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Notation

Sets

∅ empty set

N set of positive integers {1, 2, 3, . . .}
N0 set of nonnegative integers {0, 1, 2, . . .}
R set of real numbers (−∞,+∞)
R+ set of nonnegative real numbers [0,+∞)
R− set of nonpositive real numbers (−∞, 0]
(a, b) open interval in R
[a, b] 
losed interval in R
Br(x) 
losed ball of radius r > 0 and 
enter x ∈ Rn

Br = Br(0)
X × Y Cartesian produ
t of the sets X and Y
Xn X ×X × · · · ×X︸ ︷︷ ︸

n times

A 
losure of A ⊂ X (in the topology of X)

∂A topologi
al boundary of A ⊂ X
relintA relative interior of A ⊂ X
convA 
onvex hull of A
{xi}i∈I , {x

(i)}i∈I sequen
e of elements (I ⊂ N)
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Fun
tions and mappings

f : X → R real-valued fun
tion from X into R
f : X → Rn

ve
tor-valued mapping from X into Rn

F : Rn
⇒ Rm

multifun
tion (or set-valued mapping); a mapping

from Rn
into subsets of Rm

x 7→ f(x) fun
tion (mapping) f
Ck(Ω) spa
e of fun
tions having 
ontinuous derivatives on

Ω up to order k ∈ N0

C0,1(Ω) spa
e of Lips
hitz fun
tions on Ω
Lp(Ω) Lebesgue integrable fun
tions of order p ≥ 1 on Ω
L∞(Ω) essentially bounded measurable fun
tions on Ω
H1(Ω) Sobolev spa
e W 1,2(Ω) of fun
tions belonging together with

their distributional derivatives into L2(Ω)
divf divergen
e operator

∇f gradient of a real-valued fun
tion

∇f Ja
obian matrix of a ve
tor-valued fun
tion

∂f Clarke's subgradient of a real-valued f

∂f Clarke's generalized Ja
obian of ve
tor-valued f

∂f limiting subdi�erential of the real-valued fun
tion f
D∗Q limiting 
oderivative of the multifun
tion Q
dist(x, S) distan
e of x ∈ Rn

from the set S ⊂ Rn

Linear algebra

Rn
Eu
lidean spa
e of dimension n

x ∈ Rn

olumn ve
tor x = (x1, . . . , xn)

T

xi ith 
omponent of x ∈ Rn

Rn×m
spa
e of matri
es of type n×m

E unit matrix

AT
transposed matrix

A−1
inverse matrix

〈x,y〉n = x · y =
∑n

i=1 xiyi; Eu
lidean s
alar produ
t on Rn

‖x‖n = (x · x)1/2; Eu
lidean norm on Rn

‖x‖∞ = max{|xi| | i = 1, . . . , n}; max-norm on Rn

x • y = (x1y1, . . . , xnyn)
T
; 
omponentwise produ
t on Rn

x÷ y = (x1/y1, . . . , xn/yn)
T
; 
omponentwise division on Rn

|x| = (|x1|, . . . , |xn|)T ; 
omponentwise absolute value

x ≥ y 
omponentwise 
omparison, i.e. xi ≥ yi ∀i = 1, . . . , n;
A : B =

∑n
i=1

∑m
j=1AijBij ; s
alar produ
t on Rn×m
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Abbreviations

AGE adjoint generalized equation

BT bundle trust

CP 
utting plane

GE generalized equation

ImP impli
it programming

MPEC mathemati
al program with equilibrium 
onstraints

NLP nonlinear program

SRC strong regularity 
ondition
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Introdu
tion

There is virtually no area of me
hani
al engineering where one would not en-


ounter the problem of determining the motion/position of several deformable

bodies that are or may be
ome in 
onta
t, but 
annot penetrate one another.

Moreover, in many appli
ations it is simply not possible to negle
t the a
tion

of fri
tion for
es on the 
onta
ting surfa
es. These fri
tional e�e
ts may be wel-


omed, e.g. in ma
hine tools, or undesirable, e.g. be
ause they 
ause wear in the

material and thus shorten the life
y
le of the 
onta
ting parts. In either 
ase,

engineers have always tried to maximize the desired e�e
ts just by altering the

geometry of the modelled elements�this is the topi
 of 
onta
t shape optimiza-

tion.

From the mathemati
al point of view, shape optimization is the bran
h of

optimal 
ontrol theory, where the 
ontrol variable (also 
alled design variable in

the 
ontext of shape optimization) is 
onne
ted to the geometry of the problem. A

fundamental role in shape optimization problems is played by the 
ontrol-to-state

mapping (or solution map) S, whi
h assigns to ea
h feasible value of the design

variable the set of solutions to the state problem. Thus, any shape optimization

problem 
an be written in the following general form:

minimize J(α, y),
subj. to y ∈ S(α),

α ∈ Uad,



 (1)

where the real-valued fun
tion J is 
alled the 
ost fun
tional, Uad signi�es an ad-

missible set of design variables α and S usually represents an equilibrium problem.

Typi
ally, the state variable y is sought in a fun
tion spa
e V (α), where α deter-

mines the domain of de�nition of y. After suitable dis
retization, (1) turns into a
(�nite-dimensional) mathemati
al program with equilibrium 
onstraints (MPEC),

where α ∈ Uad ⊂ Rm
, y ∈ Rn

and S : Rm
⇒ Rn

. If the state problems hap-

pen to be uniquely solvable for ea
h α, i.e. S is single-valued, we 
an substitute

y = S(α) and solve the MPEC as a standard nonlinear optimization problem.

This is 
alled the impli
it programming (ImP) approa
h, sin
e the 
omposite 
ost

fun
tional J : α 7→ J(α, S(α)) involves the impli
itly de�ned 
ontrol-to-state

mapping. Fast minimization algorithms may be applied provided one is able to


ompute (sub)gradients of J . As it turns out, this is a major problem whenever

S is 
ompli
ated enough.

Due to its importan
e, shape optimization in 
onta
t problems has been sub-

je
t to resear
h for quite some time�let us mention the monographs [15, 16, 52℄

and the referen
es therein. For example, in [16℄ the two-dimensional (2D) Sig-

norini problem is 
onsidered without fri
tion and with Tres
a fri
tion; the papers

[3℄ and [4℄ analyse the same problem with Coulomb fri
tion in two and three di-

7



mensions, respe
tively. In the present thesis we aim at generalizing these results

to 2D 
onta
t problems with Tres
a and Coulomb laws of fri
tion, where the 
o-

e�
ient of fri
tion may depend on the magnitude of the tangential displa
ement.

By means of it one 
an model, e.g., in dynami
 
onta
t problems the transition

from the stati
 fri
tion 
oe�
ient to the dynami
 one, or the sti
k-slip motion

during earthquakes�see e.g. [49℄. In their weak formulation, 
onta
t problems

with Tres
a fri
tion and a solution-dependent 
oe�
ient of fri
tion take the form

of an impli
it variational inequality of the se
ond kind, similarly as for the lo-


al Coulomb law in 2D in [3℄; however, in our 
ase it 
annot be proved that

the 
ontrol-to-state mapping S is pie
ewise smooth, unless imposing additional

smoothness assumptions on the 
oe�
ient of fri
tion. Therefore, when perform-

ing sensitivity analysis we follow rather [4℄ and employ the generalized di�erential


al
ulus of B. Mordukhovi
h to derive �rst order sensitivities of S. Moreover, in


ontrast to the Coulomb 
ase, the dis
retized state problem is formulated as a

generalized equation with a 
ontrol-dependent multivalued part, whi
h is a rather

un
ommon model in the literature. Things get even more 
ompli
ated as the lo
al

Coulomb law of fri
tion is 
oupled with a solution-dependent fri
tion 
oe�
ient;

nevertheless, the established approa
h proved to be su

essful also in this 
ase.

The thesis 
onsists of four 
hapters and an appendix. In Chapter 1 we intro-

du
e the state problems while keeping the design variable α �xed. We deal with

fri
tional 
onta
t problems and their various variational formulations, dis
retiza-

tion and solvability with respe
t to the 
oe�
ient of fri
tion.

Chapter 2 deals with shape optimization in 
onta
t problems with the Tres
a

model of fri
tion and a solution-dependent 
oe�
ient of fri
tion. After re
alling

brie�y the main results of [43℄ we move onto the dis
rete shape optimization

problem, prove its solvability and 
ondu
t sensitivity analysis based on modern

tools from variational analysis.

The stru
ture of Chapter 3, where we investigate shape opimization in 
onta
t

problems with Coulomb fri
tion and a solution-dependent 
oe�
ient of fri
tion,

very mu
h resembles that of Chapter 2. However, in this 
ase we treat only the

dis
retized shape optimization problem: Lips
hitz 
ontinuity of S and solvability

of the shape optimization problem is proved. Again, sensitivity analysis represents

the 
ore of the 
hapter, providing for a subgradient of the 
ost fun
tional in

numeri
al experiments.

Chapter 4 introdu
es �rst the tools used for the numeri
al realization of 
on-

ta
t shape optimization problems: the bundle trust minimization algorithm, solu-

tion of the state problems and the adjoint equations, then �nally several examples

are presented.

For the sake of 
ompleteness and 
onvenien
e of the reader, we provide a sum-

mary of those basi
 tools from nonsmooth and variational analysis (Clarke's and

Mordukhovi
h's 
al
ulus) in Appendix A that are used extensively throughout

Chapters 2 and 3.
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Chapter 1

Conta
t problems with various

models of fri
tion

In the following introdu
tory 
hapter we des
ribe the state problems, paramet-

rized by the geometry of the underlying domain. This will play 
entral role in the

subsequent 
hapters dealing with �nding an optimal value of this parameter. We

start our exposition with the 
lassi
al Signorini problem in linearized elasti
ity

(posed originally in [51℄ and solved in [13, 14℄, paving the ground for the theory

of variational inequalities) 
ombined with the most basi
 model of fri
tion, the

so-
alled Tres
a law. Due to its simpli
ity, this problem has been thoroughly an-

alyzed and questions 
on
erning its (unique) solvability answered satisfa
torily

(see e.g. the monographs [11, 22, 24℄ on unilateral 
onta
t problems). Based on

the aforementioned problem we introdu
e and analyze properties of 
onta
t prob-

lems with �generalized� Tres
a and Coulomb laws of fri
tion, where we allow the


oe�
ient of fri
tion F to depend on the unknown solution (see also [19, 20℄ and

[30, 31℄ for the three-dimensional 
ase). In parti
ular, the 
lassi
al and weak for-

mulations of these fri
tional 
onta
t problems shall be presented, followed by their

�nite element dis
retization. Conditions guaranteeing existen
e and uniqueness

of the 
orresponding solutions will be re
alled. Note, that in shape optimization

one does not deal with a parti
ular state problem, but rather a family of prob-

lems, whi
h di�er in their geometry, i.e. the domain of de�nition of the unknown

solution. Therefore, throughout the presentation below a parameter α will o

ur,

that determines the shape of the underlying domain. Spe
ial attention will paid

to the unique solvability of the dis
rete state problems with respe
t to α.

1.1 The Signorini problem with given fri
tion

We start with some basi
 notions from the theory of linearized elasti
ity and


onta
t me
hani
s. Let a planar, elasti
 body, in its referen
e 
on�guration, be

represented by the domain Ω ⊂ R2
with Lips
hitz boundary ∂Ω (later the geome-

try of Ω will be further spe
i�ed). Assume that ∂Ω is 
omposed of three nonempty,

pairwise disjoint and relatively open parts ΓD, ΓN , ΓC so that ∂Ω = ΓD∪ΓN∪ΓC .

The body Ω is subje
t to volume for
es of density F : Ω → R2
and surfa
e tra
-

tions of density P : ΓN → R2
, while Ω is 
lamped on ΓD. The 
lassi
al Signorini

problem 
onsists in �nding a displa
ement �eld u : Ω → R2
su
h that the de-

formed body is in equilibrium with the for
es a
ting upon it, whereas, in addition,

9



one assumes the presen
e of a perfe
tly rigid obsta
le Ξ ⊂ R2
(i.e., Ξ does not

undergo any deformation). The so-
alled 
onta
t boundary ΓC is the part of ∂Ω,
where Ω may be
ome in 
onta
t with Ξ, but 
an not penetrate into it (see Fig-

ure 1.1). In the 
lassi
al Signorini problem the 
onta
t along ΓC is assumed to be

fri
tionless, but it will not be our 
ase.

Ξ

P

ΓNΓD

d(x)

x
ΓC

Ω

Figure 1.1: 2D Signorini problem.

In order to present the di�erential equations the unknown displa
ement �eld

u has to satisfy, we introdu
e the following notation: ε(u) := 1
2
(∇u + (∇u)T )

shall denote the linearized strain tensor; the stress tensor σ : Ω → R2×2
will be

linked to ε by means of a linear Hooke's law, determined by the fourth-order

sti�ness tensor C : R2×2 → R2×2
. Denoting by ν : ∂Ω → R2

the unit outward

normal to ∂Ω, one de�nes the normal 
omponent of the displa
ement along ∂Ω
as un := (u|∂Ω) ·ν and the stress ve
tor as T := σν. The normal stress is de�ned
as the normal 
omponent of the stress ve
tor, i.e. Tn := σν ·ν and the tangential

stress as T t := T − Tnν.
By the 
lassi
al solution to the Signorini problem with Tres
a fri
tion we mean

any displa
ement �eld u : Ω → R2
satisfying the following system of di�erential

equations and boundary 
onditions (abbreviated as b.
. below):

(equilibrium equation)

divσ + F = 0 in Ω, (1.1)

(Hooke's law)

σ = Cε(u) in Ω, (1.2)

(Diri
hlet b.
.)

u = 0 on ΓD, (1.3)

(Neumann b.
.)

T = P on ΓN , (1.4)

(unilateral b.
.)

un ≤ d, Tn ≤ 0, Tn(un − d) = 0 on ΓC , (1.5)

(fri
tional b.
.)

‖T t‖ ≤ Fg, ut 6= 0 ⇒ T t = −Fg
ut

‖ut‖
on ΓC . (1.6)
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The fun
tion d : ΓC → R+ appearing in (1.5) is 
alled the gap (or distan
e)

fun
tion and the �rst inequality (1.5)1 models the fa
t that the gap between

the deformed body and the rigid obsta
le is positive or equal to zero; by (1.5)2

we ex
lude adhesion (only 
ompression is allowed); �nally, the 
omplementarity


ondition (1.5)3 says that pressure may o

ur only at points of 
onta
t. Here we


omplement the 
onta
t boundary 
onditions on ΓC with the simplest model of

fri
tion, the Tres
a law, or the so-
alled model with given fri
tion (1.6). It says

that no slip o

urs until the shear stress does not attain a 
ertain threshold value,

given by the produ
t of the 
oe�
ient of fri
tion F : ΓC → R+ and an a priori

given fun
tion g : ΓC → R+ 
alled the slip bound. Note that (1.6) is merely a

simpli�
ation of the physi
ally more relevant and widely used Coulomb law of

fri
tion, that will be introdu
ed and dis
ussed later in this 
hapter.

Now we spe
ify the geometri
al setting of the 
onta
t problem that will be

dealt with in the sequel. In parti
ular, we assume that the rigid obsta
le is �at

and the elasti
 body is represented by a �re
tangle� with 
urved 
onta
t zone

only (sin
e our goal is to optimize the 
onta
t boundary, this does not represent

a relevant simpli�
ation)�see Figure 1.2. Therefore, by a suitable 
hoi
e of the


oordinate system, Ξ = R × R− (re
all, that Ξ denotes the obsta
le) and Ω ⊂

Ω̂ := (0, a) × (0, b), as shown in Figure 1.2. Further, we assume that ΓC 
an be

des
ribed by one Lips
hitz 
ontinuous fun
tion α, i.e. ΓC = Grα. This parameter

ΓC(α) = Grα

x1

C0

x2

b

Ω(α)

0 a

Figure 1.2: Geometry of our 
onta
t problem.

α, 
alled the design variable in 
ontext of optimal shape design, is going to be

subje
t to optimization in the forth
oming 
hapters. An optimal α will be sought

in the admissible set

Uad :=
{
α ∈ C0,1([0, a])

∣∣∣ 0 ≤ α ≤ C0 in [0, a],

|α′| ≤ C1 a.e. in (0, a),

C21 ≤

∫ a

0

α(x1) dx1 ≤ C22

}
.

(1.7)

We assume that the positive 
onstants C0, C1, C21, C22 are given in su
h a way

that Uad 6= ∅. Thus the elasti
 body Ω with ΓC = Grα be
omes

Ω = Ω(α) := {(x1, x2) ∈ R2 | 0 < x1 < a, α(x1) < x2 < b}

11



and the third 
ondition in (1.7) translates to C̃21 ≤ measΩ(α) ≤ C̃22 with C̃21 =

ab−C22 and C̃22 = ab−C21. In parti
ular, by setting C21 = C22 one may enfor
e

that all admissible bodies in

O := {Ω(α) | α ∈ Uad}

have the same volume.

Next, let us reformulate the general 
onta
t 
onditions (1.5) and (1.6), exploit-

ing the spe
ial geometry des
ribed above. First of all, note that the inequality

(1.5)1 represents only an approximation of the nonpenetration 
ondition between

two bodies in the framework of small deformations. In general, (1.5)1 does not

guarantee that the deformed body stays above the obsta
le, e.g. Figure 1.3 depi
ts

an example of Ω penetrating into Ξ. Therefore, we will 
onsider a modi�ed ver-

x

d(x)

Ω

ΓC

un(x) ≤ d(x)

Figure 1.3: Penetration into the obsta
le.

sion of the 
omplementarity system (1.5), whi
h ensures nonpenetration exa
tly,

along the whole ΓC :

− u2(x) ≤ x2, T2(x) ≥ 0, T2(x)(u2(x) + x2) = 0 for x ∈ ΓC . (1.8)

The 
orresponding fri
tion 
onditions then take the form:

|T1| ≤ Fg, u1 6= 0 ⇒ T1 = −Fg sgn(u1) on ΓC . (1.9)

Convention. Note that (1.8)�(1.9) and (1.5)�(1.6) are equivalent, provided that

ν(x) = (0,−1)T ∀x ∈ ΓC in the 
hosen 
oordinate system, i.e. if ΓC is a�ne.

Therefore, given any ve
tor �eld v : ΓC → R2
, we will sometimes use the more

illustrative terms of tangential and normal 
omponent for the 
oordinate fun
tions

v1, v2, respe
tively.

Although until the end of this 
hapter the parameter α ∈ Uad will be �xed

(unless stated otherwise), the notation shall highlight the fa
t, that a given quan-

tity depends on this parameter. To this end, we will write e.g. ΓC(α), Lα, u(α),
et
.
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1.1.1 Primal variational formulation

Let us pro
eed with the weak formulation of (1.1)�(1.4) and (1.8)�(1.9). In order

to do so, let us introdu
e the following fun
tion spa
es:

V (α) := {v ∈ H1(Ω(α)) | v = 0 on ΓD(α)},

V (α) := V (α)× V (α),

K(α) := {v ∈ V (α) | −v2 ≤ dα on ΓC(α)},

where the equality and inequality 
onditions on parts of the boundary ∂Ω(α) are
meant in the sense of tra
es, and the distan
e fun
tion dα is given by (
f. (1.8)):

dα(x) := α(x1) ∀x ∈ ΓC(α).

As usual, the weak formulation of the problem (1.1)�(1.4), (1.8)�(1.9) 
an be

easily derived by multiplying (1.1) by (v − u) for some v ∈ K(α), applying the

Green theorem and using the fa
t that T · (v − u) = T1(v1 − u1) + T2(v2 − u2).
In the end, one arrives at the following de�nition:

De�nition 1. By a weak solution to the Signorini problem with given fri
tion

we mean any fun
tion u := u(α) ∈ K(α) satisfying the following variational

inequality:

Find u ∈ K(α) su
h that:

aα(u, v − u) + jα(v)− jα(u) ≥ Lα(v − u) ∀v ∈ K(α),

}
(A(α))

where the bilinear form aα, linear form Lα and 
onvex, proper fun
tional jα,
respe
tively, are given by:

aα(u, v) :=

∫

Ω(α)

Cε(u) : ε(v) dx ∀u, v ∈ H1(Ω(α)), (1.10)

Lα(v) :=

∫

Ω(α)

F · v dx+

∫

ΓN (α)

P · v ds ∀v ∈ H1(Ω(α)), (1.11)

jα(v) :=

∫

ΓC(α)

Fg|v1| ds ∀v ∈ H1(Ω(α)). (1.12)

Con
erning the regularity of the data, we will assume the following:

(D1) F ∈ L2(Ω̂),

(D2) P ∈ H1(Ω̂),

(D3) C =
(
cijkl

)2
i,j,k,l=1

, where cijkl ∈ L∞(Ω̂) and satisfy the usual symmetry and

ellipti
ity 
onditions:

cijkl = cjikl = cklij ∀i, j, k, l ∈ {1, 2},

∃Cell > 0 : Cξ : ξ ≥ Cell‖ξ‖
2 ∀ξ ∈ R2×2, ξT = ξ.

Moreover, to ensure uniform 
oer
ivity of aα on V (α) × V (α) with respe
t to

α ∈ Uad, we will assume that

13



(A4) ∃ǫD > 0 ∀α ∈ Uad : meas(ΓD(α)) ≥ ǫD.

The symbols C, F , P , appearing in (1.10) and (1.11) are then to be understood

as restri
tions of the mappings de
lared in (D1)�(D3) onto Ω(α) and ΓN(α),
respe
tively. Conditions on F and g, guaranteeing existen
e of a weak solution,

are spe
i�ed below.

Theorem 1. Let F ∈ L∞(ΓC(α)), F ≥ 0 and g ∈ L2(ΓC(α)), g ≥ 0 be given.

Then (A(α)) has a unique solution u ∈ K(α). Moreover, u may be equivalently


hara
terized as the (unique) solution of the variational problem

minimize

1

2
aα(v, v) + jα(v)− Lα(v)

subj. to v ∈ K(α).

}
(1.13)

Proof. See e.g. [22℄.

1.1.2 Mixed variational formulation

Yet another reformulation of (A(α)) (or (1.13)) is the so-
alledmixed formulation,
involving Lagrange multipliers for releasing the nonpenetration 
ondition. This

way the 
onstrained minimization problem (1.13) 
an be turned into a saddle-

point problem (for more details on the Lagrange multiplier te
hnique in 
onvex

optimization the reader is kindly referred to [12℄). Before giving the anoun
ed

mixed formulation, we will need some more notation to introdu
e the Lagrange

multiplier spa
e:

X(α) := {ϕ ∈ L2(ΓC(α)) | ∃v ∈ V (α) : v = ϕ on ΓC(α)}, (1.14)

X+(α) := {ϕ ∈ X(α) | ϕ ≥ 0 on ΓC(α)}, (1.15)

X ′(α) denotes the topologi
al dual to X(α), (1.16)

X ′
+(α) := {µ ∈ X ′(α) | 〈µ, ϕ〉X′(α),X(α) ≥ 0 ∀ϕ ∈ X+(α)}. (1.17)

It 
an be easily seen that

v ∈ K(α) ⇔ v ∈ V (α) and 〈µ, v2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α).

In light of the above 
hara
terization of the 
losed, 
onvex 
one K(α), the La-

grangian 
orresponding to (1.13) is given for ea
h (v, µ) ∈ V (α)×X ′
+(α) by

Lα(v, µ) :=
1

2
aα(v, v) + jα(v)− Lα(v)− 〈µ, v2 + dα〉X′(α),X(α).

Let us re
all that by a saddle-point of Lα we mean a pair (u, λ) ∈ V (α)×X ′
+(α)

satisfying:

Lα(u, µ) ≤ Lα(u, λ) ≤ Lα(v, λ) ∀(v, µ) ∈ V (α)×X ′
+(α).

In the 
ontext of mixed variational formulations, v is 
alled the primal variable

and µ the dual variable, explaining also the title of the previous se
tion.

Con
erning the existen
e of saddle-points of the Lagrangian, we may state fol-

lowing result.
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Theorem 2. Let the assumptions of Theorem 1 be ful�lled. Then Lα has exa
tly

one saddle-point (u, λ) ∈ K(α)×X ′
+(α), that is also the only solution of:

Find (u, λ) ∈ V (α)×X ′
+(α) su
h that:

aα(u, v − u) + jα(v)− jα(u)

≥ Lα(v − u) + 〈λ, v2 − u2〉X′(α),X(α) ∀v ∈ V (α),

〈µ− λ, u2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α).





(Ā(α))

Moreover, the �rst 
omponent of the saddle-point satis�es: u ∈ K(α) and is the

unique solution of (A(α)), whereas λ = T2(u).

Proof. Existen
e and uniqueness of the saddle-point follows from [12℄; for the

se
ond assertion see [22℄.

The saddle-point system (Ā(α)) is 
alled the mixed formulation of (A(α)) and
it is this formulation we will 
onsider in our state problems, sin
e it allows for

the dire
t 
omputation of the normal 
onta
t stress T2, as well.

1.1.3 Approximation

Now we present a dis
retization of the 
onta
t problems (A(α)) and (Ā(α)) by the
�nite element method. Throughout this se
tion let the dis
retization parameter

h := a/(p − 1), for some p ∈ N, p ≥ 2, be �xed, and denote by ∆h = {0 = a1 <
a2 < · · · < ap = a} the equidistant partition of [0, a], i.e. ai := (i − 1)h ∀i =
1, . . . , p. Let the symbol P1(∆h) stand for the set of all pie
ewise a�ne fun
tions

over ∆h and let αh ∈ Uh
ad := P1(∆h) ∩ Uad be given (nonemptiness of Uh

ad is

impli
itly assumed). On the polygonal domain Ω(αh) we introdu
e a triangulation
Th(αh), that meets the following requirements:

(T1) the nodes of Th(αh) lie on the lines {ai} × R, i = 1, . . . , p for all αh ∈ Uh
ad;

(T2) the number of nodes in Th(αh) as well as the neighbours of ea
h triangle

from Th(αh) are the same for all αh ∈ Uh
ad;

(T3) the position of nodes of Th(αh) depends smoothly on 
hanges of αh ∈ Uh
ad;

(T4) the triangulations Th(αh) are 
ompatible with the de
omposition of ∂Ω(αh)
into ΓC(αh), ΓD(αh) and ΓN(αh) for all αh ∈ Uh

ad.

The triangulations Th(αh) from the system {Th(αh) | αh ∈ Uh
ad} satisfying (T2)�

(T4) are 
alled topologi
ally equivalent. On Th(αh) we de�ne the standard, 
on-

forming pie
ewise linear �nite element spa
e

Vh(αh) := P1(Th) ∩ V (αh) = {vh ∈ C(Ω(αh)) | vh|K ∈ P1(K) ∀K ∈ Th(αh),

vh = 0 on ΓD(αh)}

and

V h(αh) := Vh(αh)× Vh(αh).

Let further:

Kh(αh) := V h(αh) ∩K(αh) = {vh ∈ V h(αh) | −vh2 ≤ dαh
on ΓC(αh)},
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where, for simpli
ity of presentation, we assume that ΓD(αh)∩ΓC(αh) = ∅, i.e. all
nodes Ai = (ai, αh(a

i)), i = 1, . . . , p are 
onta
t nodes, for ea
h αh ∈ Uh
ad. Noti
e,

that sin
e both vh2 and dαh
are pie
ewise linear over the same partition of ΓC(αh),

it holds that Kh(αh) 6= ∅. Finally, let rh : C(ΓC(αh)) → P1(Th(αh)|ΓC(αh)) ∩
C(ΓC(αh)) denote the pie
ewise linear Lagrange interpolation operator on the

partition Th(αh)|ΓC(αh) of ΓC(αh). Now we state the dis
retized version of our


onta
t problem as follows.

De�nition 2. By a dis
rete solution of the Signorini problem with given fri
tion

we mean any fun
tion uh ∈ Kh(αh) satisfying:

Find uh ∈ Kh(αh) su
h that for all vh ∈ Kh(αh) :

aαh
(uh, vh − uh) + jh,αh

(vh)− jh,αh
(uh) ≥ Lαh

(vh − uh),

}
(Ah(αh))

where

jh,αh
(vh) :=

∫

ΓC(αh)

Fg rh|vh1| ds ∀vh ∈ V h(αh). (1.18)

Remark 1. The use of the Lagrange interpolation operator in (1.18) might seem

unjusti�ed. Nevertheless, it will make more sense in the model with Coulomb's law

of fri
tion. At this point just let us note, that the 
onvex fun
tional jα in (1.12)


an be de�ned with g ∈ X ′(α) as well: jα(v) = 〈Fg, |v1|〉X′(α),X(α) ∀v ∈ V (α). Its
dis
retization then involves a fun
tional gh ∈ X ′

h(αh), where the de�nition of the

dis
rete tra
e spa
e Xh(αh) is analogous to (1.14) (see also below).

Sin
e the dis
retization introdu
ed above is 
onforming, i.e. V h(αh) ⊂ V (αh)
and Kh(αh) ⊂ K(αh), and jh,αh

is 
onvex, lower semi
ontinuous, the following

theorem is obvious (
ompare with Theorem 1).

Theorem 3. Let the assumptions of Theorem 1 hold. Then (Ah(αh)) has exa
tly
one solution uh ∈ Kh(αh). Moreover, uh is the unique solution of the following


onvex optimization problem:

minimize

1

2
aαh

(vh, vh) + jh,αh
(vh)− Lαh

(vh),

subj. to vh ∈ Kh(αh).

}
(1.19)

Next we turn to the dis
retization of the mixed problem (Ā(αh)). One of

the advantages of the mixed variational formulation is that it allows the (almost)

independent approximation of the primal and dual variables, i.e. the displa
ement

u and normal 
onta
t stress λ in our 
ase. We will present two examples. However,

before being able to do so, we need to introdu
e the dis
rete 
ounterparts of the

spa
es (1.14)�(1.17).

Convention. For any fun
tion ϕ ∈ ΓC(β) → R, de�ned on the 
onta
t boundary

ΓC(β) for some β ∈ Uad, we will denote by ϕ̂ : (0, a) → R its transport onto (0, a),
i.e. ϕ̂(x1) := ϕ(x1, β(x1)) for x1 ∈ (0, a).

Keeping this 
onvention in mind, let (
ompare with (1.14)�(1.15) in the 
on-

tinuous setting):

X̂h := {ϕh ∈ L2(0, a) | ∃αh ∈ Uh
ad ∃vh ∈ Vh(αh) : v̂h = ϕh in (0, a)},

X̂h+ := {ϕh ∈ X̂h | ϕ ≥ 0 in (0, a)}.
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It is easy to see, that X̂h is a
tually independent of αh and X̂h = P1(∆h)∩C([0, a])
(re
all our assumption that ΓD(αh) ∩ ΓC(αh) = ∅). Noti
e that in parti
ular

αh ∈ X̂h+ holds.

The Lagrange multiplier set X ′
+(α), de�ned in (1.17), shall be approximated

in the following manner. Let L̂H be a �nite dimensional spa
e that is in duality

with X̂h and denote by 〈·, ·〉Hh : L̂H × X̂h → R a duality pairing between the two

spa
es. Then, let Λ̂H denote the 
one of all nonnegative elements of L̂H , i.e. for

ea
h µH ∈ Λ̂H it holds that: 〈µH , ϕh〉Hh ≥ 0 ∀ϕh ∈ X̂h+. The only requirement


on
erning L̂H we shall need, is the following stability property:

[
〈µH , ϕh〉Hh = 0 ∀ϕh ∈ X̂h

]
⇒ µH = 0. (1.20)

Now, the dis
rete Lagrangian on V h(αh)× Λ̂H is given by:

LhH,αh
(vh, µH) :=

1

2
aαh

(vh, vh) + jh,αh
(vh)− Lαh

(vh)− 〈µH, v̂h2 + αh〉Hh.

