||p> (1-43)
<1 Crnazs RCyi L% g' — g° 1.44
> fymax{ mazx s lw}H(SO ¥.,g g )Hp-i—p ( . )

Next, we estimate the difference of the Lagrange multipliers X', A% From the

first inequality of (A(c, ¢’, g")) one gets:
(Ala)u',v), = (L(a),v), + (A", v,), YvER" v, =0,i=1,2
Subtracting the two equations from each other yields:
A= 0,), = (Ala)(u' —u?),v), YveR" v, =0.

From Lemma [ noticing that the supremum can be taken over the whole space
R™, we get:

BIA = N[l < [A[lw! — w?,.

Finally, combining the previous two estimates we obtain:

IS (@' g") = TS0 g% lpep < [l = u? [l + 1N+ X2,

B+ A
< R (e, RO 9) = (.6
Now, the assertion of the theorem holds, provided
By
max{C ez, RClip} < ————. 1.45
{Cnars RCu} < 5 )
O

Remark 6. We have come to another important difference between the contact
problems with Tresca friction (M (a)) and Coulomb friction (M%())). Namely,
that in the latter case the condition guaranteeing unique solvability of the problem
for every a € Uyy, is data-dependent. Indeed, the “constant” R in (L45) is a
continuous, increasing function of ||L||, cf. (L42). For too large load vectors L,
(L45) will become invalid and one may lose uniqueness. However, if (L43) is
satisfied for a given set of data § and L, then it remains valid for sufficiently
small perturbations of the load vector, as well. We shall return to this matter
when investigating stability with respect to the design variable o € U4.
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Chapter 2

Shape optimization: Tresca case

In the previous chapter we have introduced the Signorini problem and sever-
al models of friction, formulated various (not always equivalent) mathematical
problems describing this physical phenomena. For a fixed geometry, we were in-
terested in existence and uniqueness of solutions to these problems. In addition,
it was shown that the considered problems remain (uniquely) solvable even if the
geometry is changed. In the present chapter we focus on the model with Tresca
friction where the coefficient of friction depends on the unknown solution and
take our considerations to a further level. Namely, we will try to identify an op-
timal geometry among the set of admissible ones, i.e., find such o* that the pair
(o*,y*), where y* is the solution of the corresponding state problem, minimizes
a given cost functional J. After proving existence of at least one optimal shape,
we will focus on its identification in practice. As we shall see, a crucial ingredient
for an effective numerical solution of the shape optimization problem is the com-
putation of (sub)gradients with respect to the design variable. This is subject of
the section covering sensitivity analysis and represents our main results in this
chapter.

The structure of the chapter is as follows. We start with the definition of
the shape optimization problem for continuous and discretized state problems,
recalling results from [43]. Convergence analysis is also treated briefly — for de-
tails on these issues we kindly refer to [43] and [I7]. For the rest of the chapter
we shift our attention entirely to the algebraic state problem (A («)) and the
corresponding algebraic shape optimization problem. First, stability analysis is
carried out, i.e., it is shown that the state variable is a Lipschitz function of the
design. As an easy consequence we obtain existence of a solution to the shape
optimization problem. For its numerical solution we employ the implicit program-
ming approach (ImP), which requires computing (sub)gradients of the implicitly
defined, nondifferentiable control-to-state mapping. This shall be facilitated by
the generalized differential calculus of B. Mordukhovich and the calmness prop-
erty of the state problem. Most of the results presented in this chapter have been
published in the paper [17].
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2.1 The continuous and discretized shape opti-
mization problem

As already mentioned above, we will be dealing with the Signorini problem with
Tresca friction and a solution-dependent coefficient of friction that was introduced

in (P(a))) and reads as:

Find v := u(«) € K(«a) such that:

o (U, v — u) + jo(u,v) — jo(u,u) > Lo(v—u) Yo e K(a),} (P(a))

Here the bilinear form a, and linear form L, are defined by (I0) and (1T,
respectively, whereas the nonsmooth frictional term has the form

jalw, ) = /  Slmlgnlds Ve € H'(©(@)
I'o(a

The solution of (P(a)) is sought in the closed convex set K (o) = {v € H'(Q(a)) |
v=0onIp(a), —vy <d, on I'c(a)}. On the other hand, the admissible set Uyq
defined in (L) as a subset of Lipschitz functions that are together with their
first derivatives equibounded, turns out to be too large. Instead, we will be able
to prove existence of an optimal parameter in the following subset of U,4:

Upg := {a € C([0,d]) ’ 0<a<Cy in [0,a],
&' < Cy in [0, dl,
la"| < C5 a.e.in (0,a),

Cy < / a(xy)dry < 022},
0

(2.1)

i.e. ﬁad contains C'™!-functions that have, in addition to (I.7), equibounded second
derivatives (they exist a.e. in (0,a) by Rademacher’s theorem).

Now, let J : D — R, where D := {(a,y) | @ € Uag, y € V(a)}, be a given
cost functional and denote:

G ={(a,u) |ae gad, u solves (P(a))},

i.e., G is the graph of the control-to-state mapping Uy 3 a — {u € K(a) |
u solves (P(a))} (also called the solution map). Note that the control-to-state
map is multivalued, in general.

Definition 10. A domain Q(«*) is called optimal iff there exists a u* € K (a*)
such that (a*,u*) € G solves the following problem:

(P)

Find (o, u) € G such that:
J(o,u) < J(d,u') VYV, u')eq.

(P)) is termed the shape optimization problem.
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In order to establish existence of an optimal domain Q(a*), a* € Z/N{ad, we
show that G is (sequentially) compact with respect to a suitable topology 7p on
D. Provided we succeed in finding such 75, (P will have at least one solution for
all cost functionals J that are (sequentially) lower semicontinuous with respect
to this topology.

Let V := H'(Q) and denote by E, V() = V, a € Uy, the continuous,
linear extension operator from Q(a) into Q. Further, let £ : D — Uy x V,
(a,y) — (a,E,y). Then & is injective. Indeed, (o, E,y) = (5, Esz) implies
« = [ and, consequently, from F,y = Eaz one has y = z. Let us equip &ad with
the C'-topology and V with the weak H' -topology. On ¥ := 5( ) we consider
the relative topology induced by the product topology of L{ad x V. Now it is easy
to see that

1p:={AC D |&(A) is open in X} (2.2)

defines a topology on D. Indeed, ) € 7p and since £ : D — X is bijective,
it preserves set intersections and unions, in particular: £(|J 4;) = JE(A4;) and
E(AN B) = E&(A)NE(B) for any subsets A;, A, B C D.

Lemma 3. The set G is sequentially compact in (D, Tp), where Tp is defined by
22), i.e., it holds that

V{(an, un)} C G H(am,, un,)} C {(an, un)} I, u) €G:
o, — o in C1([0, al), Eq, tn, = Equ (weakly) in H'(Q), j— .

The proof relies on the fact that the domains Q(«), a € U,y have the uniform
cone property [6]; thus ||E,|| may be estimated independently of a. At some
point in the proof of Lemma [ (see [I7, Lemma 1|) one has to take limit in the
frictional term janj as ap; — @, j — o0, and here comes into play the additional
smoothness requirement in (2.1)).

Finally, existence of an optimal domain is merely stated in the next theorem.

Theorem 12. Let the cost functional J be sequentially lower semicontinuous with
respect to the topology Tp [2.2), i.e.

= lim inf J(ozn,yn|ﬂ (oen) ) > J(a>y|ﬂ(a))'

n—o0

an — a in CH[0,d]), an, € Up,
y, —~y in H'(Q), y,.y € H'(Q)

Then (P)) has at least one solution.

Next we shortly describe the discretization of the shape optimization problem
and present results concerning existence of discrete optimal domains and their
convergence to optimal ones in the sense of Definition [T0l

Discretization of every shape optimization problem is twofold: on the one
hand, the admissible parameter set has to be replaced by a finite dimensional one
and, secondly, the state problem has to be discretized. We proceeed analogously
as in Section [[L.T.3] i.e., define the discretized admissible set by means of piecewise
linear functions and approximate ((P(«)|) using conforming piecewise linear finite
elements on a regular triangulation of the corresponding polygonal domain.
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Let h > 0 be fixed. In contrast to Section [L1.3] we now have ]P’l(Ah) N Z/lad =

(), because Z/{ad contains functions of higher regularity. Therefore, Z/{ad has to be
approximated in a different manner:

U, = {ah e Py(An) N C([a, b)) ) 0<an<Cy in [0,d],

la,| < Cy ae.in (0,a),
|ah(ai+1) — 2()(]1(0%') + ah(ai,l)\ S 03h2 Vi = 2, ey — 1,

Cy < / ap(xy) dry < 022}-
0

(2.3)

Let Z:ll’d denote the set containing all piecewise linear functions satisfying the con-
straints in (2.1]), but instead of the second derivatives we bound the second finite
differences at the nodes of Aj,. Note that ﬁ(’}d C Uyg (cf. (I]:ﬂ)) but Z/{ 04 L{ad, ie.,

we have an external approximation of Uyq. For a given qy, € Z/{ad we again contruct
a triangulation 7j, () of Q(ay,) that satisfies (T1)—(T4) and recall the definition
of the sets V' (ay), Kp(ap) and the piecewise linear Lagrange interpolation op-
erator 1, : C([0,a]) — P1(Ay) N C([0,a]) from Section [LT.3] and Section [2.1]
respectively. Thus the discretized “primal” problem reads as (compare with Sec-

tion [L2.T)):

Find uy, := up(ay) € Kp(ay) such that:

Aoy, (U, Uy — W) + Jhoay, (TR U1 )5 VR) = Jha, (Th|Un1]; wn) (Pr(an))
> Lah('vh — ’U,h) Yo, € Kh(ozh).

The discretized shape optimization problem is defined in a similar way as it was
done for (). To this end, let Dy := {(an.y;,) | an € U, y, € Vi(an)} and
denote the graph of the control-to-state mapping associated with (Py(ay)) by

G = {(an,up) | ap € Z/Iad, uy, solves } Modifying the approach for the
continuous setting appropriately, one ﬁnds that G, is sequentially compact with
respect to the topology 7p, that is induced by the (C([0,a]) x weak- H'(Q))-

topology on U™, x H'(Q). For details see Proposition 3.1 in [43]. The following
existence theorem is therefore straightforward.

Theorem 13. Let the cost functional J be sequentially lower semicontinuous in
the topology Tp, , i.e.

o™ (n)

— o, 1n C([0,a]), o), ap € Z/lad,

o — liminf J(a(n), y(")\ (n)y)
y(n) —y in Hl(Q), y(n)’y e Hl(Q) } n—00 h Q(ay, )

Z J<O{h7 y|Q(ozh))

Then the discretized shape optimization problem:

Find (ap,wy) € Gy, such that:
J(an,up) < J(aj,uy) V(o u),) € G

has at least one solution.
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Up to now the discretization parameter h > 0 was fixed. In what follows we
investigate the relationship between solutions of (P) and (P)) as h — 0.

First of all, let us note that although oy, are Lipschitz only, by controlling their
second finite differences we get: oy, € U™, Vh and a), — « in C([0,4d]), h — 0,4,
then a € Uy (cf. [I7, Lemma 3]). Moreover, the family {U, | h > 0} is dense
in U,q with respect to the C(]0, a])-topology (cf. [I7, Lemma 2]). Concerning the
cost functional J, this time we shall assume that it is continuous in the following
sense:

ap — a, in C([a, b)), a, € gf}d,a € LN{ad,
E.,up, — Eyu, in HI(Q) uy,, u solves ) and -, resp.
= lim J(ap, up) = J(a,u).
h*)O.Q_

(2.4)
Further, denote:

G = {(a,u) € G | ¥h — 0, 3y} < (B} 3(any, wn,)}, (an un,) € G,
ap, — a in C([a,b]) and Eop, un, = Equ in H'(Q), h; — 0.}

Then the following convergence result holds.

Theorem 14. Let J satisfy 24) and {(aj,u;)}, h — 04, be a sequence of
discrete optimal pairs, i.e., (af,u}) € Gy is a solution to (P for every h > 0.

Then there ezists a subsequence {h;} C {h} and functions a* € Uy, u* € H'(Q)
such that:

ay,, — o in C([0,al), Eahju;j —u*in HY(Q), h; — 0y,
and (o, u*|q~)) € G satisfies:
J(o* utlo@wn) < J(@,u) VY(a,u)€q.

In addition, if (P(«)) are uniquely solvable for all o € Ung, then G = G and
(a*, u*|aer)) is optimal in the sense of Definition [I0.

The set G represents those optimal pairs (a,u) € G that can be approxi-
mated by a subsequence {(au,,us,;)} of discrete optimal pairs. Theorem [I4] then
states that from a sequence of discrete optimal pairs one can always extract a
subsequence converging to a generally sub-optimal pair (o, u*|o-)) € g, i.e. the
optimal one with respect to G. Optimality (in the sense of Definitiion [I0) is en-
sured whenever the continuous state problems (P(«))) are uniquely solvable. By
Theorem [§] we know that this holds true provided the coefficient of friction § is
Lipschitz with a sufficiently small modulus.

2.2 The algebraic shape optimization problem

From now on we shall be dealing with the numerical solution of one shape opti-
mization problem (P)), therefore let h > 0 be fixed in the sequel.
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It was already mentioned in Chapter [Il that the presence of the nonlinear
frictional term j,,, in the state problem makes (Pj]) unsuitable for direct nu-
merical realization. To overcome this, using numerical integration, we transformed
(Mpr(ap)) into a system of algebraic inequalities (M (a))) in Section [[.2.2] Based
on (M(a)) we will now formulate the algebraic shape optimization problem as
a Mathematical Program with Equilibrium Constraints (MPEC) and employ the
Implicit Programming (ImP) technique for its solution.

First, let us notice that the discrete admissible set (2:3)) may be identified with
the set

Uad::{aeRﬁ 0<a, <Cy Vi=1,....p,

|Oéi—ai+1|§01h VZ:L,p—l,
i1 — 20 + | S C3h* Vi=2,...,p—1, (2.5)
+

9 P2 2
EC21 < ;(Oéi + a;1) < EC22}-

Actually, in the forthcoming analysis we will only need that () # ﬁad C RE is
compact and convex.

Next, we simplify our presentation by considering the reduced state problem
(see (L34) for the Signorini problem with given friction), i.e., we assume that the
cost functional depends only on the contact variables u,, u,, A. If this was not the
case, one had to compute sensitivities of u;,, from (L29), as well. Nevertheless,
using appropriate sum rules, this can be done in a straightforward way and won’t
be considered here.

For a given a« € Uy, the reduced algebraic Signorini problem with Tresca
friction and a solution-dependent coefficient, formulated as a system of GEs,
reads as follows:

0cA(d)u, +A, (a)u, — L (a) + Q,(a,u,),
0=A,(0)u,+A, (x)u, —A— L,(av), (2.6)
0 € u, + a+ Ngz (A),

where the multifunction @T Uy X RE = RE takes the form:

N wi(a)F(|wi])g10]w| B
QT(a,w) = , a€Uy, we R{)F (27)
wp(a>3<|wp|)gpa|wp|

Indeed, it suffices to rewrite the auxiliary problem (A(a, ¢0)) into the form (L.34))
and insert the fixed-point of the mapping ¥,, defined in (L36), which leads

directly to (2.6]) and (2.7]).

In order to write (2.6) in a compact form, we introduce the following notation:
the state variable shall be denoted b y = (u,,u,,\) € R and we define the

single-valued mapping F : U,y x R — R3 by

Floy) == Al@)y — (), (o,y) € Uug x RP, (2.8)

LActually, y € RP x R? x RP; nevertheless, for brevity, we shall identify this set with R3P.
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where

A (a) A (a) O L. ()
Ala) = A, (o) Aygéa) —I(E;I , la):=|L,(ax)], (2.9)

and, finally, the closed-graph multifunction @ : ﬁad x R = R as

~ Q-(a, u,) -
Qo y) == 0 , @ €Uy, y=(ur,u,N) €RY. (2.10)
Nz (A)

Let us recall that, due to the assumptions (T1)—(T4), F is continuously differen-
tiable. Thus (2.6) may be equivalently rewritten as

Find y € R* such that:
(GE(ax))

0€ Flo,y) + Q(a,y).

