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Introduction

The present thesis is thematically divided into two parts: the stochastic dynamics of
particles and the stochastic energetics. Let us now address both of them, respectively.

Single-file diffusion

In various situations stochastic motion of particles takes place in confined spaces. The
confinement can be of a rather different nature, depending on system in question.
Examples range from macroscopic systems to processes in nano-world, including traffic
flow dynamics [1], customers waiting in tandem queues [2] (a well known situation
when just after waiting to be served in one queue a person is immediately sent to
another), movement of pedestrians in a pedestrian zone |3| or ants following trails [4]
(the two very similar phenomena where confinement is not static since trails may evolve
in time). On micro- and nano-meter scales, we encounter numerous systems which
are of great interest in modern biophysics and chemistry like propagation of bacteria
through confined spaces [5] and a broad spectrum of processes involved in intracellular
transport [6,7] (see below).

In the thesis we focus on Brownian motion taking place under, in a sense, the most
extreme case of the external confinement. We assume that Brownian particles move
in narrow channels, the channels being so narrow that their diameter is comparable
with the diameter of Brownian particles. The second important ingredient of the mod-
el is the interparticle interaction. We consider only the hard-core interaction between
the particles (also known as the excluded-volume or steric interaction), which means
that the volume occupied by a single particles is inaccessible to other particles. As a
consequence, the Brownian motion of particles will be restricted to a one-dimensional
domain (infinite line, half-line, or finite interval) and, during the diffusion, the neigh-
boring particles are not allowed to pass each other.

Diffusion in such conditions is known as the single-file diffusion (SFD). The concept
of SFD has been originally introduced in 1955 in biophysics to explain anomalous prop-
erties of transport of ions through molecular-sized channels in membranes [8]. Since
that time many systems has been discovered where SFD is the basic mechanism of
mass transport. For example, the processes from cell biology like motion of proteins on
double-stranded DNA [9,/10] and sliding of ribosomes along messenger RNA (transcrip-
tion of genetic information) [6]. Further examples of SFD comprise one-dimensional
conductors [11,|12], polymers translocating by reptation [13], diffusion in zeolites (im-
portant catalysts and molecular sieves) [14H18|, and inside nanotubes [19]. Recently
several artificial systems, where the motion of colloids is constrained to one dimen-
sion, has been realized experimentally in order to test the basic properties of molecules
involved in SFD [20126].

In mathematical literature SFD has been introduced in 1965 by Harris [27] who
derived the basic law which nowadays is considered to be the hallmark of SFD. Harris
has shown that the mean squared displacement of a given marked particle (a tagged
particle or a tracer) grows with time as t1/2 in contrast to the linear time-dependence
observed for a single noninteracting Brownian particle. The slowdown of the diffusion
emerges from the hindering of the motion of a tagged particle caused by collisions with
its nearest neighbors. From a general perspective, this result illustrates that in low-
dimensional nonequilibrium systems even the simplest interactions (like the hard-core
one) can lead to rich physical behavior [28-32]. Of course, this is in sharp contrast to
what is known from the equilibrium statistical physics, where classical one-dimensional
systems nowadays serve mainly as pedagogical tools.



In the thesis we address the motion of the tracer in the single-file system with
absorbing boundaries. The emphasis is on an interplay between the hard-core inter-
particle interaction and the absorption process. Exact probability density functions
(PDFs) for a position of the tracer diffusing under different conditions are derived.
Starting from these exact PDFs, the dynamics and the first-passage properties of the
tracer are discussed for different geometries and initial conditions.

Stochastic energetics

Above, we have focused our attention on the stochastic dynamics of particles. The
dynamics, however, represents only one part of the whole physical picture. An equally
important part concerns with energy transformations in small nonequilibrium systems.
A theoretical framework which has been designed to study energy flows in systems
governed by stochastic evolution equations (in our case by the Langevin equation [33])
is known as the stochastic energetics [34] (or the stochastic thermodynamics 35|, we
will use the both terms interchangeably).

The Langevin equation for a Brownian particle immersed in a fluid is, in itself,
consistent with well established laws of the classical thermodynamics. The equation
contains the damping term (dissipation) and the noise term (fluctuations) which physi-
cally originate from the same source (interaction with the molecules of the surrounding
liquid) and hence the two terms are not independent. They are connected by the Ein-
stein’s (fluctuation-dissipation) relation for the diffusion coefficient. As a result, for any
time-independent confining potential, the system described by the Langevin equation
will eventually reach a Gibbsian canonical equilibrium state. Thus the consistency with
the well established results of equilibrium statistical mechanics is achieved.

Stochastic energetics, introduced by Sekimoto [36,37], goes far beyond above con-
siderations. Its main goal is to provide a direct link from the stochastic dynamical
equations to the thermodynamic description of the nonequilibrium process. Within
the framework of the stochastic energetics, the quantities known from the classical
thermodynamics, like work, heat and entropy, are identified along individual stochas-
tic trajectories of the system. Thus defined (generalized) thermodynamic formalism
holds for small systems, where fluctuations are inseparable from the dynamics, and
for arbitrarily far-from-equilibrium processes. One of the advantages of the stochastic
energetics (as compared e.g. to a more fundamental thermostated Hamiltonian dy-
namics) is that the analysis based on the Langevin equation (or on the Markovian
master equation for discrete-state systems [35]) has proven to be particularly suitable
for description of experiments on small systems (see Chap. |4 for details).

The paradigmatic system in the field of stochastic energetics is the Brownian particle
diffusing in a confining external potential, which can be realized e.g. by the optical trap.
Although the properties of the PDF for the position of the particle are relatively well
understood [33], PDFs that characterize energetic quantities remain less explored. In
the thesis we investigate a distribution of work performed on the Brownian particle
diffusing in a time-dependent asymmetric potential well. The potential consists of a
harmonic component with a time-dependent force constant and of a time-independent
logarithmic barrier at the origin. The model is exactly solvable. The exact result for
the characteristic function of the work allows us to extract essential properties of the
work PDF, e.g., all its moments and the both tails. In particular, the results could be of
interest for experimental determination of free energies using the Jarzynski equality (as
discussed in detail in Chap. , where the tail of the work PDF for large negative values
of work has two properties: 1) it corresponds to rare events which are almost never
observed in experiments; 2) it significantly contributes to the value of the exponential
average occurring in the Jarzynski equality (cf. Eq. ) and thus also to the value of



the estimated free energy.

Thesis organization

The first part of the thesis (Chaps. and |3)) is devoted to the single-file diffusion.
Classical approaches and new directions in the theory of tracer dynamics are reviewed in
Chap.[I] We would like to emphasize that the focus here is on the properties of a tagged
particle. Which means that collective phenomena like nonequilibrium phase transitions
and other intriguing topics are left without comment (we refer to Refs. [28-32] for more
details).

In Chap. [2] we discuss the dynamics and the first-passage properties of the tracer
in a semi-infinite system with a single absorbing boundary for two qualitatively dif-
ferent initial conditions. First, we consider the system with (initially) finite number
of particles (Sec. , and, second, the system in the thermodynamic limit where the
number of particle is infinite, but the initial mean density is constant (Sec. . In
the both cases the first-passage properties (survival probabilities, PDFs for times of
absorption) and the tracer dynamics (time-dependence of PDFs and their moments for
both the unconditioned dynamics and the dynamics conditioned on nonabsorption) are
deduced from the exact PDF of the tracer position. The latter is constructed using
the mapping between the SFD system and the corresponding system of noninteracting
particles (which is a direct generalization of ideas for a system without absorption as
reviewed in Chap. .

Chap. [3] generalizes the analysis of Chap. 2] to the case of a finite interval with two
types of boundary conditions: (i) both boundaries are absorbing (Sec. [3.2)); (ii) one
boundary is absorbing and the second boundary is reflecting (Sec. [3.3]). The focus is on
the first-passage properties and on their scaling behavior for large system size and for
large initial number of particles. Sec. [3.2.3] accounts for possibility of random interval
length.

The second part of the thesis (Chaps. 4| and [5)) is devoted to the stochastic thermo-
dynamics. In Chap. We first define (stochastic) work and heat, and second, we review
the two most widely known fluctuation theorems (the Crooks theorem and the Jarzynski
equality) and their roles in determination of free-energy landscapes of macromolecules.

Chap. [5|addresses a nontrivial model for which the work characteristic function can
be obtained exactly. Using the Lie-algebraic approach, the task to solve the Fokker-
Planck equation for the joint PDF of work and position is reduced to the solution
of a Riccati equation and to the evaluation of two quadratures (Sec. [5.2). PDF for
particle position is derived in a closed form for any external driving (Sec. . On the
other hand, it is only for a specific driving protocol that the Riccati equation is solved
exactly in terms of elementary functions (Sec. yielding desired information about
work PDF including all its moments and the both its tails (Secs. .

The thesis is concluded by a brief summarizing chapter (unnumbered). Notice that
full-length concluding sections discussing main physical features of individual models

are presented at the ends of Chaps. and [5] see Secs. and respectively.



1. Basics of single-file diffusion

The simple hard-core interaction does not affect collective properties of the system.
These are quantities that are symmetric with respect to any permutation of the parti-
cles. However, in one dimension, the interaction has a prominent effect on the diffusion
of a single marked particle — a tagged particle or a tracer. The present chapter studies
basic dynamical features of the tracer dynamics under different conditions.

The chapter is organized as follows. Sec. is introductory, it comprises definitions
of basic concepts and the clarification of relation between the positions of interacting
particles and order statistics of positions of noninteracting ones. The physical conse-
quences of the interparticle interactions are reviewed is Secs. and Namely,
Sec. is devoted to the subdiffusion of the tracer in an infinite homogeneous system.
Sec. contrasts the findings of Sec. with the case of finite number of diffusing
particles. The second topic treated in Sec. concerns different dynamical regimes
distinguished by different time-dependence of tracer’s mean squared displacement. In
Sec. we recall asymptotic properties of the single-file diffusion front. The chapter
is concluded by Sec. where a few alternative approaches to SFD are pointed out.

1.1 Brownian motion with hard-core interaction

1.1.1 “Collisions” of two particles

From the point of view of the classical mechanics an elastic collision of two particles is an
encounter at which the total energy of the particles as well as their total momentum are
conserved. A result of such an impact in the case of two identical (same masses) particles
moving in one dimension is that after the encounter the particles just interchange their
velocities as compared to their states before the collision. Let us now discuss how
one can define the elastic collision for identical particles performing an overdamped
Brownian motion, i.e., for the particles that possess no well defined velocities. We offer
two (equivalent) solutions to this at a first glance ill-posed problem. The first one,
and we can call it “the probabilistic approach” (sometimes referred to as “a heuristic
approach” [38]), is due to Harris [27]. It is based on the equivalence of the positions
of interacting particles and order statistics build on the positions of noninteracting
ones. The second one, which we can call “the analytical approach”, stems from the
definition of the reflecting boundary conditions for the diffusion equation. As we shall
see throughout the thesis, the first approach provides us a quick and intuitive way
to the most important quantities — exact probability density functions for individual
particles, while the second yields a straightforward way to answer the frequently asked
question: “Are you sure that your probabilistic reasoning is correct?’ﬂ

Probabilistic approach

Consider two identical (same mobilities) Brownian particles diffusing on a line. Their
positions at time t are given by Xj.2(t) (the left one) and Xo.2(t) (the right one). We
assume that except at the instants of their collisions the two particles are mutually
independent. We suppose that due to the mutual interaction the particles cannot pass

! Actually, the original approach of the present author to the single-file diffusion was the analytical
one, cf. Refs. [39/40]. It was only after completing analytical derivations that the full power and beauty
of the probabilistic interpretation has been recognized [41}{42]. In chapters of the present thesis devoted
to SFD mainly the probabilistic reasoning is used. The alternative analytical route to the results is
always outlined but not strictly followed.
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Figure 1.1: Schematic illustration of space-time trajectories of two particles. The
left panel: noninteracting particles pass freely through each other, their labels remain
attached to individual trajectories. The right panel: interacting particles collide when
they encounter hence the ordering of the labels is preserved. Except for the particle
labeling, the two sets of trajectories are statistically equivalent.

each other, thus the initial ordering, X;.2(0) < X2.2(0), is preserved for all times. As
long as the two particles are identical we can follow Harris [27] and relate the motion
of interacting particles to order statistics of positions of independent noninteracting
ones. To this end, let X4 () and X(t) be positions of the two identical noninteracting
Brownian particles, then we can set

Xl:Q(t) = min {Xl (t)v XQ (t)} ;

Xo:2(t) = max {X;(t), Xa(t)}. (1.1)

The two equations embodies nothing but the very basic fact that, except for the particle
labeling, the space-time trajectories of two identical hard-core interacting particles are
equivalent to the space-time trajectories of the moninteracting ones, cf. Fig. In
other words, any collision event can be equivalently described as follows. We can
imagine that instead of the mutual reflection the two approaching particles pass freely
through each other and, just after they pass each other, we exchange their labels.
Thus we can generate the dynamics of interacting particles simply by exchanging the
labels of noninteracting ones. Notice that this picture is in agreement with the classical
description of one-dimensional elastic collisions and, at the same time, it makes no
reference to the particle velocities which presently do not exist.

The correspondence between the interacting and the noninteracting pictures is be-
hind the fact that the single-file model is exactly solvable and that many important
quantities (PDFs of individual particles, their mean squared displacements, and others),
could be derived by analytical methods.

Analytical approach

Let us now formulate the SFD problem as the initial-boundary value problem for
the two-particle Smoluchowski equation. For the two identical particles the equation
reads [33]

9 [ 9 o

— t) = D— — — it t 1.2

atp(xlux% ) ; 855? 8‘%‘]:(1‘27 ) p($1,$2, )7 ( )

1

where D stands for the diffusion coefficient of each of the particles and F(z,t) is
the external force acting on the particles. The above diffusion equation contains no
evidence of interaction yet. In order to incorporate the hard-core interaction, it is
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Figure 1.2: The two-particle SFD is equivalent to the single-particle diffusion in 2d
plane with the reflecting line z; = z9. The (unnormalized) projection of the current
vector J = (J1,J2) onto the direction perpendicular to the reflecting boundary, J-it =
J1 — Ja, vanishes at the reflecting boundary which yields the non-crossing boundary

condition .

convenient to map the two-particle diffusion in one dimension onto the diffusion of a
single “representative particle” in two dimensions. In the latter picture, the coordinates
of individual particles x1, x9 correspond to the vector components of the position of the
representative particle. The hard-core interaction of two diffusing particles means that
the representative particle is not allowed to cross the line x1 = x5 where the collisions
occur. Thus the hard-core interaction can be incorporated as the reflecting boundary
condition imposed along the line 1 = .