The next result should be 
ompared to Theorem 2.

Theorem 4. Let the assumptions of Theorem 1 and the 
ondition (1.20) hold

true. Then LhH,αh
has exa
tly one saddle-point (uh, λH) ∈ V h(αh)× Λ̂H . It 
an

be determined as the unique solution of the saddle-point system:

Find (uh, λH) ∈ V h(αh)× Λ̂H su
h that:

aαh
(uh, vh − uh) + jh,αh

(vh)− jh,αh
(uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + αh〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(ĀhH(αh))

Moreover, the �rst 
omponent uh of the saddle-point is the (unique) solution of

the variational inequality:

Find uh ∈ KhH(αh) su
h that:

aαh
(uh, vh − uh) + jh,αh

(vh)− jh,αh
(uh)

≥ Lαh
(vh − uh) ∀vh ∈ KhH(αh),





(AhH(αh))

where:

KhH(αh) := {vh ∈ V h(αh) | −〈µH , v̂h2〉Hh ≤ 〈µH , αh〉Hh ∀µH ∈ Λ̂H}. (1.21)

The se
ond 
omponent λH of the saddle-point is the Lagrange multiplier releasing

the 
onstraint uh ∈ KhH(αh).

Proof. Follows from [12℄ and (1.20).

Noti
e that the �primal� variational inequality (AhH(αh)) is, in general, dif-

ferent from (Ah(αh)), as demonstrated by the following two examples.

Example 1. First, we 
onstru
t a �
onforming� dis
retization of (Ā(α)). To this
end, let δi denote the Dira
 measure 
on
entrated in the ith node of the partition
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∆h, i = 1, . . . , p and de�ne L̂H := span {δ1, . . . , δp}, endowed with the standard

duality pairing. Hen
e

Λ̂H =
{
µH ∈ L̂H

∣∣∣ µH =

p∑

i=1

µiδ
i, µi ∈ R+ ∀i = 1, . . . , p

}

and the stability 
ondition (1.20) holds true. In addition:

KhH(αh) = {vh ∈ V h(αh) | −v̂h2(a
i) ≤ αh(a

i) ∀i = 1, . . . , p}

= Kh(αh) ⊂ K(αh).

Therefore, in this 
ase the �rst 
omponent of the solution to (ĀhH(αh)) is also
the unique solution to the primal variational inequality (Ah(αh)).

Example 2. In this example we 
onsider a more regular approximation for the

Lagrange multiplier spa
e, su
h that Λ̂H ⊂ L2(0, a) holds. Given the equidistant

partition ∆h of [0, a], we 
onstru
t another partition ∆H := {0 = a1/2 < a3/2 <
· · · < ap+1/2 = a} by setting ai+1/2 := 1

2
(ai + ai+1) ∀i = 1, . . . , p− 1 as shown in

Figure 1.4. Now let Sj := (aj−1/2, aj+1/2) and χj
be the 
hara
teristi
 fun
tion of

0 = a1

0 = a1/2 a3/2 a5/2 ap+1/2 = aap−1/2

ap = aa2 a3 · · · ap−1∆h :

∆H :

Figure 1.4: Partition ∆H .

Sj
, j = 1, . . . , p. Then we de�ne

L̂H := P0(∆H) = span {χ1, . . . , χp}

to be the spa
e of pie
ewise 
onstant fun
tions over ∆H and

Λ̂H =
{
µH ∈ L̂H

∣∣∣ µH =

p∑

i=1

µiχ
i, µi ∈ R+, ∀i = 1, . . . , p

}
.

Taking the L2(0, a)-s
alar produ
t as the duality pairing between L̂H and X̂h, we

see that the stability 
ondition (1.20) is satis�ed. On the other hand, one gets:

KhH(αh) =
{
vh ∈ V h(αh)

∣∣∣ −
∫

Sj

v̂h2 dx1 ≤

∫

Sj

αh dx1 ∀j = 1, . . . , p
}
,

i.e. the �rst 
omponent of the saddle-point satis�es the nonpenetration 
ondition

only in the sense of integral averages. Sin
e KhH(αh) * K(αh), we speak of an

external approximation of K(αh).
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1.1.4 Algebrai
 formulation

When deriving the algebrai
 form of the dis
retized mixed-type 
onta
t problem

(ĀhH(αh)), i.e. in terms of algebrai
 equations and inequalities, we pro
eed as

follows. First, let us denote n := dimV h(αh)
1

and by 
onstru
tion we have

p = dim X̂h. Denoting the Lagrange basis fun
tions of these pie
ewise linear �nite

element spa
es by {ϕ1
h, . . . , ϕ

n
h} and {ψ1

h, . . . , ψ
p
h}, respe
tively, we immediately

see that V h(αh) is homeomorphi
 to Rn
, and the dis
rete admissible set Uh

ad 
an

be identi�ed with the 
onvex, 
ompa
t set

Uad :=
{
α ∈ Rp

+

∣∣∣ 0 ≤ αi ≤ C0 ∀i = 1, . . . , p,

|αi − αi+1| ≤ C1h ∀i = 1, . . . , p− 1,

2

h
C21 ≤

p−1∑

i=1

(αi + αi+1) ≤
2

h
C22

}
.

(1.22)

In the sequel, unless stated otherwise, α ∈ Uad will be �xed and we will 
onsid-

er the mixed problem (ĀhH(αh)), where αh ∈ Uh
ad has the 
oordinates α with

respe
t to the basis {ψ1
h, . . . , ψ

p
h}. For uh, vh ∈ V h(αh) denote their 
oordinates

with respe
t to {ϕ1
h, . . . , ϕ

n
h} by u ∈ Rn

and v ∈ Rn
, respe
tively. The 
oor-

dinates of v̂h1, v̂h2 ∈ X̂h with respe
t to {ψ1
h, . . . , ψ

p
h} shall be denoted in order

by vτ ∈ Rp
and vν ∈ Rp

. It is easy to see that (vτ )i = vh1(a
i, αh(a

i)) and

(vν)i = vh2(a
i, αh(a

i)) for every i = 1, . . . , p, whi
h means that vτ and vν are

a
tually subve
tors of v. This justi�es their notation, and we shall 
all vτ and vν

the tangential and normal 
omponent of v along the 
onta
t zone.

Further, we will denote by A(α) ∈ Rn×n
and L(α) ∈ Rn

the sti�ness matrix

and load ve
tor, respe
tively, given by

A(α) =
(
aαh

(ϕi
h, ϕ

j
h)
)
i,j=1,...,n

and L(α) =
(
Lαh

(ϕ1
h), . . . , Lαh

(ϕn
h)
)T
.

As the triangulations Th(αh) satisfy (T2) and (T3), the mappings A : Uad → Rn×n

and L : Uad → Rn
are smooth, i.e. C1

. Moreover, the matri
es A(α) are symmetri


and uniformly positive de�nite:

∃γ > 0 : 〈A(α)v, v〉n ≥ γ‖v‖2n ∀v ∈ Rn ∀α ∈ Uad, (1.23)

as follows from Korn's inequality and the topologi
al equivalen
e (T2)�(T4) of

the triangulations, ensuring that the mapping α 7→ A(α) is smooth.

For the evaluation of the nonlinear fri
tional term jh,αh
, de�ned by (1.18),

we will use numeri
al integration, namely, the 
ompound re
tangle rule over the

�re�ned� partition ∆h ∪∆H of [0, a] with ai ∈ ∆h, i = 1, . . . , p as the integration
nodes. This means that for every i = 1, . . . , p:

∫ ai

ai−1/2

F̂ĝπh|v̂h1|
√
1 + (α′

h)
2 dx1 ≈

1

2

√
h2 + (αi−1 − αi)2Figi|(vτ )i|, (1.24)

where Fi := F(ai, αh(a
i)), gi := g(ai, αh(a

i)) and πh : C([0, a]) → P1(∆h) ∩
C([0, a]) stands for the pie
ewise linear Lagrange interpolation operator de�ned

1

Note, that due to 
ondition (T2), satis�ed by the triagulations Th(αh), n is independent of

αh ∈ Uh
ad.
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on ∆h. Obviously: r̂hϕ = πhϕ̂ for every ϕ ∈ C(ΓC(αh)) and αh ∈ Uh
ad. Similarly

to (1.24) we write the quadrature rule on [ai, ai+1/2] and sum both expressions

for i = 1, . . . , p to obtain:

jh,αh
(vh) ≈

p∑

i=1

ωi(α)Figi|(vτ )i|, (1.25)

where

ωi(α) =





1
2

√
h2 + (α1 − α2)2 if i = 1,

1
2

(√
h2 + (αi−1 − αi)2 +

√
h2 + (αi − αi+1)2

)
if 2 ≤ i ≤ p− 1,

1
2

√
h2 + (αp−1 − αp)2 if i = p.

(1.26)

For the dis
rete Lagrange multiplier spa
e L̂H we 
hoose the pie
ewise 
on-

stant fun
tions over ∆H as des
ribed in Example 2 of the previous se
tion and

apply the same quadrature rule as above to evaluate the terms 〈µH , v̂h2〉Hh,

µH ∈ Λ̂H . Denoting the 
oordinates of µH with respe
t to the basis {χS1, . . . , χSp}
by µ ∈ Rp

+, we have:

〈µH , v̂h2〉Hh ≈

p∑

i=1

hiµi(vν)i,

where hi := h/2 if i = 1 or i = p, and hi := h otherwise. However, instead of the

quantities µi ≥ 0, we will be 
omputing (hiµi) ≥ 0, as follows from the de�nition

of the algebrai
 problem below.

De�nition 3. By the algebrai
 Signorini problem with given fri
tion we mean

the following variational inequality:

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ā(α))

where the operator • : Rp × Rp → Rp
, u • v := (u1v1, . . . , upvp)

T
, denotes the

elementwise produ
t of ve
tors.

Remark 2. Suppose that (u,λ) ∈ Rn × Rp
+ is a solution to (Ā(α)). Then:

〈λ, vν〉p =

p∑

i=1

λi(vν)i =

p∑

i=1

λi
ωi(α)

(vν)iωi(α) ≈

∫

ΓC(αh)

λalgvh2 ds,

where λalg ∈ L2(ΓC(αh)) is su
h that λ̂alg =

p∑

i=1

λi
ωi(α)

χSi ∈ Λ̂H , i.e. λalg approxi-

mates the Lagrange multiplier λ ∈ X ′
+(αh) from the 
ontinuous problem (Ā(αh)).

When interpreting u, the �rst 
omponent of the solution to (Ā(α)), we �nd
that u ∈ K(α) = {v ∈ Rn | −vν ≤ α} as follows from (Ā(α))2, whi
h is a


onsequen
e of the used integration formula. Moreover, u solves the variational

inequality:

〈A(α)u, v − u〉n + 〈ω(α) • F • g, |vτ | − |uτ |〉p ≥ 〈L(α), v − u〉n ∀v ∈ K(α).
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In parti
ular, we see that, as an e�e
t of the numeri
al integration, one retains an

inner approximation K(αh), i.e. the 
orresponding dis
rete solution uh satis�es

the nonpenetration 
ondition along ΓC(αh). On the other hand, λalg (see previous
Remark 2) and uh satisfy the 
omplementarity system only approximately.

Remark 3. The algebrai
 system (Ā(α)) is the same as if we had used the ap-

proa
h of Example 1 from the previous se
tion, only the interpretation of the

multiplier ve
tor λ ∈ Rp
+ is di�erent�see the explanation above.

For the sake of 
ompleteness, let us formulate the following theorem 
on
erning

the solvability of (Ā(α)).

Theorem 5. Let F, g ∈ RP
+ be given. Then (Ā(α)) has a unique solution (u,λ) ∈

Rn × Rp
+ for ea
h α ∈ Uad.

In the subsequent se
tions and 
hapters we shall need the following properties

of the solutions to (Ā(α)), formulated in a lemma below. Before pro
eeding to

this lemma, however, we give another auxiliary result.

Lemma 1. There exists a 
onstant β > 0 su
h that:

sup
0 6=v∈Rn

〈µ, vν〉p
‖v‖n

≥ β‖µ‖p ∀µ ∈ Rp. (1.27)

Proof. Denote by N ∈ Rp×n
the matrix that represents the linear mapping v 7→

vν , i.e. Nv = vν ∀v ∈ Rn
. Then one has:

sup
0 6=v∈Rn

〈µ, vν〉p
‖v‖n

= sup
0 6=v∈Rn

=
〈NTµ, v〉n

‖v‖n
= ‖NTµ‖n.

The fun
tion µ 7→ ‖NTµ‖n is nonnegative and 
ontinuous in Rp
, therefore it

attains its minimum on the unit sphere. Denoting this minimum value by β, it

an be immediately seen that β > 0 i� Ker (NT ) = {0}, i.e. if N has full row rank.

In our 
ase N has in ea
h row exa
tly one element equal to 1, all other elements

are 0, and the ones appear at di�erent indi
es. Thus the proof is 
omplete.

On the basis of the previous result, it is not di�
ult to derive the following

upper bounds on the solution of (Ā(α)).

Lemma 2. (i) Let (u,λ) ∈ Rn × Rp
+ be the solution to (Ā(α)). Then:

‖u‖n ≤
‖L(α)‖n

γ
, ‖λ‖p ≤

1

β

(
‖A(α)‖

γ
+ 1

)
‖L(α)‖n.

(ii) Let, in addition, (ū, λ̄) ∈ Rn × Rp
+ be the solution to the problem (Ā(α)),

but with a di�erent load ve
tor L̄ ∈ Rn
. Then:

‖u− ū‖n ≤
‖L(α)− L̄‖n

γ
, ‖λ− λ̄‖p ≤

1

β

(
‖A(α)‖

γ
+ 1

)
‖L(α)− L̄‖n.

Proof. See Proposition 3.2 and Proposition 3.5 in [4℄.
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Let us 
on
lude this se
tion on the 
lassi
al Signorini problem with Tres
a

fri
tion by splitting the system of inequalities (Ā(α)) into separate relations for

the �interior� variables, i.e. the degrees of freedom 
orresponding to nodes lying

in the interior of Ω(αh) or on ΓN(αh), and the 
onta
t variables, i.e., the ones de-

�ned on ΓC(αh). Su
h a splitting re�e
ts the stru
ture of 
onta
t problems more:

it shows that the nonsmooth nature of these problems stems from the 
onta
t


onditions, expressed in terms of variational inequalities for uτ , uν , λ, whereas

the internal variables are linked to the 
onta
t ones �only� by means of a linear

mapping involving the inverse of a symmetri
, positive de�nite matrix. Finally,

we rewrite the resulting system of equations and inequalities into a generalized

equation (GE). This form will be more suitable for the te
hniques involved in

sensitivity analysis to 
ome in later 
hapters.

In order to derive the aforementioned form, we split the displa
ement �elds

into two parts: v = (vint, vcont) ∈ Rn−2p × R2p
, where vcont = (vτ , vν) ∈ Rp × Rp


omprises the 
omponents of v asso
iated with the tangential and normal dis-

pla
ement along ΓC(αh). We split the load ve
tor similarly into �interior� and

�
onta
t� part: L(α) = (Lint(α),Lcont(α)); the sti�ness matrix is handled a
-


ordingly:

A(α) =

[
Aii(α) Aic(α)
Aci(α) Acc(α)

]
.

Resulting from the properties of A(α), the matri
es Aii(α) and Acc(α) are sym-

metri
 and uniformly positive de�nite, whereas Aic(α) = Aci(α)T . Now, testing
the �rst inequality in (Ā(α)) by v = (vint,uint), vint ∈ Rn−2p

arbitrary, yields:

Aii(α)uint = Lint(α)− Aic(α)ucont, (1.28)

from whi
h:

uint = A−1
ii (α)Lint(α)− A−1

ii (α)Aic(α)ucont. (1.29)

On the other hand, inserting v = (uint, vcont) into (Ā(α)), su
h that vcont ∈ R2p

is arbitrary, gives:

〈Aci(α)uint + Acc(α)ucont, vcont − ucont〉2p + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈Lcont(α), vcont − ucont〉2p + 〈λ, vν − uν〉p,

whi
h, 
ombined with (1.29), yields:

〈AS(α)ucont, vcont − ucont〉2p + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈LS(α), vcont − ucont〉2p + 〈λ, vν − uν〉p. (1.30)

Here AS(α) := Acc(α)− Aci(α)A−1
ii (α)Aic(α) denotes the S
hur 
omplement to

Aii(α) in A(α) and LS(α) := Lcont(α)− Aci(α)A−1
ii (α)Lint(α).

Further, a

ording to the de
omposition vcont = (vτ , vν) ∈ Rp × Rp
, let us

split:

AS(α) =

[
Aττ (α) Aτν(α)
Aντ (α) Aνν(α)

]
,

where the submatri
es satisfy: Aττ (α),Aνν(α) ∈ Rp×p
are symmetri
 and uni-

formly positive de�nite and Aντ (α) = Aτν(α)T . The ve
tor LS(α) is de
omposed
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analogously into a �tangential� and �normal� part: LS(α) = (Lτ (α),Lν(α)).
First, we test (1.30) with vcont = (vτ ,uν), vτ ∈ Rp

arbitrary and obtain:

〈Aττ (α)uτ + Aτν(α)uν , vτ − uτ 〉p + 〈ω(α) • F • g, |vτ | − |uτ |〉p

≥ 〈Lτ (α), vτ − uτ 〉p ∀vτ ∈ Rp,

or equivalently:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + ∂jα(uτ ), (1.31)

where ∂jα stands for the 
onvex subdi�erential of jα(w) := 〈ω(α) •F • g, |w|〉p,
w ∈ Rp

.

In a similar fashion, by inserting vcont = (uτ , vν), vν ∈ Rp
arbitrary into

(1.30), we arrive at the equation:

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α). (1.32)

Finally, employing the notion of the 
onvex normal 
one (
f. [12℄), we may

rewrite the se
ond inequality in (Ā(α)), expressing the nonpenetration 
ondition,

as:

0 ∈ uν +α+NRp
+
(λ). (1.33)

To summarize, we have shown that the pair (u,λ) ∈ Rn × Rp
+ is a solu-

tion to the Signorini problem with Tres
a fri
tion (Ā(α)) if and only if u =
(uint,uτ ,uν) ∈ Rn−2p × Rp × Rp

, where uint satis�es (1.29) and the 
onta
t

variables (uτ ,uν ,λ) solve the following system of GEs:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) +Qτ (α,uτ ),

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α),

0 ∈ uν +α+NRp
+
(λ).





(1.34)

Here the multifun
tion Qτ : Uad × Rp
⇒ Rp

is de�ned as:

Qτ (α,w) := ∂jα(w) = ∂

p∑

i=1

ωi(α)Figi|wi|

=



ω1(α)F1g1∂|w1|

.

.

.

ωp(α)Fpgp∂|wp|


 ,

as follows from the sum rule for the subdi�erential of 
onvex fun
tions [12, Propo-

sition 5.6℄. Moreover, Theorem 5 ensures that, given any F, g ∈ Rp
+, (1.34) is

uniquely solvable for ea
h α ∈ Uad. On
e the 
onta
t displa
ements ucont =
(uτ ,uν) have been determined, the internal ones uint 
an be 
omputed by solv-

ing the system of linear algebrai
 equations (1.28).

1.2 Tres
a model with a solution-dependent 
oef-

�
ient of fri
ion

Up to now we have assumed that the 
oe�
ient of fri
tion F is 
onstant, or

depends on the spatial variable only. In some situations, as experiments show,
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it is more appropriate to model the 
oe�
ient of fri
tion as a fun
tion of the

unknown displa
ement (or, better, as a fun
tion of the slip velo
ity in dynami


problems) as well. Namely, we will assume that F depends on the magnitude

of the tangential displa
ement. The generalized version of the fri
tion 
ondition

(1.9) on ΓC(α) now reads as:

u1 = 0 ⇒ |T1| ≤ F(0)g,

u1 6= 0 ⇒ T1 = −F(|u1|)g sgn(u1)

}
on ΓC(α), (1.35)

where F : R+ → R+ is 
ontinuous and bounded (for sake of simpli
ity, we negle
t

the dependen
e on the spatial variable); all other symbols have the same meaning

as before. As it was done for De�nition 1, one may pro
eed analogously to obtain

the weak formulation of (1.1)�(1.4), (1.8) and (1.35):

De�nition 4. By a weak solution of the Signorini problem with given fri
tion

and a solution-dependent 
oe�
ient of fri
tion we mean any solution of:

Find u := u(α) ∈ K(α) su
h that:

aα(u, v − u) + jα(u, v)− jα(u,u) ≥ Lα(v − u) ∀v ∈ K(α),

}
(P(α))

where

jα(w, v) :=

∫

ΓC(α)

F(|w1|)g|v1| ds ∀w, v ∈ H1(Ω(α)).

Problem (P(α)) is an impli
it variational inequality of the se
ond kind. Had

we known the fun
tion |u1| ∈ X+(α) (
f. (1.15) for the de�nition of X+(α))
a priori, (P(α)) would turn into a standard variational inequality of the form

(A(α)). This trivial observation leads to the following equivalent 
hara
terization

of the solutions to (P(α)):

Proposition 1. For any ϕ ∈ X+(α) denote the problem (A(α)) with the 
oe�-


ient of fri
tion F ◦ ϕ ∈ L∞(ΓC(α)) by (A(α, ϕ)). Consider the mapping:

Φ : X+(α) → X+(α), ϕ 7→ |u1(ϕ)|ΓC(α)
|,

where u(ϕ) is the (unique) solution of (A(α, ϕ)). Then u solves (P(α)) i� u is

the solution of (A(α, ϕ∗)), where ϕ∗
is a �xed point of the mapping Φ.

On the basis of Proposition 1 and using appropriate �xed-point theorems, the

following existen
e and uniqueness results are not di�
ult to prove.

Theorem 6. Let F : R+ → R+ be 
ontinuous and bounded: ∃Cmax > 0 ∀x ∈ R+ :
0 ≤ F(x) ≤ Cmax; g ∈ L2

+(ΓC(α)). Then (P(α)) has at least one solution.

Proof. See [19℄.

By strengthening the assumptions on F and g, one may ensure unique solv-

ability of (P(α)), as follows from the next theorem.

Theorem 7. Let, in addition to the assumptions of Theorem 6, F be Lips
hitz


ontinuous: ∃Clip > 0 ∀x, y ∈ R+ : |F(x) − F(y)| ≤ Clip|x − y|, and g ∈
L∞
+ (ΓC(α)). There exists a 
onstant C̄ > 0 su
h that if Clip‖g‖L∞(ΓC(α)) ∈ (0, C̄),

then (P(α)) has exa
tly one solution. Moreover, C̄ 
an be 
hosen independently

of α ∈ Uad.
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Proof. See [19℄ and [43, Thm. 1.2℄, where the exa
t form of the bound C̄ is also

given.

Assuming that the slip bound g is a restri
tion of a given fun
tion g ∈ C(Ω̂)
onto ΓC(α), ‖g‖L∞(ΓC (α)) 
an also be estimated independently of α. In this 
ase the
se
ond assertion of the previous theorem yields, that the state problems (P(α))
are uniquely solvable for all α ∈ Uad, provided the 
oe�
ient of fri
tion is Lips
hitz


ontinuous with a su�
iently small modulus Clip. In the sequel we will rely on

this property when dealing with the shape optimization problem.

Exploiting the �xed-point stru
ture of (P(α)), des
ribed in Proposition 1, and

using Theorem 2, we may write the mixed form of (P(α)) as follows.

Theorem 8. Let the assumptions of Theorem 7 hold. Then the system of varia-

tional inequalities

Find (u, λ) ∈ V (α)×X ′
+(α) su
h that:

aα(u, v − u) + jα(u, v)− jα(u,u)

≥ Lα(v − u) + 〈λ, v2 − u2〉X′(α),X(α) ∀v ∈ V (α),

〈µ− λ, u2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α),





(M(α))

has exa
tly one solution. Moreover, the �rst 
omponent of the solution u lies in

K(α) and is the unique solution of (P(α)); for the Lagrange multiplier we have:
λ = T2(u).

We will 
all problem (M(α)) the mixed formulation of (P(α)).

1.2.1 Approximation

Instead of dis
retizing (P(α)) and (M(α)) dire
tly, we de�ne the dis
rete ver-

sions of these problems by means of parametrized Signorini problems with given

fri
tion and a 
oe�
ient of fri
tion, whi
h does not depend on the solution. As

in Proposition 1, the value of this parameter will be a �xed-point of a suitable

mapping.

Let a dis
rete design variable αh ∈ Uh
ad be given and re
all the de�nition of the

�nite dimensional spa
es V h(αh), X̂h+ and Λ̂H . For any ϕh ∈ X̂h+ let us denote

the dis
rete 
onta
t problem (ĀhH(αh)) with the 
oe�
ient of fri
tion given by

F ◦ ϕh as (ĀhH(αh, ϕh)):

Find (uh, λH) ∈ V h(αh)× Λ̂H su
h that:

aαh
(uh, vh − uh) + jh,αh

(ϕh; vh)− jh,αh
(ϕh;uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + dαh
〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(ĀhH(αh, ϕh))

As in (1.18), the fun
tional jh,αh
is de�ned as:

jh,αh
(ϕh; vh) =

∫ a

0

F(ϕh)ĝπh|v̂h1|
√

1 + (α′
h)

2 dx1 ∀ϕh ∈ X̂h+, vh ∈ V h(αh),

where the �rst argument of jh,αh
now signi�es the 
omposition of F with ϕh.

Re
all, that πh : C([0, a]) → P1(∆h) ∩ C([0, a]) stands for the pie
ewise linear

Lagrange interpolation operator de�ned on ∆h.
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De�nition 5. Let us de�ne the mapping:

Φh : X̂h+ → X̂h+, ϕh 7→ πh|ûh1(ϕh)|,

where uh(ϕh) is the solution of (ĀhH(αh, ϕh)). Then, by a dis
rete solution to

the Signorini problem with given fri
tion and a solution-dependent 
oe�
ient of

fri
tion we mean the solution (uh, λH) ∈ V h(αh) × Λ̂H of (ĀhH(αh, ϕ
∗
h)), where

ϕ∗
h is a �xed-point of Φh.

Inserting the �xed-point of Φh into (ĀhH(αh, ϕ
∗
h)), it 
an be easily seen that

(uh, λH) is a dis
rete solution in the sense of De�nition 5 whenever (uh, λH) solves
the following system of variational inequalities:

Find (uh, λH) ∈ V h(αh)× Λ̂H su
h that:

aαh
(uh, vh − uh) + jh,αh

(πh|ûh1|; vh)− jh,αh
(πh|ûh1|;uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + dαh
〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(MhH(αh))

Again, due to De�nition 5 via �xed-points and the unique solvability of

the auxiliary problems (ĀhH(αh, ϕh)) (
f. Theorem 4), quantitative analysis of

(MhH(αh)) 
an be 
arried out by means of suitable �xed-point theorems applied

to Φh. This is the idea behind the proof of the following theorem and 
an be

found in [19℄.

Theorem 9. (i) (existen
e) Let the assumptions of Theorem 6 be satis�ed.

Then (MhH(αh)) has at least one solution for ea
h αh ∈ Uh
ad.

(ii) (uniqueness) Let the assumptions of Theorem 7 be satis�ed, i.e. F is bounded

and Lips
hitz 
ontinuous in R+ with Lips
hitz modulus Clip, g ∈ L∞
+ (ΓC(αh)).

Then there exists a 
onstant C̄d > 0, su
h that the following impli
ation

holds: if Clip‖g‖L∞(ΓC(αh)) < C̄d, then (MhH(αh)) has a unique solution.

In addition, the upper bound C̄d may be 
hosen independently on h and

αh ∈ Uh
ad.

Remark 4. From [43, Thm. 1.2℄ and [43, Thm. A.5℄ it follows that C̄d < C̄, i.e., if
Clip is su�
iently small, both the dis
rete and 
ontinuous state problems possess

a unique solution.

Finally, the interpretation of the solution (uh, λH) to the mixed-type prob-

lem (MhH(αh)) is the following. The �rst 
omponent uh ∈ KhH(αh) = {vh ∈

V h(αh) | −〈µH , v̂h2〉Hh ≤ 〈µH , αh〉Hh ∀µH ∈ Λ̂H} and solves the following impli
it

variational inequality:

Find uh ∈ KhH(αh) su
h that:

aαh
(uh, vh − uh) + jh,αh

(πh|ûh1|; vh)− jh,αh
(πh|ûh1|;uh)

≥ Lαh
(vh − uh) ∀vh ∈ KhH(αh)





The se
ond 
omponent λH is the Lagrange multiplier releasing the dis
retized

nonpenetration 
onstraint uh ∈ KhH(αh).
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1.2.2 Algebrai
 form

The algebrai
 form of (MhH(αh)), suitable for numeri
al 
omputations, 
an now

be very easily derived from De�nition 5 and the results of Se
tion 1.1.4, where all

the ne
essary work has already been 
arried out. In the sequel we shall use the

notation introdu
ed therein.

Let α ∈ Uad (
f. (1.22)) be given and �x one ϕ = (ϕ1, . . . , ϕp)
T ∈ Rp

+. By

(Ā(α,ϕ)) denote the mixed form of the algebrai
 Signorini problem with given

fri
tion (Ā(α)), where the 
oe�
ient of fri
tion is given by the ve
tor F(ϕ) =(
F(ϕ1), . . . ,F(ϕp)

)T
∈ Rp

+, i.e.

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈ω(α) • F(ϕ) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν + α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ā(α,ϕ))

Now, as in De�nition 5, we de�ne the mapping

Ψα : Rp
+ → Rp

+, Ψα(ϕ) := |uτ |, (1.36)

where uτ is the subve
tor of the �rst 
omponent of (u,λ) := (u(ϕ),λ(ϕ)), the
solution of (Ā(α,ϕ)). Note, that due to Theorem 5, (Ā(α,ϕ)) has a unique

solution for ea
h α ∈ Uad and ϕ ∈ Rp
+, hen
e Ψα is well-de�ned.

De�nition 6. Let ϕ∗
be a �xed-point of Ψα and (u∗,λ∗) the 
orresponding solu-

tion of (Ā(α,ϕ∗)). Then (u∗,λ∗) is 
alled the solution of the algebrai
 Signorini

problem with Tres
a fri
tion and a solution-dependent 
oe�
ient of fri
tion.

As in the 
ontinuous and dis
rete settings, (u∗,λ∗) may be equivalently 
har-

a
terized as a solution of the following problem (
ompare with (M(α)), (MhH(αh))):

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈ω(α) • F(|uτ |) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(M(α))

Sin
e (M(α)) and (MhH(αh)) are not equivalent, we will state the unique

solvability of (M(α)) separately in the next theorem.

Theorem 10. Let F : R+ → R+ be bounded and Lips
hitz 
ontinuous in R+

with modulus Clip > 0. There exists a 
onstant K̄ > 0, independent of α ∈ Uad,

su
h that if Clip‖g‖∞ ∈ (0, K̄), then (M(α)) has exa
tly one solution for ea
h

α ∈ Uad.

Proof. For the sake of 
ompleteness, we in
lude a sket
h of the proof. The idea is

to show that Ψα is 
ontra
tive, when
e the assertion follows immediately by the

Bana
h �xed-point theorem.

