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Notation

Sets

∅ empty set

N set of positive integers {1, 2, 3, . . .}
N0 set of nonnegative integers {0, 1, 2, . . .}
R set of real numbers (−∞,+∞)
R+ set of nonnegative real numbers [0,+∞)
R− set of nonpositive real numbers (−∞, 0]
(a, b) open interval in R
[a, b] losed interval in R
Br(x) losed ball of radius r > 0 and enter x ∈ Rn

Br = Br(0)
X × Y Cartesian produt of the sets X and Y
Xn X ×X × · · · ×X︸ ︷︷ ︸

n times

A losure of A ⊂ X (in the topology of X)

∂A topologial boundary of A ⊂ X
relintA relative interior of A ⊂ X
convA onvex hull of A
{xi}i∈I , {x

(i)}i∈I sequene of elements (I ⊂ N)
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Funtions and mappings

f : X → R real-valued funtion from X into R
f : X → Rn

vetor-valued mapping from X into Rn

F : Rn
⇒ Rm

multifuntion (or set-valued mapping); a mapping

from Rn
into subsets of Rm

x 7→ f(x) funtion (mapping) f
Ck(Ω) spae of funtions having ontinuous derivatives on

Ω up to order k ∈ N0

C0,1(Ω) spae of Lipshitz funtions on Ω
Lp(Ω) Lebesgue integrable funtions of order p ≥ 1 on Ω
L∞(Ω) essentially bounded measurable funtions on Ω
H1(Ω) Sobolev spae W 1,2(Ω) of funtions belonging together with

their distributional derivatives into L2(Ω)
divf divergene operator

∇f gradient of a real-valued funtion

∇f Jaobian matrix of a vetor-valued funtion

∂f Clarke's subgradient of a real-valued f

∂f Clarke's generalized Jaobian of vetor-valued f

∂f limiting subdi�erential of the real-valued funtion f
D∗Q limiting oderivative of the multifuntion Q
dist(x, S) distane of x ∈ Rn

from the set S ⊂ Rn

Linear algebra

Rn
Eulidean spae of dimension n

x ∈ Rn
olumn vetor x = (x1, . . . , xn)

T

xi ith omponent of x ∈ Rn

Rn×m
spae of matries of type n×m

E unit matrix

AT
transposed matrix

A−1
inverse matrix

〈x,y〉n = x · y =
∑n

i=1 xiyi; Eulidean salar produt on Rn

‖x‖n = (x · x)1/2; Eulidean norm on Rn

‖x‖∞ = max{|xi| | i = 1, . . . , n}; max-norm on Rn

x • y = (x1y1, . . . , xnyn)
T
; omponentwise produt on Rn

x÷ y = (x1/y1, . . . , xn/yn)
T
; omponentwise division on Rn

|x| = (|x1|, . . . , |xn|)T ; omponentwise absolute value

x ≥ y omponentwise omparison, i.e. xi ≥ yi ∀i = 1, . . . , n;
A : B =

∑n
i=1

∑m
j=1AijBij ; salar produt on Rn×m
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Abbreviations

AGE adjoint generalized equation

BT bundle trust

CP utting plane

GE generalized equation

ImP impliit programming

MPEC mathematial program with equilibrium onstraints

NLP nonlinear program

SRC strong regularity ondition

6



Introdution

There is virtually no area of mehanial engineering where one would not en-

ounter the problem of determining the motion/position of several deformable

bodies that are or may beome in ontat, but annot penetrate one another.

Moreover, in many appliations it is simply not possible to neglet the ation

of frition fores on the ontating surfaes. These fritional e�ets may be wel-

omed, e.g. in mahine tools, or undesirable, e.g. beause they ause wear in the

material and thus shorten the lifeyle of the ontating parts. In either ase,

engineers have always tried to maximize the desired e�ets just by altering the

geometry of the modelled elements�this is the topi of ontat shape optimiza-

tion.

From the mathematial point of view, shape optimization is the branh of

optimal ontrol theory, where the ontrol variable (also alled design variable in

the ontext of shape optimization) is onneted to the geometry of the problem. A

fundamental role in shape optimization problems is played by the ontrol-to-state

mapping (or solution map) S, whih assigns to eah feasible value of the design

variable the set of solutions to the state problem. Thus, any shape optimization

problem an be written in the following general form:

minimize J(α, y),
subj. to y ∈ S(α),

α ∈ Uad,



 (1)

where the real-valued funtion J is alled the ost funtional, Uad signi�es an ad-

missible set of design variables α and S usually represents an equilibrium problem.

Typially, the state variable y is sought in a funtion spae V (α), where α deter-

mines the domain of de�nition of y. After suitable disretization, (1) turns into a
(�nite-dimensional) mathematial program with equilibrium onstraints (MPEC),

where α ∈ Uad ⊂ Rm
, y ∈ Rn

and S : Rm
⇒ Rn

. If the state problems hap-

pen to be uniquely solvable for eah α, i.e. S is single-valued, we an substitute

y = S(α) and solve the MPEC as a standard nonlinear optimization problem.

This is alled the impliit programming (ImP) approah, sine the omposite ost

funtional J : α 7→ J(α, S(α)) involves the impliitly de�ned ontrol-to-state

mapping. Fast minimization algorithms may be applied provided one is able to

ompute (sub)gradients of J . As it turns out, this is a major problem whenever

S is ompliated enough.

Due to its importane, shape optimization in ontat problems has been sub-

jet to researh for quite some time�let us mention the monographs [15, 16, 52℄

and the referenes therein. For example, in [16℄ the two-dimensional (2D) Sig-

norini problem is onsidered without frition and with Tresa frition; the papers

[3℄ and [4℄ analyse the same problem with Coulomb frition in two and three di-

7



mensions, respetively. In the present thesis we aim at generalizing these results

to 2D ontat problems with Tresa and Coulomb laws of frition, where the o-

e�ient of frition may depend on the magnitude of the tangential displaement.

By means of it one an model, e.g., in dynami ontat problems the transition

from the stati frition oe�ient to the dynami one, or the stik-slip motion

during earthquakes�see e.g. [49℄. In their weak formulation, ontat problems

with Tresa frition and a solution-dependent oe�ient of frition take the form

of an impliit variational inequality of the seond kind, similarly as for the lo-

al Coulomb law in 2D in [3℄; however, in our ase it annot be proved that

the ontrol-to-state mapping S is pieewise smooth, unless imposing additional

smoothness assumptions on the oe�ient of frition. Therefore, when perform-

ing sensitivity analysis we follow rather [4℄ and employ the generalized di�erential

alulus of B. Mordukhovih to derive �rst order sensitivities of S. Moreover, in

ontrast to the Coulomb ase, the disretized state problem is formulated as a

generalized equation with a ontrol-dependent multivalued part, whih is a rather

unommon model in the literature. Things get even more ompliated as the loal

Coulomb law of frition is oupled with a solution-dependent frition oe�ient;

nevertheless, the established approah proved to be suessful also in this ase.

The thesis onsists of four hapters and an appendix. In Chapter 1 we intro-

due the state problems while keeping the design variable α �xed. We deal with

fritional ontat problems and their various variational formulations, disretiza-

tion and solvability with respet to the oe�ient of frition.

Chapter 2 deals with shape optimization in ontat problems with the Tresa

model of frition and a solution-dependent oe�ient of frition. After realling

brie�y the main results of [43℄ we move onto the disrete shape optimization

problem, prove its solvability and ondut sensitivity analysis based on modern

tools from variational analysis.

The struture of Chapter 3, where we investigate shape opimization in ontat

problems with Coulomb frition and a solution-dependent oe�ient of frition,

very muh resembles that of Chapter 2. However, in this ase we treat only the

disretized shape optimization problem: Lipshitz ontinuity of S and solvability

of the shape optimization problem is proved. Again, sensitivity analysis represents

the ore of the hapter, providing for a subgradient of the ost funtional in

numerial experiments.

Chapter 4 introdues �rst the tools used for the numerial realization of on-

tat shape optimization problems: the bundle trust minimization algorithm, solu-

tion of the state problems and the adjoint equations, then �nally several examples

are presented.

For the sake of ompleteness and onveniene of the reader, we provide a sum-

mary of those basi tools from nonsmooth and variational analysis (Clarke's and

Mordukhovih's alulus) in Appendix A that are used extensively throughout

Chapters 2 and 3.
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Chapter 1

Contat problems with various

models of frition

In the following introdutory hapter we desribe the state problems, paramet-

rized by the geometry of the underlying domain. This will play entral role in the

subsequent hapters dealing with �nding an optimal value of this parameter. We

start our exposition with the lassial Signorini problem in linearized elastiity

(posed originally in [51℄ and solved in [13, 14℄, paving the ground for the theory

of variational inequalities) ombined with the most basi model of frition, the

so-alled Tresa law. Due to its simpliity, this problem has been thoroughly an-

alyzed and questions onerning its (unique) solvability answered satisfatorily

(see e.g. the monographs [11, 22, 24℄ on unilateral ontat problems). Based on

the aforementioned problem we introdue and analyze properties of ontat prob-

lems with �generalized� Tresa and Coulomb laws of frition, where we allow the

oe�ient of frition F to depend on the unknown solution (see also [19, 20℄ and

[30, 31℄ for the three-dimensional ase). In partiular, the lassial and weak for-

mulations of these fritional ontat problems shall be presented, followed by their

�nite element disretization. Conditions guaranteeing existene and uniqueness

of the orresponding solutions will be realled. Note, that in shape optimization

one does not deal with a partiular state problem, but rather a family of prob-

lems, whih di�er in their geometry, i.e. the domain of de�nition of the unknown

solution. Therefore, throughout the presentation below a parameter α will our,

that determines the shape of the underlying domain. Speial attention will paid

to the unique solvability of the disrete state problems with respet to α.

1.1 The Signorini problem with given frition

We start with some basi notions from the theory of linearized elastiity and

ontat mehanis. Let a planar, elasti body, in its referene on�guration, be

represented by the domain Ω ⊂ R2
with Lipshitz boundary ∂Ω (later the geome-

try of Ω will be further spei�ed). Assume that ∂Ω is omposed of three nonempty,

pairwise disjoint and relatively open parts ΓD, ΓN , ΓC so that ∂Ω = ΓD∪ΓN∪ΓC .

The body Ω is subjet to volume fores of density F : Ω → R2
and surfae tra-

tions of density P : ΓN → R2
, while Ω is lamped on ΓD. The lassial Signorini

problem onsists in �nding a displaement �eld u : Ω → R2
suh that the de-

formed body is in equilibrium with the fores ating upon it, whereas, in addition,

9



one assumes the presene of a perfetly rigid obstale Ξ ⊂ R2
(i.e., Ξ does not

undergo any deformation). The so-alled ontat boundary ΓC is the part of ∂Ω,
where Ω may beome in ontat with Ξ, but an not penetrate into it (see Fig-

ure 1.1). In the lassial Signorini problem the ontat along ΓC is assumed to be

fritionless, but it will not be our ase.

Ξ

P

ΓNΓD

d(x)

x
ΓC

Ω

Figure 1.1: 2D Signorini problem.

In order to present the di�erential equations the unknown displaement �eld

u has to satisfy, we introdue the following notation: ε(u) := 1
2
(∇u + (∇u)T )

shall denote the linearized strain tensor; the stress tensor σ : Ω → R2×2
will be

linked to ε by means of a linear Hooke's law, determined by the fourth-order

sti�ness tensor C : R2×2 → R2×2
. Denoting by ν : ∂Ω → R2

the unit outward

normal to ∂Ω, one de�nes the normal omponent of the displaement along ∂Ω
as un := (u|∂Ω) ·ν and the stress vetor as T := σν. The normal stress is de�ned
as the normal omponent of the stress vetor, i.e. Tn := σν ·ν and the tangential

stress as T t := T − Tnν.
By the lassial solution to the Signorini problem with Tresa frition we mean

any displaement �eld u : Ω → R2
satisfying the following system of di�erential

equations and boundary onditions (abbreviated as b.. below):

(equilibrium equation)

divσ + F = 0 in Ω, (1.1)

(Hooke's law)

σ = Cε(u) in Ω, (1.2)

(Dirihlet b..)

u = 0 on ΓD, (1.3)

(Neumann b..)

T = P on ΓN , (1.4)

(unilateral b..)

un ≤ d, Tn ≤ 0, Tn(un − d) = 0 on ΓC , (1.5)

(fritional b..)

‖T t‖ ≤ Fg, ut 6= 0 ⇒ T t = −Fg
ut

‖ut‖
on ΓC . (1.6)

10



The funtion d : ΓC → R+ appearing in (1.5) is alled the gap (or distane)

funtion and the �rst inequality (1.5)1 models the fat that the gap between

the deformed body and the rigid obstale is positive or equal to zero; by (1.5)2

we exlude adhesion (only ompression is allowed); �nally, the omplementarity

ondition (1.5)3 says that pressure may our only at points of ontat. Here we

omplement the ontat boundary onditions on ΓC with the simplest model of

frition, the Tresa law, or the so-alled model with given frition (1.6). It says

that no slip ours until the shear stress does not attain a ertain threshold value,

given by the produt of the oe�ient of frition F : ΓC → R+ and an a priori

given funtion g : ΓC → R+ alled the slip bound. Note that (1.6) is merely a

simpli�ation of the physially more relevant and widely used Coulomb law of

frition, that will be introdued and disussed later in this hapter.

Now we speify the geometrial setting of the ontat problem that will be

dealt with in the sequel. In partiular, we assume that the rigid obstale is �at

and the elasti body is represented by a �retangle� with urved ontat zone

only (sine our goal is to optimize the ontat boundary, this does not represent

a relevant simpli�ation)�see Figure 1.2. Therefore, by a suitable hoie of the

oordinate system, Ξ = R × R− (reall, that Ξ denotes the obstale) and Ω ⊂

Ω̂ := (0, a) × (0, b), as shown in Figure 1.2. Further, we assume that ΓC an be

desribed by one Lipshitz ontinuous funtion α, i.e. ΓC = Grα. This parameter

ΓC(α) = Grα

x1

C0

x2

b

Ω(α)

0 a

Figure 1.2: Geometry of our ontat problem.

α, alled the design variable in ontext of optimal shape design, is going to be

subjet to optimization in the forthoming hapters. An optimal α will be sought

in the admissible set

Uad :=
{
α ∈ C0,1([0, a])

∣∣∣ 0 ≤ α ≤ C0 in [0, a],

|α′| ≤ C1 a.e. in (0, a),

C21 ≤

∫ a

0

α(x1) dx1 ≤ C22

}
.

(1.7)

We assume that the positive onstants C0, C1, C21, C22 are given in suh a way

that Uad 6= ∅. Thus the elasti body Ω with ΓC = Grα beomes

Ω = Ω(α) := {(x1, x2) ∈ R2 | 0 < x1 < a, α(x1) < x2 < b}
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and the third ondition in (1.7) translates to C̃21 ≤ measΩ(α) ≤ C̃22 with C̃21 =

ab−C22 and C̃22 = ab−C21. In partiular, by setting C21 = C22 one may enfore

that all admissible bodies in

O := {Ω(α) | α ∈ Uad}

have the same volume.

Next, let us reformulate the general ontat onditions (1.5) and (1.6), exploit-

ing the speial geometry desribed above. First of all, note that the inequality

(1.5)1 represents only an approximation of the nonpenetration ondition between

two bodies in the framework of small deformations. In general, (1.5)1 does not

guarantee that the deformed body stays above the obstale, e.g. Figure 1.3 depits

an example of Ω penetrating into Ξ. Therefore, we will onsider a modi�ed ver-

x

d(x)

Ω

ΓC

un(x) ≤ d(x)

Figure 1.3: Penetration into the obstale.

sion of the omplementarity system (1.5), whih ensures nonpenetration exatly,

along the whole ΓC :

− u2(x) ≤ x2, T2(x) ≥ 0, T2(x)(u2(x) + x2) = 0 for x ∈ ΓC . (1.8)

The orresponding frition onditions then take the form:

|T1| ≤ Fg, u1 6= 0 ⇒ T1 = −Fg sgn(u1) on ΓC . (1.9)

Convention. Note that (1.8)�(1.9) and (1.5)�(1.6) are equivalent, provided that

ν(x) = (0,−1)T ∀x ∈ ΓC in the hosen oordinate system, i.e. if ΓC is a�ne.

Therefore, given any vetor �eld v : ΓC → R2
, we will sometimes use the more

illustrative terms of tangential and normal omponent for the oordinate funtions

v1, v2, respetively.

Although until the end of this hapter the parameter α ∈ Uad will be �xed

(unless stated otherwise), the notation shall highlight the fat, that a given quan-

tity depends on this parameter. To this end, we will write e.g. ΓC(α), Lα, u(α),
et.
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1.1.1 Primal variational formulation

Let us proeed with the weak formulation of (1.1)�(1.4) and (1.8)�(1.9). In order

to do so, let us introdue the following funtion spaes:

V (α) := {v ∈ H1(Ω(α)) | v = 0 on ΓD(α)},

V (α) := V (α)× V (α),

K(α) := {v ∈ V (α) | −v2 ≤ dα on ΓC(α)},

where the equality and inequality onditions on parts of the boundary ∂Ω(α) are
meant in the sense of traes, and the distane funtion dα is given by (f. (1.8)):

dα(x) := α(x1) ∀x ∈ ΓC(α).

As usual, the weak formulation of the problem (1.1)�(1.4), (1.8)�(1.9) an be

easily derived by multiplying (1.1) by (v − u) for some v ∈ K(α), applying the

Green theorem and using the fat that T · (v − u) = T1(v1 − u1) + T2(v2 − u2).
In the end, one arrives at the following de�nition:

De�nition 1. By a weak solution to the Signorini problem with given frition

we mean any funtion u := u(α) ∈ K(α) satisfying the following variational

inequality:

Find u ∈ K(α) suh that:

aα(u, v − u) + jα(v)− jα(u) ≥ Lα(v − u) ∀v ∈ K(α),

}
(A(α))

where the bilinear form aα, linear form Lα and onvex, proper funtional jα,
respetively, are given by:

aα(u, v) :=

∫

Ω(α)

Cε(u) : ε(v) dx ∀u, v ∈ H1(Ω(α)), (1.10)

Lα(v) :=

∫

Ω(α)

F · v dx+

∫

ΓN (α)

P · v ds ∀v ∈ H1(Ω(α)), (1.11)

jα(v) :=

∫

ΓC(α)

Fg|v1| ds ∀v ∈ H1(Ω(α)). (1.12)

Conerning the regularity of the data, we will assume the following:

(D1) F ∈ L2(Ω̂),

(D2) P ∈ H1(Ω̂),

(D3) C =
(
cijkl

)2
i,j,k,l=1

, where cijkl ∈ L∞(Ω̂) and satisfy the usual symmetry and

elliptiity onditions:

cijkl = cjikl = cklij ∀i, j, k, l ∈ {1, 2},

∃Cell > 0 : Cξ : ξ ≥ Cell‖ξ‖
2 ∀ξ ∈ R2×2, ξT = ξ.

Moreover, to ensure uniform oerivity of aα on V (α) × V (α) with respet to

α ∈ Uad, we will assume that
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(A4) ∃ǫD > 0 ∀α ∈ Uad : meas(ΓD(α)) ≥ ǫD.

The symbols C, F , P , appearing in (1.10) and (1.11) are then to be understood

as restritions of the mappings delared in (D1)�(D3) onto Ω(α) and ΓN(α),
respetively. Conditions on F and g, guaranteeing existene of a weak solution,

are spei�ed below.

Theorem 1. Let F ∈ L∞(ΓC(α)), F ≥ 0 and g ∈ L2(ΓC(α)), g ≥ 0 be given.

Then (A(α)) has a unique solution u ∈ K(α). Moreover, u may be equivalently

haraterized as the (unique) solution of the variational problem

minimize

1

2
aα(v, v) + jα(v)− Lα(v)

subj. to v ∈ K(α).

}
(1.13)

Proof. See e.g. [22℄.

1.1.2 Mixed variational formulation

Yet another reformulation of (A(α)) (or (1.13)) is the so-alledmixed formulation,
involving Lagrange multipliers for releasing the nonpenetration ondition. This

way the onstrained minimization problem (1.13) an be turned into a saddle-

point problem (for more details on the Lagrange multiplier tehnique in onvex

optimization the reader is kindly referred to [12℄). Before giving the anouned

mixed formulation, we will need some more notation to introdue the Lagrange

multiplier spae:

X(α) := {ϕ ∈ L2(ΓC(α)) | ∃v ∈ V (α) : v = ϕ on ΓC(α)}, (1.14)

X+(α) := {ϕ ∈ X(α) | ϕ ≥ 0 on ΓC(α)}, (1.15)

X ′(α) denotes the topologial dual to X(α), (1.16)

X ′
+(α) := {µ ∈ X ′(α) | 〈µ, ϕ〉X′(α),X(α) ≥ 0 ∀ϕ ∈ X+(α)}. (1.17)

It an be easily seen that

v ∈ K(α) ⇔ v ∈ V (α) and 〈µ, v2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α).

In light of the above haraterization of the losed, onvex one K(α), the La-

grangian orresponding to (1.13) is given for eah (v, µ) ∈ V (α)×X ′
+(α) by

Lα(v, µ) :=
1

2
aα(v, v) + jα(v)− Lα(v)− 〈µ, v2 + dα〉X′(α),X(α).

Let us reall that by a saddle-point of Lα we mean a pair (u, λ) ∈ V (α)×X ′
+(α)

satisfying:

Lα(u, µ) ≤ Lα(u, λ) ≤ Lα(v, λ) ∀(v, µ) ∈ V (α)×X ′
+(α).

In the ontext of mixed variational formulations, v is alled the primal variable

and µ the dual variable, explaining also the title of the previous setion.

Conerning the existene of saddle-points of the Lagrangian, we may state fol-

lowing result.
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Theorem 2. Let the assumptions of Theorem 1 be ful�lled. Then Lα has exatly

one saddle-point (u, λ) ∈ K(α)×X ′
+(α), that is also the only solution of:

Find (u, λ) ∈ V (α)×X ′
+(α) suh that:

aα(u, v − u) + jα(v)− jα(u)

≥ Lα(v − u) + 〈λ, v2 − u2〉X′(α),X(α) ∀v ∈ V (α),

〈µ− λ, u2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α).





(Ā(α))

Moreover, the �rst omponent of the saddle-point satis�es: u ∈ K(α) and is the

unique solution of (A(α)), whereas λ = T2(u).

Proof. Existene and uniqueness of the saddle-point follows from [12℄; for the

seond assertion see [22℄.

The saddle-point system (Ā(α)) is alled the mixed formulation of (A(α)) and
it is this formulation we will onsider in our state problems, sine it allows for

the diret omputation of the normal ontat stress T2, as well.

1.1.3 Approximation

Now we present a disretization of the ontat problems (A(α)) and (Ā(α)) by the
�nite element method. Throughout this setion let the disretization parameter

h := a/(p − 1), for some p ∈ N, p ≥ 2, be �xed, and denote by ∆h = {0 = a1 <
a2 < · · · < ap = a} the equidistant partition of [0, a], i.e. ai := (i − 1)h ∀i =
1, . . . , p. Let the symbol P1(∆h) stand for the set of all pieewise a�ne funtions

over ∆h and let αh ∈ Uh
ad := P1(∆h) ∩ Uad be given (nonemptiness of Uh

ad is

impliitly assumed). On the polygonal domain Ω(αh) we introdue a triangulation
Th(αh), that meets the following requirements:

(T1) the nodes of Th(αh) lie on the lines {ai} × R, i = 1, . . . , p for all αh ∈ Uh
ad;

(T2) the number of nodes in Th(αh) as well as the neighbours of eah triangle

from Th(αh) are the same for all αh ∈ Uh
ad;

(T3) the position of nodes of Th(αh) depends smoothly on hanges of αh ∈ Uh
ad;

(T4) the triangulations Th(αh) are ompatible with the deomposition of ∂Ω(αh)
into ΓC(αh), ΓD(αh) and ΓN(αh) for all αh ∈ Uh

ad.

The triangulations Th(αh) from the system {Th(αh) | αh ∈ Uh
ad} satisfying (T2)�

(T4) are alled topologially equivalent. On Th(αh) we de�ne the standard, on-

forming pieewise linear �nite element spae

Vh(αh) := P1(Th) ∩ V (αh) = {vh ∈ C(Ω(αh)) | vh|K ∈ P1(K) ∀K ∈ Th(αh),

vh = 0 on ΓD(αh)}

and

V h(αh) := Vh(αh)× Vh(αh).

Let further:

Kh(αh) := V h(αh) ∩K(αh) = {vh ∈ V h(αh) | −vh2 ≤ dαh
on ΓC(αh)},
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where, for simpliity of presentation, we assume that ΓD(αh)∩ΓC(αh) = ∅, i.e. all
nodes Ai = (ai, αh(a

i)), i = 1, . . . , p are ontat nodes, for eah αh ∈ Uh
ad. Notie,

that sine both vh2 and dαh
are pieewise linear over the same partition of ΓC(αh),

it holds that Kh(αh) 6= ∅. Finally, let rh : C(ΓC(αh)) → P1(Th(αh)|ΓC(αh)) ∩
C(ΓC(αh)) denote the pieewise linear Lagrange interpolation operator on the

partition Th(αh)|ΓC(αh) of ΓC(αh). Now we state the disretized version of our

ontat problem as follows.

De�nition 2. By a disrete solution of the Signorini problem with given frition

we mean any funtion uh ∈ Kh(αh) satisfying:

Find uh ∈ Kh(αh) suh that for all vh ∈ Kh(αh) :

aαh
(uh, vh − uh) + jh,αh

(vh)− jh,αh
(uh) ≥ Lαh

(vh − uh),

}
(Ah(αh))

where

jh,αh
(vh) :=

∫

ΓC(αh)

Fg rh|vh1| ds ∀vh ∈ V h(αh). (1.18)

Remark 1. The use of the Lagrange interpolation operator in (1.18) might seem

unjusti�ed. Nevertheless, it will make more sense in the model with Coulomb's law

of frition. At this point just let us note, that the onvex funtional jα in (1.12)

an be de�ned with g ∈ X ′(α) as well: jα(v) = 〈Fg, |v1|〉X′(α),X(α) ∀v ∈ V (α). Its
disretization then involves a funtional gh ∈ X ′

h(αh), where the de�nition of the

disrete trae spae Xh(αh) is analogous to (1.14) (see also below).

Sine the disretization introdued above is onforming, i.e. V h(αh) ⊂ V (αh)
and Kh(αh) ⊂ K(αh), and jh,αh

is onvex, lower semiontinuous, the following

theorem is obvious (ompare with Theorem 1).

Theorem 3. Let the assumptions of Theorem 1 hold. Then (Ah(αh)) has exatly
one solution uh ∈ Kh(αh). Moreover, uh is the unique solution of the following

onvex optimization problem:

minimize

1

2
aαh

(vh, vh) + jh,αh
(vh)− Lαh

(vh),

subj. to vh ∈ Kh(αh).

}
(1.19)

Next we turn to the disretization of the mixed problem (Ā(αh)). One of

the advantages of the mixed variational formulation is that it allows the (almost)

independent approximation of the primal and dual variables, i.e. the displaement

u and normal ontat stress λ in our ase. We will present two examples. However,

before being able to do so, we need to introdue the disrete ounterparts of the

spaes (1.14)�(1.17).

Convention. For any funtion ϕ ∈ ΓC(β) → R, de�ned on the ontat boundary

ΓC(β) for some β ∈ Uad, we will denote by ϕ̂ : (0, a) → R its transport onto (0, a),
i.e. ϕ̂(x1) := ϕ(x1, β(x1)) for x1 ∈ (0, a).

Keeping this onvention in mind, let (ompare with (1.14)�(1.15) in the on-

tinuous setting):

X̂h := {ϕh ∈ L2(0, a) | ∃αh ∈ Uh
ad ∃vh ∈ Vh(αh) : v̂h = ϕh in (0, a)},

X̂h+ := {ϕh ∈ X̂h | ϕ ≥ 0 in (0, a)}.
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It is easy to see, that X̂h is atually independent of αh and X̂h = P1(∆h)∩C([0, a])
(reall our assumption that ΓD(αh) ∩ ΓC(αh) = ∅). Notie that in partiular

αh ∈ X̂h+ holds.

The Lagrange multiplier set X ′
+(α), de�ned in (1.17), shall be approximated

in the following manner. Let L̂H be a �nite dimensional spae that is in duality

with X̂h and denote by 〈·, ·〉Hh : L̂H × X̂h → R a duality pairing between the two

spaes. Then, let Λ̂H denote the one of all nonnegative elements of L̂H , i.e. for

eah µH ∈ Λ̂H it holds that: 〈µH , ϕh〉Hh ≥ 0 ∀ϕh ∈ X̂h+. The only requirement

onerning L̂H we shall need, is the following stability property:

[
〈µH , ϕh〉Hh = 0 ∀ϕh ∈ X̂h

]
⇒ µH = 0. (1.20)

Now, the disrete Lagrangian on V h(αh)× Λ̂H is given by:

LhH,αh
(vh, µH) :=

1

2
aαh

(vh, vh) + jh,αh
(vh)− Lαh

(vh)− 〈µH, v̂h2 + αh〉Hh.

The next result should be ompared to Theorem 2.