With (GE(a)) we associate the control-to-state mapping (solution map) S :
U,g = R?, defined as

S(a) = {y eR” |0 € F(a,y) + Q. y)}, (2.11)

ie., S assigns to each design variable o € Uy the set of solutions to the (reduced)
Signorini problem with Tresca friction and a solution-dependent coefficient of
friction .

Employing notation from the previous sections, we define the algebraic shape
optimization problem as

minimize J(a,y),
subj. to  y € S(a), (P)

a c Uad,

where J : ﬁad x R® — R is a given cost functional. (@) is in the form of an
MPEC, since it represents an optimization problem where one of the constraints
is an equilibrium problem. The main result of this section follows next.

Theorem 15. Let the assumptions of Theorem[Il be satisfied and J - ﬁadei”p —
R be lower semicontinuous. Then ([B) has at least one solution.

Notice, that () may be written as

minimize J(a,y),
subj. to (e, y) € G,

where G := Gr S is the graph of the control-to-state mapping S. Hence, it is
sufficient to show that G C R* is compact, which in turn immediately yields
the assertion of the theorem. In the next section we show that under similar

assumptions to that of Theorem [I0] (Lipschitz continuity of §) S is single-valued

and Lipschitzian in the compact domain U,g4, implying that its graph is compact
in R%.
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2.3 Lipschitzian stability

The main result of this section is to show that the control-to-state mapping S
(cf. (ZI1)) is Lipschitz provided the friction coefficient § is Lipschitz with a
sufficiently small modulus. In other words, we prove that the (unique) solution
(u(a),A(a)) € R" x RE of (M(a))) is Lipschitz as a function of the design
parameter o € ﬁad. In addition, we prove another stability result, namely, that—
for fixed a—the solution of (M («))) is Lipschitzian with respect to the load vector
L € R™. This fact will be used later when conducting sensitivity analysis.

First, we provide the following auxiliary result, showing the Lipschitzian sta-

bility of the solution to the problem (A(c, ) with respect to ¢.

Lemma 4. Let a € U,y be fired and § : R, — R Lipschitz in Ry with modulus
Clip > 0. Then there exists a constant ¢ > 0, independent of o, such that

D AD) = @A)y < alle® = P, Vo € RY,

where (u® X)) € R" x RY. denote the (unique) solution to (A(c, 1)), i = 1,2.
Moreover, ¢ = kCy;y, for some positive constant k > 0.

Proof. In the proof of Theorem [10] we have already shown the first part of the
assertion (cf. (L38)), namely

w
u = u® < gl Cunlle? ~ ol (2.12)

Here we show that a similar estimate holds for the Lagrange multipliers. To this
end, test the first inequality of (A(cx, ™)) in order by v := 0,2ul” to see that
AD (i =1,2) satisfies

(Ala)u v) = (L(a),v), + <)\(i),'v,,> Vv € R", v, =0.

" p

Subtracting the two equations for ¢ = 1,2 yields

<,\(1> _ /\(2),vy> = (A(a) (uV) —u®?) v) VYo eR" v, =0.

p

Dividing it by ||v||, and taking supremum over the set S := {v € R" | v, #
0, the remaining components of v are 0} we arrive at

< A _ >\<2>’,UV>
0[]

where [|A]| := sup, 5 [[A(e)]]. Combining 2I3) with (2ZI2) we find that the
assertion of the lemma holds with

Al + 1w
WZQJTJHMRQW (2.14)

AL — @ = sup P < |Alu® —u®)|,, 2.13
p cs p
v

O
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2.3.1 Stability with respect to the design variable
Now, we let ¢ be fixed and start with investigating Lipschitzian stability of the

solution to (A(c, ¢)) with respect to c.

Lemma 5. Let ¢ € RY be fized. Then there exists a constant ¢ > 0, which does
not depend on @ and satisfies

(0, AD) = (@A) sy < clla® = al], Va®,a® e T,
where (u®, AD) € R x RY. stands for the solution of (A(a® ¢)), i =1,2.

Proof. First, we will estimate the difference of the primal variables |[u() —u®||,
using the primal formulation of (A(ca, ¢))). Recall from the proof of Theorem [0

(cf. (C3T) and (Ale ))) that

u e KaP)={veR"| —v, <aP}, i=1,2,
and they solve the respective variational inequalities:

(A@)u, v —u) + (w(a) o F(p) o g, fvr] — ul])

P 0!
> (L) v—u), W e Kal) } (Al ¢))

for i = 1,2. Observe that the sets K(a?) may be written in the following way:
K(a') = a® 4 K(0),

where the vectors a® € R are such that @’ = —a® and all its other compo-
nents are zero. Thus for each i € {1, 2}

Fw' € K(0) : v =a® +w?,

Inserting now v := a” + w" into (A(a',p)), i,5 € {1,2}, i # j, and adding

the two inequalities yields:

(A(aD)(wh — w®) w — w(2)>
< (Ala")(@V - a®),w —w®) +((Ala®) - A@?)) u®, w" - w®)
+{(w(a) - w<a<2>>) (@) o g [w?| - |w9>|>p

Making use of (L23]), Lipschitz continuity of A, L, w and boundedness of §, we
arrive at the following estimate:

Ylw® — w7 < cllat — o[l [w —w®],,

where the constant ¢ > 0 does not depend on ¢ and ', i = 1, 2. From this and
the definition of a” then one obtains

u® = u®], < o = a®l, + ' —w ],
< (140 ~ o], (215)
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To estimate the difference of the Lagrange multipliers | A = X?)||,, we proceed
as in the proof of the previous lemma. In particular, from the first inequality of
(A(a, ) we have

<A(a(i))u(i), v) = <L(a(i)), v) + <)\(i), 'v,,> Vo eR" v, =0, i=1,2.

p
Subtracting the two equations for ¢ = 1,2 yields

<)\<1> _A® vy> = ((A(eD) — Ala®)) u® v} + (A(a®) (u? - u®) v)

+(L(aW) — L(a®), v)  YveR" v, =0.

n

Proceeding exactly as in the proof of the previous lemma, i.e., divide by ||v||,, and
take supremum over S := {v € R" | v, # 0, the remaining components of v are 0},
we arrive at

A _ A(2>’,UV>
IA® = X2, = sup L <clalt —a®|,. (2.16)
veS [v]]»

Here we made use of the Lipschitz continuity of A and L, Lemma[2(i), as well as
(215)). Finally, the proof is finished by adding (2Z.I5]) and (2.16]). O

The main result now reads as follows.

Theorem 16. Let § be Lipschitz with a sufficiently small modulus Cyy, > 0 so
that Lemma [§] holds with ¢ < 1. Then S, defined in (2.I1)), is single-valued and
Lipschitz in U,y.

Proof. Comparing the constants ¢ and K from (2.14)) and (L39)), respectively, one
easily finds that ¢ < 1 implies that the assumption of Theorem [0 is satisfied.
Thus (M («)) are uniquely solvable for each o € U4 and hence S is single-valued.

Now, let o, & € U,q be given and denote the solutions to (M{a))) and (M (a))
by (u,A) € R* x RE and (@, A) € R" x R, respectively. Since the corresponding
mappings ¥, and U, (cf. (L36])) are contractive, these solutions may be revealed
by the method of successive approximations in the following way.

Choose an arbitrary ¢ € R% and compute the solutions to (A(c, ¢@))
and (A(a, p@))—let us denote them by (u®, A?) € R* x R”. and (a(®), A e
R™ x R”. Then set V) := ¥, (¢®) and W) := U, (). By Lemma Gl we readily
know that

_ £ (0) _
(@, XD) — (@@ X7 |y < clloe— @, (2.17)
and hence also
e — @D, = [|[u] — [a]|| < Ju® — @, < clla—al,.  (2.18)

Now, solve the problems (A(a, ")) and (A(a, @™)) to obtain (u® A1) e
R™ x RE and (wV, Ay e R x R” . Further, denote the solution to (A(c, 1))
by (UM, AW) € R* x R%. Thus, we may estimate:

(@, A0) = @, A, < (@D, AD) — (@D, AD)|,.4,,
0D, AD) = (@D AV ||,

< qn‘/’(l) - 92’(1)”1) + ¢l — d”p
<c(1+q)lla—al,,
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as follows from Lemmas @], [l and (2.I8]). Continuing this iterative process, in the
kth step one has (u®, A¥)) and (@®, A"), the solutions to (A(c, ™)) and
(A(a, ™)), respectively, along with the estimate:

(™ A®) = (@, Ay < U+ g+ + -+ ¢")]|a— &l
C _
< 7 lle—alb, (2.19)

since ¢ < 1 by assumption. Then, one sets 1) := W, (o®)), k1) .= Wy (@),
and starts the iteration loop with k£ := k + 1.

The sequences {¢®} and {@*)} generated by this process converge to the
unique fixed points of the mappings ¥,, and Wy, resp.; the sequences {(u®, )\(k))},

{(ﬁ(k),j\(k))} converge to the (unique) solutions of (M(a)) and (M(&)), resp.
Thus it is sufficient to pass to the limit as k — oo in ([22I9)) to obtain the assertion
of the theorem. O

2.3.2 Stability with respect to the load vector

In addition to Theorem we shall need another stability result, namely the
one with respect to the load vector L. Since o € U,y will be fixed andiL € R"
the parameter, we adjust the notation to reflect this fact and write (A(L, ¢)),

(M(L)), ¥, instead of (A(e, ¢)), (M(ax)), ¥,, etc.

Lemma 6. Let o € ﬁad be fized and the assumptions of Theorem [18 hold true.
Then there exists a constant ¢ > 0, not depending on a € Uyy, such that

(2. 2) = (@ Nllnsp < el — Ell, VL, L € R,
where (u, X), (@, ) € R*xRE. denote the (unique) solutions of (M (L)), (M (L)),
respectively.

Proof. We merely sketch the proof, since it employs the same fixed-point tech-
nique as the proof of Theorem ) o
Let p(® € RE be arbitrary and denote the solutions to (A(L, ), (A(L, ¢©))

by (w® AO) (a©), 5\(0)) € R* xRY, respectively. Then by Lemmal[2(ii) we know
that there exists a ¢ > 0, independent of o, L, L and ¢(?, such that

1@, XO) = @, X ||y, < ¢ L = L. (2.20)

Next, we define () := U (0©®) and 1) := ¥ (). The respective solutions
to (A(L, ™)) and (A(L, ")) shall be denoted by (u®,AM), (@®, ") ¢
R™ x R%. In addition, we solve the problem (A(L,®")) and signify its solution
by (UW, AW) € R* x R%. Then, due to Lemma @ and (Z20), one has:

[, AN) — (@Y, A [y < qlle™ — @D,
< qHu(O) _ ﬂ(O)Hn
< qc||L — L|,. (2.21)

On the other hand, from Lemma 2[ii) it immediately follows that

@D, AD) = (@D, X ||,iy < | L = L. (2.22)
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Adding (2.20), (2:22), and using the triangle inequality, we get
1) (1 -
1, AD) — (@D, X)) < (1 + q)[| L — L. (2.23)

The rest of the proof may be conducted in the same manner as was done in
Theorem [I6. Indeed, one defines the sequences {p®)}, {p®)} C RE by ) =
U (# D) and ® = Up(pk) k = 2 3,..., resp.; the elements of the
sequences {(u® )\k))} {(a® )\k))} {(U® A} c R x R: are then de-
fined, in this order, as the unique solutions of problems (A(L, ")), (A(L, ")),
(A(L @")) VE € N, k > 2. By induction one may prove the estimate (cf. (ZI9)

and (2.23))
1@®, A8 = (@, X[,y < T E- Lj,, (2.24)

since by assumption ¢ < 1 holds. The desired result is then obtained by taking
limit in (2224]) as & — oo; for details we kindly refer to the proof of the previous
theorem. O

2.4 Implicit Programming

Having Theorem at hand, we return to the shape optimization problem ([P)
and present a method for its solution. To this end, let us assume, that the as-
sumptions of Theorem [I6 are satified, i.e., § is Lipschitz with a sufficiently small
modulus. In addition, let the cost functional J be continuously differentiable. In
fact, this smoothness assumption is superfluous and is imposed only for the sake
of simplicity. As it will become apparent, a locally Lipschitz J would work—in
theory—just as fine. _

Provided the assumptions above are satisfied and S is single-valued, we may
apply the Implicit Programming (ImP) approach to the solution of (). This
consists of reformulating ([P) as the following nonlinear program (NLP):

minimize J(a) := J(e, S(av)), )
subj. to  a € Uy.
Eliminating the equilibrium constraint, only the geometric constraint o € ﬁad re-

mains, in which the compact, convex feasible set is given by simple box-constraints
and linear inequality (and, if Cy = Cyg, also equality) constraints (cf. (2.5)).

2.4.1 Selecting a minimization algorithm

There are several aspects, that have to be taken into account when attempting
to solve

e Although J was assumed continuously differentiable (or even smoother), due
to the Lipschitz continuity of S the reduced cost functional 7 : U, wi — R
is only Lipschitz, in general.

e S is not convex, in general; therefore, the same applies to J as well.
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e Each function evaluation of 7 is costly, since—by means of S—it involves
solving a frictional contact problem, where the coefficient of friction depends
on the solution.

e Typically, in practical computations, the optimized boundary segment is
not parametrized by (nonsmooth) piecewise linear functions, but smooth
curves, like piecewise quadratic or cubic Bézier or spline functions. Besides
being smooth, they can be controlled by relatively few points to achieve
satisfactory design. Therefore, in most cases, one may assume that the di-
mension of U,y is at most “moderately” large (in the sense of [23]).

From the first two points it follows that (@) has to be solved by a method of non-
smooth and nonconvex optimization, whereas the third point basically rules out
derivative-free methods—they typically require orders of magnitude more func-
tion evaluations, than algorithms based on first (and second) order (sub)gradients.

As no additional structural property, that could be exploited by the mini-
mization algorithm, is known a priori, we opt for the Bundle Trust [52, [55] and
Proximal Bundle [39] 40] methods. In general, bundle methods have turned out
to be the method of choice for the solution of small to medium scale, nons-
mooth, nonconvex optimization problems, without extra knowledge about their
structure—see the comparison in [23] and also [38§].

2.4.2 Computing a subgradient

Bundle methods are iterative methods for minimizing the locally Lipschitz objec-
tive function J, that require at each step & € U,g:

(i) the function value J (&), and
(ii) one arbitrary subgradient & € 97 (&) from the Clarke subdifferential [7].

As readily seen, in order to provide [J (&), one has to evaluate gy := §(d), ie.,
it is necessary to solve a Signorini problem with Tresca friction and a solution-
dependent coefficient of friction. Assume, we are able to solve (GE(&)) and let
us focus on task (ii). By the chain rule |7, Theorem 2.6.6] we have:

0T (@) = VoJ(a,9) + (05(a))" Vv, J (&, 9). (2.25)

This means that determining an element of (2.25) involves computing a gener-

alized Jacobian of the nonsmooth, implicitly defined control-to-state mapping S.
This can be conducted essentially in two different ways:

(j) If S happens to be piecewise C* (PCY), it is convenient to obtain the desired
subgradient completely within the generalized differential calculus of Clarke
(specialized implicit function theorems are provided for example in [48]).
This way has been applied, e.g., in [3].

(jj) If the PC" nature of the control-to-state mapping cannot be guaranteed, it
seems reasonable to perform sensitivity analysis via the generalized differ-
ential calculus of Mordukhovich [36] which is richer concerning specialized
calculus rules. The paper [4] may serve as an example for the viability of
this approach.

46



Since in the considered model we have to do with rather complicated nonsmooth
and set-valued mappings, we have chosen the second approach. In the next section
it is shown how to compute an approximation of a Clarke subgradient from the
set (2.25]) by means of the generalized differential calculus of B. Mordukhovich.

2.5 Sensitivity analysis

Let & € U,y be arbitrary and denote y := S (ax). We start with the following fact,
providing a link between the differential operators of interest from the Clarke and
Mordukhovich calculus.