Let ϕ(i) ∈ Rp
+, i = 1, 2, be arbitrary and 
onsider the solutions (u(i),λ(i)) ∈

Rn × Rp
+ to (Ā(α,ϕ(i))), i = 1, 2. Then

u(i) ∈ K(α) := {v ∈ Rn | −vν ≤ α}, i = 1, 2, (1.37)
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and solve the respe
tive impli
it variational inequalities:

〈
A(α)u(i), v − u(i)

〉
n
+
〈
ω(α) • F(ϕ(i)) • g, |vτ | − |u(i)

τ |
〉
p

≥
〈
L(α), v − u(i)

〉
n

∀v ∈ K(α).

}
(A(α,ϕ(i)))

Now, test the �rst inequality (A(α,ϕ(1))) with v := u(2)
, the se
ond inequality

(A(α,ϕ(2))) by v := u(1)
and add both inequalities. After rearranging the terms

we get:

〈
A(α)(u(1) − u(2)),u(1) − u(2)

〉
n

≤
〈
ω(α) •

(
F(ϕ(1))− F(ϕ(2))

)
• g, |u(2)

τ | − |u(1)
τ |

〉
p
.

Using the Cau
hy-S
hwarz inequality and the Lips
hitz 
ontinuity of F, the right-

hand side 
an be estimated by:

〈
ω(α) •

(
F(ϕ(1))− F(ϕ(2))

)
• g, |u(2)

τ | − |u(1)
τ |

〉
p

≤ ‖ω(α)‖∞‖g‖∞‖F(ϕ(1))− F(ϕ(2))‖p‖|u
(1)
τ | − |u(2)

τ |‖p

≤ ω̄Clip‖g‖∞‖ϕ(1) −ϕ(2)‖p‖u
(1) − u(2)‖n,

where ω̄ := supα∈Uad
‖ω(α)‖∞. Sin
e A(α) are uniformly positive de�nite, we

get:

γ‖u(1) − u(2)‖2n ≤ ω̄Clip‖g‖∞‖ϕ(1) −ϕ(2)‖p‖u
(1) − u(2)‖n. (1.38)

Finally:

‖Ψα(ϕ
(1))−Ψα(ϕ

(2))‖p ≤ ‖u(1) − u(2)‖n ≤
ω̄

γ
Clip‖g‖∞‖ϕ(1) − ϕ(2)‖p

and the assertion holds with

K̄ := γ/ω̄. (1.39)

1.3 Coulomb model with a solution-dependent 
o-

e�
ient of fri
tion

In this se
tion we will introdu
e the lo
al Coulomb law of fri
tion, with a 
oe�-


ient of fri
tion that is already assumed to depend on the solution, as it was the


ase in the previous se
tion. We will dis
uss the di�eren
e between the Tres
a

and Coulomb laws of fri
tion, pointing out also the di�
ulties asso
iated with its

analysis. The stru
ture of the present se
tion resembles the previous one's: after

giving the de�nition of our 
onta
t problem with Coulomb fri
tion and a solution-

dependent 
oe�
ient of fri
tion, we shall qui
kly move on to its dis
retization and

further to the algebrai
 formulation, that will be of our primary interest. Anal-

ogously to the Tres
a fri
tion 
ase, 
onditions guaranteeing unique solvability of

the algebrai
 
onta
t problems with Coulomb fri
tion for ea
h value of the design

variable α ∈ Uad will be given and proved.

Let us return to what we said in the introdu
tion, namely that the Tres
a law

of fri
tion does not model physi
al reality well. What are its short
omings and how
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an they be over
ome? To this end, we take a se
ond look at the fri
tion 
ondition

(1.9), in parti
ular its �rst part, whi
h says that sliding does not o

ur on the


onta
t boundary, until the tangential stress does not attain a 
ertain a
tivation

threshold. Now, the problem is that this threshold fun
tion does not distinguish

between points that will be
ome (after deformation) in 
onta
t and points, that

will not. As a 
onsequen
e, fri
tion for
es may a
t also at points whi
h are not

even in 
onta
t with the obsta
le�evidently, this is physi
ally infeasible. Se
ondly,

one would expe
t from a reasonable fri
tion 
ondition to take into a

ount also

the quality of 
onta
t. Namely, it should be in line with our everyday experien
e

that the stronger an obje
t sti
ks to another, the bigger for
es are needed to make

them slide. In the Tres
a law of fri
tion, the slip bound did not depend on the

pressure between the 
onta
ting surfa
es. Both these de�
ien
ies are remedied

by the so-
alled Coulomb law of fri
tion, that is formulated below (taking into

a

ount our spe
ial geometry):

|T1| ≤ F(|u1|)T2, u1 6= 0 ⇒ T1 = − sgn(u1)F(|u1|)T2 on ΓC(α). (1.40)

Note, that in (1.40) the a-priori given slip bound g is repla
ed by the unknown

normal stress T2 := T2(u). In the Coulomb law of fri
tion (1.40), if a point

x ∈ ΓC(α) will not be in 
onta
t, then T2(x) = 0, as follows from the 
onta
t


ondition (1.8), implying also T1(x) = 0. Moreover, the a
tivation threshold for

sliding is in this 
ase an in
reasing (linear) fun
tion of the pressure T2. Finally,
remark that we have already assumed that the 
oe�
ient of fri
tion F : R+ → R+

in (1.40) may also depend on the magnitude of the tangential displa
ement.

Thus, by the 
lassi
al solution to the Signorini problem with Coulomb fri
tion

we mean a fun
tion u : Ω(α) → R2
satisfying the system of equilibrium equations

and boundary 
onditions (1.1)�(1.4), (1.8) and (1.40).

Assuming that the 
lassi
al solution is su�
iently regular and applying the

Green theorem, one may easily derive the variational inequality u satis�es (we

will sti
k to the notation already introdu
ed in Se
tion 1.1):

Find u ∈ K(α) su
h that for every v ∈ K(α) :

aα(u, v − u) +

∫

ΓC(α)

F(|u1|)T2(u)
(
|v1| − |u2|

)
ds ≥ Lα(v − u).



 (1.41)

Sin
e u ∈ K(α) ⊂ H1(Ω(α)) only, T2(u) /∈ L2(ΓC(α)) in general, but T2(u) ∈
X ′

+(α). Therefore, instead of (1.41) one should write:

Find u ∈ K(α) su
h that for every v ∈ K(α)

aα(u, v − u) + 〈F(|u1|)T2(u), |v1| − |u1|〉X′(α),X(α) ≥ Lα(v − u).

}
(PC(α))

Still, in order to make sense to the duality term, F and u should be smooth

enough so that F(|u1|)|v1| ∈ X(α) ∀v ∈ V (α) (see [11℄). In order to over
ome

this di�
ulty, we will assume that T2(u) ∈ L2(ΓC(α)) and F is 
ontinuous in

R+. Then the duality may be repla
ed by the L2(ΓC(α))-s
alar produ
t. Su
h
u ∈ K(α), satisfying (PC(α)) is 
alled the weak solution. In addition, observe

that this weak solution may again be 
hara
terized as the solution of the auxiliary

problem (A(α)) with spe
ial 
oe�
ient of fri
tion F and slip bound g. Therefore,
as it was done in Proposition 1, for given ϕ ∈ X+(α), g ∈ L2

+(ΓC(α)) denote by
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(A(α, ϕ, g)) the auxiliary problem (A(α)) with the 
oe�
ient of fri
tion F◦ϕ and

the slip bound g. Further, de�ne the mapping:

ΦC : X+(α)× L2
+(ΓC(α)) → X+(α)×X ′

+(α), (ϕ, g) 7→
(
|(u1)|ΓC(α)|, T2(u)

)
,

where u = u(ϕ, g) is the unique solution of (A(α, ϕ, g)). Now it easy to see that

u ∈ K(α) solves (PC(α)) i� it is the solution of (A(α, ϕ∗, g∗)), with (ϕ∗, g∗) ∈
X+(α)× L2

+(ΓC(α)) being a �xed-point of ΦC
.

Observe that the mixed formulation (Ā(α)), whi
h will be denoted (Ā(α, ϕ, g))
in order to stress the dependen
e on ϕ and g, is parti
ularly useful here: along

with the displa
ement u we also 
ompute the normal stress T2(u) = λ, that may

be used for the �xed-point iteration in ΦC
. This motivates us to use the mixed

formulation to de�ne the weak solution.

De�nition 7. By a weak solution of the Signorini problem with Coulomb fri
tion

and a solution-dependent 
oe�
ient of fri
tion we mean the pair (u, λ) ∈ V (α)×
L2
+(ΓC(α)) solving uniquely the mixed problem (A(α, ϕ∗, g∗)), where (ϕ∗, g∗) is

a �xed-point of the mapping:

ΦC : X+(α)× L2
+(ΓC(α)) → X+(α)×X ′

+(α), (ϕ, g) 7→
(
|(u1)|ΓC(α)|, λ

)
.

Equivalently, the weak solution (u, λ) satis�es the following mixed-type prob-

lem:

Find (u, λ) ∈ V (α)× L2
+(ΓC(α)) su
h that:

aα(u, v − u) + 〈F(|u1|)λ, |v1| − |u1|〉X′(α),X(α)

≥ Lα(v − u) + 〈λ, v2 − u2〉X′(α),X(α) ∀v ∈ V (α),

〈µ− λ, u2 + dα〉X′(α),X(α) ≥ 0 ∀µ ∈ X ′
+(α).





(MC(α))

Remark 5. Unfortunately, the mapping ΦC
is not 
ontra
tive and therefore the

analysis of (MC(α)) has to be 
ondu
ted in a di�erent way�we kindly refer to

the monograph [11℄ for some relevant results. As we shall see, su
h issues are not

present in �nite dimensions and De�nition 7 suits well for the dis
retization of

(MC(α)).

1.3.1 Approximation

It should 
ome as no surprise that the dis
retization will on
e again be based

on the �xed-point stru
ture of the problem (MC(α)), iterating through some

dis
rete mixed problems (ĀhH(αh, ϕh, gH)).

To this end, let αh ∈ Uh
ad be �xed and let Λ̂H ⊂ L2(0, a) be as in Example 2,

i.e., L̂H is the spa
e of all pie
ewise 
onstant fun
tions over the partition ∆H

and Λ̂H the 
one of its nonnegative elements. Let ϕh ∈ X̂h+, gH ∈ Λ̂H be given

and denote by (ĀhH(αh, ϕh, gH)) the dis
rete mixed formulation of the Signorini

problem with given fri
tion gH and 
oe�
ient of fri
tion F ◦ ϕh:

Find (uh, λH) ∈ V h(αh)× Λ̂H su
h that:

aαh
(uh, vh − uh) + jh,αh

(ϕh, gH ; vh)− jh,αh
(ϕh, gH ;uh)

≥ Lαh
(vh − uh) + 〈λH , v̂h2 − ûh2〉Hh ∀vh ∈ V h(αh),

〈µH − λH , ûh2 + αh〉Hh ≥ 0 ∀µH ∈ Λ̂H .





(ĀhH(αh, ϕh, gH))
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Here the fun
tional jh,αh
is now de�ned as (
ompare with (1.18)):

jh,αh
(ϕh, gH ; vh) :=

∫ a

0

F(ϕh)gHπh|v̂h1|
√
1 + (α′

h)
2 dx1.

Re
all, that πh stands for the pie
ewise linear Lagrange interpolation opertor on

∆h.

De�nition 8. By a solution to the dis
retized Signorini problem with Coulomb

fri
tion and a solution-dependent 
oe�
ient of fri
tion we mean a pair (u∗
h, λ

∗
H) ∈

V h(αh) × Λ̂H solving the problem (ĀhH(αh, ϕ
∗
h, g

∗
H)), where (ϕ∗

h, g
∗
H) is a �xed-

point of the mapping

ΦC
h : X̂h+ × Λ̂H → X̂h+ × Λ̂H , (ϕh, gH) 7→

(
πh|ûh1|, λH

)
,

(uh, λH) denoting the solution of (ĀhH(αh, ϕh, gH)).

Instead of dealing with existen
e and uniqueness of solutions to the dis
retized

Signorini problem with Coulomb fri
tion and a solution-dependent 
oe�
ient of

fri
tion (for su
h result the reader is kindly referred to e.g. [20, Thm. 2.1℄ and

[20, Thm. 2.2℄) we immediately pro
eed with the algebrai
 formulation. Existen
e

and uniqueness in the fully algebrai
 setting will be investigated in more detail

with 
orresponding proofs.

1.3.2 Algebrai
 formulation

Re
all that for given ϕh ∈ X̂h+ and gH ∈ Λ̂H , with 
oordinates ϕ ∈ Rp
+ and

g ∈ Rp
+ with respe
t to the basis {ψ1

h, . . . , ψ
p
h} and {χS1, . . . , χSp}, respe
tively,

the algebrai
 Signorini problem with given fri
tion g and 
oe�
ient of fri
tion

F(ϕ) was de�ned as:

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈ω(α) • F(ϕ) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ā(α,ϕ, g))

now labeled as (Ā(α,ϕ, g)) in order to stress the dependen
e on (ϕ, g). In Re-

mark 2 it was shown that the fun
tion λ̂alg =

p∑

i=1

λi
ωi(α)

χSi
is the approximate

Lagrange multiplier, hen
e it is this fun
tion we will use in the de�nition of ΦC
h .

Introdu
ing the elementwise division operator ÷ : Rp × (R \ {0})p → Rp
,

(u, v) 7→
(
u1

v1
, . . . , up

vp

)T
, we de�ne the mapping

ΨC
α : Rp

+ × Rp
+ → Rp

+ × Rp
+, (ϕ, g) 7→

(
|uτ |,λ÷ ω(α)

)
,

where (u,λ) solves (Ā(α,ϕ, g)). Given a �xed-point (ϕ∗, g∗) of ΨC
α , the 
orre-

sponding solution (u,λ) to (A(α,ϕ∗, g∗)) is also a solution to:

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈F(|uτ |) • λ, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+.





(MC(α))

We have arrived at the following de�nition.
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De�nition 9. By the algebrai
 Signorini problem with Coulomb fri
tion and a

solution-dependent 
oe�
ient of fri
tion we mean the problem (MC(α)).

Observe that, equivalently, the algebrai
 solution (u,λ) 
an be 
hara
terized

in yet another way, namely as the (unique) solution to the auxiliary problem:

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈F(ϕ∗) • g∗, |vτ | − |uτ |〉p

〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+,





(Ã(α,ϕ∗, g∗))

where (ϕ∗, g∗) is a �xed-point of the mapping

Ψ̃C
α : (ϕ, g) 7→ (|uτ |,λ).

The pair (u,λ) in the de�nition of Ψ̃C
α is the solution of (Ã(α,ϕ, g)). In other

words, one may get the solution of the algebrai
 
onta
t problem with Coulomb

fri
tion by solving the algebrai
 
onta
t problem with Tres
a fri
tion, but without

ω(α) in the fri
tional term. Although it may not be apparent at the moment, but

the fa
t that the 
ontrol parameter α ∈ Uad is not present in the fri
tional term

of (MC(α)) will make a huge di�eren
e when it 
omes to 
ondu
ting sensitivity

analysis.

Now, let us state and prove the following result on existen
e and uniqueness

of the algebrai
 solution.

Theorem 11. (i) Let F : R+ → R+ be 
ontinuous and bounded, i.e. ∃Cmax >
0 ∀x ∈ R+ : 0 ≤ F(x) ≤ Cmax. Then (MC(α)) has at least one solution

for all α ∈ Uad.

(ii) Let, in addition, F be Lips
hitz 
ontinuous with modulus Clip. If Clip and

Cmax are su�
iently small, all problems (MC(α)) have a unique solution.

Proof. For the sake of this proof, let us de�ne the norm on produ
ts of Eu
lidean

spa
es Rs × Rt
(s, t ∈ N) by: ‖(w, z)‖s+t := ‖w‖s + ‖z‖t.

(i) Let (ϕ, g) ∈ Rp
+ × Rp

+ be given and 
onsider (u,λ), the unique solution of

(Ã(α,ϕ, g)). Then, from Lemma 2(i) we have immediately:

‖Ψ̃C
α (ϕ, g)‖p+p ≤ ‖u‖n + ‖λ‖p ≤

[
1

γ
+

1

β

(
‖A‖
γ

+ 1

)]
‖L‖ =: R, (1.42)

where ‖A‖ = supα∈Uad
‖A(α)‖, ‖L‖ = supα∈Uad

‖L(α)‖n and hen
e R does not

depend on α ∈ Uad. Thus, Ψ̃
C
α maps the ball BR ⊂ Rp × Rp

of radius R and


enter 0 into itself. Continuity of Ψ̃C
α is very easy to verify: for any 
onvergent

sequen
e {(ϕ(i), g(i))} ⊂ Rp
+ ×Rp

+, (ϕ
(i), g(i)) → (ϕ, g), the sequen
e of solutions

{(u(i),λ(i))} to the problems (Ã(α,ϕ(i), g(i))), i = 1, 2, . . . , 
onverges to the solu-
tion of the limit problem (Ã(α,ϕ, g)). Hen
e, by Brouwer's �xed-point theorem,

the assertion follows.

(ii) We pro
eed analogously as in the 
ase of Tres
a fri
tion and show that Ψ̃C
α

is 
ontra
tive in BR. To this end, 
onsider two pairs (ϕi, gi), ‖(ϕi, gi)‖p+p ≤ R,
i = 1, 2, and follow the steps of the proof of Theorem 10 to get:

γ‖u1 − u2‖n ≤ 〈F(ϕ1) • g1 − F(ϕ2) • g2, |u2
τ | − |u1

τ |〉p,
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where (u1, g1), (u2, g2) denote the solutions to (Ã(α,ϕ1, g1)), (Ã(α,ϕ2, g2)),
respe
tively. Using the Cau
hy-S
hwarz inequality, adding and subtra
ting the

term F(ϕ1) • g2
and making use of the assumptions on F we arrive at:

‖u1 − u2‖n ≤
1

γ

(
Cmax‖g

1 − g2‖p + Clip‖g
2‖∞‖ϕ1 −ϕ2‖p

)
(1.43)

≤
1

γ
max{Cmax, RClip}‖(ϕ

1 − ϕ2, g1 − g2)‖p+p (1.44)

Next, we estimate the di�eren
e of the Lagrange multipliers λ1
, λ2

. From the

�rst inequality of (Ã(α,ϕi, gi)) one gets:

〈A(α)ui, v〉n = 〈L(α), v〉n + 〈λi, vν〉p ∀v ∈ Rn, vτ = 0, i = 1, 2.

Subtra
ting the two equations from ea
h other yields:

〈λ1 − λ2, vν〉p = 〈A(α)(u1 − u2), v〉n ∀v ∈ Rn, vτ = 0.

From Lemma 1, noti
ing that the supremum 
an be taken over the whole spa
e

Rn
, we get:

β‖λ1 − λ2‖p ≤ ‖A‖‖u1 − u2‖n.

Finally, 
ombining the previous two estimates we obtain:

‖Ψ̃C
α (ϕ

1, g1)− Ψ̃C
α (ϕ

2, g2)‖p+p ≤ ‖u1 − u2‖n + ‖λ1 + λ2‖p

≤
β + ‖A‖
βγ

max{Cmax, RClip}‖(ϕ
1, g1)− (ϕ2, g2)‖p+p.

Now, the assertion of the theorem holds, provided

max{Cmax, RClip} <
βγ

β + ‖A‖
. (1.45)

Remark 6. We have 
ome to another important di�eren
e between the 
onta
t

problems with Tres
a fri
tion (M(α)) and Coulomb fri
tion (MC(α)). Namely,

that in the latter 
ase the 
ondition guaranteeing unique solvability of the problem

for every α ∈ Uad, is data-dependent. Indeed, the �
onstant� R in (1.45) is a


ontinuous, in
reasing fun
tion of ‖L‖, 
f. (1.42). For too large load ve
tors L,

(1.45) will be
ome invalid and one may lose uniqueness. However, if (1.45) is

satis�ed for a given set of data F and L, then it remains valid for su�
iently

small perturbations of the load ve
tor, as well. We shall return to this matter

when investigating stability (MC(α)) with respe
t to the design variable α ∈ Uad.
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Chapter 2

Shape optimization: Tres
a 
ase

In the previous 
hapter we have introdu
ed the Signorini problem and sever-

al models of fri
tion, formulated various (not always equivalent) mathemati
al

problems des
ribing this physi
al phenomena. For a �xed geometry, we were in-

terested in existen
e and uniqueness of solutions to these problems. In addition,

it was shown that the 
onsidered problems remain (uniquely) solvable even if the

geometry is 
hanged. In the present 
hapter we fo
us on the model with Tres
a

fri
tion where the 
oe�
ient of fri
tion depends on the unknown solution and

take our 
onsiderations to a further level. Namely, we will try to identify an op-

timal geometry among the set of admissible ones, i.e., �nd su
h α∗
that the pair

(α∗,y∗), where y∗
is the solution of the 
orresponding state problem, minimizes

a given 
ost fun
tional J . After proving existen
e of at least one optimal shape,

we will fo
us on its identi�
ation in pra
ti
e. As we shall see, a 
ru
ial ingredient

for an e�e
tive numeri
al solution of the shape optimization problem is the 
om-

putation of (sub)gradients with respe
t to the design variable. This is subje
t of

the se
tion 
overing sensitivity analysis and represents our main results in this


hapter.

The stru
ture of the 
hapter is as follows. We start with the de�nition of

the shape optimization problem for 
ontinuous and dis
retized state problems,

re
alling results from [43℄. Convergen
e analysis is also treated brie�y � for de-

tails on these issues we kindly refer to [43℄ and [17℄. For the rest of the 
hapter

we shift our attention entirely to the algebrai
 state problem (M(α)) and the


orresponding algebrai
 shape optimization problem. First, stability analysis is


arried out, i.e., it is shown that the state variable is a Lips
hitz fun
tion of the

design. As an easy 
onsequen
e we obtain existen
e of a solution to the shape

optimization problem. For its numeri
al solution we employ the impli
it program-

ming approa
h (ImP), whi
h requires 
omputing (sub)gradients of the impli
itly

de�ned, nondi�erentiable 
ontrol-to-state mapping. This shall be fa
ilitated by

the generalized di�erential 
al
ulus of B. Mordukhovi
h and the 
almness prop-

erty of the state problem. Most of the results presented in this 
hapter have been

published in the paper [17℄.
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2.1 The 
ontinuous and dis
retized shape opti-

mization problem

As already mentioned above, we will be dealing with the Signorini problem with

Tres
a fri
tion and a solution-dependent 
oe�
ient of fri
tion that was introdu
ed

in (P(α)) and reads as:

Find u := u(α) ∈ K(α) su
h that:

aα(u, v − u) + jα(u, v)− jα(u,u) ≥ Lα(v − u) ∀v ∈ K(α).

}
(P(α))

Here the bilinear form aα and linear form Lα are de�ned by (1.10) and (1.11),

respe
tively, whereas the nonsmooth fri
tional term has the form

jα(w, v) :=

∫

ΓC(α)

F(|w1|)g|v1| ds ∀w, v ∈ H1(Ω(α)).

The solution of (P(α)) is sought in the 
losed 
onvex setK(α) = {v ∈ H1(Ω(α)) |
v = 0 on ΓD(α), −v2 ≤ dα on ΓC(α)}. On the other hand, the admissible set Uad

de�ned in (1.7) as a subset of Lips
hitz fun
tions that are together with their

�rst derivatives equibounded, turns out to be too large. Instead, we will be able

to prove existen
e of an optimal parameter in the following subset of Uad:

Ũad :=
{
α ∈ C1,1([0, a])

∣∣∣ 0 ≤ α ≤ C0 in [0, a],

|α′| ≤ C1 in [0, a],

|α′′| ≤ C3 a.e. in (0, a),

C21 ≤

∫ a

0

α(x1) dx1 ≤ C22

}
,

(2.1)

i.e. Ũad 
ontains C
1,1
-fun
tions that have, in addition to (1.7), equibounded se
ond

derivatives (they exist a.e. in (0, a) by Radema
her's theorem).

Now, let J : D → R, where D := {(α,y) | α ∈ Ũad, y ∈ V (α)}, be a given


ost fun
tional and denote:

G := {(α,u) | α ∈ Ũad, u solves (P(α))},

i.e., G is the graph of the 
ontrol-to-state mapping Ũad ∋ α 7→ {u ∈ K(α) |
u solves (P(α))} (also 
alled the solution map). Note that the 
ontrol-to-state

map is multivalued, in general.

De�nition 10. A domain Ω(α∗) is 
alled optimal i� there exists a u∗ ∈ K(α∗)
su
h that (α∗,u∗) ∈ G solves the following problem:

Find (α,u) ∈ G su
h that:

J(α,u) ≤ J(α′,u′) ∀(α′,u′) ∈ G.

}
(P)

(P) is termed the shape optimization problem.
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In order to establish existen
e of an optimal domain Ω(α∗), α∗ ∈ Ũad, we

show that G is (sequentially) 
ompa
t with respe
t to a suitable topology τD on

D. Provided we su

eed in �nding su
h τD, (P) will have at least one solution for

all 
ost fun
tionals J that are (sequentially) lower semi
ontinuous with respe
t

to this topology.

Let V̂ := H1(Ω̂) and denote by Eα : V (α) → V̂ , α ∈ Ũad, the 
ontinuous,

linear extension operator from Ω(α) into Ω̂. Further, let E : D → Ũad × V̂ ,

(α,y) 7→ (α,Eαy). Then E is inje
tive. Indeed, (α,Eαy) = (β, Eβz) implies

α = β and, 
onsequently, from Eαy = Eαz one has y = z. Let us equip Ũad with

the C1
-topology and V̂ with the weak H1

-topology. On Σ := E(D) we 
onsider

the relative topology indu
ed by the produ
t topology of Ũad × V̂ . Now it is easy

to see that

τD := {A ⊂ D | E(A) is open in Σ} (2.2)

de�nes a topology on D. Indeed, ∅ ∈ τD and sin
e E : D → Σ is bije
tive,

it preserves set interse
tions and unions, in parti
ular: E(
⋃
Ai) =

⋃
E(Ai) and

E(A ∩ B) = E(A) ∩ E(B) for any subsets Ai, A, B ⊂ D.

Lemma 3. The set G is sequentially 
ompa
t in (D, τD), where τD is de�ned by

(2.2), i.e., it holds that

∀{(αn,un)} ⊂ G ∃{(αnj
,unj

)} ⊂ {(αn,un)} ∃(α,u) ∈ G :

αnj
→ α in C1([0, a]), Eαnj

unj
⇀ Eαu (weakly) in H1(Ω̂), j → ∞.

The proof relies on the fa
t that the domains Ω(α), α ∈ Ũad have the uniform


one property [6℄; thus ‖Eα‖ may be estimated independently of α. At some

point in the proof of Lemma 3 (see [17, Lemma 1℄) one has to take limit in the

fri
tional term jαnj
as αnj

→ α, j → ∞, and here 
omes into play the additional

smoothness requirement in (2.1).

Finally, existen
e of an optimal domain is merely stated in the next theorem.

Theorem 12. Let the 
ost fun
tional J be sequentially lower semi
ontinuous with

respe
t to the topology τD (2.2), i.e.

αn → α in C1([0, a]), αn, α ∈ Ũad,

yn ⇀ y in H1(Ω̂), yn,y ∈ H1(Ω̂)

}
=⇒ lim inf

n→∞
J(αn,yn|Ω(αn)) ≥ J(α,y|Ω(α)).

Then (P) has at least one solution.

Next we shortly des
ribe the dis
retization of the shape optimization problem

and present results 
on
erning existen
e of dis
rete optimal domains and their


onvergen
e to optimal ones in the sense of De�nition 10.

Dis
retization of every shape optimization problem is twofold: on the one

hand, the admissible parameter set has to be repla
ed by a �nite dimensional one

and, se
ondly, the state problem has to be dis
retized. We pro
eeed analogously

as in Se
tion 1.1.3, i.e., de�ne the dis
retized admissible set by means of pie
ewise

linear fun
tions and approximate (P(α)) using 
onforming pie
ewise linear �nite

elements on a regular triangulation of the 
orresponding polygonal domain.
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Let h > 0 be �xed. In 
ontrast to Se
tion 1.1.3 we now have P1(∆h) ∩ Ũad =

∅, be
ause Ũad 
ontains fun
tions of higher regularity. Therefore, Ũad has to be

approximated in a di�erent manner:

Ũh
ad :=

{
αh ∈ P1(∆h) ∩ C([a, b])

∣∣∣ 0 ≤ αh ≤ C0 in [0, a],

|α′
h| ≤ C1 a.e. in (0, a),

|αh(ai+1)− 2αh(ai) + αh(ai−1)| ≤ C3h
2 ∀i = 2, . . . , p− 1,

C21 ≤

∫ a

0

αh(x1) dx1 ≤ C22

}
.

(2.3)

Let Ũh
ad denote the set 
ontaining all pie
ewise linear fun
tions satisfying the 
on-

straints in (2.1), but instead of the se
ond derivatives we bound the se
ond �nite

di�eren
es at the nodes of ∆h. Note that Ũh
ad ⊂ Uad (
f. (1.7)), but Ũh

ad 6⊂ Ũad, i.e.,

we have an external approximation of Ũad. For a given αh ∈ Ũh
ad we again 
ontru
t

a triangulation Th(αh) of Ω(αh) that satis�es (T1)�(T4) and re
all the de�nition

of the sets V h(αh),Kh(αh) and the pie
ewise linear Lagrange interpolation op-

erator πh : C([0, a]) → P1(∆h) ∩ C([0, a]) from Se
tion 1.1.3 and Se
tion 1.2.1,

respe
tively. Thus the dis
retized �primal� problem reads as (
ompare with Se
-

tion 1.2.1):

Find uh := uh(αh) ∈ Kh(αh) su
h that:

aαh
(uh, vh − uh) + jh,αh

(πh|ûh1|; vh)− jh,αh
(πh|ûh1|;uh)

≥ Lαh
(vh − uh) ∀vh ∈ Kh(αh).





(Ph(αh))

The dis
retized shape optimization problem is de�ned in a similar way as it was

done for (P). To this end, let Dh := {(αh,yh) | αh ∈ Ũh
ad, yh ∈ V h(αh)} and

denote the graph of the 
ontrol-to-state mapping asso
iated with (Ph(αh)) by

Gh := {(αh,uh) | αh ∈ Ũh
ad, uh solves (Ph(αh))}. Modifying the approa
h for the


ontinuous setting appropriately, one �nds that Gh is sequentially 
ompa
t with

respe
t to the topology τDh
that is indu
ed by the (C([0, a]) × weak-H1(Ω̂))-

topology on Ũh
ad × H1(Ω̂). For details see Proposition 3.1 in [43℄. The following

existen
e theorem is therefore straightforward.

Theorem 13. Let the 
ost fun
tional J be sequentially lower semi
ontinuous in

the topology τDh
, i.e.

α
(n)
h → αh in C([0, a]), α

(n)
h , αh ∈ Ũh

ad,

y(n) ⇀ y in H1(Ω̂), y(n),y ∈ H1(Ω̂)

}
=⇒ lim inf

n→∞
J(α

(n)
h ,y(n)|

Ω(α
(n)
h )

)

≥ J(αh,y|Ω(αh)).