Theorem 4. Let the assumptions of Theorem 1 and the ondition (1.20) hold

true. Then LhH,αh
has exatly one saddle-point (uh, λH) ∈ V h(αh)× Λ̂H . It an

be determined as the unique solution of the saddle-point system:

Find (uh, λH) ∈ V h(αh)× Λ̂H suh that:

aαh
(uh, vh − uh) + jh,αh

(vh)− jh,αh
(uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + αh〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(ĀhH(αh))

Moreover, the �rst omponent uh of the saddle-point is the (unique) solution of

the variational inequality:

Find uh ∈ KhH(αh) suh that:

aαh
(uh, vh − uh) + jh,αh

(vh)− jh,αh
(uh)

≥ Lαh
(vh − uh) ∀vh ∈ KhH(αh),





(AhH(αh))

where:

KhH(αh) := {vh ∈ V h(αh) | −〈µH , v̂h2〉Hh ≤ 〈µH , αh〉Hh ∀µH ∈ Λ̂H}. (1.21)

The seond omponent λH of the saddle-point is the Lagrange multiplier releasing

the onstraint uh ∈ KhH(αh).

Proof. Follows from [12℄ and (1.20).

Notie that the �primal� variational inequality (AhH(αh)) is, in general, dif-

ferent from (Ah(αh)), as demonstrated by the following two examples.

Example 1. First, we onstrut a �onforming� disretization of (Ā(α)). To this
end, let δi denote the Dira measure onentrated in the ith node of the partition
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∆h, i = 1, . . . , p and de�ne L̂H := span {δ1, . . . , δp}, endowed with the standard

duality pairing. Hene

Λ̂H =
{
µH ∈ L̂H

∣∣∣ µH =

p∑

i=1

µiδ
i, µi ∈ R+ ∀i = 1, . . . , p

}

and the stability ondition (1.20) holds true. In addition:

KhH(αh) = {vh ∈ V h(αh) | −v̂h2(a
i) ≤ αh(a

i) ∀i = 1, . . . , p}

= Kh(αh) ⊂ K(αh).

Therefore, in this ase the �rst omponent of the solution to (ĀhH(αh)) is also
the unique solution to the primal variational inequality (Ah(αh)).

Example 2. In this example we onsider a more regular approximation for the

Lagrange multiplier spae, suh that Λ̂H ⊂ L2(0, a) holds. Given the equidistant

partition ∆h of [0, a], we onstrut another partition ∆H := {0 = a1/2 < a3/2 <
· · · < ap+1/2 = a} by setting ai+1/2 := 1

2
(ai + ai+1) ∀i = 1, . . . , p− 1 as shown in

Figure 1.4. Now let Sj := (aj−1/2, aj+1/2) and χj
be the harateristi funtion of

0 = a1

0 = a1/2 a3/2 a5/2 ap+1/2 = aap−1/2

ap = aa2 a3 · · · ap−1∆h :

∆H :

Figure 1.4: Partition ∆H .

Sj
, j = 1, . . . , p. Then we de�ne

L̂H := P0(∆H) = span {χ1, . . . , χp}

to be the spae of pieewise onstant funtions over ∆H and

Λ̂H =
{
µH ∈ L̂H

∣∣∣ µH =

p∑

i=1

µiχ
i, µi ∈ R+, ∀i = 1, . . . , p

}
.

Taking the L2(0, a)-salar produt as the duality pairing between L̂H and X̂h, we

see that the stability ondition (1.20) is satis�ed. On the other hand, one gets:

KhH(αh) =
{
vh ∈ V h(αh)

∣∣∣ −
∫

Sj

v̂h2 dx1 ≤

∫

Sj

αh dx1 ∀j = 1, . . . , p
}
,

i.e. the �rst omponent of the saddle-point satis�es the nonpenetration ondition

only in the sense of integral averages. Sine KhH(αh) * K(αh), we speak of an

external approximation of K(αh).
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1.1.4 Algebrai formulation

When deriving the algebrai form of the disretized mixed-type ontat problem

(ĀhH(αh)), i.e. in terms of algebrai equations and inequalities, we proeed as

follows. First, let us denote n := dimV h(αh)
1

and by onstrution we have

p = dim X̂h. Denoting the Lagrange basis funtions of these pieewise linear �nite

element spaes by {ϕ1
h, . . . , ϕ

n
h} and {ψ1

h, . . . , ψ
p
h}, respetively, we immediately

see that V h(αh) is homeomorphi to Rn
, and the disrete admissible set Uh

ad an

be identi�ed with the onvex, ompat set

Uad :=
{
α ∈ Rp

+

∣∣∣ 0 ≤ αi ≤ C0 ∀i = 1, . . . , p,

|αi − αi+1| ≤ C1h ∀i = 1, . . . , p− 1,

2

h
C21 ≤

p−1∑

i=1

(αi + αi+1) ≤
2

h
C22

}
.

(1.22)

In the sequel, unless stated otherwise, α ∈ Uad will be �xed and we will onsid-

er the mixed problem (ĀhH(αh)), where αh ∈ Uh
ad has the oordinates α with

respet to the basis {ψ1
h, . . . , ψ

p
h}. For uh, vh ∈ V h(αh) denote their oordinates

with respet to {ϕ1
h, . . . , ϕ

n
h} by u ∈ Rn

and v ∈ Rn
, respetively. The oor-

dinates of v̂h1, v̂h2 ∈ X̂h with respet to {ψ1
h, . . . , ψ

p
h} shall be denoted in order

by vτ ∈ Rp
and vν ∈ Rp

. It is easy to see that (vτ )i = vh1(a
i, αh(a

i)) and

(vν)i = vh2(a
i, αh(a

i)) for every i = 1, . . . , p, whih means that vτ and vν are

atually subvetors of v. This justi�es their notation, and we shall all vτ and vν

the tangential and normal omponent of v along the ontat zone.

Further, we will denote by A(α) ∈ Rn×n
and L(α) ∈ Rn

the sti�ness matrix

and load vetor, respetively, given by

A(α) =
(
aαh

(ϕi
h, ϕ

j
h)
)
i,j=1,...,n

and L(α) =
(
Lαh

(ϕ1
h), . . . , Lαh

(ϕn
h)
)T
.

As the triangulations Th(αh) satisfy (T2) and (T3), the mappings A : Uad → Rn×n

and L : Uad → Rn
are smooth, i.e. C1

. Moreover, the matries A(α) are symmetri

and uniformly positive de�nite:

∃γ > 0 : 〈A(α)v, v〉n ≥ γ‖v‖2n ∀v ∈ Rn ∀α ∈ Uad, (1.23)

as follows from Korn's inequality and the topologial equivalene (T2)�(T4) of

the triangulations, ensuring that the mapping α 7→ A(α) is smooth.

For the evaluation of the nonlinear fritional term jh,αh
, de�ned by (1.18),

we will use numerial integration, namely, the ompound retangle rule over the

�re�ned� partition ∆h ∪∆H of [0, a] with ai ∈ ∆h, i = 1, . . . , p as the integration
nodes. This means that for every i = 1, . . . , p:

∫ ai

ai−1/2

F̂ĝπh|v̂h1|
√
1 + (α′

h)
2 dx1 ≈

1

2

√
h2 + (αi−1 − αi)2Figi|(vτ )i|, (1.24)

where Fi := F(ai, αh(a
i)), gi := g(ai, αh(a

i)) and πh : C([0, a]) → P1(∆h) ∩
C([0, a]) stands for the pieewise linear Lagrange interpolation operator de�ned

1

Note, that due to ondition (T2), satis�ed by the triagulations Th(αh), n is independent of

αh ∈ Uh
ad.
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on ∆h. Obviously: r̂hϕ = πhϕ̂ for every ϕ ∈ C(ΓC(αh)) and αh ∈ Uh
ad. Similarly

to (1.24) we write the quadrature rule on [ai, ai+1/2] and sum both expressions

for i = 1, . . . , p to obtain:

jh,αh
(vh) ≈

p∑

i=1

ωi(α)Figi|(vτ )i|, (1.25)

where

ωi(α) =





1
2

√
h2 + (α1 − α2)2 if i = 1,

1
2

(√
h2 + (αi−1 − αi)2 +

√
h2 + (αi − αi+1)2

)
if 2 ≤ i ≤ p− 1,

1
2

√
h2 + (αp−1 − αp)2 if i = p.

(1.26)

For the disrete Lagrange multiplier spae L̂H we hoose the pieewise on-

stant funtions over ∆H as desribed in Example 2 of the previous setion and

apply the same quadrature rule as above to evaluate the terms 〈µH , v̂h2〉Hh,

µH ∈ Λ̂H . Denoting the oordinates of µH with respet to the basis {χS1, . . . , χSp}
by µ ∈ Rp

+, we have:

〈µH , v̂h2〉Hh ≈

p∑

i=1

hiµi(vν)i,

where hi := h/2 if i = 1 or i = p, and hi := h otherwise. However, instead of the

quantities µi ≥ 0, we will be omputing (hiµi) ≥ 0, as follows from the de�nition

of the algebrai problem below.

De�nition 3. By the algebrai Signorini problem with given frition we mean

the following variational inequality:

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ā(α))

where the operator • : Rp × Rp → Rp
, u • v := (u1v1, . . . , upvp)

T
, denotes the

elementwise produt of vetors.

Remark 2. Suppose that (u,λ) ∈ Rn × Rp
+ is a solution to (Ā(α)). Then:

〈λ, vν〉p =

p∑

i=1

λi(vν)i =

p∑

i=1

λi
ωi(α)

(vν)iωi(α) ≈

∫

ΓC(αh)

λalgvh2 ds,

where λalg ∈ L2(ΓC(αh)) is suh that λ̂alg =

p∑

i=1

λi
ωi(α)

χSi ∈ Λ̂H , i.e. λalg approxi-

mates the Lagrange multiplier λ ∈ X ′
+(αh) from the ontinuous problem (Ā(αh)).

When interpreting u, the �rst omponent of the solution to (Ā(α)), we �nd
that u ∈ K(α) = {v ∈ Rn | −vν ≤ α} as follows from (Ā(α))2, whih is a

onsequene of the used integration formula. Moreover, u solves the variational

inequality:

〈A(α)u, v − u〉n + 〈ω(α) • F • g, |vτ | − |uτ |〉p ≥ 〈L(α), v − u〉n ∀v ∈ K(α).
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In partiular, we see that, as an e�et of the numerial integration, one retains an

inner approximation K(αh), i.e. the orresponding disrete solution uh satis�es

the nonpenetration ondition along ΓC(αh). On the other hand, λalg (see previous
Remark 2) and uh satisfy the omplementarity system only approximately.

Remark 3. The algebrai system (Ā(α)) is the same as if we had used the ap-

proah of Example 1 from the previous setion, only the interpretation of the

multiplier vetor λ ∈ Rp
+ is di�erent�see the explanation above.

For the sake of ompleteness, let us formulate the following theorem onerning

the solvability of (Ā(α)).

Theorem 5. Let F, g ∈ RP
+ be given. Then (Ā(α)) has a unique solution (u,λ) ∈

Rn × Rp
+ for eah α ∈ Uad.

In the subsequent setions and hapters we shall need the following properties

of the solutions to (Ā(α)), formulated in a lemma below. Before proeeding to

this lemma, however, we give another auxiliary result.

Lemma 1. There exists a onstant β > 0 suh that:

sup
0 6=v∈Rn

〈µ, vν〉p
‖v‖n

≥ β‖µ‖p ∀µ ∈ Rp. (1.27)

Proof. Denote by N ∈ Rp×n
the matrix that represents the linear mapping v 7→

vν , i.e. Nv = vν ∀v ∈ Rn
. Then one has:

sup
0 6=v∈Rn

〈µ, vν〉p
‖v‖n

= sup
0 6=v∈Rn

=
〈NTµ, v〉n

‖v‖n
= ‖NTµ‖n.

The funtion µ 7→ ‖NTµ‖n is nonnegative and ontinuous in Rp
, therefore it

attains its minimum on the unit sphere. Denoting this minimum value by β, it
an be immediately seen that β > 0 i� Ker (NT ) = {0}, i.e. if N has full row rank.

In our ase N has in eah row exatly one element equal to 1, all other elements

are 0, and the ones appear at di�erent indies. Thus the proof is omplete.

On the basis of the previous result, it is not di�ult to derive the following

upper bounds on the solution of (Ā(α)).

Lemma 2. (i) Let (u,λ) ∈ Rn × Rp
+ be the solution to (Ā(α)). Then:

‖u‖n ≤
‖L(α)‖n

γ
, ‖λ‖p ≤

1

β

(
‖A(α)‖

γ
+ 1

)
‖L(α)‖n.

(ii) Let, in addition, (ū, λ̄) ∈ Rn × Rp
+ be the solution to the problem (Ā(α)),

but with a di�erent load vetor L̄ ∈ Rn
. Then:

‖u− ū‖n ≤
‖L(α)− L̄‖n

γ
, ‖λ− λ̄‖p ≤

1

β

(
‖A(α)‖

γ
+ 1

)
‖L(α)− L̄‖n.

Proof. See Proposition 3.2 and Proposition 3.5 in [4℄.
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Let us onlude this setion on the lassial Signorini problem with Tresa

frition by splitting the system of inequalities (Ā(α)) into separate relations for

the �interior� variables, i.e. the degrees of freedom orresponding to nodes lying

in the interior of Ω(αh) or on ΓN(αh), and the ontat variables, i.e., the ones de-

�ned on ΓC(αh). Suh a splitting re�ets the struture of ontat problems more:

it shows that the nonsmooth nature of these problems stems from the ontat

onditions, expressed in terms of variational inequalities for uτ , uν , λ, whereas

the internal variables are linked to the ontat ones �only� by means of a linear

mapping involving the inverse of a symmetri, positive de�nite matrix. Finally,

we rewrite the resulting system of equations and inequalities into a generalized

equation (GE). This form will be more suitable for the tehniques involved in

sensitivity analysis to ome in later hapters.

In order to derive the aforementioned form, we split the displaement �elds

into two parts: v = (vint, vcont) ∈ Rn−2p × R2p
, where vcont = (vτ , vν) ∈ Rp × Rp

omprises the omponents of v assoiated with the tangential and normal dis-

plaement along ΓC(αh). We split the load vetor similarly into �interior� and

�ontat� part: L(α) = (Lint(α),Lcont(α)); the sti�ness matrix is handled a-

ordingly:

A(α) =

[
Aii(α) Aic(α)
Aci(α) Acc(α)

]
.

Resulting from the properties of A(α), the matries Aii(α) and Acc(α) are sym-

metri and uniformly positive de�nite, whereas Aic(α) = Aci(α)T . Now, testing
the �rst inequality in (Ā(α)) by v = (vint,uint), vint ∈ Rn−2p

arbitrary, yields:

Aii(α)uint = Lint(α)− Aic(α)ucont, (1.28)

from whih:

uint = A−1
ii (α)Lint(α)− A−1

ii (α)Aic(α)ucont. (1.29)

On the other hand, inserting v = (uint, vcont) into (Ā(α)), suh that vcont ∈ R2p

is arbitrary, gives:

〈Aci(α)uint + Acc(α)ucont, vcont − ucont〉2p + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈Lcont(α), vcont − ucont〉2p + 〈λ, vν − uν〉p,

whih, ombined with (1.29), yields:

〈AS(α)ucont, vcont − ucont〉2p + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈LS(α), vcont − ucont〉2p + 〈λ, vν − uν〉p. (1.30)

Here AS(α) := Acc(α)− Aci(α)A−1
ii (α)Aic(α) denotes the Shur omplement to

Aii(α) in A(α) and LS(α) := Lcont(α)− Aci(α)A−1
ii (α)Lint(α).

Further, aording to the deomposition vcont = (vτ , vν) ∈ Rp × Rp
, let us

split:

AS(α) =

[
Aττ (α) Aτν(α)
Aντ (α) Aνν(α)

]
,

where the submatries satisfy: Aττ (α),Aνν(α) ∈ Rp×p
are symmetri and uni-

formly positive de�nite and Aντ (α) = Aτν(α)T . The vetor LS(α) is deomposed
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analogously into a �tangential� and �normal� part: LS(α) = (Lτ (α),Lν(α)).
First, we test (1.30) with vcont = (vτ ,uν), vτ ∈ Rp

arbitrary and obtain:

〈Aττ (α)uτ + Aτν(α)uν , vτ − uτ 〉p + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈Lτ (α), vτ − uτ 〉p ∀vτ ∈ Rp,

or equivalently:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + ∂jα(uτ ), (1.31)

where ∂jα stands for the onvex subdi�erential of jα(w) := 〈ω(α) •F • g, |w|〉p,
w ∈ Rp

.

In a similar fashion, by inserting vcont = (uτ , vν), vν ∈ Rp
arbitrary into

(1.30), we arrive at the equation:

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α). (1.32)

Finally, employing the notion of the onvex normal one (f. [12℄), we may

rewrite the seond inequality in (Ā(α)), expressing the nonpenetration ondition,

as:

0 ∈ uν +α+NRp
+
(λ). (1.33)

To summarize, we have shown that the pair (u,λ) ∈ Rn × Rp
+ is a solu-

tion to the Signorini problem with Tresa frition (Ā(α)) if and only if u =
(uint,uτ ,uν) ∈ Rn−2p × Rp × Rp

, where uint satis�es (1.29) and the ontat

variables (uτ ,uν ,λ) solve the following system of GEs:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) +Qτ (α,uτ ),

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α),

0 ∈ uν +α+NRp
+
(λ).





(1.34)

Here the multifuntion Qτ : Uad × Rp
⇒ Rp

is de�ned as:

Qτ (α,w) := ∂jα(w) = ∂

p∑

i=1

ωi(α)Figi|wi|

=



ω1(α)F1g1∂|w1|

.

.

.

ωp(α)Fpgp∂|wp|


 ,

as follows from the sum rule for the subdi�erential of onvex funtions [12, Propo-

sition 5.6℄. Moreover, Theorem 5 ensures that, given any F, g ∈ Rp
+, (1.34) is

uniquely solvable for eah α ∈ Uad. One the ontat displaements ucont =
(uτ ,uν) have been determined, the internal ones uint an be omputed by solv-

ing the system of linear algebrai equations (1.28).

1.2 Tresa model with a solution-dependent oef-

�ient of friion

Up to now we have assumed that the oe�ient of frition F is onstant, or

depends on the spatial variable only. In some situations, as experiments show,
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it is more appropriate to model the oe�ient of frition as a funtion of the

unknown displaement (or, better, as a funtion of the slip veloity in dynami

problems) as well. Namely, we will assume that F depends on the magnitude

of the tangential displaement. The generalized version of the frition ondition

(1.9) on ΓC(α) now reads as:

u1 = 0 ⇒ |T1| ≤ F(0)g,

u1 6= 0 ⇒ T1 = −F(|u1|)g sgn(u1)

}
on ΓC(α), (1.35)

where F : R+ → R+ is ontinuous and bounded (for sake of simpliity, we neglet

the dependene on the spatial variable); all other symbols have the same meaning

as before. As it was done for De�nition 1, one may proeed analogously to obtain

the weak formulation of (1.1)�(1.4), (1.8) and (1.35):

De�nition 4. By a weak solution of the Signorini problem with given frition

and a solution-dependent oe�ient of frition we mean any solution of:

Find u := u(α) ∈ K(α) suh that:

aα(u, v − u) + jα(u, v)− jα(u,u) ≥ Lα(v − u) ∀v ∈ K(α),

}
(P(α))

where

jα(w, v) :=

∫

ΓC(α)

F(|w1|)g|v1| ds ∀w, v ∈ H1(Ω(α)).

Problem (P(α)) is an impliit variational inequality of the seond kind. Had

we known the funtion |u1| ∈ X+(α) (f. (1.15) for the de�nition of X+(α))
a priori, (P(α)) would turn into a standard variational inequality of the form

(A(α)). This trivial observation leads to the following equivalent haraterization

of the solutions to (P(α)):

Proposition 1. For any ϕ ∈ X+(α) denote the problem (A(α)) with the oe�-

ient of frition F ◦ ϕ ∈ L∞(ΓC(α)) by (A(α, ϕ)). Consider the mapping:

Φ : X+(α) → X+(α), ϕ 7→ |u1(ϕ)|ΓC(α)
|,

where u(ϕ) is the (unique) solution of (A(α, ϕ)). Then u solves (P(α)) i� u is

the solution of (A(α, ϕ∗)), where ϕ∗
is a �xed point of the mapping Φ.

On the basis of Proposition 1 and using appropriate �xed-point theorems, the

following existene and uniqueness results are not di�ult to prove.

Theorem 6. Let F : R+ → R+ be ontinuous and bounded: ∃Cmax > 0 ∀x ∈ R+ :
0 ≤ F(x) ≤ Cmax; g ∈ L2

+(ΓC(α)). Then (P(α)) has at least one solution.

Proof. See [19℄.

By strengthening the assumptions on F and g, one may ensure unique solv-

ability of (P(α)), as follows from the next theorem.

Theorem 7. Let, in addition to the assumptions of Theorem 6, F be Lipshitz

ontinuous: ∃Clip > 0 ∀x, y ∈ R+ : |F(x) − F(y)| ≤ Clip|x − y|, and g ∈
L∞
+ (ΓC(α)). There exists a onstant C̄ > 0 suh that if Clip‖g‖L∞(ΓC(α)) ∈ (0, C̄),

then (P(α)) has exatly one solution. Moreover, C̄ an be hosen independently

of α ∈ Uad.
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Proof. See [19℄ and [43, Thm. 1.2℄, where the exat form of the bound C̄ is also

given.

Assuming that the slip bound g is a restrition of a given funtion g ∈ C(Ω̂)
onto ΓC(α), ‖g‖L∞(ΓC (α)) an also be estimated independently of α. In this ase the
seond assertion of the previous theorem yields, that the state problems (P(α))
are uniquely solvable for all α ∈ Uad, provided the oe�ient of frition is Lipshitz

ontinuous with a su�iently small modulus Clip. In the sequel we will rely on

this property when dealing with the shape optimization problem.

Exploiting the �xed-point struture of (P(α)), desribed in Proposition 1, and

using Theorem 2, we may write the mixed form of (P(α)) as follows.

Theorem 8. Let the assumptions of Theorem 7 hold. Then the system of varia-

tional inequalities

Find (u, λ) ∈ V (α)×X ′
+(α) suh that:

aα(u, v − u) + jα(u, v)− jα(u,u)

≥ Lα(v − u) + 〈λ, v2 − u2〉X′(α),X(α) ∀v ∈ V (α),

〈µ− λ, u2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α),





(M(α))

has exatly one solution. Moreover, the �rst omponent of the solution u lies in

K(α) and is the unique solution of (P(α)); for the Lagrange multiplier we have:
λ = T2(u).

We will all problem (M(α)) the mixed formulation of (P(α)).

1.2.1 Approximation

Instead of disretizing (P(α)) and (M(α)) diretly, we de�ne the disrete ver-

sions of these problems by means of parametrized Signorini problems with given

frition and a oe�ient of frition, whih does not depend on the solution. As

in Proposition 1, the value of this parameter will be a �xed-point of a suitable

mapping.

Let a disrete design variable αh ∈ Uh
ad be given and reall the de�nition of the

�nite dimensional spaes V h(αh), X̂h+ and Λ̂H . For any ϕh ∈ X̂h+ let us denote

the disrete ontat problem (ĀhH(αh)) with the oe�ient of frition given by

F ◦ ϕh as (ĀhH(αh, ϕh)):

Find (uh, λH) ∈ V h(αh)× Λ̂H suh that:

aαh
(uh, vh − uh) + jh,αh

(ϕh; vh)− jh,αh
(ϕh;uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + dαh
〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(ĀhH(αh, ϕh))

As in (1.18), the funtional jh,αh
is de�ned as:

jh,αh
(ϕh; vh) =

∫ a

0

F(ϕh)ĝπh|v̂h1|
√

1 + (α′
h)

2 dx1 ∀ϕh ∈ X̂h+, vh ∈ V h(αh),

where the �rst argument of jh,αh
now signi�es the omposition of F with ϕh.

Reall, that πh : C([0, a]) → P1(∆h) ∩ C([0, a]) stands for the pieewise linear

Lagrange interpolation operator de�ned on ∆h.
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De�nition 5. Let us de�ne the mapping:

Φh : X̂h+ → X̂h+, ϕh 7→ πh|ûh1(ϕh)|,

where uh(ϕh) is the solution of (ĀhH(αh, ϕh)). Then, by a disrete solution to

the Signorini problem with given frition and a solution-dependent oe�ient of

frition we mean the solution (uh, λH) ∈ V h(αh) × Λ̂H of (ĀhH(αh, ϕ
∗
h)), where

ϕ∗
h is a �xed-point of Φh.

Inserting the �xed-point of Φh into (ĀhH(αh, ϕ
∗
h)), it an be easily seen that

(uh, λH) is a disrete solution in the sense of De�nition 5 whenever (uh, λH) solves
the following system of variational inequalities:

Find (uh, λH) ∈ V h(αh)× Λ̂H suh that:

aαh
(uh, vh − uh) + jh,αh

(πh|ûh1|; vh)− jh,αh
(πh|ûh1|;uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + dαh
〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(MhH(αh))

Again, due to De�nition 5 via �xed-points and the unique solvability of

the auxiliary problems (ĀhH(αh, ϕh)) (f. Theorem 4), quantitative analysis of

(MhH(αh)) an be arried out by means of suitable �xed-point theorems applied

to Φh. This is the idea behind the proof of the following theorem and an be

found in [19℄.

Theorem 9. (i) (existene) Let the assumptions of Theorem 6 be satis�ed.

Then (MhH(αh)) has at least one solution for eah αh ∈ Uh
ad.

(ii) (uniqueness) Let the assumptions of Theorem 7 be satis�ed, i.e. F is bounded

and Lipshitz ontinuous in R+ with Lipshitz modulus Clip, g ∈ L∞
+ (ΓC(αh)).

Then there exists a onstant C̄d > 0, suh that the following impliation

holds: if Clip‖g‖L∞(ΓC(αh)) < C̄d, then (MhH(αh)) has a unique solution.

In addition, the upper bound C̄d may be hosen independently on h and

αh ∈ Uh
ad.

Remark 4. From [43, Thm. 1.2℄ and [43, Thm. A.5℄ it follows that C̄d < C̄, i.e., if
Clip is su�iently small, both the disrete and ontinuous state problems possess

a unique solution.

Finally, the interpretation of the solution (uh, λH) to the mixed-type prob-

lem (MhH(αh)) is the following. The �rst omponent uh ∈ KhH(αh) = {vh ∈

V h(αh) | −〈µH , v̂h2〉Hh ≤ 〈µH , αh〉Hh ∀µH ∈ Λ̂H} and solves the following impliit

variational inequality:

Find uh ∈ KhH(αh) suh that:

aαh
(uh, vh − uh) + jh,αh

(πh|ûh1|; vh)− jh,αh
(πh|ûh1|;uh)

≥ Lαh
(vh − uh) ∀vh ∈ KhH(αh)





The seond omponent λH is the Lagrange multiplier releasing the disretized

nonpenetration onstraint uh ∈ KhH(αh).
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1.2.2 Algebrai form

The algebrai form of (MhH(αh)), suitable for numerial omputations, an now

be very easily derived from De�nition 5 and the results of Setion 1.1.4, where all

the neessary work has already been arried out. In the sequel we shall use the

notation introdued therein.

Let α ∈ Uad (f. (1.22)) be given and �x one ϕ = (ϕ1, . . . , ϕp)
T ∈ Rp

+. By

(Ā(α,ϕ)) denote the mixed form of the algebrai Signorini problem with given

frition (Ā(α)), where the oe�ient of frition is given by the vetor F(ϕ) =(
F(ϕ1), . . . ,F(ϕp)

)T
∈ Rp

+, i.e.

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈ω(α) • F(ϕ) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν + α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ā(α,ϕ))

Now, as in De�nition 5, we de�ne the mapping

Ψα : Rp
+ → Rp

+, Ψα(ϕ) := |uτ |, (1.36)

where uτ is the subvetor of the �rst omponent of (u,λ) := (u(ϕ),λ(ϕ)), the
solution of (Ā(α,ϕ)). Note, that due to Theorem 5, (Ā(α,ϕ)) has a unique

solution for eah α ∈ Uad and ϕ ∈ Rp
+, hene Ψα is well-de�ned.

De�nition 6. Let ϕ∗
be a �xed-point of Ψα and (u∗,λ∗) the orresponding solu-

tion of (Ā(α,ϕ∗)). Then (u∗,λ∗) is alled the solution of the algebrai Signorini

problem with Tresa frition and a solution-dependent oe�ient of frition.

As in the ontinuous and disrete settings, (u∗,λ∗) may be equivalently har-

aterized as a solution of the following problem (ompare with (M(α)), (MhH(αh))):

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈ω(α) • F(|uτ |) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(M(α))

Sine (M(α)) and (MhH(αh)) are not equivalent, we will state the unique

solvability of (M(α)) separately in the next theorem.

Theorem 10. Let F : R+ → R+ be bounded and Lipshitz ontinuous in R+

with modulus Clip > 0. There exists a onstant K̄ > 0, independent of α ∈ Uad,

suh that if Clip‖g‖∞ ∈ (0, K̄), then (M(α)) has exatly one solution for eah

α ∈ Uad.

Proof. For the sake of ompleteness, we inlude a sketh of the proof. The idea is

to show that Ψα is ontrative, whene the assertion follows immediately by the

Banah �xed-point theorem.