Lemma 7. For any y* € R¥ it holds that D*S(a)(y*) # 0 and

(05(a))"y* = conv D*S(@)(y"). (2.26)

Proof. Follows from the Lipschitz continuity of S and formula (2.23) in [35]. O

Comparing (2:26) and (Z25) we see that for our purposes it is sufficient to
compute one p* € D*S(a)(V,J(e,y)); then, setting

‘E = vaJ(d7 @) +p>k (227)

we are done. However, this is not straightforward, since S is defined via an implicit
relation. In order to express its coderivative D*S(&) in terms of F' and @, we
start with the following observation:

GrS = {(a.y) € Ut x R | —F(av, y) € Q(a,y)}
= {(aay) € ﬁad X RBP | (I)(aay) = (aaya _F(aay)) € GI‘@} (228)
“H(GrQ). (2.29)

To be able to compute normal cones to the set (2.29)), one has to verify a calmness
condition, as presented below.

Lemma 8. Let @ € ﬁad be fized, y = g(d) and the mapping P : ﬁad x R¥» —
Uaa X R X R3 be defined by (2.28). Then the multifunction M : RP x R? x R =
Uuq X R given by

M:p e {(o,y) | p+P(a,y) € GrQ}
is calm at (0,0,0,&, 7).

Proof. If M was not calm at (0 0,0, ,y), one could easily disprove calmness of
the following multifunction M : R?’p = Upq x R at (0, &, y):

M :pr {(a,y) | (0,0,p) + ®(a,y) € GrQ}.

Indeed, suppose that there exist sequences p() = (pgl),pg),pg)) — (0,0,0) €
RP x R¥ x R and (@ y) = (&, y), (a@?,y?) € M(p?) such that

dist((a?, g, 1£(0,0,0)) > i[p]|-prs, Vi € N. (2.30)
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Let us put (8%, 20) := (a® + p{’, y® + p{’) so that the relation (a®,y®) e
M(p®) can be rewritten as
P e F(BY, 29) + Q(BY, z1), (2.31)
with '
PV =pf) — F(a y@) — F(39, 20). (2.32)
Since F is locally Lipschitz, one has from (231]), (2:32):
1575 < PV llpssps3p and PV — 0 € R,
(BY,29) e M(Y), and (8Y,2") = (a,9).
Thus we can estimate:
dist((8, 2), M(0)) = dist((8", 21"), M(0,0,0))
> dist((c 2 y(l ), M(0,0,0)) — ||p(i)||p+3p+3p > (i— 1)||p(i)||p+3p+3p

1—1,
> (1)
> L p0),

and the claim has been verified. .
Therefore it is sufficient to show that M is calm at (0, &, y). To this end, let
P € R be given. Then

(a,y) € M(p) & pEFlay) +Qa,y),

i.e., written componentwise for y = (u,, u,, A) and p = (py, Py, P3) € RP x RP x
RP: _
P €A ()u, + A (a)u, — L. () + Qr(a, u;)
Dy =A ()u, + A, (a)u, — A — L, () (2.33)
D3 € u, + o+ Ngr (N).
Introducing the new variable g := (u,, u, — P3, X), we see that (a, §) solves (2.6))
with the load vector

LT(a> + ﬁl - ATll(a)ﬁ?)
Lu(a) + 152 - Auu(a)ﬁi’)
—Q

l:=

From Theorem [I0l it follows that (e, ¢) is the only solution to the perturbed GE
(Z33). Denoting (o, y*) € GrS = M(0) the solution to (26) with the original
load vector | = [L. (), L,(a), —a]”, we obtain from the triangle inequality and
Lemma [6G}

(e, y) = (@, y")lprsp < [y = llsp + 19 = 7[5y
< |1Psllp + €llt = Ulsp
< cl|Pllsp,

where ¢ > 0 does not depend on a. From this the required calmness property
follows easily. O
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2.5.1 The adjoint GE
The following result (see [27, Theorem 2|) facilitates the computation of the

adjoint variable p* € D*S(a)(y*), needed in ([Z27).
Theorem 17. Consider a reference pair (&, y) € GrS and let y* € R be
arbitrary.

(1) Let (p*,v*) € R? x R*® be a solution to the reqular adjoint GE:

] evF@yy - Draaa)) (RAGF)
Then p* € D*S(a)(y*).

(ii) For every p* € D*S(&)(y*) there exists a vector v* € R¥® such that (p*, v*)
is a solution of the (limiting) adjoint GE:

{_;ﬂ € VF(a,9)"v" + D'Q(®(a, 9))(v"). (AGE)

Proof. The first assertion follows immediately from [47, Theorem 10.6]. The sec-
ond one is implied by [21, Theorem 4.1], whose assumptions are fulfilled by virtue
of Lemma [8] O

Note that due to Lipschitz continuity of S, (AGE) attains at least one so-
lution p* (cf. Lemma [[) and whenever @ is normally regular at ®(&,y), i.e.,

Nao(®(@,9)) = N, 5(®(a, ), (RAGE) and (AGE) coincide. In this case
D*S(a)(y*) = {p* € R? | 3v* € R¥ such that (p*,v*) solves (AGE)}.

On the other hand, in the nonregular case (RAGE]) may be difficult to solve
or not solvable at all. Therefore the computation of the desired subgradient & €
0J (&) is usually done via the (AGE])), while accepting the fact that at nonregular
points the computed vector may lie outside of 0.7 (&). In such cases the employed
optimization algorithm might collapse and & has to be replaced by a correct
subgradient.

In light of the previous paragraph we will focus on the solution of the (AGE]).
In particular, we shall express the most difficult part of (AGE]), the coderivative

D*Q(®(ax,y)) in terms of the problem data.

Computation of D*(Q)

First of all, note that the components of @ are decoupled—the first component @T
depends on « and w,, whereas the third component computes the normal cone
to RE only at A. Actually, this fact is a consequence of the assumed model of
given friction, since @T reflects the friction condition and the third component
corresponds to the nonpenetration condition. This way, the coderivative of () may
be computed componentwise [47, Example 6.10]:

D*@T<d7 Igla (11)<q>{)
0

D*NRﬁ (U3,a3)(q3)

Vg" eR?: D'Q(a,9.9)(q") = : (2.34)
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at any reference point (&, y,q) € Gr Q, where Y= (Y1,929Y3), @ = (41,42, q3);
q" = (41,43, q5) € R? X R? X R?.

The formula for the coderivative of the normal cone mapping to R is well-
known in the literature and may be very easily derived from the definition of the
coderivative (see also Figure 2.7).

GTNR+ NGTNR+ (070)
A A

Figure 2.1: Graph of Ng, and the normal cone to this set at (0,0).

Proposition 2. Let (a,b) € Gr Ng» and b* € R? arbitrary. Then

a* € D'Ngr (@,b)(b") & af € D*Ng, (a;, b))(b}) Vi=1,....p,
where
(i) if a; > 0, b; = 0, then
D* Ny, (a:,0:)(b;) = {0};
(ii) if a; = 0, b; < 0, then

R if bf =0,

() otherwise;

D" N (@i, bi) (b;) = {

(iii) if a; = 0, b; = 0, then
{0} if by >0,
D*NR+(ZLZ,BZ)(I):) =< R_ Zf b;k < 0,
R ifbf =0.

Proof. See [41, Lemma 2.2|. O

Remark 7. Observe, that D*NRi(a, b) = D*(@éRi)(a, b), which is the definition
of the second-order subdifferential 625@ (@, b). This means, that the coderivative

D*@ in (AGE]) provides second-order (sub)gradient information.
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In order to deal with the first component, let us write the multifunction er :
RP x R? = RP as a composition of an outer multifunction Z,. and an inner single-
valued, smooth mapping V:

wi (@) (|u])0|u|

- wa (e Us|)0|us
Grfovu) = | OBV o o), (2.35)

wp(@)([up])0uy|
where
U= (Uy,...,0,) : R” x R” — ((0,00) x R)?, Ui(a,u) == (wj(a), uy),
and
Zr:((0,00) x R = RP,  y > (Z(yy),..., Z(y,)),
with
Z:(0,00) x R=R, (r1,72) = x15(|22|)0|22|.

Now the chain rule from [47, Theorem 10.40] allows us to compute the coderivative
of the composite multifunction (2.35]) as follows:
Proposition 3. Let (&, u,q) € Gr @T be such that the following condition holds:

(ker VU(a,u)") N D*Z, (¥ (&, u), q)(0) = {0}. (2.36)

Then for every q¢* = (i, - .., q,;) € R? one has

2)(43) ' (2.37)

Observe that the assertion of Proposition Blrequires the validity of the qualifi-
cation condition (2.36). We are going to show that (2.30) is satisfied at all points
(&, u,q) € Gr@, and hence the assertion of Proposition [3 holds automatically.

Remark 8. The right inclusion above becomes equality at those points (&, w, q),
for which the multifunction Z, is normally regular at (V(&,u),q) or V¥ (&, u)
is surjective. In other cases, however, the formula on the right-hand side may
provide a vector outside of D*Q)..

Let us look more closely at the second option, i.e., what does it mean for VW
to be surjective at (&, u). Recalling the definition of W, its Jacobian VU € R**2P
can be written in the block-matrix form

Ju Jie
Ve=1|: 1], (2.38)
Jpl JpQ
where for each ¢ = 1,...,p one has
Vwi 0
Ja = [ 0 ] c R¥?, Jio = [(e(i))T] c R¥?, (2.39)
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Here 0 € R™? and e® € RP denotes the ith Euclidean basis vector. Thus, we
immediately see that the square matrix VW is surjective iff Vw;, i = 1,...,p,
are linearly independent. Unfortunately, this cannot be guaranteed; moreover,
considering our particular definition of w; (L26), Vw; = 0 when «;_1 = a; = @41.
In other words, whenever the contact boundary has a flat part consisting of at
least two line segments, VW contains a zero row and, consequently, cannot be
surjective.

Computation of D*Z

In the sequel we will compute the coderivative of Z at a given point (%, Zs, 2) €
Gr Z. The obtained results will then be used to validate condition (2.36]), while
at the same time they play a central role in the assertion of Proposition Bl itself.

Let us distinguish several situations according to the position of the reference
point (71, T2, Z) on the graph of Z—see Figure2.2] where red and green colour mark
those points at which sliding occurs; the vertical, blue region signifies sticking.
Points on the common boundary of these sets are said to be in the so-called weak
sticking mode.

(=]
T T T 1T 17T 7177177

1

0 T2

Figure 2.2: Graph of the multifunction Z(xy, z2) = 215 (|z2])0|x2|.

Proposition 4 (sliding). Let z* € R be arbitrary and (z1, %o, 2) € Gr Z such that
To > 0. Then:

D*Z(%1,%9,2)(2%) = {2"F(Z2) } X D*F(Z2)(Z127). (2.40)

Proof. Due to the assumption on Zy there exists a neighbourhood O of (71, Z2)
so that:
Z({L‘l,l‘g) = l‘lg(l‘g) V(l‘l, ZL‘Q) e 0.

Note that Z is single-valued and (locally) Lipschitz continuous in O. The compu-
tation of the regular normal cone to Gr Z at points of O is straightforward and
yields:

]/\}GrZ<x17'r27Z) = {(.CL’T,SL’;,Z*) | 'TT = —z*%(@),

(5, 12%) € Narg(aa, §(x2))}. (2.41)
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Thus
NGTZ<j17 '7_727 2) = {(ZIIT, ZII;, Z*) | 'TT = —Z*S<i’2)7 (I;, jlz*) S NGF%('f?’ S<i2>)}7
and the assertion follows immediately from the definition of the coderivative. [

Proposition 5 (sliding). Let z* € R be arbitrary and (z1, %o, 2) € Gr Z such that
To < 0. Then:

D*Z(%1,%2,2)(2") = {—=2"F(—22)} x (— D*F(—72)(—712%)). (2.42)

Proof. In this case there exists a neighbourhood O of (Z1, Z2) such that:

Z(x1,9) = —1F(—2x2) V(zq,29) € O.
The rest is done in a similar fashion. O

The previous two cases have the mechanical interpretation of sliding, i.e.,
represent those contact points, where the displacement in the tangential direction
is nonzero.

Proposition 6 (sticking). Let z* € R be arbitrary and (71,0, z2) € Gr Z such that
|Z| < 215(0). Then:

{0} xR if 2* =0,

2.43
0 otherwise. ( )

D*Z(74,0,2)(z") = {

Proof. As readily seen, there exists a neighourhood U of (1,0, z) such that:
UNGrZ=UnN(Rx {0} xR),

whence we immediately get:

Nerz(21,0,2) = {0} x Rx {0} V(21,0,2) eUNGrZ. (2.44)
The assertion follows easily from the definition of the coderivative. O

The setting of the previous proposition corresponds to contact points, where
(strong) sticking is present, i.e., the tangential component of the stress vector
is below the threshold value to trigger motion in the tangential direction. If this
critical value is attained at a contact point, but there is still no tangential motion,
we speak of weak sticking, which is investigated below.

In order to give a reasonable formula for the coderivative D*Z at these points,
we will, in addition, assume that the coefficient of friction § is weakly semismooth
at 0 (cf. [32]), implying that:

33.(0) e R and Lim sup 0§ (z) = {F.(0)}, (2.45)

1‘*)0.’_

where §’_ stands for the right-hand derivative of §. Now the following result holds
true.
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Proposition 7 (weak sticking). Let z* € R and z; > 0 be arbitrary. Then:

(0 {0} ifz*>0,
D*Z(31,0,2,5(0)) (%) = le*%,f((o)) N w} weldR  if2<0,%. (2.46)
R if 2 =0.

Proof. The analysis in this case becomes more involved, since the point a :=
(Z1,0,71F(0)) may be approached by sequences corresponding to different me-
chanical regimes:

Ngrz(a) = Lim sup ]v(;rz(xl,xg, 2) = N1 UNy UNG,

(xl,xg,z)ci%d
where

Nl = Lim sup Ngrz(l‘l,fL‘Q,Z), NQ = Lim sup Ngrz(l’l,O,Z),

GrZ_ GrZ_
(Z‘17$27Z)—>a ($1,07Z)—>a
x2>0 z<x15(0)

and R
N3 := Lim sup Ng, z(z1, 0, 2:5(0)).

xr1—T1

Observe that the regular normal cones generating in A; and N5 have already
been computed in (241) and in (2:44), respectively. From (2:44)) we immediately
have:

Ny = {0} xR x {0}.
The relation (2.41]) may be written as
Nex z(w1, w9, 2) = {(2}, 25, 2) | ) = —2"F(22), 73 € D*Flwa)(—712")}. (2.47)
Using to the scalarization formula one may write in (2.47):
D*F(22)(—%12") C D*F(w2)(—712%) = O(—212°F)(22) C —212°0F (25).  (2.48)

Taking into account the assumed semismoothness property (3.37), it follows from

[2.47) and (2.48)
Ny ={(a7,23,27) | 2] = =2"F(x2), 25 = —1:12"F (0)}, (2.49)

since N} # () due to Lipschitz continuity of §.

The treatment of A is, however, more delicate. As a first step, let us compute
the contingent cone to GrZ at a := (x1,0,2,5(0)), for x; > 0 fixed. Note that
Gr Z locally around the reference point a coincides with the union Gy UG5, where

Gy ={(z},2,2) | |[2] — 1| <e, 24, =0, 2/F0) —e < 2 <2/F(0)},
Gy = {(2},25,2") | |2} —m1| <e, 0 <) <e, 2/ =2{F(x})},

for a sufficiently small € > 0. Moreover, the following holds:

TGYZ<G’> =Tg, (a’) UTg, (CL) (250)
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By the definition of the contingent cone:

Te, (@) = {(h,k,1) | 3h; — h 3k; — k A, — 1IN — 04

Analogously:
Ton(a) = {(h k1) | 3hs — b Fks — k s — 1 3N — 0, :
0 < Nkiy, 218(0) + Nily = (21 + Nhy)§(Nik;) }
_ {(h,k:,l)’ﬂhi B3k — kA — 13N — 0,

S(Niks) — 3(0)}

<l ] =h. L. ,
0 = kza lz hzg()\zk:z) + xlkz )\zkl

= {(h,k,1) | 0 <k, I =hF(0) + 2:kF.(0)},

where we have made use of (3.37) ensuring directional differentiability of § at 0.
Now it is sufficient to compute the (negative) polars to these cones to obtain:

Ney(a) = (To, (@)’ = {(x},23,2") | 2} = =2"§(0), 2* > 0} (2.51)
and similarly:
Noy(a) = {(a}, 23, 2") | 27 = —=2"3(0), 23 < —212"F, (0)}. (2.52)
Finally, combining (250), (251)) and (2.52) yields:
Narz(a) = (Te, (@) U Tg, (a))’

a)
= Ng,(a) N Ne,(a)

From this it is obvious that N = Ng, z(@).