Then the dis
retized shape optimization problem:

Find (αh,uh) ∈ Gh su
h that:

J(αh,uh) ≤ J(α′
h,u

′
h) ∀(α′

h,u
′
h) ∈ Gh

}
(Ph)

has at least one solution.
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Up to now the dis
retization parameter h > 0 was �xed. In what follows we

investigate the relationship between solutions of (Ph) and (P) as h→ 0+.
First of all, let us note that although αh are Lips
hitz only, by 
ontrolling their

se
ond �nite di�eren
es we get: αh ∈ Ũh
ad ∀h and αh → α in C([0, a]), h → 0+,

then α ∈ Ũad (
f. [17, Lemma 3℄). Moreover, the family {Ũh
ad | h > 0} is dense

in Ũad with respe
t to the C([0, a])-topology (
f. [17, Lemma 2℄). Con
erning the


ost fun
tional J , this time we shall assume that it is 
ontinuous in the following

sense:

αh → α, in C([a, b]), αh ∈ Ũh
ad, α ∈ Ũad,

Eahuh ⇀ Eαu, in H1(Ω̂),uh,u solves (Ph(αh)) and (P(α)), resp.

}
=⇒

=⇒ lim
h→0+

J(αh,uh) = J(α,u).

(2.4)

Further, denote:

Ḡ := {(α,u) ∈ G | ∀h→ 0+ ∃{hj} ⊂ {h} ∃{(αhj
,uhj

)}, (αhj
,uhj

) ∈ Ghj
:

αhj
→ α in C([a, b]) and Eαhj

uhj
⇀ Eαu in H1(Ω̂), hj → 0+}.

Then the following 
onvergen
e result holds.

Theorem 14. Let J satisfy (2.4) and {(α∗
h,u

∗
h)}, h → 0+, be a sequen
e of

dis
rete optimal pairs, i.e., (α∗
h,u

∗
h) ∈ Gh is a solution to (Ph) for every h > 0.

Then there exists a subsequen
e {hj} ⊂ {h} and fun
tions α∗ ∈ Ũad, u
∗ ∈ H1(Ω̂)

su
h that:

α∗
hj

→ α∗
in C([0, a]), Eαhj

u∗
hj
⇀ u∗

in H1(Ω̂), hj → 0+,

and (α∗,u∗|Ω(α∗)) ∈ G satis�es:

J(α∗,u∗|Ω(α∗)) ≤ J(ᾱ, ū) ∀(ᾱ, ū) ∈ Ḡ.

In addition, if (P(α)) are uniquely solvable for all α ∈ Ũad, then Ḡ = G and

(α∗,u∗|Ω(α∗)) is optimal in the sense of De�nition 10.

The set Ḡ represents those optimal pairs (α,u) ∈ G that 
an be approxi-

mated by a subsequen
e {(αhj
,uhj

)} of dis
rete optimal pairs. Theorem 14 then

states that from a sequen
e of dis
rete optimal pairs one 
an always extra
t a

subsequen
e 
onverging to a generally sub-optimal pair (α∗,u∗|Ω(α∗)) ∈ Ḡ, i.e. the
optimal one with respe
t to Ḡ. Optimality (in the sense of De�nitiion 10) is en-

sured whenever the 
ontinuous state problems (P(α)) are uniquely solvable. By

Theorem 8 we know that this holds true provided the 
oe�
ient of fri
tion F is

Lips
hitz with a su�
iently small modulus.

2.2 The algebrai
 shape optimization problem

From now on we shall be dealing with the numeri
al solution of one shape opti-

mization problem (Ph), therefore let h > 0 be �xed in the sequel.
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It was already mentioned in Chapter 1 that the presen
e of the nonlinear

fri
tional term jh,αh
in the state problem makes (Ph) unsuitable for dire
t nu-

meri
al realization. To over
ome this, using numeri
al integration, we transformed

(MhH(αh)) into a system of algebrai
 inequalities (M(α)) in Se
tion 1.2.2. Based

on (M(α)) we will now formulate the algebrai
 shape optimization problem as

a Mathemati
al Program with Equilibrium Constraints (MPEC) and employ the

Impli
it Programming (ImP) te
hnique for its solution.

First, let us noti
e that the dis
rete admissible set (2.3) may be identi�ed with

the set

Ũad :=
{
α ∈ Rp

+

∣∣∣ 0 ≤ αi ≤ C0 ∀i = 1, . . . , p,

|αi − αi+1| ≤ C1h ∀i = 1, . . . , p− 1,

|αi−1 − 2αi + αi+1| ≤ C3h
2 ∀i = 2, . . . , p− 1,

2

h
C21 ≤

p−1∑

i=1

(αi + αi+1) ≤
2

h
C22

}
.

(2.5)

A
tually, in the forth
oming analysis we will only need that ∅ 6= Ũad ⊂ Rp
+ is


ompa
t and 
onvex.

Next, we simplify our presentation by 
onsidering the redu
ed state problem

(see (1.34) for the Signorini problem with given fri
tion), i.e., we assume that the


ost fun
tional depends only on the 
onta
t variables uτ , uν , λ. If this was not the


ase, one had to 
ompute sensitivities of uint from (1.29), as well. Nevertheless,

using appropriate sum rules, this 
an be done in a straightforward way and won't

be 
onsidered here.

For a given α ∈ Ũad, the redu
ed algebrai
 Signorini problem with Tres
a

fri
tion and a solution-dependent 
oe�
ient, formulated as a system of GEs,

reads as follows:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q̃τ (α,uτ ),

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α),

0 ∈ uν +α+NRp
+
(λ),





(2.6)

where the multifun
tion Q̃τ : Ũad × Rp
+ ⇒ Rp

+ takes the form:

Q̃τ (α,w) =



ω1(α)F(|w1|)g1∂|w1|

.

.

.

ωp(α)F(|wp|)gp∂|wp|


 , α ∈ Ũad, w ∈ Rp

+. (2.7)

Indeed, it su�
es to rewrite the auxiliary problem (Ā(α,ϕ)) into the form (1.34)

and insert the �xed-point of the mapping Ψα, de�ned in (1.36), whi
h leads

dire
tly to (2.6) and (2.7).

In order to write (2.6) in a 
ompa
t form, we introdu
e the following notation:

the state variable shall be denoted by

1 y := (uτ ,uν ,λ) ∈ R3p
and we de�ne the

single-valued mapping F : Ũad × R3p → R3p
by

F (α,y) := A(α)y − l(α), (α,y) ∈ Ũad × R3p, (2.8)

1

A
tually, y ∈ Rp × Rp × Rp
; nevertheless, for brevity, we shall identify this set with R3p

.
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where

A(α) :=



Aττ (α) Aτν(α) 0

Aντ (α) Aνν(α) −E
0 E 0


 , l(α) :=



Lτ (α)
Lν(α)
−α


 , (2.9)

and, �nally, the 
losed-graph multifun
tion Q̃ : Ũad × R3p
⇒ R3p

as

Q̃(α,y) :=



Q̃τ (α,uτ )

0

NRp
+
(λ)


 , α ∈ Ũad, y = (uτ ,uν ,λ) ∈ R3p. (2.10)

Let us re
all that, due to the assumptions (T1)�(T4), F is 
ontinuously di�eren-

tiable. Thus (2.6) may be equivalently rewritten as

Find y ∈ R3p
su
h that:

0 ∈ F (α,y) + Q̃(α,y).

}
(GE(α))

With (GE(α)) we asso
iate the 
ontrol-to-state mapping (solution map) S̃ :

Ũad ⇒ R3p
, de�ned as

S̃(α) := {y ∈ R3p | 0 ∈ F (α,y) + Q̃(α,y)}, (2.11)

i.e., S̃ assigns to ea
h design variable α ∈ Ũad the set of solutions to the (redu
ed)

Signorini problem with Tres
a fri
tion and a solution-dependent 
oe�
ient of

fri
tion (GE(α)).
Employing notation from the previous se
tions, we de�ne the algebrai
 shape

optimization problem as

minimize J(α,y),

subj. to y ∈ S̃(α),

α ∈ Ũad,



 (P)

where J : Ũad × R3p → R is a given 
ost fun
tional. (P) is in the form of an

MPEC, sin
e it represents an optimization problem where one of the 
onstraints

is an equilibrium problem. The main result of this se
tion follows next.

Theorem 15. Let the assumptions of Theorem 10 be satis�ed and J : Ũad×R3p →
R be lower semi
ontinuous. Then (P) has at least one solution.

Noti
e, that (P) may be written as

minimize J(α,y),

subj. to (α,y) ∈ G̃,

}

where G̃ := Gr S̃ is the graph of the 
ontrol-to-state mapping S̃. Hen
e, it is

su�
ient to show that G̃ ⊂ R4p
is 
ompa
t, whi
h in turn immediately yields

the assertion of the theorem. In the next se
tion we show that under similar

assumptions to that of Theorem 10 (Lips
hitz 
ontinuity of F) S̃ is single-valued

and Lips
hitzian in the 
ompa
t domain Ũad, implying that its graph is 
ompa
t

in R4p
.
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2.3 Lips
hitzian stability

The main result of this se
tion is to show that the 
ontrol-to-state mapping S̃
(
f. (2.11)) is Lips
hitz provided the fri
tion 
oe�
ient F is Lips
hitz with a

su�
iently small modulus. In other words, we prove that the (unique) solution

(u(α),λ(α)) ∈ Rn × Rp
+ of (M(α)) is Lips
hitz as a fun
tion of the design

parameter α ∈ Ũad. In addition, we prove another stability result, namely, that�

for �xed α�the solution of (M(α)) is Lips
hitzian with respe
t to the load ve
tor
L ∈ Rn

. This fa
t will be used later when 
ondu
ting sensitivity analysis.

First, we provide the following auxiliary result, showing the Lips
hitzian sta-

bility of the solution to the problem (Ā(α,ϕ)) with respe
t to ϕ.

Lemma 4. Let α ∈ Ũad be �xed and F : R+ → R+ Lips
hitz in R+ with modulus

Clip > 0. Then there exists a 
onstant q > 0, independent of α, su
h that

‖(u(1),λ(1))− (u(2),λ(2))‖n+p ≤ q‖ϕ(1) − ϕ(2)‖p ∀ϕ(1),ϕ(2) ∈ Rp
+,

where (u(i),λ(i)) ∈ Rn×Rp
+ denote the (unique) solution to (Ā(α,ϕ(i))), i = 1, 2.

Moreover, q = κClip for some positive 
onstant κ > 0.

Proof. In the proof of Theorem 10 we have already shown the �rst part of the

assertion (
f. (1.38)), namely

‖u(1) − u(2)‖n ≤
ω̄

γ
‖g‖∞Clip‖ϕ

(1) −ϕ(2)‖p. (2.12)

Here we show that a similar estimate holds for the Lagrange multipliers. To this

end, test the �rst inequality of (Ā(α,ϕ(i))) in order by v := 0, 2u(i)
to see that

λ(i)
(i = 1, 2) satis�es

〈
A(α)u(i), v

〉
n
= 〈L(α), v〉n +

〈
λ(i), vν

〉
p

∀v ∈ Rn, vτ = 0.

Subtra
ting the two equations for i = 1, 2 yields

〈
λ(1) − λ(2), vν

〉
p
=

〈
A(α)

(
u(1) − u(2)

)
, v

〉
n

∀v ∈ Rn, vτ = 0.

Dividing it by ‖v‖n and taking supremum over the set S := {v ∈ Rn | vν 6=
0, the remaining 
omponents of v are 0} we arrive at

‖λ(1) − λ(2)‖p = sup
v∈S

〈
λ(1) − λ(2), vν

〉
p

‖v‖n
≤ ‖A‖‖u(1) − u(2)‖p, (2.13)

where ‖A‖ := sup
α∈Ũad

‖A(α)‖. Combining (2.13) with (2.12) we �nd that the

assertion of the lemma holds with

q :=
(‖A‖+ 1)ω̄

γ
‖g‖∞Clip. (2.14)
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2.3.1 Stability with respe
t to the design variable

Now, we let ϕ be �xed and start with investigating Lips
hitzian stability of the

solution to (Ā(α,ϕ)) with respe
t to α.

Lemma 5. Let ϕ ∈ Rp
+ be �xed. Then there exists a 
onstant c > 0, whi
h does

not depend on ϕ and satis�es

‖(u(1),λ(1))− (u(2),λ(2))‖n+p ≤ c‖α(1) −α(2)‖p ∀α(1),α(2) ∈ Ũad,

where (u(i),λ(i)) ∈ Rn × Rp
+ stands for the solution of (Ā(α(i),ϕ)), i = 1, 2.

Proof. First, we will estimate the di�eren
e of the primal variables ‖u(1)−u(2)‖n
using the primal formulation of (Ā(α,ϕ)). Re
all from the proof of Theorem 10

(
f. (1.37) and (A(α,ϕ(i)))) that

u(i) ∈ K(α(i)) = {v ∈ Rn | −vν ≤ α(i)}, i = 1, 2,

and they solve the respe
tive variational inequalities:

〈
A(α(i))u(i), v − u(i)

〉
n
+
〈
ω(α(i)) • F(ϕ) • g, |vτ | − |u(i)

τ |
〉
p

≥
〈
L(α), v − u(i)

〉
n

∀v ∈ K(α(i))

}
(A(α(i),ϕ))

for i = 1, 2. Observe that the sets K(α(i)) may be written in the following way:

K(α(i)) = a(i) +K(0),

where the ve
tors a(i) ∈ Rn
are su
h that a

(i)
ν = −α(i)

and all its other 
ompo-

nents are zero. Thus for ea
h i ∈ {1, 2}

∃w(i) ∈ K(0) : u(i) = a(i) +w(i).

Inserting now v := a(i) +w(j)
into (A(α(i),ϕ)), i, j ∈ {1, 2}, i 6= j, and adding

the two inequalities yields:

〈
A(α(1))(w(1) −w(2)),w(1) −w(2)

〉
n

≤
〈
A(α(1))(a(1) − a(2)),w(1) −w(2)

〉
n
+
〈(
A(α(1))− A(α(1))

)
u(2),w(1) −w(2)

〉
n

+
〈(
ω(α(1))− ω(α(2))

)
• F(ϕ) • g, |w(2)

τ | − |w(1)
τ |

〉
p

+
〈
L(α(1))− L(α(2)),w(1) −w(2)

〉
n
.

Making use of (1.23), Lips
hitz 
ontinuity of A, L, ω and boundedness of F, we

arrive at the following estimate:

γ‖w(1) −w(2)‖2n ≤ c‖α(1) −α(2)‖p‖w
(1) −w(2)‖n,

where the 
onstant c > 0 does not depend on ϕ and α(i)
, i = 1, 2. From this and

the de�nition of a(i)
then one obtains

‖u(1) − u(2)‖n ≤ ‖a(1) − a(2)‖n + ‖w(1) −w(2)‖n

≤ (1 + c)‖α(1) −α(2)‖p. (2.15)
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To estimate the di�eren
e of the Lagrange multipliers ‖λ(1)−λ(2)‖p we pro
eed
as in the proof of the previous lemma. In parti
ular, from the �rst inequality of

(Ā(α(i),ϕ)) we have
〈
A(α(i))u(i), v

〉
n
=

〈
L(α(i)), v

〉
n
+
〈
λ(i), vν

〉
p

∀v ∈ Rn, vτ = 0, i = 1, 2.

Subtra
ting the two equations for i = 1, 2 yields

〈
λ(1) − λ(2), vν

〉
p
=
〈(
A(α(1))− A(α(2))

)
u(2), v

〉
n
+
〈
A(α(2))

(
u(1) − u(2)

)
, v

〉
n

+
〈
L(α(1))−L(α(2)), v

〉
n

∀v ∈ Rn, vτ = 0.

Pro
eeding exa
tly as in the proof of the previous lemma, i.e., divide by ‖v‖n and
take supremum over S := {v ∈ Rn | vν 6= 0, the remaining 
omponents of v are 0},
we arrive at

‖λ(1) − λ(2)‖p = sup
v∈S

〈
λ(1) − λ(2), vν

〉
p

‖v‖n
≤ c‖α(1) −α(2)‖p. (2.16)

Here we made use of the Lips
hitz 
ontinuity of A and L, Lemma 2(i), as well as

(2.15). Finally, the proof is �nished by adding (2.15) and (2.16).

The main result now reads as follows.

Theorem 16. Let F be Lips
hitz with a su�
iently small modulus Clip > 0 so

that Lemma 4 holds with q < 1. Then S̃, de�ned in (2.11), is single-valued and

Lips
hitz in Ũad.

Proof. Comparing the 
onstants q and K̄ from (2.14) and (1.39), respe
tively, one

easily �nds that q < 1 implies that the assumption of Theorem 10 is satis�ed.

Thus (M(α)) are uniquely solvable for ea
h α ∈ Ũad and hen
e S̃ is single-valued.

Now, let α, ᾱ ∈ Ũad be given and denote the solutions to (M(α)) and (M(ᾱ))
by (u,λ) ∈ Rn×Rp

+ and (ū, λ̄) ∈ Rn×Rp
+, respe
tively. Sin
e the 
orresponding

mappings Ψα and Ψᾱ (
f. (1.36)) are 
ontra
tive, these solutions may be revealed

by the method of su

essive approximations in the following way.

Choose an arbitrary ϕ(0) ∈ Rp
+ and 
ompute the solutions to (Ā(α,ϕ(0)))

and (Ā(ᾱ,ϕ(0)))�let us denote them by (u(0),λ(0)) ∈ Rn×Rp
+ and (ū(0), λ̄

(0)
) ∈

Rn×Rp
+. Then set ϕ(1) := Ψα(ϕ

(0)) and ϕ̄(1) := Ψᾱ(ϕ
(0)). By Lemma 5 we readily

know that

‖(u(0),λ(0))− (ū(0), λ̄
(0)
)‖n+p ≤ c‖α− ᾱ‖p, (2.17)

and hen
e also

‖ϕ(1) − ϕ̄(1)‖p =
∥∥|u(0)

τ | − |ū(0)
τ |

∥∥
n
≤ ‖u(0) − ū(0)‖n ≤ c‖α− ᾱ‖p. (2.18)

Now, solve the problems (Ā(α,ϕ(1))) and (Ā(ᾱ, ϕ̄(1))) to obtain (u(1),λ(1)) ∈

Rn ×Rp
+ and (ū(1), λ̄

(1)
) ∈ Rn ×Rp

+. Further, denote the solution to (Ā(α, ϕ̄(1)))

by (U (1),Λ(1)) ∈ Rn × Rp
+. Thus, we may estimate:

‖(u(1),λ(1))− (ū(1), λ̄
(1)
)‖n+p ≤ ‖(u(1),λ(1))− (U (1),Λ(1))‖n+p

+ ‖(U (1),Λ(1))− (ū(1), λ̄
(1)
)‖n+p

≤ q‖ϕ(1) − ϕ̄(1)‖p + c‖α− ᾱ‖p

≤ c(1 + q)‖α− ᾱ‖p,
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as follows from Lemmas 4, 5 and (2.18). Continuing this iterative pro
ess, in the

kth step one has (u(k),λ(k)) and (ū(k), λ̄
(k)
), the solutions to (Ā(α,ϕ(k))) and

(Ā(ᾱ, ϕ̄(k))), respe
tively, along with the estimate:

‖(u(k),λ(k))− (ū, λ̄
(k)
)‖n+p ≤ c(1 + q + q2 + · · ·+ qk)‖α− ᾱ‖p

≤
c

1− q
‖α− ᾱ‖p, (2.19)

sin
e q < 1 by assumption. Then, one sets ϕ(k+1) := Ψα(ϕ
(k)), ϕ̄(k+1) := Ψᾱ(ϕ̄

(k)),
and starts the iteration loop with k := k + 1.

The sequen
es {ϕ(k)} and {ϕ̄(k)} generated by this pro
ess 
onverge to the

unique �xed points of the mappingsΨα and Ψᾱ, resp.; the sequen
es {(u(k),λ(k))},

{(ū(k), λ̄
(k)
)} 
onverge to the (unique) solutions of (M(α)) and (M(ᾱ)), resp.

Thus it is su�
ient to pass to the limit as k → ∞ in (2.19) to obtain the assertion

of the theorem.

2.3.2 Stability with respe
t to the load ve
tor

In addition to Theorem 16 we shall need another stability result, namely the

one with respe
t to the load ve
tor L. Sin
e α ∈ Ũad will be �xed and L ∈ Rn

the parameter, we adjust the notation to re�e
t this fa
t and write (Ā(L,ϕ)),
(M(L)), ΨL instead of (Ā(α,ϕ)), (M(α)), Ψα, et
.

Lemma 6. Let α ∈ Ũad be �xed and the assumptions of Theorem 16 hold true.

Then there exists a 
onstant c > 0, not depending on α ∈ Ũad, su
h that

‖(u,λ)− (ū, λ̄)‖n+p ≤ c‖L− L̄‖n ∀L, L̄ ∈ Rn,

where (u,λ), (ū, λ̄) ∈ Rn×Rp
+ denote the (unique) solutions of (M(L)), (M(L̄)),

respe
tively.

Proof. We merely sket
h the proof, sin
e it employs the same �xed-point te
h-

nique as the proof of Theorem 16.

Letϕ(0) ∈ Rp
+ be arbitrary and denote the solutions to (Ā(L,ϕ(0))), (Ā(L̄,ϕ(0)))

by (u(0),λ(0)), (ū(0), λ̄
(0)
) ∈ Rn×Rp

+, respe
tively. Then by Lemma 2(ii) we know

that there exists a c > 0, independent of α, L, L̄ and ϕ(0)
, su
h that

‖(u(0),λ(0))− (ū(0), λ̄
(0)
)‖n+p ≤ c‖L− L̄‖n. (2.20)

Next, we de�ne ϕ(1) := ΨL(ϕ
(0)) and ϕ̄(1) := ΨL̄(ϕ

(0)). The respe
tive solutions

to (Ā(L,ϕ(1))) and (Ā(L̄, ϕ̄(1))) shall be denoted by (u(1),λ(1)), (ū(1), λ̄
(1)
) ∈

Rn × Rp
+. In addition, we solve the problem (Ā(L, ϕ̄(1))) and signify its solution

by (U (1),Λ(1)) ∈ Rn × Rp
+. Then, due to Lemma 4 and (2.20), one has:

‖(u(1),λ(1))− (U (1),Λ(1))‖n+p ≤ q‖ϕ(1) − ϕ̄(1)‖p

≤ q‖u(0) − ū(0)‖n

≤ qc‖L− L̄‖n. (2.21)

On the other hand, from Lemma 2(ii) it immediately follows that

‖(U (1),Λ(1))− (ū(1), λ̄
(1)
)‖n+p ≤ c‖L− L̄‖n. (2.22)
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Adding (2.21), (2.22), and using the triangle inequality, we get

‖(u(1),λ(1))− (ū(1), λ̄
(1)
)‖n+p ≤ c(1 + q)‖L− L̄‖n. (2.23)

The rest of the proof may be 
ondu
ted in the same manner as was done in

Theorem 16. Indeed, one de�nes the sequen
es {ϕ(k)}, {ϕ̄(k)} ⊂ Rp
+ by ϕ(k) :=

ΨL(ϕ
(k−1)) and ϕ̄(k) := ΨL̄(ϕ̄

(k−1)), k = 2, 3, . . . , resp.; the elements of the

sequen
es {(u(k),λ(k))}, {(ū(k), λ̄
(k)
)}, {(U (k),Λ(k))} ⊂ Rn × Rp

+ are then de-

�ned, in this order, as the unique solutions of problems (Ā(L,ϕ(k))), (Ā(L̄, ϕ̄(k))),
(Ā(L, ϕ̄(k))) ∀k ∈ N, k ≥ 2. By indu
tion one may prove the estimate (
f. (2.19)

and (2.23))

‖(u(k),λ(k))− (ū(k), λ̄
(k)
)‖n+p ≤

c

1− q
‖L− L̄‖n, (2.24)

sin
e by assumption q < 1 holds. The desired result is then obtained by taking

limit in (2.24) as k → ∞; for details we kindly refer to the proof of the previous

theorem.

2.4 Impli
it Programming

Having Theorem 16 at hand, we return to the shape optimization problem (P)
and present a method for its solution. To this end, let us assume, that the as-

sumptions of Theorem 16 are sati�ed, i.e., F is Lips
hitz with a su�
iently small

modulus. In addition, let the 
ost fun
tional J be 
ontinuously di�erentiable. In

fa
t, this smoothness assumption is super�uous and is imposed only for the sake

of simpli
ity. As it will be
ome apparent, a lo
ally Lips
hitz J would work�in

theory�just as �ne.

Provided the assumptions above are satis�ed and S̃ is single-valued, we may

apply the Impli
it Programming (ImP) approa
h to the solution of (P). This

onsists of reformulating (P) as the following nonlinear program (NLP):

minimize J (α) := J(α, S̃(α)),

subj. to α ∈ Ũad.

}
(P̃)

Eliminating the equilibrium 
onstraint, only the geometri
 
onstraint α ∈ Ũad re-

mains, in whi
h the 
ompa
t, 
onvex feasible set is given by simple box-
onstraints

and linear inequality (and, if C21 = C22, also equality) 
onstraints (
f. (2.5)).

2.4.1 Sele
ting a minimization algorithm

There are several aspe
ts, that have to be taken into a

ount when attempting

to solve (P̃):

• Although J was assumed 
ontinuously di�erentiable (or even smoother), due

to the Lips
hitz 
ontinuity of S̃, the redu
ed 
ost fun
tional J : Ũad → R
is only Lips
hitz, in general.

• S̃ is not 
onvex, in general; therefore, the same applies to J as well.
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• Ea
h fun
tion evaluation of J is 
ostly, sin
e�by means of S̃�it involves

solving a fri
tional 
onta
t problem, where the 
oe�
ient of fri
tion depends

on the solution.

• Typi
ally, in pra
ti
al 
omputations, the optimized boundary segment is

not parametrized by (nonsmooth) pie
ewise linear fun
tions, but smooth


urves, like pie
ewise quadrati
 or 
ubi
 Bézier or spline fun
tions. Besides

being smooth, they 
an be 
ontrolled by relatively few points to a
hieve

satisfa
tory design. Therefore, in most 
ases, one may assume that the di-

mension of Ũad is at most �moderately� large (in the sense of [23℄).

From the �rst two points it follows that (P̃) has to be solved by a method of non-

smooth and non
onvex optimization, whereas the third point basi
ally rules out

derivative-free methods�they typi
ally require orders of magnitude more fun
-

tion evaluations, than algorithms based on �rst (and se
ond) order (sub)gradients.

As no additional stru
tural property, that 
ould be exploited by the mini-

mization algorithm, is known a priori, we opt for the Bundle Trust [52, 55℄ and

Proximal Bundle [39, 40℄ methods. In general, bundle methods have turned out

to be the method of 
hoi
e for the solution of small to medium s
ale, nons-

mooth, non
onvex optimization problems, without extra knowledge about their

stru
ture�see the 
omparison in [23℄ and also [38℄.

2.4.2 Computing a subgradient

Bundle methods are iterative methods for minimizing the lo
ally Lips
hitz obje
-

tive fun
tion J , that require at ea
h step ᾱ ∈ Ũad:

(i) the fun
tion value J (ᾱ), and

(ii) one arbitrary subgradient ξ ∈ ∂̄J (ᾱ) from the Clarke subdi�erential [7℄.

As readily seen, in order to provide J (ᾱ), one has to evaluate ȳ := S̃(ᾱ), i.e.,
it is ne
essary to solve a Signorini problem with Tres
a fri
tion and a solution-

dependent 
oe�
ient of fri
tion. Assume, we are able to solve (GE(ᾱ)) and let

us fo
us on task (ii). By the 
hain rule [7, Theorem 2.6.6℄ we have:

∂̄J (ᾱ) = ∇αJ(ᾱ, ȳ) +
(
∂̄S̃(ᾱ)

)T
∇yJ(ᾱ, ȳ). (2.25)

This means that determining an element of (2.25) involves 
omputing a gener-

alized Ja
obian of the nonsmooth, impli
itly de�ned 
ontrol-to-state mapping S̃.
This 
an be 
ondu
ted essentially in two di�erent ways:

(j) If S̃ happens to be pie
ewise C1
(PC1

), it is 
onvenient to obtain the desired

subgradient 
ompletely within the generalized di�erential 
al
ulus of Clarke

(spe
ialized impli
it fun
tion theorems are provided for example in [48℄).

This way has been applied, e.g., in [3℄.

(jj) If the PC1
nature of the 
ontrol-to-state mapping 
annot be guaranteed, it

seems reasonable to perform sensitivity analysis via the generalized di�er-

ential 
al
ulus of Mordukhovi
h [36℄ whi
h is ri
her 
on
erning spe
ialized


al
ulus rules. The paper [4℄ may serve as an example for the viability of

this approa
h.
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Sin
e in the 
onsidered model we have to do with rather 
ompli
ated nonsmooth

and set-valued mappings, we have 
hosen the se
ond approa
h. In the next se
tion

it is shown how to 
ompute an approximation of a Clarke subgradient from the

set (2.25) by means of the generalized di�erential 
al
ulus of B. Mordukhovi
h.

2.5 Sensitivity analysis

Let ᾱ ∈ Ũad be arbitrary and denote ȳ := S̃(ᾱ). We start with the following fa
t,

providing a link between the di�erential operators of interest from the Clarke and

Mordukhovi
h 
al
ulus.

Lemma 7. For any y∗ ∈ R3p
it holds that D∗S̃(ᾱ)(y∗) 6= ∅ and

(
∂̄S̃(ᾱ)

)T
y∗ = convD∗S̃(ᾱ)(y∗). (2.26)

Proof. Follows from the Lips
hitz 
ontinuity of S̃ and formula (2.23) in [35℄.

Comparing (2.26) and (2.25) we see that for our purposes it is su�
ient to


ompute one p∗ ∈ D∗S̃(ᾱ)(∇yJ(ᾱ, ȳ)); then, setting

ξ := ∇αJ(ᾱ, ȳ) + p∗
(2.27)

we are done. However, this is not straightforward, sin
e S̃ is de�ned via an impli
it

relation. In order to express its 
oderivative D∗S̃(ᾱ) in terms of F and Q̃, we
start with the following observation:

Gr S̃ = {(α,y) ∈ Ũad × R3p | −F (α,y) ∈ Q̃(α,y)}

= {(α,y) ∈ Ũad × R3p | Φ(α,y) := (α,y,−F (α,y)) ∈ Gr Q̃} (2.28)

= Φ−1
(
Gr Q̃

)
. (2.29)

To be able to 
ompute normal 
ones to the set (2.29), one has to verify a 
almness


ondition, as presented below.

Lemma 8. Let ᾱ ∈ Ũad be �xed, ȳ := S̃(ᾱ) and the mapping Φ : Ũad × R3p →

Ũad×R3p×R3p
be de�ned by (2.28). Then the multifun
tionM : Rp×R3p×R3p

⇒

Ũad × R3p
given by

M : p 7→ {(α,y) | p+ Φ(α,y) ∈ Gr Q̃}

is 
alm at (0, 0, 0, ᾱ, ȳ).

Proof. If M was not 
alm at (0, 0, 0, ᾱ, ȳ), one 
ould easily disprove 
almness of

the following multifun
tion M̃ : R3p
⇒ Ũad × R3p

at (0, ᾱ, ȳ):

M̃ : p̃ 7→ {(α,y) | (0, 0, p̃) + Φ(α,y) ∈ Gr Q̃}.