Let ϕ(i) ∈ Rp
+, i = 1, 2, be arbitrary and onsider the solutions (u(i),λ(i)) ∈

Rn × Rp
+ to (Ā(α,ϕ(i))), i = 1, 2. Then

u(i) ∈ K(α) := {v ∈ Rn | −vν ≤ α}, i = 1, 2, (1.37)
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and solve the respetive impliit variational inequalities:

〈
A(α)u(i), v − u(i)

〉
n
+
〈
ω(α) • F(ϕ(i)) • g, |vτ | − |u(i)

τ |
〉
p

≥
〈
L(α), v − u(i)

〉
n

∀v ∈ K(α).

}
(A(α,ϕ(i)))

Now, test the �rst inequality (A(α,ϕ(1))) with v := u(2)
, the seond inequality

(A(α,ϕ(2))) by v := u(1)
and add both inequalities. After rearranging the terms

we get:

〈
A(α)(u(1) − u(2)),u(1) − u(2)

〉
n

≤
〈
ω(α) •

(
F(ϕ(1))− F(ϕ(2))

)
• g, |u(2)

τ | − |u(1)
τ |

〉
p
.

Using the Cauhy-Shwarz inequality and the Lipshitz ontinuity of F, the right-

hand side an be estimated by:

〈
ω(α) •

(
F(ϕ(1))− F(ϕ(2))

)
• g, |u(2)

τ | − |u(1)
τ |

〉
p

≤ ‖ω(α)‖∞‖g‖∞‖F(ϕ(1))− F(ϕ(2))‖p‖|u
(1)
τ | − |u(2)

τ |‖p

≤ ω̄Clip‖g‖∞‖ϕ(1) −ϕ(2)‖p‖u
(1) − u(2)‖n,

where ω̄ := supα∈Uad
‖ω(α)‖∞. Sine A(α) are uniformly positive de�nite, we

get:

γ‖u(1) − u(2)‖2n ≤ ω̄Clip‖g‖∞‖ϕ(1) −ϕ(2)‖p‖u
(1) − u(2)‖n. (1.38)

Finally:

‖Ψα(ϕ
(1))−Ψα(ϕ

(2))‖p ≤ ‖u(1) − u(2)‖n ≤
ω̄

γ
Clip‖g‖∞‖ϕ(1) − ϕ(2)‖p

and the assertion holds with

K̄ := γ/ω̄. (1.39)

1.3 Coulomb model with a solution-dependent o-

e�ient of frition

In this setion we will introdue the loal Coulomb law of frition, with a oe�-

ient of frition that is already assumed to depend on the solution, as it was the

ase in the previous setion. We will disuss the di�erene between the Tresa

and Coulomb laws of frition, pointing out also the di�ulties assoiated with its

analysis. The struture of the present setion resembles the previous one's: after

giving the de�nition of our ontat problem with Coulomb frition and a solution-

dependent oe�ient of frition, we shall quikly move on to its disretization and

further to the algebrai formulation, that will be of our primary interest. Anal-

ogously to the Tresa frition ase, onditions guaranteeing unique solvability of

the algebrai ontat problems with Coulomb frition for eah value of the design

variable α ∈ Uad will be given and proved.

Let us return to what we said in the introdution, namely that the Tresa law

of frition does not model physial reality well. What are its shortomings and how
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an they be overome? To this end, we take a seond look at the frition ondition

(1.9), in partiular its �rst part, whih says that sliding does not our on the

ontat boundary, until the tangential stress does not attain a ertain ativation

threshold. Now, the problem is that this threshold funtion does not distinguish

between points that will beome (after deformation) in ontat and points, that

will not. As a onsequene, frition fores may at also at points whih are not

even in ontat with the obstale�evidently, this is physially infeasible. Seondly,

one would expet from a reasonable frition ondition to take into aount also

the quality of ontat. Namely, it should be in line with our everyday experiene

that the stronger an objet stiks to another, the bigger fores are needed to make

them slide. In the Tresa law of frition, the slip bound did not depend on the

pressure between the ontating surfaes. Both these de�ienies are remedied

by the so-alled Coulomb law of frition, that is formulated below (taking into

aount our speial geometry):

|T1| ≤ F(|u1|)T2, u1 6= 0 ⇒ T1 = − sgn(u1)F(|u1|)T2 on ΓC(α). (1.40)

Note, that in (1.40) the a-priori given slip bound g is replaed by the unknown

normal stress T2 := T2(u). In the Coulomb law of frition (1.40), if a point

x ∈ ΓC(α) will not be in ontat, then T2(x) = 0, as follows from the ontat

ondition (1.8), implying also T1(x) = 0. Moreover, the ativation threshold for

sliding is in this ase an inreasing (linear) funtion of the pressure T2. Finally,
remark that we have already assumed that the oe�ient of frition F : R+ → R+

in (1.40) may also depend on the magnitude of the tangential displaement.

Thus, by the lassial solution to the Signorini problem with Coulomb frition

we mean a funtion u : Ω(α) → R2
satisfying the system of equilibrium equations

and boundary onditions (1.1)�(1.4), (1.8) and (1.40).

Assuming that the lassial solution is su�iently regular and applying the

Green theorem, one may easily derive the variational inequality u satis�es (we

will stik to the notation already introdued in Setion 1.1):

Find u ∈ K(α) suh that for every v ∈ K(α) :

aα(u, v − u) +

∫

ΓC(α)

F(|u1|)T2(u)
(
|v1| − |u2|

)
ds ≥ Lα(v − u).



 (1.41)

Sine u ∈ K(α) ⊂ H1(Ω(α)) only, T2(u) /∈ L2(ΓC(α)) in general, but T2(u) ∈
X ′

+(α). Therefore, instead of (1.41) one should write:

Find u ∈ K(α) suh that for every v ∈ K(α)

aα(u, v − u) + 〈F(|u1|)T2(u), |v1| − |u1|〉X′(α),X(α) ≥ Lα(v − u).

}
(PC(α))

Still, in order to make sense to the duality term, F and u should be smooth

enough so that F(|u1|)|v1| ∈ X(α) ∀v ∈ V (α) (see [11℄). In order to overome

this di�ulty, we will assume that T2(u) ∈ L2(ΓC(α)) and F is ontinuous in

R+. Then the duality may be replaed by the L2(ΓC(α))-salar produt. Suh
u ∈ K(α), satisfying (PC(α)) is alled the weak solution. In addition, observe

that this weak solution may again be haraterized as the solution of the auxiliary

problem (A(α)) with speial oe�ient of frition F and slip bound g. Therefore,
as it was done in Proposition 1, for given ϕ ∈ X+(α), g ∈ L2

+(ΓC(α)) denote by
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(A(α, ϕ, g)) the auxiliary problem (A(α)) with the oe�ient of frition F◦ϕ and

the slip bound g. Further, de�ne the mapping:

ΦC : X+(α)× L2
+(ΓC(α)) → X+(α)×X ′

+(α), (ϕ, g) 7→
(
|(u1)|ΓC(α)|, T2(u)

)
,

where u = u(ϕ, g) is the unique solution of (A(α, ϕ, g)). Now it easy to see that

u ∈ K(α) solves (PC(α)) i� it is the solution of (A(α, ϕ∗, g∗)), with (ϕ∗, g∗) ∈
X+(α)× L2

+(ΓC(α)) being a �xed-point of ΦC
.

Observe that the mixed formulation (Ā(α)), whih will be denoted (Ā(α, ϕ, g))
in order to stress the dependene on ϕ and g, is partiularly useful here: along

with the displaement u we also ompute the normal stress T2(u) = λ, that may

be used for the �xed-point iteration in ΦC
. This motivates us to use the mixed

formulation to de�ne the weak solution.

De�nition 7. By a weak solution of the Signorini problem with Coulomb frition

and a solution-dependent oe�ient of frition we mean the pair (u, λ) ∈ V (α)×
L2
+(ΓC(α)) solving uniquely the mixed problem (A(α, ϕ∗, g∗)), where (ϕ∗, g∗) is

a �xed-point of the mapping:

ΦC : X+(α)× L2
+(ΓC(α)) → X+(α)×X ′

+(α), (ϕ, g) 7→
(
|(u1)|ΓC(α)|, λ

)
.

Equivalently, the weak solution (u, λ) satis�es the following mixed-type prob-

lem:

Find (u, λ) ∈ V (α)× L2
+(ΓC(α)) suh that:

aα(u, v − u) + 〈F(|u1|)λ, |v1| − |u1|〉X′(α),X(α)

≥ Lα(v − u) + 〈λ, v2 − u2〉X′(α),X(α) ∀v ∈ V (α),

〈µ− λ, u2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α).





(MC(α))

Remark 5. Unfortunately, the mapping ΦC
is not ontrative and therefore the

analysis of (MC(α)) has to be onduted in a di�erent way�we kindly refer to

the monograph [11℄ for some relevant results. As we shall see, suh issues are not

present in �nite dimensions and De�nition 7 suits well for the disretization of

(MC(α)).

1.3.1 Approximation

It should ome as no surprise that the disretization will one again be based

on the �xed-point struture of the problem (MC(α)), iterating through some

disrete mixed problems (ĀhH(αh, ϕh, gH)).

To this end, let αh ∈ Uh
ad be �xed and let Λ̂H ⊂ L2(0, a) be as in Example 2,

i.e., L̂H is the spae of all pieewise onstant funtions over the partition ∆H

and Λ̂H the one of its nonnegative elements. Let ϕh ∈ X̂h+, gH ∈ Λ̂H be given

and denote by (ĀhH(αh, ϕh, gH)) the disrete mixed formulation of the Signorini

problem with given frition gH and oe�ient of frition F ◦ ϕh:

Find (uh, λH) ∈ V h(αh)× Λ̂H suh that:

aαh
(uh, vh − uh) + jh,αh

(ϕh, gH ; vh)− jh,αh
(ϕh, gH ;uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + αh〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(ĀhH(αh, ϕh, gH))
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Here the funtional jh,αh
is now de�ned as (ompare with (1.18)):

jh,αh
(ϕh, gH ; vh) :=

∫ a

0

F(ϕh)gHπh|v̂h1|
√
1 + (α′

h)
2 dx1.

Reall, that πh stands for the pieewise linear Lagrange interpolation opertor on

∆h.

De�nition 8. By a solution to the disretized Signorini problem with Coulomb

frition and a solution-dependent oe�ient of frition we mean a pair (u∗
h, λ

∗
H) ∈

V h(αh) × Λ̂H solving the problem (ĀhH(αh, ϕ
∗
h, g

∗
H)), where (ϕ∗

h, g
∗
H) is a �xed-

point of the mapping

ΦC
h : X̂h+ × Λ̂H → X̂h+ × Λ̂H , (ϕh, gH) 7→

(
πh|ûh1|, λH

)
,

(uh, λH) denoting the solution of (ĀhH(αh, ϕh, gH)).

Instead of dealing with existene and uniqueness of solutions to the disretized

Signorini problem with Coulomb frition and a solution-dependent oe�ient of

frition (for suh result the reader is kindly referred to e.g. [20, Thm. 2.1℄ and

[20, Thm. 2.2℄) we immediately proeed with the algebrai formulation. Existene

and uniqueness in the fully algebrai setting will be investigated in more detail

with orresponding proofs.

1.3.2 Algebrai formulation

Reall that for given ϕh ∈ X̂h+ and gH ∈ Λ̂H , with oordinates ϕ ∈ Rp
+ and

g ∈ Rp
+ with respet to the basis {ψ1

h, . . . , ψ
p
h} and {χS1, . . . , χSp}, respetively,

the algebrai Signorini problem with given frition g and oe�ient of frition

F(ϕ) was de�ned as:

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈ω(α) • F(ϕ) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ā(α,ϕ, g))

now labeled as (Ā(α,ϕ, g)) in order to stress the dependene on (ϕ, g). In Re-

mark 2 it was shown that the funtion λ̂alg =

p∑

i=1

λi
ωi(α)

χSi
is the approximate

Lagrange multiplier, hene it is this funtion we will use in the de�nition of ΦC
h .

Introduing the elementwise division operator ÷ : Rp × (R \ {0})p → Rp
,

(u, v) 7→
(
u1

v1
, . . . , up

vp

)T
, we de�ne the mapping

ΨC
α : Rp

+ × Rp
+ → Rp

+ × Rp
+, (ϕ, g) 7→

(
|uτ |,λ÷ ω(α)

)
,

where (u,λ) solves (Ā(α,ϕ, g)). Given a �xed-point (ϕ∗, g∗) of ΨC
α , the orre-

sponding solution (u,λ) to (A(α,ϕ∗, g∗)) is also a solution to:

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈F(|uτ |) • λ, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+.





(MC(α))

We have arrived at the following de�nition.
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De�nition 9. By the algebrai Signorini problem with Coulomb frition and a

solution-dependent oe�ient of frition we mean the problem (MC(α)).

Observe that, equivalently, the algebrai solution (u,λ) an be haraterized

in yet another way, namely as the (unique) solution to the auxiliary problem:

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈F(ϕ∗) • g∗, |vτ | − |uτ |〉p

〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ã(α,ϕ∗, g∗))

where (ϕ∗, g∗) is a �xed-point of the mapping

Ψ̃C
α : (ϕ, g) 7→ (|uτ |,λ).

The pair (u,λ) in the de�nition of Ψ̃C
α is the solution of (Ã(α,ϕ, g)). In other

words, one may get the solution of the algebrai ontat problem with Coulomb

frition by solving the algebrai ontat problem with Tresa frition, but without

ω(α) in the fritional term. Although it may not be apparent at the moment, but

the fat that the ontrol parameter α ∈ Uad is not present in the fritional term

of (MC(α)) will make a huge di�erene when it omes to onduting sensitivity

analysis.

Now, let us state and prove the following result on existene and uniqueness

of the algebrai solution.

Theorem 11. (i) Let F : R+ → R+ be ontinuous and bounded, i.e. ∃Cmax >
0 ∀x ∈ R+ : 0 ≤ F(x) ≤ Cmax. Then (MC(α)) has at least one solution

for all α ∈ Uad.

(ii) Let, in addition, F be Lipshitz ontinuous with modulus Clip. If Clip and

Cmax are su�iently small, all problems (MC(α)) have a unique solution.

Proof. For the sake of this proof, let us de�ne the norm on produts of Eulidean

spaes Rs × Rt
(s, t ∈ N) by: ‖(w, z)‖s+t := ‖w‖s + ‖z‖t.

(i) Let (ϕ, g) ∈ Rp
+ × Rp

+ be given and onsider (u,λ), the unique solution of

(Ã(α,ϕ, g)). Then, from Lemma 2(i) we have immediately:

‖Ψ̃C
α (ϕ, g)‖p+p ≤ ‖u‖n + ‖λ‖p ≤

[
1

γ
+

1

β

(
‖A‖
γ

+ 1

)]
‖L‖ =: R, (1.42)

where ‖A‖ = supα∈Uad
‖A(α)‖, ‖L‖ = supα∈Uad

‖L(α)‖n and hene R does not

depend on α ∈ Uad. Thus, Ψ̃
C
α maps the ball BR ⊂ Rp × Rp

of radius R and

enter 0 into itself. Continuity of Ψ̃C
α is very easy to verify: for any onvergent

sequene {(ϕ(i), g(i))} ⊂ Rp
+ ×Rp

+, (ϕ
(i), g(i)) → (ϕ, g), the sequene of solutions

{(u(i),λ(i))} to the problems (Ã(α,ϕ(i), g(i))), i = 1, 2, . . . , onverges to the solu-
tion of the limit problem (Ã(α,ϕ, g)). Hene, by Brouwer's �xed-point theorem,

the assertion follows.

(ii) We proeed analogously as in the ase of Tresa frition and show that Ψ̃C
α

is ontrative in BR. To this end, onsider two pairs (ϕi, gi), ‖(ϕi, gi)‖p+p ≤ R,
i = 1, 2, and follow the steps of the proof of Theorem 10 to get:

γ‖u1 − u2‖n ≤ 〈F(ϕ1) • g1 − F(ϕ2) • g2, |u2
τ | − |u1

τ |〉p,
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where (u1, g1), (u2, g2) denote the solutions to (Ã(α,ϕ1, g1)), (Ã(α,ϕ2, g2)),
respetively. Using the Cauhy-Shwarz inequality, adding and subtrating the

term F(ϕ1) • g2
and making use of the assumptions on F we arrive at:

‖u1 − u2‖n ≤
1

γ

(
Cmax‖g

1 − g2‖p + Clip‖g
2‖∞‖ϕ1 −ϕ2‖p

)
(1.43)

≤
1

γ
max{Cmax, RClip}‖(ϕ

1 − ϕ2, g1 − g2)‖p+p (1.44)

Next, we estimate the di�erene of the Lagrange multipliers λ1
, λ2

. From the

�rst inequality of (Ã(α,ϕi, gi)) one gets:

〈A(α)ui, v〉n = 〈L(α), v〉n + 〈λi, vν〉p ∀v ∈ Rn, vτ = 0, i = 1, 2.

Subtrating the two equations from eah other yields:

〈λ1 − λ2, vν〉p = 〈A(α)(u1 − u2), v〉n ∀v ∈ Rn, vτ = 0.

From Lemma 1, notiing that the supremum an be taken over the whole spae

Rn
, we get:

β‖λ1 − λ2‖p ≤ ‖A‖‖u1 − u2‖n.

Finally, ombining the previous two estimates we obtain:

‖Ψ̃C
α (ϕ

1, g1)− Ψ̃C
α (ϕ

2, g2)‖p+p ≤ ‖u1 − u2‖n + ‖λ1 + λ2‖p

≤
β + ‖A‖
βγ

max{Cmax, RClip}‖(ϕ
1, g1)− (ϕ2, g2)‖p+p.

Now, the assertion of the theorem holds, provided

max{Cmax, RClip} <
βγ

β + ‖A‖
. (1.45)

Remark 6. We have ome to another important di�erene between the ontat

problems with Tresa frition (M(α)) and Coulomb frition (MC(α)). Namely,

that in the latter ase the ondition guaranteeing unique solvability of the problem

for every α ∈ Uad, is data-dependent. Indeed, the �onstant� R in (1.45) is a

ontinuous, inreasing funtion of ‖L‖, f. (1.42). For too large load vetors L,

(1.45) will beome invalid and one may lose uniqueness. However, if (1.45) is

satis�ed for a given set of data F and L, then it remains valid for su�iently

small perturbations of the load vetor, as well. We shall return to this matter

when investigating stability (MC(α)) with respet to the design variable α ∈ Uad.
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Chapter 2

Shape optimization: Tresa ase

In the previous hapter we have introdued the Signorini problem and sever-

al models of frition, formulated various (not always equivalent) mathematial

problems desribing this physial phenomena. For a �xed geometry, we were in-

terested in existene and uniqueness of solutions to these problems. In addition,

it was shown that the onsidered problems remain (uniquely) solvable even if the

geometry is hanged. In the present hapter we fous on the model with Tresa

frition where the oe�ient of frition depends on the unknown solution and

take our onsiderations to a further level. Namely, we will try to identify an op-

timal geometry among the set of admissible ones, i.e., �nd suh α∗
that the pair

(α∗,y∗), where y∗
is the solution of the orresponding state problem, minimizes

a given ost funtional J . After proving existene of at least one optimal shape,

we will fous on its identi�ation in pratie. As we shall see, a ruial ingredient

for an e�etive numerial solution of the shape optimization problem is the om-

putation of (sub)gradients with respet to the design variable. This is subjet of

the setion overing sensitivity analysis and represents our main results in this

hapter.

The struture of the hapter is as follows. We start with the de�nition of

the shape optimization problem for ontinuous and disretized state problems,

realling results from [43℄. Convergene analysis is also treated brie�y � for de-

tails on these issues we kindly refer to [43℄ and [17℄. For the rest of the hapter

we shift our attention entirely to the algebrai state problem (M(α)) and the

orresponding algebrai shape optimization problem. First, stability analysis is

arried out, i.e., it is shown that the state variable is a Lipshitz funtion of the

design. As an easy onsequene we obtain existene of a solution to the shape

optimization problem. For its numerial solution we employ the impliit program-

ming approah (ImP), whih requires omputing (sub)gradients of the impliitly

de�ned, nondi�erentiable ontrol-to-state mapping. This shall be failitated by

the generalized di�erential alulus of B. Mordukhovih and the almness prop-

erty of the state problem. Most of the results presented in this hapter have been

published in the paper [17℄.
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2.1 The ontinuous and disretized shape opti-

mization problem

As already mentioned above, we will be dealing with the Signorini problem with

Tresa frition and a solution-dependent oe�ient of frition that was introdued

in (P(α)) and reads as:

Find u := u(α) ∈ K(α) suh that:

aα(u, v − u) + jα(u, v)− jα(u,u) ≥ Lα(v − u) ∀v ∈ K(α).

}
(P(α))

Here the bilinear form aα and linear form Lα are de�ned by (1.10) and (1.11),

respetively, whereas the nonsmooth fritional term has the form

jα(w, v) :=

∫

ΓC(α)

F(|w1|)g|v1| ds ∀w, v ∈ H1(Ω(α)).

The solution of (P(α)) is sought in the losed onvex setK(α) = {v ∈ H1(Ω(α)) |
v = 0 on ΓD(α), −v2 ≤ dα on ΓC(α)}. On the other hand, the admissible set Uad

de�ned in (1.7) as a subset of Lipshitz funtions that are together with their

�rst derivatives equibounded, turns out to be too large. Instead, we will be able

to prove existene of an optimal parameter in the following subset of Uad:

Ũad :=
{
α ∈ C1,1([0, a])

∣∣∣ 0 ≤ α ≤ C0 in [0, a],

|α′| ≤ C1 in [0, a],

|α′′| ≤ C3 a.e. in (0, a),

C21 ≤

∫ a

0

α(x1) dx1 ≤ C22

}
,

(2.1)

i.e. Ũad ontains C
1,1
-funtions that have, in addition to (1.7), equibounded seond

derivatives (they exist a.e. in (0, a) by Rademaher's theorem).

Now, let J : D → R, where D := {(α,y) | α ∈ Ũad, y ∈ V (α)}, be a given

ost funtional and denote:

G := {(α,u) | α ∈ Ũad, u solves (P(α))},

i.e., G is the graph of the ontrol-to-state mapping Ũad ∋ α 7→ {u ∈ K(α) |
u solves (P(α))} (also alled the solution map). Note that the ontrol-to-state

map is multivalued, in general.

De�nition 10. A domain Ω(α∗) is alled optimal i� there exists a u∗ ∈ K(α∗)
suh that (α∗,u∗) ∈ G solves the following problem:

Find (α,u) ∈ G suh that:

J(α,u) ≤ J(α′,u′) ∀(α′,u′) ∈ G.

}
(P)

(P) is termed the shape optimization problem.
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In order to establish existene of an optimal domain Ω(α∗), α∗ ∈ Ũad, we

show that G is (sequentially) ompat with respet to a suitable topology τD on

D. Provided we sueed in �nding suh τD, (P) will have at least one solution for

all ost funtionals J that are (sequentially) lower semiontinuous with respet

to this topology.

Let V̂ := H1(Ω̂) and denote by Eα : V (α) → V̂ , α ∈ Ũad, the ontinuous,

linear extension operator from Ω(α) into Ω̂. Further, let E : D → Ũad × V̂ ,

(α,y) 7→ (α,Eαy). Then E is injetive. Indeed, (α,Eαy) = (β, Eβz) implies

α = β and, onsequently, from Eαy = Eαz one has y = z. Let us equip Ũad with

the C1
-topology and V̂ with the weak H1

-topology. On Σ := E(D) we onsider

the relative topology indued by the produt topology of Ũad × V̂ . Now it is easy

to see that

τD := {A ⊂ D | E(A) is open in Σ} (2.2)

de�nes a topology on D. Indeed, ∅ ∈ τD and sine E : D → Σ is bijetive,

it preserves set intersetions and unions, in partiular: E(
⋃
Ai) =

⋃
E(Ai) and

E(A ∩ B) = E(A) ∩ E(B) for any subsets Ai, A, B ⊂ D.

Lemma 3. The set G is sequentially ompat in (D, τD), where τD is de�ned by

(2.2), i.e., it holds that

∀{(αn,un)} ⊂ G ∃{(αnj
,unj

)} ⊂ {(αn,un)} ∃(α,u) ∈ G :

αnj
→ α in C1([0, a]), Eαnj

unj
⇀ Eαu (weakly) in H1(Ω̂), j → ∞.

The proof relies on the fat that the domains Ω(α), α ∈ Ũad have the uniform

one property [6℄; thus ‖Eα‖ may be estimated independently of α. At some

point in the proof of Lemma 3 (see [17, Lemma 1℄) one has to take limit in the

fritional term jαnj
as αnj

→ α, j → ∞, and here omes into play the additional

smoothness requirement in (2.1).

Finally, existene of an optimal domain is merely stated in the next theorem.

Theorem 12. Let the ost funtional J be sequentially lower semiontinuous with

respet to the topology τD (2.2), i.e.

αn → α in C1([0, a]), αn, α ∈ Ũad,

yn ⇀ y in H1(Ω̂), yn,y ∈ H1(Ω̂)

}
=⇒ lim inf

n→∞
J(αn,yn|Ω(αn)) ≥ J(α,y|Ω(α)).

Then (P) has at least one solution.

Next we shortly desribe the disretization of the shape optimization problem

and present results onerning existene of disrete optimal domains and their

onvergene to optimal ones in the sense of De�nition 10.

Disretization of every shape optimization problem is twofold: on the one

hand, the admissible parameter set has to be replaed by a �nite dimensional one

and, seondly, the state problem has to be disretized. We proeeed analogously

as in Setion 1.1.3, i.e., de�ne the disretized admissible set by means of pieewise

linear funtions and approximate (P(α)) using onforming pieewise linear �nite

elements on a regular triangulation of the orresponding polygonal domain.
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Let h > 0 be �xed. In ontrast to Setion 1.1.3 we now have P1(∆h) ∩ Ũad =

∅, beause Ũad ontains funtions of higher regularity. Therefore, Ũad has to be

approximated in a di�erent manner:

Ũh
ad :=

{
αh ∈ P1(∆h) ∩ C([a, b])

∣∣∣ 0 ≤ αh ≤ C0 in [0, a],

|α′
h| ≤ C1 a.e. in (0, a),

|αh(ai+1)− 2αh(ai) + αh(ai−1)| ≤ C3h
2 ∀i = 2, . . . , p− 1,

C21 ≤

∫ a

0

αh(x1) dx1 ≤ C22

}
.

(2.3)

Let Ũh
ad denote the set ontaining all pieewise linear funtions satisfying the on-

straints in (2.1), but instead of the seond derivatives we bound the seond �nite

di�erenes at the nodes of ∆h. Note that Ũh
ad ⊂ Uad (f. (1.7)), but Ũh

ad 6⊂ Ũad, i.e.,

we have an external approximation of Ũad. For a given αh ∈ Ũh
ad we again ontrut

a triangulation Th(αh) of Ω(αh) that satis�es (T1)�(T4) and reall the de�nition

of the sets V h(αh),Kh(αh) and the pieewise linear Lagrange interpolation op-

erator πh : C([0, a]) → P1(∆h) ∩ C([0, a]) from Setion 1.1.3 and Setion 1.2.1,

respetively. Thus the disretized �primal� problem reads as (ompare with Se-

tion 1.2.1):

Find uh := uh(αh) ∈ Kh(αh) suh that:

aαh
(uh, vh − uh) + jh,αh

(πh|ûh1|; vh)− jh,αh
(πh|ûh1|;uh)

≥ Lαh
(vh − uh) ∀vh ∈ Kh(αh).





(Ph(αh))

The disretized shape optimization problem is de�ned in a similar way as it was

done for (P). To this end, let Dh := {(αh,yh) | αh ∈ Ũh
ad, yh ∈ V h(αh)} and

denote the graph of the ontrol-to-state mapping assoiated with (Ph(αh)) by

Gh := {(αh,uh) | αh ∈ Ũh
ad, uh solves (Ph(αh))}. Modifying the approah for the

ontinuous setting appropriately, one �nds that Gh is sequentially ompat with

respet to the topology τDh
that is indued by the (C([0, a]) × weak-H1(Ω̂))-

topology on Ũh
ad × H1(Ω̂). For details see Proposition 3.1 in [43℄. The following

existene theorem is therefore straightforward.

Theorem 13. Let the ost funtional J be sequentially lower semiontinuous in

the topology τDh
, i.e.

α
(n)
h → αh in C([0, a]), α

(n)
h , αh ∈ Ũh

ad,

y(n) ⇀ y in H1(Ω̂), y(n),y ∈ H1(Ω̂)

}
=⇒ lim inf

n→∞
J(α

(n)
h ,y(n)|

Ω(α
(n)
h )

)

≥ J(αh,y|Ω(αh)).

Then the disretized shape optimization problem:

Find (αh,uh) ∈ Gh suh that:

J(αh,uh) ≤ J(α′
h,u

′
h) ∀(α′

h,u
′
h) ∈ Gh

}
(Ph)

has at least one solution.
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Up to now the disretization parameter h > 0 was �xed. In what follows we

investigate the relationship between solutions of (Ph) and (P) as h→ 0+.
First of all, let us note that although αh are Lipshitz only, by ontrolling their

seond �nite di�erenes we get: αh ∈ Ũh
ad ∀h and αh → α in C([0, a]), h → 0+,

then α ∈ Ũad (f. [17, Lemma 3℄). Moreover, the family {Ũh
ad | h > 0} is dense

in Ũad with respet to the C([0, a])-topology (f. [17, Lemma 2℄). Conerning the

ost funtional J , this time we shall assume that it is ontinuous in the following

sense:

αh → α, in C([a, b]), αh ∈ Ũh
ad, α ∈ Ũad,

Eahuh ⇀ Eαu, in H1(Ω̂),uh,u solves (Ph(αh)) and (P(α)), resp.