In this way we have now an upper estimate of Ng, z(a) and the result follows
easily by the definition of the coderivative. Indeed, for instance, the first formula
in (2.406) follows from (2.49) and the fact that for z* > 0 and ¢ = 2,3 there
does not exist any (27, 23) such that (a3, 25, —2*) € N;. The statement has been
established. O

A straightforward modification of the proof of Proposition [7 implies the fol-
lowing result, concerning the point a := (1,0, —F(0)).

Proposition 8 (weak sticking). Let z* € R and z; > 0 be arbitrary. Then:
R+ Zf z* > O,
D*Z(#1,0, -1 3(0)) (") = 280 e dior i <o
T 712§ (0) +w ’
R ifz*=0.
(2.53)

We are now in a position to verify the qualification condition (236).

Corollary 1. Let (&, u,q) € Gr Q. be arbitrary. Then (Z38) holds.
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Proof. By (2.40), 2.42), (243), (2.46) and (2.53]) we see that D*Z(Z1, T2, 2)(0) C

{0} x R for any (Z1, T2, 2z) € Gr Z, implying:
D*Z(¥(a, ), q)(0) C ({0} x R)".

Choosing now w € (RQ)p such that w; = (0,¢;)T for all i = 1,...,p, then (cf.

[2.38) and ([2.39)):

0=VI(a a)lw= Zz:p; VU, (e, w) w; = zp: [Vwiéa)T e%)] B] = m .

i=1

In this way we have proved that the upper estimate (2.37), needed in (AGE),
is valid.

The obtained results enable us to establish necessary optimality conditions,
that may serve, e.g., as a stopping criterion in the numerical algorithm, or for
testing optimality of a design computed in some other way.

Theorem 18. Let (6, ) be a local solution to [B) (in particular §y = S(a)).
Then:

(1) 0 € VoJ(a,y) + D*S(a)(V,J (&, ) + Ny_(a);
(2) 3 v* € R¥:

0€VJ(a y)+VF(a g v +DQen,y, —F(0,9))(v")+ Ny (00, 7).

Proof. The optimality condition in (1) amounts directly to the respective con-
dition in [36, Corollary 5.35]. This relation together with Theorem [I7 (ii) yields
(2). O
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Chapter 3

Shape optimization: Coulomb case

In this chapter we consider the optimal shape design problem, where the state
problem is given by the two-dimensional Signorini problem with Coulomb fric-
tion and a solution-dependent coefficient of friction. Since the analysis of contact
problems with Coulomb friction is very involved in the continuous setting, we
will investigate existence and computation of discrete optimal shapes only, i.e.,
for fixed values of the discretization parameter h, and various choices of the cost
functional.

The structure of the present chapter copies more or less that of the previous
one, with a notable exception: this time only the algebraic setting is considered.
First, we shall first derive the reduced version of the algebraic Signorini prob-
lem with Coulomb friction and a solution-dependent coefficient of friction and
define the shape optimization problem. Then, we prove Lipschitz continuity of
the corresponding solution map, but this time using Robinson’s strong regularity
condition (SRC). As an immediate consequence, one obtains existence of discrete
optimal shapes. Moreover, the SRC property will play an important role also in
subsequent sensitivity analysis. This is conducted in a similar way as it was done
in the previous chapter, using tools from the generalized differential calculus of
Mordukhovich. This enables us the efficient solution of the shape optimization
problem by means of the ImP and a bundle method of nonsmooth optimization.
The results obtained here are have been presented in the paper [5].

3.1 Algebraic shape optimization problem

Let us start with formulating the reduced algebraic state problem. To this end,

recall that in Section 1.3.2 we have denoted by (A(a, ¢, g)) an auxiliary problem
representing the algebraic Signorini problem with given friction, where the slip
bound is given by the vector g € R”. and the coefficient of friction by the vector

(@) = [F(p1), ..., F(pp)]", for a fixed ¢ € RE:
Find (u,A) € R" x R% such that:
(Al)u, v —u)n + (F(p) @ g, [v7] — [u-])y
> (L(a),v —u), + (A, v, —u,), VveR"
(B—Au,+a),>0 VYueREL.

(Aler, 0, 9))

In contrast to the Tresca friction case, there is no reason to restrict the set of ad-
missible design variables, therefore we assume a € U,q C R as defined in (L22),
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i.e., without imposing additional constraints on the second finite differences.

The pair (u*,A") € R" x RY was shown to be the solution of the Signorini
problem with Coulomb friction and a solution-dependent coefficient of friction
(MC(a)) (in the sense of Definition 9) iff it is the solution to (A(a, ¢*, g*)),
where (¢*, g*) is a fixed point of U : R? x R? — RY. x R? | (¢, g) — (Ju.|, \).
On the basis of this relation, we may easily derive the reduced form of
by simply inserting the fixed point of ¢ into (IL34). This way one obtains the
following system of GEs:

0 € A (@)u, + A (a)u, — L (@) + Q, (u,, \),
0=A,()u, +A, (x)u, — A
0 Eu,,—l—a—irNRzi()\),

where the multifunction @T : RP x RP = R? takes the form

(Q,(v.w)), = F(|vihwidlv;| Vi=1,2,...p.

Further, recall that the matrix- and vector-valued mappings A, A, A, A, :
Uy — RP*P and L,, L, : U,y — RP, respectively, are assumed to be continuously
differentiable.

Denoting the state variable by y = (u,,u,,X) € R*®, we write the system
(31) in the compact form:

0€ Fla,y)+Qy), (GE ()

with F : Uy x R® — R3 being the single-valued, continuously differentiable
function from the previous chapter (cf. (2.8)) and (2.9)):

F(o,y) = Ala)y — ().

The multivalued mapping Q : R% = R® in (GEC(a)) has a closed graph and is
given by the expression:

R Q. (u-, A)
Qy) = 0 Yy = (u,, u,, A) € R,
Nz (A)

With the parametrized generalized equation (G E®(a))) we associate the control-
to-state mapping S : U,g = R, defined by

S(a):={y eR”|0€ F(a.y) + Q(y)}.

Now the shape optimization problem may be stated in the form of the following
mathematical program with equilibrium constraints (MPEC):

minimize J(a,y),
subj. to y € S(a), (PY)
(6 S Uad7

where the cost functional J : U,y x R® — R is assumed to be continuously differ-
entiable. Actually, this smoothness assumption imposed on J is superfluous: as it
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will become apparent from subsequent analysis, it would be sufficient to assume
J Lipschitz continuous. Nevertheless, for ease of presentation, we shall stick to a
smooth cost functional, as this does not affect the intrinsic nonsmoothness of S,

representing the variational inequality (GE“(c))), in any way.
The main result of this section is formulated in the next theorem.

Theorem 19. Let the assumptions of Theorem [[1(ii) hold. Then ([PY) has at
least one solution.

Its proof relies on the compactness of Gr S and will be given below, in a series
of auxiliary, but no less important results.

3.2 Lipschitzian stability

Our main aim in this section is to show Lipschitz continuity of S. Although
one could prove this directly, as it was done in the case of Tresca friction (cf.
Theorem [I6]), the fact that ¢ does not depend on a € U,g, allows us to prove a

stronger result, namely, strong regularity of (GE®(c)).

First, however, we shall prove local Lipschitz continuity of the solution to
(M (a)) with respect to the load vector L € R™.

3.2.1 Stability with respect to the load vector

Since the domain corresponding to the design vector a« € U,y will be fixed and
L variable, let us relabel the problem (M%(a)) by (M€(L)) and the auxiliary

problem (A(c, ¢, g)) by (A(L, ¢, g)). Further, having (I43) in mind, let:

g+ llA]
(| L]ln) = max{Cnaz, R(||Lln)Crip}- (3.2)
By
We recall from ([L42)) the expression for R(||L,||) and define the constant x > 0:
11 /[A] )]
R(| L) = ——l——(——l—l L|, =: k||L||,- 3.3
(L ln) [7 5\ 1L [IL]] (3-3)

In terms of the function § from ([B:2)), the assumption of Theorem [[TI(7) is equiv-
alent to d(||L||,) < 1. Provided this condition is met, the Signorini problem with
Coulomb friction has a unique solution. In addition, as we will show,
the following holds true.

Proposition 9. Let the assumptions of Theorem[I(ii) be satisfied, i.e., §(||L||,) <
1 for some L € R™. Then there ezist positive constants € > 0 and K = K (L, ¢€) >
0 such that:

”(’I_L,X) - (ﬂ'ax)”n-i-p < I(”‘E - -EHn \V/_E,_E € BE(L)’

where (@, X), (@, X) denote the unique solutions of (M (L)) and (MC (L)), re-
spectively.
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Proof. Existence of € > 0 satisfying:
S(|L|l.) <1 VL' €B.(L) (3.4)

follows immediately by continuity of the function 6 : R, — Ry (cf. (B2)—(B.3)).
We choose such an € and denote

¢ = max{S(|L']l,) | I' € B(L)} € (0,1).

Further, let L, L € B.(L) and (¢, g) € RE xR be arbitrary. Then, we build the
following sequences iteratively:

(i) Let (), 5\(0)) € R" x R% stand for the solution of the auxiliary problem
(A(L,,g)). For each k = 1,2,3,... denote by (’a(k),x(k)) € R" x R® the
unique solution to (A (L \u(k v |, )\(k b ))

(ii) Let (a'®, 5\(0)) € R x R” be the solution of (A(L, ¢, g)). Analogously, for
each k € N denote by (@™, S\(k)) € R™ x RE the solution of the problem
(AL a0 A)).

(iii) Finally, for each k € N let (U™, A®) € R* x R” stand for the unique
solution of (A (L [l A 1)))

It follows from the proof of Theorem [III(i7) that the sequences {(|11(Tk)\, X(k))},

{(|’&§k)|,5\(k))} tend to the unique fixed-point of ¥ in R x R%, defined in
connection with the problems (MC(E)) and (MC (L)), respectively. Hence, the

sequences {('&( } { (k) )\ } converge to the unique solutions (i, A),
(@, \) of (MC(L)) and (MC(L)), respectively. Now, making use of Lemma [2)(1),
one may write (recall, that we use the norm ||v + w||,+s := ||v||, + ||w]|s on the
product space R" x R?® for any r, s € N):

1@®,A%) = (@®, 3)||.s,
< [@®,A%) = @8, A®) |y + (TP, AD) — @, X)),
< SN (1% LAY = (1@ A ) ey + /I — Ll
< qll (@, ") = @4 Ay, + k1L~ L,

where x is from (3.3). Since the above estimate holds for all £ € N, we obtain by
induction:

1@, A% = @, A7),
- < (0) _ _ -
< ¢ 1@, AY) = @ Xy + (@ + -+ g+ el L — L
< ¢"k|L = L, + (¢* '+ -+ ¢+ )| L - L],
< " ||L - LJ..
l—gq
Here we used that ¢" +---+¢+1 <> ¢ = qu for |q| < 1, which is satisfied

in our case by the definition of q. Now, taking limit as k — oo one arrives at the
assertion of the proposition. O
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Remark 9. Notice, that due to Lemma [6] the solution of (M (a)) is globally Lips-
chitz continuous with respect to the load vector, whereas in the Coulomb friction
case the same property holds only locally.

3.2.2 Strong regularity

Having the above result at hand, we are in a position to prove strong regularity
I8, 146] of (GE(ct)).

Proposition 10. Let the assumption of Theorem [I1l(ii) hold. Then the general-
ized equation (GE®(a)) is strongly reqular at each (a,y) € Gr S.

Proof. Let a reference pair (&, §) € Gr S be fixed. Recall that (GEC () is called
strongly regular at (&, ¥), provided there exist neighbourhoods U of 0 € R* and
Y of y such, that the mapping:

R¥> ¢ {yeV]éeF(ay) +V,F(ay)(y—9) +Qy)} (3.5)

is single-valued and Lipschitz in . To prove this, let & € R? be fixed and
notice that F'(a,-) is linear. Hence, the perturbed GE in (8.35]) amounts to: € €

F(a,y) + Q(y). The same GE, written componentwise with y = (u,,u,,A),
€ = (67-761/76)\) S R?’p:

£, € A (@)ur + Ary(@)u, T(d)+ Q. (ur, ),
£ =As(@)ur + Ay, (a)u, — A= L(a), (3-6)
€\ € uy + o+ Ngz (A).

The system (3.6) may be rewritten as

OGAT’T( )uT+A’TV( )(UV_E)\) ( 7'( )+ T_ ( )€A)+Q (,u’T’ )7

0=A, (a)u; + Ay (a)(u, — &) — A= (Ly(a) + &, — A, (a)§)),
0 € (u, — &) + &+ Ner (A).
(3.7)
The system of GEs (B.7) represents the Signorini problem with Coulomb friction
and a solution-dependent coefficient of friction on the domain given by & € U,y
and with load vector

w(@)€y |, (3.8)

having the solution y, = (u,,u, — &,,A). As follows from Proposition [, for
suffeciently small € > 0 and & € U := B.(0) the contact problem ([B.1) with load
vector l¢ (@) has exactly one solution, i.e., (3.6)) is uniquely solvable. Hence single-
valuedness of the mapping (3.0 follows. To see that it is Lipschitz continuous on
U, let €V ¢ e Y be arbitrary and denote the corresponding solutions of (3.6)
by y, y®. Then, employing Proposition [ (¢ > 0 stands for a generic constant
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independent, of €@, y®):
ly™ = 4@ s, = [u®) — u@ |, + [[ul) — u||, + AV =A@,

< [lul — u? |, + (ul — ) - @? — D),
+ AL = A, + 1€ — €2,

< lle (@) — Lew (@) 15, + 165 — €2,

< (€W — €D, + A ()€ — €21, + 1€ — €21,
+ A (@)€Y — €21,) + 1€ — €21,

< cf|€D — €|,

and the proof is complete. O

As a corollary of Proposition [I0] we obtain Lipschitz continuity of the corre-
sponding solution map.

Corollary 2. Let the assumptions of Theorem[11(ii) hold true. Then the solution
map S : Uyg — R is single-valued and Lipschitz in U,g.

Proof. Follows from Theorem 2.1 in [§] and the compactness of U,,. O

Now we are in a position to prove the main result of this section.

Proof of Theorem[I9. By Corollary 2l the solution map S is Lipschitz continuous
on the compact set U,q, thus its graph is compact in U,y x R3P. Therefore, any
lower semicontinuous cost functional J attains its minimum on Gr S, i.e., the
shape optimization problem (@) has at least one solution. O

3.3 Sensitivity analysis

Concerning the numerical solution of the shape optimization problem (@), the
same applies as in the Tresca friction case, i.e., due to Corollary 2l we may follow
the ImP approach and reformulate the original MPEC into

minimize J () := J(c, S(ax)) } )
subj. to  «a € Uy,

where J : Uy — R is (locally) Lipschitz and possibly non-convex. Due to the
reasons discussed in Section [2.4] we shall solve (@) by a bundle method. In order
to make this approach work, at each step & € U,q of the minimization algorithm
one has to be able to provide a function value J (&) = J(&,y) with y = S(a),
and one (arbitrary) subgradient & € 9.7 (&). Owing to (Z25)—(Z27) we see that
this can be achieved by setting

§:=V.J(a,y)+p,

where R

p* € D*S(a)(VyJ(a,y)).
The computation of one such p* is described in the next theorem. Actually, it
happens to be a simplified form of Theorem [T(iz) for the case when the multi-
function @ does not depend on the the design variable c.
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Theorem 20. Let (&, ) € Gr S be given. Then for each p* € D*g(d)(vyJ(d, v))
there exists an adjoint variable v* € R3 such that

P =V.F(a,y) v’ (3.9)
and v* is a solution to the adjoint GE:
0€V,J(ay) +V,F(ay) v +DQy,~Flay) ) (AGE?)