Indeed, suppose that there exist sequen
es p(i) = (p
(i)
1 ,p

(i)
2 ,p

(i)
3 ) → (0, 0, 0) ∈

Rp × R3p × R3p
and (α(i),y(i)) → (ᾱ, ȳ), (α(i),y(i)) ∈M(p(i)) su
h that

dist((α(i),y(i)),M(0, 0, 0)) ≥ i‖p(i)‖p+3p+3p ∀i ∈ N. (2.30)
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Let us put (β(i), z(i)) := (α(i) + p
(i)
1 ,y

(i) + p
(i)
2 ) so that the relation (α(i),y(i)) ∈

M(p(i)) 
an be rewritten as

p̃(i) ∈ F (β(i), z(i)) + Q̃(β(i), z(i)), (2.31)

with

p̃(i) := p
(i)
3 − F (α(i),y(i))− F (β(i), z(i)). (2.32)

Sin
e F is lo
ally Lips
hitz, one has from (2.31), (2.32):

‖p̃(i)‖3p ≤ c‖p(i)‖p+3p+3p and p̃(i) → 0 ∈ R3p,

(β(i), z(i)) ∈ M̃(p̃(i)), and (β(i), z(i)) → (ᾱ, ȳ).

Thus we 
an estimate:

dist((β(i), z(i)), M̃(0)) = dist((β(i), z(i)),M(0, 0, 0))

≥ dist((α(i),y(i)),M(0, 0, 0))− ‖p(i)‖p+3p+3p ≥ (i− 1)‖p(i)‖p+3p+3p

≥
i− 1

c
‖p̃(i)‖3p

and the 
laim has been veri�ed.

Therefore it is su�
ient to show that M̃ is 
alm at (0, ᾱ, ȳ). To this end, let

p̃ ∈ R3p
be given. Then

(α,y) ∈ M̃(p̃) ⇔ p̃ ∈ F (α,y) + Q̃(α,y),

i.e., written 
omponentwise for y = (uτ ,uν ,λ) and p̃ = (p̃1, p̃2, p̃3) ∈ Rp ×Rp ×
Rp

:

p̃1 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q̃τ (α,uτ )

p̃2 = Aντ (α)uτ + Aνν(α)uν − λ−Lν(α)

p̃3 ∈ uν +α+NRp
+
(λ).





(2.33)

Introdu
ing the new variable ỹ := (uτ ,uν− p̃3,λ), we see that (α, ỹ) solves (2.6)
with the load ve
tor

l̃ :=



Lτ (α) + p̃1 − Aτν(α)p̃3

Lν(α) + p̃2 − Aνν(α)p̃3

−α


 .

From Theorem 10 it follows that (α, ỹ) is the only solution to the perturbed GE

(2.33). Denoting (α,y∗) ∈ Gr S̃ = M̃(0) the solution to (2.6) with the original

load ve
tor l = [Lτ (α),Lν(α),−α]T , we obtain from the triangle inequality and

Lemma 6:

‖(α,y)− (α,y∗)‖p+3p ≤ ‖y − ỹ‖3p + ‖ỹ − y∗‖3p

≤ ‖p̃3‖p + c‖l̃− l‖3p

≤ c‖p̃‖3p,

where c > 0 does not depend on α. From this the required 
almness property

follows easily.
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2.5.1 The adjoint GE

The following result (see [27, Theorem 2℄) fa
ilitates the 
omputation of the

adjoint variable p∗ ∈ D∗S̃(ᾱ)(y∗), needed in (2.27).

Theorem 17. Consider a referen
e pair (ᾱ, ȳ) ∈ Gr S̃ and let y∗ ∈ R3p
be

arbitrary.

(i) Let (p∗, v∗) ∈ Rp × R3p
be a solution to the regular adjoint GE:

[
p∗

−y∗

]
∈ ∇F (ᾱ, ȳ)Tv∗ + D̂∗Q̃(Φ(ᾱ, ȳ))(v∗). (RAGE)

Then p∗ ∈ D∗S̃(ᾱ)(y∗).

(ii) For every p∗ ∈ D∗S̃(ᾱ)(y∗) there exists a ve
tor v∗ ∈ R3p
su
h that (p∗, v∗)

is a solution of the (limiting) adjoint GE:

[
p∗

−y∗

]
∈ ∇F (ᾱ, ȳ)Tv∗ +D∗Q̃(Φ(ᾱ, ȳ))(v∗). (AGE)

Proof. The �rst assertion follows immediately from [47, Theorem 10.6℄. The se
-

ond one is implied by [21, Theorem 4.1℄, whose assumptions are ful�lled by virtue

of Lemma 8.

Note that due to Lips
hitz 
ontinuity of S̃, (AGE) attains at least one so-

lution p∗
(
f. Lemma 7) and whenever Q̃ is normally regular at Φ(ᾱ, ȳ), i.e.,

N̂Gr Q̃(Φ(ᾱ, ȳ)) = NGr Q̃(Φ(ᾱ, ȳ)), (RAGE) and (AGE) 
oin
ide. In this 
ase

D∗S̃(ᾱ)(y∗) = {p∗ ∈ Rp | ∃v∗ ∈ R3p
su
h that (p∗, v∗) solves (AGE)}.

On the other hand, in the nonregular 
ase (RAGE) may be di�
ult to solve

or not solvable at all. Therefore the 
omputation of the desired subgradient ξ ∈
∂J (ᾱ) is usually done via the (AGE), while a

epting the fa
t that at nonregular
points the 
omputed ve
tor may lie outside of ∂J (ᾱ). In su
h 
ases the employed

optimization algorithm might 
ollapse and ξ has to be repla
ed by a 
orre
t

subgradient.

In light of the previous paragraph we will fo
us on the solution of the (AGE).

In parti
ular, we shall express the most di�
ult part of (AGE), the 
oderivative

D∗Q̃(Φ(ᾱ, ȳ)) in terms of the problem data.

Computation of D∗Q̃

First of all, note that the 
omponents of Q̃ are de
oupled�the �rst 
omponent Q̃τ

depends on α and uτ , whereas the third 
omponent 
omputes the normal 
one

to Rp
+ only at λ. A
tually, this fa
t is a 
onsequen
e of the assumed model of

given fri
tion, sin
e Q̃τ re�e
ts the fri
tion 
ondition and the third 
omponent


orresponds to the nonpenetration 
ondition. This way, the 
oderivative of Q̃ may

be 
omputed 
omponentwise [47, Example 6.10℄:

∀q∗ ∈ R3p : D∗Q̃(ᾱ, ȳ, q̄)(q∗) =



D∗Q̃τ (ᾱ, ȳ1, q̄1)(q

∗
1)

0
D∗NRp

+
(ȳ3, q̄3)(q

∗
3)


 , (2.34)
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at any referen
e point (ᾱ, ȳ, q̄) ∈ Gr Q̃, where ȳ = (ȳ1, ȳ2, ȳ3), q̄ = (q̄1, q̄2, q̄3),
q∗ = (q∗

1, q
∗
2, q

∗
3) ∈ Rp × Rp × Rp

.

The formula for the 
oderivative of the normal 
one mapping to Rp
+ is well-

known in the literature and may be very easily derived from the de�nition of the


oderivative (see also Figure 2.1).

Figure 2.1: Graph of NR+ and the normal 
one to this set at (0, 0).

Proposition 2. Let (ā, b̄) ∈ GrNRp
+
and b∗ ∈ Rp

arbitrary. Then

a∗ ∈ D∗NRp
+
(ā, b̄)(b∗) ⇔ a∗i ∈ D∗NR+(āi, b̄i)(b

∗
i ) ∀i = 1, . . . , p,

where

(i) if āi > 0, b̄i = 0, then

D∗NR+(āi, b̄i)(b
∗
i ) = {0};

(ii) if āi = 0, b̄i < 0, then

D∗NR+(āi, b̄i)(b
∗
i ) =

{
R if b∗i = 0,

∅ otherwise;

(iii) if āi = 0, b̄i = 0, then

D∗NR+(āi, b̄i)(b
∗
i ) =





{0} if b∗i > 0,

R− if b∗i < 0,

R if b∗i = 0.

Proof. See [41, Lemma 2.2℄.

Remark 7. Observe, that D∗NRp
+
(a, b) = D∗(∂δRp

+
)(a, b), whi
h is the de�nition

of the se
ond-order subdi�erential ∂2δRp
+
(a, b). This means, that the 
oderivative

D∗Q̃ in (AGE) provides se
ond-order (sub)gradient information.
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In order to deal with the �rst 
omponent, let us write the multifun
tion Q̃τ :
Rp×Rp

⇒ Rp
as a 
omposition of an outer multifun
tion Zτ and an inner single-

valued, smooth mapping Ψ:

Q̃τ (α,u) =




ω1(α)F(|u1|)∂|u1|
ω2(α)F(|u2|)∂|u2|

.

.

.

ωp(α)F(|up|)∂|up|


 = (Zτ ◦Ψ)(α,u), (2.35)

where

Ψ = (Ψ1, . . . ,Ψp) : R
p × Rp → ((0,∞)× R)p, Ψj(α,u) :=

(
ωj(α), uj

)
,

and

Zτ : ((0,∞)× R)p ⇒ Rp, y 7→
(
Z(y1), . . . , Z(yp)

)
,

with

Z : (0,∞)× R ⇒ R, (x1, x2) 7→ x1F(|x2|)∂|x2|.

Now the 
hain rule from [47, Theorem 10.40℄ allows us to 
ompute the 
oderivative

of the 
omposite multifun
tion (2.35) as follows:

Proposition 3. Let (ᾱ, ū, q̄) ∈ Gr Q̃τ be su
h that the following 
ondition holds:

(
ker∇Ψ(ᾱ, ū)T

)
∩D∗Zτ (Ψ(ᾱ, ū), q̄)(0) = {0}. (2.36)

Then for every q∗ = (q∗1, . . . , q
∗
p) ∈ Rp

one has

D∗Q̃τ (ᾱ, ū, q̄)(q
∗) ⊂ ∇Ψ(ᾱ, ū)TD∗Zτ (Ψ(ᾱ, ū), q̄)(q∗)

= ∇Ψ(ᾱ, ū)T




D∗Z(Ψ1(ᾱ, ū), q1)(q
∗
1)

D∗Z(Ψ2(ᾱ, ū), q2)(q
∗
2)

.

.

.

D∗Z(Ψp(ᾱ, ū), qp)(q
∗
p)


 .

(2.37)

Observe that the assertion of Proposition 3 requires the validity of the quali�-


ation 
ondition (2.36). We are going to show that (2.36) is satis�ed at all points

(ᾱ, ū, q̄) ∈ Gr Q̃τ and hen
e the assertion of Proposition 3 holds automati
ally.

Remark 8. The right in
lusion above be
omes equality at those points (ᾱ, ū, q̄),
for whi
h the multifun
tion Zτ is normally regular at (Ψ(ᾱ, ū), q̄) or ∇Ψ(ᾱ, ū)
is surje
tive. In other 
ases, however, the formula on the right-hand side may

provide a ve
tor outside of D∗Q̃τ .

Let us look more 
losely at the se
ond option, i.e., what does it mean for ∇Ψ
to be surje
tive at (ᾱ, ū). Re
alling the de�nition of Ψ, its Ja
obian ∇Ψ ∈ R2p×2p


an be written in the blo
k-matrix form

∇Ψ =



J11 J12
.

.

.

.

.

.

Jp1 Jp2


 , (2.38)

where for ea
h i = 1, . . . , p one has

Ji1 =

[
∇ωi

0

]
∈ R2×p, Ji2 =

[
0

(e(i))T

]
∈ R2×p. (2.39)
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Here 0 ∈ R1×p
and e(i) ∈ Rp

denotes the ith Eu
lidean basis ve
tor. Thus, we

immediately see that the square matrix ∇Ψ is surje
tive i� ∇ωi, i = 1, . . . , p,
are linearly independent. Unfortunately, this 
annot be guaranteed; moreover,


onsidering our parti
ular de�nition of ωi (1.26), ∇ωi = 0 when αi−1 = αi = αi+1.

In other words, whenever the 
onta
t boundary has a �at part 
onsisting of at

least two line segments, ∇Ψ 
ontains a zero row and, 
onsequently, 
annot be

surje
tive.

Computation of D∗Z

In the sequel we will 
ompute the 
oderivative of Z at a given point (x̄1, x̄2, z̄) ∈
GrZ. The obtained results will then be used to validate 
ondition (2.36), while

at the same time they play a 
entral role in the assertion of Proposition 3 itself.

Let us distinguish several situations a

ording to the position of the referen
e

point (x̄1, x̄2, z̄) on the graph of Z�see Figure 2.2, where red and green 
olour mark

those points at whi
h sliding o

urs; the verti
al, blue region signi�es sti
king.

Points on the 
ommon boundary of these sets are said to be in the so-
alled weak

sti
king mode.

Figure 2.2: Graph of the multifun
tion Z(x1, x2) = x1F(|x2|)∂|x2|.

Proposition 4 (sliding). Let z∗ ∈ R be arbitrary and (x̄1, x̄2, z̄) ∈ GrZ su
h that

x̄2 > 0. Then:

D∗Z(x̄1, x̄2, z̄)(z
∗) = {z∗F(x̄2)} ×D∗

F(x̄2)(x̄1z
∗). (2.40)

Proof. Due to the assumption on x̄2 there exists a neighbourhood O of (x̄1, x̄2)
so that:

Z(x1, x2) = x1F(x2) ∀(x1, x2) ∈ O.

Note that Z is single-valued and (lo
ally) Lips
hitz 
ontinuous in O. The 
ompu-

tation of the regular normal 
one to GrZ at points of O is straightforward and

yields:

N̂GrZ(x1, x2, z) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x2),

(x∗2, x1z
∗) ∈ N̂Gr F(x2,F(x2))}. (2.41)
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Thus

NGrZ(x̄1, x̄2, z̄) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x̄2), (x
∗
2, x̄1z

∗) ∈ NGr F(x̄2,F(x̄2))},

and the assertion follows immediately from the de�nition of the 
oderivative.

Proposition 5 (sliding). Let z∗ ∈ R be arbitrary and (x̄1, x̄2, z̄) ∈ GrZ su
h that

x̄2 < 0. Then:

D∗Z(x̄1, x̄2, z̄)(z
∗) = {−z∗F(−x̄2)} ×

(
−D∗F(−x̄2)(−x̄1z

∗)
)
. (2.42)

Proof. In this 
ase there exists a neighbourhood Õ of (x̄1, x̄2) su
h that:

Z(x1, x2) = −x1F(−x2) ∀(x1, x2) ∈ Õ.

The rest is done in a similar fashion.

The previous two 
ases have the me
hani
al interpretation of sliding, i.e.,

represent those 
onta
t points, where the displa
ement in the tangential dire
tion

is nonzero.

Proposition 6 (sti
king). Let z∗ ∈ R be arbitrary and (x̄1, 0, z̄) ∈ GrZ su
h that

|z̄| < x̄1F(0). Then:

D∗Z(x̄1, 0, z̄)(z
∗) =

{
{0} × R if z∗ = 0,

∅ otherwise.

(2.43)

Proof. As readily seen, there exists a neighourhood U of (x̄1, 0, z̄) su
h that:

U ∩GrZ = U ∩
(
R× {0} × R

)
,

when
e we immediately get:

N̂GrZ(x1, 0, z) = {0} × R× {0} ∀(x1, 0, z) ∈ U ∩GrZ. (2.44)

The assertion follows easily from the de�nition of the 
oderivative.

The setting of the previous proposition 
orresponds to 
onta
t points, where

(strong) sti
king is present, i.e., the tangential 
omponent of the stress ve
tor

is below the threshold value to trigger motion in the tangential dire
tion. If this


riti
al value is attained at a 
onta
t point, but there is still no tangential motion,

we speak of weak sti
king, whi
h is investigated below.

In order to give a reasonable formula for the 
oderivative D∗Z at these points,

we will, in addition, assume that the 
oe�
ient of fri
tion F is weakly semismooth

at 0 (
f. [32℄), implying that:

∃F′
+(0) ∈ R and Lim sup

x→0+

∂̄F(x) = {F′
+(0)}, (2.45)

where F′
+ stands for the right-hand derivative of F. Now the following result holds

true.

53



Proposition 7 (weak sti
king). Let z∗ ∈ R and x̄1 > 0 be arbitrary. Then:

D∗Z(x̄1, 0, x̄1F(0))(z
∗) =





[
z∗F(0)

x̄1z
∗F′

+(0) + w

]
∣∣∣∣∣∣∣
w ∈





{0} if z∗ > 0,

R− if z∗ < 0,

R if z∗ = 0.




. (2.46)

Proof. The analysis in this 
ase be
omes more involved, sin
e the point ā :=
(x̄1, 0, x̄1F(0)) may be approa
hed by sequen
es 
orresponding to di�erent me-


hani
al regimes:

NGrZ(ā) = Lim sup
(x1,x2,z)

GrZ
−→ā

N̂GrZ(x1, x2, z) = N1 ∪ N2 ∪N3,

where

N1 := Lim sup
(x1,x2,z)

GrZ
−→ā

x2>0

N̂GrZ(x1, x2, z), N2 := Lim sup
(x1,0,z)

GrZ
−→ā

z<x1F(0)

N̂GrZ(x1, 0, z),

and

N3 := Lim sup
x1→x̄1

N̂GrZ(x1, 0, x1F(0)).

Observe that the regular normal 
ones generating in N1 and N2 have already

been 
omputed in (2.41) and in (2.44), respe
tively. From (2.44) we immediately

have:

N2 = {0} × R× {0}.

The relation (2.41) may be written as

N̂GrZ(x1, x2, z) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x2), x
∗
2 ∈ D̂∗F(x2)(−x̄1z

∗)}. (2.47)

Using to the s
alarization formula one may write in (2.47):

D̂∗F(x2)(−x̄1z
∗) ⊂ D∗F(x2)(−x̄1z

∗) = ∂(−x̄1z
∗F)(x2) ⊂ −x̄1z

∗∂̄F(x2). (2.48)

Taking into a

ount the assumed semismoothness property (3.37), it follows from

(2.47) and (2.48)

N1 = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(x2), x
∗
2 = −x̄1z

∗
F
′
+(0)}, (2.49)

sin
e N1 6= ∅ due to Lips
hitz 
ontinuity of F.

The treatment of N3 is, however, more deli
ate. As a �rst step, let us 
ompute

the 
ontingent 
one to GrZ at a := (x1, 0, x1F(0)), for x1 > 0 �xed. Note that

GrZ lo
ally around the referen
e point a 
oin
ides with the union G1∪G2, where

G1 = {(x′1, x
′
2, z

′) | |x′1 − x1| < ε, x′2 = 0, x′1F(0)− ε < z′ ≤ x′1F(0)},

G2 = {(x′1, x
′
2, z

′) | |x′1 − x1| < ε, 0 ≤ x′2 < ε, z′ = x′1F(x
′
2)},

for a su�
iently small ε > 0. Moreover, the following holds:

TGrZ(a) = TG1(a) ∪ TG2(a). (2.50)
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By the de�nition of the 
ontingent 
one:

TG1(a) = {(h, k, l) | ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

λiki = 0, x1F(0) + λili ≤ (x1 + λihi)F(0)} = {(h, 0, l) | l ≤ hF(0)}.

Analogously:

TG2(a) = {(h, k, l) | ∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

0 ≤ λiki, x1F(0) + λili = (x1 + λihi)F(λiki)}

=
{
(h, k, l)

∣∣∣∃hi → h ∃ki → k ∃li → l ∃λi → 0+ :

0 ≤ ki, li = hiF(λiki) + x1ki
F(λiki)− F(0)

λiki

}

= {(h, k, l) | 0 ≤ k, l = hF(0) + x1kF
′
+(0)},

where we have made use of (3.37) ensuring dire
tional di�erentiability of F at 0.
Now it is su�
ient to 
ompute the (negative) polars to these 
ones to obtain:

N̂G1(a) =
(
TG1(a)

)0
= {(x∗1, x

∗
2, z

∗) | x∗1 = −z∗F(0), z∗ ≥ 0} (2.51)

and similarly:

N̂G2(a) = {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(0), x∗2 ≤ −x1z
∗F′

+(0)}. (2.52)

Finally, 
ombining (2.50), (2.51) and (2.52) yields:

N̂GrZ(a) = (TG1(a) ∪ TG2(a))
0

= N̂G1(a) ∩ N̂G2(a)

= {(x∗1, x
∗
2, z

∗) | x∗1 = −z∗F(0), x∗2 ≤ −x1z
∗F′

+(0), z
∗ ≥ 0}.

From this it is obvious that N3 = N̂GrZ(ā).
In this way we have now an upper estimate of NGrZ(a) and the result follows

easily by the de�nition of the 
oderivative. Indeed, for instan
e, the �rst formula

in (2.46) follows from (2.49) and the fa
t that for z∗ > 0 and i = 2, 3 there

does not exist any (x∗1, x
∗
2) su
h that (x∗1, x

∗
2,−z

∗) ∈ Ni. The statement has been

established.

A straightforward modi�
ation of the proof of Proposition 7 implies the fol-

lowing result, 
on
erning the point ā := (x̄1, 0,−F(0)).

Proposition 8 (weak sti
king). Let z∗ ∈ R and x̄1 > 0 be arbitrary. Then:

D∗Z(x̄1, 0,−x̄1F(0))(z
∗) =





[
−z∗F(0)

x̄1z
∗F′

+(0) + w

]
∣∣∣∣∣∣∣
w ∈





R+ if z∗ > 0,

{0} if z∗ < 0,

R if z∗ = 0.




.

(2.53)

We are now in a position to verify the quali�
ation 
ondition (2.36).

Corollary 1. Let (ᾱ, ū, q̄) ∈ Gr Q̃τ be arbitrary. Then (2.36) holds.

55



Proof. By (2.40), (2.42), (2.43), (2.46) and (2.53) we see that D∗Z(x̄1, x̄2, z̄)(0) ⊂
{0} × R for any (x̄1, x̄2, z̄) ∈ GrZ, implying:

D∗Z1(Ψ(ᾱ, ū), q̄)(0) ⊂
(
{0} × R

)p
.

Choosing now w ∈
(
R2

)p
su
h that wi = (0, ci)

T
for all i = 1, . . . , p, then (
f.

(2.38) and (2.39)):

0 = ∇Ψ(ᾱ, ū)Tw =

p∑

i=1

∇Ψi(ᾱ, ū)
Twi =

p∑

i=1

[
∇ωi(ᾱ)T 0

0 e(i)

] [
0
ci

]
=

[
0

c

]
.

In this way we have proved that the upper estimate (2.37), needed in (AGE),

is valid.

The obtained results enable us to establish ne
essary optimality 
onditions,

that may serve, e.g., as a stopping 
riterion in the numeri
al algorithm, or for

testing optimality of a design 
omputed in some other way.

Theorem 18. Let (ᾱ, ȳ) be a lo
al solution to (P) (in parti
ular ȳ = S̃(ᾱ)).
Then:

(1) 0 ∈ ∇αJ(ᾱ, ȳ) +D∗S̃(ᾱ)(∇yJ(ᾱ, ȳ)) +NŨad
(ᾱ);

(2) ∃ v∗ ∈ R3p
:

0 ∈ ∇J(ᾱ, ȳ)+∇F (ᾱ, ȳ)Tv∗+D∗Q̃(ᾱ, ȳ,−F (ᾱ, ȳ))(v∗)+NŨad×R3p(ᾱ, ȳ).

Proof. The optimality 
ondition in (1) amounts dire
tly to the respe
tive 
on-

dition in [36, Corollary 5.35℄. This relation together with Theorem 17 (ii) yields

(2).
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Chapter 3

Shape optimization: Coulomb 
ase

In this 
hapter we 
onsider the optimal shape design problem, where the state

problem is given by the two-dimensional Signorini problem with Coulomb fri
-

tion and a solution-dependent 
oe�
ient of fri
tion. Sin
e the analysis of 
onta
t

problems with Coulomb fri
tion is very involved in the 
ontinuous setting, we

will investigate existen
e and 
omputation of dis
rete optimal shapes only, i.e.,

for �xed values of the dis
retization parameter h, and various 
hoi
es of the 
ost

fun
tional.

The stru
ture of the present 
hapter 
opies more or less that of the previous

one, with a notable ex
eption: this time only the algebrai
 setting is 
onsidered.

First, we shall �rst derive the redu
ed version of the algebrai
 Signorini prob-

lem with Coulomb fri
tion and a solution-dependent 
oe�
ient of fri
tion and

de�ne the shape optimization problem. Then, we prove Lips
hitz 
ontinuity of

the 
orresponding solution map, but this time using Robinson's strong regularity


ondition (SRC). As an immediate 
onsequen
e, one obtains existen
e of dis
rete

optimal shapes. Moreover, the SRC property will play an important role also in

subsequent sensitivity analysis. This is 
ondu
ted in a similar way as it was done

in the previous 
hapter, using tools from the generalized di�erential 
al
ulus of

Mordukhovi
h. This enables us the e�
ient solution of the shape optimization

problem by means of the ImP and a bundle method of nonsmooth optimization.

The results obtained here are have been presented in the paper [5℄.

3.1 Algebrai
 shape optimization problem

Let us start with formulating the redu
ed algebrai
 state problem. To this end,

re
all that in Se
tion 1.3.2 we have denoted by (Ã(α,ϕ, g)) an auxiliary problem

representing the algebrai
 Signorini problem with given fri
tion, where the slip

bound is given by the ve
tor g ∈ Rp
+ and the 
oe�
ient of fri
tion by the ve
tor

F(ϕ) := [F(ϕ1), . . . ,F(ϕp)]
T
, for a �xed ϕ ∈ Rp

+:

Find (u,λ) ∈ Rn × Rp
+ su
h that:

〈A(α)u, v − u〉n + 〈F(ϕ) • g, |vτ | − |uτ |〉p

≥ 〈L(α), v − u〉n + 〈λ, vν − uν〉p ∀v ∈ Rn,

〈µ− λ,uν +α〉p ≥ 0 ∀µ ∈ Rp
+.





(Ã(α,ϕ, g))

In 
ontrast to the Tres
a fri
tion 
ase, there is no reason to restri
t the set of ad-

missible design variables, therefore we assume α ∈ Uad ⊂ Rp
+ as de�ned in (1.22),
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i.e., without imposing additional 
onstraints on the se
ond �nite di�eren
es.

The pair (u∗,λ∗) ∈ Rn × Rp
+ was shown to be the solution of the Signorini

problem with Coulomb fri
tion and a solution-dependent 
oe�
ient of fri
tion

(MC(α)) (in the sense of De�nition 9) i� it is the solution to (Ã(α,ϕ∗, g∗)),
where (ϕ∗, g∗) is a �xed point of Ψ̃C : Rp

+ × Rp
+ → Rp

+ × Rp
+, (ϕ, g) 7→ (|uτ |,λ).

On the basis of this relation, we may easily derive the redu
ed form of (MC(α))
by simply inserting the �xed point of Ψ̃C

into (1.34). This way one obtains the

following system of GEs:

0 ∈ Aττ (α)uτ + Aτν(α)uν − Lτ (α) + Q̂τ (uτ ,λ),

0 = Aντ (α)uτ + Aνν(α)uν − λ− Lν(α),

0 ∈ uν +α+NRp
+
(λ),





(3.1)

where the multifun
tion Q̂τ : Rp × Rp
⇒ Rp

takes the form

(
Q̂τ (v,w)

)
i
= F(|vi|)wi∂|vi| ∀i = 1, 2, . . . , p.

Further, re
all that the matrix- and ve
tor-valued mappings Aττ ,Aτν ,Aντ ,Aνν :
Uad → Rp×p

and Lτ ,Lν : Uad → Rp
, respe
tively, are assumed to be 
ontinuously

di�erentiable.

Denoting the state variable by y = (uτ ,uν ,λ) ∈ R3p
, we write the system

(3.1) in the 
ompa
t form:

0 ∈ F (α,y) + Q̂(y), (GEC(α))

with F : Uad × R3p → R3p
being the single-valued, 
ontinuously di�erentiable

fun
tion from the previous 
hapter (
f. (2.8) and (2.9)):

F (α,y) = A(α)y − l(α).

The multivalued mapping Q̂ : R3p
⇒ R3p

in (GEC(α)) has a 
losed graph and is

given by the expression:

Q̂(y) =



Q̂τ (uτ ,λ)

0

NRp
+
(λ)


 ∀y = (uτ ,uν ,λ) ∈ R3p.

With the parametrized generalized equation (GEC(α)) we asso
iate the 
ontrol-

to-state mapping Ŝ : Uad ⇒ R3p
, de�ned by

Ŝ(α) := {y ∈ R3p | 0 ∈ F (α,y) + Q̂(y)}.

Now the shape optimization problem may be stated in the form of the following

mathemati
al program with equilibrium 
onstraints (MPEC):

minimize J(α,y),

subj. to y ∈ Ŝ(α),
α ∈ Uad,



 (PC

)

where the 
ost fun
tional J : Uad×R3p → R is assumed to be 
ontinuously di�er-

entiable. A
tually, this smoothness assumption imposed on J is super�uous: as it
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will be
ome apparent from subsequent analysis, it would be su�
ient to assume

J Lips
hitz 
ontinuous. Nevertheless, for ease of presentation, we shall sti
k to a

smooth 
ost fun
tional, as this does not a�e
t the intrinsi
 nonsmoothness of Ŝ,

representing the variational inequality (GEC(α)), in any way.

The main result of this se
tion is formulated in the next theorem.

Theorem 19. Let the assumptions of Theorem 11(ii) hold. Then (PC
) has at

least one solution.

Its proof relies on the 
ompa
tness of Gr Ŝ and will be given below, in a series

of auxiliary, but no less important results.

3.2 Lips
hitzian stability

Our main aim in this se
tion is to show Lips
hitz 
ontinuity of Ŝ. Although

one 
ould prove this dire
tly, as it was done in the 
ase of Tres
a fri
tion (
f.

Theorem 16), the fa
t that Q̂ does not depend on α ∈ Uad, allows us to prove a

stronger result, namely, strong regularity of (GEC(α)).
First, however, we shall prove lo
al Lips
hitz 
ontinuity of the solution to

(MC(α)) with respe
t to the load ve
tor L ∈ Rn
.

3.2.1 Stability with respe
t to the load ve
tor

Sin
e the domain 
orresponding to the design ve
tor α ∈ Uad will be �xed and

L variable, let us relabel the problem (MC(α)) by (MC(L)) and the auxiliary

problem (Ã(α,ϕ, g)) by (Ã(L,ϕ, g)). Further, having (1.45) in mind, let:

δ(‖L‖n) :=
β + ‖A‖
βγ

max{Cmax, R(‖L‖n)Clip}. (3.2)

We re
all from (1.42) the expression for R(‖Ln‖) and de�ne the 
onstant κ > 0:

R(‖L‖n) =

[
1

γ
+

1

β

(
‖A‖
γ

+ 1

)]
‖L‖n =: κ‖L‖n. (3.3)

In terms of the fun
tion δ from (3.2), the assumption of Theorem 11(ii) is equiv-
alent to δ(‖L‖n) < 1. Provided this 
ondition is met, the Signorini problem with

Coulomb fri
tion (MC(α)) has a unique solution. In addition, as we will show,

the following holds true.

Proposition 9. Let the assumptions of Theorem 11(ii) be satis�ed, i.e., δ(‖L‖n) <
1 for some L ∈ Rn

. Then there exist positive 
onstants ǫ > 0 and K := K(L, ǫ) >
0 su
h that:

‖(ū, λ̄)− (ũ, λ̃)‖n+p ≤ K‖L̄− L̃‖n ∀L̄, L̃ ∈ Bǫ(L),

where (ū, λ̄), (ũ, λ̃) denote the unique solutions of (MC(L̄)) and (MC(L̃)), re-
spe
tively.
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Proof. Existen
e of ǫ > 0 satisfying:

δ(‖L′‖n) < 1 ∀L′ ∈ Bǫ(L) (3.4)

follows immediately by 
ontinuity of the fun
tion δ : R+ → R+ (
f. (3.2)�(3.3)).