The perfectly reflecting boundary condition requires [33] that the component of the
probability current which is perpendicular to the boundary vanishes at the boundary. In
the present case, the components of the probability current parallel with the coordinate
axes are given by

d
Ji(x1,x2,t) = —Da + F(xi, t)| p(z1, 2, 1), i=1,2. (1.3)

Ly

Then the boundary condition that represents the hard-core interaction, the non-crossing
boundary condition, reads

(J1<1'1,$2,t) — J2<$1,l‘2,t>)’11:$2 = O, (1.4)

see Fig. for more details. Explicitly, the above requirement reads

D( 9 9 )p(xl,xg,t)

9o o = [F(x2,t) — F(z1,t)] p(x1, 2, 1) - (L5)

T1=T2

Tr1=T2

Thus the hard-core interaction splits the two-dimensional state space in two half-
planes. Within which of the two half-planes (x1 < x2, or 1 > z2) the representative
particle moves is dictated by the initial condition. For instance if we set

p(x1,22,0) = 0(x1 — y1)0(T2 — ¥2), U1 < Y2, (1.6)

then the particle ordering at any time ¢ is in agreement with that in Eqgs. (1.1)).
Notice that also this second approach to SFD maps the many particle problem with
interaction onto the single-particle one. As we discuss below, for identical particles



(same D and F for all particles) the two approaches are equivalent. In contrast to
the probabilistic approach, the analytical formulation can be easily extended to the
case of nonidentical particles (unique D;, and/or F; for each particle). However, this
advantage is rather formal since for a general N, N > 2, little is known about the exact
solution of the Smoluchowski equation when the interacting particles are different (see
Sec. for the review of the progress in this direction, and Refs. [43-46] for a discussion
of some particular two-particle cases).

1.1.2 Propagator for general N

Having prepared the two approaches to the two-particle SFD, let us now formulate, solve
and interpret the general N-particle problem. We assume that N interacting particles
which are acted upon by the same external force F are diffusing in one dimension, each
with the diffusion coefficient D. The evolution of the joint PDF of particles positions
is governed by the Smoluchowski equation

O o K[ 9 o

ap(ﬂ%ﬂy,to) = ; DTx? - %}—(%t) p(Z, ], to), t > to. (1.7)
Initially, at time tg, the particles are located at positions specified by the components
of the vector ¥, ¥ = (y1,y2,-..,yn). Hence the initial condition to the above equation
is given by

p(Z,tol7, to) = 0(z1 — y1)d(x2 — y2) ... 0(zn — Yn), (1.8)

Due to the hard-core interaction, the initial ordering of the particles:

Y1 <y2 <...<Yn, (1.9)

is conserved for all times. This is ensured by (N — 1) non-crossing boundary conditions

(cf. Eq. (L.4))
9 9
o( ) vl 7. t0)

Oxip1  Ox;

= []:(:U’L'+1’t) - ]:(l'lat)]p(faﬂzjv tO) 5
Ti=Tit1 Ti=Tit1

(1.10)
i=1,2,...,N —1.

Let us assume that f(z,t|y,?o) is the propagator (the Green function) for the corre-
sponding problem with N = 1. That is, f(z,t|y,to) satisfies the single-particle Smolu-
chowski equation

2
QQMWW{%;—QHM>MMWm (1.11)

subject to the initial condition

f(z,toly, to) = 6(x — y). (1.12)

Then, as it has been demonstrated in Ref. [39], the propagator for the N-particle SFD
problem, has a structure of the permanent [47] (which is similar to the determinant
but not containing the minus signs). It reads

N
p(f’ﬂg? tO) = Z H f(xo(]),t‘yjatO) (113)
ogeSN j=1
if components of the vector & = (x1,x9,...,xN) satisfy
r<xr2<...<ZIN, (1.14)



and it vanishes, if at least one of the above inequalities is violated. In Eq. the
summation is taken over all N! permutations o of particle labels at time ¢ (of course,
equivalently, we can sum over all permutations of the initial positions). Notice that the
normalization of the propagator p(Z,t|/,to) follows from the normalization of the PDF
f(z,tly,to). Since f(z,tly,to) is normalized to one in the one-dimensional space, any
summand in Eq. is normalized to one in the unrestricted N-dimensional space.
There are N! such summands in Eq. , at the same time, the hard-core interaction,
as expressed through the non-crossing boundary conditions, reduces the total volume of
the N-particle state-space by the factor 1/N!, which implies the required normalization
of p(Z,t|y,to) and causes that p(Z,t|y,to) is different from zero only when & lies in the
N-dimensional wedge determined by inequalities ((1.14)) (the so called Weyl chamber of
the symmetric group Sy [48,/49]).

Formula expresses the exact solution of the many-particle problem with the
hard-core interaction through a simpler object, which is the single-particle probability
density. The special case of the above propagator for the unbiased (F = 0) SFD model
has been found by Roédenbeck et al. [50] employing the reflection principle, and by
Lizana and Ambjornsson [51,52] using the Bethe Ansatz.

The permanent-like expression possesses an interpretation in terms of non-
interacting particles which is perfectly consistent with the probabilistic picture behind
Eqgs. . Let X;(t) be the position of the ith noninteracting particle distributed with
the PDF f(x;,t|lyi, to), i« = 1,2. Hence X;(to) = vi, 11 < y2, and for a moment we
consider again that N = 2. Then the propagator

p(x1, 22, t|y1, y2, to) = f(x1,tly1, to) f(x2, t|ya, to) + f(x2, tly1, to) f(x1,tly2, to), (1.15)

which is different from zero only for x; < x2, is nothing but the simultaneous PDF of
random positions Xy.2(t), Xa:2(t) of two interacting particles (as defined by Eqs. (L.1)))
conditioned on the initial state: Xj.2(to) = y1, X2:2(t0) = y2. In other words, the prop-
agator p(x1,x2,t|y1, y2,to) accounts for all 2! possibilities, how the two noninteracting
particles can be ordered: either {X;j.2(t), X2.2(t)} = {X1(t), Xo(t)} if X1(t) < Xa(t)
(the first term on the right-hand side), or {Xj.2(t), Xa:2(t)} = {Xa(t),X1(t)} when
X1 (t) > Xa(t) (the second term with permuted z1,z2), cf. Fig. (L.1).

The correspondence between the interacting particles and the noninteracting ones
based on definitions , can be extended to a general N [27]. To this end, at specified
time ¢, we identify the position of the nth interacting particle, say X,.n(t), with the
position of the nth leftmost particle among the noninteracting ones. In statistics, the
thus defined random variable X,,.n(t) is known as the nth order statistic [53] (it is the
nth smallest one of independent random variables X;(¢),...,Xxn(t)). Thus e.g. the
first order statistic Xy.n(¢) is the position of the leftmost interacting particle and it is
identified with the position of the leftmost noninteracting one:

Xp.x(t) = min{X; (t), ..., Xn ()}, (1.16)

and similarly for any n. Then, similarly as in N = 2 case, the simultaneous PDF
of positions of all N interacting particles (the simultaneous PDF of values of all N
order statistics) conditioned on the initial positions is given exactly by the N-particle

propagator ([1.13)).

1.1.3 PDF of a tagged particle

The noninteracting particles which has been used to construct the positions of the
interacting ones are assumed to be identical as for their physical properties (same D and
F). This assumption is necessary for the permanent (1.13)) to be the exact propagator
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for the interacting particles. A rather complicated structure of the propagator (sum
of products) can be reduced to a simple product-like expression if we add a further
assumption regarding the initial conditions.

Let us assume that the initial position of any noninteracting particle, X;(tp), i =
1,..., N, is drawn from the PDF f(y,to). This choice of the initial condition implies
that all noninteracting particles are identical as for all their statistical properties. That
is, not only each particle diffuses with the same D and it is acted upon by the same
force F, but also the initial condition is, in a statistical sense, the same for all particles
(in contrast to the previous case described by PDFs f(z, t|y;, t9) which differ by initial
deterministic positions). A remarkable simplification follows from this assumption in
the corresponding interacting case. We get the result in two steps. First, the PDF
for the position of any noninteracting particle at time ¢ is the same and it is given by
f(z,t), which follows from f(x,tg) via the integration:

P t) = [ dyf . tly,t0) o) (117

Second, the PDFs f(x;,t) replace the conditioned PDFs f(z;,t|y;,t0) in Eq. .
Consequently, the sum on the right-hand side of Eq. contains N! identical sum-
mands and the simultaneous PDF for positions Xj.n(%),...,Xn.n(t), of interacting
particles reads

N
p(, 1) = N T £los,0), (1.18)
j=1
when the vector Z lies in the wedge (1.14)) and it vanishes otherwise. In particular, for
t = tg we obtain the initial simultaneous PDF in the factorized form

N
p(Z,t0) = N[ f (2, to). (1.19)
j=1
Such initial condition can be thought to describe e.g. the Gibbs equilibrium state as
it will be discussed in Chap. [2, cf. Eq. . In particular, the factorized form of
Eq. may evoke an impression that the positions of interacting particles are not
correlated. This is not the case, the interparticle correlations appear due to the fact
that 7 is restricted to the wedge .

Of course, one can follow a different line of reasoning, assuming first that the initial
condition is given by Eq. , and, second, evolving the initial condition by the
propagator . The result will be again given by Eq. . That is, for this
specific initial condition the simultaneous PDF factorizes for all times ¢, ¢ > ¢y [40].

The basic advantage of the factorized simultaneous PDF is that it yields an analyt-
ically tractable expression for the marginal PDF p,,.n(x,t) for the position X,,.n(¢) of
the nth interacting particle:

Prn(@.) = 1)]!\(]J!V /@) on & f(, t)rl [1 - /Ox & f(, t)} o
(1.20)

The interpretation of the right-hand side in terms of N statistically identical non-
interacting particles, whose positions are distributed with the PDF f(z,t), is rather
straightforward. The expression p,.n(z, t)dz equals the probability that there is a single
particle in (z,z + dx) (f(z,t)dz) and, simultaneously, there are (n — 1) noninteracting
particles to the left of « (with the probability [, dz’ F(@,6)]""), and the remaining
(N —n) particles are to the right of  (with the probability [1 — [ dz’ f(a/, )N "),
The combinatorial prefactor accounts for all possible permutations of labels.

In Chaps. we will derive the generalization of the above marginal PDF for the
SFD model with one (Eq. (2.39)) and two (Eq. (3.13))) absorbing boundaries.
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1.2 SFD in homogeneous system with constant density

Let us now turn to the key feature of the single-file dynamics — the subdiffusive behavior
of the tagged particle. Consider an infinite line occupied by particles with constant
density p. Particles are distributed randomly. This means that empty intervals between
adjacent particles are exponentially distributed random variables with mean value 1/p.
At the initial time we choose a single particle (a tracer) and we follow its motion
(alternatively, we can insert a single particle into the system). Clearly, the space
available for the tracer diffusion is effectively reduced by the presence of other particles.
This hindrance results in a slowdown of diffusive spreading of tracer PDF, as compared
to the free diffusion. In the long-time limit, we observe a subdiffusive motion. Despite
this anomalous behavior, the tracer PDF is still given by a Gaussian density but now
the mean squared displacement (MSD) grows as t/2:

T N;e_ﬁ/%x%(t» X3 :g Dt as 0. 2
P~ s C(XEW) =2y astoee (121)

This is one of the most highlighting results of the theory of the single-file diffusion which
has already been confirmed in various experiments, e.g. in NMR studies of diffusion in
zeolites |14H1§|, and in experiments on colloids confined in narrow channels [20-26].
From a general perspective, the SFD model belongs to the class of interacting
models like phantom polymer chains [54,55] or certain fluctuating interfaces [56]. The
characteristic feature of all these models is that a tagged particle (or a tagged segment)
undergoes a non-Markovian diffusion described by Gaussian PDF with associated mean
squared displacement proportional to 1/2. Such stochastic process is usually said to be
of a fractional Brownian motion type [52,57-59] rather than that of a continuous-time
random walk type. Since for the latter the corresponding PDF is not Gaussian but it
typically exhibits a sharp cusp around the initial position, see Ref. [60] for a numerical
comparison. An approximative mapping (so called harmonization) between the long-
time dynamics of SFD system and that of the Rouse polymer chain can be found in
Refs. [61-63]. Further, in Ref. [58] a general phenomenological description for all these
processes has been developed leading to a fractional Langevin equation. Let us now
build some intuition with the way how the subdiffusion arises in the SFD system.

1.2.1 Heuristic arguments

The time-dependence of the tracer displacement can be intuitively understood as follows
[32,/64]. Consider a one-dimensional lattice. Each lattice site is either occupied by a
particle or vacant, multiple occupation of sites is forbidden. On a nearly full lattice, any
particle is almost always surrounded by occupied sites and therefore it rarely moves.
On the other hand, the concentration of vacancies on such a lattice is vanishingly small.
Hence the vacancies rarely meet and we can approximate their dynamics by independent
random walks. The crucial observation is that we can draw a certain conclusions about
the tracer dynamics by considering the dynamics of almost freely diffusing vacancies.
Indeed, a tracer will hop to the neighboring site only if that site contains a vacancy.
Hence the displacement of the tracer is given by

Xr(t) = Npop(t) — NiSg(f), (1.22)

where Ng_,1,(¢) is the number of vacancies that were initially to the right of the tracer
and are now on the left, and vice versa for N1, g (¢). Since the densities of the vacancies
to the right and to the left of the tracer are equal, we expect that (Nr_y(t)) =
(NpR(t)). Thus the average tracer displacement, (X7(t)), is zero. From the diffusive
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motion of the vacancies it follows that (Ng_1,(t)) = (Np_r(t)) ~ t'/2. Hence the
difference on the right-hand side of Eq. scales as Vt1/2 and the mean squared
displacement of the tracer position grows as t'/2. We recall that for the classical
symmetric random walk both the number of left steps, Ny, (¢), and the number of right
steps, Ng(t), behave as (Ny,(¢)) = (Ng(t)) ~ t. Then the particle position determined
by the difference X(t) = Ng(t) — N(t) scales as t'/2 and hence the mean squared
displacement of the particle increases as t.

1.2.2 Derivation of tracer PDF

The most elegant derivation of the basic result is due to Levitt [65,66] (but
see also Refs. [67H69]). The main ideas behind Levitt’s construction of the tracer
PDF pr(x,t) are (A) the trajectories of interacting particles are statistically equivalent
to the trajectories of noninteracting ones; (B) the PDF pry(x,t) is proportional to
the probability Ag(z,t) that, for the reference system of noninteracting particles, the
number of particles to the left of the tracer (and hence to the right of it) has not
changed as compared to the initial configuration.