Proof. Due to the strong regularity condition (see Proposition [I0) the assump-
tions of [27, Theorem 5| are satisfied. See also [4, Theorem 4.1]. O

~_Note, that Theorem 0] in general, provides only an upper approximation of
dJ (@) since the vector v* constructed using ([39) and (AGE®) may lie outside

~

of D*S(a)(V,J(&x,y)). Let us recall, that this can happen only at points where
Gr@ is not graphically regular, and if it does happen (at a nonregular point),
the used bundle method may not inevitably collapse. Otherwise a recovery step
has to be made in which the bundle method is provided with a correct subgra-
dient. Nevertheless, computational experience shows that this occurs very rarely,
therefore we will rely on the construction of subgradients via the AGE (AGEC)
as described in Theorem R

The rest of this section is devoted to expressing the coderivative D*Q) in
terms of the problem data, as D*(@) is the only unknown quantity remaining in
(m. In doing so, we follow closely [4] and begin with reordering the equa-
tions in (GE“(a)) so that y € (R®)? with y; = ((w);, (w,)i, A;) comprising all
state variables associated with the i-th contact node (i = 1,...,p). This way the
multifunction @ takes the form:

(I)(yl)

. d(y,

Qy) = (?), (3.10)
®(y,)

where ® : R? x R, = R? is defined as:

§(lai])asOlas]
P(a) = 0 Va € R* x R,. (3.11)
NR+<G3>
Due to the above reordering (BI0) and [47, Example 6.10], one has for every
(9,9) € GrQ and p* € (R®)”:

D*®(yy,q,)(p7)

A D*®(y,,q,)(p3)
D*Q(y,q)(p") = : 71 (3.12)

D*®(y,.q,)(p})

Therefore, in the sequel we will consider arbitrary (a, b) € Grd, b* ¢ R?’i and
compute the coderivative D*®(a,b)(b*) according to the position of (a,b) as
given by the following partition of Gr ®:

Grd=LUM,; UMyU MU M; U M,, (3.13)

63



where the sets on the right-hand side of (3.13) are defined in Table B.Il From
a mechanical point of view, partition (3:I3) represents all possible contact and
sliding modes of a point on the contact boundary.

no contact: weak contact: | strong contact:
az3 =0, b3<0|a3=0,b3=0]| a3 >0, b3=0
sliding:
a; # 0, M, M,y
b1 = sgn(a1)§(la1])as I
weak sticking:
ay = 0, M4 MB_
|b1] = §(0)as
strong sticking:
a; =0, X X X X X X My
|b1] < §(0)as

Table 3.1: Contact and sliding mode at (a,b) € Gr ®.

As easily seen from their definition, the sets L, M; and M are open in the
relative topology of Gr®, i.e., each X € {L, My, M} satisfies:

V(a,b) € ¥ Ineighborhood O : GrdNO C . (3.14)
This makes the analysis in these cases substantially easier, since:

NGr@(a’v l_)) = NE(a’v l_)) = Lim sup NE(aa b)a (315)
(a,b)>(a,b)

as will be used frequently below.

Proposition 11 (no contact). Let (a,b) € L and b* € R? be given. Then:

{0} x {0} xR ifb; =0,

1] otherwise.

D*®(a,b)(b*) = { (3.16)

Proof. Let (a,b) € L be arbitrary. Then there exists a neighborhood O of (a, b)
such that:

GreNO = (RxRx{0})x ({0} x {0} xR)NO.

Therefore: R
Naro(a,b) = ({0} x {0} x R) x (R xR x {0}), (3.17)

and the assertion follows directly from (3.I5]) and the definition of D*®. O

Proposition 12 (strong contact, strong sticking). Let (a,b) € M; and b* € R3
be given. Then:

R x {0} x {0} if bt =0,

1] otherwise.

D*®(a,b)(b*) = { (3.18)
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Proof. In this case, for every (a,b) € M; one can find a suitable neighborhood
O such that:

GreNnO = ({0} x RxR) x (Rx {0} x {0}) nO,
whence R
Naro(a,b) = (R x {0} x {0}) x ({0} x R x R). (3.19)
The rest follows again from (3.I5) and the definition of the coderivative. O

Convention. For convenience, in the sequel § will signify the even extension of
the coefficient of friction to the whole R, i.e. §(z) := §F(—z) Vx < 0, so that
§(|z]) = F(z) Vo € R. Clearly, § is (globally) Lipschitz in R.

Proposition 13 (strong contact, sliding). Let (a,b) € M; and b* € R? be given.
Then:
B D*§(a1)(sgn(ar)asby)
D*®(a,b)(b") = 0 . (3.20)
sgn(a1)§(a1)b}
Proof. There exists a neighborhood O of @ such that ® is single-valued on @ and
equals:
sgn(ay)F(ar)as 3
d(a) = 0 Va € O.
0

From the definition of the regular coderivative:

Nero(a, ®(a)) = {(a*,b*) e R* x R? |
{(@"x —a)s + (b, ®(z) — ®(a))s < o(||z — a|) Va1,
employing the Lipschitz continuity of §. A straightforward calculation yields:
Nero(a, ®(a)) = {(a",b7) | a3 = 0, aj = —sgn(@)(a1)bi,
(a},sgn(a@)bias) € Nerg(ar, §(ar))}. (3.21)
Hence (see (310)):

Naro(a,b) = {(a*,b") | a3 =0, a3 = —sgn(a:)F(a1)b;,
(a,sgn(ai)bias) € Narg(ar, §(a1))}
and the proof is complete. O

Remark 10. (i) If § happens to be smooth around @;, then ® is smooth in O
and (3:20) reduces to the adjoint Jacobian of ®, as expected:
) §'(a)as 0 0
D*®(a,b)(b") = sgn(a;) 0 0 0fb".
S(@) 0 0
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(ii) It can be seen from the proofs of Proposition [[1l and Proposition [[2] that
Gr® is graphically regular at each point of L and M, . Tt is graphically
regular at those points (@, b) € M, for which Gr g is graphically regular at
(@1, (ay)). In particular, if § is smooth, then Gr ® is graphically regular
also on M;.

Unfortunately, the situation becomes more involved when dealing with the
sets My and M; , since they lie on the common boundary of two open sets:

My = relint(OL NOM;) and M5 = relint(OM; N OM; ), (3.22)

where relint(A) denotes the relative interior of the set A.

In order to compute D*® at points belonging to M,, we will use a slightly
generalized version of [4, Lemma 4.6]. In particular, we show that its assertion
holds with equality under less restrictive conditions.

Lemma 9. Consider a multifunction F : R™ x R™ x R° = R! x R? given by

o) - [(EY)]

where G : R* x R™ = R, H : R™ x R” = RP are closed-graph multifunctions.
Assume that the point (,9Y, z, f,, fy) belongs to Gr F' and the qualification con-
dition
0 = —
] € DC@.5.7)0)
= wy; =0 (3.23)
—w " =
o] e vtz 20
holds true. Then one has

D*F(x,y.2, [, f5)(d}, d5) C {(ur,us +v1,v5) |

(u1,uy) € D*G(&,9, f1)(d}), (vi,v5) € D*H(y,2, f5)(d3)}. (3.24)

Assume, in addtion, that for each sequence y) — g and eachm € D*G(z,y, f,)(d})

there exist sequences (™, y@, f( )) arg (z,y, f,) and d*(l — dj such that

n € Lim sup D*G(x®,y@ | £y (d;™). (3.25)

1—00

Then ([B.24) holds as equality.

Proof. The first assertion has already been proved in [4]. To prove the second
one, let 1 be an element of the right-hand side of (3.:24), i.e.

n = (w1, us + v1,v9),

for some (w1, uy) € D*G(x, 9, f,)(d}) and (v,,v,) € D*H(y, 2, f,)(d;). Thus,
there exist sequences (y@, 2@, £ 4 (5.2 £,), &% = &, (7, 0)) >
(v1,v2) such that ('vgi),'vg)) € ﬁ*H( (),y(l),fg))(dQ(i)). By virtue of our ad-
ditional assumption, there are sequences 9 — Z, fgi) - fi. d’{(i) — dj and
W\, ul’) € D*G(x, y, £ (d;?) such that

(u” u’) = (ur, ).
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It follows from [47, Theorem 10.40] that for all i € N

(’u,g),ug) +’v§), ® ) € D* F(z®, y® 20 f(l fi )(di(i),d;(i)),

and consequently n € D*F(z, 9, 2, f,, f5)(d}, d3). O

Remark 11. Note that equality in (3:24) holds also if instead of G the multi-
function H satisfies similar conditions as (3.25]). The details are left as an easy
exercise.

Next we show that the second assumption of Lemma [0 ensuring equality
in ([B.24)), is fulfilled in the case when G is “multiplicatively separable” in the
sense that G(x,y) = f(x)g(y), where f : R" — R is locally Lipschitz and
g : R — R'is continuously differentiable. To this end, let us first present an
auxiliary result.

Lemma 10. Let n,m,l € N and the functions f : R® — R and g : R™ — R’ be
locally Lipschitz around & € R™ and y € R™, respectively. Let G : R" x R™ — R!

be defined as
G(x,y) = f(x)g(y).

For its regular coderivative then holds:
R N = N\ J*
D*Gla.g)(d) = [DJ @le@) @ 1 (3.26)

for any d* € R
Proof. From the definition of the regular coderivative we have:
D'G(z.g)(d") = {(".y") € R" x R" |
(", @ — 2)n + <y Y = Yhm —(d", f(2)g(y) — f(2)g(y)):
<o(le =zl + ly —ylm) Viz,y)}

In particular, for (x,y) and (&, y) we get the following two relations:

("2 — ), —(d", (f(z) - [(®)g(y)): < of[lz — z[l.) vz, (3.27)
Yy —ym —(d, [(@)(9(y) —g(®)) <oy —yllm) Yy, (3.28)

which immediately yield the inclusion C in (3:28) by the definition of the regular
coderivative.

To prove the converse inclusion, let us assume that * € R™ and y* € R™
satisfy (B.27) and (B.28)), respectively. We sum both equation to get:

*

(&2 —Z)n+ (Y Yy —y)m — (d", f(2)g9(y) — f(2)g9(9)):
<{d", (f(=) - f(z))(g(y ) 9(9)) + o[l — z») + o([ly — yllm)-

Finally, to complete the proof, it is sufficient to show that the right-hand side is
o(||x —Z||n+ |y — Y|lm)- The last two terms are left as an easy exercise. Denoting
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by Ky and K, the Lipschitz moduli of f and g, resp., the first term can be
estimated as follows:

(d, (f(=) - f(x))(g(y) —g(y)))
lz = [l + |y = Gl ) )
| wn,|mvwm,m ﬂ%im Yllm

-~

<Kj <K, <1

1Y = Gllm, — 0
—_——
_)

for (z,y) — (Z,9). O

Remark 12. Notice that the proof of the previous lemma can be applied without
change also in case of G(x,y) := f(x)g(y), where f : R* — Rl and g : R™ — R,
both locally Lipschitz. Then one has for every d* € R':

o [ Dr@ @)
D*G(z,y)(d") = [ﬁ*g(y)(f(w)Td*)] )

Proposition 14. Let the assumptions of Lemma hold, with g : R™ — R!
continuously differentiable around y € R™. Then G satisfies ([8.25), i.e.

v € D'G(z,3)(d) Yy — g T2 - & IV 5 d* In® - n-

Proof. Let n € D*G(z,y)(d*) and y® — g be arbitrary. From the scalarization
formula and [36, Corollary 1.111(i)] it follows easily that

™

= {f(@)Vg(@)Td*

By the definition of the (limiting) coderivative

} for some e D*f(z)(g(y)"d"). (3.29)

29 =z 30 5 g@)Td 70 5w 7O e D F() D). (3.30)

Let us distinguish between the following two situations.
(i) g(y)Td* # 0. Then, clearly, g(y(i)‘) # 0 for ¢ sufficiently large. For these
indices we may select any sequence {d(z)} satisfying the conditions

d? — d* and g(y(i))Td(i) — (),
Observe that such choice of {d"} is always possible, e.g.

W%:—lg—d* (3.31)
g(y®)rd’

for 4 sufficiently large. By Lemma [I0

i 7 N i i i
77( )= f(w(i))Vg(y(i))Td(i) €D G(m( )7 y( ))(d( )) (3'32)

and so the assertion follows.
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(ii) g(y)Td* = 0. Tt follows that m = 0, since D*f(z)(g(y)'d") = {0} by
virtue of the Mordukhovich criterion [47, Theorem 9.40]. Consider now arbi-
trary sequences ) — z, d? — d* and ®#® € D*f(x®)(g(y)Td?) =
D*f(2D)(g(y™)Td") # 0. Such sequences do exist, because f is differentiable
on a dense subset of its domain (Rademacher’s theorem) and at these points

D*f(@)(r) = D*f()(r) £0 VreR.

Clearly, 7w — 0 by the outer semicontinuity of the limiting coderivative and the
statement follows again from Lemma 10 O

Remark 13. The assertion of Proposition [14] remains valid if we consider G of
the form discussed in Remark [[21 The only difference is that instead of (B.31) we
may take

) 1 )
d? = __p(0)
9(y®)
The reader is kindly encouraged to work out the details.

Proposition 15 (weak contact, sliding). Let (a,b) € M, and b* € R? be given.

Then:
0 R if b5 =0,
D*®(a, b)(b*) = 0 we{R. ifby<0,p. (3.33)
sgn(a)§(a1)b] +w {0} if b5 >0.

Proof. Consider a reference point (a,b) = (a1, as,0,0,0,0) € M, where a; # 0
by the definition of M,. Then ® attains the form

sgn(ay)F(ar)as )
d(a) = 0 Va € O,
NR+ <a3)

for a sufficiently small neighborhood O of a. Defining the function G(z,y) :=

§(x)g(y), where g(y) := sgn(a;)y and the closed-graph multifunction H(y) =
Nr, (y), Lemma[ yields:

D*(I)<d, I_))(b*) = {(Ul, 0, uq + U) ‘ (ul, UQ) € D*G<C_Ll, 0)(();), (3 34)

ve DH(0,0)(b3)}, '

because G satisfies the assumptions of Proposition and thus the second as-
sumption of Lemma [0 is satisfied. Since g(0) = 0 and ¢/(0) = sgn(a,), it follows

from (B3.29) that

D*G(a,0)(b?) = { {sgn(dl)og(dl)b’{} } . (3.35)

For the coderivative of the normal cone mapping H at (0,0) € Gr H one has:

R if bt =0,
D*H(0,0)(b5) = { R_ if b3 <0, (3.36)

(0} if 0% > 0.
Finally, the assertion follows by collecting (3.34)), (B.33) and (B3.36]). O
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In order to give a formula for the coderivative D*® at points in M5 we will,
in addition, assume that the coefficient of friction § is weakly semismooth at 0
(cf. [32]), implying that:

33.(0) e R and Lim supdg(z) = {F.(0)}, (3.37)

$—>0+

where §’, stands for the right-hand derivative of §. Now the following result holds
true.

Proposition 16 (strong contact, weak sticking). Let (a,b) € M; and b* € R3
be given. Then:

) 3 (0)azb} + w R if by =0,
D*®(a,b)(b") = 0 w € < sgn(b)Ry  if bisgn(by) < 0,
sgn(b1)§(0)b7 {0} otherwise.

(3.38)

Proof. Let (a, b) € My be given, i.e. (a,b) = (0, ay, as, by,0,0) € R3 x R, where
az > 0 and [b;| = §(0)as. It can be easily seen, that there exists a neighborhood
O of (a,b) such that:

sgn(by) = sgn(b;) and sgn(ai)sgn(b) >0 V(a,b)c Gr®nO. (3.39)
Moreover (cf. (8:22)) and Table B1)):
Naro(a,b) = Ny UNy UN3, (3.40)
where

N := Lim sup ]/\\7M1(a, b),
(a.0) 2 (a,B)

Ny = Llr?/,fup NM;(a, b),
(a,b)—>(a,b)

N; = Lim sup Nerola,b).