We 
hoose su
h an ǫ and denote

q := max{δ(‖L′‖n) | L
′ ∈ Bǫ(L)} ∈ (0, 1).

Further, let L̄, L̃ ∈ Bǫ(L) and (ϕ, g) ∈ Rp
+×Rp

+ be arbitrary. Then, we build the

following sequen
es iteratively:

(i) Let (ū(0), λ̄
(0)
) ∈ Rn × Rp

+ stand for the solution of the auxiliary problem

(Ã(L̄,ϕ, g)). For ea
h k = 1, 2, 3, . . . denote by (ū(k), λ̄
(k)
) ∈ Rn × Rp

+ the

unique solution to

(
Ã
(
L̄, |ū(k−1)

τ |, λ̄
(k−1)))

.

(ii) Let (ũ(0), λ̃
(0)
) ∈ Rn ×Rp

+ be the solution of (Ã(L̃,ϕ, g)). Analogously, for

ea
h k ∈ N denote by (ũ(k), λ̃
(k)
) ∈ Rn × Rp

+ the solution of the problem(
Ã
(
L̃, |ũ(k−1)

τ |, λ̃
(k−1)))

.

(iii) Finally, for ea
h k ∈ N let (U (k),Λ(k)) ∈ Rn × Rp
+ stand for the unique

solution of

(
Ã
(
L̄, |ũ(k−1)

τ |, λ̃
(k−1)))

.

It follows from the proof of Theorem 11(ii) that the sequen
es

{(
|ū(k)

τ |, λ̄
(k))}

,

{(
|ũ(k)

τ |, λ̃
(k))}

tend to the unique �xed-point of Ψ̃C
in Rp

+ × Rp
+, de�ned in


onne
tion with the problems (MC(L̄)) and (MC(L̃)), respe
tively. Hen
e, the

sequen
es

{
(ū(k), λ̄

(k)
)
}
,

{
(ũ(k), λ̃

(k)
)
}

onverge to the unique solutions (ū, λ̄),

(ũ, λ̃) of (MC(L̄)) and (MC(L̃)), respe
tively. Now, making use of Lemma 2(ii),
one may write (re
all, that we use the norm ‖v +w‖r+s := ‖v‖r + ‖w‖s on the

produ
t spa
e Rr × Rs
for any r, s ∈ N):

‖(ū(k), λ̄
(k)
)− (ũ(k), λ̃

(k)
)‖n+p

≤ ‖(ū(k), λ̄
(k)
)− (U (k),Λ(k))‖n+p + ‖(U (k),Λ(k))− (ũ(k), λ̃

(k)
)‖n+p

≤ δ(‖L̄‖n)
∥∥(|ū(k−1)

τ |, λ̄
(k−1))

−
(
|ũ(k−1)

τ |, λ̃
(k−1))

‖p+p + κ‖L̄− L̃‖n

≤ q‖(ū(k−1), λ̄
(k−1)

)− (ũ(k−1), λ̃
(k−1)

)‖n+p + κ‖L̄− L̃‖n,

where κ is from (3.3). Sin
e the above estimate holds for all k ∈ N, we obtain by

indu
tion:

‖(ū(k), λ̄
(k)
)− (ũ(k), λ̃

(k)
)‖n+p

≤ qk‖(ū(0), λ̄
(0)
)− (ũ(0), λ̃

(0)
)‖n+p + (qk−1 + · · ·+ q + 1)κ‖L̄− L̃‖n

≤ qkκ‖L̄− L̃‖n + (qk−1 + · · ·+ q + 1)κ‖L̄− L̃‖n

≤
κ

1− q
‖L̄− L̃‖n.

Here we used that qk + · · ·+ q + 1 ≤
∑∞

i=0 q
i = 1

1−q
for |q| < 1, whi
h is satis�ed

in our 
ase by the de�nition of q. Now, taking limit as k → ∞ one arrives at the

assertion of the proposition.
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Remark 9. Noti
e, that due to Lemma 6 the solution of (M(α)) is globally Lips-

hitz 
ontinuous with respe
t to the load ve
tor, whereas in the Coulomb fri
tion


ase the same property holds only lo
ally.

3.2.2 Strong regularity

Having the above result at hand, we are in a position to prove strong regularity

[8, 46℄ of (GEC(α)).

Proposition 10. Let the assumption of Theorem 11(ii) hold. Then the general-

ized equation (GEC(α)) is strongly regular at ea
h (α,y) ∈ Gr Ŝ.

Proof. Let a referen
e pair (ᾱ, ȳ) ∈ Gr Ŝ be �xed. Re
all that (GEC(α)) is 
alled
strongly regular at (ᾱ, ȳ), provided there exist neighbourhoods U of 0 ∈ R3p

and

V of ȳ su
h, that the mapping:

R3p ∋ ξ 7→ {y ∈ V | ξ ∈ F (ᾱ, ȳ) +∇yF (ᾱ, ȳ)(y − ȳ) + Q̂(y)} (3.5)

is single-valued and Lips
hitz in U . To prove this, let ξ ∈ R3p
be �xed and

noti
e that F (ᾱ, ·) is linear. Hen
e, the perturbed GE in (3.5) amounts to: ξ ∈

F (ᾱ,y) + Q̂(y). The same GE, written 
omponentwise with y = (uτ ,uν ,λ),
ξ = (ξτ , ξν , ξλ) ∈ R3p

:

ξτ ∈ Aττ (ᾱ)uτ + Aτν(ᾱ)uν −Lτ (ᾱ) + Q̂τ (uτ ,λ),

ξν = Aντ (ᾱ)uτ + Aνν(ᾱ)uν − λ−Lν(ᾱ),

ξλ ∈ uν + ᾱ+NRp
+
(λ).





(3.6)

The system (3.6) may be rewritten as

0 ∈ Aττ (ᾱ)uτ + Aτν(ᾱ)(uν − ξλ)− (Lτ (ᾱ) + ξτ − Aτν(ᾱ)ξλ) + Q̂τ (uτ ,λ),

0 = Aντ (ᾱ)uτ + Aνν(ᾱ)(uν − ξλ)− λ− (Lν(ᾱ) + ξν − Aνν(ᾱ)ξλ),

0 ∈ (uν − ξλ) + ᾱ+NRp
+
(λ).





(3.7)

The system of GEs (3.7) represents the Signorini problem with Coulomb fri
tion

and a solution-dependent 
oe�
ient of fri
tion on the domain given by ᾱ ∈ Uad

and with load ve
tor

lξ(ᾱ) =



Lτ (ᾱ) + ξτ − Aτν(ᾱ)ξλ

Lν(ᾱ) + ξν − Aνν(ᾱ)ξλ

−ᾱ


 , (3.8)

having the solution yξ = (uτ ,uν − ξλ,λ). As follows from Proposition 9, for

su�e
iently small ǫ > 0 and ξ ∈ U := Bǫ(0) the 
onta
t problem (3.7) with load

ve
tor lξ(ᾱ) has exa
tly one solution, i.e., (3.6) is uniquely solvable. Hen
e single-
valuedness of the mapping (3.5) follows. To see that it is Lips
hitz 
ontinuous on

U , let ξ(1), ξ(2) ∈ U be arbitrary and denote the 
orresponding solutions of (3.6)

by y(1)
, y(2)

. Then, employing Proposition 9 (c > 0 stands for a generi
 
onstant
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independent of ξ(i)
, y(i)

):

‖y(1) − y(2)‖3p = ‖u(1)
τ − u(2)

τ ‖p + ‖u(1)
ν − u(2)

ν ‖p + ‖λ(1) − λ(2)‖p

≤ ‖u(1)
τ − u(2)

τ ‖p + ‖(u(1)
τ − ξ

(1)
λ )− (u(2)

τ − ξ
(2)
λ )‖p

+ ‖λ(1) − λ(2)‖p + ‖ξ(1)
λ − ξ

(2)
λ ‖p

≤ c‖lξ(1)(ᾱ)− lξ(2)(ᾱ)‖3p + ‖ξ(1)λ − ξ
(2)
λ ‖p

≤ c
(
‖ξ(1)τ − ξ(2)

τ ‖p + ‖Aτν(ᾱ)‖‖ξ(1)λ − ξ
(2)
λ ‖p + ‖ξ(1)ν − ξ(2)

ν ‖p

+ ‖Aνν(ᾱ)‖‖ξ(1)λ − ξ
(2)
λ ‖p

)
+ ‖ξ(1)λ − ξ

(2)
λ ‖p

≤ c‖ξ(1) − ξ(2)‖3p,

and the proof is 
omplete.

As a 
orollary of Proposition 10 we obtain Lips
hitz 
ontinuity of the 
orre-

sponding solution map.

Corollary 2. Let the assumptions of Theorem 11(ii) hold true. Then the solution

map Ŝ : Uad → R3p
is single-valued and Lips
hitz in Uad.

Proof. Follows from Theorem 2.1 in [8℄ and the 
ompa
tness of Uad.

Now we are in a position to prove the main result of this se
tion.

Proof of Theorem 19. By Corollary 2 the solution map Ŝ is Lips
hitz 
ontinuous

on the 
ompa
t set Uad, thus its graph is 
ompa
t in Uad × R3p
. Therefore, any

lower semi
ontinuous 
ost fun
tional J attains its minimum on Gr Ŝ, i.e., the
shape optimization problem (PC

) has at least one solution.

3.3 Sensitivity analysis

Con
erning the numeri
al solution of the shape optimization problem (PC
), the

same applies as in the Tres
a fri
tion 
ase, i.e., due to Corollary 2 we may follow

the ImP approa
h and reformulate the original MPEC into

minimize Ĵ (α) := J(α, Ŝ(α))
subj. to α ∈ Uad,

}
(P̂C

)

where Ĵ : Uad → R is (lo
ally) Lips
hitz and possibly non-
onvex. Due to the

reasons dis
ussed in Se
tion 2.4 we shall solve (P̂C
) by a bundle method. In order

to make this approa
h work, at ea
h step ᾱ ∈ Uad of the minimization algorithm

one has to be able to provide a fun
tion value Ĵ (ᾱ) = J(ᾱ, ȳ) with ȳ = Ŝ(ᾱ),

and one (arbitrary) subgradient ξ ∈ ∂̄Ĵ (ᾱ). Owing to (2.25)�(2.27) we see that

this 
an be a
hieved by setting

ξ := ∇αJ(ᾱ, ȳ) + p∗,

where

p∗ ∈ D∗Ŝ(ᾱ)(∇yJ(ᾱ, ȳ)).

The 
omputation of one su
h p∗
is des
ribed in the next theorem. A
tually, it

happens to be a simpli�ed form of Theorem 17(ii) for the 
ase when the multi-

fun
tion Q̂ does not depend on the the design variable α.
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Theorem 20. Let (ᾱ, ȳ) ∈ Gr Ŝ be given. Then for ea
h p∗ ∈ D∗Ŝ(ᾱ)(∇yJ(ᾱ, ȳ))
there exists an adjoint variable v∗ ∈ R3p

su
h that

p∗ = ∇αF (ᾱ, ȳ)
Tv∗

(3.9)

and v∗
is a solution to the adjoint GE:

0 ∈ ∇yJ(ᾱ, ȳ) +∇yF (ᾱ, ȳ)
Tv∗ +D∗Q̂(ȳ,−F (ᾱ, ȳ))(v∗). (AGE

C
)

Proof. Due to the strong regularity 
ondition (see Proposition 10) the assump-

tions of [27, Theorem 5℄ are satis�ed. See also [4, Theorem 4.1℄.

Note, that Theorem 20, in general, provides only an upper approximation of

∂̄Ĵ (ᾱ) sin
e the ve
tor v∗

onstru
ted using (3.9) and (AGE

C
) may lie outside

of D∗Ŝ(ᾱ)(∇yJ(ᾱ, ȳ)). Let us re
all, that this 
an happen only at points where

Gr Q̂ is not graphi
ally regular, and if it does happen (at a nonregular point),

the used bundle method may not inevitably 
ollapse. Otherwise a re
overy step

has to be made in whi
h the bundle method is provided with a 
orre
t subgra-

dient. Nevertheless, 
omputational experien
e shows that this o

urs very rarely,

therefore we will rely on the 
onstru
tion of subgradients via the AGE (AGE

C
)

as des
ribed in Theorem 20.

The rest of this se
tion is devoted to expressing the 
oderivative D∗Q̂ in

terms of the problem data, as D∗Q̂ is the only unknown quantity remaining in

(AGE

C
). In doing so, we follow 
losely [4℄ and begin with reordering the equa-

tions in (GEC(α)) so that y ∈ (R3)p with yi = ((ut)i, (un)i, λi) 
omprising all

state variables asso
iated with the i-th 
onta
t node (i = 1, . . . , p). This way the

multifun
tion Q̂ takes the form:

Q̂(y) =




Φ(y1)
Φ(y2)

.

.

.

Φ(yp)


 , (3.10)

where Φ : R2 × R+ ⇒ R3
is de�ned as:

Φ(a) :=



F(|a1|)a3∂|a1|

0
NR+(a3)


 ∀a ∈ R2 × R+. (3.11)

Due to the above reordering (3.10) and [47, Example 6.10℄, one has for every

(ȳ, q̄) ∈ Gr Q̂ and p∗ ∈ (R3)p:

D∗Q̂(ȳ, q̄)(p∗) =




D∗Φ(ȳ1, q̄1)(p
∗
1)

D∗Φ(ȳ2, q̄2)(p
∗
2)

.

.

.

D∗Φ(ȳp, q̄p)(p
∗
p)


 . (3.12)

Therefore, in the sequel we will 
onsider arbitrary (ā, b̄) ∈ GrΦ, b∗ ∈ R3
and


ompute the 
oderivative D∗Φ(ā, b̄)(b∗) a

ording to the position of (ā, b̄) as

given by the following partition of GrΦ:

GrΦ = L ∪M1 ∪M2 ∪M
+
3 ∪M−

3 ∪M4, (3.13)
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where the sets on the right-hand side of (3.13) are de�ned in Table 3.1. From

a me
hani
al point of view, partition (3.13) represents all possible 
onta
t and

sliding modes of a point on the 
onta
t boundary.

no 
onta
t: weak 
onta
t: strong 
onta
t:

a3 = 0, b3 < 0 a3 = 0, b3 = 0 a3 > 0, b3 = 0
sliding:

L

M2 M1a1 6= 0,
b1 = sgn(a1)F(|a1|)a3

weak sti
king:

M4 M−
3a1 = 0,

|b1| = F(0)a3
strong sti
king:

××× ××× M+
3a1 = 0,

|b1| < F(0)a3

Table 3.1: Conta
t and sliding mode at (a, b) ∈ GrΦ.

As easily seen from their de�nition, the sets L, M1 and M+
3 are open in the

relative topology of GrΦ, i.e., ea
h Σ ∈ {L,M1,M
+
3 } satis�es:

∀(ā, b̄) ∈ Σ ∃neighborhood O : GrΦ ∩O ⊂ Σ. (3.14)

This makes the analysis in these 
ases substantially easier, sin
e:

NGrΦ(ā, b̄) = NΣ(ā, b̄) = Lim sup
(a,b)

Σ
→(ā,b̄)

N̂Σ(a, b), (3.15)

as will be used frequently below.

Proposition 11 (no 
onta
t). Let (ā, b̄) ∈ L and b∗ ∈ R3
be given. Then:

D∗Φ(ā, b̄)(b∗) =

{
{0} × {0} × R if b∗3 = 0,

∅ otherwise.

(3.16)

Proof. Let (a, b) ∈ L be arbitrary. Then there exists a neighborhood O of (a, b)
su
h that:

GrΦ ∩O =
(
R× R× {0}

)
×
(
{0} × {0} × R

)
∩ O.

Therefore:

N̂GrΦ(a, b) =
(
{0} × {0} × R

)
×
(
R× R× {0}

)
, (3.17)

and the assertion follows dire
tly from (3.15) and the de�nition of D∗Φ.

Proposition 12 (strong 
onta
t, strong sti
king). Let (ā, b̄) ∈M+
3 and b∗ ∈ R3

be given. Then:

D∗Φ(ā, b̄)(b∗) =

{
R× {0} × {0} if b∗1 = 0,

∅ otherwise.

(3.18)
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Proof. In this 
ase, for every (a, b) ∈ M+
3 one 
an �nd a suitable neighborhood

O su
h that:

GrΦ ∩O =
(
{0} × R× R

)
×
(
R× {0} × {0}

)
∩ O,

when
e

N̂GrΦ(a, b) =
(
R× {0} × {0}

)
×
(
{0} × R× R

)
. (3.19)

The rest follows again from (3.15) and the de�nition of the 
oderivative.

Convention. For 
onvenien
e, in the sequel F will signify the even extension of

the 
oe�
ient of fri
tion to the whole R, i.e. F(x) := F(−x) ∀x < 0, so that

F(|x|) = F(x) ∀x ∈ R. Clearly, F is (globally) Lips
hitz in R.

Proposition 13 (strong 
onta
t, sliding). Let (ā, b̄) ∈M1 and b∗ ∈ R3
be given.

Then:

D∗Φ(ā, b̄)(b∗) =



D∗F(ā1)(sgn(ā1)ā3b

∗
1)

0
sgn(ā1)F(ā1)b

∗
1


 . (3.20)

Proof. There exists a neighborhood Õ of ā su
h that Φ is single-valued on Õ and

equals:

Φ(a) =



sgn(ā1)F(a1)a3

0
0


 ∀a ∈ Õ.

From the de�nition of the regular 
oderivative:

N̂GrΦ(a,Φ(a)) = {(a∗, b∗) ∈ R3 × R3 |

〈a∗,x− a〉3 + 〈b∗,Φ(x)− Φ(a)〉3 ≤ o(‖x− a‖) ∀x},

employing the Lips
hitz 
ontinuity of F. A straightforward 
al
ulation yields:

N̂GrΦ(a,Φ(a)) = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(ā1)F(a1)b
∗
1,

(a∗1, sgn(ā1)b
∗
1a3) ∈ N̂Gr F(a1,F(a1))}. (3.21)

Hen
e (see (3.15)):

NGrΦ(ā, b̄) = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(ā1)F(ā1)b
∗
1,

(a∗1, sgn(ā1)b
∗
1ā3) ∈ NGrF(ā1,F(ā1))}

and the proof is 
omplete.

Remark 10. (i) If F happens to be smooth around ā1, then Φ is smooth in Õ
and (3.20) redu
es to the adjoint Ja
obian of Φ, as expe
ted:

D∗Φ(ā, b̄)(b∗) = sgn(ā1)



F′(ā1)ā3 0 0

0 0 0
F(ā1) 0 0


 b∗.
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(ii) It 
an be seen from the proofs of Proposition 11 and Proposition 12, that

GrΦ is graphi
ally regular at ea
h point of L and M+
3 . It is graphi
ally

regular at those points (ā, b̄) ∈ M1 for whi
h GrF is graphi
ally regular at

(ā1,F(ā1)). In parti
ular, if F is smooth, then GrΦ is graphi
ally regular

also on M1.

Unfortunately, the situation be
omes more involved when dealing with the

sets M2 and M
−
3 , sin
e they lie on the 
ommon boundary of two open sets:

M2 = relint(∂L ∩ ∂M1) and M−
3 = relint(∂M1 ∩ ∂M

+
3 ), (3.22)

where relint(A) denotes the relative interior of the set A.
In order to 
ompute D∗Φ at points belonging to M2, we will use a slightly

generalized version of [4, Lemma 4.6℄. In parti
ular, we show that its assertion

holds with equality under less restri
tive 
onditions.

Lemma 9. Consider a multifun
tion F : Rn × Rm × Ro
⇒ Rl × Rp

given by

F (x,y, z) =

[
G(x,y)
H(y, z)

]
,

where G : Rn × Rm
⇒ Rl

, H : Rm × Ro
⇒ Rp

are 
losed-graph multifun
tions.

Assume that the point (x̄, ȳ, z̄, f̄1, f̄2) belongs to GrF and the quali�
ation 
on-

dition [
0

w2

]
∈ D∗G(x̄, ȳ, f̄ 1)(0)

[
−w2

0

]
∈ D∗H(ȳ, z̄, f̄2)(0)





⇒ w2 = 0 (3.23)

holds true. Then one has

D∗F (x̄, ȳ, z̄, f̄1, f̄2)(d
∗
1,d

∗
2) ⊂ {(u1,u2 + v1, v2) |

(u1,u2) ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1), (v1, v2) ∈ D∗H(ȳ, z̄, f̄2)(d

∗
2)}. (3.24)

Assume, in addtion, that for ea
h sequen
e y(i) → ȳ and ea
h η ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1)

there exist sequen
es (x(i),y(i), f
(i)
1 )

GrG
−→ (x̄, ȳ, f̄ 1) and d

∗(i)
1 → d∗

1 su
h that

η ∈ Lim sup
i→∞

D̂∗G(x(i),y(i), f
(i)
1 )(d

∗(i)
1 ). (3.25)

Then (3.24) holds as equality.

Proof. The �rst assertion has already been proved in [4℄. To prove the se
ond

one, let η be an element of the right-hand side of (3.24), i.e.

η = (u1,u2 + v1, v2) ,

for some (u1,u2) ∈ D∗G(x̄, ȳ, f̄1)(d
∗
1) and (v1, v2) ∈ D∗H(ȳ, z̄, f̄2)(d

∗
2). Thus,

there exist sequen
es (y(i), z(i), f
(i)
2 )

GrH
−→ (ȳ, z̄, f̄2), d

∗(i)
2 → d∗

2, (v
(i)
1 , v

(i)
2 ) →

(v1, v2) su
h that (v
(i)
1 , v

(i)
2 ) ∈ D̂∗H(x(i),y(i), f

(i)
2 )(d

∗(i)
2 ). By virtue of our ad-

ditional assumption, there are sequen
es x(i) → x̄, f
(i)
1 → f̄ 1, d

∗(i)
1 → d∗

1 and

(u
(i)
1 ,u

(i)
2 ) ∈ D̂∗G(x(i),y(i), f

(i)
1 )(d

∗(i)
1 ) su
h that

(u
(i)
1 ,u

(i)
2 ) → (u1,u2).
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It follows from [47, Theorem 10.40℄ that for all i ∈ N

(u
(i)
1 ,u

(i)
2 + v

(i)
1 , v

(i)
2 ) ∈ D̂∗F (x(i),y(i), z(i), f

(i)
1 , f

(i)
2 )(d

∗(i)
1 ,d

∗(i)
2 ),

and 
onsequently η ∈ D∗F (x̄, ȳ, z̄, f̄1, f̄ 2)(d
∗
1,d

∗
2).

Remark 11. Note that equality in (3.24) holds also if instead of G the multi-

fun
tion H satis�es similar 
onditions as (3.25). The details are left as an easy

exer
ise.

Next we show that the se
ond assumption of Lemma 9, ensuring equality

in (3.24), is ful�lled in the 
ase when G is �multipli
atively separable� in the

sense that G(x,y) = f(x)g(y), where f : Rn → R is lo
ally Lips
hitz and

g : Rm → Rl
is 
ontinuously di�erentiable. To this end, let us �rst present an

auxiliary result.

Lemma 10. Let n,m, l ∈ N and the fun
tions f : Rn → R and g : Rm → Rl
be

lo
ally Lips
hitz around x̄ ∈ Rn
and ȳ ∈ Rm

, respe
tively. Let G : Rn×Rm → Rl

be de�ned as

G(x,y) := f(x)g(y).

For its regular 
oderivative then holds:

D̂∗G(x̄, ȳ)(d∗) =

[
D̂∗f(x̄)(g(ȳ)Td∗)

D̂∗g(ȳ)(f(x̄)d∗)

]
(3.26)

for any d∗ ∈ Rl
.

Proof. From the de�nition of the regular 
oderivative we have:

D̂∗G(x̄, ȳ)(d∗) = {(x∗,y∗) ∈ Rn × Rm |

〈x∗,x− x̄〉n + 〈y∗,y − ȳ〉m − 〈d∗, f(x)g(y)− f(x̄)g(ȳ)〉l

≤ o(‖x− x̄‖n + ‖y − ȳ‖m) ∀(x,y)}.

In parti
ular, for (x, ȳ) and (x̄,y) we get the following two relations:

〈x∗,x− x̄〉n − 〈d∗, (f(x)− f(x̄))g(ȳ)〉l ≤ o(‖x− x̄‖n) ∀x, (3.27)

〈y∗,y − ȳ〉m − 〈d∗, f(x̄)(g(y)− g(ȳ))〉l ≤ o(‖y − ȳ‖m) ∀y, (3.28)

whi
h immediately yield the in
lusion ⊂ in (3.26) by the de�nition of the regular


oderivative.

To prove the 
onverse in
lusion, let us assume that x∗ ∈ Rn
and y∗ ∈ Rm

satisfy (3.27) and (3.28), respe
tively. We sum both equation to get:

〈x∗,x− x̄〉n + 〈y∗,y − ȳ〉m − 〈d∗, f(x)g(y)− f(x̄)g(ȳ)〉l

≤ 〈d∗, (f(x)− f(x̄))(g(y)− g(ȳ))〉l + o(‖x− x̄‖n) + o(‖y − ȳ‖m).

Finally, to 
omplete the proof, it is su�
ient to show that the right-hand side is

o(‖x− x̄‖n+‖y− ȳ‖m). The last two terms are left as an easy exer
ise. Denoting
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by Kf and Kg the Lips
hitz moduli of f and g, resp., the �rst term 
an be

estimated as follows:

〈d∗, (f(x)− f(x̄))(g(y)− g(ȳ))〉l
‖x− x̄‖n + ‖y − ȳ‖m

≤ ‖d∗‖l
|f(x)− f(x̄)|

‖x− x̄‖n︸ ︷︷ ︸
≤Kf

‖g(y)− g(ȳ)‖l
‖y − ȳ‖m︸ ︷︷ ︸

≤Kg

‖x− x̄‖n
‖x− x̄‖n + ‖y − ȳ‖m︸ ︷︷ ︸

≤1

‖y − ȳ‖m︸ ︷︷ ︸
→0

→ 0

for (x,y) → (x̄, ȳ).

Remark 12. Noti
e that the proof of the previous lemma 
an be applied without


hange also in 
ase of G(x,y) := f (x)g(y), where f : Rn → Rl
and g : Rm → R,

both lo
ally Lips
hitz. Then one has for every d∗ ∈ Rl
:

D̂∗G(x̄, ȳ)(d∗) =

[
D̂∗f (x̄)(g(ȳ)d∗)

D̂∗g(ȳ)(f (x̄)Td∗)

]
.

Proposition 14. Let the assumptions of Lemma 10 hold, with g : Rm → Rl


ontinuously di�erentiable around ȳ ∈ Rm
. Then G satis�es (3.25), i.e.

∀η ∈ D∗G(x̄, ȳ)(d∗) ∀y(i) → ȳ ∃x(i) → x̄ ∃d(i) → d∗ ∃η(i) → η :

η(i) ∈ D̂∗G(x(i),y(i))(d(i)).

Proof. Let η ∈ D∗G(x̄, ȳ)(d∗) and y(i) → ȳ be arbitrary. From the s
alarization

formula and [36, Corollary 1.111(i)℄ it follows easily that

η =

[
π

f(x̄)∇g(ȳ)Td∗

]
for some π ∈ D∗f(x̄)(g(ȳ)Td∗). (3.29)

By the de�nition of the (limiting) 
oderivative

∃x(i) → x̄ ∃r(i) → g(ȳ)Td∗ ∃π(i) → π : π(i) ∈ D̂∗f(x(i))(r(i)). (3.30)

Let us distinguish between the following two situations.

(i) g(ȳ)Td∗ 6= 0. Then, 
learly, g(y(i)) 6= 0 for i su�
iently large. For these

indi
es we may sele
t any sequen
e {d(i)} satisfying the 
onditions

d(i) → d∗
and g(y(i))Td(i) = r(i).

Observe that su
h 
hoi
e of {d(i)} is always possible, e.g.

d(i) :=
r(i)

g(y(i))Td∗d
∗

(3.31)

for i su�
iently large. By Lemma 10

η(i) :=

[
π(i)

f(x(i))∇g(y(i))Td(i)

]
∈ D̂∗G(x(i),y(i))(d(i)) (3.32)

and so the assertion follows.
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(ii) g(ȳ)Td∗ = 0. It follows that π = 0, sin
e D∗f(x̄)(g(ȳ)Td∗) = {0} by

virtue of the Mordukhovi
h 
riterion [47, Theorem 9.40℄. Consider now arbi-

trary sequen
es x(i) → x̄, d(i) → d∗
and π(i) ∈ D̂∗f(x(i))(g(y(i))Td(i)) =

D∗f(x(i))(g(y(i))Td(i)) 6= ∅. Su
h sequen
es do exist, be
ause f is di�erentiable

on a dense subset of its domain (Radema
her's theorem) and at these points

D̂∗f(x(i))(r) = D∗f(x(i))(r) 6= ∅ ∀r ∈ R.

Clearly, π(i) → 0 by the outer semi
ontinuity of the limiting 
oderivative and the

statement follows again from Lemma 10.

Remark 13. The assertion of Proposition 14 remains valid if we 
onsider G of

the form dis
ussed in Remark 12. The only di�eren
e is that instead of (3.31) we

may take

d(i) :=
1

g(y(i))
r(i).

The reader is kindly en
ouraged to work out the details.

Proposition 15 (weak 
onta
t, sliding). Let (ā, b̄) ∈ M2 and b∗ ∈ R3
be given.

Then:

D∗Φ(ā, b̄)(b∗) =








0
0

sgn(ā1)F(ā1)b
∗
1 + w




∣∣∣∣∣∣∣
w ∈





R if b∗3 = 0,

R− if b∗3 < 0,

{0} if b∗3 > 0.




. (3.33)

Proof. Consider a referen
e point (ā, b̄) = (ā1, ā2, 0, 0, 0, 0) ∈ M2, where ā1 6= 0
by the de�nition of M2. Then Φ attains the form

Φ(a) =



sgn(ā1)F(a1)a3

0
NR+(a3)


 ∀a ∈ Õ,

for a su�
iently small neighborhood Õ of ā. De�ning the fun
tion G(x, y) :=
F(x)g(y), where g(y) := sgn(ā1)y and the 
losed-graph multifun
tion H(y) =
NR+(y), Lemma 9 yields:

D∗Φ(ā, b̄)(b∗) = {(u1, 0, u2 + v) | (u1, u2) ∈ D∗G(ā1, 0)(b
∗
1),

v ∈ D∗H(0, 0)(b∗3)},
(3.34)

be
ause G satis�es the assumptions of Proposition 14 and thus the se
ond as-

sumption of Lemma 9 is satis�ed. Sin
e g(0) = 0 and g′(0) = sgn(ā1), it follows
from (3.29) that

D∗G(ā1, 0)(b
∗
1) =

{[
0

sgn(ā1)F(ā1)b
∗
1

]}
. (3.35)

For the 
oderivative of the normal 
one mapping H at (0, 0) ∈ GrH one has:

D∗H(0, 0)(b∗3) =





R if b∗3 = 0,

R− if b∗3 < 0,

{0} if b∗3 > 0.