Let us assume that initially the tracer is located at the origin of coordinates x = 0.
We follow its dynamics up to time ¢ and we ask for the probability that at this time the
tracer is located in (z,x+dx). An important quantity that will be used in construction
of the tracer PDF is the mean number of noninteracting particles that initially were to
the left of the tracer (i.e., to the left of x = 0) and, at time ¢ are located to the right
of . It is given by the double integral

00 0 1 ,
vor(z,t) = p/ dw’/ dy\/me*(z —y)*/4Dt, (1.23)
x —00 7

And vice versa, the mean number of particles that initially were to the right of the
tracer and, at time t are to the left of x reads

_ v / o 1 —(z'—y)? /4Dt
vr—L(z,t) p[m dz /0 dy\/m e . (1.24)

The above two quantities are merely mean values. A more complete description is
provided by the corresponding probabilities. Since the reference particles are indepen-
dent, the probability distribution for the overall number of crossings from left to right is
the Poisson distribution with the mean value vy, g (z,t) (and similarly for vg_,1,(x,t)).
From the two Poisson distributions we can infer the probability that there were equal
number of crossings from left to right as from right to left. The latter probability
is given by the sum over all possible events which are compatible with the required
condition:

o0 k
Aol 1) = 3 P o), (1.25)
> T

or, expressed using the modified Bessel function:

Ap (l’, t) = 10(2\/ VL_>R1/R_)L) e_(VL%R—FVR%L) . (126)

The tracer PDF pp(z,t) can be recovered from the noninteracting picture as follows.
The probability that, at time ¢, the tracer is located in infinitesimal interval (z, x + dx)
is given by the product of the probability that there is a noninteracting particle in
(x,z 4+ dx) which is (pdx), and the probability Ag(z,t) that there were equal number
of trajectory crossings. Therefore, we have

pr(z,t) = pAo(x,t). (1.27)
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Let us now turn to the long-time properties of the PDF ((1.27). All integrals in Egs.
(11.23), (1.24]), can be evaluated analytically. This yields

[ Dt 2 T T ]
(T, t) = o emw/ADt _ 2 <1—erf(>) , 1.28
L—>R( ) P T 2 \/m ( )
[ Dt 2 T T ]
v z,t) = e w/ADt L 2 <1—|—erf(>) . 1.29
R%L( ) P T ) \/m ( )

The both above expression increase with time. Therefore, in the long-time limit,
x < V4Dt, we can use the asymptotic representation of the Bessel function, Ip(2z) ~
e?? /\/Arz, for z — 0o, to get
2
pr(x,t) ~ p(47r)_1/2(1/L_>RVR_>L)_1/4G7(V”IﬁR*VVTHL) , t — 0. (1.30)
Further, we approximate the error functions in Eqgs. (|1.28)), (1.29) by their small-
argument asymptotic behavior erf(z) ~ 2z/,/7 and, after some algebra, we obtain

T
(\/VL—>R — \/VR—>L)2 ~ :L‘QE Ft, (131)
_ 1 [/«
(vLrvR-L) 2 ~ o\ D (1.32)

Returning to Eq. (1.27)), the asymptotic tracer PDF is Gaussian:

L =i o (1.33)

pr(a,t) ~ ——x=
41Dy 2Vt

where we have defined the generalized diffusion coefficient

1 /D
Dijg=—/— 1.34
1/2 o\ 7 ’ ( )

which enters the subdiffusive law for the mean squared displacement
(X3(t)) ~ 2Dy V2. (1.35)

Notice that the main ideas behind the above derivation of the Gaussian PDF ,
are essentially the same as those behind heuristic arguments based on Eq. . The
only difference is that in the heuristic approach the freely diffusing entities are vacancies,
whereas now the freely diffusing entities are noninteracting particles.

1.3 Comparison with SFD of N particles

Harris’s classical result concerning /2 MSD growth and the Gaussian PDF are
derived under following conditions: the system is homogeneous with a constant density
of particles, and, increasing time, the subdiffusive regime is the last one which occurs
in the overall dynamical description. We now wish to comment on further details of the
SFD model including finite-time behavior and the dynamics of the system with finite
number of particles.
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1.3.1 Entropic repulsive forces

First, let us consider the long-time dynamics of the system with zero density, namely,
an infinite line containing N interacting particles. The dynamics of such a system has
been studied in a great detail by Aslangul [43,70].

In Ref. [43] the two-particle problem on a lattice has been solved exactly. In the
continuum limit, the two particles undergo a Brownian motion with a hard-core inter-
action and the problem can be solved by a transition to the center of mass coordinate
system. Then the difference coordinate behaves like a Brownian particle and the orig-
inal hard-core interaction manifests itself as a perfectly reflecting wall for this particle
at the origin. Under these conditions, the Brownian particle exhibits an anomalous
drift away from the boundary, its average position increases as t*/2, whereas the sec-
ond moment has a normal diffusive spreading. Thus for two interacting particles the
following overall picture emerges. The interaction induces a repulsive drift of entropic
origin. The drift is anomalous with a vanishing velocity, the average distance between
the particles grows at large times as t1/2, whereas the second moment of the position of
each particle grows linearly with time. Let X.2(¢), X2.2(t) be respectively the position
of the left and of the right particle, then we have [43]

—<X1:2<t>>=<x2:2<t>>~\/?, (X%a(t)) = (X3a(t)) ~ 2Dt (1.36)

In Ref. |70] similar issues have been clarified for N interacting particles. Aslangul
has assumed that, at the initial time the particles form a compact point-like cluster
located at the origin. In ¢ — oo limit, the mean position of the nth particle (n =
1,...,N), and its second moment evolve with time according to

(Xun(®)) ~ Ve Ve, (X2x(8)) ~ 2Dyt (1.37)

Hence the dynamical exponents are exactly the same as for two particles . Both
the particle order and the total number of particles enters the result through the order-
dependent transport coefficients V,.n, Dy n. The task of deriving exact expressions
for V,,.n, Dy, v is elusive [70], yet, for two special cases the asymptotic behavior can be
given. For the particles located at the edges of the dispersing cluster the asymptotic
behavior of the transport coefficients is given by —Vi.xy = Vy.n [log(N)]l/Q, Di.y =
Dy o [log(N)] Y2, For the central particle, we have D,y « 1/N, ¢ = (N +1)/2.
Thus, when the total number of particles is finite, the mutual interactions induce an
anomalous entropic drift but the diffusion is not anomalous in the long-time limit. On
the other hand, notice that in the limit of N — oo, both Dy.x and D..n vanishes. This
indicates a possible lowering of the dynamical exponent and the onset of a subdiffusive
regime observed in the finite density situation. The middle particle is surrounded by
infinitely many others and its diffusion constant vanishes as 1/N. For the two edge
particles, the logarithmic decrease of Dy.ny comes from the fact that these particles
still face a free semi-infinite space to wander in (see Ref. [70] for a further discussion).

1.3.2 Three dynamical regimes

Let us consider a finite interval of the length L with N diffusing particles, and we put
p = N/L. A thorough analysis of tracer dynamics in a finite interval with reflecting
boundary conditions has been given by Lizana and Ambjornsson in Refs. [51,[52]. Au-
thors used Bethe Ansatz to derive the exact tracer PDF. In the present section we will
paraphrase their results concerning different dynamical regimes for the dynamics of the
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middle particle. Recently, the results have been reproduced by the scaling method in
Ref. [71].

The precise setting is the following. At the initial time ¢t = 0 there are N interacting
particles of the diameter A randomly distributed in the interval of the length L. We
will follow the diffusion of the central particle located initially approximately near the
center of the interval (the tracer). The dynamics of the tracer is rather complex. The
exact analysis based on Bethe Ansatz has revealed three dynamical regimes: (A) short
times, (B) intermediate times, and (C) long times.

(A) Short times. For time ¢t much smaller than the collision time ¢,

1

tool] = —— 1.38
coll p2D7 ( )

the tracer “does not feel” other particles and, consequently, it undergoes a free diffusion.
In this regime, the tracer PDF is Gaussian with the MSD given by

(Xr(t) = Xr(0)]*) =2Dt, ¢ < teon, (1.39)

(B) Intermediate times. For times ¢ much larger than the collision time t¢on but
still smaller than the equilibrium time Zq,

_ v (1.40)

the tracer diffusion is anomalous, the tracer PDF is given by a Gaussian function with
the mean squared displacement

<[XT(t) - XT(O)}2> _ 1 _ppA,/iDtj teoll K 1 & tog. (1.41)

The generalized diffusion coefficient predicted by Eq. is in conformity with that
obtained for infinite systems with point particles (A = 0, cf. Egs. - ) and
also with that for the SFD on a lattice [72,73|. The latter correspondence is obtained
when both the particle diameter A and the lattice spacing equals to one.

(C) Long times. In the long-time limit, ¢ > t.q, the tracer PDF approaches an
equilibrium probability density function and its MSD saturates on a constant value.
We have

2

([Xr(t) = Xo(0)]*) o LN > teq. (1.42)

Only regimes (A) and (B) are found in the infinite system with constant particle
density (discussed in Sec. , where toq diverges. Notably, in the setting discussed by
Aslangul (cf. Sec. the regime (C) is replaced by the normal diffusion and the regime
(A) should be absent since the particles initially form a compact point-like cluster. In a
finite interval with periodic boundary conditions the regime (C) is also different. For a
periodic system at long times, all particles become highly correlated — they behave as a
single effective particle and undergo a normal diffusion with the renormalized diffusion
coefficient D/N [74]. A different (even superdiffusive) MSD behavior in regime (B)
is reported in Ref. [75] where effects induced by the choice of initial conditions are
discussed by means of Monte Carlo simulations.

1.4 Single-file diffusion front

In the finite-N case studied by Aslangul the particle near the boundary of the cluster
is repelled by a finite number of its neighbors. This repulsion induces an anomalous
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drift proportional to t/2. An important question is in order. What if the edge particle
has infinite number of others to its left (say)? How strong is the entropic repulsion
in this case? To obtain the answer let us turn to the study of statistical properties of
the single-file diffusion front. Namely, in the present section we consider SFD on an
infinite line. Initially the negative half-line is occupied by (infinitely many) particles
distributed with the mean density p. There are no particles on the positive half-line.
We are interested in the motion of the right-most particle.

The evolution of the density of particles p(z,t) is governed by the diffusion equation
with the step initial condition: p(z,0) = p for z < 0 and p(z,0) = 0 otherwise. The
density profile at time ¢ is given by the complementary error function:

plx,t) = gerf(:(\/é%) , (1.43)

from which we obtain the mean number of particles located to the right of z:

V() = /x Tl ol ). (1.44)

Let us number the particles from right to left. Hence the rightmost particle is labeled
by n = 1. How can we construct the PDF p,,(z,t) of the nth interacting particle? Again
we provide an answer by a proper construction based on the reference noninteracting
picture. The sought probability that the nth interacting particle is in (z, z +dz) equals
to the probability that there is a noninteracting particle in (z,z + dx), i.e., p(z,t)dz,
times the probability that there are (n—1) particles to the right of z. Since the reference
noninteracting particles are statistically independent, the latter probability is given by
the Poisson distribution with the mean value v(x,t). Altogether, we get

n—1
) = a0 e, (1.45)

Let us now focus on statistical properties of the right-most particle (sometimes
called as the single-file diffusion front, or just a diffusion front). Its cumulative distri-
bution function, F(x,t) = [*__ da'pi(2/,t), equals

Fi(z,t) = exp[—v(z,t)]. (1.46)

In the long-time limit Fj(x,t) converges to Gumbel distribution:

Fy(x,t) ~ exp {— exp <_bEUt) + a(t))] , t— o0, (1.47)
with parameters
B 2Dt al®) — 1o 2pDt
b(t) = log(2Dt)’ () =1 g<\/§10g(2Dt)> . (1.48)

For the proof of the convergence we refer to the proof of Theorem 3 in Ref. [76] (Arratia
in Ref. [76] has used ) instead of our p and has worked with a standard Brownian motion
for which D = 1/2).

Gumbel distribution gives us asymptotic behavior of all moments of the front
position. The asymptotic mean position assumes the form

(Xq(t)) ~ logz(ZQ)lt)t) v+ log<\/277r21f)§(t2Dt)>] , t — oo. (1.49)
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where v stands for Euler’s constant, v ~= 0.5772156649. For the variance we obtain

2

(Xa(t) = (Xa(@)]”) ~ ﬂélogQ(l;Zt)t)’ t — oo. (1.50)
Thus an anomalous entropic drift produced by infinite number of particles scales with
time faster than t'/2-law observed in Aslangul’s finite-N setting. Interestingly enough,
an effective one-sided restriction of particle’s motion results in a slowdown of its diffu-
sion. The asymptotic variance grows with time slower than that in the case of the
normal diffusion (i.e., slower than t) but still faster than in the case of t!/2 subdiffusion.

Finally, a few remarks are in order. First, Gumbel distribution exp(—exp(—zx))
is one of the three possible limiting distributions for extreme order statistics. The
three distributions with brief comments on the related theory are presented in App.
Second, there exists a recent work |77] concerning diffusion frontﬂ Third, in Refs.
[78,/79] fluctuations of the current through the origin has been studied for the simple
symmetric exclusion process with a similar initial condition as that of the present
section. For the asymmetric simple exclusion process the similar initial conditions have
been discussed in Refs. [80-88], in particular in connection to random matrix theory.

1.5 Further reading

Let us now mention a few selected directions of research which has not been covered in
the preceding text.

(1) Recently SFD of nonidentical particles (different diffusion constants) has at-
tracted a considerable attention. In this case the correspondence between the inter-
acting particles and the noninteracting ones breaks down and the model is no-longer
integrable. Various approximative [89] and numerical methods have been developed
including scaling arguments [90] and the harmonization technique [45,/62] which ap-
proximates the SFD system by the particles interconnected by harmonic springs (the
Rouse model). With the aid of this mapping, in Ref. [63] a force-response relation for
tracer has been studied. Rigorously, a convergence to a fractional Brownian motion, a
law of large numbers and a central limit theorem has been proven in Ref. [91].

(2) Several studies are devoted to SFD in one dimension with more general interpar-
ticle interactions than just the hard-core one [92-98]. For instance, typical t'/2 subdif-
fusive behavior is reported also for inelastically colliding particles |99,(100]. What if the
interaction is long-ranged? This important generalization has been studied in seminal
work [92] with the following conclusion: provided that the correlation length between
the particles is finite the tracer MSD grows asymptotically as t'/2 and the generalized
diffusion coefficient is related to the compressibility of the system. These predictions
were tested experimentally for colloidal particles [21}22] and for charged millimetric
steel balls [95}/96]. Hydrodynamic interactions, yet another effect, are screened signifi-
cantly in one dimension; cf. Ref. [23] for both experimental and theoretical study, and
Ref. [98] for extensive numerical analysis.

Above examples may evoke an impression that ¢%/2 scaling of the MSD must be
observed in any one-dimensional diffusive system regardless the form of interparticle
interaction. Of course this is not the case. A notable counterexample where long-
ranged interactions modify the subdiffusive regime is provided by Brownian particles
interacting by the logarithmic potential (Dyson’s Brownian motion). In this case the

2Notice that Sabhapandit’s expression for the cumulative distribution function of the front position
(Eq. (7) in Ref. [77]) differs from Fy(z,t) in Eq. by a nontrivial multiplicative factor. Probabilistic
interpretation of Eq. (7) in Ref. [77] remains unclear to the present author (actually, Fi(x,t) corresponds
to the right-hand side of Eq. (5) in Ref. |77]).
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tracer MSD grows as log(t) [101]. Other cases are listed in next paragraphs. There,
deviations from typical /2 subdiffusion are caused by interaction with external fields
and/or with confining channel, and even by a certain type of initial conditions.