(a,b)l\g(d,f))

Let us first calculate Nj. From (B2I), (339) and the definition of the regular
coderivative it follows that:

Nu(a,b) = {(z*, ") | 23 =0, x
:

= —sgn(b))F(0)y7,

=0, 75 1 (3.41)
€ D*F(ar)(—sgn(b)azy;)}

T

for each (a, b) € M;. Using the scalarization formula and [33], Corollary 3.3.2] we
get:

~

Do) (- sm(basi) € D'(a)(—sglbuassi)
= 0(—sgn(by)azy;F)(ar) C —sgn(by)asy;0F(ar). (3.42)
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Note, that A is nonempty (it follows easily from the Lipschitz continuity of §
and the Rademacher theorem). In light of this fact, (8.41]), (3.42) together with
the semismoothness assumption (8.37) and (8:39) yield:

Ni={(a",b") | a3 =0, a3 = —sgn(b)F(0)7,

3.43
i = ~F.(0)ahi). (349

Concerning N3, from (B.19) one has immediately:
No = (R x {0} x {0}) x ({0} x R x R). (3.44)

However, the computation of the cone N3 is more involved. In particular, let
(a,b) € M; be given and observe that Gr ® locally around (a, b) can be written
as the union of the following two disjoint sets (cf. Table Bl and (3.39)):
Gy = {(z,y) | sgn(x1) = sgn(by), x5 >0, y1 = sgn(b1)F(x1)xs, y2 = ys = 0},
Gy :={(z,y) | 21 =0, 23>0, sgu(bi)y1 < F(0)z3, y2 = y3 = 0}.

This way one has:

TGI«(I)(CL, b) =Te (CL, b) UTa, (CL, b), (345)
and hence
]/\\[Grq)(aw b) = (TGr<I><a'7 b))o = NGl (CL, b) N ]/\\[G2 (G,, b) (346)

The contingent cone to (G; can be determined as follows:

Te,(a,b) = {(h,k) | 3RY = h, kY =k, \D S50, Vi:
(a+ XD b+ ADED) € Gy}
= {(h,k) | 3nY = h, kO =k, AD S0, Vi:
sgn()\(i)hgi)) =sgn(by), az + )\(i)h;(;) > 0,
sgn(b1)F(0)as + ADEY = sgn(b)FADR) (a5 + AORD),
AL = 0, AOE = 0},
from which:

FAOR) - §(0)
ADRY)
OO - F(0), ) = (i) O 5, 0)
= )\(i)|h§i)| hi’as + sgn(b))F(A Ry )hy

— & (0)hias + sgn(by)F(0)hs, for i — oo,

kii) = sgn(l_)l) hgi)as + Sgn(l_)l)m)‘(i)hgi))hg)

as follows from (3.37). Thus we get:

TGl(CL, b) = {(h, k) | sgn(l_)l)hl Z O, ]{32 = kfg = O,
ki = (0)azhy + sgn(by)F(0)hs}.

An analogous computation yields:

(3.47)

TG2(CL, b) = {(h, k) | h1 = O, ]{32 = k’g = 0, sgn(l_)l)k:l S S(O)hg} (348)
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Now, the negative polars to the cones (3.47), (3.48]) can be easily calculated:
Ney(a.b) = {(2,y") | (21 + F,(0)agy;) sen(by) < 0,
7y =0, 23 = —sgn(b)F(0)y7},

and

Ne,(a,b) = {(@",y") | 25 = 0, 25 = —sgn(b)F(0)y], yisen(br) > 0},
so that
Re(a.b) 0 Ne(a.b) = {(@.y7) | (21 + §, (0)asyi) sen(b) < 0.
7y =0, x5 = —sgn(b1)F(0)y1, yysen(br) > 0}.
Finally, from (B8.46) and (3.49) we get: @

N3 ={(a",b") | (a] + &, (0)asb;) sgn(b) <0,
a3y =0, ai = —sgn(b))F(0)b}, bisgn(by) > 0}.

49)

(3.50)

The assertion of the proposition follows now from (B.43), (3.44), (B50) and the
definition of the coderivative. O

In principle, one could treat the set M, (weak contact, weak sticking) in the
same way as it was done in Proposition [[6l and write the normal cone Ng,o(@, b),
(@, b) € My, as a union in the sense of (3.40). Some cones in this union are easy to
determine, others, however, would require substantially more tedious calculations
than it was carried out for N5 in the previous proof. On the other hand, the set M,
is merely a 1-dimensional submanifold of the 3-dimensional manifold Gr ® C RS,
making it extremely rare to occur in practical computations. From this reason
we omit a detailed analysis of M, here and do not provide an exact formula for
D*® at these points.
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Chapter 4

Numerical realization

In this chapter we will solve the shape optimization problems analyzed in Chap-
ter 2 and Chapter 3. Recall that, following the ImP approach, both shape op-
timization problems (involving the Tresca and Coulomb laws of friction, respec-
tively) could be formulated as the nonsmooth optimization problem

minimize O(a), }

subj. to a €U, (4.1)

where U is a compact subset of R given by linear inequality and/or equality
constraints and O(a) stands for the composite cost function from or (@),
resp. Either way, © is possibly nonconvex and nondifferentiable, due to the intrin-
sic nonsmoothness of the respective control-to-state mappings S and S affected
partly by the nondifferentiability of the friction coefficient § : [0,00) — (0, 00),
as well.

The sensitivity analyses performed in Chapter 2 and Chapter 3, resp., enable
us to solve (A1) with, e.g., a bundle method. From this class of nonsmooth opti-
mization algorithms we have tested the bundle trust [52] [55] and proximal bundle
[39] codes. Since both algorithms performed approximately equally well, we chose
to introduce the first one in Section 1 of this chapter. At each step a®), k € N,
the bundle methods need to be supplied with (i) the function value ©(a®)) and
(ii) one (arbitrary) subgradient from 90 (a®)). The first task involves solving a
frictional contact problem with a solution-dependent coefficient of friction—in
Section 2 we briefly outline how this can be done. Section 3 is devoted to the sec-
ond task, in particular, we look at the adjoint equations from Chapters 2 and 3 in
more detail. Finally, in Section 4 numerical examples are presented. These were
computed by Ing. Petr Beremlijski, Ph.D. using the MatSol [28] library developed
at the Technical University in Ostrava.

4.1 The bundle trust method

In this section we briefly outline the main ideas behind the bundle trust (BT)
method [52] for the solution of the unconstrained minimization problem

min{ f(x) | x € R"}, (4.2)

where f : R™ — R is assumed to be locally Lipschitzian. Note that additional
constraints may be incorporated into ([£2), e.g., via exact penalization.
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By the term “bundle methods” one usually refers to a family of related iter-
ative methods for the solution of (£2)) that utilize the bundle concept originally
introduced by Lemaréchal [29] and Wolfe [54] and have the following features:

e at each iteration xj a bundle of information (y;, f(y,).g;) € R” x R x R",
1 € Ji, is used to build a model of f;

e if the model is not yet adequate, more subgradient information around x;
is integrated into the model.

The first feature is realized by the cutting plane approximation of f at x,, i.e.,
by the piecewise affine function

T r;gzi{g?(w —y,) + f(y)}, (4.3)

that equals to f at each y;, ¢ € Ji. Denoting the linearization error oy,; =
a(xy,y;) = f(xr)—(gF (xr—y,)+ f(y,;)) and introducing the variable d := . —x;,
we may express (L3)) as

fop(xy; d) = ngx{g?d — oyt + flxr), deR" (4.4)
1€J

For convex f it holds that oy, ; > 0 for any k,¢ € N and it “measures” the distance
of g, to df(x;) (which amounts in this case to the convex subdifferential), in
particular, ay; = 0 iff g; € Of(xy). This is no longer true for nonconvex f, in
which case ey ; is replaced by Sy, = B(@k, y;) = max{ay,, coll@r — y;||*}, where
¢o is a small positive parameter. This modification ensures that whenever y; is
“far away” from xy, (i, is large and hence g, plays a minor role in fop(xy;-).
Again, as the approximation fcp presumably does not model f well far away
from xj, one also adds a stabilizing quadratic term (1/2¢;)|/d||* to the model,
where t;, > 0 has still to be chosen appropriately. In BT this is done via a trust
region concept while computing the next iterate x,,; from x;. Conceptually, this
inner loop may be formulated as follows:

1. compute
: 1 n
d; := d(t;) = argmin {fop(i'?k; d) + Z—tkHdHZ |deR } ; (4.5)

2. if f(xy + dy) is “sufficiently smaller” than f(xy), then either:

(a) enlarge ¢, and go back to step 1., or

(b) make a Serious Step: set x4, = x, + dj and compute g,,, €

Of (Tr11);
if f(xy + di) is “not sufficiently smaller” than f(xy), then either:

(a) reduce t, and go back to step 1., or
(b) make a Null Step: set x;41 := x;, and compute g, ,, € Of (z), + dy,).
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The quadratic subproblem (4.3) may be equivalently formulated as (ignoring the
constant term f(xy)):

1
(g, di) := argmin {v + §||d||2 |v>gld—ay,; Vi€ Jk} ERxR" (4.6)
k

Here v, has the meaning of a predicted decrease in the f based on the approxi-
mation fop around a;. The decision in step 2 of the above algorithm whether to
make a serious or null step is then made by comparing vy, with the actual decrease
f(xx + di) — f(xr), provided it is also ensured that the CP-model gets changed
substantially when updating the bundle with the computed values. This is made
precise in [52], where the complete algorithm may be found.

We conclude this section with the following convergence result (cf. [52]).

Theorem 21. Assume that f : R" — R is weakly semismooth, bounded from
below and the sequence of iterates {zxy.} generated by the BT algorithm is bounded.
Then {x} has a C-stationary cluster point &, i.e., 0 € Of ().

Semismoothness of our composite cost functional © in (LI is inherently
connected to the semismoothness of the control-to-state mappings S and §,
respectively—composition of semismooth functions yields a semismooth function
[44]. Unfortunately, the latter property has not been proven so far in either case.
At the moment, however, there seem to exist at least two viable ways: (i) prove
semismoothness of the control-to-state mappings from the definition as it was
done in, e.g., [42], or (ii) by proving and employing a variant of the proposition
in |26, Exercise 13| for multifunctions. Nevertheless, a thorough investigation is
subject to future research.

4.2 On solving the state problem
Next, we show how the state problems (M ()] and (M (a))) are solved numer-

ically for a fixed a € U,q. In both cases we utilize the fixed-point approach to
reduce our problems to solving a contact problem with given friction and a coef-
ficient that does not depend on the solution. Since the overall efficiency depends
very much on the fast solution of these subproblems, we briefly describe how it
is implemented in MatSol [28].

4.2.1 Outer loop

In both the Tresca and Coulomb friction case we start from their fixed-point
formulation, forming the outer loop in the solution algorithm. We shall employ
the results and notation from Chapter 1.
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Tresca case:

choose @ € RE, tol >0, err > tol

while ( err > tol )
solve to get (u,A) € R" x R?
update ¢ := |u,|
update err

end
Coulomb case:

choose ¢,g € Rt , tol >0, err > tol

while ( err > tol )
solve to get (u,A) € R" x R?
update ¢ = |u,|, g:=A
update err

end

Note, that both problems (A(a, ¢)) and (A(c, o, g)) represent a Signorini

problem with given friction where the coefficient of friction does not depend
on the solution as given in (A(a)) (a is fixed throughout this section). These
subproblems are solved iteratively again, as described below.

4.2.2 Inner loop

Instead of solving (A(a))) in the presented mixed form, the so-called reciprocal
approach [18] is used. To this end, one introduces Lagrange multipliers onto the
tangential displacement:

Ar(a,p,9) = {p, € R” | [p,| Sw(a) e F(p) @ g}.

Further, let us denote by A, € A, := R% the second component of the solution to
(A(a)), and let N, T € RP*™ be the matrix representation of the linear mappings
u — u, and u — wu,, respectively. This way (A(a)) may be equivalently written
as:

Ala)u +T' X, = L(a) + NT ),
<IJ’T - )‘7'7 Tu>P + <I’l'u o )‘lﬁ Nu + O(>p <0 v(IJ’T? IJ’V) € A7<a7 (P,g) X Ay

(4.7)

One arrives at the dual formulation of (A(a))) after eliminating the primal variable

u € R” from the system above. The resulting variational inequality is equivalent

to
minimize 3(Q(a)p, p)2p — (H (), p)ap, (4.8)
subj. to p = (1, ) € Ar(a, p,9) X Ay, '

N[

[ TA(a)T” —TA ' (a)N” _ | TA (a)L(e)
Q(a) = —NA_1<Q)TT NA_1<a>NT:| 5 H(a) = |:—NA_1(Q)L<Q):| .
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Not only is the dimension of (4.8) considerably less than in case of
(p < n; the dual variables relate to the contact boundary only), but there exist
efficient methods for its solution. The MatSol library implements a conjugate
gradient method with proportioning and projections [9] (see also [10]) for solving
the quadratic problem (48]) with simple (box-) constraints.

4.3 On solving the adjoint generalized equation

In this section we shall revisit the adjoint generalized equations (AGE]) and
(AGEC)) which are supposed to yield a subgradient of the cost functional. Based
on the results of Chapter 2 and 3 we will make their solution more obvious.

4.3.1 Tresca case

In Section we have argued that a subgradient of the composite cost functional
J can be conveniently approximated by solving (AGE]) for p* € R? and inserting
it into (Z27)). The idea behind solving (AGE) is to identify a linear subspace
in D*(Q for which the resulting system of linear equations can be easily solved.
In order to do so we combine the results obtained in Section 2.5l proceeding in
reverse order. B

Let & € U,q and the corresponding state vector y = (@, @,, A) := S(&) be
given. Based on the type of sliding/sticking at the ith contact node and relations

(240), (242), [2.43), ([2.46), [2.53), we determine at each contact nodei =1,...,p

a linear subspace
Li C D*Z(LLJZ(d), (ﬁT)i, —(Fl(d, @))z)a (49)

i.e., we either choose v = 0 or there exist 4V, d® € R such that for

[

Li={(a,b5,v}) e R | aF = dMor, bF = dPv; (4.10)

19 Y1 Y 1

(£9) holds. In the former case we simply omit the equation corresponding to
the index ¢ from (AGE]), therefore let us assume that the latter case holds for
each i = 1,...,p. For later use we denote the vectors a* := (af, .. .,a;‘))T, b* =
(07,...,05)" € R?, z* == ((a},0}),...,(a},b5))" € (R?)? and the diagonal ma-
trices DU D € RP*P having the values dgl) and d§2) as their diagonal entries,
respectively, so that

a*=DWv* and b =D®v". (4.11)

From (2.37)), (238), (2.39) and (£I1) we infer that

“N\T % = \T)(1)
¢i=VU(a,u) 2" = [V“’(;) “} = {V”(]g()mm }v; (4.12)
approximates a vector in D*Q, (&, @,, —Fi(é, §))(v*). This yields the first com-
ponent of the coderivative D*@ in (2.34).
Similarly, a vector ¢* € D*NRi(X —F3(a,9))(w*), w* € RP arbitrary, can
be constructed on the basis of Proposition [2 as follows. At each contact point
i €{1,...,p} we determine the type of contact:
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e if there is no contact (cf. Prop. 2l(i)), we set ¢; = 0;

e if there is strong contact (cf. Prop. 2(ii)) we set w; = 0 and exclude the
corresponding equation from (AGE]);

e for weak contact (cf. Prop. 2l(iii)) we decide for one of the options described
above.

For simplicity of notation, let us assume that ¢ = 0 holds for each i = 1,...,p,
ie,c"=0¢€RP
Now, writing the adjoint Jacobian of F' as

VaF(my)T] _ [Va(Al@)y)" = Vi(a)”

VF((_X,Q)T = {va((—x’g)T = { AT((_I) (4.13)

we compute a solution of [AGE]) by solving the system of linear equations:

p* = (ValA(@)g) — Vi(@) + DOVw(a) v, (4.14)
—V,J(@ ) = (Al@) + D?) v, (4.15)
where
DM D® 0 0
DO=10 | eR?™ and DP=|0 0 0| cR¥»>,
0 0 00

First, (£I5) is solved for v* € R, which is then inserted into (EI4) to get the
desired vector p* € RP.