}
=⇒

=⇒ lim
h→0+

J(αh,uh) = J(α,u).

(2.4)

Further, denote:

Ḡ := {(α,u) ∈ G | ∀h→ 0+ ∃{hj} ⊂ {h} ∃{(αhj
,uhj

)}, (αhj
,uhj

) ∈ Ghj
:

αhj
→ α in C([a, b]) and Eαhj

uhj
⇀ Eαu in H1(Ω̂), hj → 0+}.

Then the following onvergene result holds.

Theorem 14. Let J satisfy (2.4) and {(α∗
h,u

∗
h)}, h → 0+, be a sequene of

disrete optimal pairs, i.e., (α∗
h,u

∗
h) ∈ Gh is a solution to (Ph) for every h > 0.

Then there exists a subsequene {hj} ⊂ {h} and funtions α∗ ∈ Ũad, u
∗ ∈ H1(Ω̂)

suh that:

α∗
hj

→ α∗
in C([0, a]), Eαhj

u∗
hj
⇀ u∗

in H1(Ω̂), hj → 0+,

and (α∗,u∗|Ω(α∗)) ∈ G satis�es:

J(α∗,u∗|Ω(α∗)) ≤ J(ᾱ, ū) ∀(ᾱ, ū) ∈ Ḡ.

In addition, if (P(α)) are uniquely solvable for all α ∈ Ũad, then Ḡ = G and

(α∗,u∗|Ω(α∗)) is optimal in the sense of De�nition 10.

The set Ḡ represents those optimal pairs (α,u) ∈ G that an be approxi-

mated by a subsequene {(αhj
,uhj

)} of disrete optimal pairs. Theorem 14 then

states that from a sequene of disrete optimal pairs one an always extrat a

subsequene onverging to a generally sub-optimal pair (α∗,u∗|Ω(α∗)) ∈ Ḡ, i.e. the
optimal one with respet to Ḡ. Optimality (in the sense of De�nitiion 10) is en-

sured whenever the ontinuous state problems (P(α)) are uniquely solvable. By

Theorem 8 we know that this holds true provided the oe�ient of frition F is

Lipshitz with a su�iently small modulus.

2.2 The algebrai shape optimization problem

From now on we shall be dealing with the numerial solution of one shape opti-

mization problem (Ph), therefore let h > 0 be �xed in the sequel.
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It was already mentioned in Chapter 1 that the presene of the nonlinear

fritional term jh,αh
in the state problem makes (Ph) unsuitable for diret nu-

merial realization. To overome this, using numerial integration, we transformed

(MhH(αh)) into a system of algebrai inequalities (M(α)) in Setion 1.2.2. Based

on (M(α)) we will now formulate the algebrai shape optimization problem as

a Mathematial Program with Equilibrium Constraints (MPEC) and employ the

Impliit Programming (ImP) tehnique for its solution.

First, let us notie that the disrete admissible set (2.3) may be identi�ed with

the set

Ũad :=
{
α ∈ Rp

+

∣∣∣ 0 ≤ αi ≤ C0 ∀i = 1, . . . , p,

|αi − αi+1| ≤ C1h ∀i = 1, . . . , p− 1,

|αi−1 − 2αi + αi+1| ≤ C3h
2 ∀i = 2, . . . , p− 1,

2

h
C21 ≤

p−1∑

i=1

(αi + αi+1) ≤
2

h
C22

}
.

(2.5)

Atually, in the forthoming analysis we will only need that ∅ 6= Ũad ⊂ Rp
+ is

ompat and onvex.

Next, we simplify our presentation by onsidering the redued state problem

(see (1.34) for the Signorini problem with given frition), i.e., we assume that the

ost funtional depends only on the ontat variables uτ , uν , λ. If this was not the

ase, one had to ompute sensitivities of uint from (1.29), as well. Nevertheless,

using appropriate sum rules, this an be done in a straightforward way and won't

be onsidered here.

For a given α ∈ Ũad, the redued algebrai Signorini problem with Tresa

frition and a solution-dependent oe�ient, formulated as a system of GEs,

reads as follows:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q̃τ (α,uτ ),

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α),

0 ∈ uν +α+NRp
+
(λ),





(2.6)

where the multifuntion Q̃τ : Ũad × Rp
+ ⇒ Rp

+ takes the form:

Q̃τ (α,w) =



ω1(α)F(|w1|)g1∂|w1|

.

.

.

ωp(α)F(|wp|)gp∂|wp|


 , α ∈ Ũad, w ∈ Rp

+. (2.7)

Indeed, it su�es to rewrite the auxiliary problem (Ā(α,ϕ)) into the form (1.34)

and insert the �xed-point of the mapping Ψα, de�ned in (1.36), whih leads

diretly to (2.6) and (2.7).

In order to write (2.6) in a ompat form, we introdue the following notation:

the state variable shall be denoted by

1 y := (uτ ,uν ,λ) ∈ R3p
and we de�ne the

single-valued mapping F : Ũad × R3p → R3p
by

F (α,y) := A(α)y − l(α), (α,y) ∈ Ũad × R3p, (2.8)

1

Atually, y ∈ Rp × Rp × Rp
; nevertheless, for brevity, we shall identify this set with R3p

.
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where

A(α) :=



Aττ (α) Aτν(α) 0

Aντ (α) Aνν(α) −E
0 E 0


 , l(α) :=



Lτ (α)
Lν(α)
−α


 , (2.9)

and, �nally, the losed-graph multifuntion Q̃ : Ũad × R3p
⇒ R3p

as

Q̃(α,y) :=



Q̃τ (α,uτ )

0

NRp
+
(λ)


 , α ∈ Ũad, y = (uτ ,uν ,λ) ∈ R3p. (2.10)

Let us reall that, due to the assumptions (T1)�(T4), F is ontinuously di�eren-

tiable. Thus (2.6) may be equivalently rewritten as

Find y ∈ R3p
suh that:

0 ∈ F (α,y) + Q̃(α,y).

}
(GE(α))

With (GE(α)) we assoiate the ontrol-to-state mapping (solution map) S̃ :

Ũad ⇒ R3p
, de�ned as

S̃(α) := {y ∈ R3p | 0 ∈ F (α,y) + Q̃(α,y)}, (2.11)

i.e., S̃ assigns to eah design variable α ∈ Ũad the set of solutions to the (redued)

Signorini problem with Tresa frition and a solution-dependent oe�ient of

frition (GE(α)).
Employing notation from the previous setions, we de�ne the algebrai shape

optimization problem as

minimize J(α,y),

subj. to y ∈ S̃(α),

α ∈ Ũad,



 (P)

where J : Ũad × R3p → R is a given ost funtional. (P) is in the form of an

MPEC, sine it represents an optimization problem where one of the onstraints

is an equilibrium problem. The main result of this setion follows next.

Theorem 15. Let the assumptions of Theorem 10 be satis�ed and J : Ũad×R3p →
R be lower semiontinuous. Then (P) has at least one solution.

Notie, that (P) may be written as

minimize J(α,y),

subj. to (α,y) ∈ G̃,

}

where G̃ := Gr S̃ is the graph of the ontrol-to-state mapping S̃. Hene, it is

su�ient to show that G̃ ⊂ R4p
is ompat, whih in turn immediately yields

the assertion of the theorem. In the next setion we show that under similar

assumptions to that of Theorem 10 (Lipshitz ontinuity of F) S̃ is single-valued

and Lipshitzian in the ompat domain Ũad, implying that its graph is ompat

in R4p
.
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2.3 Lipshitzian stability

The main result of this setion is to show that the ontrol-to-state mapping S̃
(f. (2.11)) is Lipshitz provided the frition oe�ient F is Lipshitz with a

su�iently small modulus. In other words, we prove that the (unique) solution

(u(α),λ(α)) ∈ Rn × Rp
+ of (M(α)) is Lipshitz as a funtion of the design

parameter α ∈ Ũad. In addition, we prove another stability result, namely, that�

for �xed α�the solution of (M(α)) is Lipshitzian with respet to the load vetor
L ∈ Rn

. This fat will be used later when onduting sensitivity analysis.

First, we provide the following auxiliary result, showing the Lipshitzian sta-

bility of the solution to the problem (Ā(α,ϕ)) with respet to ϕ.

Lemma 4. Let α ∈ Ũad be �xed and F : R+ → R+ Lipshitz in R+ with modulus

Clip > 0. Then there exists a onstant q > 0, independent of α, suh that

‖(u(1),λ(1))− (u(2),λ(2))‖n+p ≤ q‖ϕ(1) − ϕ(2)‖p ∀ϕ(1),ϕ(2) ∈ Rp
+,

where (u(i),λ(i)) ∈ Rn×Rp
+ denote the (unique) solution to (Ā(α,ϕ(i))), i = 1, 2.

Moreover, q = κClip for some positive onstant κ > 0.

Proof. In the proof of Theorem 10 we have already shown the �rst part of the

assertion (f. (1.38)), namely

‖u(1) − u(2)‖n ≤
ω̄

γ
‖g‖∞Clip‖ϕ

(1) −ϕ(2)‖p. (2.12)

Here we show that a similar estimate holds for the Lagrange multipliers. To this

end, test the �rst inequality of (Ā(α,ϕ(i))) in order by v := 0, 2u(i)
to see that

λ(i)
(i = 1, 2) satis�es

〈
A(α)u(i), v

〉
n
= 〈L(α), v〉n +

〈
λ(i), vν

〉
p

∀v ∈ Rn, vτ = 0.

Subtrating the two equations for i = 1, 2 yields

〈
λ(1) − λ(2), vν

〉
p
=

〈
A(α)

(
u(1) − u(2)

)
, v

〉
n

∀v ∈ Rn, vτ = 0.

Dividing it by ‖v‖n and taking supremum over the set S := {v ∈ Rn | vν 6=
0, the remaining omponents of v are 0} we arrive at

‖λ(1) − λ(2)‖p = sup
v∈S

〈
λ(1) − λ(2), vν

〉
p

‖v‖n
≤ ‖A‖‖u(1) − u(2)‖p, (2.13)

where ‖A‖ := sup
α∈Ũad

‖A(α)‖. Combining (2.13) with (2.12) we �nd that the

assertion of the lemma holds with

q :=
(‖A‖+ 1)ω̄

γ
‖g‖∞Clip. (2.14)
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2.3.1 Stability with respet to the design variable

Now, we let ϕ be �xed and start with investigating Lipshitzian stability of the

solution to (Ā(α,ϕ)) with respet to α.

Lemma 5. Let ϕ ∈ Rp
+ be �xed. Then there exists a onstant c > 0, whih does

not depend on ϕ and satis�es

‖(u(1),λ(1))− (u(2),λ(2))‖n+p ≤ c‖α(1) −α(2)‖p ∀α(1),α(2) ∈ Ũad,

where (u(i),λ(i)) ∈ Rn × Rp
+ stands for the solution of (Ā(α(i),ϕ)), i = 1, 2.

Proof. First, we will estimate the di�erene of the primal variables ‖u(1)−u(2)‖n
using the primal formulation of (Ā(α,ϕ)). Reall from the proof of Theorem 10

(f. (1.37) and (A(α,ϕ(i)))) that

u(i) ∈ K(α(i)) = {v ∈ Rn | −vν ≤ α(i)}, i = 1, 2,

and they solve the respetive variational inequalities:

〈
A(α(i))u(i), v − u(i)

〉
n
+
〈
ω(α(i)) • F(ϕ) • g, |vτ | − |u(i)

τ |
〉
p

≥
〈
L(α), v − u(i)

〉
n

∀v ∈ K(α(i))

}
(A(α(i),ϕ))

for i = 1, 2. Observe that the sets K(α(i)) may be written in the following way:

K(α(i)) = a(i) +K(0),

where the vetors a(i) ∈ Rn
are suh that a

(i)
ν = −α(i)

and all its other ompo-

nents are zero. Thus for eah i ∈ {1, 2}

∃w(i) ∈ K(0) : u(i) = a(i) +w(i).

Inserting now v := a(i) +w(j)
into (A(α(i),ϕ)), i, j ∈ {1, 2}, i 6= j, and adding

the two inequalities yields:

〈
A(α(1))(w(1) −w(2)),w(1) −w(2)

〉
n

≤
〈
A(α(1))(a(1) − a(2)),w(1) −w(2)

〉
n
+
〈(
A(α(1))− A(α(1))

)
u(2),w(1) −w(2)

〉
n

+
〈(
ω(α(1))− ω(α(2))

)
• F(ϕ) • g, |w(2)

τ | − |w(1)
τ |

〉
p

+
〈
L(α(1))− L(α(2)),w(1) −w(2)

〉
n
.

Making use of (1.23), Lipshitz ontinuity of A, L, ω and boundedness of F, we

arrive at the following estimate:

γ‖w(1) −w(2)‖2n ≤ c‖α(1) −α(2)‖p‖w
(1) −w(2)‖n,

where the onstant c > 0 does not depend on ϕ and α(i)
, i = 1, 2. From this and

the de�nition of a(i)
then one obtains

‖u(1) − u(2)‖n ≤ ‖a(1) − a(2)‖n + ‖w(1) −w(2)‖n

≤ (1 + c)‖α(1) −α(2)‖p. (2.15)
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To estimate the di�erene of the Lagrange multipliers ‖λ(1)−λ(2)‖p we proeed
as in the proof of the previous lemma. In partiular, from the �rst inequality of

(Ā(α(i),ϕ)) we have
〈
A(α(i))u(i), v

〉
n
=

〈
L(α(i)), v

〉
n
+
〈
λ(i), vν

〉
p

∀v ∈ Rn, vτ = 0, i = 1, 2.

Subtrating the two equations for i = 1, 2 yields

〈
λ(1) − λ(2), vν

〉
p
=
〈(
A(α(1))− A(α(2))

)
u(2), v

〉
n
+
〈
A(α(2))

(
u(1) − u(2)

)
, v

〉
n

+
〈
L(α(1))−L(α(2)), v

〉
n

∀v ∈ Rn, vτ = 0.

Proeeding exatly as in the proof of the previous lemma, i.e., divide by ‖v‖n and
take supremum over S := {v ∈ Rn | vν 6= 0, the remaining omponents of v are 0},
we arrive at

‖λ(1) − λ(2)‖p = sup
v∈S

〈
λ(1) − λ(2), vν

〉
p

‖v‖n
≤ c‖α(1) −α(2)‖p. (2.16)

Here we made use of the Lipshitz ontinuity of A and L, Lemma 2(i), as well as

(2.15). Finally, the proof is �nished by adding (2.15) and (2.16).

The main result now reads as follows.

Theorem 16. Let F be Lipshitz with a su�iently small modulus Clip > 0 so

that Lemma 4 holds with q < 1. Then S̃, de�ned in (2.11), is single-valued and

Lipshitz in Ũad.

Proof. Comparing the onstants q and K̄ from (2.14) and (1.39), respetively, one

easily �nds that q < 1 implies that the assumption of Theorem 10 is satis�ed.

Thus (M(α)) are uniquely solvable for eah α ∈ Ũad and hene S̃ is single-valued.

Now, let α, ᾱ ∈ Ũad be given and denote the solutions to (M(α)) and (M(ᾱ))
by (u,λ) ∈ Rn×Rp

+ and (ū, λ̄) ∈ Rn×Rp
+, respetively. Sine the orresponding

mappings Ψα and Ψᾱ (f. (1.36)) are ontrative, these solutions may be revealed

by the method of suessive approximations in the following way.

Choose an arbitrary ϕ(0) ∈ Rp
+ and ompute the solutions to (Ā(α,ϕ(0)))

and (Ā(ᾱ,ϕ(0)))�let us denote them by (u(0),λ(0)) ∈ Rn×Rp
+ and (ū(0), λ̄

(0)
) ∈

Rn×Rp
+. Then set ϕ(1) := Ψα(ϕ

(0)) and ϕ̄(1) := Ψᾱ(ϕ
(0)). By Lemma 5 we readily

know that

‖(u(0),λ(0))− (ū(0), λ̄
(0)
)‖n+p ≤ c‖α− ᾱ‖p, (2.17)

and hene also

‖ϕ(1) − ϕ̄(1)‖p =
∥∥|u(0)

τ | − |ū(0)
τ |

∥∥
n
≤ ‖u(0) − ū(0)‖n ≤ c‖α− ᾱ‖p. (2.18)

Now, solve the problems (Ā(α,ϕ(1))) and (Ā(ᾱ, ϕ̄(1))) to obtain (u(1),λ(1)) ∈

Rn ×Rp
+ and (ū(1), λ̄

(1)
) ∈ Rn ×Rp

+. Further, denote the solution to (Ā(α, ϕ̄(1)))

by (U (1),Λ(1)) ∈ Rn × Rp
+. Thus, we may estimate:

‖(u(1),λ(1))− (ū(1), λ̄
(1)
)‖n+p ≤ ‖(u(1),λ(1))− (U (1),Λ(1))‖n+p

+ ‖(U (1),Λ(1))− (ū(1), λ̄
(1)
)‖n+p

≤ q‖ϕ(1) − ϕ̄(1)‖p + c‖α− ᾱ‖p

≤ c(1 + q)‖α− ᾱ‖p,
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as follows from Lemmas 4, 5 and (2.18). Continuing this iterative proess, in the

kth step one has (u(k),λ(k)) and (ū(k), λ̄
(k)
), the solutions to (Ā(α,ϕ(k))) and

(Ā(ᾱ, ϕ̄(k))), respetively, along with the estimate:

‖(u(k),λ(k))− (ū, λ̄
(k)
)‖n+p ≤ c(1 + q + q2 + · · ·+ qk)‖α− ᾱ‖p

≤
c

1− q
‖α− ᾱ‖p, (2.19)

sine q < 1 by assumption. Then, one sets ϕ(k+1) := Ψα(ϕ
(k)), ϕ̄(k+1) := Ψᾱ(ϕ̄

(k)),
and starts the iteration loop with k := k + 1.

The sequenes {ϕ(k)} and {ϕ̄(k)} generated by this proess onverge to the

unique �xed points of the mappingsΨα and Ψᾱ, resp.; the sequenes {(u(k),λ(k))},

{(ū(k), λ̄
(k)
)} onverge to the (unique) solutions of (M(α)) and (M(ᾱ)), resp.

Thus it is su�ient to pass to the limit as k → ∞ in (2.19) to obtain the assertion

of the theorem.

2.3.2 Stability with respet to the load vetor

In addition to Theorem 16 we shall need another stability result, namely the

one with respet to the load vetor L. Sine α ∈ Ũad will be �xed and L ∈ Rn

the parameter, we adjust the notation to re�et this fat and write (Ā(L,ϕ)),
(M(L)), ΨL instead of (Ā(α,ϕ)), (M(α)), Ψα, et.

Lemma 6. Let α ∈ Ũad be �xed and the assumptions of Theorem 16 hold true.

Then there exists a onstant c > 0, not depending on α ∈ Ũad, suh that

‖(u,λ)− (ū, λ̄)‖n+p ≤ c‖L− L̄‖n ∀L, L̄ ∈ Rn,

where (u,λ), (ū, λ̄) ∈ Rn×Rp
+ denote the (unique) solutions of (M(L)), (M(L̄)),

respetively.

Proof. We merely sketh the proof, sine it employs the same �xed-point teh-

nique as the proof of Theorem 16.

Letϕ(0) ∈ Rp
+ be arbitrary and denote the solutions to (Ā(L,ϕ(0))), (Ā(L̄,ϕ(0)))

by (u(0),λ(0)), (ū(0), λ̄
(0)
) ∈ Rn×Rp

+, respetively. Then by Lemma 2(ii) we know

that there exists a c > 0, independent of α, L, L̄ and ϕ(0)
, suh that

‖(u(0),λ(0))− (ū(0), λ̄
(0)
)‖n+p ≤ c‖L− L̄‖n. (2.20)

Next, we de�ne ϕ(1) := ΨL(ϕ
(0)) and ϕ̄(1) := ΨL̄(ϕ

(0)). The respetive solutions

to (Ā(L,ϕ(1))) and (Ā(L̄, ϕ̄(1))) shall be denoted by (u(1),λ(1)), (ū(1), λ̄
(1)
) ∈

Rn × Rp
+. In addition, we solve the problem (Ā(L, ϕ̄(1))) and signify its solution

by (U (1),Λ(1)) ∈ Rn × Rp
+. Then, due to Lemma 4 and (2.20), one has:

‖(u(1),λ(1))− (U (1),Λ(1))‖n+p ≤ q‖ϕ(1) − ϕ̄(1)‖p

≤ q‖u(0) − ū(0)‖n

≤ qc‖L− L̄‖n. (2.21)

On the other hand, from Lemma 2(ii) it immediately follows that

‖(U (1),Λ(1))− (ū(1), λ̄
(1)
)‖n+p ≤ c‖L− L̄‖n. (2.22)
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Adding (2.21), (2.22), and using the triangle inequality, we get

‖(u(1),λ(1))− (ū(1), λ̄
(1)
)‖n+p ≤ c(1 + q)‖L− L̄‖n. (2.23)

The rest of the proof may be onduted in the same manner as was done in

Theorem 16. Indeed, one de�nes the sequenes {ϕ(k)}, {ϕ̄(k)} ⊂ Rp
+ by ϕ(k) :=

ΨL(ϕ
(k−1)) and ϕ̄(k) := ΨL̄(ϕ̄

(k−1)), k = 2, 3, . . . , resp.; the elements of the

sequenes {(u(k),λ(k))}, {(ū(k), λ̄
(k)
)}, {(U (k),Λ(k))} ⊂ Rn × Rp

+ are then de-

�ned, in this order, as the unique solutions of problems (Ā(L,ϕ(k))), (Ā(L̄, ϕ̄(k))),
(Ā(L, ϕ̄(k))) ∀k ∈ N, k ≥ 2. By indution one may prove the estimate (f. (2.19)

and (2.23))

‖(u(k),λ(k))− (ū(k), λ̄
(k)
)‖n+p ≤

c

1− q
‖L− L̄‖n, (2.24)

sine by assumption q < 1 holds. The desired result is then obtained by taking

limit in (2.24) as k → ∞; for details we kindly refer to the proof of the previous

theorem.

2.4 Impliit Programming

Having Theorem 16 at hand, we return to the shape optimization problem (P)
and present a method for its solution. To this end, let us assume, that the as-

sumptions of Theorem 16 are sati�ed, i.e., F is Lipshitz with a su�iently small

modulus. In addition, let the ost funtional J be ontinuously di�erentiable. In

fat, this smoothness assumption is super�uous and is imposed only for the sake

of simpliity. As it will beome apparent, a loally Lipshitz J would work�in

theory�just as �ne.

Provided the assumptions above are satis�ed and S̃ is single-valued, we may

apply the Impliit Programming (ImP) approah to the solution of (P). This
onsists of reformulating (P) as the following nonlinear program (NLP):

minimize J (α) := J(α, S̃(α)),

subj. to α ∈ Ũad.

}
(P̃)

Eliminating the equilibrium onstraint, only the geometri onstraint α ∈ Ũad re-

mains, in whih the ompat, onvex feasible set is given by simple box-onstraints

and linear inequality (and, if C21 = C22, also equality) onstraints (f. (2.5)).

2.4.1 Seleting a minimization algorithm

There are several aspets, that have to be taken into aount when attempting

to solve (P̃):

• Although J was assumed ontinuously di�erentiable (or even smoother), due

to the Lipshitz ontinuity of S̃, the redued ost funtional J : Ũad → R
is only Lipshitz, in general.

• S̃ is not onvex, in general; therefore, the same applies to J as well.
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• Eah funtion evaluation of J is ostly, sine�by means of S̃�it involves

solving a fritional ontat problem, where the oe�ient of frition depends

on the solution.

• Typially, in pratial omputations, the optimized boundary segment is

not parametrized by (nonsmooth) pieewise linear funtions, but smooth

urves, like pieewise quadrati or ubi Bézier or spline funtions. Besides

being smooth, they an be ontrolled by relatively few points to ahieve

satisfatory design. Therefore, in most ases, one may assume that the di-

mension of Ũad is at most �moderately� large (in the sense of [23℄).

From the �rst two points it follows that (P̃) has to be solved by a method of non-

smooth and nononvex optimization, whereas the third point basially rules out

derivative-free methods�they typially require orders of magnitude more fun-

tion evaluations, than algorithms based on �rst (and seond) order (sub)gradients.

As no additional strutural property, that ould be exploited by the mini-

mization algorithm, is known a priori, we opt for the Bundle Trust [52, 55℄ and

Proximal Bundle [39, 40℄ methods. In general, bundle methods have turned out

to be the method of hoie for the solution of small to medium sale, nons-

mooth, nononvex optimization problems, without extra knowledge about their

struture�see the omparison in [23℄ and also [38℄.

2.4.2 Computing a subgradient

Bundle methods are iterative methods for minimizing the loally Lipshitz obje-

tive funtion J , that require at eah step ᾱ ∈ Ũad:

(i) the funtion value J (ᾱ), and

(ii) one arbitrary subgradient ξ ∈ ∂̄J (ᾱ) from the Clarke subdi�erential [7℄.

As readily seen, in order to provide J (ᾱ), one has to evaluate ȳ := S̃(ᾱ), i.e.,
it is neessary to solve a Signorini problem with Tresa frition and a solution-

dependent oe�ient of frition. Assume, we are able to solve (GE(ᾱ)) and let

us fous on task (ii). By the hain rule [7, Theorem 2.6.6℄ we have:

∂̄J (ᾱ) = ∇αJ(ᾱ, ȳ) +
(
∂̄S̃(ᾱ)

)T
∇yJ(ᾱ, ȳ). (2.25)

This means that determining an element of (2.25) involves omputing a gener-

alized Jaobian of the nonsmooth, impliitly de�ned ontrol-to-state mapping S̃.
This an be onduted essentially in two di�erent ways:

(j) If S̃ happens to be pieewise C1
(PC1

), it is onvenient to obtain the desired

subgradient ompletely within the generalized di�erential alulus of Clarke

(speialized impliit funtion theorems are provided for example in [48℄).

This way has been applied, e.g., in [3℄.

(jj) If the PC1
nature of the ontrol-to-state mapping annot be guaranteed, it

seems reasonable to perform sensitivity analysis via the generalized di�er-

ential alulus of Mordukhovih [36℄ whih is riher onerning speialized

alulus rules. The paper [4℄ may serve as an example for the viability of

this approah.
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Sine in the onsidered model we have to do with rather ompliated nonsmooth

and set-valued mappings, we have hosen the seond approah. In the next setion

it is shown how to ompute an approximation of a Clarke subgradient from the

set (2.25) by means of the generalized di�erential alulus of B. Mordukhovih.

2.5 Sensitivity analysis

Let ᾱ ∈ Ũad be arbitrary and denote ȳ := S̃(ᾱ). We start with the following fat,

providing a link between the di�erential operators of interest from the Clarke and

Mordukhovih alulus.

Lemma 7. For any y∗ ∈ R3p
it holds that D∗S̃(ᾱ)(y∗) 6= ∅ and

(
∂̄S̃(ᾱ)

)T
y∗ = convD∗S̃(ᾱ)(y∗). (2.26)

Proof. Follows from the Lipshitz ontinuity of S̃ and formula (2.23) in [35℄.

Comparing (2.26) and (2.25) we see that for our purposes it is su�ient to

ompute one p∗ ∈ D∗S̃(ᾱ)(∇yJ(ᾱ, ȳ)); then, setting

ξ := ∇αJ(ᾱ, ȳ) + p∗
(2.27)

we are done. However, this is not straightforward, sine S̃ is de�ned via an impliit

relation. In order to express its oderivative D∗S̃(ᾱ) in terms of F and Q̃, we
start with the following observation:

Gr S̃ = {(α,y) ∈ Ũad × R3p | −F (α,y) ∈ Q̃(α,y)}

= {(α,y) ∈ Ũad × R3p | Φ(α,y) := (α,y,−F (α,y)) ∈ Gr Q̃} (2.28)

= Φ−1
(
Gr Q̃

)
. (2.29)

To be able to ompute normal ones to the set (2.29), one has to verify a almness

ondition, as presented below.

Lemma 8. Let ᾱ ∈ Ũad be �xed, ȳ := S̃(ᾱ) and the mapping Φ : Ũad × R3p →

Ũad×R3p×R3p
be de�ned by (2.28). Then the multifuntionM : Rp×R3p×R3p

⇒

Ũad × R3p
given by

M : p 7→ {(α,y) | p+ Φ(α,y) ∈ Gr Q̃}

is alm at (0, 0, 0, ᾱ, ȳ).

Proof. If M was not alm at (0, 0, 0, ᾱ, ȳ), one ould easily disprove almness of

the following multifuntion M̃ : R3p
⇒ Ũad × R3p

at (0, ᾱ, ȳ):

M̃ : p̃ 7→ {(α,y) | (0, 0, p̃) + Φ(α,y) ∈ Gr Q̃}.