(3) Single-file dynamics in spaces with dimension greater than one is of considerable
interest in recent years. In particular, a reduction of the confined two-dimensional
single-file dynamics of discs to the one-dimensional longitudinal motion of rods has
been carried out in Refs. [102-105]. When the diameter of the tube is slightly greater
than the doubled diameter of the disc a crossover from the subdiffusion to a normal
diffusion occurs. An accurate description of this phenomenon is still under active debate
[106H108]. For particles interacting by Yukawa potential, numerical analysis of Ref.
[109] reveals rather different diffusive regimes and transitions depending on the shape
of the channel. The screened Coulomb potential (described through a modified Bessel
function of the second kind Ky, as inspired by experiments [95,96]) leads to nontrivial
properties of fluctuations in the vicinity of transitions between different equilibrium
conformations of the system [110-112].

(4) Effects induced by external fields acting on particles have become the subject
of several studies [39,/61,/63,113123]. Strictly speaking, the previous point (3) also
belongs to this category. A particularly hard and still unsolved problem is when the
external field acts on the tagged particle only. Theoretical advances in this direction
can be found in Refs. [61,63,/120,/121]. The external field acting on all particles can
model, for example, entropic forces stemming from inhomogenities of real channels
[124]. SFD in random potentials have been studied both theoretically [122,|125] and
experimentally [123]. Channels with random walls have been considered in Ref. [126].
Diffusion of magnetic dipoles in modulated channels is discussed in Refs. [113H115].

(5) Initial conditions may imply two unexpected effects on the dynamics of the
tracer. First, the power law initial distribution results in t¢ subdiffusion, where « is
neither 1 nor 1/2 [71,[117,/127]. Second, the initial condition determines the value of the
generalized diffusion coefficient [128], which is a long-memory effect unobserved in the
normal diffusion (where the diffusion coefficient is determined by Einstein’s relation).

(6) In some studies the dynamics of individual particles is not normal Brownian
motion. Instead, the particles may follow e.g. the deterministic dynamics [129-132] or
some kind of an anomalous kinetics [127,133-135]. An outstanding result valid for all
these systems is the so called Percus diffusion formula [117,]129]. The formula relates
MSD of the tracer in a system with interaction with motion of a single particle in the
absence of interaction: <[XT(t) - XT(O)]2> ~ (|1X(t) — X(0)|) /p. It is valid for an infi-

nite homogeneous system with constant density of particles and in Ref. [117] it has been
derived for a rather broad class of anomalous processes including e.g. the continuous-
time random walk and the fractional Brownian motion. Thus for instance if for a free
diffusion <[X(t) - X(O)]2> o t* then for the tracer motion <[XT(t) — XT(O)]2> oc /2,

(7) The first-passage time density for a tracer in a homogeneous system has been
discussed in Ref. [59]. An open single-file system (the interval with at least one absorb-
ing boundary) has been studied numerically for a biased SFD [136], for an unbiased
SFD [50] (briefly discussed as a particular example), and analytically for an unbiased
diffusion in Refs. [40-42]. The latter works form a basis of the following Chaps.
A closely related problem of orders statistics of first-passage times for independent
random walkers [137-147] will be discussed in a more detail in Chap.

Last but not least, in the above brief review we have restricted ourselves mainly
to the physically-oriented literature. Rigorous (mathematical) results concerning the
dynamics of the tracer can be found in the following references. Besides the seminal
works of Harris |27] and Spitzer [148], central limit theorems for a tagged particle are
discussed in Refs. [76},91,149], and reviewed in Ref. [150].
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2. SFD in a semi-infinite system
with absorbing boundary

2.1 Definition of the model

Absorbing
boundary

(1 (2] © 4
x=0

Figure 2.1: Schematic illustration of the possible initial configuration of N = 4 particles
and their labeling.

Consider diffusion of hard-core interacting Brownian particles in a semi-infinite one-
dimensional interval with the absorbing boundary at the origin. Initially, /N particles
are distributed along the half-line (0,00). During the time evolution, each particle
diffuses with the same diffusion constant D. The particles cannot enter the interval
from the outside and they are allowed to leave it only through the boundary at the
origin. The boundary is perfectly absorbing, i.e., if any particle hits the origin it is
absorbed with the probability one. At initial time ¢ = 0, let us label the particles
according to ordering of their positions from the left to the right, cf. Fig. We have

0< XLN(O) < X.Q:N(O) <. < XN:N(O) < 00, (21)

where the random variable X,,.x(0) denotes the position of the nth particle at ¢t = 0.
The hard-core interaction guarantees that the initial ordering of particles is conserved
over time. Notice that the particle No. 1 is the first one that might be absorbed. It is
only after this event happens that the particle No. 2 can approach the origin and be
absorbed. Let us denote as T,,.n the random time of the absorption of the nth particle.
The particle ordering implies the corresponding ordering of absorption times:

O<Tin<Tony<...<Tpyn.pyN <o0. (2.2)

The last inequality, Tn.y < 00, means that the rightmost particle (and hence any
particle) is eventually absorbed with the probability one. At the same time, the mean
value (T n.n) is infinite, as will be shown in the following.

The second setting discussed in the present chapter is the semi-infinite system which
is initially occupied by an infinite number of particles — the system is initially in equilib-
rium with the constant mean density p. In such a system each tagged particle possesses
an infinite number of right neighbors and the two above sets of inequalities now readE]

0<X;1(0) <X2(0) <...<Xp(0)< ..., (2.3)

0<Ti<Te<...<Ty, < ..., (2.4)

where the random variable X,,(0) denotes the initial position of the nth tracer and T,
stands for the corresponding absorption time.

!Notice that the notation X, (t) has been used in the introductory Chap. [I| for noninteracting
particles. Hence it seems to be more plausible to denote the position of the nth tracer and its absorption
time as Xp:o0(t), Thico, respectively. However, we have decided not to include the symbol “co” into
the notation. The precise meaning should be always clear from the context and we believe that no
confusion may arise. From now on the position of a generic noninteracting particle and its absorption
time will be denoted by unindexed random variables X(t), T, respectively.
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In both above settings (the finite-N case and the system in the thermodynamic
limit) we are primarily interested in the dynamics of the tracer, in the dynamics of the
tracer conditioned on nonabsorption and in the characterization of absorption times.
The present chapter is based on works [40,42].

2.2 Finite number of interacting particles

2.2.1 Single diffusing particle
Brownian motion absorbed at the origin

All properties of interacting particles can be constructed form the elements describing
a corresponding system of noninteracting particles. Thus, let us for a moment take
N =1 and summarize basic formulas for a single particle.

Suppose that at initial time ¢ = 0 the particle is located at the position y, y > 0. The
PDF of the particle’s position at time ¢ conditioned on its initial position is determined
by solving the diffusion equationE]

D bt 19,0) = D2 F(at]4,0) (2.5)
8t x’ y? - 6.%'2 ’:L" y7 .

subject to the absorbing boundary condition at the origin,

f(0,t|y,0) =0, (2.6)

and to the initial condition

f(2,01y,0) = d(x —y). (2.7)

This problem is readily solved by the method of images [151]. The result reads

1 2 2
z,t|y,0)= e~ (@y)/ADt _ o= (zty)"/ADt] 2.8
fat] 5,0 =——| ] (28)
Having this Green function, the time evolution of an arbitrary initial PDF, say f(x),
is given by

fz,t) = (f(z,t[X(0),0)) = /Ooo dy f(z,t]y,0)f(y). (2.9)

As for the initial PDF f(z), in the following analysis we only assume that all its
moments exist. For the sake of illustrations, we take the particular initial condition
e—x/L
flx) = 7 L>0, x>0 (2.10)
The spatial integral of the PDF (2.9) over the interval (0,+00) equals the survival
probability, that is, the probability that the particle has not been absorbed by time t.
If we denote by T the time of absorption, we can write

S(t) = Prob{T >t} —/Oo dz f(z,t) = <erf(X(O)>> (2.11)

0 ’ VaDt)/’ '
where the last expression stands for the average of the error function with respect
to initial PDF f(z). The time-evolution of the survival probability is linked to the

2Everywhere in Chaps. all PDFs that have originated in the one-dimensional single-particle
problem are denoted by the letter “f”. Contrary to this, PDFs that occur in the many-particle problem

[73ee})

with interaction will be designated by the letter “p”.
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probability current j(z,t) through the origin of coordinates. The probability that the
particle has already been absorbed by time ¢, [1 — S()], grows with time according to
C - S0)] = D) (0.0 (212
_ _ — — [z, = — , ). .
dt al’ =0 ]
At time t = 0, the survival probability equals to one. The long-time behavior of
S(t) may be derived by inserting the power series representation of the error function
into Eq. (2.11)). The main asymptotic term decays as the power law:

sy~ EQ) ey (2.13)
VrD
The prefactor depends on the diffusion constant and on the mean initial position of the
particle.

The survival probability S(¢) yields the complete probabilistic description of the
absorption process. The same information can be obtained from a complementary
quantity. Namely, from the PDF for the time of absorption ¢(t). It is defined by the
equation Prob {T <t} = [Jdt' ¢(¢'), and hence it is directly related to the survival
probability:

/ ar o), () = —%S(t). (2.14)
The long-time asymptotic behavior of ¢(t) is given by
(X(0) ,—s/2
t .t — oo 2.15
o) ~ ZLL 0 (2.15)

The mean time to absorption (or the mean exit time)

_ /OOO dt e (t) (2.16)

and all higher moments of the PDF ¢(¢) diverge. On the other hand, the particle will
certainly leave the interval since the survival probability S(t) tends to zero, cf. Eq.
(12.13)).

Brownian motion conditioned on nonabsorption

According to the above results, the mean escape time of the particle is infinite, never-
theless, the particle eventually escapes from the interval with the probability one. At a
given time ¢, starting with an ensemble of all possible particle trajectories, it is interest-
ing to restrict the attention on the subensemble of those paths which have not hit the
boundary up to time ¢t. The subensemble is described by the conditional probability
density function, the condition being the nonabsorption up to time ¢. The conditional
PDF reads
f(x,t)

S@)

The power series representation of the PDF f(z, Dt|T > t) is given in Eq. (B.9). It
follows that

f(z,Dt| T > t)= (2.17)

f(x.Dt|T > t)= ;o /P Lo (7)), (2.18)

where “0O (t‘l)” stands for all terms of the series that tend to zero at least as ¢ 1
when ¢t — oo. Therefore, in the long-time limit, the conditioned PDF (2.17) assumes
the asymptotic form

f(z,Dt| T > t) ~ 2im e /A0ty oo, (2.19)
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Notice that this asymptotic representation is non-negative and it is normalized to one
on ¢ € [0,400). The distribution with the PDF (2.19)) is known as the Rayleigh
distribution. The asymptotic PDF (2.19) is independent of the initial condition f(x).
In the long-time limit there remains just one length scale associated with the dynamics
— the diffusion length v/2Dt. All other length scales which have been introduced by the
initial condition are already forgotten.

The first and the second moment of the asymptotic PDF (2.19)) read

(X(t))psy ~ VDL, (2.20)
<X2(t)>T>t ~ 4Dt, (2.21)

respectively. The mean position of the surviving trajectories should be compared with
the corresponding result for the unconditioned dynamics, that is, with (X(¢)) = (X(0)).
Provided a trajectory has avoided absorption by time ¢, the particle is typically found far
from the origin and its position grows as t/2. One can say that the conditioning implies
an effective force which drags the particle away from the absorbing boundary. The first-
order correction to the asymptotic result vanishes as t /2 and it depends on the
initial condition. Using Eq. , we get

3
(X(t))ps, = VADE |1 + 112<<)§<(((§)))>>1;5 +0 (tQ)] . (2.22)

The same holds true also for the first correction to the second moment .

The single-particle stochastic dynamics conditioned on nonabsorption has been ex-
plored extensively in probability theory. A comprehensive bibliography survey is avail-
able in Ref. [152]. Usually, the conditioning suggests itself in the frame of biologi-
cal, demographic, ecological and epidemiological models, where the absorbed diffusion
process models the populations undergoing extinction. By the conditioning on nonab-
sorption, the focus is shifted on the properties of long-surviving paths of the process.
One specific consequence of the conditioning on nonextinction is the deceleration of the
instantaneous mortality rates (mortality rate plateaus) [153]. It should be noted that,
under certain conditions, the conditioned process converges towards a time-invariant
distribution, the so called quasistationary distribution. The study of quasistationary
distributions began with the seminal work of Yaglom on subcritical Galton-Watson
processes [154], for a further discussion see e.g. Refs. [155-158] and references therein.
Independently, conditional distributions occur in conformational statistics of polymer
chains interacting with surfaces [159-162]. For instance a three-dimensional analogue
of the asymptotic PDF describes the end-to-end distance of the polymer grafted
by one end to the reflecting wall [159].

2.2.2 Mapping on single-particle diffusion in N dimensions

Let us now return to diffusion of interacting particles. The dynamics of IV interacting
particles possesses a noteworthy geometric interpretation. It resides in mapping of the
N interacting diffusing particles onto a single “representative particle” diffusing in N
dimensions (cf. Sec. for the situation without absorption).

At t = 0 there are N particles inside the interval (0,00). Until the absorption of
the particle No. 1, the situation corresponds to the diffusion of a single representative
particle in the N-dimensional wedge domainﬁ

{IN:0<z1 <2< ...<2xN_1 <N < OO} (2.23)

3The vector notation used: Tn—_ = (Tht1,...,2n), k=0,1,..., (N —1).
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bounded by (/N — 1) reflecting hyperplanes
{Zn:0<z1 <...<xp=opt1 <..<ay <00}, (2.24)

n=1,.., (N — 1), which represent the non-crossing conditions, and by the absorbing
hyperplane
{Iy:21=0,0< 22 < ... <zNy_1 < 2N <O}, (2.25)

which accounts for the possibility of the absorption of the leftmost particle. The diffu-
sion within this wedge is characterized by the PDF p™)(Zy,t) and it is governed by
the N-dimensional diffusion equation

0 ), ) = DY Loy, 1) (226)
N,t) = Nst). .
at = 856?