Finally, let us comment on the solvability of (£I5)). By assumption, the matrix
A(@) is positive definite for each & € U,y and the elements of D@ are bounded
by Ciuae and Cp,, which can be made arbitrarily small. Thus, (£I5) is solvable
provided § is bounded and Lipschitzian with sufficiently small constants C),.,
and Clip-

4.3.2 Coulomb case

Since the solution of (AGEY) is done in exactly the same way as described in
the previous section, let us only highlight the common and distinct features of
solving (AGEY)) in Theorem

Comparing with ([@I4]), we immediately see that (3.9) does not contain an
additional term coming from the coderivative of multifunction @ This follows
from the fact that Q does not depend on the design variable ce. The GE (AGES))
is treated analogously to the Tresca case: based on (B.I12) and the expressions in
Propositions [[1HI6] one assembles the matrix

DO o DO
D=0 0 0 |ecR¥»3
0 0 O

where the entries of the diagonal matrices DU) € RP*P 5 = 1,2, are again bounded
by Cper and Cy,. Note that in the Coulomb friction law the tangential stress
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depends also on the normal stress—the third component of our state vector—
explaining the presence of D® in the matrix D (compare with D® from the
previous section).

Since the single-valued part of coincides with that of (2.8)), we can
use (LI3) to transform the adjoint system in Theorem 20linto the computationally
managable form

p* = V. F(a,y) v, (4.16)
—V,J(@, ) = (Al@) + D) v*. (4.17)

Concerning the solvability of (4I7) the same applies as for (£.15]).

4.4 Examples

In computations we use a slightly different definition of the discrete admissible
set U",. The reason for this is twofold:

(i) to reduce the dimension of the control variables, and
(ii) to obtain a smooth contact boundary I'c(ay,).

To this end we define ", as a suitable subset of Bézier functions of order d. Let
us recall that Bézier functions (of order d) are defined as

d
1 /d\ . :
= Z%ﬂd,x‘@)a where  (3g;(z) == — ( .)xl(a — )" 2€10,4]
a® \ i
i=0
and a = (ag, ..., ay) € R The points (ih/, ;) € R%, i =0,...,d (I = a/d)
are called the control points of By. It holds that B, (0) = ag, Ba(a) = a4 and
Gr Bg, lies in the convex hull of its control points. Moreover, taking the control
variable a from the set

U={acR"|0<0; <Cy Vi=0,...,d,
|Oéi,1—Oéi|§01h/ Vizl,...,d,
|az‘—1_20éi+0éi+1|§03(h,)2 Vi=1,...,d—1, (4-18)

Cy < / Ba(z)dx < Cy}
0

ensures that the corresponding Bézier function B, satisfies all constraints intro-
duced in (2.3)), in particular, |BL| < Cy and |BZ| < C3 everywhere in [0,a]. The
domain Q(a) is first approximated by a polygonal one, then triangulated using
quadrilaterals to obtain the computational domain (). The discrete function
spaces on ), () are defined using (Q)-isoparametric finite elements of Lagrange
type. In all three examples presented below the values (cf. Figure [L2) a = 2,
b =1, d =20 are used and the total number of nodes (vertices of quadrilaterals)
equals 1800 for each a € U, including 60 on the contact part.
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Example 1

First, we will assume the model with Tresca friction and a solution-dependent
coefficient of friction §, given by the smooth function
1
%(S) = 025@, S € R+. (419)
The slip bound shall take the constant value g = 150. In the present example
we will try to identify the contact normal stress A by a prescribed target value

Atar, as denoted by the dotted line in Figure Thus, the discretized shape
optimization problem reads as

minimize ||A(a) — Awar]|?
subj. to a €U,

where A(a) is the second component of the solution to (M (a)). The other pa-
rameters in the model were set to the following values: Cy = 0.75, C; = 0.85,
C3 = 10, Cy; = 1.88, (5 = 1.95; we take a material with Young’s modulus
E = 1 GPa and Poisson constant ¢ = 0.3; density of forces that press on the
upper edge is P' = (0, —60 MPa) on (0,1.8) x {1} and zero on (1.8,2) x {1},
while a pulling force of density P? = (50 MPa, 30 MPa) acts on the right edge;
the body is clamped along its left edge.

The initial design is presented in Figure L] in its unloaded state (left) and
the distribution of the von Mises stress in the deformed body (right). Similarly,
Figure shows the optimal design before and after loading. On Figure
we compare the normal contact stresses with the prescribed function: while the
initial contact stress is far from the target values, the stresses for the optimal
design follow A, very closely. Let us mention, that the BT algorithm converged
from g to @ in about 150 iterations and the initial value J(ag) = 5.9 - 10* of
the cost functional dropped by two orders of magnitude to J(cop) = 9.1 - 10%

In order to emphasize the importance of proper modelling of contact problems,

Mesh Stress hmh

ok . . . P SR o JEEEERARLLL 03BBSR,
© 0.2 6.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 © 0.2 04 0.6 0.8 1 1.2 1.4 1.6
x x

(a) Before deformation (b) After deformation

Figure 4.1: Example 1; initial design.

let us re-compute the previous example with the following modification: instead
of allowing § to depend on the unknown solution we fix its value to

§(s) :=0.25, seRy,

but keep all other parameters of Example 1 unchanged. Starting from the same
initial domain (), the BT algorithm converges to a solution (@ )—cf. Fig-
ure [£.4l At first sight, Figure yields a satisfactory correspondence with the
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Mesh Stress hmh
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(a) Before deformation (b) After deformation

Figure 4.2: Example 1; optimal design.
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(a) Initial design (b) Optimal design

Figure 4.3: Example 1; normal stresses.

solution of the unsimplified problem. However, recomputing the original contact
problem with (£I9) on (@) reveals that (&) is actually far from being
optimal (cf. Figure [£5).

Mesh
Stress hmh
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(a) Before deformation (b) After deformation

Figure 4.4: Example 1 with § = const; optimal design Q(apt)-

Example 2

In the next two example computations we will consider the contact problems with
Coulomb friction (M¢ () - but with a much more complicated friction coefficient
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Figure 4.5: Example 1; normal stress distribution on I'c(&opt)-

3§, namely
02+s, ifsel0,0.05],
§(s):=40.25—s, ifse(0.050.2],
0.1, if s € (0.2, 00).

Note that the function § is Lipschitz with modulus 1, but non-differentiable at
0.05 and 0.2, and also non-monotone.

Our aim is to find a suitable contact part, among the ones specified by U,
which minimizes peaks of the (discrete) normal contact stress A,(a) represented
by the vector of Lagrange multipliers A(a), a € U. Since the max-norm ||Al|o =
max;—1__,|A;| is not continuously differentiable, we shall use the {9-norm |A|, =
o>, IA;]9)"/? instead, with ¢ large enough (¢ = 6 in our case). Thus, the shape
optimization problem reads as

minimize |A()|g,
subj. to a € U.

Note that if &* € U is such that u,(a*) < —a*, i.e., there is no contact between
the deformed body and the obstacle, then by complementarity A(a*) = 0 and
hence a* solves the above shape optimization problem. In order to avoid such
“trivial” cases, the volume constraint in U has to be imposed with a sufficiently
large lower bound. Keeping the material parameters and forces equal to the ones
used in Example 1, the constants in the definition of U are changed to Cy = 0.75,
Cy =3, (3 =10, Cy; = 1.8 and Cyy = 2 (essentially, no upper bound).

As in the previous example, Figure[4.6lshows the initial design before and after
deformation; in Figure [L.7] the same situation is depicted in case of the optimal
shape Q(aopt) as computed by the BT algorithm. During minimization the value
of the cost functional was reduced by one order of magnitude from 6.3 - 10° to
7.3 -10% in 140 iterations.

Example 3

The previous example related to the important technical issue of minimizing wear
and fatigue by avoiding concentrations and peaks of contact stresses. In the case
of frictionless contact problems it was shown in [25] that the aforementioned
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(a) Before deformation (b) After deformation
Figure 4.6: Example 2; initial design.
(a) Before deformation (b) After deformation
Figure 4.7: Example 2; optimal design.
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(a) Initial design (b) Optimal design
Figure 4.8: Example 2; normal stresses.
effect is achieved by minimizing the total potential energy functional
1
f(la) = Fla,u(a)) = §uT(a)A(a)u(a) — L (a)u(a). (4.20)
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Importantly, it can be shown that in this case £(a) is continuously differentiable.
This has a considerable impact on the minimization algorithm, among others.

Unfortunately, solutions to contact problems with Coulomb friction cannot be
described as a minimizer of some quadratic functional, like F(c, -). Nevertheless,
we may still ask what do we get by minimizing the elastic energy, whether the
optimal shape has similar properties as in the frictionless case. To this end we
define the shape optimization problem:

minimize &(a),
subj. to a €U,

but in the definition (420)) of the cost functional £ the function u(a) now stands
for the first component of the solution to . All parameters (coefficient
of friction, material parameters, forces, constants in the definition of U, initial
design, etc.) are the same as in the previous example.

This time the BT solver took 48 iterations to converge, yielding a decrease
in the cost functional from the initial value —7.69 to —10.88. Comparing the
obtained optimal shape & (see Figure [L10) with Figure L7 the resemblence
is significant. In particular, the distribution of the normal contact stress (see
right-hand side picture in Figure [L.1]) is “almost constant” along I'c(Gopt ), with
around the same value as on the right of Figure .8 —except for the node, where
the contact and Neumann boundary conditions meet.

Mesh Stress hmh

(a) Before deformation (b) After deformation

Figure 4.9: Example 3; initial design.
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Mesh

(a) Before deformation

Figure 4.10: Example 3; optimal design.
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(b) Optimal design

Figure 4.11: Example 3; normal stresses.



Conclusion

Summary

In the thesis we address two separate, but related problems, namely, shape op-
timization in contact problems with two different models of friction: the Tresca
and Coulomb laws of friction. In both cases we assume that the friction coefficient
may depend on the solution. In order to see the commonalities and differences in
the analysis of these problems side by side, the thesis is divided into four logical
units as follows.

Chapter 1 concerns frictional contact problems in general. We start with the
Signorini problem with Tresca friction—mnot just because of its simplicity, but
it will also serve as a common basis for the analysis of the two friction laws
mentioned above and of our interest. For all three frictional contact problems we
mention their weak forms, discretize them and derive their algebraic counterparts.
In addition to the usual primal formulation of the variational inequalities repre-
senting the weak form of our contact problems we also give their so-called mixed
formulation. These involve the normal contact stresses as Lagrange multipliers—
an important physical quantity which is of interest in many applications, not to
mention the Coulomb friction model itself. Since our aim is to solve the shape
optimization problems numerically, we focus on the algebraic state problems and
give appropriate conditions on the friction coefficient ensuring their unique solv-
ability. Moreover, these conditions do not depend on the geometry, as noted in
Chapter 1.

The main part of the thesis is composed of chapters 2 and 3, in which we in-
vestigate the shape optimization problems linked to the state problems described
above. These are treated on the algebraic level only and take the form of an
MPEC. Our goal is not to analyze the MPECs for one particular cost functional,
but rather the ability to choose cost functionals from a broad family. To this end
we specify an admissible set for the shape parameter in the beginning and show
that the shape optimization problems attain a solution for any “reasonable” cost
functional provided the friction coefficient is regular enough. Obviously, these
conditions differ for the Tresca and Coulomb models of friction, but in both cases
lead to unique solvability of the respective state problems. Therefore, it is natural
to approach the numerical solution of the MPECs via the ImP method. However,
in order to apply subgradient methods to the minimization of the resulting NLP,
one has to be able to compute (Clarke’s) subgradients of the nonsmooth, noncon-
vex, implicitly defined control-to-state mappings. This matter is addressed in the
respective sections devoted to sensitivity analysis. Here we make extensive use of
modern tools from variational analysis, in particular the generalized differential
calculus of B. Mordukhovich.
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Chapter 4 is devoted to the numerical solution of the shape optimization
problems in line with the ideas outlined above. We brifly sketch the BT algorithm
user for the minimization of both NLP problems resulting from the ImP approach.
Next, the adjoint generalized equations, derived in the previous chapters for the
computation of subgradients, are revisited and their solution explained in more
detail. Finally, the theoretical results are demonstrated by three examples: one
using the Tresca model of friction and two involving the Coulomb model. In each
case we use a different cost functional, demonstrating various features of contact
shape optimization problems.

For the convenience of the uninitiated reader we have alse included an ap-
pendix, in which we gather basic definitions from the theory of nonsmooth and
variational analysis. In particular, we discuss various notions from Clarke’s and
Mordukhovich’s calculus and their relationship, but only to the extent needed in
the thesis.

Outlook

Finally, let us outline some directions and areas for future research, improving on
the results obtained in the present thesis.

A straightforward follow-up on the thesis would be the generalization of the
state problem to three space dimensions. The 3D Signorini problem with Tresca
friction involving a solution-dependent coefficient of friction was analyzed in
[30] and the 3D Signorini problem with Coulomb friction involving a solution-
dependent friction coefficient in [3I]. The results of these papers are comparable
to those in 2D, in particular the discretized contact problems are uniquely solvable
provided the friction coefficient satisfies some regularity and smallness assump-
tions. For shape optimization it is essential that these assumptions do not depend
on the geometry of the underlying domain (if chosen from a suitable family of
admissible ones). The analysis presented in Chapter 2 and 3 seems to be fairly
straightforward to implement in the three-dimensional setting up to the AGE.
The only difference is in the computation of the coderivative of the multifunction
from the state GE, that is indespensable for the numerical solution of the shape
optimization problem as presented here. At this point, ideas from the thesis and
[4] could possibly be combined and refined in order to derive an expression that
may already be evaluated in computer code.

Notice that throughout the thesis we silently assumed that the cost functional
depends only on the contact displacements w,, u, and the normal contact stress
A. In some applications, however, the tangential contact stress (related to the
friction force) might be subject to optimization, as well. To deal with this situ-
ation, two possible solutions come immediately into ones mind. We shall sketch
them briefly. In Section we have already seen that the tangential contact
stress, let us denote it by A, may be incorporated into the state problem in the
form of another Lagrange multiplier—as it was the case with the normal contact
stress, denoted by A, hereafter. From the first equation in (41 we can express

T'X, = L(a) — A(a)u — NT X, (4.21)

Therefore, one possibility to calculate the sensitivity of A, with respect to « is
to apply the sum rule on the right-hand side of (@21]) and combine it with the
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results obtained in Chapter 2 and 3. Since the qualification condition ensuring
equality in the nonsmooth sum rule might be difficult or impossible to prove, one
may consider an alternative way as outlined below.

Eliminating from (7)) the state variables which correspond to the “internal”
nodes of the triangulation (as it was done in Chapter 1 to get (L34)), one arrives
at the following GE:

A (o) Ary(a) E - O [u, L. () 0
0e Ay (a) Ay(a) 0 —E| |u,| | L) n 0
—E 0 0 O0f X 0 NA, (ap.g) (A7)
0 E 0 0f |\ — Ngr ()

(4.22)
To derive the GEs corresponding to the contact problems investigated in the
thesis, it is sufficient to apply in (£22)) the respective fixed-point properties, see
Definition 6 and the discussion below Definition 9. In both cases the resulting
GEs take the form assumed in [37] and thus sensitivity analysis may be carried
out using the results of [37]. However, there is a substantial difference: in order
for the basic assumption (3.1) in [37] to hold, § needs to be twice continuous-
ly differentiable, whereas the analysis in Chapter 2 and 3 required basically no
further smoothness of § besides Lipschitz continuity. This apparent discrepancy
might be also interesting to investigate.
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Appendix A

Elements of variational analysis

When working with variational inequalities and optimal shape design problems,
one inevitably comes across functions and mappings that are not (continuous-
ly) differentiable everywhere in their respective domain of definition. In order to
investigate their differential properties, new tools had to be introduced that ex-
tend the classical calculus to functions which are not necessarily smooth or even
single-valued.

The purpose of this chapter is to collect basic notions from nonsmooth and
variational analysis that are extensively used in the last three chapters of the
present thesis. The first section is devoted to the classical definition of Clarke’s
calculus for locally Lipschitz functions, in the second section we give basic defini-
tions from the generalized differential calculus of Mordukhovich and present the
relationship of the two thoeries.