Indeed, suppose that there exist sequenes p(i) = (p
(i)
1 ,p

(i)
2 ,p

(i)
3 ) → (0, 0, 0) ∈

Rp × R3p × R3p
and (α(i),y(i)) → (ᾱ, ȳ), (α(i),y(i)) ∈M(p(i)) suh that

dist((α(i),y(i)),M(0, 0, 0)) ≥ i‖p(i)‖p+3p+3p ∀i ∈ N. (2.30)
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Let us put (β(i), z(i)) := (α(i) + p
(i)
1 ,y

(i) + p
(i)
2 ) so that the relation (α(i),y(i)) ∈

M(p(i)) an be rewritten as

p̃(i) ∈ F (β(i), z(i)) + Q̃(β(i), z(i)), (2.31)

with

p̃(i) := p
(i)
3 − F (α(i),y(i))− F (β(i), z(i)). (2.32)

Sine F is loally Lipshitz, one has from (2.31), (2.32):

‖p̃(i)‖3p ≤ c‖p(i)‖p+3p+3p and p̃(i) → 0 ∈ R3p,

(β(i), z(i)) ∈ M̃(p̃(i)), and (β(i), z(i)) → (ᾱ, ȳ).

Thus we an estimate:

dist((β(i), z(i)), M̃(0)) = dist((β(i), z(i)),M(0, 0, 0))

≥ dist((α(i),y(i)),M(0, 0, 0))− ‖p(i)‖p+3p+3p ≥ (i− 1)‖p(i)‖p+3p+3p

≥
i− 1

c
‖p̃(i)‖3p

and the laim has been veri�ed.

Therefore it is su�ient to show that M̃ is alm at (0, ᾱ, ȳ). To this end, let

p̃ ∈ R3p
be given. Then

(α,y) ∈ M̃(p̃) ⇔ p̃ ∈ F (α,y) + Q̃(α,y),

i.e., written omponentwise for y = (uτ ,uν ,λ) and p̃ = (p̃1, p̃2, p̃3) ∈ Rp ×Rp ×
Rp

:

p̃1 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q̃τ (α,uτ )

p̃2 = Aντ (α)uτ + Aνν(α)uν − λ−Lν(α)

p̃3 ∈ uν +α+NRp
+
(λ).





(2.33)

Introduing the new variable ỹ := (uτ ,uν− p̃3,λ), we see that (α, ỹ) solves (2.6)
with the load vetor

l̃ :=



Lτ (α) + p̃1 − Aτν(α)p̃3

Lν(α) + p̃2 − Aνν(α)p̃3

−α


 .

From Theorem 10 it follows that (α, ỹ) is the only solution to the perturbed GE

(2.33). Denoting (α,y∗) ∈ Gr S̃ = M̃(0) the solution to (2.6) with the original

load vetor l = [Lτ (α),Lν(α),−α]T , we obtain from the triangle inequality and

Lemma 6:

‖(α,y)− (α,y∗)‖p+3p ≤ ‖y − ỹ‖3p + ‖ỹ − y∗‖3p

≤ ‖p̃3‖p + c‖l̃− l‖3p

≤ c‖p̃‖3p,

where c > 0 does not depend on α. From this the required almness property

follows easily.
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2.5.1 The adjoint GE

The following result (see [27, Theorem 2℄) failitates the omputation of the

adjoint variable p∗ ∈ D∗S̃(ᾱ)(y∗), needed in (2.27).

Theorem 17. Consider a referene pair (ᾱ, ȳ) ∈ Gr S̃ and let y∗ ∈ R3p
be

arbitrary.

(i) Let (p∗, v∗) ∈ Rp × R3p
be a solution to the regular adjoint GE:

[
p∗

−y∗

]
∈ ∇F (ᾱ, ȳ)Tv∗ + D̂∗Q̃(Φ(ᾱ, ȳ))(v∗). (RAGE)

Then p∗ ∈ D∗S̃(ᾱ)(y∗).

(ii) For every p∗ ∈ D∗S̃(ᾱ)(y∗) there exists a vetor v∗ ∈ R3p
suh that (p∗, v∗)

is a solution of the (limiting) adjoint GE:

[
p∗

−y∗

]
∈ ∇F (ᾱ, ȳ)Tv∗ +D∗Q̃(Φ(ᾱ, ȳ))(v∗). (AGE)

Proof. The �rst assertion follows immediately from [47, Theorem 10.6℄. The se-

ond one is implied by [21, Theorem 4.1℄, whose assumptions are ful�lled by virtue

of Lemma 8.

Note that due to Lipshitz ontinuity of S̃, (AGE) attains at least one so-

lution p∗
(f. Lemma 7) and whenever Q̃ is normally regular at Φ(ᾱ, ȳ), i.e.,

N̂Gr Q̃(Φ(ᾱ, ȳ)) = NGr Q̃(Φ(ᾱ, ȳ)), (RAGE) and (AGE) oinide. In this ase

D∗S̃(ᾱ)(y∗) = {p∗ ∈ Rp | ∃v∗ ∈ R3p
suh that (p∗, v∗) solves (AGE)}.

On the other hand, in the nonregular ase (RAGE) may be di�ult to solve

or not solvable at all. Therefore the omputation of the desired subgradient ξ ∈
∂J (ᾱ) is usually done via the (AGE), while aepting the fat that at nonregular
points the omputed vetor may lie outside of ∂J (ᾱ). In suh ases the employed

optimization algorithm might ollapse and ξ has to be replaed by a orret

subgradient.

In light of the previous paragraph we will fous on the solution of the (AGE).

In partiular, we shall express the most di�ult part of (AGE), the oderivative

D∗Q̃(Φ(ᾱ, ȳ)) in terms of the problem data.

Computation of D∗Q̃

First of all, note that the omponents of Q̃ are deoupled�the �rst omponent Q̃τ

depends on α and uτ , whereas the third omponent omputes the normal one

to Rp
+ only at λ. Atually, this fat is a onsequene of the assumed model of

given frition, sine Q̃τ re�ets the frition ondition and the third omponent

orresponds to the nonpenetration ondition. This way, the oderivative of Q̃ may

be omputed omponentwise [47, Example 6.10℄:

∀q∗ ∈ R3p : D∗Q̃(ᾱ, ȳ, q̄)(q∗) =



D∗Q̃τ (ᾱ, ȳ1, q̄1)(q

∗
1)

0
D∗NRp

+
(ȳ3, q̄3)(q

∗
3)


 , (2.34)
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at any referene point (ᾱ, ȳ, q̄) ∈ Gr Q̃, where ȳ = (ȳ1, ȳ2, ȳ3), q̄ = (q̄1, q̄2, q̄3),
q∗ = (q∗

1, q
∗
2, q

∗
3) ∈ Rp × Rp × Rp

.

The formula for the oderivative of the normal one mapping to Rp
+ is well-

known in the literature and may be very easily derived from the de�nition of the

oderivative (see also Figure 2.1).

Figure 2.1: Graph of NR+ and the normal one to this set at (0, 0).

Proposition 2. Let (ā, b̄) ∈ GrNRp
+
and b∗ ∈ Rp

arbitrary. Then

a∗ ∈ D∗NRp
+
(ā, b̄)(b∗) ⇔ a∗i ∈ D∗NR+(āi, b̄i)(b

∗
i ) ∀i = 1, . . . , p,

where

(i) if āi > 0, b̄i = 0, then

D∗NR+(āi, b̄i)(b
∗
i ) = {0};

(ii) if āi = 0, b̄i < 0, then

D∗NR+(āi, b̄i)(b
∗
i ) =

{
R if b∗i = 0,

∅ otherwise;

(iii) if āi = 0, b̄i = 0, then

D∗NR+(āi, b̄i)(b
∗
i ) =





{0} if b∗i > 0,

R− if b∗i < 0,

R if b∗i = 0.

Proof. See [41, Lemma 2.2℄.

Remark 7. Observe, that D∗NRp
+
(a, b) = D∗(∂δRp

+
)(a, b), whih is the de�nition

of the seond-order subdi�erential ∂2δRp
+
(a, b). This means, that the oderivative

D∗Q̃ in (AGE) provides seond-order (sub)gradient information.
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In order to deal with the �rst omponent, let us write the multifuntion Q̃τ :
Rp×Rp

⇒ Rp
as a omposition of an outer multifuntion Zτ and an inner single-

valued, smooth mapping Ψ:

Q̃τ (α,u) =




ω1(α)F(|u1|)∂|u1|
ω2(α)F(|u2|)∂|u2|

.

.

.

ωp(α)F(|up|)∂|up|


 = (Zτ ◦Ψ)(α,u), (2.35)

where

Ψ = (Ψ1, . . . ,Ψp) : R
p × Rp → ((0,∞)× R)p, Ψj(α,u) :=

(
ωj(α), uj

)
,

and

Zτ : ((0,∞)× R)p ⇒ Rp, y 7→
(
Z(y1), . . . , Z(yp)

)
,

with

Z : (0,∞)× R ⇒ R, (x1, x2) 7→ x1F(|x2|)∂|x2|.

Now the hain rule from [47, Theorem 10.40℄ allows us to ompute the oderivative

of the omposite multifuntion (2.35) as follows:

Proposition 3. Let (ᾱ, ū, q̄) ∈ Gr Q̃τ be suh that the following ondition holds:

(
ker∇Ψ(ᾱ, ū)T

)
∩D∗Zτ (Ψ(ᾱ, ū), q̄)(0) = {0}. (2.36)

Then for every q∗ = (q∗1, . . . , q
∗
p) ∈ Rp

one has

D∗Q̃τ (ᾱ, ū, q̄)(q
∗) ⊂ ∇Ψ(ᾱ, ū)TD∗Zτ (Ψ(ᾱ, ū), q̄)(q∗)

= ∇Ψ(ᾱ, ū)T




D∗Z(Ψ1(ᾱ, ū), q1)(q
∗
1)

D∗Z(Ψ2(ᾱ, ū), q2)(q
∗
2)

.

.

.

D∗Z(Ψp(ᾱ, ū), qp)(q
∗
p)


 .

(2.37)

Observe that the assertion of Proposition 3 requires the validity of the quali�-

ation ondition (2.36). We are going to show that (2.36) is satis�ed at all points

(ᾱ, ū, q̄) ∈ Gr Q̃τ and hene the assertion of Proposition 3 holds automatially.

Remark 8. The right inlusion above beomes equality at those points (ᾱ, ū, q̄),
for whih the multifuntion Zτ is normally regular at (Ψ(ᾱ, ū), q̄) or ∇Ψ(ᾱ, ū)
is surjetive. In other ases, however, the formula on the right-hand side may

provide a vetor outside of D∗Q̃τ .

Let us look more losely at the seond option, i.e., what does it mean for ∇Ψ
to be surjetive at (ᾱ, ū). Realling the de�nition of Ψ, its Jaobian ∇Ψ ∈ R2p×2p

an be written in the blok-matrix form

∇Ψ =



J11 J12
.

.

.

.

.

.

Jp1 Jp2


 , (2.38)

where for eah i = 1, . . . , p one has

Ji1 =

[
∇ωi

0

]
∈ R2×p, Ji2 =

[
0

(e(i))T

]
∈ R2×p. (2.39)
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Here 0 ∈ R1×p
and e(i) ∈ Rp

denotes the ith Eulidean basis vetor. Thus, we

immediately see that the square matrix ∇Ψ is surjetive i� ∇ωi, i = 1, . . . , p,
are linearly independent. Unfortunately, this annot be guaranteed; moreover,

onsidering our partiular de�nition of ωi (1.26), ∇ωi = 0 when αi−1 = αi = αi+1.

In other words, whenever the ontat boundary has a �at part onsisting of at

least two line segments, ∇Ψ ontains a zero row and, onsequently, annot be

surjetive.

Computation of D∗Z

In the sequel we will ompute the oderivative of Z at a given point (x̄1, x̄2, z̄) ∈
GrZ. The obtained results will then be used to validate ondition (2.36), while

at the same time they play a entral role in the assertion of Proposition 3 itself.

Let us distinguish several situations aording to the position of the referene

point (x̄1, x̄2, z̄) on the graph of Z�see Figure 2.2, where red and green olour mark

those points at whih sliding ours; the vertial, blue region signi�es stiking.

Points on the ommon boundary of these sets are said to be in the so-alled weak

stiking mode.

Figure 2.2: Graph of the multifuntion Z(x1, x2) = x1F(|x2|)∂|x2|.

Proposition 4 (sliding). Let z∗ ∈ R be arbitrary and (x̄1, x̄2, z̄) ∈ GrZ suh that

x̄2 > 0. Then:

D∗Z(x̄1, x̄2, z̄)(z
∗) = {z∗F(x̄2)} ×D∗

F(x̄2)(x̄1z
∗). (2.40)

Proof. Due to the assumption on x̄2 there exists a neighbourhood O of (x̄1, x̄2)
so that:

Z(x1, x2) = x1F(x2) ∀(x1, x2) ∈ O.

Note that Z is single-valued and (loally) Lipshitz ontinuous in O. The ompu-

tation of the regular normal one to GrZ at points of O is straightforward and

yields:

N̂GrZ(x1, x2, z) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x2),

(x∗2, x1z
∗) ∈ N̂Gr F(x2,F(x2))}. (2.41)
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Thus

NGrZ(x̄1, x̄2, z̄) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x̄2), (x
∗
2, x̄1z

∗) ∈ NGr F(x̄2,F(x̄2))},

and the assertion follows immediately from the de�nition of the oderivative.

Proposition 5 (sliding). Let z∗ ∈ R be arbitrary and (x̄1, x̄2, z̄) ∈ GrZ suh that

x̄2 < 0. Then:

D∗Z(x̄1, x̄2, z̄)(z
∗) = {−z∗F(−x̄2)} ×

(
−D∗F(−x̄2)(−x̄1z

∗)
)
. (2.42)

Proof. In this ase there exists a neighbourhood Õ of (x̄1, x̄2) suh that:

Z(x1, x2) = −x1F(−x2) ∀(x1, x2) ∈ Õ.

The rest is done in a similar fashion.

The previous two ases have the mehanial interpretation of sliding, i.e.,

represent those ontat points, where the displaement in the tangential diretion

is nonzero.

Proposition 6 (stiking). Let z∗ ∈ R be arbitrary and (x̄1, 0, z̄) ∈ GrZ suh that

|z̄| < x̄1F(0). Then:

D∗Z(x̄1, 0, z̄)(z
∗) =

{
{0} × R if z∗ = 0,

∅ otherwise.

(2.43)

Proof. As readily seen, there exists a neighourhood U of (x̄1, 0, z̄) suh that:

U ∩GrZ = U ∩
(
R× {0} × R

)
,

whene we immediately get:

N̂GrZ(x1, 0, z) = {0} × R× {0} ∀(x1, 0, z) ∈ U ∩GrZ. (2.44)

The assertion follows easily from the de�nition of the oderivative.

The setting of the previous proposition orresponds to ontat points, where

(strong) stiking is present, i.e., the tangential omponent of the stress vetor

is below the threshold value to trigger motion in the tangential diretion. If this

ritial value is attained at a ontat point, but there is still no tangential motion,

we speak of weak stiking, whih is investigated below.

In order to give a reasonable formula for the oderivative D∗Z at these points,

we will, in addition, assume that the oe�ient of frition F is weakly semismooth

at 0 (f. [32℄), implying that:

∃F′
+(0) ∈ R and Lim sup

x→0+

∂̄F(x) = {F′
+(0)}, (2.45)

where F′
+ stands for the right-hand derivative of F. Now the following result holds

true.
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Proposition 7 (weak stiking). Let z∗ ∈ R and x̄1 > 0 be arbitrary. Then:

D∗Z(x̄1, 0, x̄1F(0))(z
∗) =





[
z∗F(0)

x̄1z
∗F′

+(0) + w

]
∣∣∣∣∣∣∣
w ∈





{0} if z∗ > 0,

R− if z∗ < 0,

R if z∗ = 0.




. (2.46)

Proof. The analysis in this ase beomes more involved, sine the point ā :=
(x̄1, 0, x̄1F(0)) may be approahed by sequenes orresponding to di�erent me-

hanial regimes:

NGrZ(ā) = Lim sup
(x1,x2,z)

GrZ
−→ā

N̂GrZ(x1, x2, z) = N1 ∪ N2 ∪N3,

where

N1 := Lim sup
(x1,x2,z)

GrZ
−→ā

x2>0

N̂GrZ(x1, x2, z), N2 := Lim sup
(x1,0,z)

GrZ
−→ā

z<x1F(0)

N̂GrZ(x1, 0, z),

and

N3 := Lim sup
x1→x̄1

N̂GrZ(x1, 0, x1F(0)).

Observe that the regular normal ones generating in N1 and N2 have already

been omputed in (2.41) and in (2.44), respetively. From (2.44) we immediately

have:

N2 = {0} × R× {0}.

The relation (2.41) may be written as

N̂GrZ(x1, x2, z) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x2), x
∗
2 ∈ D̂∗F(x2)(−x̄1z

∗)}. (2.47)

Using to the salarization formula one may write in (2.47):

D̂∗F(x2)(−x̄1z
∗) ⊂ D∗F(x2)(−x̄1z

∗) = ∂(−x̄1z
∗F)(x2) ⊂ −x̄1z

∗∂̄F(x2). (2.48)

Taking into aount the assumed semismoothness property (3.37), it follows from

(2.47) and (2.48)

N1 = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x2), x
∗
2 = −x̄1z

∗
F
′
+(0)}, (2.49)

sine N1 6= ∅ due to Lipshitz ontinuity of F.

The treatment of N3 is, however, more deliate. As a �rst step, let us ompute

the ontingent one to GrZ at a := (x1, 0, x1F(0)), for x1 > 0 �xed. Note that

GrZ loally around the referene point a oinides with the union G1∪G2, where

G1 = {(x′1, x
′
2, z

′) | |x′1 − x1| < ε, x′2 = 0, x′1F(0)− ε < z′ ≤ x′1F(0)},

G2 = {(x′1, x
′
2, z

′) | |x′1 − x1| < ε, 0 ≤ x′2 < ε, z′ = x′1F(x
′
2)},

for a su�iently small ε > 0. Moreover, the following holds:

TGrZ(a) = TG1(a) ∪ TG2(a). (2.50)
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By the de�nition of the ontingent one:

TG1(a) = {(h, k, l) | ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

λiki = 0, x1F(0) + λili ≤ (x1 + λihi)F(0)} = {(h, 0, l) | l ≤ hF(0)}.

Analogously:

TG2(a) = {(h, k, l) | ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

0 ≤ λiki, x1F(0) + λili = (x1 + λihi)F(λiki)}

=
{
(h, k, l)

∣∣∣∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

0 ≤ ki, li = hiF(λiki) + x1ki
F(λiki)− F(0)

λiki

}

= {(h, k, l) | 0 ≤ k, l = hF(0) + x1kF
′
+(0)},

where we have made use of (3.37) ensuring diretional di�erentiability of F at 0.
Now it is su�ient to ompute the (negative) polars to these ones to obtain:

N̂G1(a) =
(
TG1(a)

)0
= {(x∗1, x

∗
2, z

∗) | x∗1 = −z∗F(0), z∗ ≥ 0} (2.51)

and similarly:

N̂G2(a) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(0), x∗2 ≤ −x1z
∗F′

+(0)}. (2.52)

Finally, ombining (2.50), (2.51) and (2.52) yields:

N̂GrZ(a) = (TG1(a) ∪ TG2(a))
0

= N̂G1(a) ∩ N̂G2(a)

= {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(0), x∗2 ≤ −x1z
∗F′

+(0), z
∗ ≥ 0}.

From this it is obvious that N3 = N̂GrZ(ā).
In this way we have now an upper estimate of NGrZ(a) and the result follows

easily by the de�nition of the oderivative. Indeed, for instane, the �rst formula

in (2.46) follows from (2.49) and the fat that for z∗ > 0 and i = 2, 3 there

does not exist any (x∗1, x
∗
2) suh that (x∗1, x

∗
2,−z

∗) ∈ Ni. The statement has been

established.

A straightforward modi�ation of the proof of Proposition 7 implies the fol-

lowing result, onerning the point ā := (x̄1, 0,−F(0)).

Proposition 8 (weak stiking). Let z∗ ∈ R and x̄1 > 0 be arbitrary. Then:

D∗Z(x̄1, 0,−x̄1F(0))(z
∗) =





[
−z∗F(0)

x̄1z
∗F′

+(0) + w

]
∣∣∣∣∣∣∣
w ∈





R+ if z∗ > 0,

{0} if z∗ < 0,

R if z∗ = 0.




.

(2.53)

We are now in a position to verify the quali�ation ondition (2.36).

Corollary 1. Let (ᾱ, ū, q̄) ∈ Gr Q̃τ be arbitrary. Then (2.36) holds.
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Proof. By (2.40), (2.42), (2.43), (2.46) and (2.53) we see that D∗Z(x̄1, x̄2, z̄)(0) ⊂
{0} × R for any (x̄1, x̄2, z̄) ∈ GrZ, implying:

D∗Z1(Ψ(ᾱ, ū), q̄)(0) ⊂
(
{0} × R

)p
.

Choosing now w ∈
(
R2

)p
suh that wi = (0, ci)

T
for all i = 1, . . . , p, then (f.

(2.38) and (2.39)):

0 = ∇Ψ(ᾱ, ū)Tw =

p∑

i=1

∇Ψi(ᾱ, ū)
Twi =

p∑

i=1

[
∇ωi(ᾱ)T 0

0 e(i)

] [
0
ci

]
=

[
0

c

]
.

In this way we have proved that the upper estimate (2.37), needed in (AGE),

is valid.

The obtained results enable us to establish neessary optimality onditions,

that may serve, e.g., as a stopping riterion in the numerial algorithm, or for

testing optimality of a design omputed in some other way.

Theorem 18. Let (ᾱ, ȳ) be a loal solution to (P) (in partiular ȳ = S̃(ᾱ)).
Then:

(1) 0 ∈ ∇αJ(ᾱ, ȳ) +D∗S̃(ᾱ)(∇yJ(ᾱ, ȳ)) +NŨad
(ᾱ);

(2) ∃ v∗ ∈ R3p
:

0 ∈ ∇J(ᾱ, ȳ)+∇F (ᾱ, ȳ)Tv∗+D∗Q̃(ᾱ, ȳ,−F (ᾱ, ȳ))(v∗)+NŨad×R3p(ᾱ, ȳ).

Proof. The optimality ondition in (1) amounts diretly to the respetive on-

dition in [36, Corollary 5.35℄. This relation together with Theorem 17 (ii) yields

(2).
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Chapter 3

Shape optimization: Coulomb ase

In this hapter we onsider the optimal shape design problem, where the state

problem is given by the two-dimensional Signorini problem with Coulomb fri-

tion and a solution-dependent oe�ient of frition. Sine the analysis of ontat

problems with Coulomb frition is very involved in the ontinuous setting, we

will investigate existene and omputation of disrete optimal shapes only, i.e.,

for �xed values of the disretization parameter h, and various hoies of the ost

funtional.

The struture of the present hapter opies more or less that of the previous

one, with a notable exeption: this time only the algebrai setting is onsidered.

First, we shall �rst derive the redued version of the algebrai Signorini prob-

lem with Coulomb frition and a solution-dependent oe�ient of frition and

de�ne the shape optimization problem. Then, we prove Lipshitz ontinuity of

the orresponding solution map, but this time using Robinson's strong regularity

ondition (SRC). As an immediate onsequene, one obtains existene of disrete

optimal shapes. Moreover, the SRC property will play an important role also in

subsequent sensitivity analysis. This is onduted in a similar way as it was done

in the previous hapter, using tools from the generalized di�erential alulus of

Mordukhovih. This enables us the e�ient solution of the shape optimization

problem by means of the ImP and a bundle method of nonsmooth optimization.

The results obtained here are have been presented in the paper [5℄.

3.1 Algebrai shape optimization problem

Let us start with formulating the redued algebrai state problem. To this end,

reall that in Setion 1.3.2 we have denoted by (Ã(α,ϕ, g)) an auxiliary problem

representing the algebrai Signorini problem with given frition, where the slip

bound is given by the vetor g ∈ Rp
+ and the oe�ient of frition by the vetor

F(ϕ) := [F(ϕ1), . . . ,F(ϕp)]
T
, for a �xed ϕ ∈ Rp

+:

Find (u,λ) ∈ Rn × Rp
+ suh that:

〈A(α)u, v − u〉n + 〈F(ϕ) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+.





(Ã(α,ϕ, g))

In ontrast to the Tresa frition ase, there is no reason to restrit the set of ad-

missible design variables, therefore we assume α ∈ Uad ⊂ Rp
+ as de�ned in (1.22),
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i.e., without imposing additional onstraints on the seond �nite di�erenes.

The pair (u∗,λ∗) ∈ Rn × Rp
+ was shown to be the solution of the Signorini

problem with Coulomb frition and a solution-dependent oe�ient of frition

(MC(α)) (in the sense of De�nition 9) i� it is the solution to (Ã(α,ϕ∗, g∗)),
where (ϕ∗, g∗) is a �xed point of Ψ̃C : Rp

+ × Rp
+ → Rp

+ × Rp
+, (ϕ, g) 7→ (|uτ |,λ).

On the basis of this relation, we may easily derive the redued form of (MC(α))
by simply inserting the �xed point of Ψ̃C

into (1.34). This way one obtains the

following system of GEs:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q̂τ (uτ ,λ),

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α),

0 ∈ uν +α+NRp
+
(λ),





(3.1)

where the multifuntion Q̂τ : Rp × Rp
⇒ Rp

takes the form

(
Q̂τ (v,w)

)
i
= F(|vi|)wi∂|vi| ∀i = 1, 2, . . . , p.

Further, reall that the matrix- and vetor-valued mappings Aττ ,Aτν ,Aντ ,Aνν :
Uad → Rp×p

and Lτ ,Lν : Uad → Rp
, respetively, are assumed to be ontinuously

di�erentiable.

Denoting the state variable by y = (uτ ,uν ,λ) ∈ R3p
, we write the system

(3.1) in the ompat form:

0 ∈ F (α,y) + Q̂(y), (GEC(α))

with F : Uad × R3p → R3p
being the single-valued, ontinuously di�erentiable

funtion from the previous hapter (f. (2.8) and (2.9)):

F (α,y) = A(α)y − l(α).

The multivalued mapping Q̂ : R3p
⇒ R3p

in (GEC(α)) has a losed graph and is

given by the expression:

Q̂(y) =



Q̂τ (uτ ,λ)

0

NRp
+
(λ)


 ∀y = (uτ ,uν ,λ) ∈ R3p.

With the parametrized generalized equation (GEC(α)) we assoiate the ontrol-

to-state mapping Ŝ : Uad ⇒ R3p
, de�ned by

Ŝ(α) := {y ∈ R3p | 0 ∈ F (α,y) + Q̂(y)}.

Now the shape optimization problem may be stated in the form of the following

mathematial program with equilibrium onstraints (MPEC):

minimize J(α,y),

subj. to y ∈ Ŝ(α),
α ∈ Uad,



 (PC

)

where the ost funtional J : Uad×R3p → R is assumed to be ontinuously di�er-

entiable. Atually, this smoothness assumption imposed on J is super�uous: as it
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will beome apparent from subsequent analysis, it would be su�ient to assume

J Lipshitz ontinuous. Nevertheless, for ease of presentation, we shall stik to a

smooth ost funtional, as this does not a�et the intrinsi nonsmoothness of Ŝ,

representing the variational inequality (GEC(α)), in any way.

The main result of this setion is formulated in the next theorem.

Theorem 19. Let the assumptions of Theorem 11(ii) hold. Then (PC
) has at

least one solution.

Its proof relies on the ompatness of Gr Ŝ and will be given below, in a series

of auxiliary, but no less important results.

3.2 Lipshitzian stability

Our main aim in this setion is to show Lipshitz ontinuity of Ŝ. Although

one ould prove this diretly, as it was done in the ase of Tresa frition (f.

Theorem 16), the fat that Q̂ does not depend on α ∈ Uad, allows us to prove a

stronger result, namely, strong regularity of (GEC(α)).
First, however, we shall prove loal Lipshitz ontinuity of the solution to

(MC(α)) with respet to the load vetor L ∈ Rn
.

3.2.1 Stability with respet to the load vetor

Sine the domain orresponding to the design vetor α ∈ Uad will be �xed and

L variable, let us relabel the problem (MC(α)) by (MC(L)) and the auxiliary

problem (Ã(α,ϕ, g)) by (Ã(L,ϕ, g)). Further, having (1.45) in mind, let:

δ(‖L‖n) :=
β + ‖A‖
βγ

max{Cmax, R(‖L‖n)Clip}. (3.2)

We reall from (1.42) the expression for R(‖Ln‖) and de�ne the onstant κ > 0:

R(‖L‖n) =

[
1

γ
+

1

β

(
‖A‖
γ

+ 1

)]
‖L‖n =: κ‖L‖n. (3.3)

In terms of the funtion δ from (3.2), the assumption of Theorem 11(ii) is equiv-
alent to δ(‖L‖n) < 1. Provided this ondition is met, the Signorini problem with

Coulomb frition (MC(α)) has a unique solution. In addition, as we will show,

the following holds true.

Proposition 9. Let the assumptions of Theorem 11(ii) be satis�ed, i.e., δ(‖L‖n) <
1 for some L ∈ Rn

. Then there exist positive onstants ǫ > 0 and K := K(L, ǫ) >
0 suh that:

‖(ū, λ̄)− (ũ, λ̃)‖n+p ≤ K‖L̄− L̃‖n ∀L̄, L̃ ∈ Bǫ(L),

where (ū, λ̄), (ũ, λ̃) denote the unique solutions of (MC(L̄)) and (MC(L̃)), re-
spetively.
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Proof. Existene of ǫ > 0 satisfying:

δ(‖L′‖n) < 1 ∀L′ ∈ Bǫ(L) (3.4)

follows immediately by ontinuity of the funtion δ : R+ → R+ (f. (3.2)�(3.3)).