(3.36)

Finally, the assertion follows by 
olle
ting (3.34), (3.35) and (3.36).
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In order to give a formula for the 
oderivative D∗Φ at points in M−
3 we will,

in addition, assume that the 
oe�
ient of fri
tion F is weakly semismooth at 0
(
f. [32℄), implying that:

∃F′
+(0) ∈ R and Lim sup

x→0+

∂̄F(x) = {F′
+(0)}, (3.37)

where F′
+ stands for the right-hand derivative of F. Now the following result holds

true.

Proposition 16 (strong 
onta
t, weak sti
king). Let (ā, b̄) ∈ M−
3 and b∗ ∈ R3

be given. Then:

D∗Φ(ā, b̄)(b∗) =







F′
+(0)ā3b

∗
1 + w

0
sgn(b̄1)F(0)b

∗
1




∣∣∣∣∣∣∣
w ∈





R if b∗1 = 0,

sgn(b̄1)R+ if b∗1 sgn(b̄1) < 0,

{0} otherwise.




.

(3.38)

Proof. Let (ā, b̄) ∈M−
3 be given, i.e. (ā, b̄) = (0, ā2, ā3, b̄1, 0, 0) ∈ R3 ×R3

, where

ā3 > 0 and |b̄1| = F(0)ā3. It 
an be easily seen, that there exists a neighborhood

O of (ā, b̄) su
h that:

sgn(b1) = sgn(b̄1) and sgn(a1) sgn(b̄1) ≥ 0 ∀(a, b) ∈ GrΦ ∩O. (3.39)

Moreover (
f. (3.22) and Table 3.1):

NGrΦ(ā, b̄) = N1 ∪ N2 ∪N3, (3.40)

where

N1 := Lim sup

(a,b)
M1−→(ā,b̄)

N̂M1(a, b),

N2 := Lim sup

(a,b)
M+

3−→(ā,b̄)

N̂M+
3
(a, b),

N3 := Lim sup

(a,b)
M−

3−→(ā,b̄)

N̂GrΦ(a, b).

Let us �rst 
al
ulate N1. From (3.21), (3.39) and the de�nition of the regular


oderivative it follows that:

N̂M1(a, b) = {(x∗,y∗) | x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1,

x∗1 ∈ D̂∗F(a1)(− sgn(b̄1)a3y
∗
1)}

(3.41)

for ea
h (a, b) ∈M1. Using the s
alarization formula and [33, Corollary 3.3.2℄ we

get:

D̂∗F(a1)(− sgn(b̄1)a3y
∗
1) ⊂ D∗F(a1)(− sgn(b̄1)a3y

∗
1)

= ∂(− sgn(b̄1)a3y
∗
1F)(a1) ⊂ − sgn(b̄1)a3y

∗
1 ∂̄F(a1). (3.42)
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Note, that N1 is nonempty (it follows easily from the Lips
hitz 
ontinuity of F

and the Radema
her theorem). In light of this fa
t, (3.41), (3.42) together with

the semismoothness assumption (3.37) and (3.39) yield:

N1 = {(a∗, b∗) | a∗2 = 0, a∗3 = − sgn(b̄1)F(0)b
∗
1,

a∗1 = −F′
+(0)ā3b

∗
1}.

(3.43)

Con
erning N2, from (3.19) one has immediately:

N2 =
(
R× {0} × {0}

)
×

(
{0} × R× R

)
. (3.44)

However, the 
omputation of the 
one N3 is more involved. In parti
ular, let

(a, b) ∈M−
3 be given and observe that GrΦ lo
ally around (a, b) 
an be written

as the union of the following two disjoint sets (
f. Table 3.1 and (3.39)):

G1 := {(x,y) | sgn(x1) = sgn(b̄1), x3 > 0, y1 = sgn(b̄1)F(x1)x3, y2 = y3 = 0},

G2 := {(x,y) | x1 = 0, x3 > 0, sgn(b̄1)y1 ≤ F(0)x3, y2 = y3 = 0}.

This way one has:

TGrΦ(a, b) = TG1(a, b) ∪ TG2(a, b), (3.45)

and hen
e

N̂GrΦ(a, b) =
(
TGrΦ(a, b)

)0
= N̂G1(a, b) ∩ N̂G2(a, b). (3.46)

The 
ontingent 
one to G1 
an be determined as follows:

TG1(a, b) = {(h,k) | ∃h(i) → h, k(i) → k, λ(i) → 0+, ∀i :

(a+ λ(i)h(i), b+ λ(i)k(i)) ∈ G1}

= {(h,k) | ∃h(i) → h, k(i) → k, λ(i) → 0+, ∀i :

sgn(λ(i)h
(i)
1 ) = sgn(b̄1), a3 + λ(i)h

(i)
3 > 0,

sgn(b̄1)F(0)a3 + λ(i)k
(i)
1 = sgn(b̄1)F(λ

(i)h
(i)
1 )(a3 + λ(i)h

(i)
3 ),

λ(i)k
(i)
2 = 0, λ(i)k

(i)
3 = 0},

from whi
h:

k
(i)
1 = sgn(b̄1)

F(λ(i)h
(i)
1 )− F(0)

λ(i)h
(i)
1

h
(i)
1 a3 + sgn(b̄1)F(λ

(i)h
(i)
1 )h

(i)
3

=
F(λ(i)|h(i)1 |)− F(0)

λ(i)|h(i)1 |
h
(i)
1 a3 + sgn(b̄1)F(λ

(i)h
(i)
1 )h

(i)
3

−→ F′
+(0)h1a3 + sgn(b̄1)F(0)h3, for i→ ∞,

as follows from (3.37). Thus we get:

TG1(a, b) = {(h,k) | sgn(b̄1)h1 ≥ 0, k2 = k3 = 0,

k1 = F′
+(0)a3h1 + sgn(b̄1)F(0)h3}.

(3.47)

An analogous 
omputation yields:

TG2(a, b) = {(h,k) | h1 = 0, k2 = k3 = 0, sgn(b̄1)k1 ≤ F(0)h3}. (3.48)
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Now, the negative polars to the 
ones (3.47), (3.48) 
an be easily 
al
ulated:

N̂G1(a, b) = {(x∗,y∗) | (x∗1 + F
′
+(0)a3y

∗
1) sgn(b̄1) ≤ 0,

x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1},

and

N̂G2(a, b) = {(x∗,y∗) | x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1, y

∗
1 sgn(b̄1) ≥ 0},

so that

N̂G1(a, b) ∩ N̂G2(a, b) = {(x∗,y∗) | (x∗1 + F
′
+(0)a3y

∗
1) sgn(b̄1) ≤ 0,

x∗2 = 0, x∗3 = − sgn(b̄1)F(0)y
∗
1, y

∗
1 sgn(b̄1) ≥ 0}.

(3.49)

Finally, from (3.46) and (3.49) we get:

N3 = {(a∗, b∗) | (a∗1 + F
′
+(0)ā3b

∗
1) sgn(b̄1) ≤ 0,

a∗2 = 0, a∗3 = − sgn(b̄1)F(0)b
∗
1, b

∗
1 sgn(b̄1) ≥ 0}.

(3.50)

The assertion of the proposition follows now from (3.43), (3.44), (3.50) and the

de�nition of the 
oderivative.

In prin
iple, one 
ould treat the set M4 (weak 
onta
t, weak sti
king) in the

same way as it was done in Proposition 16 and write the normal 
one NGrΦ(ā, b̄),
(ā, b̄) ∈M4, as a union in the sense of (3.40). Some 
ones in this union are easy to

determine, others, however, would require substantially more tedious 
al
ulations

than it was 
arried out forN3 in the previous proof. On the other hand, the setM4

is merely a 1-dimensional submanifold of the 3-dimensional manifold GrΦ ⊂ R6
,

making it extremely rare to o

ur in pra
ti
al 
omputations. From this reason

we omit a detailed analysis of M4 here and do not provide an exa
t formula for

D∗Φ at these points.
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Chapter 4

Numeri
al realization

In this 
hapter we will solve the shape optimization problems analyzed in Chap-

ter 2 and Chapter 3. Re
all that, following the ImP approa
h, both shape op-

timization problems (involving the Tres
a and Coulomb laws of fri
tion, respe
-

tively) 
ould be formulated as the nonsmooth optimization problem

minimize Θ(α),
subj. to α ∈ U,

}
(4.1)

where U is a 
ompa
t subset of Rp
given by linear inequality and/or equality


onstraints and Θ(α) stands for the 
omposite 
ost fun
tion from (P̃) or (P̂C
),

resp. Either way, Θ is possibly non
onvex and nondi�erentiable, due to the intrin-

si
 nonsmoothness of the respe
tive 
ontrol-to-state mappings S̃ and Ŝ, a�e
ted
partly by the nondi�erentiability of the fri
tion 
oe�
ient F : [0,∞) → (0,∞),
as well.

The sensitivity analyses performed in Chapter 2 and Chapter 3, resp., enable

us to solve (4.1) with, e.g., a bundle method. From this 
lass of nonsmooth opti-

mization algorithms we have tested the bundle trust [52, 55℄ and proximal bundle

[39℄ 
odes. Sin
e both algorithms performed approximately equally well, we 
hose

to introdu
e the �rst one in Se
tion 1 of this 
hapter. At ea
h step α(k)
, k ∈ N,

the bundle methods need to be supplied with (i) the fun
tion value Θ(α(k)) and
(ii) one (arbitrary) subgradient from ∂̄Θ(α(k)). The �rst task involves solving a

fri
tional 
onta
t problem with a solution-dependent 
oe�
ient of fri
tion�in

Se
tion 2 we brie�y outline how this 
an be done. Se
tion 3 is devoted to the se
-

ond task, in parti
ular, we look at the adjoint equations from Chapters 2 and 3 in

more detail. Finally, in Se
tion 4 numeri
al examples are presented. These were


omputed by Ing. Petr Beremlijski, Ph.D. using the MatSol [28℄ library developed

at the Te
hni
al University in Ostrava.

4.1 The bundle trust method

In this se
tion we brie�y outline the main ideas behind the bundle trust (BT)

method [52℄ for the solution of the un
onstrained minimization problem

min{f(x) | x ∈ Rn}, (4.2)

where f : Rn → R is assumed to be lo
ally Lips
hitzian. Note that additional


onstraints may be in
orporated into (4.2), e.g., via exa
t penalization.
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By the term �bundle methods� one usually refers to a family of related iter-

ative methods for the solution of (4.2) that utilize the bundle 
on
ept originally

introdu
ed by Lemaré
hal [29℄ and Wolfe [54℄ and have the following features:

• at ea
h iteration xk a bundle of information (yi, f(yi), gi) ∈ Rn × R× Rn
,

i ∈ Jk, is used to build a model of f ;

• if the model is not yet adequate, more subgradient information around xk

is integrated into the model.

The �rst feature is realized by the 
utting plane approximation of f at xk, i.e.,

by the pie
ewise a�ne fun
tion

x 7→ max
i∈Jk

{gT
i (x− yi) + f(yi)}, (4.3)

that equals to f at ea
h yi, i ∈ Jk. Denoting the linearization error αk,i :=
α(xk,yi) = f(xk)−(gT

i (xk−yi)+f(yi)) and introdu
ing the variable d := x−xk

we may express (4.3) as

fCP (xk;d) := max
i∈Jk

{gT
i d−αk,i}+ f(xk), d ∈ Rn. (4.4)

For 
onvex f it holds that αk,i ≥ 0 for any k, i ∈ N and it �measures� the distan
e

of gi to ∂̄f(xk) (whi
h amounts in this 
ase to the 
onvex subdi�erential), in

parti
ular, αk,i = 0 i� gi ∈ ∂̄f(xk). This is no longer true for non
onvex f , in
whi
h 
ase αk,i is repla
ed by βk,i := β(xk,yi) = max{αk,i, c0‖xk − yi‖

2}, where
c0 is a small positive parameter. This modi�
ation ensures that whenever yi is

�far away� from xk, βk,i is large and hen
e gi plays a minor role in fCP (xk; ·).
Again, as the approximation fCP presumably does not model f well far away

from xk, one also adds a stabilizing quadrati
 term (1/2tk)‖d‖2 to the model,

where tk > 0 has still to be 
hosen appropriately. In BT this is done via a trust

region 
on
ept while 
omputing the next iterate xk+1 from xk. Con
eptually, this

inner loop may be formulated as follows:

1. 
ompute

dk := d(tk) = argmin

{
fCP (xk;d) +

1

2tk
‖d‖2 | d ∈ Rn

}
; (4.5)

2. if f(xk + dk) is �su�
iently smaller� than f(xk), then either:

(a) enlarge tk and go ba
k to step 1., or

(b) make a Serious Step: set xk+1 := xk + dk and 
ompute gk+1 ∈
∂̄f(xk+1);

if f(xk + dk) is �not su�
iently smaller� than f(xk), then either:

(a) redu
e tk and go ba
k to step 1., or

(b) make a Null Step: set xk+1 := xk and 
ompute gk+1 ∈ ∂̄f(xk + dk).
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The quadrati
 subproblem (4.5) may be equivalently formulated as (ignoring the


onstant term f(xk)):

(vk,dk) := argmin

{
v +

1

2tk
‖d‖2 | v ≥ gT

i d−αk,i ∀i ∈ Jk

}
∈ R× Rn. (4.6)

Here vk has the meaning of a predi
ted de
rease in the f based on the approxi-

mation fCP around xk. The de
ision in step 2 of the above algorithm whether to

make a serious or null step is then made by 
omparing vk with the a
tual de
rease

f(xk + dk)− f(xk), provided it is also ensured that the CP-model gets 
hanged

substantially when updating the bundle with the 
omputed values. This is made

pre
ise in [52℄, where the 
omplete algorithm may be found.

We 
on
lude this se
tion with the following 
onvergen
e result (
f. [52℄).

Theorem 21. Assume that f : Rn → R is weakly semismooth, bounded from

below and the sequen
e of iterates {xk} generated by the BT algorithm is bounded.

Then {xk} has a C-stationary 
luster point x̄, i.e., 0 ∈ ∂̄f(x̄).

Semismoothness of our 
omposite 
ost fun
tional Θ in (4.1) is inherently


onne
ted to the semismoothness of the 
ontrol-to-state mappings S̃ and Ŝ,
respe
tively�
omposition of semismooth fun
tions yields a semismooth fun
tion

[44℄. Unfortunately, the latter property has not been proven so far in either 
ase.

At the moment, however, there seem to exist at least two viable ways: (i) prove

semismoothness of the 
ontrol-to-state mappings from the de�nition as it was

done in, e.g., [42℄, or (ii) by proving and employing a variant of the proposition

in [26, Exer
ise 13℄ for multifun
tions. Nevertheless, a thorough investigation is

subje
t to future resear
h.

4.2 On solving the state problem

Next, we show how the state problems (M(α)) and (MC(α)) are solved numer-

i
ally for a �xed α ∈ Uad. In both 
ases we utilize the �xed-point approa
h to

redu
e our problems to solving a 
onta
t problem with given fri
tion and a 
oef-

�
ient that does not depend on the solution. Sin
e the overall e�
ien
y depends

very mu
h on the fast solution of these subproblems, we brie�y des
ribe how it

is implemented in MatSol [28℄.

4.2.1 Outer loop

In both the Tres
a and Coulomb fri
tion 
ase we start from their �xed-point

formulation, forming the outer loop in the solution algorithm. We shall employ

the results and notation from Chapter 1.

75



Tres
a 
ase:


hoose ϕ ∈ Rp
+, tol > 0, err > tol

while ( err > tol )

solve (Ā(α,ϕ)) to get (u,λ) ∈ Rn × Rp

update ϕ := |uν |

update err

end

Coulomb 
ase:


hoose ϕ, g ∈ Rp
+, tol > 0, err > tol

while ( err > tol )

solve (Ā(α,ϕ, g)) to get (u,λ) ∈ Rn × Rp

update ϕ := |uν |, g := λ

update err

end

Note, that both problems (Ā(α,ϕ)) and (Ā(α,ϕ, g)) represent a Signorini

problem with given fri
tion where the 
oe�
ient of fri
tion does not depend

on the solution as given in (Ā(α)) (α is �xed throughout this se
tion). These

subproblems are solved iteratively again, as des
ribed below.

4.2.2 Inner loop

Instead of solving (Ā(α)) in the presented mixed form, the so-
alled re
ipro
al

approa
h [18℄ is used. To this end, one introdu
es Lagrange multipliers onto the

tangential displa
ement:

Λτ(α,ϕ, g) := {µτ ∈ Rp | |µτ | ≤ ω(α) • F(ϕ) • g}.

Further, let us denote by λν ∈ Λν := Rp
+ the se
ond 
omponent of the solution to

(Ā(α)), and let N,T ∈ Rp×n
be the matrix representation of the linear mappings

u 7→ uν and u 7→ uτ , respe
tively. This way (Ā(α)) may be equivalently written

as:

A(α)u+ TTλτ = L(α) + NTλν ,

〈µτ − λτ ,Tu〉p + 〈µν − λν ,Nu+α〉p ≤ 0 ∀(µτ ,µν) ∈ Λτ (α,ϕ, g)× Λν .

}

(4.7)

One arrives at the dual formulation of (Ā(α)) after eliminating the primal variable

u ∈ Rn
from the system above. The resulting variational inequality is equivalent

to

minimize

1
2
〈Q(α)µ,µ〉2p − 〈H(α),µ〉2p,

subj. to µ = (µτ ,µν) ∈ Λτ (α,ϕ, g)× Λν ,

}
(4.8)

where

Q(α) :=

[
TA−1(α)TT −TA−1(α)NT

−NA−1(α)TT NA−1(α)NT

]
, H(α) :=

[
TA−1(α)L(α)

−NA−1(α)L(α)

]
.
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Not only is the dimension of (4.8) 
onsiderably less than in 
ase of (Ā(α))
(p ≪ n; the dual variables relate to the 
onta
t boundary only), but there exist

e�
ient methods for its solution. The MatSol library implements a 
onjugate

gradient method with proportioning and proje
tions [9℄ (see also [10℄) for solving

the quadrati
 problem (4.8) with simple (box-) 
onstraints.

4.3 On solving the adjoint generalized equation

In this se
tion we shall revisit the adjoint generalized equations (AGE) and

(AGE

C
) whi
h are supposed to yield a subgradient of the 
ost fun
tional. Based

on the results of Chapter 2 and 3 we will make their solution more obvious.

4.3.1 Tres
a 
ase

In Se
tion 2.5 we have argued that a subgradient of the 
omposite 
ost fun
tional

J 
an be 
onveniently approximated by solving (AGE) for p∗ ∈ Rp
and inserting

it into (2.27). The idea behind solving (AGE) is to identify a linear subspa
e

in D∗Q for whi
h the resulting system of linear equations 
an be easily solved.

In order to do so we 
ombine the results obtained in Se
tion 2.5, pro
eeding in

reverse order.

Let ᾱ ∈ Ũad and the 
orresponding state ve
tor ȳ = (ūν , ūτ , λ̄) := S̃(ᾱ) be
given. Based on the type of sliding/sti
king at the ith 
onta
t node and relations

(2.40), (2.42), (2.43), (2.46), (2.53), we determine at ea
h 
onta
t node i = 1, . . . , p
a linear subspa
e

Li ⊂ D∗Z
(
ωi(ᾱ), (ūτ )i,−(F 1(ᾱ, ȳ))i

)
, (4.9)

i.e., we either 
hoose v∗i = 0 or there exist d
(1)
i , d

(2)
i ∈ R su
h that for

Li := {(a∗i , b
∗
i , v

∗
i ) ∈ R3 | a∗i = d

(1)
i v∗i , b

∗
i = d

(2)
i v∗i } (4.10)

(4.9) holds. In the former 
ase we simply omit the equation 
orresponding to

the index i from (AGE), therefore let us assume that the latter 
ase holds for

ea
h i = 1, . . . , p. For later use we denote the ve
tors a∗ := (a∗1, . . . , a
∗
p)

T , b∗ :=
(b∗1, . . . , b

∗
p)

T ∈ Rp, z∗ := ((a∗1, b
∗
1), . . . , (a

∗
p, b

∗
p))

T ∈ (R2)p and the diagonal ma-

tri
es D(1),D(2) ∈ Rp×p
having the values d

(1)
i and d

(2)
i as their diagonal entries,

respe
tively, so that

a∗ = D(1)v∗
and b∗ = D(2)v∗. (4.11)

From (2.37), (2.38), (2.39) and (4.11) we infer that

ζ := ∇Ψ(ᾱ, ūτ )
Tz∗ =

[
∇ω(ᾱ)Ta∗

b∗

]
=

[
∇ω(ᾱ)TD(1)

D(2)

]
v∗
1 (4.12)

approximates a ve
tor in D∗Q̃τ (ᾱ, ūτ ,−F1(ᾱ, ȳ))(v
∗). This yields the �rst 
om-

ponent of the 
oderivative D∗Q in (2.34).

Similarly, a ve
tor c∗ ∈ D∗NRp
+
(λ̄,−F 3(ᾱ, ȳ))(w

∗), w∗ ∈ Rp
arbitrary, 
an

be 
onstru
ted on the basis of Proposition 2 as follows. At ea
h 
onta
t point

i ∈ {1, . . . , p} we determine the type of 
onta
t:
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• if there is no 
onta
t (
f. Prop. 2(i)), we set c∗i = 0;

• if there is strong 
onta
t (
f. Prop. 2(ii)) we set w∗
i = 0 and ex
lude the


orresponding equation from (AGE);

• for weak 
onta
t (
f. Prop. 2(iii)) we de
ide for one of the options des
ribed

above.

For simpli
ity of notation, let us assume that c∗i = 0 holds for ea
h i = 1, . . . , p,
i.e., c∗ = 0 ∈ Rp

.

Now, writing the adjoint Ja
obian of F as

∇F (ᾱ, ȳ)T =

[
∇αF (ᾱ, ȳ)T

∇yF (ᾱ, ȳ)T

]
=

[
∇α(A(ᾱ)ȳ)T −∇l(ᾱ)T

AT (ᾱ)

]
(4.13)

we 
ompute a solution of (AGE) by solving the system of linear equations:

p∗ =
(
∇α(A(ᾱ)ȳ)−∇l(ᾱ) +D(1)∇ω(ᾱ)

)T
v∗, (4.14)

−∇yJ(ᾱ, ȳ) =
(
A(ᾱ) +D(2)

)T
v∗, (4.15)

where

D(1) =



D(1)

0

0


 ∈ R3p×p

and D(2) =



D(2)

0 0

0 0 0

0 0 0


 ∈ R3p×3p.

First, (4.15) is solved for v∗ ∈ R3p
, whi
h is then inserted into (4.14) to get the

desired ve
tor p∗ ∈ Rp
.

Finally, let us 
omment on the solvability of (4.15). By assumption, the matrix

A(ᾱ) is positive de�nite for ea
h ᾱ ∈ Ũad and the elements of D(2)
are bounded

by Cmax and Clip, whi
h 
an be made arbitrarily small. Thus, (4.15) is solvable

provided F is bounded and Lips
hitzian with su�
iently small 
onstants Cmax

and Clip.

4.3.2 Coulomb 
ase

Sin
e the solution of (AGE

C
) is done in exa
tly the same way as des
ribed in

the previous se
tion, let us only highlight the 
ommon and distin
t features of

solving (AGE

C
) in Theorem 20.

Comparing with (4.14), we immediately see that (3.9) does not 
ontain an

additional term 
oming from the 
oderivative of multifun
tion Q̂. This follows

from the fa
t that Q̂ does not depend on the design variable α. The GE (AGE

C
)

is treated analogously to the Tres
a 
ase: based on (3.12) and the expressions in

Propositions 11�16 one assembles the matrix

D̂ =



D̂(1)

0 D̂(2)

0 0 0

0 0 0


 ∈ R3p×3p,

where the entries of the diagonal matri
es D̂(j) ∈ Rp×p
, j = 1, 2, are again bounded

by Cmax and Clip. Note that in the Coulomb fri
tion law the tangential stress
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depends also on the normal stress�the third 
omponent of our state ve
tor�

explaining the presen
e of D̂(2)
in the matrix D̂ (
ompare with D(2)

from the

previous se
tion).

Sin
e the single-valued part of (GEC(α)) 
oin
ides with that of (2.8), we 
an

use (4.13) to transform the adjoint system in Theorem 20 into the 
omputationally

managable form

p∗ = ∇αF (ᾱ, ȳ)Tv∗, (4.16)

−∇yJ(ᾱ, ȳ) =
(
A(ᾱ) + D̂

)T
v∗. (4.17)

Con
erning the solvability of (4.17) the same applies as for (4.15).

4.4 Examples

In 
omputations we use a slightly di�erent de�nition of the dis
rete admissible

set Uh
ad. The reason for this is twofold:

(i) to redu
e the dimension of the 
ontrol variables, and

(ii) to obtain a smooth 
onta
t boundary ΓC(αh).

To this end we de�ne Uh
ad as a suitable subset of Bézier fun
tions of order d. Let

us re
all that Bézier fun
tions (of order d) are de�ned as

Bα(x) :=

d∑

i=0

αiβd,i(x), where βd,i(x) :=
1

ad

(
d

i

)
xi(a− x)d−i, x ∈ [0, a]

and α = (α0, . . . , αd) ∈ Rd+1
. The points (ih′, αi) ∈ R2

, i = 0, . . . , d (h′ := a/d)
are 
alled the 
ontrol points of Bα. It holds that Bα(0) = α0, Bα(a) = αd and

GrBα lies in the 
onvex hull of its 
ontrol points. Moreover, taking the 
ontrol

variable α from the set

U := {α ∈ Rd+1 | 0 ≤ αi ≤ C0 ∀i = 0, . . . , d,

|αi−1 − αi| ≤ C1h
′ ∀i = 1, . . . , d,

|αi−1 − 2αi + αi+1| ≤ C3(h
′)2 ∀i = 1, . . . , d− 1,

C21 ≤

∫ a

0

Bα(x) dx ≤ C22}

(4.18)

ensures that the 
orresponding Bézier fun
tion Bα satis�es all 
onstraints intro-

du
ed in (2.5), in parti
ular, |B′
α| ≤ C1 and |B′′

α| ≤ C3 everywhere in [0, a]. The
domain Ω(α) is �rst approximated by a polygonal one, then triangulated using

quadrilaterals to obtain the 
omputational domain Ωh(α). The dis
rete fun
tion
spa
es on Ωh(α) are de�ned using Q1-isoparametri
 �nite elements of Lagrange

type. In all three examples presented below the values (
f. Figure 1.2) a = 2,
b = 1, d = 20 are used and the total number of nodes (verti
es of quadrilaterals)

equals 1800 for ea
h α ∈ U , in
luding 60 on the 
onta
t part.

79



Example 1

First, we will assume the model with Tres
a fri
tion and a solution-dependent


oe�
ient of fri
tion F, given by the smooth fun
tion

F(s) := 0.25
1

1 + s2
, s ∈ R+. (4.19)

The slip bound shall take the 
onstant value g = 150. In the present example

we will try to identify the 
onta
t normal stress λ by a pres
ribed target value

λ
tar

, as denoted by the dotted line in Figure 4.3. Thus, the dis
retized shape

optimization problem reads as

minimize ‖λ(α)− λ
tar

‖2,
subj. to α ∈ U,

}

where λ(α) is the se
ond 
omponent of the solution to (M(α)). The other pa-

rameters in the model were set to the following values: C0 = 0.75, C1 = 0.85,
C3 = 10, C21 = 1.88, C22 = 1.95; we take a material with Young's modulus

E = 1 GPa and Poisson 
onstant σ = 0.3; density of for
es that press on the

upper edge is P 1 = (0,−60 MPa) on (0, 1.8) × {1} and zero on (1.8, 2) × {1},
while a pulling for
e of density P 2 = (50 MPa, 30 MPa) a
ts on the right edge;

the body is 
lamped along its left edge.

The initial design is presented in Figure 4.1 in its unloaded state (left) and

the distribution of the von Mises stress in the deformed body (right). Similarly,

Figure 4.2 shows the optimal design before and after loading. On Figure 4.3

we 
ompare the normal 
onta
t stresses with the pres
ribed fun
tion: while the

initial 
onta
t stress is far from the target values, the stresses for the optimal

design follow λ
tar

very 
losely. Let us mention, that the BT algorithm 
onverged

from α0 to α
opt

in about 150 iterations and the initial value J (α0) = 5.9 · 104 of
the 
ost fun
tional dropped by two orders of magnitude to J (α

opt

) = 9.1 · 102.
In order to emphasize the importan
e of proper modelling of 
onta
t problems,

(a) Before deformation (b) After deformation

Figure 4.1: Example 1; initial design.

let us re-
ompute the previous example with the following modi�
ation: instead

of allowing F to depend on the unknown solution we �x its value to

F(s) := 0.25, s ∈ R+,

but keep all other parameters of Example 1 un
hanged. Starting from the same

initial domain Ω(α0), the BT algorithm 
onverges to a solution Ω(ᾱ
opt

)�
f. Fig-
ure 4.4. At �rst sight, Figure 4.2 yields a satisfa
tory 
orresponden
e with the
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(a) Before deformation (b) After deformation

Figure 4.2: Example 1; optimal design.

(a) Initial design (b) Optimal design

Figure 4.3: Example 1; normal stresses.

solution of the unsimpli�ed problem. However, re
omputing the original 
onta
t

problem with (4.19) on Ω(ᾱ
opt

) reveals that Ω(ᾱ
opt

) is a
tually far from being

optimal (
f. Figure 4.5).

(a) Before deformation (b) After deformation

Figure 4.4: Example 1 with F = 
onst; optimal design Ω(ᾱ
opt

).

Example 2

In the next two example 
omputations we will 
onsider the 
onta
t problems with

Coulomb fri
tion (MC(α)), but with a mu
h more 
ompli
ated fri
tion 
oe�
ient
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Figure 4.5: Example 1; normal stress distribution on ΓC(ᾱopt

).

F, namely

F(s) :=





0.2 + s, if s ∈ [0, 0.05],

0.25− s, if s ∈ (0.05, 0.2],

0.1, if s ∈ (0.2,∞).

Note that the fun
tion F is Lips
hitz with modulus 1, but non-di�erentiable at
0.05 and 0.2, and also non-monotone.

Our aim is to �nd a suitable 
onta
t part, among the ones spe
i�ed by U ,
whi
h minimizes peaks of the (dis
rete) normal 
onta
t stress λh(α) represented
by the ve
tor of Lagrange multipliers λ(α), α ∈ U . Sin
e the max-norm ‖λ‖∞ =
maxi=1,...,p |λi| is not 
ontinuously di�erentiable, we shall use the lq-norm |λ|q =

(
∑p

i=1 |λi|
q)

1/q
instead, with q large enough (q = 6 in our 
ase). Thus, the shape

optimization problem reads as

minimize |λ(α)|66,
subj. to α ∈ U.

}

Note that if α∗ ∈ U is su
h that uν(α
∗) < −α∗

, i.e., there is no 
onta
t between

the deformed body and the obsta
le, then by 
omplementarity λ(α∗) = 0 and

hen
e α∗
solves the above shape optimization problem. In order to avoid su
h

�trivial� 
ases, the volume 
onstraint in U has to be imposed with a su�
iently

large lower bound. Keeping the material parameters and for
es equal to the ones

used in Example 1, the 
onstants in the de�nition of U are 
hanged to C0 = 0.75,
C1 = 3, C3 = 10, C21 = 1.8 and C22 = 2 (essentially, no upper bound).

As in the previous example, Figure 4.6 shows the initial design before and after

deformation; in Figure 4.7 the same situation is depi
ted in 
ase of the optimal

shape Ω(α
opt

) as 
omputed by the BT algorithm. During minimization the value

of the 
ost fun
tional was redu
ed by one order of magnitude from 6.3 · 105 to

7.3 · 104 in 140 iterations.