The non-crossing boundary conditions that describe reflections of the representative
particle on (N — 1) reflecting hyperplanes read

0 0
- _ Nz

j=1,...,N — 1. The conditions guarantee the zero probability currents in the di-
rections perpendicular to reflecting hyperplanes. The exit of the left-most particle
from the pore corresponds to “sticking” of the representative particle to the absorbing
hyperplane and it is incorporated by the absorbing boundary condition

=0, (2.27)

Tj=Tj41

) (fN,t)‘m:O — 0. (2.28)

Absorption of the leftmost particle in the original picture reduces the dimension
of the space available for diffusion of the representative particle. After the absorption
of particle No. 1, the representative particle diffuses within the (N — 1)-dimensional
wedge domain

{Zn_1:0<m9 < ... <zNy_1 <2y <00} (2.29)

bounded by (N — 2) reflecting hyperplanes
{Zn-1:0< 2o < oo <Tpp =Tpp1 < ... <2y < 00}, (2.30)

n=2,..,(N —1), and by the absorbing hyperplane

{Zn-1:20=0,0<23<...<zNn_1 <N <OO}. (2.31)
The diffusion within this domain is described by the PDF p®N=1(Zy_,,t). This PDF
varies in time due to the following three reasons: (A) diffusion of (N — 1) interacting

particles, (B) a possible absorption of the particle No. 2 if it hits the absorbing bound-
ary, (C) the absorption of the particle No. 1 while the remaining particles are situated in
the infinitesimal domain (Znx_1,Zn-1 + dZn_1). We thus arrive at the inhomogeneous
generalized diffusion equation with a source term on its right-hand side:

0
pWN W (En_1, 1) DZ PN V(&N _1,t) + D

— WMz . (2.32
57 p (TN, 1) (2.32)

The last term on the rlght—hand side represents the probability current which accounts
for the above point (C)H The hard-core interaction of (/N — 1) particles is again incor-
porated through non-crossing boundary conditions on the reflecting hyperplanes:

0 0
o (N—1) (=
(81']- 8fl;’j+1> P (Fn-1,t)

4The idea behind the last term on the right-hand side of Eq. (2.32) is essentially the same as that

behind equation (2.12).

=0, (2.33)

Tj=Tj41
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Figure 2.2: Mapping of the two-particle SFD onto the diffusion of one representative
particle in the 2D wedge domain. The left panel shows the space-time trajectories of
two interacting particles diffusing in the interval (0,00). The red line z = 0 represents
the absorbing boundary. Whenever the particles collide, their trajectories are mutually
reflected. One such event occurs roughly at time ¢ ~ 1.6. The particle No. (N —1) leaves
the pore approximately at ¢ &~ 3.2. At that moment, the coordinate of the rightmost
particle is roughly « = 4.1. The right panel shows the 2D diffusion of the representative
particle within the wedge domain bounded by the reflecting boundary (the blue line)
and by the absorbing boundary (the red line). The point A=[1,0.5] denotes the initial
position of the representative particle. Whenever the trajectory hits the blue line it is
reflected. The reflection corresponds to collisions of the two interacting particles. At
the point ~ [4.1,0], the trajectory of the representative particle sticks to the absorbing
boundary. This event represents the exit of the second rightmost particle from the
interval at ¢t ~ 3.2. Afterwards, the representative particle continues to diffuse along
the line z = 0. Its final position at time ¢ = 3.5 is shown by the point Ba[5.5, 0].

j =2,...N — 1. The absorbing boundary condition describing the possible escape of
the particle No. 2 (the reason (B)) reads

pN " (EN_1,1) =0. (2.34)

x2=0

Notice that the initial condition supplementing Eq. is simply p _1)(:i' N-1,0) =
0. This follows from the assumption that, at ¢ = 0, there are N particles inside the
interval and hence the (N — 1)-dimensional wedge is empty.

Eventually, after the absorption of (N — 2) particles, there are two last particles
left inside the interval. This case is illustrated in Fig. where the corresponding
representative particle diffuses in the 2D wedge domain {Z2 : 0 < zny_1 < 2y < o0}
bounded by just one reflecting boundary {2 : 0 < zy_; = zx < oo} and by the
absorbing half-line {Zs : xy_1 = 0,0 < xx < oo}. Its motion is described by the PDF
p? (Z2,t). After this event, the diffusion of the representative particle is described by
the PDF p(l)(a:N,t). The exit of the left particle corresponds to the sticking of the
representative particle to the half-line {¥y : zy_1 = 0,0 < zny < o0o}. The exit of
the last particle simply means the sticking of the representative particle to the origin.
The probability of finding the representative particle at the origin at ¢ is given by the
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function p(9 (¢). It obeys the simple evolution equation (cf. Eq. (2.12))

d
at?
with the initial condition p{®)(0) = 0. Further it will be denoted by ¢n.x (t) since p(© (¢)
is nothing but the PDF of the time of absorption of the rightmost particle T x.n.
Summing up the above steps, we have obtained the hierarchy of N + 1 coupled
evolution equations (|2.26]) - @ that completely describe the dynamics of the system.
The diffusion equation @ is closed. Together with Eqs. , and with the
initial condition p\)(Zy, 0) it constitutes a well-defined initial-boundary value problem
with a unique solution, the PDF p() (Zn,t). Suppose that we know it. Then we insert
its value at (0, x2, ..., zx) into the source term on the right-hand side of Eq. (2.32]). The

inhomogeneous equation (2.32)), supplemented by boundary conditions (2.33)), (2.34)),
and by the initial condition p(N=1(Zy_1,0) = 0 constitutes again a closed initial-

boundary value problem. Having obtained its solution, the PDF pN *1)(53’ N-1,1), we
again evaluate it at (0,xs, ..., zy) and use as the source term in the equation for the
PDF p(N=2)(Zy_o,t), etc. The whole hierarchy is terminated by Eq. .

Finally, notice that the individual evolution equations may be generalized to cover
many effects beyond SFD of hard-core interacting particles. For instance, one can
easily incorporate external forces acting on particles and/or more general interparticle

interactions.

9
Oy = p-2_
()= Do vV, 1) (2.35)

9
=0

2.2.3 PDF of a tagged particle

Considering a general number of particles IV, the model setting must be completed by
the specification of an initial state. Among all possible forms of initial distributions
there exists one which leads to a considerable simplification of the subsequent analyt-
ical calculations. Even more importantly, the distribution is physically quite natural
for real single-file systems. It describes the situation which emerges, e.g., after pre-
vious constitution of a steady state, or after previous autonomous relaxation towards
a thermodynamic equilibrium. Namely, we assume that the initial joint PDF for the
N-particle system is given by

N
N! f(xn) for Zy € Ry,
n]jl € N € Ry 2.36)

0 for fN Qf RN,

where R denotes the N-particle phase space defined as a space of all possible config-
urations of N hard-core interacting particles on the semi-infinite interval (0, c0), i.e.,

RN:{fN20<$1<:U2<...<.7JN<OO}. (237)

which is nothing but wedge domain ([2.23)). The symbol Zy € Ry means that the
components of the vector Zny = (x1,...,2x) obey all the inequalities in . If ¥y ¢
R, then at least one of them is violated. In general, the function f(z) in Eq.
can be any PDF defined and normalized on the half-line z € [0, 00). The normalization
of the function f(z) implies the proper normalization of the initial condition ([2.36)).
This can be checked by a direct integration of the expression over the phase space Ry .

At initial time ¢ = 0, the marginal PDF for the position of the nth particle is
obtained by integrating the function over the coordinates of all other (N — 1)
particles. If p,.n(z,0) denotes the marginal PDF in question, then we have

puv,0) = g [ [Tt s 1= [T sen] L @)
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Figure 2.3: Schematic illustration of space-time trajectories of four particles. At time
t* the leftmost particle hits the absorbing boundary. After this event the leftmost
particle exits the interval and will never return. Equivalently we can imagine that for
all times ¢, t > t*, the absorbed particle resides in the trap located at = = 0.

where (n — 1) is the number of particles located to the left of the nth particle and
(N —n) gives the number of those on the right. The last expression has been written in
the form which suggests two (equivalent) probabilistic interpretations. First, suppose
that we have generated N points on the half-line, each of them being independently
drawn from the distribution with the PDF f(z). Then p,.n(z,0) is the PDF for the
nth rightmost of them, i.e., for the nth order statistic. Second, consider the system of
N identical and noninteracting particles. Let the position of each of them be described
by the PDF f(z). Then the PDF p,.n(x,0) equals the probability that there is a
particle in (z,x 4+ dx) and, simultaneously, there are precisely (n — 1) particles at
arbitrary coordinates to the left of it, and the remaining (N — n) particles are located
at arbitrary coordinates to the right of it, cf. Eq. .

In the following, provided we need a further specification of the PDF f(x), we always
take f(z) as defined in Eq. (2.10). This expression together with Eq. yields a
complete specification of the initial state. The state can be prepared for instance in
the following way. Up to time ¢ = 0 the interval is closed (reflecting boundary at the
left end of the interval at z = 0), and each particle is pushed against the reflecting
boundary by an external space-homogeneous and time-independent force (e.g. particles
under the action of gravitational or electrostatic force). We assume that the N-particle
system has reached the state of thermal equilibrium. At time ¢ = 0 instantaneously
(adiabatically) the interval becomes opened, i.e., we replace the reflecting boundary by
the absorbing one, and the external field is switched off.

At arbitrary t, t > 0, the PDF for the position of the nth particle has a similar
structure as its initial PDF . It reads

N!

n— 1)'(N — n)|f($’t) [F(x’t)]nil[l - F(xat)}Nin, (239)

Pn:N(fEH t) — (

where the time-dependent single-particle PDF f(z,t) is given in Eq. . Regardless
the two replacements: f(z) — f(z,t), [y da’f(z") — F(z,t), the tracer PDF (2.39)
possesses exactly the same probabilistic interpretation in terms of noninteracting par-
ticles as its initial form . Now, the term that accounts for the number of particles
to the left of =, namely [F(z, t)]"_l, must account also for the possibility that some of
(n — 1) particles have already been absorbed by time t. This fact is incorporated by a
proper choice of the function F(z,t). It is convenient to imagine that the absorbed
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particle after the instant of the absorption resides forever in the trap located at x = 0,
see Fig. Therefore the probability F'(z,t) of finding a single noninteracting particle
to the left of x is given by the sum of probabilities of two disjoint events:

Fa, ) = [1— S(6)] + /0 Cae f(al ), (2.40)

where [1 — S(t)] is the probability that the single-diffusing particle is located inside
the trap, while the second term on the right-hand side of Eq. stands for the
probability that the particle is found in (0,z). Notice that, in Ref. [40], the PDF
has been derived analytically by integration of the exact solution of hierarchy of
diffusion equations from Sec. [2:2.2] We shall not repeat the proof here.

Finally notice that the following equality holds:

1 N
fla,) = 5 D puen(@:8), (2.41)
n=1

which can be proved by the direct summation of the expressions . In particular
the above equation tells us that the density of particles for the system of N interacting
particles is the same as that for the system of N noninteracting particles. This state-
ment holds true for any collective quantity describing the interacting particles (that is
such quantity that does not change after any permutation of labels).

2.2.4 First-passage properties

Survival probabilities

The presence of absorbing boundary implies that the PDF p,,.x(z,t) of the nth tagged
particle is no longer normalized to one for ¢t > 0. The spatial integral of the PDF| i.e.,
the survival probability S,.n(t) of the nth tagged particle,

Sn:N(t) = Aw dx Pn:N (377 t); (242)

can be written as the sum of powers of the single-particle survival probability S(¢). It
reads’]

N Nentl = (=" n—1 k
Sp:n(t) = S(t nt —_ S(t 2.43
e (f) ”<n>[<” S N owrrril s BOF @)
To gain a better insight into the escape process in question, let us first examine the
difference between the survival probabilities of the adjacent particles:

S(nJrl):N(t) - Sn:N(t) = <]T\Z> [S(t)]Nin [1 — S(t)]n . (244)

The difference is simply the probability that the particle No. n has already exited the
interval and, simultaneously, the particle No. (n+1) is still diffusing inside the interval.
At the same time, the right-hand side by itself possesses a similar interpretation in terms
of noninteracting particles. It equals the probability that exactly n of the initial number

"Main steps of the underlying calculation are following. We define the auxiliary function B(z,t),
F(z,t) = 1 — B(z,t). Then we expand the term [F(x,t)]""" in the tracer PDF (2.39) according to
the binomial theorem into the sum of powers of B. Properties of the auxiliary function B (f(z,t) =
—0B/dxz, B(0,t) = S(t), B(co,t) = 0) allows for a direct integration of each term of the emerging sum

which yields Eq. (2.43).
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N of noninteracting particles have already exited the interval by time ¢. Thus the mass
transport out of the pore is not affected by the hard-core interaction. In particular, in
the statistical sense, it will take the same time until all N particles escape from the
pore regardless they interact or not (previously this fact has been observed in Monte
Carlo simulations in Ref. [163]).

Several other observations are worth emphasizing. For instance, it follows from Eq.

(2.44) that functions S,.n(t) are ordered as
0< 51;N<t) < SQ;N(t) <...< SN;N<t) <1, (2.45)

where the equalities hold at ¢ = 0, when all N particles are initially inside the pore
(hence Sy:n(0) =1 for all n), and in the limit ¢ — oo (S,.n(0c0) = 0 for all n, c.f. Eq.
below). Each hard-core particle acts on the adjacent ones as a stochastically
moving reflecting boundary. Effectively, the collisions between the particles induce
entropic repulsive forces. For example, the exit of the rightmost particle is hindered by
the remaining (N — 1) particles which greatly increases its survival probability Sn.n(t).
On the other hand, the leftmost particle is pushed by the remaining ones towards the
absorbing boundary which significantly reduces its lifetime inside the interval. Thus
the survival probability Si.n(t) rapidly decreases towards zero. However, as a direct
consequence of Eq. we obtain

N
S(t) = % > Sun(t) (2.46)
n=1

which relates the arithmetic mean of tagged particles’ survival probabilities to the
survival probability of the single-diffusing particle. Hence Sy.n(t) cannot exceed N S(t).

Above considerations manifest themselves most pronouncedly if we consider the
time-asymptotic behavior of the survival probabilities. The main asymptotic term of
the sum in Eq. is given by the summand containing the lowest power of S(¢). It
reads

Snn(t) = m (JZ) (SN "+ 0 ([S(t)]NinH) : (2.47)

Using the asymptotic behavior (2.13)), we obtain

Thus each survival probability tends to zero, i.e., each particle will certainly exit the
interval. The decay exponent is determined by the difference (N —n) which is nothing
but the number of particles located to the right of the nth one. That is, regardless
the actual value of N the survival probability of the rightmost particle decays to zero
as t71/2, that of the second rightmost as t~! etc. This can be understood on physical
grounds. The survival probability of the rightmost particle decays exactly with the
same dynamical exponent as S(t) (cf. Eq. (2.13))). Indeed, after a “long enough” time
it is highly probable that all other particles have already escaped from the interval
and thus the rightmost particle behaves as a freely-diffusing one. The total number of
particles NV just quantifies the exact meaning of “long enough” leaving the dynamical
exponent intact. Similarly for the nth particle: in the long-time limit, it is highly
probable that all (n — 1) particles, which were initially to the left of the nth one, have
already been absorbed. Thus, regardless the actual value of N, the nth particle behaves
as if it was the leftmost one in the system of (N — n) particles.

For a finite N, the exponent of the power-law decay ¢~ (N="11)/2 quantifies the effect
of entropic repulsion among the particles. Further insight can be given after taking the
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large-N limit in the above expressions. Let us now consider the large-N behavior of
the survival probabilities for the rightmost and for the leftmost particle, respectively.
To obtain the asymptotic survival probability for the rightmost particle we define
the standardizing constant
(NL)?
7D
After the standardization, the cumulative distribution function for the time of absorp-
tion of the rightmost particle converges to the Fréchet distribution with the parameter

a=1/2 (cf. App. [A):

ay = (2.49)

T 1
lim Prob{ VN < t} = exp(—) . (2.50)
N—o00 an \/1?