We hoose suh an ǫ and denote

q := max{δ(‖L′‖n) | L
′ ∈ Bǫ(L)} ∈ (0, 1).

Further, let L̄, L̃ ∈ Bǫ(L) and (ϕ, g) ∈ Rp
+×Rp

+ be arbitrary. Then, we build the

following sequenes iteratively:

(i) Let (ū(0), λ̄
(0)
) ∈ Rn × Rp

+ stand for the solution of the auxiliary problem

(Ã(L̄,ϕ, g)). For eah k = 1, 2, 3, . . . denote by (ū(k), λ̄
(k)
) ∈ Rn × Rp

+ the

unique solution to

(
Ã
(
L̄, |ū(k−1)

τ |, λ̄
(k−1)))

.

(ii) Let (ũ(0), λ̃
(0)
) ∈ Rn ×Rp

+ be the solution of (Ã(L̃,ϕ, g)). Analogously, for

eah k ∈ N denote by (ũ(k), λ̃
(k)
) ∈ Rn × Rp

+ the solution of the problem(
Ã
(
L̃, |ũ(k−1)

τ |, λ̃
(k−1)))

.

(iii) Finally, for eah k ∈ N let (U (k),Λ(k)) ∈ Rn × Rp
+ stand for the unique

solution of

(
Ã
(
L̄, |ũ(k−1)

τ |, λ̃
(k−1)))

.

It follows from the proof of Theorem 11(ii) that the sequenes

{(
|ū(k)

τ |, λ̄
(k))}

,

{(
|ũ(k)

τ |, λ̃
(k))}

tend to the unique �xed-point of Ψ̃C
in Rp

+ × Rp
+, de�ned in

onnetion with the problems (MC(L̄)) and (MC(L̃)), respetively. Hene, the

sequenes

{
(ū(k), λ̄

(k)
)
}
,

{
(ũ(k), λ̃

(k)
)
}
onverge to the unique solutions (ū, λ̄),

(ũ, λ̃) of (MC(L̄)) and (MC(L̃)), respetively. Now, making use of Lemma 2(ii),
one may write (reall, that we use the norm ‖v +w‖r+s := ‖v‖r + ‖w‖s on the

produt spae Rr × Rs
for any r, s ∈ N):

‖(ū(k), λ̄
(k)
)− (ũ(k), λ̃

(k)
)‖n+p

≤ ‖(ū(k), λ̄
(k)
)− (U (k),Λ(k))‖n+p + ‖(U (k),Λ(k))− (ũ(k), λ̃

(k)
)‖n+p

≤ δ(‖L̄‖n)
∥∥(|ū(k−1)

τ |, λ̄
(k−1))

−
(
|ũ(k−1)

τ |, λ̃
(k−1))

‖p+p + κ‖L̄− L̃‖n

≤ q‖(ū(k−1), λ̄
(k−1)

)− (ũ(k−1), λ̃
(k−1)

)‖n+p + κ‖L̄− L̃‖n,

where κ is from (3.3). Sine the above estimate holds for all k ∈ N, we obtain by

indution:

‖(ū(k), λ̄
(k)
)− (ũ(k), λ̃

(k)
)‖n+p

≤ qk‖(ū(0), λ̄
(0)
)− (ũ(0), λ̃

(0)
)‖n+p + (qk−1 + · · ·+ q + 1)κ‖L̄− L̃‖n

≤ qkκ‖L̄− L̃‖n + (qk−1 + · · ·+ q + 1)κ‖L̄− L̃‖n

≤
κ

1− q
‖L̄− L̃‖n.

Here we used that qk + · · ·+ q + 1 ≤
∑∞

i=0 q
i = 1

1−q
for |q| < 1, whih is satis�ed

in our ase by the de�nition of q. Now, taking limit as k → ∞ one arrives at the

assertion of the proposition.
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Remark 9. Notie, that due to Lemma 6 the solution of (M(α)) is globally Lips-
hitz ontinuous with respet to the load vetor, whereas in the Coulomb frition

ase the same property holds only loally.

3.2.2 Strong regularity

Having the above result at hand, we are in a position to prove strong regularity

[8, 46℄ of (GEC(α)).

Proposition 10. Let the assumption of Theorem 11(ii) hold. Then the general-

ized equation (GEC(α)) is strongly regular at eah (α,y) ∈ Gr Ŝ.

Proof. Let a referene pair (ᾱ, ȳ) ∈ Gr Ŝ be �xed. Reall that (GEC(α)) is alled
strongly regular at (ᾱ, ȳ), provided there exist neighbourhoods U of 0 ∈ R3p

and

V of ȳ suh, that the mapping:

R3p ∋ ξ 7→ {y ∈ V | ξ ∈ F (ᾱ, ȳ) +∇yF (ᾱ, ȳ)(y − ȳ) + Q̂(y)} (3.5)

is single-valued and Lipshitz in U . To prove this, let ξ ∈ R3p
be �xed and

notie that F (ᾱ, ·) is linear. Hene, the perturbed GE in (3.5) amounts to: ξ ∈

F (ᾱ,y) + Q̂(y). The same GE, written omponentwise with y = (uτ ,uν ,λ),
ξ = (ξτ , ξν , ξλ) ∈ R3p

:

ξτ ∈ Aττ (ᾱ)uτ + Aτν(ᾱ)uν −Lτ (ᾱ) + Q̂τ (uτ ,λ),

ξν = Aντ (ᾱ)uτ + Aνν(ᾱ)uν − λ−Lν(ᾱ),

ξλ ∈ uν + ᾱ+NRp
+
(λ).





(3.6)

The system (3.6) may be rewritten as

0 ∈ Aττ (ᾱ)uτ + Aτν(ᾱ)(uν − ξλ)− (Lτ (ᾱ) + ξτ − Aτν(ᾱ)ξλ) + Q̂τ (uτ ,λ),

0 = Aντ (ᾱ)uτ + Aνν(ᾱ)(uν − ξλ)− λ− (Lν(ᾱ) + ξν − Aνν(ᾱ)ξλ),

0 ∈ (uν − ξλ) + ᾱ+NRp
+
(λ).





(3.7)

The system of GEs (3.7) represents the Signorini problem with Coulomb frition

and a solution-dependent oe�ient of frition on the domain given by ᾱ ∈ Uad

and with load vetor

lξ(ᾱ) =



Lτ (ᾱ) + ξτ − Aτν(ᾱ)ξλ

Lν(ᾱ) + ξν − Aνν(ᾱ)ξλ

−ᾱ


 , (3.8)

having the solution yξ = (uτ ,uν − ξλ,λ). As follows from Proposition 9, for

su�eiently small ǫ > 0 and ξ ∈ U := Bǫ(0) the ontat problem (3.7) with load

vetor lξ(ᾱ) has exatly one solution, i.e., (3.6) is uniquely solvable. Hene single-
valuedness of the mapping (3.5) follows. To see that it is Lipshitz ontinuous on

U , let ξ(1), ξ(2) ∈ U be arbitrary and denote the orresponding solutions of (3.6)

by y(1)
, y(2)

. Then, employing Proposition 9 (c > 0 stands for a generi onstant
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independent of ξ(i)
, y(i)

):

‖y(1) − y(2)‖3p = ‖u(1)
τ − u(2)

τ ‖p + ‖u(1)
ν − u(2)

ν ‖p + ‖λ(1) − λ(2)‖p

≤ ‖u(1)
τ − u(2)

τ ‖p + ‖(u(1)
τ − ξ

(1)
λ )− (u(2)

τ − ξ
(2)
λ )‖p

+ ‖λ(1) − λ(2)‖p + ‖ξ(1)
λ − ξ

(2)
λ ‖p

≤ c‖lξ(1)(ᾱ)− lξ(2)(ᾱ)‖3p + ‖ξ(1)λ − ξ
(2)
λ ‖p

≤ c
(
‖ξ(1)τ − ξ(2)

τ ‖p + ‖Aτν(ᾱ)‖‖ξ(1)λ − ξ
(2)
λ ‖p + ‖ξ(1)ν − ξ(2)

ν ‖p

+ ‖Aνν(ᾱ)‖‖ξ(1)λ − ξ
(2)
λ ‖p

)
+ ‖ξ(1)λ − ξ

(2)
λ ‖p

≤ c‖ξ(1) − ξ(2)‖3p,

and the proof is omplete.

As a orollary of Proposition 10 we obtain Lipshitz ontinuity of the orre-

sponding solution map.

Corollary 2. Let the assumptions of Theorem 11(ii) hold true. Then the solution

map Ŝ : Uad → R3p
is single-valued and Lipshitz in Uad.

Proof. Follows from Theorem 2.1 in [8℄ and the ompatness of Uad.

Now we are in a position to prove the main result of this setion.

Proof of Theorem 19. By Corollary 2 the solution map Ŝ is Lipshitz ontinuous

on the ompat set Uad, thus its graph is ompat in Uad × R3p
. Therefore, any

lower semiontinuous ost funtional J attains its minimum on Gr Ŝ, i.e., the
shape optimization problem (PC

) has at least one solution.

3.3 Sensitivity analysis

Conerning the numerial solution of the shape optimization problem (PC
), the

same applies as in the Tresa frition ase, i.e., due to Corollary 2 we may follow

the ImP approah and reformulate the original MPEC into

minimize Ĵ (α) := J(α, Ŝ(α))
subj. to α ∈ Uad,

}
(P̂C

)

where Ĵ : Uad → R is (loally) Lipshitz and possibly non-onvex. Due to the

reasons disussed in Setion 2.4 we shall solve (P̂C
) by a bundle method. In order

to make this approah work, at eah step ᾱ ∈ Uad of the minimization algorithm

one has to be able to provide a funtion value Ĵ (ᾱ) = J(ᾱ, ȳ) with ȳ = Ŝ(ᾱ),

and one (arbitrary) subgradient ξ ∈ ∂̄Ĵ (ᾱ). Owing to (2.25)�(2.27) we see that

this an be ahieved by setting

ξ := ∇αJ(ᾱ, ȳ) + p∗,

where

p∗ ∈ D∗Ŝ(ᾱ)(∇yJ(ᾱ, ȳ)).

The omputation of one suh p∗
is desribed in the next theorem. Atually, it

happens to be a simpli�ed form of Theorem 17(ii) for the ase when the multi-

funtion Q̂ does not depend on the the design variable α.
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Theorem 20. Let (ᾱ, ȳ) ∈ Gr Ŝ be given. Then for eah p∗ ∈ D∗Ŝ(ᾱ)(∇yJ(ᾱ, ȳ))
there exists an adjoint variable v∗ ∈ R3p

suh that

p∗ = ∇αF (ᾱ, ȳ)
Tv∗

(3.9)

and v∗
is a solution to the adjoint GE:

0 ∈ ∇yJ(ᾱ, ȳ) +∇yF (ᾱ, ȳ)
Tv∗ +D∗Q̂(ȳ,−F (ᾱ, ȳ))(v∗). (AGE

C
)

Proof. Due to the strong regularity ondition (see Proposition 10) the assump-

tions of [27, Theorem 5℄ are satis�ed. See also [4, Theorem 4.1℄.

Note, that Theorem 20, in general, provides only an upper approximation of

∂̄Ĵ (ᾱ) sine the vetor v∗
onstruted using (3.9) and (AGE

C
) may lie outside

of D∗Ŝ(ᾱ)(∇yJ(ᾱ, ȳ)). Let us reall, that this an happen only at points where

Gr Q̂ is not graphially regular, and if it does happen (at a nonregular point),

the used bundle method may not inevitably ollapse. Otherwise a reovery step

has to be made in whih the bundle method is provided with a orret subgra-

dient. Nevertheless, omputational experiene shows that this ours very rarely,

therefore we will rely on the onstrution of subgradients via the AGE (AGE

C
)

as desribed in Theorem 20.

The rest of this setion is devoted to expressing the oderivative D∗Q̂ in

terms of the problem data, as D∗Q̂ is the only unknown quantity remaining in

(AGE

C
). In doing so, we follow losely [4℄ and begin with reordering the equa-

tions in (GEC(α)) so that y ∈ (R3)p with yi = ((ut)i, (un)i, λi) omprising all

state variables assoiated with the i-th ontat node (i = 1, . . . , p). This way the

multifuntion Q̂ takes the form:

Q̂(y) =




Φ(y1)
Φ(y2)

.

.

.

Φ(yp)


 , (3.10)

where Φ : R2 × R+ ⇒ R3
is de�ned as:

Φ(a) :=



F(|a1|)a3∂|a1|

0
NR+(a3)


 ∀a ∈ R2 × R+. (3.11)

Due to the above reordering (3.10) and [47, Example 6.10℄, one has for every

(ȳ, q̄) ∈ Gr Q̂ and p∗ ∈ (R3)p:

D∗Q̂(ȳ, q̄)(p∗) =




D∗Φ(ȳ1, q̄1)(p
∗
1)

D∗Φ(ȳ2, q̄2)(p
∗
2)

.

.

.

D∗Φ(ȳp, q̄p)(p
∗
p)


 . (3.12)

Therefore, in the sequel we will onsider arbitrary (ā, b̄) ∈ GrΦ, b∗ ∈ R3
and

ompute the oderivative D∗Φ(ā, b̄)(b∗) aording to the position of (ā, b̄) as

given by the following partition of GrΦ:

GrΦ = L ∪M1 ∪M2 ∪M
+
3 ∪M−

3 ∪M4, (3.13)
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where the sets on the right-hand side of (3.13) are de�ned in Table 3.1. From

a mehanial point of view, partition (3.13) represents all possible ontat and

sliding modes of a point on the ontat boundary.

no ontat: weak ontat: strong ontat:

a3 = 0, b3 < 0 a3 = 0, b3 = 0 a3 > 0, b3 = 0
sliding:

L

M2 M1a1 6= 0,
b1 = sgn(a1)F(|a1|)a3

weak stiking:

M4 M−
3a1 = 0,

|b1| = F(0)a3
strong stiking:

××× ××× M+
3a1 = 0,

|b1| < F(0)a3

Table 3.1: Contat and sliding mode at (a, b) ∈ GrΦ.

As easily seen from their de�nition, the sets L, M1 and M+
3 are open in the

relative topology of GrΦ, i.e., eah Σ ∈ {L,M1,M
+
3 } satis�es:

∀(ā, b̄) ∈ Σ ∃neighborhood O : GrΦ ∩O ⊂ Σ. (3.14)

This makes the analysis in these ases substantially easier, sine:

NGrΦ(ā, b̄) = NΣ(ā, b̄) = Lim sup
(a,b)

Σ
→(ā,b̄)

N̂Σ(a, b), (3.15)

as will be used frequently below.

Proposition 11 (no ontat). Let (ā, b̄) ∈ L and b∗ ∈ R3
be given. Then:

D∗Φ(ā, b̄)(b∗) =

{
{0} × {0} × R if b∗3 = 0,

∅ otherwise.

(3.16)

Proof. Let (a, b) ∈ L be arbitrary. Then there exists a neighborhood O of (a, b)
suh that:

GrΦ ∩O =
(
R× R× {0}

)
×
(
{0} × {0} × R

)
∩ O.

Therefore:

N̂GrΦ(a, b) =
(
{0} × {0} × R

)
×
(
R× R× {0}

)
, (3.17)

and the assertion follows diretly from (3.15) and the de�nition of D∗Φ.

Proposition 12 (strong ontat, strong stiking). Let (ā, b̄) ∈M+
3 and b∗ ∈ R3

be given. Then:

D∗Φ(ā, b̄)(b∗) =

{
R× {0} × {0} if b∗1 = 0,

∅ otherwise.

(3.18)
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Proof. In this ase, for every (a, b) ∈ M+
3 one an �nd a suitable neighborhood

O suh that:

GrΦ ∩O =
(
{0} × R× R

)
×
(
R× {0} × {0}

)
∩ O,

whene

N̂GrΦ(a, b) =
(
R× {0} × {0}

)
×
(
{0} × R× R

)
. (3.19)

The rest follows again from (3.15) and the de�nition of the oderivative.

Convention. For onveniene, in the sequel F will signify the even extension of

the oe�ient of frition to the whole R, i.e. F(x) := F(−x) ∀x < 0, so that

F(|x|) = F(x) ∀x ∈ R. Clearly, F is (globally) Lipshitz in R.

Proposition 13 (strong ontat, sliding). Let (ā, b̄) ∈M1 and b∗ ∈ R3
be given.

Then:

D∗Φ(ā, b̄)(b∗) =



D∗F(ā1)(sgn(ā1)ā3b

∗
1)

0
sgn(ā1)F(ā1)b

∗
1


 . (3.20)

Proof. There exists a neighborhood Õ of ā suh that Φ is single-valued on Õ and

equals:

Φ(a) =



sgn(ā1)F(a1)a3

0
0


 ∀a ∈ Õ.

From the de�nition of the regular oderivative:

N̂GrΦ(a,Φ(a)) = {(a∗, b∗) ∈ R3 × R3 |

〈a∗,x− a〉3 + 〈b∗,Φ(x)− Φ(a)〉3 ≤ o(‖x− a‖) ∀x},

employing the Lipshitz ontinuity of F. A straightforward alulation yields:

N̂GrΦ(a,Φ(a)) = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(ā1)F(a1)b
∗
1,

(a∗1, sgn(ā1)b
∗
1a3) ∈ N̂Gr F(a1,F(a1))}. (3.21)

Hene (see (3.15)):

NGrΦ(ā, b̄) = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(ā1)F(ā1)b
∗
1,

(a∗1, sgn(ā1)b
∗
1ā3) ∈ NGrF(ā1,F(ā1))}

and the proof is omplete.

Remark 10. (i) If F happens to be smooth around ā1, then Φ is smooth in Õ
and (3.20) redues to the adjoint Jaobian of Φ, as expeted:

D∗Φ(ā, b̄)(b∗) = sgn(ā1)



F′(ā1)ā3 0 0

0 0 0
F(ā1) 0 0


 b∗.
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(ii) It an be seen from the proofs of Proposition 11 and Proposition 12, that

GrΦ is graphially regular at eah point of L and M+
3 . It is graphially

regular at those points (ā, b̄) ∈ M1 for whih GrF is graphially regular at

(ā1,F(ā1)). In partiular, if F is smooth, then GrΦ is graphially regular

also on M1.

Unfortunately, the situation beomes more involved when dealing with the

sets M2 and M
−
3 , sine they lie on the ommon boundary of two open sets:

M2 = relint(∂L ∩ ∂M1) and M−
3 = relint(∂M1 ∩ ∂M

+
3 ), (3.22)

where relint(A) denotes the relative interior of the set A.
In order to ompute D∗Φ at points belonging to M2, we will use a slightly

generalized version of [4, Lemma 4.6℄. In partiular, we show that its assertion

holds with equality under less restritive onditions.

Lemma 9. Consider a multifuntion F : Rn × Rm × Ro
⇒ Rl × Rp

given by

F (x,y, z) =

[
G(x,y)
H(y, z)

]
,

where G : Rn × Rm
⇒ Rl

, H : Rm × Ro
⇒ Rp

are losed-graph multifuntions.

Assume that the point (x̄, ȳ, z̄, f̄1, f̄2) belongs to GrF and the quali�ation on-

dition [
0

w2

]
∈ D∗G(x̄, ȳ, f̄ 1)(0)

[
−w2

0

]
∈ D∗H(ȳ, z̄, f̄2)(0)





⇒ w2 = 0 (3.23)

holds true. Then one has

D∗F (x̄, ȳ, z̄, f̄1, f̄2)(d
∗
1,d

∗
2) ⊂ {(u1,u2 + v1, v2) |

(u1,u2) ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1), (v1, v2) ∈ D∗H(ȳ, z̄, f̄2)(d

∗
2)}. (3.24)

Assume, in addtion, that for eah sequene y(i) → ȳ and eah η ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1)

there exist sequenes (x(i),y(i), f
(i)
1 )

GrG
−→ (x̄, ȳ, f̄ 1) and d

∗(i)
1 → d∗

1 suh that

η ∈ Lim sup
i→∞

D̂∗G(x(i),y(i), f
(i)
1 )(d

∗(i)
1 ). (3.25)

Then (3.24) holds as equality.

Proof. The �rst assertion has already been proved in [4℄. To prove the seond

one, let η be an element of the right-hand side of (3.24), i.e.

η = (u1,u2 + v1, v2) ,

for some (u1,u2) ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1) and (v1, v2) ∈ D∗H(ȳ, z̄, f̄2)(d

∗
2). Thus,

there exist sequenes (y(i), z(i), f
(i)
2 )

GrH
−→ (ȳ, z̄, f̄2), d

∗(i)
2 → d∗

2, (v
(i)
1 , v

(i)
2 ) →

(v1, v2) suh that (v
(i)
1 , v

(i)
2 ) ∈ D̂∗H(x(i),y(i), f

(i)
2 )(d

∗(i)
2 ). By virtue of our ad-

ditional assumption, there are sequenes x(i) → x̄, f
(i)
1 → f̄ 1, d

∗(i)
1 → d∗

1 and

(u
(i)
1 ,u

(i)
2 ) ∈ D̂∗G(x(i),y(i), f

(i)
1 )(d

∗(i)
1 ) suh that

(u
(i)
1 ,u

(i)
2 ) → (u1,u2).
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It follows from [47, Theorem 10.40℄ that for all i ∈ N

(u
(i)
1 ,u

(i)
2 + v

(i)
1 , v

(i)
2 ) ∈ D̂∗F (x(i),y(i), z(i), f

(i)
1 , f

(i)
2 )(d

∗(i)
1 ,d

∗(i)
2 ),

and onsequently η ∈ D∗F (x̄, ȳ, z̄, f̄1, f̄ 2)(d
∗
1,d

∗
2).

Remark 11. Note that equality in (3.24) holds also if instead of G the multi-

funtion H satis�es similar onditions as (3.25). The details are left as an easy

exerise.

Next we show that the seond assumption of Lemma 9, ensuring equality

in (3.24), is ful�lled in the ase when G is �multipliatively separable� in the

sense that G(x,y) = f(x)g(y), where f : Rn → R is loally Lipshitz and

g : Rm → Rl
is ontinuously di�erentiable. To this end, let us �rst present an

auxiliary result.

Lemma 10. Let n,m, l ∈ N and the funtions f : Rn → R and g : Rm → Rl
be

loally Lipshitz around x̄ ∈ Rn
and ȳ ∈ Rm

, respetively. Let G : Rn×Rm → Rl

be de�ned as

G(x,y) := f(x)g(y).

For its regular oderivative then holds:

D̂∗G(x̄, ȳ)(d∗) =

[
D̂∗f(x̄)(g(ȳ)Td∗)

D̂∗g(ȳ)(f(x̄)d∗)

]
(3.26)

for any d∗ ∈ Rl
.

Proof. From the de�nition of the regular oderivative we have:

D̂∗G(x̄, ȳ)(d∗) = {(x∗,y∗) ∈ Rn × Rm |

〈x∗,x− x̄〉n + 〈y∗,y − ȳ〉m − 〈d∗, f(x)g(y)− f(x̄)g(ȳ)〉l

≤ o(‖x− x̄‖n + ‖y − ȳ‖m) ∀(x,y)}.

In partiular, for (x, ȳ) and (x̄,y) we get the following two relations:

〈x∗,x− x̄〉n − 〈d∗, (f(x)− f(x̄))g(ȳ)〉l ≤ o(‖x− x̄‖n) ∀x, (3.27)

〈y∗,y − ȳ〉m − 〈d∗, f(x̄)(g(y)− g(ȳ))〉l ≤ o(‖y − ȳ‖m) ∀y, (3.28)

whih immediately yield the inlusion ⊂ in (3.26) by the de�nition of the regular

oderivative.

To prove the onverse inlusion, let us assume that x∗ ∈ Rn
and y∗ ∈ Rm

satisfy (3.27) and (3.28), respetively. We sum both equation to get:

〈x∗,x− x̄〉n + 〈y∗,y − ȳ〉m − 〈d∗, f(x)g(y)− f(x̄)g(ȳ)〉l

≤ 〈d∗, (f(x)− f(x̄))(g(y)− g(ȳ))〉l + o(‖x− x̄‖n) + o(‖y − ȳ‖m).

Finally, to omplete the proof, it is su�ient to show that the right-hand side is

o(‖x− x̄‖n+‖y− ȳ‖m). The last two terms are left as an easy exerise. Denoting
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by Kf and Kg the Lipshitz moduli of f and g, resp., the �rst term an be

estimated as follows:

〈d∗, (f(x)− f(x̄))(g(y)− g(ȳ))〉l
‖x− x̄‖n + ‖y − ȳ‖m

≤ ‖d∗‖l
|f(x)− f(x̄)|

‖x− x̄‖n︸ ︷︷ ︸
≤Kf

‖g(y)− g(ȳ)‖l
‖y − ȳ‖m︸ ︷︷ ︸

≤Kg

‖x− x̄‖n
‖x− x̄‖n + ‖y − ȳ‖m︸ ︷︷ ︸

≤1

‖y − ȳ‖m︸ ︷︷ ︸
→0

→ 0

for (x,y) → (x̄, ȳ).

Remark 12. Notie that the proof of the previous lemma an be applied without

hange also in ase of G(x,y) := f (x)g(y), where f : Rn → Rl
and g : Rm → R,

both loally Lipshitz. Then one has for every d∗ ∈ Rl
:

D̂∗G(x̄, ȳ)(d∗) =

[
D̂∗f (x̄)(g(ȳ)d∗)

D̂∗g(ȳ)(f (x̄)Td∗)

]
.

Proposition 14. Let the assumptions of Lemma 10 hold, with g : Rm → Rl

ontinuously di�erentiable around ȳ ∈ Rm
. Then G satis�es (3.25), i.e.

∀η ∈ D∗G(x̄, ȳ)(d∗) ∀y(i) → ȳ ∃x(i) → x̄ ∃d(i) → d∗ ∃η(i) → η :

η(i) ∈ D̂∗G(x(i),y(i))(d(i)).

Proof. Let η ∈ D∗G(x̄, ȳ)(d∗) and y(i) → ȳ be arbitrary. From the salarization

formula and [36, Corollary 1.111(i)℄ it follows easily that

η =

[
π

f(x̄)∇g(ȳ)Td∗

]
for some π ∈ D∗f(x̄)(g(ȳ)Td∗). (3.29)

By the de�nition of the (limiting) oderivative

∃x(i) → x̄ ∃r(i) → g(ȳ)Td∗ ∃π(i) → π : π(i) ∈ D̂∗f(x(i))(r(i)). (3.30)

Let us distinguish between the following two situations.

(i) g(ȳ)Td∗ 6= 0. Then, learly, g(y(i)) 6= 0 for i su�iently large. For these

indies we may selet any sequene {d(i)} satisfying the onditions

d(i) → d∗
and g(y(i))Td(i) = r(i).

Observe that suh hoie of {d(i)} is always possible, e.g.

d(i) :=
r(i)

g(y(i))Td∗d
∗

(3.31)

for i su�iently large. By Lemma 10

η(i) :=

[
π(i)

f(x(i))∇g(y(i))Td(i)

]
∈ D̂∗G(x(i),y(i))(d(i)) (3.32)

and so the assertion follows.
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(ii) g(ȳ)Td∗ = 0. It follows that π = 0, sine D∗f(x̄)(g(ȳ)Td∗) = {0} by

virtue of the Mordukhovih riterion [47, Theorem 9.40℄. Consider now arbi-

trary sequenes x(i) → x̄, d(i) → d∗
and π(i) ∈ D̂∗f(x(i))(g(y(i))Td(i)) =

D∗f(x(i))(g(y(i))Td(i)) 6= ∅. Suh sequenes do exist, beause f is di�erentiable

on a dense subset of its domain (Rademaher's theorem) and at these points

D̂∗f(x(i))(r) = D∗f(x(i))(r) 6= ∅ ∀r ∈ R.

Clearly, π(i) → 0 by the outer semiontinuity of the limiting oderivative and the

statement follows again from Lemma 10.

Remark 13. The assertion of Proposition 14 remains valid if we onsider G of

the form disussed in Remark 12. The only di�erene is that instead of (3.31) we

may take

d(i) :=
1

g(y(i))
r(i).

The reader is kindly enouraged to work out the details.

Proposition 15 (weak ontat, sliding). Let (ā, b̄) ∈ M2 and b∗ ∈ R3
be given.

Then:

D∗Φ(ā, b̄)(b∗) =








0
0

sgn(ā1)F(ā1)b
∗
1 + w




∣∣∣∣∣∣∣
w ∈





R if b∗3 = 0,

R− if b∗3 < 0,

{0} if b∗3 > 0.




. (3.33)

Proof. Consider a referene point (ā, b̄) = (ā1, ā2, 0, 0, 0, 0) ∈ M2, where ā1 6= 0
by the de�nition of M2. Then Φ attains the form

Φ(a) =



sgn(ā1)F(a1)a3

0
NR+(a3)


 ∀a ∈ Õ,

for a su�iently small neighborhood Õ of ā. De�ning the funtion G(x, y) :=
F(x)g(y), where g(y) := sgn(ā1)y and the losed-graph multifuntion H(y) =
NR+(y), Lemma 9 yields:

D∗Φ(ā, b̄)(b∗) = {(u1, 0, u2 + v) | (u1, u2) ∈ D∗G(ā1, 0)(b
∗
1),

v ∈ D∗H(0, 0)(b∗3)},
(3.34)

beause G satis�es the assumptions of Proposition 14 and thus the seond as-

sumption of Lemma 9 is satis�ed. Sine g(0) = 0 and g′(0) = sgn(ā1), it follows
from (3.29) that

D∗G(ā1, 0)(b
∗
1) =

{[
0

sgn(ā1)F(ā1)b
∗
1

]}
. (3.35)

For the oderivative of the normal one mapping H at (0, 0) ∈ GrH one has:

D∗H(0, 0)(b∗3) =





R if b∗3 = 0,

R− if b∗3 < 0,

{0} if b∗3 > 0.