Example 3

The previous example related to the important te
hni
al issue of minimizing wear

and fatigue by avoiding 
on
entrations and peaks of 
onta
t stresses. In the 
ase

of fri
tionless 
onta
t problems it was shown in [25℄ that the aforementioned
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(a) Before deformation (b) After deformation

Figure 4.6: Example 2; initial design.

(a) Before deformation (b) After deformation

Figure 4.7: Example 2; optimal design.

(a) Initial design (b) Optimal design

Figure 4.8: Example 2; normal stresses.

e�e
t is a
hieved by minimizing the total potential energy fun
tional

E(α) := E(α,u(α)) =
1

2
uT (α)A(α)u(α)− LT (α)u(α). (4.20)
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Importantly, it 
an be shown that in this 
ase E(α) is 
ontinuously di�erentiable.

This has a 
onsiderable impa
t on the minimization algorithm, among others.

Unfortunately, solutions to 
onta
t problems with Coulomb fri
tion 
annot be

des
ribed as a minimizer of some quadrati
 fun
tional, like E(α, ·). Nevertheless,
we may still ask what do we get by minimizing the elasti
 energy, whether the

optimal shape has similar properties as in the fri
tionless 
ase. To this end we

de�ne the shape optimization problem:

minimize E(α),
subj. to α ∈ U,

}

but in the de�nition (4.20) of the 
ost fun
tional E the fun
tion u(α) now stands

for the �rst 
omponent of the solution to (MC(α)). All parameters (
oe�
ient

of fri
tion, material parameters, for
es, 
onstants in the de�nition of U , initial
design, et
.) are the same as in the previous example.

This time the BT solver took 48 iterations to 
onverge, yielding a de
rease

in the 
ost fun
tional from the initial value −7.69 to −10.88. Comparing the

obtained optimal shape α̃
opt

(see Figure 4.10) with Figure 4.7, the resemblen
e

is signi�
ant. In parti
ular, the distribution of the normal 
onta
t stress (see

right-hand side pi
ture in Figure 4.11) is �almost 
onstant� along ΓC(α̃opt

), with
around the same value as on the right of Figure 4.8�ex
ept for the node, where

the 
onta
t and Neumann boundary 
onditions meet.

(a) Before deformation (b) After deformation

Figure 4.9: Example 3; initial design.
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(a) Before deformation (b) After deformation

Figure 4.10: Example 3; optimal design.

(a) Initial design (b) Optimal design

Figure 4.11: Example 3; normal stresses.
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Con
lusion

Summary

In the thesis we address two separate, but related problems, namely, shape op-

timization in 
onta
t problems with two di�erent models of fri
tion: the Tres
a

and Coulomb laws of fri
tion. In both 
ases we assume that the fri
tion 
oe�
ient

may depend on the solution. In order to see the 
ommonalities and di�eren
es in

the analysis of these problems side by side, the thesis is divided into four logi
al

units as follows.

Chapter 1 
on
erns fri
tional 
onta
t problems in general. We start with the

Signorini problem with Tres
a fri
tion�not just be
ause of its simpli
ity, but

it will also serve as a 
ommon basis for the analysis of the two fri
tion laws

mentioned above and of our interest. For all three fri
tional 
onta
t problems we

mention their weak forms, dis
retize them and derive their algebrai
 
ounterparts.

In addition to the usual primal formulation of the variational inequalities repre-

senting the weak form of our 
onta
t problems we also give their so-
alled mixed

formulation. These involve the normal 
onta
t stresses as Lagrange multipliers�

an important physi
al quantity whi
h is of interest in many appli
ations, not to

mention the Coulomb fri
tion model itself. Sin
e our aim is to solve the shape

optimization problems numeri
ally, we fo
us on the algebrai
 state problems and

give appropriate 
onditions on the fri
tion 
oe�
ient ensuring their unique solv-

ability. Moreover, these 
onditions do not depend on the geometry, as noted in

Chapter 1.

The main part of the thesis is 
omposed of 
hapters 2 and 3, in whi
h we in-

vestigate the shape optimization problems linked to the state problems des
ribed

above. These are treated on the algebrai
 level only and take the form of an

MPEC. Our goal is not to analyze the MPECs for one parti
ular 
ost fun
tional,

but rather the ability to 
hoose 
ost fun
tionals from a broad family. To this end

we spe
ify an admissible set for the shape parameter in the beginning and show

that the shape optimization problems attain a solution for any �reasonable� 
ost

fun
tional provided the fri
tion 
oe�
ient is regular enough. Obviously, these


onditions di�er for the Tres
a and Coulomb models of fri
tion, but in both 
ases

lead to unique solvability of the respe
tive state problems. Therefore, it is natural

to approa
h the numeri
al solution of the MPECs via the ImP method. However,

in order to apply subgradient methods to the minimization of the resulting NLP,

one has to be able to 
ompute (Clarke's) subgradients of the nonsmooth, non
on-

vex, impli
itly de�ned 
ontrol-to-state mappings. This matter is addressed in the

respe
tive se
tions devoted to sensitivity analysis. Here we make extensive use of

modern tools from variational analysis, in parti
ular the generalized di�erential


al
ulus of B. Mordukhovi
h.
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Chapter 4 is devoted to the numeri
al solution of the shape optimization

problems in line with the ideas outlined above. We bri�y sket
h the BT algorithm

user for the minimization of both NLP problems resulting from the ImP approa
h.

Next, the adjoint generalized equations, derived in the previous 
hapters for the


omputation of subgradients, are revisited and their solution explained in more

detail. Finally, the theoreti
al results are demonstrated by three examples: one

using the Tres
a model of fri
tion and two involving the Coulomb model. In ea
h


ase we use a di�erent 
ost fun
tional, demonstrating various features of 
onta
t

shape optimization problems.

For the 
onvenien
e of the uninitiated reader we have alse in
luded an ap-

pendix, in whi
h we gather basi
 de�nitions from the theory of nonsmooth and

variational analysis. In parti
ular, we dis
uss various notions from Clarke's and

Mordukhovi
h's 
al
ulus and their relationship, but only to the extent needed in

the thesis.

Outlook

Finally, let us outline some dire
tions and areas for future resear
h, improving on

the results obtained in the present thesis.

A straightforward follow-up on the thesis would be the generalization of the

state problem to three spa
e dimensions. The 3D Signorini problem with Tres
a

fri
tion involving a solution-dependent 
oe�
ient of fri
tion was analyzed in

[30℄ and the 3D Signorini problem with Coulomb fri
tion involving a solution-

dependent fri
tion 
oe�
ient in [31℄. The results of these papers are 
omparable

to those in 2D, in parti
ular the dis
retized 
onta
t problems are uniquely solvable

provided the fri
tion 
oe�
ient satis�es some regularity and smallness assump-

tions. For shape optimization it is essential that these assumptions do not depend

on the geometry of the underlying domain (if 
hosen from a suitable family of

admissible ones). The analysis presented in Chapter 2 and 3 seems to be fairly

straightforward to implement in the three-dimensional setting up to the AGE.

The only di�eren
e is in the 
omputation of the 
oderivative of the multifun
tion

from the state GE, that is indespensable for the numeri
al solution of the shape

optimization problem as presented here. At this point, ideas from the thesis and

[4℄ 
ould possibly be 
ombined and re�ned in order to derive an expression that

may already be evaluated in 
omputer 
ode.

Noti
e that throughout the thesis we silently assumed that the 
ost fun
tional

depends only on the 
onta
t displa
ements uτ , uν and the normal 
onta
t stress

λ. In some appli
ations, however, the tangential 
onta
t stress (related to the

fri
tion for
e) might be subje
t to optimization, as well. To deal with this situ-

ation, two possible solutions 
ome immediately into ones mind. We shall sket
h

them brie�y. In Se
tion 4.2.2 we have already seen that the tangential 
onta
t

stress, let us denote it by λτ , may be in
orporated into the state problem in the

form of another Lagrange multiplier�as it was the 
ase with the normal 
onta
t

stress, denoted by λν hereafter. From the �rst equation in (4.7) we 
an express

TTλτ = L(α)− A(α)u− NTλν . (4.21)

Therefore, one possibility to 
al
ulate the sensitivity of λτ with respe
t to α is

to apply the sum rule on the right-hand side of (4.21) and 
ombine it with the
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results obtained in Chapter 2 and 3. Sin
e the quali�
ation 
ondition ensuring

equality in the nonsmooth sum rule might be di�
ult or impossible to prove, one

may 
onsider an alternative way as outlined below.

Eliminating from (4.7) the state variables whi
h 
orrespond to the �internal�

nodes of the triangulation (as it was done in Chapter 1 to get (1.34)), one arrives

at the following GE:

0 ∈




Aττ (α) Aτν(α) E 0

Aντ (α) Aνν(α) 0 −E
−E 0 0 0

0 E 0 0







uτ

uν

λτ

λν


−




Lτ (α)
Lν(α)

0

−α


+




0

0

NΛτ (α,ϕ,g)(λτ )
NRp

+
(λν)


 .

(4.22)

To derive the GEs 
orresponding to the 
onta
t problems investigated in the

thesis, it is su�
ient to apply in (4.22) the respe
tive �xed-point properties, see

De�nition 6 and the dis
ussion below De�nition 9. In both 
ases the resulting

GEs take the form assumed in [37℄ and thus sensitivity analysis may be 
arried

out using the results of [37℄. However, there is a substantial di�eren
e: in order

for the basi
 assumption (3.1) in [37℄ to hold, F needs to be twi
e 
ontinuous-

ly di�erentiable, whereas the analysis in Chapter 2 and 3 required basi
ally no

further smoothness of F besides Lips
hitz 
ontinuity. This apparent dis
repan
y

might be also interesting to investigate.
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Appendix A

Elements of variational analysis

When working with variational inequalities and optimal shape design problems,

one inevitably 
omes a
ross fun
tions and mappings that are not (
ontinuous-

ly) di�erentiable everywhere in their respe
tive domain of de�nition. In order to

investigate their di�erential properties, new tools had to be introdu
ed that ex-

tend the 
lassi
al 
al
ulus to fun
tions whi
h are not ne
essarily smooth or even

single-valued.

The purpose of this 
hapter is to 
olle
t basi
 notions from nonsmooth and

variational analysis that are extensively used in the last three 
hapters of the

present thesis. The �rst se
tion is devoted to the 
lassi
al de�nition of Clarke's


al
ulus for lo
ally Lips
hitz fun
tions, in the se
ond se
tion we give basi
 de�ni-

tions from the generalized di�erential 
al
ulus of Mordukhovi
h and present the

relationship of the two thoeries.

A.1 Clarke 
al
ulus

A most prominent tool to treat fun
tions that are (lo
ally) Lips
hitz, but not

ne
essarily di�erentiable or 
onvex, is the subdi�erential 
al
ulus developed by

Clarke [7℄. Let us start with the de�nition of Lips
hitz 
ontinuity of a fun
tion

de�ned on a �nite-dimensional Eu
lidean spa
e (we shall work in �nite dimensions

throughout our presentation).

De�nition 11 (Lips
hitz 
ontinuity). Let n,m ∈ N and F : Rn → Rm
. We say,

that F is

(i) Lips
hitz on ∅ 6=M ⊂ Rn
i� there exists a 
onstant K ≥ 0 su
h that

‖F (x)− F (y)‖m ≤ K‖x− y‖n ∀x,y ∈M ; (A.1)

(ii) Lips
hitz around x i� there exists a neighbourhood U of x su
h that F is

Lips
hitz on U ;

(iii) lo
ally Lips
hitz i� F is Lips
hitz around ea
h x from its domain of de�ni-

tion.

Let F be Lips
hitz around x. Then it is evident from (A.1) that F is al-

so 
ontinuous at x and the set

{
1
t
(F (y + tv)− F (y)) | |t| su�
iently small

}
is

uniformly bounded with respe
t to v ∈ Rn
, ‖v‖n = 1, and y su�
iently 
lose
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to x. However, F need not be dire
tionally di�erentiable at x. Nevertheless, a

fundamental property of Lips
hitzian fun
tions, proved by Radema
her [45℄, is

the fa
t that the set of su
h points is small (in a sense that it has zero Lebesgue

measure).

Lemma 11 (Radema
her). Let F : Rn → Rm
be lo
ally Lips
hitz. Then

ΩF := {x ∈ Rn | F is not Fré
het di�erentiable at x}

has Lebesgue measure 0.

One possible way to develop 
al
ulus for Lips
hitzian fun
tions is to give a

suitable de�nition of dire
tional derivatives and (sub)gradients�this approa
h

is followed below. In the next se
tion, where we introdu
e the Mordukhovi
h

generalized di�erential 
al
ulus, we shall give an equivalent formulation of these

notions from a variational geometry point of view, i.e., based on tangential and

normal 
ones to the epigraph of a fun
tion.

De�nition 12 (Clarke's generalized dire
tional derivative). Let x, v ∈ Rn
be

arbitrary and f : Rn → R Lips
hitz around x. The value

f 0(x; v) := lim sup
y→x
t→0+

f(y + tv)− f(y)

t

is then 
alled Clarke's generalized dire
tional derivative of f at x in dire
tion v.

De�nition 13 (Clarke's generalized (sub)gradient). Let f : Rn → R be Lips
hitz

around x. Then the set

∂̄f(x) := {ξ ∈ Rn | f 0(x; v) ≥ 〈ξ, v〉n ∀v ∈ Rn}

is 
alled the Clarke subdi�erential of f at x and its elements are Clarke's gener-

alized gradients (or Clarke's subgradients).

It turns out that for a lo
ally Lips
hitz fun
tion f : Rn → R the following

useful relation holds between its generalized dire
tional derivative and gradients

(see [7℄):

f 0(x; v) = max{〈ξ, v〉n | ξ ∈ ∂̄f(x)}.

If f happens to be 
ontinuously di�erentiable around x, then f 0(x; ·) and ∂̄f(x)

oin
ide with the 
lassi
al dire
tional derivative f ′(x; ·) and gradient ∇f(x), re-
spe
tively.

Due to Radema
her's lemma one may express Clarke's subdi�erential in the

following equivalent form�we refer to [7℄ for its proof.

Theorem 22. Let f : Rn → R be Lips
hitz around x ∈ Rn
. Then

∂̄f(x) = conv
{
lim
i→∞

∇f(x(i)) | x(i) → x, x(i) /∈ Ωf

}
.

On the basis of the above theorem one may generalize the notion of Clarke's

subdi�erential to ve
tor-valued Lips
hitzian mappings F : Rn → Rm
.
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De�nition 14 (Clarke's generalized Ja
obian). Let m,n ∈ N and F : Rn → Rm

be Lips
hitz around x ∈ Rn
. Then the set

∂̄F (x) :=
{
lim
i→∞

∇F (x(i)) | x(i) → x, x(i) /∈ ΩF

}
⊂ Rm×n

is 
alled Clarke's generalized Ja
obian of F at x.

It 
an be immediately seen that ∂̄F (x) is nonempty and 
ompa
t, whenever

the assumptions of De�nition 14 are met. In addition, the generalized gradients

and Ja
obians introdu
ed in De�nition 13 and De�nition 14, resp., enjoy rather

ri
h 
al
ulus rules for 
omputing generalized gradients or Ja
obians of sums or


ompositions of lo
ally Lips
hitz mappings, 
f. [7℄. These rules are usually in the

form of set in
lusions, provided some additional quali�
ation 
onditions are met.

In 
ase of additional smoothness and regularity assumptions these in
lusions turn

into equalities.

One smoothness 
ondition that ensures dire
tional di�erentiability of a lo
ally

Lips
hitz mapping, but is weaker than Fré
het (or 
ontinuous) di�erentiability is

that of semismoothness. It was �rst introdu
ed by Mi�in [32℄ for Lips
hitzian

fun
tions f : Rn → R and later generalized to ve
tor-valued mappings by Qi and

Sun [44℄.

De�nition 15 (semismoothness). Let F : Rn → Rm
be Lips
hitz around x ∈ Rn

.

We say that F is

(i) semismooth at x i� the limit

lim
V∈∂̄F (x+tv′)
v′→v, t→0+

{Vv′}

exists for all v ∈ Rn
;

(ii) weakly semismooth at x i� the limit

lim
V∈∂̄F (x+tv)

t→0+

{Vv}

exists for all v ∈ Rn
.

It is 
lear, that semismoothness implies weak semismoothness. Moreover, it

holds that if F is weakly semismooth at x, than it is also dire
tionally di�eren-

tiable at x and

F ′(x; v) = lim
V∈∂̄F (x+tv)

t→0+

{Vv}

for every v ∈ Rn
(
f. [44, Proposition 2.1℄). Smooth, pie
ewise smooth, or 
onvex

fun
tions are all examples of semismooth fun
tions.

A.2 Mordukhovi
h 
al
ulus

A.2.1 Multifun
tions

We start by 
olle
ting the most basi
 notions from set-valued analysis that are

going to be used in the thesis. For a more thorough presentation of the topi
 we

kindly refer to e.g. [2℄.
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Let us re
all that by a set-valued mapping (or simply multifun
tion) F : X ⇒

Y we mean a fun
tion F : X → 2Y , i.e., F (x) ⊂ Y for ea
h x ∈ X . The sets

DomF := {x ∈ X | F (x) 6= ∅},

GrF := {(x, y) ∈ X × Y | x ∈ X, y ∈ F (x)},

are 
alled the domain and graph of F , respe
tively. We use the 
ommon term


losed multifun
tion if GrF is 
losed in the produ
t topology of X × Y .
In the sequel we shall restri
t our presentation to the �nite dimensional 
ase,

i.e., when X = Rn
and Y = Rm

for some n,m ∈ N.

De�nition 16 (Kuratowski-Painlevé outer/inner limit of sets). Let F : Rn
⇒ Rm

be a multifun
tion and x̄ ∈ Rn
arbitrary. Then the sets

Lim sup
x→x̄

F (x) := {y ∈ Rm | ∃x(i) → x̄ ∃y(i) → y : y(i) ∈ F (x(i))},

Lim inf
x→x̄

F (x) := {y ∈ Rm | ∀x(i) → x̄ ∃y(i) → y : y(i) ∈ F (x(i))}

are 
alled the Kuratowski-Painlevé outer and inner limit of F at x̄, respe
tively.

Several Lips
hitz-like properties may be de�ned for multifun
tions. A dire
t

generalization of lo
al Lips
hitz 
ontinuity of single-valued fun
tions as intro-

du
ed in De�nition 11 is the so-
alled Aubin property (originally the term pseudo-

Lips
hitzian property was used by Aubin [1℄).

De�nition 17 (Aubin property). A multifun
tion F : Rn
⇒ Rm

is said to have

the Aubin property around (x̄, ȳ) ∈ GrF i� there exist neighbourhoods U of x̄

and V of ȳ and a 
onstant K ≥ 0 so that

F (x) ∩ V ⊂ F (x′) +K‖x− x′‖nBm ∀x,x′ ∈ U . (A.2)

It 
an be seen that if F happens to be single-valued around (x̄, ȳ), ȳ = F (x̄),
the above de�nition redu
es to that of Lips
hitz 
ontinuity around x̄.

By �xing x′ ≡ x̄ in (A.2) we arrive at the weaker property 
alled 
almness.

It was originally introdu
ed in [53, De�nition 2.8℄ under the term pseudo upper-

Lips
hitz 
ontinuity.

De�nition 18 (
almness). A multifun
tion F : Rn
⇒ Rm

is said to be 
alm

around (x̄, ȳ) ∈ GrF i� there exist neighbourhoods U of x̄ and V of ȳ and a


onstant K ≥ 0 su
h that

F (x) ∩ V ⊂ F (x̄) +K‖x− x̄‖nBm ∀x ∈ U .

A.2.2 Generalized di�erentiation

De�nition 19 (
ontingent 
one). Let ∅ 6= A ⊂ Rn
and x̄ ∈ A be arbitrary. Then

the set

TA(x̄) := Lim sup
λ→0+

A− x̄

λ
(A.3)

is 
alled the 
ontingent 
one (or Bouligand tangent 
one) to A at x̄.
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De�nition 20 (regular and limiting normal 
one). Let ∅ 6= A ⊂ Rn
and x̄ ∈ A

be arbitrary. The regular (Fré
het) normal 
one to A at x̄ is de�ned as

N̂A(x̄) :=
{
x∗ ∈ Rn

∣∣∣ lim sup
x

A
→x̄

〈x∗,x− x̄〉n
‖x− x̄‖n

≤ 0
}
. (A.4)

For x̄ /∈ A one sets N̂A(x̄) := ∅. The limiting (Mordukhovi
h) normal 
one to A
at x̄ is then de�ned as

NA(x̄) := Lim sup
x

A
→x̄

N̂A(x). (A.5)

All three sets introdu
ed in (A.3)�(A.5) are indeed 
losed 
ones with vertex

at 0 and�in the assumed �nite dimensional setting�the relation

N̂A(x̄) = (TA(x̄))
0 = {x∗ ∈ Rn | 〈x∗, v〉n ≤ 0 ∀v ∈ TA(x̄)} (A.6)

holds true, where C0
denotes the (negative) polar 
one to C.

Remark 14. Due to (A.6) the regular normal 
one N̂A(x̄) is always 
onvex, where-
as TA(x̄) and NA(x̄) are in general non
onvex. This means that the limiting

normal 
one 
annot be expressed as the dual to any tangent 
one.

It 
an be immediately seen that the in
lusion

N̂A(x̄) ⊂ NA(x̄) (A.7)

holds for any nonempty A ⊂ Rn
and x̄ ∈ A. If (A.7) holds with equality, we say

that the set A is normally regular at x̄. E.g., if A is lo
ally 
onvex around x̄, it

is automati
ally normally regular at this point.

Given an extended-real-valued fun
tion ϕ : Rn → R := R∪ {∞}, its epigraph
is the set

epiϕ := {(x, y) ∈ Rn × R | x ∈ Rn, y ≥ ϕ(x)}.

On the basis of (A.4) and (A.5) one may de�ne various subdi�erentials of ϕ as

suitable sets of normals to its epigraph.

De�nition 21 (regular and limiting subdi�erential). Let ϕ : Rn → R be �nite

at x̄ ∈ Rn
. Then

∂̂ϕ(x̄) := {x∗ ∈ Rn | (x∗,−1) ∈ N̂epiϕ(x̄, ϕ(x̄))} (A.8)

is 
alled the regular subdi�erential of ϕ at x̄, whereas

∂ϕ(x̄) := {x∗ ∈ Rn | (x∗,−1) ∈ Nepiϕ(x̄, ϕ(x̄))} (A.9)

stands for the limiting subdi�erential of ϕ at x̄.

If ϕ is lower semi
ontinuous around x̄ (i.e., its epigraph is 
losed around

(x̄, ϕ(x̄))), then the limiting subdi�erential may be expressed as

∂ϕ(x̄) = Lim sup
x

ϕ
→x̄

∂̂ϕ(x), (A.10)

where x
ϕ
→ x̄ means that x → x̄ with ϕ(x) → ϕ(x̄). Of 
ourse, if ϕ is 
onvex

around x̄, then both ∂̂ϕ(x̄) and ∂ϕ(x̄) are equal to the 
lassi
al 
onvex subdi�er-

ential. In 
ase ϕ is stri
tly di�erentiable at x̄, then ∂̂ϕ(x̄) = ∂ϕ(x̄) = {∇ϕ(x̄)},
where ∇ϕ(x̄) denotes the gradient of ϕ.

Considering the graph instead of the epigraph in (A.8) and (A.9), one may


onstru
t derivative-like obje
ts for multifun
tions, as well, 
alled 
oderivates.
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De�nition 22 (regular and limiting 
oderivative). Given a multifun
tion F :
Rn

⇒ Rm
and (x̄, ȳ) ∈ GrF , the multifun
tion from Rm

into subsets of Rn

de�ned by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ N̂GrF (x̄, ȳ)} ∀y∗ ∈ Rm,

is 
alled the regular 
oderivative of F at (x̄, ȳ) in dire
tion y∗
, whereas

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ NGrF (x̄, ȳ)} ∀y∗ ∈ Rm

denotes the (limiting) 
oderivative of F .

Sin
e the normal 
ones (A.4) and (A.5) are pointed (
ontain the null ve
-

tor), both 
oderivatives are positively homogeneous 
losed multifun
tions for ea
h

(x̄, ȳ) ∈ GrF . In addition, they redu
e to the adjoint Ja
obian

D̂∗F (x̄, ȳ)(y∗) = D∗F (x̄, ȳ)(y∗) = {(∇F (x̄))Ty∗}, y∗ ∈ Rm,

provided F is single-valued

1

and stri
tly di�erentiable at x̄. Moreover, the regular


oderivative equals to the adjoint Ja
obian D̂∗F (x̄)(y∗) = {(∇F (x̄))Ty∗}, y∗ ∈
Rm

, whenever F is single-valued and Fré
het-di�erentiable at x̄; this does not

hold for the limiting 
oderivative.

It has been found that the (limiting) 
oderivative may provide information

about Lips
hitzian behaviour of a 
losed multifun
tion F : Rn
⇒ Rm

around

(x̄, ȳ) ∈ GrF , sin
e

F has the Aubin property around (x̄, ȳ) ⇐⇒ D∗F (x̄, ȳ)(0) = {0}, (A.11)

see [36℄, [47℄. The right hand side of the equivalen
e (A.11) is 
alled the Mor-

dukhovi
h 
riterion, proved by B. Mordukhovi
h in [34℄.

A.2.3 Appli
ation to Lips
hitzian mappings

In this se
tion we 
olle
t some fa
ts 
on
erning the appli
ation of generalized

di�erentiation to single-valued and lo
ally Lips
hitz fun
tions. In parti
ular, we

re
all the relationship between the (limiting) 
oderivative and (limiting) subdif-

ferential, and 
ompare the (limiting) subdi�erential with Clarke's subdi�erential.

First of all, re
all that the Aubin property redu
es to lo
al Lips
hitz 
ontinuity

in 
ase of a single-valued mapping F : Rn → Rm
, hen
e the Mordukhovi
h


riterion (A.11) yields:

F is Lips
hitz around x̄ ∈ Rn ⇐⇒ D∗F (x̄)(0) = {0}. (A.12)

The next result provides a 
onvenient way for 
omputing the 
oderivative of

a lo
ally Lips
hitzian mapping via the limiting subdi�erential.

Theorem 23 (s
alarization formula). Let F : Rn → Rm
be Lips
hitz around

x̄ ∈ Rn
. Then

D∗F (x̄)(y∗) = ∂〈y∗, F 〉(x̄) ∀y∗ ∈ Rm, (A.13)

where 〈y∗, F 〉 : x 7→ 〈y∗, F (x)〉m, x ∈ Rn
.

1

For a single-valued mapping F we simply write D̂
∗
F (x̄) and D

∗
F (x̄), i.e., omit ȳ = F (x̄)

from the argument.
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Proof. See e.g. [36, Theorem 3.28℄.

In the previous se
tion we introdu
ed Clarke's generalized derivative-like ob-

je
ts for Lips
hitzian fun
tions and mappings. In order to relate these notions

to the limiting subdi�erential and 
oderivative, let us rephrase them in terms of

variational geometry.

For a given nonempty A ⊂ Rn
and x̄ ∈ A, one may de�ne the Clarke tangent


one to A at x̄ as

T̄A(x̄) := Lim inf
x

A
→x̄,

λ→0+

A− x

λ
,

and the Clarke normal 
one as its (negative) polar 
one:

N̄A(x̄) := (T̄A(x̄))
0.

In parti
ular, the Clarke normal 
one is always 
onvex. This way one has (
f. [47℄)

∂̄ϕ(x̄) = {ξ ∈ Rn | (ξ,−1) ∈ N̄epiϕ(x̄, ϕ(x̄))} (A.14)

for any ϕ : Rn → R that is Lips
hitz around x̄ ∈ Rn
. In addition, (A.14) yields an

extension of the Clarke subdi�erential to more general fun
tions, not ne
essarily

Lips
hitzian. Nevertheless, if ϕ is lo
ally Lips
hitz, then the following relation

between its Clarke and Mordukhovi
h subdi�erentials holds:

∂̄ϕ(x̄) = conv ∂ϕ(x̄). (A.15)

An analogous results holds true between the Clarke generalized Ja
obian and

the 
oderivative of a lo
ally Lips
hitz ve
tor-valued mapping. This is formulated

in a separate theorem below.

Theorem 24. Let F : Rn → Rm
be Lips
hitz around x̄ ∈ Rn

. Then

(∂̄F (x̄))Ty∗ = convD∗F (x̄)(y∗) ∀y∗ ∈ Rm.

For the proofs of the respe
tive 
laims in this se
tion we refer to the mono-

graphs [36℄ and [47℄. Finally, we 
on
lude the 
hapter with an example that is

intended to demonstrate all the above notions in a very simple situation.

Example 3. Let us de�ne the set

A := {(x, y) ∈ R2 | y ≥ −|x|},

i.e., A is the epigraph of ϕ(x) = −|x|, x ∈ R. Clearly, ϕ is non
onvex, but

Lips
hitz with modulus 1. After some 
al
ulation, for the 
ontingent and Clarke

tangent 
ones at (0, 0) one gets

TA(0, 0) = A, T̄A(0, 0) = {(h, k) ∈ R2 | k ≥ |h|},

respe
tively. Taking their negative polars yields the Fré
het and Clarke normal


ones at (0, 0):

N̂A(0, 0) = {(0, 0)}, N̄A(0, 0) = {(ξ, η) ∈ R2 | η ≤ −|ξ|}.
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Therefore

∂̂ϕ(0) = ∅ and ∂̄ϕ(0) = [−1, 1].

Sin
e ϕ is smooth at all points ex
ept x = 0, we have ∂̂ϕ(x) = sgn(x) for x 6= 0
and (A.10) 
an be applied to determine the limiting subdi�erential at 0:

∂ϕ(0) = {−1, 1}. (A.16)

When 
omputing the 
oderivative mapping D∗ϕ at 0, we �rst need to evaluate

the normal 
one to the graph of ϕ at (0, 0):

B := Grϕ = {(x, y) | y = −|x|}.

After some 
al
ulation one arrives at the expression

NB(0, 0) = {(x∗, y∗) | y∗ ≥ |x∗|} ∪ {(x∗, y∗) | y∗ = −|x∗|},

where the �rst set on the right hand side equals N̂B(0, 0) and the se
ond one

represents limit points of N̂B(x, ϕ(x)) as x → 0+ and x → 0−, that are not


ontained in the �rst set. From the de�nition of the 
oderivative we 
on
lude

D∗ϕ(0)(y∗) =





{−y∗, y∗} if y∗ > 0,

{0} if y∗ = 0,

[y∗,−y∗] if y∗ < 0.

Noti
e that the 
ase y∗ = 0 is a 
onsequen
e of the Mordukhovi
h 
riterion

(A.12); the other 
ases may be 
omputed employing the s
alarization formula

and positive homogeneity of the subdi�erential mapping (i.e., ∂(αϕ) = α(∂ϕ) for
α ≥ 0):

D∗ϕ(0)(y∗) =

{(
∂ϕ(0)

)
y∗ = {−1, 1}y∗, if y∗ > 0(

∂(−ϕ)(0)
)
(−y∗) = [−1, 1](−y∗), if y∗ < 0.

In the �rst 
ase we have used (A.16); in 
ase y∗ < 0 the fun
tion −ϕ(x) = |x| is

onvex, therefore its subdi�erential equals to the 
onvex subdi�erential.
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