Hence for the survival probability we obtain

LN
VDt

As a consequence of the entropic repulsion, the survival probability of the rightmost
particle is almost unity on the time-scales shorter than (NL)2.
Defining now

Syan () ~ 1 — exp (— ) . N> L (2.51)

wDL?

the following limit
lim Probd 2V <4\ _ g —exp(—\/E). (2.53)
N—o0 an

implies the large- N asymptotic representation of the survival probability of the leftmost

particle:
N 4Dt
S1:n(t) ~ exp (_L” ) , N>1 (2.54)
T

The above equation depends on the combination N/L. In fact we can set N = Lp,
then the above result indicates that in the thermodynamic limit we can expect the
exponential decay of survival probabilities of individual particles (instead of the power-
law decay in the present finite-N case). This is indeed the case as we will demonstrate

in Sec. (see Eq. (2.86]) for n =1).

PDFs of absorption times

Due to the relative simplicity of the hard-core interaction, all quantities concerning the
dynamics of interacting particles possess an interpretation in term of noninteracting
ones. What is the interpretation of the survival probability S,.n(t)? Instead of pro-
viding a rather lengthy explanation of the right-hand side of Eq. it is easier to
interpret the corresponding PDF ¢,,.n(t) for the absorption time. The PDF is related
to the survival probability as follows

G (1) = —% () Sen(t) = 1— /0 "t dnn (). (2.55)
From Eq. , we obtain
bun(l) = PO L SOP SO (25
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where ¢(t) is the PDF for the absorption time of a single noninteracting particle, cf. Eq.
. As we have already mentioned, the overall mass transport properties are not
influences by the hard-core interaction. Therefore the absorption time of the nth tracer
is statistically equivalent to the time of the nth absorption event which occurs in the
system of noninteracting particles. The PDF for the latter event appears on the right-
hand side of Eq. [137,/138]. Actually, several studies which deal with the order
statistics of absorption times for noninteracting particles exist, see Refs. [137-147].
In particular, the present result clearly demonstrates that any one-dimensional
result concerning order statistics of first-passage times of noninteracting particles to
a single absorbing boundary can be interpreted as the first-passage problem for the
interacting particles. The generalization of this relationship to the case of two absorbing
boundaries is established in the next chapter, see Eq. .

Let us now examine the existence of the moments of the PDF ¢,,.n(t). It follows
directly from Eq. that the long-time tail of the PDF ¢,,.n(t) is given by

N—n+1 Neni1
Pn:n (t) ~ Z(Z) [%} t— 2 Lt 0. (2.57)

Consequently, the mean absorption time of the nth particle,

(To:N) = /0 h dt tdn:n (1), (2.58)

is infinite when (N — n) < 2 (i.e., for the rightmost and for the second rightmost
particle). When (N —n) > 2, the integral becomes finite regardless the actual
value of N. Similarly, the second moment of the absorption time (T2, n) exists only
when (N—n) > 3 holds (i.e., for all particles except for the three rightmost ones). Notice
that a similar conclusion for the mean first-passage time of the first of N noninteracting
particles has been proved in Ref. [139]. In the present interacting picture, this mean
first-passage time corresponds to the mean first-passage time of the leftmost particle
(which is finite when N > 3).

The above analysis brings us to an interesting comparison between the escape pro-
cess confined by the static and by the fluctuating reflecting boundaries, respectively.
Considering the semi-infinite interval with the absorbing boundary at the origin, the
survival probability S(¢) of the single-diffusing particle decays to zero as the power law
and the mean exit time is infinite. If we add the static reflecting boundary on
the right of the single-diffusing particle, the diffusion will be confined to an interval of
a finite length. Then the survival probability decays exponentially and, consequently,
the mean exit time becomes finite [151]. Consider now our SFD model with N = 2.
Then, as for the left particle, the right one plays the role of a moving reflection bound-
ary. That is, the left particle diffuses within a finite interval of a fluctuating length.
Contrary to the case of the static boundary, the survival probability of the left par-
ticle decays as 1/t, and its mean exit time is infinite. It is interesting that the case
N = 3 brings us to still another behavior of the leftmost particle. For this particle,
the central particle again represents a moving boundary. This boundary itself diffuses
and, moreover, it feels another moving boundary to the right of it. As a result of such
right-hand confinement the escape process of the leftmost particle is accelerated, its
mean exit time is finite, but the variance of the exit time still diverges. For a general
N, the exit time of any nth tagged particle with (N —n) > 4 possesses both a finite
mean value and a finite variance.

Let us now return to the mapping which has been developed in Sec. 2.2.2] where
we have discussed the analogy between the SFD problem and the diffusion of a single
representative particle in the N-dimensional space. Initially, the representative particle
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departs from a general interior point in the N-dimensional wedge domain. The exit
of the leftmost particle has been translated to the adsorption of the representative
particle onto the (N — 1)-dimensional absorption hyperplane. Then the representative
particle continues to diffuse within this hyperplane until its motion is further restricted
onto the (N — 2)-dimensional absorption hyperplane, and so on. The function Sy.n(t)
equals the probability that, at time ¢, the motion of the representative particle has
not been restricted onto the (N — n 4 1)-dimensional hyperplane, yet. That is, it still
moves in some k-dimensional wedge, where k& > (N — n). Similarly, the difference
[S(nﬂ):N(t) — Sn;N(t)} as given in Eq. (2.44) yields the probability that, at time ¢, the
representative particle dwells in the interior of the (/N — n)-dimensional wedge domain.
On the whole, as a byproduct, we have solved a nontrivial problem concerning the
geometrically restricted N-dimensional diffusion.

2.2.5 Tracer dynamics with absorption

Let us now discuss the dynamics of individual particles with the focus on the long-time
asymptotic properties. We start with the long-time asymptotic behavior of tracer PDFs
. The right-most particle is special. In the long-time limit it behaves in a similar
way as the single-diffusing particle. In particular, for n = N, the binomial theorem
yields

prn (@) = Nf(,8) |1+ (N=1)S(t) ( /0 ‘4! gx(;)t) - 1) +0 (tlﬂ o (259)

where the remaining (N — 2) terms of the binomial expansion vanish at least as [S(t)]?.
The integral in (2.59)) has been estimated in Eq. (B.10). On the whole, we obtain

_ <X(O)>2 —x2 /2Dt —5/2
PN (@,8) = NS (@) = N(N=1) s we +0(t7°?). (2.60)
The above expression is written in a way which shows the main asymptotic behavior,

pn:N(z,t)~ N f(z,1), t — o0, (2.61)

and the first correction which is given by the second term in Eq. . The correction
describes the relaxation towards the main asymptotics and it is negative.

We proceed to the long-time behavior of the nth particle with n =1,..., (N —1).
We start again with Eq. and rearrange it into the form

P, 1) = n(if) SO f(a,)

y [1—S(t)+ /O xdx’f(:c’,t)r_l [1— /O " and g”(;)t)r_n.

(2.62)

Then the first bracket is again expanded according to the binomial theorem, the second
bracket is treated using Eq. (B.10|). Using further Eq. (2.18)), the main asymptotics

assumes the form

N N-ntl % (N-n+1)2? /4Dt
. ~Y e . 2.
PN (2, 1) n<n> [S(t)] 5D © , t— 0 (2.63)

If we introduce the renormalized diffusion coefficient,

D

Dy=——
" N-n+1’

(2.64)
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an important conclusion emerges. On the right-hand side of Eq. (2.63)), one recognizes
the asymptotic single-particle PDF (2.19) conditioned on nonabsorption:

PN (2, 1) ~ (N—HTQ (:) (SN f(@,Dut| T > 1),  t—o00.  (2.65)
The only difference is that here time ¢ is multiplied by the renormalized diffusion
coefficient D,, instead of the “bare” single-particle diffusion coefficient D in Eq. .
The initial order of the particle n controls in a decisive way the main asymptotics.
The smaller the order n, the faster is the decay of the PDF (2.65) (for a given x).
Consequently the sum in Eq. is dominated by the PDF py.n(x,t), which is just
a different way how to comprehend the asymptotic relation .

Our next goal is the analysis of the mean positions of individual particles. For the
rightmost particle, the calculation is based on Eq. . We obtain

(X(0))* 1
(Xax (1) = N (X () = N(N=1)- =+ 0 (). (2.66)
The main asymptotic behavior is covered by the first term on the right hand side, that
is, apart from the multiplication by /N, the main asymptotics coincides with that for
the single particle where we have (X(t)) = (X(0)). The second term describes leading
corrections.
The evaluation of asymptotic mean positions for all other particles is accomplished
by integration of densities (2.65)). This yields the main asymptotic behavior

<XnN(t)> ~ Bn t_(N_n)/Q’ n= 17 ctt 7N7 (2'67)
with the prefactor

Thus the initial condition and the total number of particles enters the asymptotics
only through the prefactor. Notice that the asymptotics for the nth particle for n < N,
differs from that for the rightmost particle (and therefore also from that for the single
particle), its mean position asymptotically approaches zero.

In a similar way, we readily obtain the second moments. The results are

(X)) ~ N (X3(8)) = O (2.69)
(XZy(t)) ~ Cutm D2 m1 N - (2.70)

with the prefactors

_ 4Dn N\ [(X(0))]V "+
o=rnrln) (3] .

For the rightmost particle, the main asymptotics is proportional to the second moment
of the position of the noninteracting particle <X2(t)> Interestingly, for the second
rightmost particle, the second moment converges to the constant Cny_1 whereas, for
n < (N — 1), the second moment decreases towards zero as the power law.

The first and the second moments for individual particles are illustrated in Fig. [2:4]
After multiplying Eq. by ¥ and integrating, we get the relationship

(xb)) = % i (XEn(), k=012,... (2.72)

n=1
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Figure 2.4: Mean positions (the left panel) and square roots of the second moments
(the right panel) for individual particles in the system of N = 4 interacting particles. In
the underlying single particle problem, we took D = 1 and the initial condition ([2.10))
with L = 2.

valid for any time. In the asymptotic domain, the main asymptotic of the left-hand
side coincides with the n = N term on the right-hand side. Differently speaking, the
main asymptotics of the remaining terms in the sum is subdominant with respect to
the main asymptotics of the n = N term.

2.2.6 Tracer dynamics conditioned on nonabsorption

Being interested in the long-time dynamics of individual surviving particles, we intro-
duce conditional PDFs
Pn:N\T, t
PN (@, t | Ty > 1) = —2——- (,1) (2.73)
Sn:N (t)
In the long-time limit, the numerator is given in Eq. (2.65]) and the denominator in Eq.
(2.47). Thus in the long-time limit the fraction greatly simplifies. Dividing the asymp-
totic representation (2.65) by the leading term in Eq. (2.47) gives us the asymptotic
relation
PrN(x, t| Ty >t) ~ f(x, Dy t| T > t), t — oo, (2.74)

which on its right-hand side contains the Rayleigh distribution with the renormalized
diffusion coefficient:

e—m2/4Dnt

pn:N(SE, t ’ Tp.n > t) ~ s t — oo. (275)

2Dyt

This result is remarkable for its simplicity. The asymptotic conditioned dynamics of the
nth tracer is the same as the dynamics of a single-diffusing particle with the diffusion
coefficients D,, = D/(N —n+1). In other words, the only implication of the hard-core
interaction is the renormalization of the diffusion coefficient. The left-most particle
diffuses with the smallest effective diffusion coefficients D1 = D/N. On the other hand
the right-most particle has the same effective diffusion coefficient as a single-diffusing
particle, Dy = D.

The above asymptotic relation means that also the moments of the conditioned
dynamics are (except of the value of the diffusion coefficient) simply the moments of
the single-diffusing particle. More precisely, using Eq. , we get

(X (D), ot ~ V7D, (2.76)
<X,21:N(t)>T L, ~ADat. (2.77)
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Figure 2.5: The double-logarithmic plot of conditioned mean positions (X.n (£))p <
of the individual particles in the system of IV =4 interacting particles. The curves are
obtained by the numerical integration using exact PDFs with the parameters
L =2and D = 1. Inequalities (X1.4(t))p, ,~; < - < (Xa4(t))p, ,~; hold for all ¢ > 0,
hence the curves never cross. The long-time asymptotic behavior does not depend on
the initial conditions and it is given by Eq. .

Comparing the conditioned dynamics in the system with and without interaction, the
interaction does not imply new n-dependent dynamical exponents which was the case
in the unconditioned dynamics, cf. Egs. , , and .

Finally, notice that in the present conditioned description there exists no simple
relationship similar to Eq. . The N-average of conditioned kth moments is no
more equal to the kth conditioned moment for the single-particle diffusion, i.e.,

N
<Xk(t)>T>t 7 % Z <X§“N(t)>T N> (2.78)
n=1 n:N

The equivalence of collective properties of the system of interacting particles and of the
system of noninteracting ones no longer holds when the conditioned dynamics in both
cases is assumed.

2.3 Thermodynamic limit

We now wish to focus on the dynamics of the tracer in a system of infinite number of
particles. We assume that initially (for ¢ < 0) the particles are distributed randomly on
the half-line with a constant (mean) density p. At the initial instant ¢ = 0 we activate
the absorbing boundary at the origin. Then, for ¢t > 0, the SFD system evolves in time
and we are again interested in the first-passage properties and in the dynamics of the
nth tagged particle.

2.3.1 Evolution of density profile

The mean density of particles p(z,t) as the function of z and ¢ (the density profile
at t) satisfies the diffusion equation subject to the absorbing boundary condition
p(0,t) = 0, and to the initial condition: p(z,0) = p for z > 0. We can derive the
solution of this initial-boundary value problem by the integration of the product of the
Green function and the step initial condition over all values of y. The resulting
density profile reads

plx,t) = perf(&) , z,t > 0. (2.79)
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Spatial derivative of p(x,t), DOp/Ox, evaluated at z = 0 gives us the mean particle
current at = 0. The integral of this current over the time interval (0,t) yields the
mean number of particles that have left the interval (0,00) by time ¢. Explicitly, the
mean number of absorbed particles is given by

(Nabs(t)) = py/ %- (2.80)

In the following analysis, the mean number of absorbed particles (Nps(t)) and the
mean number of particles located in (0,z), i.e. [ da’p(a’,t), will play a similar role
as probabilities [1 — S(t)], [y da’f(2',t) play in the finite-N case. Namely, the both
quantities (Nabs(2)), [y da’p(2’,t), will be employed in order-statistics-like arguments
leading to the PDF of the nth tagged particle.