(3.36)

Finally, the assertion follows by olleting (3.34), (3.35) and (3.36).
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In order to give a formula for the oderivative D∗Φ at points in M−
3 we will,

in addition, assume that the oe�ient of frition F is weakly semismooth at 0
(f. [32℄), implying that:

∃F′
+(0) ∈ R and Lim sup

x→0+

∂̄F(x) = {F′
+(0)}, (3.37)

where F′
+ stands for the right-hand derivative of F. Now the following result holds

true.

Proposition 16 (strong ontat, weak stiking). Let (ā, b̄) ∈ M−
3 and b∗ ∈ R3

be given. Then:

D∗Φ(ā, b̄)(b∗) =







F′
+(0)ā3b

∗
1 + w

0
sgn(b̄1)F(0)b

∗
1




∣∣∣∣∣∣∣
w ∈





R if b∗1 = 0,

sgn(b̄1)R+ if b∗1 sgn(b̄1) < 0,

{0} otherwise.




.

(3.38)

Proof. Let (ā, b̄) ∈M−
3 be given, i.e. (ā, b̄) = (0, ā2, ā3, b̄1, 0, 0) ∈ R3 ×R3

, where

ā3 > 0 and |b̄1| = F(0)ā3. It an be easily seen, that there exists a neighborhood

O of (ā, b̄) suh that:

sgn(b1) = sgn(b̄1) and sgn(a1) sgn(b̄1) ≥ 0 ∀(a, b) ∈ GrΦ ∩O. (3.39)

Moreover (f. (3.22) and Table 3.1):

NGrΦ(ā, b̄) = N1 ∪ N2 ∪N3, (3.40)

where

N1 := Lim sup

(a,b)
M1−→(ā,b̄)

N̂M1(a, b),

N2 := Lim sup

(a,b)
M+

3−→(ā,b̄)

N̂M+
3
(a, b),

N3 := Lim sup

(a,b)
M−

3−→(ā,b̄)

N̂GrΦ(a, b).

Let us �rst alulate N1. From (3.21), (3.39) and the de�nition of the regular

oderivative it follows that:

N̂M1(a, b) = {(x∗,y∗) | x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1,

x∗1 ∈ D̂∗F(a1)(− sgn(b̄1)a3y
∗
1)}

(3.41)

for eah (a, b) ∈M1. Using the salarization formula and [33, Corollary 3.3.2℄ we

get:

D̂∗F(a1)(− sgn(b̄1)a3y
∗
1) ⊂ D∗F(a1)(− sgn(b̄1)a3y

∗
1)

= ∂(− sgn(b̄1)a3y
∗
1F)(a1) ⊂ − sgn(b̄1)a3y

∗
1 ∂̄F(a1). (3.42)
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Note, that N1 is nonempty (it follows easily from the Lipshitz ontinuity of F

and the Rademaher theorem). In light of this fat, (3.41), (3.42) together with

the semismoothness assumption (3.37) and (3.39) yield:

N1 = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(b̄1)F(0)b
∗
1,

a∗1 = −F′
+(0)ā3b

∗
1}.

(3.43)

Conerning N2, from (3.19) one has immediately:

N2 =
(
R× {0} × {0}

)
×

(
{0} × R× R

)
. (3.44)

However, the omputation of the one N3 is more involved. In partiular, let

(a, b) ∈M−
3 be given and observe that GrΦ loally around (a, b) an be written

as the union of the following two disjoint sets (f. Table 3.1 and (3.39)):

G1 := {(x,y) | sgn(x1) = sgn(b̄1), x3 > 0, y1 = sgn(b̄1)F(x1)x3, y2 = y3 = 0},

G2 := {(x,y) | x1 = 0, x3 > 0, sgn(b̄1)y1 ≤ F(0)x3, y2 = y3 = 0}.

This way one has:

TGrΦ(a, b) = TG1(a, b) ∪ TG2(a, b), (3.45)

and hene

N̂GrΦ(a, b) =
(
TGrΦ(a, b)

)0
= N̂G1(a, b) ∩ N̂G2(a, b). (3.46)

The ontingent one to G1 an be determined as follows:

TG1(a, b) = {(h,k) | ∃h(i) → h, k(i) → k, λ(i) → 0+, ∀i :

(a+ λ(i)h(i), b+ λ(i)k(i)) ∈ G1}

= {(h,k) | ∃h(i) → h, k(i) → k, λ(i) → 0+, ∀i :

sgn(λ(i)h
(i)
1 ) = sgn(b̄1), a3 + λ(i)h

(i)
3 > 0,

sgn(b̄1)F(0)a3 + λ(i)k
(i)
1 = sgn(b̄1)F(λ

(i)h
(i)
1 )(a3 + λ(i)h

(i)
3 ),

λ(i)k
(i)
2 = 0, λ(i)k

(i)
3 = 0},

from whih:

k
(i)
1 = sgn(b̄1)

F(λ(i)h
(i)
1 )− F(0)

λ(i)h
(i)
1

h
(i)
1 a3 + sgn(b̄1)F(λ

(i)h
(i)
1 )h

(i)
3

=
F(λ(i)|h(i)1 |)− F(0)

λ(i)|h(i)1 |
h
(i)
1 a3 + sgn(b̄1)F(λ

(i)h
(i)
1 )h

(i)
3

−→ F′
+(0)h1a3 + sgn(b̄1)F(0)h3, for i→ ∞,

as follows from (3.37). Thus we get:

TG1(a, b) = {(h,k) | sgn(b̄1)h1 ≥ 0, k2 = k3 = 0,

k1 = F′
+(0)a3h1 + sgn(b̄1)F(0)h3}.

(3.47)

An analogous omputation yields:

TG2(a, b) = {(h,k) | h1 = 0, k2 = k3 = 0, sgn(b̄1)k1 ≤ F(0)h3}. (3.48)
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Now, the negative polars to the ones (3.47), (3.48) an be easily alulated:

N̂G1(a, b) = {(x∗,y∗) | (x∗1 + F
′
+(0)a3y

∗
1) sgn(b̄1) ≤ 0,

x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1},

and

N̂G2(a, b) = {(x∗,y∗) | x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1, y

∗
1 sgn(b̄1) ≥ 0},

so that

N̂G1(a, b) ∩ N̂G2(a, b) = {(x∗,y∗) | (x∗1 + F
′
+(0)a3y

∗
1) sgn(b̄1) ≤ 0,

x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1, y

∗
1 sgn(b̄1) ≥ 0}.

(3.49)

Finally, from (3.46) and (3.49) we get:

N3 = {(a∗, b∗) | (a∗1 + F
′
+(0)ā3b

∗
1) sgn(b̄1) ≤ 0,

a∗2 = 0, a∗3 = − sgn(b̄1)F(0)b
∗
1, b

∗
1 sgn(b̄1) ≥ 0}.

(3.50)

The assertion of the proposition follows now from (3.43), (3.44), (3.50) and the

de�nition of the oderivative.

In priniple, one ould treat the set M4 (weak ontat, weak stiking) in the

same way as it was done in Proposition 16 and write the normal one NGrΦ(ā, b̄),
(ā, b̄) ∈M4, as a union in the sense of (3.40). Some ones in this union are easy to

determine, others, however, would require substantially more tedious alulations

than it was arried out forN3 in the previous proof. On the other hand, the setM4

is merely a 1-dimensional submanifold of the 3-dimensional manifold GrΦ ⊂ R6
,

making it extremely rare to our in pratial omputations. From this reason

we omit a detailed analysis of M4 here and do not provide an exat formula for

D∗Φ at these points.
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Chapter 4

Numerial realization

In this hapter we will solve the shape optimization problems analyzed in Chap-

ter 2 and Chapter 3. Reall that, following the ImP approah, both shape op-

timization problems (involving the Tresa and Coulomb laws of frition, respe-

tively) ould be formulated as the nonsmooth optimization problem

minimize Θ(α),
subj. to α ∈ U,

}
(4.1)

where U is a ompat subset of Rp
given by linear inequality and/or equality

onstraints and Θ(α) stands for the omposite ost funtion from (P̃) or (P̂C
),

resp. Either way, Θ is possibly nononvex and nondi�erentiable, due to the intrin-

si nonsmoothness of the respetive ontrol-to-state mappings S̃ and Ŝ, a�eted
partly by the nondi�erentiability of the frition oe�ient F : [0,∞) → (0,∞),
as well.

The sensitivity analyses performed in Chapter 2 and Chapter 3, resp., enable

us to solve (4.1) with, e.g., a bundle method. From this lass of nonsmooth opti-

mization algorithms we have tested the bundle trust [52, 55℄ and proximal bundle

[39℄ odes. Sine both algorithms performed approximately equally well, we hose

to introdue the �rst one in Setion 1 of this hapter. At eah step α(k)
, k ∈ N,

the bundle methods need to be supplied with (i) the funtion value Θ(α(k)) and
(ii) one (arbitrary) subgradient from ∂̄Θ(α(k)). The �rst task involves solving a

fritional ontat problem with a solution-dependent oe�ient of frition�in

Setion 2 we brie�y outline how this an be done. Setion 3 is devoted to the se-

ond task, in partiular, we look at the adjoint equations from Chapters 2 and 3 in

more detail. Finally, in Setion 4 numerial examples are presented. These were

omputed by Ing. Petr Beremlijski, Ph.D. using the MatSol [28℄ library developed

at the Tehnial University in Ostrava.

4.1 The bundle trust method

In this setion we brie�y outline the main ideas behind the bundle trust (BT)

method [52℄ for the solution of the unonstrained minimization problem

min{f(x) | x ∈ Rn}, (4.2)

where f : Rn → R is assumed to be loally Lipshitzian. Note that additional

onstraints may be inorporated into (4.2), e.g., via exat penalization.
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By the term �bundle methods� one usually refers to a family of related iter-

ative methods for the solution of (4.2) that utilize the bundle onept originally

introdued by Lemaréhal [29℄ and Wolfe [54℄ and have the following features:

• at eah iteration xk a bundle of information (yi, f(yi), gi) ∈ Rn × R× Rn
,

i ∈ Jk, is used to build a model of f ;

• if the model is not yet adequate, more subgradient information around xk

is integrated into the model.

The �rst feature is realized by the utting plane approximation of f at xk, i.e.,

by the pieewise a�ne funtion

x 7→ max
i∈Jk

{gT
i (x− yi) + f(yi)}, (4.3)

that equals to f at eah yi, i ∈ Jk. Denoting the linearization error αk,i :=
α(xk,yi) = f(xk)−(gT

i (xk−yi)+f(yi)) and introduing the variable d := x−xk

we may express (4.3) as

fCP (xk;d) := max
i∈Jk

{gT
i d−αk,i}+ f(xk), d ∈ Rn. (4.4)

For onvex f it holds that αk,i ≥ 0 for any k, i ∈ N and it �measures� the distane

of gi to ∂̄f(xk) (whih amounts in this ase to the onvex subdi�erential), in

partiular, αk,i = 0 i� gi ∈ ∂̄f(xk). This is no longer true for nononvex f , in
whih ase αk,i is replaed by βk,i := β(xk,yi) = max{αk,i, c0‖xk − yi‖

2}, where
c0 is a small positive parameter. This modi�ation ensures that whenever yi is

�far away� from xk, βk,i is large and hene gi plays a minor role in fCP (xk; ·).
Again, as the approximation fCP presumably does not model f well far away

from xk, one also adds a stabilizing quadrati term (1/2tk)‖d‖2 to the model,

where tk > 0 has still to be hosen appropriately. In BT this is done via a trust

region onept while omputing the next iterate xk+1 from xk. Coneptually, this

inner loop may be formulated as follows:

1. ompute

dk := d(tk) = argmin

{
fCP (xk;d) +

1

2tk
‖d‖2 | d ∈ Rn

}
; (4.5)

2. if f(xk + dk) is �su�iently smaller� than f(xk), then either:

(a) enlarge tk and go bak to step 1., or

(b) make a Serious Step: set xk+1 := xk + dk and ompute gk+1 ∈
∂̄f(xk+1);

if f(xk + dk) is �not su�iently smaller� than f(xk), then either:

(a) redue tk and go bak to step 1., or

(b) make a Null Step: set xk+1 := xk and ompute gk+1 ∈ ∂̄f(xk + dk).
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The quadrati subproblem (4.5) may be equivalently formulated as (ignoring the

onstant term f(xk)):

(vk,dk) := argmin

{
v +

1

2tk
‖d‖2 | v ≥ gT

i d−αk,i ∀i ∈ Jk

}
∈ R× Rn. (4.6)

Here vk has the meaning of a predited derease in the f based on the approxi-

mation fCP around xk. The deision in step 2 of the above algorithm whether to

make a serious or null step is then made by omparing vk with the atual derease

f(xk + dk)− f(xk), provided it is also ensured that the CP-model gets hanged

substantially when updating the bundle with the omputed values. This is made

preise in [52℄, where the omplete algorithm may be found.

We onlude this setion with the following onvergene result (f. [52℄).

Theorem 21. Assume that f : Rn → R is weakly semismooth, bounded from

below and the sequene of iterates {xk} generated by the BT algorithm is bounded.

Then {xk} has a C-stationary luster point x̄, i.e., 0 ∈ ∂̄f(x̄).

Semismoothness of our omposite ost funtional Θ in (4.1) is inherently

onneted to the semismoothness of the ontrol-to-state mappings S̃ and Ŝ,
respetively�omposition of semismooth funtions yields a semismooth funtion

[44℄. Unfortunately, the latter property has not been proven so far in either ase.

At the moment, however, there seem to exist at least two viable ways: (i) prove

semismoothness of the ontrol-to-state mappings from the de�nition as it was

done in, e.g., [42℄, or (ii) by proving and employing a variant of the proposition

in [26, Exerise 13℄ for multifuntions. Nevertheless, a thorough investigation is

subjet to future researh.

4.2 On solving the state problem

Next, we show how the state problems (M(α)) and (MC(α)) are solved numer-

ially for a �xed α ∈ Uad. In both ases we utilize the �xed-point approah to

redue our problems to solving a ontat problem with given frition and a oef-

�ient that does not depend on the solution. Sine the overall e�ieny depends

very muh on the fast solution of these subproblems, we brie�y desribe how it

is implemented in MatSol [28℄.

4.2.1 Outer loop

In both the Tresa and Coulomb frition ase we start from their �xed-point

formulation, forming the outer loop in the solution algorithm. We shall employ

the results and notation from Chapter 1.
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Tresa ase:

hoose ϕ ∈ Rp
+, tol > 0, err > tol

while ( err > tol )

solve (Ā(α,ϕ)) to get (u,λ) ∈ Rn × Rp

update ϕ := |uν |

update err

end

Coulomb ase:

hoose ϕ, g ∈ Rp
+, tol > 0, err > tol

while ( err > tol )

solve (Ā(α,ϕ, g)) to get (u,λ) ∈ Rn × Rp

update ϕ := |uν |, g := λ

update err

end

Note, that both problems (Ā(α,ϕ)) and (Ā(α,ϕ, g)) represent a Signorini

problem with given frition where the oe�ient of frition does not depend

on the solution as given in (Ā(α)) (α is �xed throughout this setion). These

subproblems are solved iteratively again, as desribed below.

4.2.2 Inner loop

Instead of solving (Ā(α)) in the presented mixed form, the so-alled reiproal

approah [18℄ is used. To this end, one introdues Lagrange multipliers onto the

tangential displaement:

Λτ(α,ϕ, g) := {µτ ∈ Rp | |µτ | ≤ ω(α) • F(ϕ) • g}.

Further, let us denote by λν ∈ Λν := Rp
+ the seond omponent of the solution to

(Ā(α)), and let N,T ∈ Rp×n
be the matrix representation of the linear mappings

u 7→ uν and u 7→ uτ , respetively. This way (Ā(α)) may be equivalently written

as:

A(α)u+ TTλτ = L(α) + NTλν ,

〈µτ − λτ ,Tu〉p + 〈µν − λν ,Nu+α〉p ≤ 0 ∀(µτ ,µν) ∈ Λτ (α,ϕ, g)× Λν .

}

(4.7)

One arrives at the dual formulation of (Ā(α)) after eliminating the primal variable

u ∈ Rn
from the system above. The resulting variational inequality is equivalent

to

minimize

1
2
〈Q(α)µ,µ〉2p − 〈H(α),µ〉2p,

subj. to µ = (µτ ,µν) ∈ Λτ (α,ϕ, g)× Λν ,

}
(4.8)

where

Q(α) :=

[
TA−1(α)TT −TA−1(α)NT

−NA−1(α)TT NA−1(α)NT

]
, H(α) :=

[
TA−1(α)L(α)

−NA−1(α)L(α)

]
.
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Not only is the dimension of (4.8) onsiderably less than in ase of (Ā(α))
(p ≪ n; the dual variables relate to the ontat boundary only), but there exist

e�ient methods for its solution. The MatSol library implements a onjugate

gradient method with proportioning and projetions [9℄ (see also [10℄) for solving

the quadrati problem (4.8) with simple (box-) onstraints.

4.3 On solving the adjoint generalized equation

In this setion we shall revisit the adjoint generalized equations (AGE) and

(AGE

C
) whih are supposed to yield a subgradient of the ost funtional. Based

on the results of Chapter 2 and 3 we will make their solution more obvious.

4.3.1 Tresa ase

In Setion 2.5 we have argued that a subgradient of the omposite ost funtional

J an be onveniently approximated by solving (AGE) for p∗ ∈ Rp
and inserting

it into (2.27). The idea behind solving (AGE) is to identify a linear subspae

in D∗Q for whih the resulting system of linear equations an be easily solved.

In order to do so we ombine the results obtained in Setion 2.5, proeeding in

reverse order.

Let ᾱ ∈ Ũad and the orresponding state vetor ȳ = (ūν , ūτ , λ̄) := S̃(ᾱ) be
given. Based on the type of sliding/stiking at the ith ontat node and relations

(2.40), (2.42), (2.43), (2.46), (2.53), we determine at eah ontat node i = 1, . . . , p
a linear subspae

Li ⊂ D∗Z
(
ωi(ᾱ), (ūτ )i,−(F 1(ᾱ, ȳ))i

)
, (4.9)

i.e., we either hoose v∗i = 0 or there exist d
(1)
i , d

(2)
i ∈ R suh that for

Li := {(a∗i , b
∗
i , v

∗
i ) ∈ R3 | a∗i = d

(1)
i v∗i , b

∗
i = d

(2)
i v∗i } (4.10)

(4.9) holds. In the former ase we simply omit the equation orresponding to

the index i from (AGE), therefore let us assume that the latter ase holds for

eah i = 1, . . . , p. For later use we denote the vetors a∗ := (a∗1, . . . , a
∗
p)

T , b∗ :=
(b∗1, . . . , b

∗
p)

T ∈ Rp, z∗ := ((a∗1, b
∗
1), . . . , (a

∗
p, b

∗
p))

T ∈ (R2)p and the diagonal ma-

tries D(1),D(2) ∈ Rp×p
having the values d

(1)
i and d

(2)
i as their diagonal entries,

respetively, so that

a∗ = D(1)v∗
and b∗ = D(2)v∗. (4.11)

From (2.37), (2.38), (2.39) and (4.11) we infer that

ζ := ∇Ψ(ᾱ, ūτ )
Tz∗ =

[
∇ω(ᾱ)Ta∗

b∗

]
=

[
∇ω(ᾱ)TD(1)

D(2)

]
v∗
1 (4.12)

approximates a vetor in D∗Q̃τ (ᾱ, ūτ ,−F1(ᾱ, ȳ))(v
∗). This yields the �rst om-

ponent of the oderivative D∗Q in (2.34).

Similarly, a vetor c∗ ∈ D∗NRp
+
(λ̄,−F 3(ᾱ, ȳ))(w

∗), w∗ ∈ Rp
arbitrary, an

be onstruted on the basis of Proposition 2 as follows. At eah ontat point

i ∈ {1, . . . , p} we determine the type of ontat:
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• if there is no ontat (f. Prop. 2(i)), we set c∗i = 0;

• if there is strong ontat (f. Prop. 2(ii)) we set w∗
i = 0 and exlude the

orresponding equation from (AGE);

• for weak ontat (f. Prop. 2(iii)) we deide for one of the options desribed

above.

For simpliity of notation, let us assume that c∗i = 0 holds for eah i = 1, . . . , p,
i.e., c∗ = 0 ∈ Rp

.

Now, writing the adjoint Jaobian of F as

∇F (ᾱ, ȳ)T =

[
∇αF (ᾱ, ȳ)T

∇yF (ᾱ, ȳ)T

]
=

[
∇α(A(ᾱ)ȳ)T −∇l(ᾱ)T

AT (ᾱ)

]
(4.13)

we ompute a solution of (AGE) by solving the system of linear equations:

p∗ =
(
∇α(A(ᾱ)ȳ)−∇l(ᾱ) +D(1)∇ω(ᾱ)

)T
v∗, (4.14)

−∇yJ(ᾱ, ȳ) =
(
A(ᾱ) +D(2)

)T
v∗, (4.15)

where

D(1) =



D(1)

0

0


 ∈ R3p×p

and D(2) =



D(2)

0 0

0 0 0

0 0 0


 ∈ R3p×3p.

First, (4.15) is solved for v∗ ∈ R3p
, whih is then inserted into (4.14) to get the

desired vetor p∗ ∈ Rp
.

Finally, let us omment on the solvability of (4.15). By assumption, the matrix

A(ᾱ) is positive de�nite for eah ᾱ ∈ Ũad and the elements of D(2)
are bounded

by Cmax and Clip, whih an be made arbitrarily small. Thus, (4.15) is solvable

provided F is bounded and Lipshitzian with su�iently small onstants Cmax

and Clip.

4.3.2 Coulomb ase

Sine the solution of (AGE

C
) is done in exatly the same way as desribed in

the previous setion, let us only highlight the ommon and distint features of

solving (AGE

C
) in Theorem 20.

Comparing with (4.14), we immediately see that (3.9) does not ontain an

additional term oming from the oderivative of multifuntion Q̂. This follows

from the fat that Q̂ does not depend on the design variable α. The GE (AGE

C
)

is treated analogously to the Tresa ase: based on (3.12) and the expressions in

Propositions 11�16 one assembles the matrix

D̂ =



D̂(1)

0 D̂(2)

0 0 0

0 0 0


 ∈ R3p×3p,

where the entries of the diagonal matries D̂(j) ∈ Rp×p
, j = 1, 2, are again bounded

by Cmax and Clip. Note that in the Coulomb frition law the tangential stress
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depends also on the normal stress�the third omponent of our state vetor�

explaining the presene of D̂(2)
in the matrix D̂ (ompare with D(2)

from the

previous setion).

Sine the single-valued part of (GEC(α)) oinides with that of (2.8), we an

use (4.13) to transform the adjoint system in Theorem 20 into the omputationally

managable form

p∗ = ∇αF (ᾱ, ȳ)Tv∗, (4.16)

−∇yJ(ᾱ, ȳ) =
(
A(ᾱ) + D̂

)T
v∗. (4.17)

Conerning the solvability of (4.17) the same applies as for (4.15).

4.4 Examples

In omputations we use a slightly di�erent de�nition of the disrete admissible

set Uh
ad. The reason for this is twofold:

(i) to redue the dimension of the ontrol variables, and

(ii) to obtain a smooth ontat boundary ΓC(αh).

To this end we de�ne Uh
ad as a suitable subset of Bézier funtions of order d. Let

us reall that Bézier funtions (of order d) are de�ned as

Bα(x) :=

d∑

i=0

αiβd,i(x), where βd,i(x) :=
1

ad

(
d

i

)
xi(a− x)d−i, x ∈ [0, a]

and α = (α0, . . . , αd) ∈ Rd+1
. The points (ih′, αi) ∈ R2

, i = 0, . . . , d (h′ := a/d)
are alled the ontrol points of Bα. It holds that Bα(0) = α0, Bα(a) = αd and

GrBα lies in the onvex hull of its ontrol points. Moreover, taking the ontrol

variable α from the set

U := {α ∈ Rd+1 | 0 ≤ αi ≤ C0 ∀i = 0, . . . , d,

|αi−1 − αi| ≤ C1h
′ ∀i = 1, . . . , d,

|αi−1 − 2αi + αi+1| ≤ C3(h
′)2 ∀i = 1, . . . , d− 1,

C21 ≤

∫ a

0

Bα(x) dx ≤ C22}

(4.18)

ensures that the orresponding Bézier funtion Bα satis�es all onstraints intro-

dued in (2.5), in partiular, |B′
α| ≤ C1 and |B′′

α| ≤ C3 everywhere in [0, a]. The
domain Ω(α) is �rst approximated by a polygonal one, then triangulated using

quadrilaterals to obtain the omputational domain Ωh(α). The disrete funtion
spaes on Ωh(α) are de�ned using Q1-isoparametri �nite elements of Lagrange

type. In all three examples presented below the values (f. Figure 1.2) a = 2,
b = 1, d = 20 are used and the total number of nodes (verties of quadrilaterals)

equals 1800 for eah α ∈ U , inluding 60 on the ontat part.
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Example 1

First, we will assume the model with Tresa frition and a solution-dependent

oe�ient of frition F, given by the smooth funtion

F(s) := 0.25
1

1 + s2
, s ∈ R+. (4.19)

The slip bound shall take the onstant value g = 150. In the present example

we will try to identify the ontat normal stress λ by a presribed target value

λ
tar

, as denoted by the dotted line in Figure 4.3. Thus, the disretized shape

optimization problem reads as

minimize ‖λ(α)− λ
tar

‖2,
subj. to α ∈ U,

}

where λ(α) is the seond omponent of the solution to (M(α)). The other pa-

rameters in the model were set to the following values: C0 = 0.75, C1 = 0.85,
C3 = 10, C21 = 1.88, C22 = 1.95; we take a material with Young's modulus

E = 1 GPa and Poisson onstant σ = 0.3; density of fores that press on the

upper edge is P 1 = (0,−60 MPa) on (0, 1.8) × {1} and zero on (1.8, 2) × {1},
while a pulling fore of density P 2 = (50 MPa, 30 MPa) ats on the right edge;

the body is lamped along its left edge.

The initial design is presented in Figure 4.1 in its unloaded state (left) and

the distribution of the von Mises stress in the deformed body (right). Similarly,

Figure 4.2 shows the optimal design before and after loading. On Figure 4.3

we ompare the normal ontat stresses with the presribed funtion: while the

initial ontat stress is far from the target values, the stresses for the optimal

design follow λ
tar

very losely. Let us mention, that the BT algorithm onverged

from α0 to α
opt

in about 150 iterations and the initial value J (α0) = 5.9 · 104 of
the ost funtional dropped by two orders of magnitude to J (α

opt

) = 9.1 · 102.
In order to emphasize the importane of proper modelling of ontat problems,

(a) Before deformation (b) After deformation

Figure 4.1: Example 1; initial design.

let us re-ompute the previous example with the following modi�ation: instead

of allowing F to depend on the unknown solution we �x its value to

F(s) := 0.25, s ∈ R+,

but keep all other parameters of Example 1 unhanged. Starting from the same

initial domain Ω(α0), the BT algorithm onverges to a solution Ω(ᾱ
opt

)�f. Fig-
ure 4.4. At �rst sight, Figure 4.2 yields a satisfatory orrespondene with the
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(a) Before deformation (b) After deformation

Figure 4.2: Example 1; optimal design.

(a) Initial design (b) Optimal design

Figure 4.3: Example 1; normal stresses.

solution of the unsimpli�ed problem. However, reomputing the original ontat

problem with (4.19) on Ω(ᾱ
opt

) reveals that Ω(ᾱ
opt

) is atually far from being

optimal (f. Figure 4.5).

(a) Before deformation (b) After deformation

Figure 4.4: Example 1 with F = onst; optimal design Ω(ᾱ
opt

).

Example 2

In the next two example omputations we will onsider the ontat problems with

Coulomb frition (MC(α)), but with a muh more ompliated frition oe�ient
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Figure 4.5: Example 1; normal stress distribution on ΓC(ᾱopt

).

F, namely

F(s) :=





0.2 + s, if s ∈ [0, 0.05],

0.25− s, if s ∈ (0.05, 0.2],

0.1, if s ∈ (0.2,∞).

Note that the funtion F is Lipshitz with modulus 1, but non-di�erentiable at
0.05 and 0.2, and also non-monotone.

Our aim is to �nd a suitable ontat part, among the ones spei�ed by U ,
whih minimizes peaks of the (disrete) normal ontat stress λh(α) represented
by the vetor of Lagrange multipliers λ(α), α ∈ U . Sine the max-norm ‖λ‖∞ =
maxi=1,...,p |λi| is not ontinuously di�erentiable, we shall use the lq-norm |λ|q =

(
∑p

i=1 |λi|
q)

1/q
instead, with q large enough (q = 6 in our ase). Thus, the shape

optimization problem reads as

minimize |λ(α)|66,
subj. to α ∈ U.