A.1 Clarke calculus

A most prominent tool to treat functions that are (locally) Lipschitz, but not
necessarily differentiable or convex, is the subdifferential calculus developed by
Clarke [7]. Let us start with the definition of Lipschitz continuity of a function
defined on a finite-dimensional Euclidean space (we shall work in finite dimensions
throughout our presentation).

Definition 11 (Lipschitz continuity). Let n,m € N and F : R — R™. We say,
that F'is

(i) Lipschitz on O # M C R™ iff there exists a constant K > 0 such that
1F (@) = F(Y)llm < Kllz —yll. Yz,y e M; (A1)
(ii) Lipschitz around x iff there exists a neighbourhood U of @ such that F' is
Lipschitz on U;

(iii) locally Lipschitz iff F is Lipschitz around each & from its domain of defini-
tion.

Let F' be Lipschitz around x. Then it is evident from (AJ]) that F is al-
so continuous at @ and the set {1(F(y + tv) — F(y)) | |¢| sufficiently small } is
uniformly bounded with respect to v € R", ||v||, = 1, and y sufficiently close
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to . However, F' need not be directionally differentiable at x. Nevertheless, a
fundamental property of Lipschitzian functions, proved by Rademacher [45], is
the fact that the set of such points is small (in a sense that it has zero Lebesgue
measure).

Lemma 11 (Rademacher). Let F : R" — R™ be locally Lipschitz. Then
Qp :={x € R" | F is not Fréchet differentiable at x}

has Lebesgue measure 0.

One possible way to develop calculus for Lipschitzian functions is to give a
suitable definition of directional derivatives and (sub)gradients—this approach
is followed below. In the next section, where we introduce the Mordukhovich
generalized differential calculus, we shall give an equivalent formulation of these
notions from a variational geometry point of view, i.e., based on tangential and
normal cones to the epigraph of a function.

Definition 12 (Clarke’s generalized directional derivative). Let x,v € R" be
arbitrary and f : R™ — R Lipschitz around a. The value

s v) = limsup LY ) = S W)

y—x t
t—04

is then called Clarke’s generalized directional derivative of f at a in direction v.

Definition 13 (Clarke’s generalized (sub)gradient). Let f : R"” — R be Lipschitz
around . Then the set

0f(®) = {€ eR" | f'(w;v) > (£, v)n Vv € R"}

is called the Clarke subdifferential of f at & and its elements are Clarke’s gener-
alized gradients (or Clarke’s subgradients).

It turns out that for a locally Lipschitz function f : R® — R the following
useful relation holds between its generalized directional derivative and gradients
(see [T]):

fo(;v) = max{(§,v), | € € Of (x)}.
If f happens to be continuously differentiable around z, then f(z;-) and 0f(x)
coincide with the classical directional derivative f'(x;-) and gradient V f(x), re-
spectively.

Due to Rademacher’s lemma one may express Clarke’s subdifferential in the
following equivalent form—we refer to [7] for its proof.

Theorem 22. Let f: R" — R be Lipschitz around x € R™. Then

Of () = conv {'lim Vi) |z - x, 2 ¢ Qf} .

11— 00

On the basis of the above theorem one may generalize the notion of Clarke’s
subdifferential to vector-valued Lipschitzian mappings F' : R" — R™.
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Definition 14 (Clarke’s generalized Jacobian). Let m,n € N and F : R" — R™
be Lipschitz around € R™. Then the set
OF (z) = {lim VFD) |29 =z, 20 ¢ QF} C R™<T

1—00

is called Clarke’s generalized Jacobian of F' at x.

It can be immediately seen that OF () is nonempty and compact, whenever
the assumptions of Definition [[4] are met. In addition, the generalized gradients
and Jacobians introduced in Definition [[3] and Definition [I4], resp., enjoy rather
rich calculus rules for computing generalized gradients or Jacobians of sums or
compositions of locally Lipschitz mappings, cf. [7]. These rules are usually in the
form of set inclusions, provided some additional qualification conditions are met.
In case of additional smoothness and regularity assumptions these inclusions turn
into equalities.

One smoothness condition that ensures directional differentiability of a locally
Lipschitz mapping, but is weaker than Fréchet (or continuous) differentiability is
that of semismoothness. It was first introduced by Mifflin [32] for Lipschitzian
functions f : R™ — R and later generalized to vector-valued mappings by Qi and
Sun [44].

Definition 15 (semismoothness). Let F' : R — R™ be Lipschitz around € R™.
We say that F'is

(i) semismooth at x iff the limit

lim - {Vo'}
VEOF (z+iv’)
v —v, t—04

exists for all v € R™;

(i) weakly semismooth at @ iff the limit

lim  {Vw}
VeIF (x+tv)
t—04

exists for all v € R".

It is clear, that semismoothness implies weak semismoothness. Moreover, it
holds that if F' is weakly semismooth at x, than it is also directionally differen-
tiable at « and

F'(z;v) = lim {Vo}

VEIF (z+tv)
t—04

for every v € R™ (cf. [44, Proposition 2.1]). Smooth, piecewise smooth, or convex
functions are all examples of semismooth functions.

A.2 Mordukhovich calculus

A.2.1 Multifunctions

We start by collecting the most basic notions from set-valued analysis that are
going to be used in the thesis. For a more thorough presentation of the topic we
kindly refer to e.g. [2].
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Let us recall that by a set-valued mapping (or simply multifunction) F : X =
Y we mean a function F : X — 2¥ i.e., F(z) CY for each x € X. The sets

Dom F := {zx € X | F(z) # 0},
GrF:={(r,y) e X xY |ze X, ye F(x)},

are called the domain and graph of F', respectively. We use the common term
closed multifunction if Gr F is closed in the product topology of X x Y.

In the sequel we shall restrict our presentation to the finite dimensional case,
i.e., when X = R" and Y = R™ for some n,m € N.

Definition 16 (Kuratowski-Painlevé outer/inner limit of sets). Let F' : R” =% R™
be a multifunction and & € R" arbitrary. Then the sets

Lim sup F(z) = {y e R" | 3z — & Fy = y: y¥ e F(z")},

T—T

Lim inf F(x) := {y € R™ | Ve 5 2 E|y(i) TR y(i) e F(w(i))}

T—T

are called the Kuratowski-Painlevé outer and inner limit of F' at @, respectively.

Several Lipschitz-like properties may be defined for multifunctions. A direct
generalization of local Lipschitz continuity of single-valued functions as intro-
duced in Definition [[Tlis the so-called Aubin property (originally the term pseudo-
Lipschitzian property was used by Aubin [I]).

Definition 17 (Aubin property). A multifunction F' : R™ = R™ is said to have
the Aubin property around (&,y) € Gr F iff there exist neighbourhoods U of &
and V of y and a constant K > 0 so that

Fx)nVc F(x)+ K|z —2'||,B,, Vr,x' €lU. (A.2)

It can be seen that if F' happens to be single-valued around (&, y), y = F(Z),
the above definition reduces to that of Lipschitz continuity around .

By fixing ' = @ in (A.2)) we arrive at the weaker property called calmness.
It was originally introduced in [53, Definition 2.8] under the term pseudo upper-
Lipschitz continuaity.

Definition 18 (calmness). A multifunction F' : R” = R™ is said to be calm
around (Z,y) € Gr F iff there exist neighbourhoods U of & and V of y and a
constant X > 0 such that

F(x)NnY C F(z) + K|z — z|,B,, Vxcl.

A.2.2 Generalized differentiation

Definition 19 (contingent cone). Let ) # A C R™ and & € A be arbitrary. Then

the set
A—=x

Ta(x) := Lim sup (A.3)

)\—>0+

is called the contingent cone (or Bouligand tangent cone) to A at @.
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Definition 20 (regular and limiting normal cone). Let ) # A C R* and & € A
be arbitrary. The regular (Fréchet) normal cone to A at & is defined as

Na(z) := {az* eR" limsupw < 0}. (A.4)
D

For & ¢ A one sets Na(&) := 0. The limiting (Mordukhovich) normal cone to A
at & is then defined as R
Na(Z) := Lim sup Na(x). (A.5)
A _
r—T
All three sets introduced in (A.3)—([A.3) are indeed closed cones with vertex
at 0 and—in the assumed finite dimensional setting—the relation

Nao(@) = (Ty(®))" = {z* € R" | (z*,v),, < 0 Vv € Ty(z)} (A.6)
holds true, where CY denotes the (negative) polar cone to C'.

Remark 14. Due to (A.6) the regular normal cone N4 (&) is always convez, where-
as Ta(x) and Na(x) are in general nonconver. This means that the limiting
normal cone cannot be expressed as the dual to any tangent cone.

It can be immediately seen that the inclusion
NA(Z) C Nao(Z) (A.7)

holds for any nonempty A C R and & € A. If (A7) holds with equality, we say
that the set A is normally reqular at x. E.g., if A is locally convex around &, it
is automatically normally regular at this point.

Given an extended-real-valued function ¢ : R® — R := RU {oo}, its epigraph
is the set

epip :={(x,y) eR" xR |x eR", y > p(x)}.

On the basis of (A.4) and (A.5) one may define various subdifferentials of ¢ as
suitable sets of normals to its epigraph.

Definition 21 (regular and limiting subdifferential). Let ¢ : R® — R be finite
at £ € R". Then

Op(@) = {x" € R | (2", 1) € Nepio (@, (%))} (A.8)
is called the regular subdifferential of ¢ at &, whereas
Op(x) == {x" € R" | (2", —1) € Nepi (T, 0(2))} (A.9)

stands for the limiting subdifferential of ¢ at .

If ¢ is lower semicontinuous around & (i.e., its epigraph is closed around
(Z,¢(x))), then the limiting subdifferential may be expressed as

dp(x) = Lim sup dp(x), (A.10)
x5
where % & means that x — & with () — (). Of course, if ¢ is convex
around &, then both 5@(5}) and Op(x) are equal to the classical convex subdiffer-
ential. In case ¢ is strictly differentiable at &, then dp(z) = dp(x) = {Vo(2)},
where V(&) denotes the gradient of .

Considering the graph instead of the epigraph in ([A.§) and (A.9), one may
construct derivative-like objects for multifunctions, as well, called coderivates.
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Definition 22 (regular and limiting coderivative). Given a multifunction F' :
R®™ = R™ and (z,y) € GrF, the multifunction from R™ into subsets of R™
defined by

D*F(z,y)(y") :={z" e R" [ (¢", —y") € Naxr(®,9)} VYY" € R",
is called the regular coderivative of F' at (Z,y) in direction y*, whereas

D*F(a_‘:ag)(y*) = {Q'S* € R" | (Q'f*, _y*) € NGrF(Eag)} \V/y* e R™
denotes the (limiting) coderivative of F.

Since the normal cones (A.4) and (A.D) are pointed (contain the null vec-
tor), both coderivatives are positively homogeneous closed multifunctions for each
(z,y) € Gr F. In addition, they reduce to the adjoint Jacobian

D*F(z.y)(y") = D'F(z,9)(y") = {(VF(@)"y’}, y €R™,

provided F'is single—valued and strictly differentiable at @. Moreover, the regular
coderivative equals to the adjoint Jacobian D*F(z)(y*) = {(VF(z))Ty*}, y* €
R™, whenever F' is single-valued and Fréchet-differentiable at x; this does not
hold for the limiting coderivative.

It has been found that the (limiting) coderivative may provide information
about Lipschitzian behaviour of a closed multifunction F' : R™ = R™ around
(x,y) € Gr F, since

F has the Aubin property around (z,y) <= D*F(z,y)(0) = {0}, (A.11)

see [36], [47]. The right hand side of the equivalence (A.I1)) is called the Mor-
dukhovich criterion, proved by B. Mordukhovich in [34].

A.2.3 Application to Lipschitzian mappings

In this section we collect some facts concerning the application of generalized
differentiation to single-valued and locally Lipschitz functions. In particular, we
recall the relationship between the (limiting) coderivative and (limiting) subdif-
ferential, and compare the (limiting) subdifferential with Clarke’s subdifferential.

First of all, recall that the Aubin property reduces to local Lipschitz continuity
in case of a single-valued mapping F' : R" — R™, hence the Mordukhovich

criterion (ALTT)) yields:
F' is Lipschitz around & € R" <= D*F(z)(0) = {0}. (A.12)

The next result provides a convenient way for computing the coderivative of
a locally Lipschitzian mapping via the limiting subdifferential.

Theorem 23 (scalarization formula). Let F' : R® — R™ be Lipschitz around
x € R". Then
D*F(z)(y") = 0y", F)(®) vy € R™, (A.13)

where (y*, F) : @ — (y*, F(x)),, ¢ € R".

'For a single-valued mapping F' we simply write B*F(i}) and D*F(x), i.e., omit y = F(&)
from the argument.
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Proof. See e.g. |36, Theorem 3.28]. O

In the previous section we introduced Clarke’s generalized derivative-like ob-
jects for Lipschitzian functions and mappings. In order to relate these notions
to the limiting subdifferential and coderivative, let us rephrase them in terms of
variational geometry.

For a given nonempty A C R” and & € A, one may define the Clarke tangent
cone to A at x as A

Tu(Z) := Lim inf — m,
wéni, )\
A—=04

and the Clarke normal cone as its (negative) polar cone:

Na(z) := (Ty(2))°.
In particular, the Clarke normal cone is always convex. This way one has (cf. [47])

Op(®) ={€ €R" | (& —1) € Nepi (@, ()} (A.14)

for any ¢ : R® — R that is Lipschitz around Z € R™. In addition, (AI4)) yields an
extension of the Clarke subdifferential to more general functions, not necessarily
Lipschitzian. Nevertheless, if ¢ is locally Lipschitz, then the following relation
between its Clarke and Mordukhovich subdifferentials holds:

0p(x) = conv dp(&). (A.15)

An analogous results holds true between the Clarke generalized Jacobian and
the coderivative of a locally Lipschitz vector-valued mapping. This is formulated
in a separate theorem below.

Theorem 24. Let F' : R" — R™ be Lipschitz around x € R™. Then

(0F (z))"y* = conv D*F(z)(y*) Vy* € R™.

For the proofs of the respective claims in this section we refer to the mono-
graphs [36] and [47]. Finally, we conclude the chapter with an example that is
intended to demonstrate all the above notions in a very simple situation.

Example 3. Let us define the set
A= {(z,y) €R* |y = —|al},

i.e., A is the epigraph of p(xr) = —|z|, x € R. Clearly, ¢ is nonconvex, but
Lipschitz with modulus 1. After some calculation, for the contingent and Clarke
tangent cones at (0,0) one gets

T4(0,0) = A, T4(0,0) = {(h, k) € R* | k > |h|},

respectively. Taking their negative polars yields the Fréchet and Clarke normal
cones at (0,0):

~

Na(0,0) = {(0,0)},  Na(0,0) = {(&,n) e R* | n < —[¢[}.
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Therefore R -
dp(0) =0 and Jp(0) =[-1,1].

Since ¢ is smooth at all points except x = 0, we have 54,0@) = sgn(x) for x # 0
and (A.I0) can be applied to determine the limiting subdifferential at 0:

9p(0) = {~1,1}. (A.16)

When computing the coderivative mapping D*p at 0, we first need to evaluate
the normal cone to the graph of ¢ at (0,0):

B:=Gro={(z,y) [y = —lz[},

After some calculation one arrives at the expression
Np(0,0) = {(«"y") [ y* = [27[} U{ (2" v") [ y" = —[27]},

where the first set on the right hand side equals ]VB(O,O) and the second one

represents limit points of NB(x, o(x)) as x — 04 and = — 0_, that are not
contained in the first set. From the definition of the coderivative we conclude

{-y"y} ify" >0,

Dp(0)(y") = ¢ {0} if y* =0,

ly*, =y ifyr <.
Notice that the case y* = 0 is a consequence of the Mordukhovich criterion
(A.12)); the other cases may be computed employing the scalarization formula

and positive homogeneity of the subdifferential mapping (i.e., d(ap) = a(dy) for
a>0):

(00(0))y* = {—1,1}y", if y* > 0

D*(0)(y") = {(8(—90)(0)) —y*) = [-1,1](~y"), ify* <O.

In the first case we have used [AI6]); in case y* < 0 the function —p(z) = |z| is
convex, therefore its subdifferential equals to the convex subdifferential.
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