2.3.2 PDF of a tagged particle

Similarly to the previous finite-IN case, the analysis is based on the exact PDF for the
position of the nth particle. The analytical expression which, in the present context,
replaces the formula (2.39) reads

aﬂ(mat) [M(m7t)]n_1 —p(z,t)

pn(z,t) = pe (=1 e , (2.81)
where
w(z,t) =p |4 47Dt + /Ox dyerf(&)] . (2.82)

Notice a straightforward probabilistic interpretation of these formulas. The first term
on the right-hand side of Eq. @D, p\/4Dt /7, is simply the mean number of absorbed
particles (Naps(t)) as given in Eq, (2.80). The second term on the right-hand side
represents the mean number of particles which are, at time ¢, located in the space
interval (0, z). Hence, at time ¢, p(z,t) stands for the mean number of particles located
to the left of the coordinate x, including those which were absorbed. In Eq. one
recognizes the probability (Ou/0x) dz of finding a noninteracting particle in the interval
(z,z 4+ dx) multiplied by the probability that there are (n — 1) particles to the left of
z (including those already absorbed by the boundary).

The formal derivation of Eq. from Eq. proceeds as follows. At the
initial time we assume that N particles are homogeneously distributed within a finite
spatial interval (0, L). For a large L, the probability of finding a single particle to the
right of x behaves as

9] L
/w dx'/o %f(:c',ﬂy,()) ~1-— % M(i’ t), L — oo, (2.83)
where p = N/L. We insert this estimation into Eq. . The final result follows
after performing the thermodynamic limit: L. — oo, N — oo, and p is fixed. Notably,
the passage from Eq. to Eq. is similar in spirit to the well known passage
from the binomial to the Poisson distribution (the law of rare events [164]). Actually,
this analogy is more than just a formal curiosity. After the discussion of PDFs for times
of absorption it will become clear that (at given t) the tracer PDF ({2.81) is nothing
but the PDF for the position of the nth point of the spatial inhomogeneous Poisson
process with the z-dependent rate p(x,t) and with a stochastic “initial condition” at
z = 0.
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2.3.3 First-passage properties
Survival probabilities

In the thermodynamic limit, the survival probability of the nth tagged particle is ob-
tained by the spatial integration of the PDF ([2.81)). The per partes evaluation of the
integral in question yields the recursion relation for the survival probability S, (¢):

0,6)]"
S (8) = Su(t) + o700 DT (2.8)
n!
with the boundary term given by Si(t) = e~#(O01)  Hence, the survival probability of
the nth particle reads

Sp(t) = e HOD) nf [”((;"t)]k. (2.85)
k=0 ’

The long-time asymptotic behavior of S, (¢) is controlled by the term with the
highest power of 1(0,t):

< o)
P ﬂ> —
Sn(t) ~ W e’ 4Dt/ﬂ'7 t — o0. (286)

Thus, for any n, the survival probability decays with time as a stretched exponential, in
contrast to its power-law decay in the finite- N case. The particle label modifies
the asymptotic behavior just through the polynomial prefactor. For n = 1 the stretched
exponential has already been anticipated in the large-N behavior of S1.n(t).

PDFs of absorption times

The stochastic process Naps(t) of absorption of noninteracting particles is the Poisson
process with the mean number of points in (0, ¢) given by Eq. . The mean number
of points grows with time as t!/2, whereas the rate of the Poisson process, i.e. the time
derivative of its mean, decreases as t~/2. The same holds true also for interacting
particles, since the overall mass transport out of the interval is not affected by the
hard-core interaction. Thus the PDF for the time of absorption of the nth particle
¢On(t), on(t) = —dS,/dt, equals the PDF for the time of occurrence of the nth Poisson
point:

n—1
on(t) = [d(Nglt)s(t)q [<N(3:L)s£t)1>)]! o~ (Nans (1)) (2.87)

This fact can also be verified directly by taking the time derivative of Eq. (2.85)).
In contrast to the finite-N case, now, all moments of the above distribution,

(Th) = /0 Tt tEn(), (2.88)

are finite and can be given in a closed form. For any k, we have

2k +n—1)! T \*
(Th) = ( (;L— 0 : <4D,02) ‘ (2:89)

The moments decrease with increasing the initial density of particles, and, they increase
with the particle order n. The mean time to absorption of the nth particle grows with

n as 77,22

(To) = (n+ 1)n (41%2) . (2.90)
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The variance of the time to absorption of the nth particle is proportional to n3:

<[Tn - <Tn)]2> =2(2n+3)(n+1)n (4&2)2 : (2.91)

Hence, the relative deviation from the mean decreases as n=1/2 for large n.

The Poisson process is ommnipresent in the current semi-infinite system with the
density profile p(z,t). Let us stop the time at the instant ¢ and let us look at the
statistical properties of the spatial point process that describes the distribution of
particles along the half-line x € [0,00). It is convenient to picture the absorbing
boundary as the trap located at the point * = 0. The overall number of particles
located inside the trap at time ¢, N,ps(t), is a random number drawn from the Poisson
distribution described above. This number represents the initial condition for the
spatial point process on the half-line z € (0,00). Conditioned on the initial state,
the number of points located in (0, z) is given by the Poisson distribution with mean
value [ da’ p(a',t). Correspondingly, the tracer PDF is nothing but the PDF
for the nth point of the spatial inhomogeneous Poisson process characterized by the
rate p(x,t) and with the initial condition drawn from the Poisson distribution with the
mean (N,ps(?)). In symbols, we have

n—1 x / / n—1—k k
dz'p(x’ t — (™ a2 oz Nabs(t _
pn(l-,t):p(l',t)z o ( /1(1_)]]4;)1 e Jo @' nl ,t)[<bk'()>]e (Navs(t) - (2.92)
=0 n : .

2.3.4 Tracer dynamics with absorption

We are again primarily interested in the long-time dynamics of the tracer. After em-
ploying an expansion of the integral of the error function in (2.82)), the main asymptotics
of the PDF ([2.81)) reads

(p 4Dt>n_l
~ T —p\/4Dt/ 7 px px2/\/47rDt:|
pn(x,t) (= 1)! e {\/@ e , t — oo. (2.93)

The squared bracket encloses the Rayleigh distribution, and it is multiplied by the
main asymptotic term of the survival probability S, (¢), cf. Eq. (2.86)). That is, in the
long-time limit we have

Pu(,t) ~ Su(t) [’””me—mz/ v4ﬂDt} .t oo (2.94)
T

As for the first two moments of the tracer position we get the asymptotic formulas

n—1
/4Dt
(p ”) Vs Dt o—0V/ADi/x

(Xn(t)) ~ TR 2 (2.95)
n—1
W) (i
iy~ = 1>>! e 290

Contrary to the finite-IV case (see Eqgs. (2.66)), (2.67), (2.69)), and (2.70])), the moments
vanish for any n. The decrease is controlled by the stretched exponential which is
multiplied by the n-dependent power of time.
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2.3.5 Tracer dynamics conditioned on nonabsorption

Let us now focus on the dynamics of the tracer which has survived by time t. Its PDF
is given by
DPn (1: ) t)
T, >t) = . 297
The long-time behavior of the above fraction follows from the asymptotic representation
of the PDF p,,(z,t) given in Eq. (2.94]). Hence again we obtain the Rayleigh distribution:

T 2
2t Ty > ) v —— o=@ /ADaVE o 2.98
pn( | n ) 2D1/2ﬁ ( )
where we have introduced the fractional-order diffusion coefficient
D

The asymptotic form should be contrasted against the single-particle PDF
, and the tracer PDF for the finite-N case. As compared to the two
scenarios, in the present thermodynamic system the conditioned dynamics of the tracer
is slowed down. The first two moments of the PDF are

<XN<t)>Tn>t ~y 7TDl/Z\/{Ea (2.100)

(X2(1)) ~ADy V. (2.101)

Thus the average position of the tracer increases as t/4 in contrast to t'/2-law as
observed for a finite N (cf. Eq. ) The second moment grows as t'/2 and hence
the tracer dynamics is subdiffusive.

Interestingly enough, the diffusivity D, is different as compared to the diffusiv-
ity obtained in a homogeneous system without the absorbing boundary. As it
was pointed out in Refs. [61,/128], the diffusivity is sensitive to the way the system is
prepared. In Ref. [128] it has been demonstrated that D;/, depends on initial condi-
tions. In fact our result indicates that the diffusivity also depends on boundary
conditions used.

Trn>

2.4 Summarizing remarks

Let us now briefly interlink different aspects of the dynamics of the nth tagged particle
which were derived in the present chapter.

In the finite-N case the following overall picture emerges. Due to the hard-core re-
pulsion, the particle which possesses a right-hand neighbor feels the (moving) reflecting
barrier on the right. In the long-time limit, the barrier significantly restricts its mo-
tion, it reflects the right-moving paths and hence increases the number of left-moving
paths. This left-pushing tendency is illustrated by the asymptotic formulas ,
, describing the dynamics of the position and by Eq. for the survival
probability of the tagged particle. The mean position, the mean squared displacement
and the survival probability of the tracer decay algebraically in time with the dynami-
cal exponents which depend on the number of particles located to the right of it. The
exponents quantify the effect of the interparticle repulsion. Of course, the rightmost
particle has no right-hand neighbor and hence it behaves differently as compared to
all other particles. In the transient regime, its left-hand neighbors still exist and the
first particle is pushed to the right (see Fig. . In the long-time asymptotic regime,
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all other particles have already disappeared and the first one simply undergoes the
free diffusion. The conditioning on nonabsorption removes a part of the left-moving
trajectories from the unconditioned ensemble. Hence it imposes, effectively, the right-
oriented drift. Surprisingly enough, the conditioning significantly reduces the effect
of the hard-core interaction. The cooperative impact of the both tendencies is artic-
ulated by asymptotic formulas , . The conditioned mean position of the
tracer grows as t1/2 regardless its order. The interparticle repulsion manifests itself
only through the order-dependent tracer diffusion coefficient D,, = D/(N —n + 1).
Thus, loosely speaking, the closer the relative particle position to the boundary the
less mobile should that particle be in order to survive for a long time.

The above reasoning holds for the system which initially contains a finite number
of particles. In the thermodynamic limit, i.e., assuming initially an infinite number
of particles randomly distributed along a half-line with a constant mean density p,
the long-time dynamics of a tracer is rather different. The new features are based on
a simple observation that, for any tracer, there is infinite number of particles to the
right of it. This implies the n-independent exponential damping of the unconditioned
moments , and of the survival probability . In all asymptotic laws,
the initial order of the tracer appears only in the algebraic pre-exponential factor.
The conditioned dynamics of the tracer is subdiffusive and independent of n (see Egs.
(2.98), (2.100]), and (2.101))). Also in the present infinite-NN case, the conditioning on
nonabsorption removes a part of the left-moving trajectories from the unconditioned
ensemble. However, the emerging right-oriented drift scales with time as ¢'/4 (cf. Eq.
m ) in contrast to its t'/2 scaling for the finite-N case (see Eq. and also
Eq. @D for the single-diffusing particle). Notice that the behavior of conditioned
second moments in the two settings is in parallel to what has been observed in the
SFD without the absorbing boundary. Namely, for a finite N, Aslangul has shown (see
Sec. that, in the long-time limit, the tracer diffusion is normal with the effective
diffusion coefficient dependent both on N and on n. On the other hand, for an infinite
N, one observes an anomalous diffusion and no n-dependence of the diffusivity. The
present chapter detects the same features in the SFD with an absorbing boundary.
However, there are important differences. First, in the present setting the renormalized
diffusion coefficients are given by the simple closed expression and they decay as 1/N
for any fixed n and N large. Second, the generalized diffusion coefficient D /5 derived
for the semi-infinite system differs from that for the SFD on an infinite line which
exemplifies the long-lasting memory effects presented in the model.

Open questions. Among many possibilities, there exists one interesting generaliza-
tion of the present setting. Namely, assume that only the nth tracer is absorbed by
the boundary at the origin, whereas all other particles diffuse freely on the whole re-
al line. This problem can be readily reformulated as the order-statistics-like problem
for noninteracting particles. However, despite its simple formulation, the problem still
lacks an exact solution. It has been studied by approximative and numerical methods
in Refs. [59//147]. For the finite-N case discussed in Ref. [147] the survival probability of
the nth tracer decays algebraically in the long-time limit, Sp.n(t) ~ t~#»~ | the decay
exponents being different from those obtained in Eq. . The infinite-N case, i.e.,
the system in the thermodynamic limit, has been discussed in Ref. [59] in connection
to a first-passage time density of the fractional Brownian motion.
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3. First-passage properties of a
tracer in a finite interval

3.1 Definition of the model

: Absorbing
Qgsg&tgng or reflecting
K ry boundary \

x=0 x=L

Figure 3.1: Schematic illustration of the finite interval containing N particles. The left
boundary is absorbing. The right boundary is either absorbing (Sec. or reflecting

(Sec. .

In the present chapter the diffusion of hard-core interacting Brownian particles in a
finite one-dimensional interval will be discussed. We consider two types of boundary
conditions and two types of initial conditions. The left boundary of the interval is
always absorbing, the right boundary is either absorbing (Sec. or reflecting (Sec.
3.3). The chapter is primarily based on Ref. [41].

Firstly, we assume that initially (at ¢ = 0) N particles are distributed randomly in
the interval (0,L). During the time evolution (¢ > 0), each particle diffuses with the
same diffusion constant D. The particles cannot enter the interval from the outside
and they are allowed to leave it only through the absorbing boundary. Again, at initial
time ¢ = 0, we label the particles according to ordering of their positions from the left
to the right (cf. Fig. [3.1]). Hence initially we have

0 < X1n(0) < Xon(0) <...<Xny.n(0) < L, (3.1)

The hard-core interaction guarantees that the initial ordering of particles is conserved
over time. When the right boundary is reflecting then, similarly as in the semi-infinite
case studied in Chap. [2| the particle No. 1 is the first one that might be absorbed. It is
only after this event that the particle No. 2 can approach the origin and be absorbed.
Hence when the right boundary is reflecting, the (random) times of absorption are
ordered as

0< Ty <Tony<...<Tpn.py <00, (3.2)

as it is the case in the semi-infinite setting, cf. Eq. . When the right boundary is
absorbing the above ordering breaks down. In this case it is intuitively expected that
an exceptionally long absorption time is exhibited by the central tracer (n ~ N/2),
whereas the leftmost and the rightmost particles will be absorbed among the first ones.

The second initial condition discussed in the present chapter is the following. We
consider the interval (0, L) initially occupied by a random number of particles but with
the constant mean density p. The diffusion of the tracer in the interval with such an
initial condition can be modeled as follows. We imagine that for ¢ < 0 the interval
(0, L) belongs to the whole real line on which the particles are distributed randomly
with the uniform mean density p. Subsequently, at ¢ = 0, perfectly absorbing traps
are activated at x = 0 and z = L. At the instant of the activation, the interval (0, L)
contains N particles, N being a random number with the mean value equal to pL.
The probability that the initial number of particles equals N is given by the Poisson
distribution:

PNy = jaN e L. (3.3)
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After the activation of the traps, i.e., for ¢ > 0, the particles diffuse within the finite
interval (0, L) which is decoupled from the line by the absorbing boundaries at x = 0
and x = L. Also in this case if a particle hits an absorbing boundary, it leaves the
interval and will never return. This initial condition is physically appealing for the SFD
on the interval of a random length (Sec. |3.2.3). An analogous picture emerges when
the right boundary is reflecting.