}

Note that if α∗ ∈ U is suh that uν(α
∗) < −α∗

, i.e., there is no ontat between

the deformed body and the obstale, then by omplementarity λ(α∗) = 0 and

hene α∗
solves the above shape optimization problem. In order to avoid suh

�trivial� ases, the volume onstraint in U has to be imposed with a su�iently

large lower bound. Keeping the material parameters and fores equal to the ones

used in Example 1, the onstants in the de�nition of U are hanged to C0 = 0.75,
C1 = 3, C3 = 10, C21 = 1.8 and C22 = 2 (essentially, no upper bound).

As in the previous example, Figure 4.6 shows the initial design before and after

deformation; in Figure 4.7 the same situation is depited in ase of the optimal

shape Ω(α
opt

) as omputed by the BT algorithm. During minimization the value

of the ost funtional was redued by one order of magnitude from 6.3 · 105 to

7.3 · 104 in 140 iterations.

Example 3

The previous example related to the important tehnial issue of minimizing wear

and fatigue by avoiding onentrations and peaks of ontat stresses. In the ase

of fritionless ontat problems it was shown in [25℄ that the aforementioned
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(a) Before deformation (b) After deformation

Figure 4.6: Example 2; initial design.

(a) Before deformation (b) After deformation

Figure 4.7: Example 2; optimal design.

(a) Initial design (b) Optimal design

Figure 4.8: Example 2; normal stresses.

e�et is ahieved by minimizing the total potential energy funtional

E(α) := E(α,u(α)) =
1

2
uT (α)A(α)u(α)− LT (α)u(α). (4.20)
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Importantly, it an be shown that in this ase E(α) is ontinuously di�erentiable.

This has a onsiderable impat on the minimization algorithm, among others.

Unfortunately, solutions to ontat problems with Coulomb frition annot be

desribed as a minimizer of some quadrati funtional, like E(α, ·). Nevertheless,
we may still ask what do we get by minimizing the elasti energy, whether the

optimal shape has similar properties as in the fritionless ase. To this end we

de�ne the shape optimization problem:

minimize E(α),
subj. to α ∈ U,

}

but in the de�nition (4.20) of the ost funtional E the funtion u(α) now stands

for the �rst omponent of the solution to (MC(α)). All parameters (oe�ient

of frition, material parameters, fores, onstants in the de�nition of U , initial
design, et.) are the same as in the previous example.

This time the BT solver took 48 iterations to onverge, yielding a derease

in the ost funtional from the initial value −7.69 to −10.88. Comparing the

obtained optimal shape α̃
opt

(see Figure 4.10) with Figure 4.7, the resemblene

is signi�ant. In partiular, the distribution of the normal ontat stress (see

right-hand side piture in Figure 4.11) is �almost onstant� along ΓC(α̃opt

), with
around the same value as on the right of Figure 4.8�exept for the node, where

the ontat and Neumann boundary onditions meet.

(a) Before deformation (b) After deformation

Figure 4.9: Example 3; initial design.
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(a) Before deformation (b) After deformation

Figure 4.10: Example 3; optimal design.

(a) Initial design (b) Optimal design

Figure 4.11: Example 3; normal stresses.
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Conlusion

Summary

In the thesis we address two separate, but related problems, namely, shape op-

timization in ontat problems with two di�erent models of frition: the Tresa

and Coulomb laws of frition. In both ases we assume that the frition oe�ient

may depend on the solution. In order to see the ommonalities and di�erenes in

the analysis of these problems side by side, the thesis is divided into four logial

units as follows.

Chapter 1 onerns fritional ontat problems in general. We start with the

Signorini problem with Tresa frition�not just beause of its simpliity, but

it will also serve as a ommon basis for the analysis of the two frition laws

mentioned above and of our interest. For all three fritional ontat problems we

mention their weak forms, disretize them and derive their algebrai ounterparts.

In addition to the usual primal formulation of the variational inequalities repre-

senting the weak form of our ontat problems we also give their so-alled mixed

formulation. These involve the normal ontat stresses as Lagrange multipliers�

an important physial quantity whih is of interest in many appliations, not to

mention the Coulomb frition model itself. Sine our aim is to solve the shape

optimization problems numerially, we fous on the algebrai state problems and

give appropriate onditions on the frition oe�ient ensuring their unique solv-

ability. Moreover, these onditions do not depend on the geometry, as noted in

Chapter 1.

The main part of the thesis is omposed of hapters 2 and 3, in whih we in-

vestigate the shape optimization problems linked to the state problems desribed

above. These are treated on the algebrai level only and take the form of an

MPEC. Our goal is not to analyze the MPECs for one partiular ost funtional,

but rather the ability to hoose ost funtionals from a broad family. To this end

we speify an admissible set for the shape parameter in the beginning and show

that the shape optimization problems attain a solution for any �reasonable� ost

funtional provided the frition oe�ient is regular enough. Obviously, these

onditions di�er for the Tresa and Coulomb models of frition, but in both ases

lead to unique solvability of the respetive state problems. Therefore, it is natural

to approah the numerial solution of the MPECs via the ImP method. However,

in order to apply subgradient methods to the minimization of the resulting NLP,

one has to be able to ompute (Clarke's) subgradients of the nonsmooth, nonon-

vex, impliitly de�ned ontrol-to-state mappings. This matter is addressed in the

respetive setions devoted to sensitivity analysis. Here we make extensive use of

modern tools from variational analysis, in partiular the generalized di�erential

alulus of B. Mordukhovih.
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Chapter 4 is devoted to the numerial solution of the shape optimization

problems in line with the ideas outlined above. We bri�y sketh the BT algorithm

user for the minimization of both NLP problems resulting from the ImP approah.

Next, the adjoint generalized equations, derived in the previous hapters for the

omputation of subgradients, are revisited and their solution explained in more

detail. Finally, the theoretial results are demonstrated by three examples: one

using the Tresa model of frition and two involving the Coulomb model. In eah

ase we use a di�erent ost funtional, demonstrating various features of ontat

shape optimization problems.

For the onveniene of the uninitiated reader we have alse inluded an ap-

pendix, in whih we gather basi de�nitions from the theory of nonsmooth and

variational analysis. In partiular, we disuss various notions from Clarke's and

Mordukhovih's alulus and their relationship, but only to the extent needed in

the thesis.

Outlook

Finally, let us outline some diretions and areas for future researh, improving on

the results obtained in the present thesis.

A straightforward follow-up on the thesis would be the generalization of the

state problem to three spae dimensions. The 3D Signorini problem with Tresa

frition involving a solution-dependent oe�ient of frition was analyzed in

[30℄ and the 3D Signorini problem with Coulomb frition involving a solution-

dependent frition oe�ient in [31℄. The results of these papers are omparable

to those in 2D, in partiular the disretized ontat problems are uniquely solvable

provided the frition oe�ient satis�es some regularity and smallness assump-

tions. For shape optimization it is essential that these assumptions do not depend

on the geometry of the underlying domain (if hosen from a suitable family of

admissible ones). The analysis presented in Chapter 2 and 3 seems to be fairly

straightforward to implement in the three-dimensional setting up to the AGE.

The only di�erene is in the omputation of the oderivative of the multifuntion

from the state GE, that is indespensable for the numerial solution of the shape

optimization problem as presented here. At this point, ideas from the thesis and

[4℄ ould possibly be ombined and re�ned in order to derive an expression that

may already be evaluated in omputer ode.

Notie that throughout the thesis we silently assumed that the ost funtional

depends only on the ontat displaements uτ , uν and the normal ontat stress

λ. In some appliations, however, the tangential ontat stress (related to the

frition fore) might be subjet to optimization, as well. To deal with this situ-

ation, two possible solutions ome immediately into ones mind. We shall sketh

them brie�y. In Setion 4.2.2 we have already seen that the tangential ontat

stress, let us denote it by λτ , may be inorporated into the state problem in the

form of another Lagrange multiplier�as it was the ase with the normal ontat

stress, denoted by λν hereafter. From the �rst equation in (4.7) we an express

TTλτ = L(α)− A(α)u− NTλν . (4.21)

Therefore, one possibility to alulate the sensitivity of λτ with respet to α is

to apply the sum rule on the right-hand side of (4.21) and ombine it with the
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results obtained in Chapter 2 and 3. Sine the quali�ation ondition ensuring

equality in the nonsmooth sum rule might be di�ult or impossible to prove, one

may onsider an alternative way as outlined below.

Eliminating from (4.7) the state variables whih orrespond to the �internal�

nodes of the triangulation (as it was done in Chapter 1 to get (1.34)), one arrives

at the following GE:

0 ∈




Aττ (α) Aτν(α) E 0

Aντ (α) Aνν(α) 0 −E
−E 0 0 0

0 E 0 0







uτ

uν

λτ

λν


−




Lτ (α)
Lν(α)

0

−α


+




0

0

NΛτ (α,ϕ,g)(λτ )
NRp

+
(λν)


 .

(4.22)

To derive the GEs orresponding to the ontat problems investigated in the

thesis, it is su�ient to apply in (4.22) the respetive �xed-point properties, see

De�nition 6 and the disussion below De�nition 9. In both ases the resulting

GEs take the form assumed in [37℄ and thus sensitivity analysis may be arried

out using the results of [37℄. However, there is a substantial di�erene: in order

for the basi assumption (3.1) in [37℄ to hold, F needs to be twie ontinuous-

ly di�erentiable, whereas the analysis in Chapter 2 and 3 required basially no

further smoothness of F besides Lipshitz ontinuity. This apparent disrepany

might be also interesting to investigate.
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Appendix A

Elements of variational analysis

When working with variational inequalities and optimal shape design problems,

one inevitably omes aross funtions and mappings that are not (ontinuous-

ly) di�erentiable everywhere in their respetive domain of de�nition. In order to

investigate their di�erential properties, new tools had to be introdued that ex-

tend the lassial alulus to funtions whih are not neessarily smooth or even

single-valued.

The purpose of this hapter is to ollet basi notions from nonsmooth and

variational analysis that are extensively used in the last three hapters of the

present thesis. The �rst setion is devoted to the lassial de�nition of Clarke's

alulus for loally Lipshitz funtions, in the seond setion we give basi de�ni-

tions from the generalized di�erential alulus of Mordukhovih and present the

relationship of the two thoeries.

A.1 Clarke alulus

A most prominent tool to treat funtions that are (loally) Lipshitz, but not

neessarily di�erentiable or onvex, is the subdi�erential alulus developed by

Clarke [7℄. Let us start with the de�nition of Lipshitz ontinuity of a funtion

de�ned on a �nite-dimensional Eulidean spae (we shall work in �nite dimensions

throughout our presentation).

De�nition 11 (Lipshitz ontinuity). Let n,m ∈ N and F : Rn → Rm
. We say,

that F is

(i) Lipshitz on ∅ 6=M ⊂ Rn
i� there exists a onstant K ≥ 0 suh that

‖F (x)− F (y)‖m ≤ K‖x− y‖n ∀x,y ∈M ; (A.1)

(ii) Lipshitz around x i� there exists a neighbourhood U of x suh that F is

Lipshitz on U ;

(iii) loally Lipshitz i� F is Lipshitz around eah x from its domain of de�ni-

tion.

Let F be Lipshitz around x. Then it is evident from (A.1) that F is al-

so ontinuous at x and the set

{
1
t
(F (y + tv)− F (y)) | |t| su�iently small

}
is

uniformly bounded with respet to v ∈ Rn
, ‖v‖n = 1, and y su�iently lose
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to x. However, F need not be diretionally di�erentiable at x. Nevertheless, a

fundamental property of Lipshitzian funtions, proved by Rademaher [45℄, is

the fat that the set of suh points is small (in a sense that it has zero Lebesgue

measure).

Lemma 11 (Rademaher). Let F : Rn → Rm
be loally Lipshitz. Then

ΩF := {x ∈ Rn | F is not Fréhet di�erentiable at x}

has Lebesgue measure 0.

One possible way to develop alulus for Lipshitzian funtions is to give a

suitable de�nition of diretional derivatives and (sub)gradients�this approah

is followed below. In the next setion, where we introdue the Mordukhovih

generalized di�erential alulus, we shall give an equivalent formulation of these

notions from a variational geometry point of view, i.e., based on tangential and

normal ones to the epigraph of a funtion.

De�nition 12 (Clarke's generalized diretional derivative). Let x, v ∈ Rn
be

arbitrary and f : Rn → R Lipshitz around x. The value

f 0(x; v) := lim sup
y→x
t→0+

f(y + tv)− f(y)

t

is then alled Clarke's generalized diretional derivative of f at x in diretion v.

De�nition 13 (Clarke's generalized (sub)gradient). Let f : Rn → R be Lipshitz

around x. Then the set

∂̄f(x) := {ξ ∈ Rn | f 0(x; v) ≥ 〈ξ, v〉n ∀v ∈ Rn}

is alled the Clarke subdi�erential of f at x and its elements are Clarke's gener-

alized gradients (or Clarke's subgradients).

It turns out that for a loally Lipshitz funtion f : Rn → R the following

useful relation holds between its generalized diretional derivative and gradients

(see [7℄):

f 0(x; v) = max{〈ξ, v〉n | ξ ∈ ∂̄f(x)}.

If f happens to be ontinuously di�erentiable around x, then f 0(x; ·) and ∂̄f(x)
oinide with the lassial diretional derivative f ′(x; ·) and gradient ∇f(x), re-
spetively.

Due to Rademaher's lemma one may express Clarke's subdi�erential in the

following equivalent form�we refer to [7℄ for its proof.

Theorem 22. Let f : Rn → R be Lipshitz around x ∈ Rn
. Then

∂̄f(x) = conv
{
lim
i→∞

∇f(x(i)) | x(i) → x, x(i) /∈ Ωf

}
.

On the basis of the above theorem one may generalize the notion of Clarke's

subdi�erential to vetor-valued Lipshitzian mappings F : Rn → Rm
.
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De�nition 14 (Clarke's generalized Jaobian). Let m,n ∈ N and F : Rn → Rm

be Lipshitz around x ∈ Rn
. Then the set

∂̄F (x) :=
{
lim
i→∞

∇F (x(i)) | x(i) → x, x(i) /∈ ΩF

}
⊂ Rm×n

is alled Clarke's generalized Jaobian of F at x.

It an be immediately seen that ∂̄F (x) is nonempty and ompat, whenever

the assumptions of De�nition 14 are met. In addition, the generalized gradients

and Jaobians introdued in De�nition 13 and De�nition 14, resp., enjoy rather

rih alulus rules for omputing generalized gradients or Jaobians of sums or

ompositions of loally Lipshitz mappings, f. [7℄. These rules are usually in the

form of set inlusions, provided some additional quali�ation onditions are met.

In ase of additional smoothness and regularity assumptions these inlusions turn

into equalities.

One smoothness ondition that ensures diretional di�erentiability of a loally

Lipshitz mapping, but is weaker than Fréhet (or ontinuous) di�erentiability is

that of semismoothness. It was �rst introdued by Mi�in [32℄ for Lipshitzian

funtions f : Rn → R and later generalized to vetor-valued mappings by Qi and

Sun [44℄.

De�nition 15 (semismoothness). Let F : Rn → Rm
be Lipshitz around x ∈ Rn

.

We say that F is

(i) semismooth at x i� the limit

lim
V∈∂̄F (x+tv′)
v′→v, t→0+

{Vv′}

exists for all v ∈ Rn
;

(ii) weakly semismooth at x i� the limit

lim
V∈∂̄F (x+tv)

t→0+

{Vv}

exists for all v ∈ Rn
.

It is lear, that semismoothness implies weak semismoothness. Moreover, it

holds that if F is weakly semismooth at x, than it is also diretionally di�eren-

tiable at x and

F ′(x; v) = lim
V∈∂̄F (x+tv)

t→0+

{Vv}

for every v ∈ Rn
(f. [44, Proposition 2.1℄). Smooth, pieewise smooth, or onvex

funtions are all examples of semismooth funtions.

A.2 Mordukhovih alulus

A.2.1 Multifuntions

We start by olleting the most basi notions from set-valued analysis that are

going to be used in the thesis. For a more thorough presentation of the topi we

kindly refer to e.g. [2℄.
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Let us reall that by a set-valued mapping (or simply multifuntion) F : X ⇒

Y we mean a funtion F : X → 2Y , i.e., F (x) ⊂ Y for eah x ∈ X . The sets

DomF := {x ∈ X | F (x) 6= ∅},

GrF := {(x, y) ∈ X × Y | x ∈ X, y ∈ F (x)},

are alled the domain and graph of F , respetively. We use the ommon term

losed multifuntion if GrF is losed in the produt topology of X × Y .
In the sequel we shall restrit our presentation to the �nite dimensional ase,

i.e., when X = Rn
and Y = Rm

for some n,m ∈ N.

De�nition 16 (Kuratowski-Painlevé outer/inner limit of sets). Let F : Rn
⇒ Rm

be a multifuntion and x̄ ∈ Rn
arbitrary. Then the sets

Lim sup
x→x̄

F (x) := {y ∈ Rm | ∃x(i) → x̄ ∃y(i) → y : y(i) ∈ F (x(i))},

Lim inf
x→x̄

F (x) := {y ∈ Rm | ∀x(i) → x̄ ∃y(i) → y : y(i) ∈ F (x(i))}

are alled the Kuratowski-Painlevé outer and inner limit of F at x̄, respetively.

Several Lipshitz-like properties may be de�ned for multifuntions. A diret

generalization of loal Lipshitz ontinuity of single-valued funtions as intro-

dued in De�nition 11 is the so-alled Aubin property (originally the term pseudo-

Lipshitzian property was used by Aubin [1℄).

De�nition 17 (Aubin property). A multifuntion F : Rn
⇒ Rm

is said to have

the Aubin property around (x̄, ȳ) ∈ GrF i� there exist neighbourhoods U of x̄

and V of ȳ and a onstant K ≥ 0 so that

F (x) ∩ V ⊂ F (x′) +K‖x− x′‖nBm ∀x,x′ ∈ U . (A.2)

It an be seen that if F happens to be single-valued around (x̄, ȳ), ȳ = F (x̄),
the above de�nition redues to that of Lipshitz ontinuity around x̄.

By �xing x′ ≡ x̄ in (A.2) we arrive at the weaker property alled almness.

It was originally introdued in [53, De�nition 2.8℄ under the term pseudo upper-

Lipshitz ontinuity.

De�nition 18 (almness). A multifuntion F : Rn
⇒ Rm

is said to be alm

around (x̄, ȳ) ∈ GrF i� there exist neighbourhoods U of x̄ and V of ȳ and a

onstant K ≥ 0 suh that

F (x) ∩ V ⊂ F (x̄) +K‖x− x̄‖nBm ∀x ∈ U .

A.2.2 Generalized di�erentiation

De�nition 19 (ontingent one). Let ∅ 6= A ⊂ Rn
and x̄ ∈ A be arbitrary. Then

the set

TA(x̄) := Lim sup
λ→0+

A− x̄

λ
(A.3)

is alled the ontingent one (or Bouligand tangent one) to A at x̄.
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De�nition 20 (regular and limiting normal one). Let ∅ 6= A ⊂ Rn
and x̄ ∈ A

be arbitrary. The regular (Fréhet) normal one to A at x̄ is de�ned as

N̂A(x̄) :=
{
x∗ ∈ Rn

∣∣∣ lim sup
x

A
→x̄

〈x∗,x− x̄〉n
‖x− x̄‖n

≤ 0
}
. (A.4)

For x̄ /∈ A one sets N̂A(x̄) := ∅. The limiting (Mordukhovih) normal one to A
at x̄ is then de�ned as

NA(x̄) := Lim sup
x

A
→x̄

N̂A(x). (A.5)

All three sets introdued in (A.3)�(A.5) are indeed losed ones with vertex

at 0 and�in the assumed �nite dimensional setting�the relation

N̂A(x̄) = (TA(x̄))
0 = {x∗ ∈ Rn | 〈x∗, v〉n ≤ 0 ∀v ∈ TA(x̄)} (A.6)

holds true, where C0
denotes the (negative) polar one to C.

Remark 14. Due to (A.6) the regular normal one N̂A(x̄) is always onvex, where-
as TA(x̄) and NA(x̄) are in general nononvex. This means that the limiting

normal one annot be expressed as the dual to any tangent one.

It an be immediately seen that the inlusion

N̂A(x̄) ⊂ NA(x̄) (A.7)

holds for any nonempty A ⊂ Rn
and x̄ ∈ A. If (A.7) holds with equality, we say

that the set A is normally regular at x̄. E.g., if A is loally onvex around x̄, it

is automatially normally regular at this point.

Given an extended-real-valued funtion ϕ : Rn → R := R∪ {∞}, its epigraph
is the set

epiϕ := {(x, y) ∈ Rn × R | x ∈ Rn, y ≥ ϕ(x)}.

On the basis of (A.4) and (A.5) one may de�ne various subdi�erentials of ϕ as

suitable sets of normals to its epigraph.

De�nition 21 (regular and limiting subdi�erential). Let ϕ : Rn → R be �nite

at x̄ ∈ Rn
. Then

∂̂ϕ(x̄) := {x∗ ∈ Rn | (x∗,−1) ∈ N̂epiϕ(x̄, ϕ(x̄))} (A.8)

is alled the regular subdi�erential of ϕ at x̄, whereas

∂ϕ(x̄) := {x∗ ∈ Rn | (x∗,−1) ∈ Nepiϕ(x̄, ϕ(x̄))} (A.9)

stands for the limiting subdi�erential of ϕ at x̄.

If ϕ is lower semiontinuous around x̄ (i.e., its epigraph is losed around

(x̄, ϕ(x̄))), then the limiting subdi�erential may be expressed as

∂ϕ(x̄) = Lim sup
x

ϕ
→x̄

∂̂ϕ(x), (A.10)

where x
ϕ
→ x̄ means that x → x̄ with ϕ(x) → ϕ(x̄). Of ourse, if ϕ is onvex

around x̄, then both ∂̂ϕ(x̄) and ∂ϕ(x̄) are equal to the lassial onvex subdi�er-

ential. In ase ϕ is stritly di�erentiable at x̄, then ∂̂ϕ(x̄) = ∂ϕ(x̄) = {∇ϕ(x̄)},
where ∇ϕ(x̄) denotes the gradient of ϕ.

Considering the graph instead of the epigraph in (A.8) and (A.9), one may

onstrut derivative-like objets for multifuntions, as well, alled oderivates.
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De�nition 22 (regular and limiting oderivative). Given a multifuntion F :
Rn

⇒ Rm
and (x̄, ȳ) ∈ GrF , the multifuntion from Rm

into subsets of Rn

de�ned by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ N̂GrF (x̄, ȳ)} ∀y∗ ∈ Rm,

is alled the regular oderivative of F at (x̄, ȳ) in diretion y∗
, whereas

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ NGrF (x̄, ȳ)} ∀y∗ ∈ Rm

denotes the (limiting) oderivative of F .

Sine the normal ones (A.4) and (A.5) are pointed (ontain the null ve-

tor), both oderivatives are positively homogeneous losed multifuntions for eah

(x̄, ȳ) ∈ GrF . In addition, they redue to the adjoint Jaobian

D̂∗F (x̄, ȳ)(y∗) = D∗F (x̄, ȳ)(y∗) = {(∇F (x̄))Ty∗}, y∗ ∈ Rm,

provided F is single-valued

1

and stritly di�erentiable at x̄. Moreover, the regular

oderivative equals to the adjoint Jaobian D̂∗F (x̄)(y∗) = {(∇F (x̄))Ty∗}, y∗ ∈
Rm

, whenever F is single-valued and Fréhet-di�erentiable at x̄; this does not

hold for the limiting oderivative.

It has been found that the (limiting) oderivative may provide information

about Lipshitzian behaviour of a losed multifuntion F : Rn
⇒ Rm

around

(x̄, ȳ) ∈ GrF , sine

F has the Aubin property around (x̄, ȳ) ⇐⇒ D∗F (x̄, ȳ)(0) = {0}, (A.11)

see [36℄, [47℄. The right hand side of the equivalene (A.11) is alled the Mor-

dukhovih riterion, proved by B. Mordukhovih in [34℄.

A.2.3 Appliation to Lipshitzian mappings

In this setion we ollet some fats onerning the appliation of generalized

di�erentiation to single-valued and loally Lipshitz funtions. In partiular, we

reall the relationship between the (limiting) oderivative and (limiting) subdif-

ferential, and ompare the (limiting) subdi�erential with Clarke's subdi�erential.

First of all, reall that the Aubin property redues to loal Lipshitz ontinuity

in ase of a single-valued mapping F : Rn → Rm
, hene the Mordukhovih

riterion (A.11) yields:

F is Lipshitz around x̄ ∈ Rn ⇐⇒ D∗F (x̄)(0) = {0}. (A.12)

The next result provides a onvenient way for omputing the oderivative of

a loally Lipshitzian mapping via the limiting subdi�erential.

Theorem 23 (salarization formula). Let F : Rn → Rm
be Lipshitz around

x̄ ∈ Rn
. Then

D∗F (x̄)(y∗) = ∂〈y∗, F 〉(x̄) ∀y∗ ∈ Rm, (A.13)

where 〈y∗, F 〉 : x 7→ 〈y∗, F (x)〉m, x ∈ Rn
.

1

For a single-valued mapping F we simply write D̂
∗
F (x̄) and D

∗
F (x̄), i.e., omit ȳ = F (x̄)

from the argument.
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Proof. See e.g. [36, Theorem 3.28℄.

In the previous setion we introdued Clarke's generalized derivative-like ob-

jets for Lipshitzian funtions and mappings. In order to relate these notions

to the limiting subdi�erential and oderivative, let us rephrase them in terms of

variational geometry.

For a given nonempty A ⊂ Rn
and x̄ ∈ A, one may de�ne the Clarke tangent

one to A at x̄ as

T̄A(x̄) := Lim inf
x

A
→x̄,

λ→0+

A− x

λ
,

and the Clarke normal one as its (negative) polar one:

N̄A(x̄) := (T̄A(x̄))
0.

In partiular, the Clarke normal one is always onvex. This way one has (f. [47℄)

∂̄ϕ(x̄) = {ξ ∈ Rn | (ξ,−1) ∈ N̄epiϕ(x̄, ϕ(x̄))} (A.14)

for any ϕ : Rn → R that is Lipshitz around x̄ ∈ Rn
. In addition, (A.14) yields an

extension of the Clarke subdi�erential to more general funtions, not neessarily

Lipshitzian. Nevertheless, if ϕ is loally Lipshitz, then the following relation

between its Clarke and Mordukhovih subdi�erentials holds:

∂̄ϕ(x̄) = conv ∂ϕ(x̄). (A.15)

An analogous results holds true between the Clarke generalized Jaobian and

the oderivative of a loally Lipshitz vetor-valued mapping. This is formulated

in a separate theorem below.

Theorem 24. Let F : Rn → Rm
be Lipshitz around x̄ ∈ Rn

. Then

(∂̄F (x̄))Ty∗ = convD∗F (x̄)(y∗) ∀y∗ ∈ Rm.

For the proofs of the respetive laims in this setion we refer to the mono-

graphs [36℄ and [47℄. Finally, we onlude the hapter with an example that is

intended to demonstrate all the above notions in a very simple situation.

Example 3. Let us de�ne the set

A := {(x, y) ∈ R2 | y ≥ −|x|},

i.e., A is the epigraph of ϕ(x) = −|x|, x ∈ R. Clearly, ϕ is nononvex, but

Lipshitz with modulus 1. After some alulation, for the ontingent and Clarke

tangent ones at (0, 0) one gets

TA(0, 0) = A, T̄A(0, 0) = {(h, k) ∈ R2 | k ≥ |h|},

respetively. Taking their negative polars yields the Fréhet and Clarke normal

ones at (0, 0):

N̂A(0, 0) = {(0, 0)}, N̄A(0, 0) = {(ξ, η) ∈ R2 | η ≤ −|ξ|}.

95



Therefore

∂̂ϕ(0) = ∅ and ∂̄ϕ(0) = [−1, 1].

Sine ϕ is smooth at all points exept x = 0, we have ∂̂ϕ(x) = sgn(x) for x 6= 0
and (A.10) an be applied to determine the limiting subdi�erential at 0:

∂ϕ(0) = {−1, 1}. (A.16)

When omputing the oderivative mapping D∗ϕ at 0, we �rst need to evaluate

the normal one to the graph of ϕ at (0, 0):

B := Grϕ = {(x, y) | y = −|x|}.

After some alulation one arrives at the expression

NB(0, 0) = {(x∗, y∗) | y∗ ≥ |x∗|} ∪ {(x∗, y∗) | y∗ = −|x∗|},

where the �rst set on the right hand side equals N̂B(0, 0) and the seond one

represents limit points of N̂B(x, ϕ(x)) as x → 0+ and x → 0−, that are not

ontained in the �rst set. From the de�nition of the oderivative we onlude

D∗ϕ(0)(y∗) =





{−y∗, y∗} if y∗ > 0,

{0} if y∗ = 0,

[y∗,−y∗] if y∗ < 0.

Notie that the ase y∗ = 0 is a onsequene of the Mordukhovih riterion

(A.12); the other ases may be omputed employing the salarization formula

and positive homogeneity of the subdi�erential mapping (i.e., ∂(αϕ) = α(∂ϕ) for
α ≥ 0):

D∗ϕ(0)(y∗) =

{(
∂ϕ(0)

)
y∗ = {−1, 1}y∗, if y∗ > 0(

∂(−ϕ)(0)
)
(−y∗) = [−1, 1](−y∗), if y∗ < 0.

In the �rst ase we have used (A.16); in ase y∗ < 0 the funtion −ϕ(x) = |x| is
onvex, therefore its subdi�erential equals to the onvex subdi�erential.
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