The important part of Chap. [2] has been devoted to the thermodynamic limit in
the semi-infinite system (N — oo, L — oo, and p = N/L is fixed). Presently the
thermodynamic limit is trivial. When the limit is performed while n is kept constant,
i.e., n < N, the nth tracer looses an information about the right boundary and its
dynamics becomes equivalent to that of the tracer diffusing in the semi-infinite interval
with the constant initial density of particles, cf. Sec. When the thermodynamic
limit is performed e.g. for the central tracer, i.e., when n o« IV, the tracer looses an
information about both boundaries and we recover the classical SFD on an infinite line
discussed in the introductory Sec. However, what will be studied in the present
chapter is the behavior of first-passage properties for the system approaching the ther-
modynamic limit, i.e, we will find how the time of absorption of an individual tracer
depends on NV and L when N and L are large but still finite.

3.2 Both boundaries are absorbing

3.2.1 Single noninteracting particle

Let us now turn to the case when the both boundaries are absorbing. Now, the single-
particle diffusion equation is supplemented with absorbing boundary conditions:
f(0,t) = f(L,t) = 0. Below we summarize essential properties of the single-particle
dynamics which we will further contrast against the behavior of a tagged particle in the
system with interaction. For a more thorough treatment of the single-particle problem
including all derivations we refer see Refs. [151}/165].

Suppose that the particle starts its Brownian motion from the coordinate y, y €
(0,L). What is the mean time before it hits any of the boundaries? This mean exit
time, or mean first-passage time (MFPT) to any of the boundaries, is proportional to
the product of initial distanced from the both boundaries. More precisely, it is given

b
y )= 25 (4) (1-2). (3.4)

Notice that for initial positions located in vicinity of one of the boundaries the mean
exit time grows linearly with L. Whereas for initial positions located in the interior
of the interval the MFPT increases as L?. When the initial position of the particle is
drawn from the homogeneous distribution, its MFPT averaged over all possible initial

coordinates reads L 12
Y
T) = —= (T = —. :
(T = [ TW) = 55 (3:5)

Eq. has a generic scaling form “(length)?/(time) = constant” which we could an-
ticipate from the time-dependence of the mean squared displacement of a free Brownian
particle.

For absorbing boundary conditions, f(0,t) = f(L,t) = 0, and for the random initial
condition f(x,0) =1/L, x € (0, L), the solution of the diffusion equation can be given
as the eigenfunction expansion

4 oo
)= 11 2 5%

k=0

sm[L(2k:+1) } exp{— [2(21@ + 1)}2 Dt} . (36)
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Figure 3.2: First-passage properties of a single particle for L = 50, D = 1. Panel (a)
shows the MFPT (3.4) against the initial position of the particle. Panel (b) depicts the
exact survival probability (the solid line), the long-time asymptotic representation
(3.9) (the dot-dashed line), and the short-time asymptotic representation (the
dashed line). Note an excellent agreement of asymptotic expressions with the exact
curve even for ¢t ~ (T). The MFPT (T) is given by Eq. (3.5)).

The survival probability of the single noninteracting particle, S(t), is given by the
spatial integral of the PDF f(z,t) over the whole interval (cf. Eq. (2.11)):

- 2
22 2k,+128 P{ [L(%*‘l)} Dt}- (3.7)

The survival probability can related with the PDF for the time of absorption ¢(t):

t d
£ =1- / at'o(t), hence o(t) = . S(t). (3.8)
0
For times ¢ larger than the MFPT (T) both these functions vanish exponentially fast:
8 7\ 2
S(t)~ — exp|—| + ) Dt|, t> (T) (3.9)
us L
8D T\ 2
o(t) ~ o5 exp [— (L> Dt] L s (T). (3.10)

The short-time asymptotic behavior can be inferred from the long-time one by the
Poisson summation formula [166]. For times ¢ shorter than MFPT we have

4 | Dt

6(t) ~ i\/g t < (T). (3.12)

The above asymptotic representations of the survival probability S(¢) are compared
with the exact expression (3.7) in Fig. (b).

3.2.2 Fixed initial number of interacting particles

PDF of a tagged particle

When the initial number of interacting particles equals to N, one can derive the PDF
for the position of the nth particle along the same lines as in the case of one absorbing
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boundary, cf. Eq. (2.39)). The resulting PDF has the same form (and more importantly
a similar interpretation in terms of noninteracting particles) as its counterpart (2.39)).
That is, also in the present case with two absorbing boundaries, we obtain

N . -
DI g @ O F@ " = Pt (3.13)

pn:N(ﬂja t) = (

where, now, the single-particle PDF f(z,t) is given in Eq. (3.6]), and also the probability
F(x,t) to find a noninteracting particle to the left of x, z € [0, L] is slightly modified
as compared to Eq. (2.40). Now F(x,t) is given by

Fla,t) = % 1= S(0)] + /0 Cad (@), (3.14)

Eq. formally differs from the corresponding Eq. by the first term on the
right-hand side. This term gives us the probability that a noninteracting particle is
trapped by the left boundary before ¢. Since the initial condition f(z,0) is uniform, the
present case is left-right symmetric, i.e., the probability that the single noninteracting
particle is trapped by the left boundary is equal to the probability that the particle
is trapped by the right boundary. Both these probabilities are equal to [1 — S(t)] /2,
where the single-particle survival probability is given in Eq. (the generalization
to the asymmetric initial condition is straightforward).

Survival probabilities
The probability that the nth particle has not touched an absorbing boundary by time

t, i.e., its survival probability, is given by the spatial integral

Son(t) = /0 " de pr (1), (3.15)

The integral can be expressed in terms of the probability F'(z,t) evaluated at boundary
points of the interval. We obtainﬂ

A S G VA
Sn:N(t):n<n>Z]V_n_|_k+1< k ) (3.16)

k=0
% {[1 . F(()?t)]N—n—i-k—l-l - F(L7t)]N—n+k+1} :

where the expressions in squared brackets read

1 1
1—F(0,t) = 3 1+ S(t)], 1—F(L,t) = 3 [1—S(t)]. (3.17)
Hence the survival probability S,.x(t) is again expressed solely in terms of the single-
particle survival probability S(¢) which is given by Eq. (3.7).

In the long-time limit, the leading term of sum 13.16: reads

Sp:n(t) ~ % (f) S(t), t— oo, (3.18)

or, more explicitly:

2
Sn:n(t) ~ %2]\7771 <];7> exp [— <7lr/> Dt] , t— o0 (3.19)

!The derivation of Eq. (3.16) from Eq. (3.15) is analogous to the derivation of Eq. (2.43) from
Eq. (2.42)) with just one difference: now, the values assumed by auxiliary function B(x,t), B(x,t) =
1 — F(z,t), at the boundaries of the interval are given by Egs. (3.17).
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Thus the asymptotic survival probability of the nth tracer decays exponentially with
time, the decay rate being independent of n. The hard-core interaction manifests itself
only through the n-dependent prefactor. Moreover, the asymptotic decay rate of Sy,.n (%)
is the same as that for the single noninteracting particle. This can be understood on
physical grounds. Due to the mutual entropic repulsion among the particles, it is highly
probable that the long-lived tagged particle eventually remains alone in the interval.
Therefore, for any particle order n, the long-time dynamics of such particle should
resemble that of a noninteracting particle.

The long-time decay of the survival probability is exponential for any particle.
On the other hand, its short-time behavior strongly depends on the order n. The
survival probability of the particle that starts its motion in a vicinity of an absorbing
boundary decays to zero on time scales much shorter than the single-particle MFPT
(T), (T) = L?/12D. Contrary to that, a particle that is initially located near the center
of the interval (n ~ N/2) is “screened” from the both boundaries by an almost equal
number of particles. Therefore, in this latter case, the survival probability is almost
unity for the times comparable to (or longer than) (T). This diversity in time scales
is behind the fact that, for a general label n, there exists no unifying formula for the
short-time behavior of S,.n(t). However, we may benefit from this splitting of time
scales in the following discussion of large-IN behavior of PDFs for exit times.

Exit time of the particle that leaves the interval as the last one

Before discussing mean exit times of individual interacting particles, let us answer the
following questions. What is the longest MFPT that occurs in the problem? How
does this MFPT scales with N and L? For the nth tracer, should we expect a scaling
behavior different from Brownian MFPT o L??

Answers to all these questions would become clear after the derivation of MFPT for
the particle that leaves the interval as the last one (regardless its label n). The survival
probability of that particle, say Siast:n(t), equals the probability that at a given time ¢
there is still at least one particle diffusing in the interval. In symbols:

Sast:n (1) = 1= [1 = ()] . (3.20)

The mean exit time

<T1ast:N> = /0 dt Slast:N(t)7 (3'21)

by definition is the upper bound for any MFPT in question. The evaluation of the
integral for N > 1 yields asymptotic behavior of this MFPT. It is instructive to derive
the asymptotic result by two independent methods: (A) a direct method based on an
approximation of S(t); (B) a rigorous method that proves that [1 — Sist:n ()], after a
proper rescaling of ¢, converges to the Gumbel distribution as N — oc.

(A) The direct method. We notice that for large N, the term [1 — S(¢)]" in the
integrand on the right-hand side of contributes significantly to the value of the
integral only for such ¢t when S(t) is vanishingly small. But this happens only for
t > (T). Therefore, we can safely replace S(t) by its asymptotic form (3.9). After this

step, we perform the substitution v = exp {— (%)QDt] which yields

12 1 17(17U)N 1.2 1 1— 2N 2 Mg
R q _ d - — 3.22
< last.N> 2D /0 u u m2D 0 ‘ 1—=z 7D 192:21 ke ( )

where another substitution, z = 1 —u, just adjusts the first integral to the usual integral
representation of harmonic numbers Hy, Hy = 14+1/2+...+1/N. As the last step, we
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recall the asymptotic behavior of harmonic numbers: Hy ~ [log(N) 4+~ + 1/2N — .. ]
which gives us the asymptotic relation

L2
(Thast:N) ~ =D [log(N)+~], N>1, (3.23)

where v ~ 0.5772156649 is Euler’s constant.

(B) Convergence in distribution. Alternatively to the above direct method, we can
use the asymptotic theory for sample extreme (see App. to show that the distribu-
tion of the lifetime of the longest-living particle converges to the Gumbel distribution.
This is intuitively expected since the survival probability S(¢) decays exponentially
with time. To prove the convergence in distribution, let us choose the standardizing
constants as follows:

L? L? 8N
Then we obtain the following large-N limit:
e\
[1— S(ant + by)]N ~ <1 - N) — exp(—e_t> , as N — oo. (3.25)
In other words, we have just shown that
. Tlast:N - bN —t
lim P —_— = — . 2
i rob{ an < t} exp( e ) (3.26)

Hence, the large- N asymptotic behavior of the survival probability of the longest-living
particle is given by

72 8N
Slast:N (t) ~ 1 — exp | — exp —ﬁDt + log 7 , as N> 1. (3.27)

This result yields large-N expressions for all moments of the extreme trapping time.
The first moment, given by the spatial integral (3.21), reads

L? 2
<Tlast:N> ~ % llog(N) +v— 10g<8>] , N>1, (328)
and the variance of T,g. vy asymptotically behaves as
22 [ I2 2
<[T1ast:N - <Tlast:N>]2> ~ E % s N> 1. (329)

(C) Comparison. Equation should be compared with Eq. . Notice, that
the main asymptotic term for large IV is identical in the both equations. In derivation
of Eq. we have replaced S(t) by its long-time behavior which is valid only
for ¢t > (T). By this replacement, we have committed an error which is independent
of N and which is of the order of L?. The exact result quantifies this error
and shows that by the direct method we have overestimated the integral by the value
L? 10g(%2> /m2D. The advantage of the direct method (A) resides in the fact that it
provides a quick estimate for large-IN asymptotics without any previous knowledge of
standardizing constants (3.24). The advantage of method (B), besides the fact that it
is rigorous, is that it is valid also when we perform the thermodynamic limit (and not
only large-N limit with fixed L). That is, all steps of the method (B) remain unchanged
if we replace L by L = N/p, where the density p is a fixed positive number whereas
the particle number N tends to infinity.

Further we will use only the direct method. Nevertheless, in all cases, both methods
can be employed when we are interested only in the main term of the large- IV asymptotic
behavior.
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PDF of the exit time for a tagged particle

For a single noninteracting particle let ¢r,(t), ¢r(t) denote the PDF of the exit time
through the left, and through the right boundary, respectively. Then the integral
fg dt’ ¢, (t') equals to the probability that the single-diffusing particle has been trapped
by the left boundary in (0,t¢), and similarly fg dt’ ¢r(t') for the right boundary. Of
course, in our symmetric case we have ¢r,(t) = ¢r(t) = ¢(t)/2 with the PDF ¢(¢) given
in Eq. , however, it is enlightening to consider the two PDFs separately for a
while.

Having prepared the two functions we are now ready to write the PDF for the time
at which the nth interacting particle hits the left absorbing boundary. This PDF reads

N—n

(0 = a0 [ [ wa@] [ [atwo] L s

That is again the hitting time of the nth interacting particle is statistically equivalent to
the nth absorption event happening in the reference system of noninteracting particles.
More precisely, the probability that the nth interacting particle hits the left absorbing
boundary at ¢, t € (¢t,t + dt), equals to the product of four terms: 1) the probability
[¢1,(t)dt] that a single noninteracting particle is absorbed by the left trap in (¢,¢ + dt);

n—1
2) the probability { Jy dt'ér(t! )} that at the time of absorption there are already

(n — 1) particles residing in the left trap; 3) the probability {1 — fodt' (¢ )} e that
the remaining (N — n) particles are located anywhere except in the left trap; 4) the
combinatorial prefactor which accounts for all possible labellings of the particles in the
two groups from points 2) and 3). The analogous equation holds for ¢& \/(2), i.e., for the
PDF describing the time at which the nth particle is absorbed by the right boundary:

o - 4t ()

After summing the two equations we obtain the PDF for the time of absorption of
the nth tagged particle regardless the information at which boundary the absorption
takes place. Let us denote this PDF by ¢,.n(t), then we have

bu(t) = = {mt) [awvae] ™ [i- [avnw]

[ atont)] o 1= [ aton) n_l} .

This equation is the generalization of Eq. to the present case with two absorbing
boundaries. Indeed, Eq. can be obtained from Eq. in the limit L — oo
since in this limit ¢ (¢) vanishes (the diffusing particle cannot reach an infinitely distant
right boundary in a finite time) and ¢r (t) approaches the PDF ¢(t) for the time of
absorption on the semi-infinite interval used in Eq. . Below we will demonstrate
that Eq. contains as a special case also the equation for the semi-infinite
system in the thermodynamic limit.

Returning to the finite-L symmetric case, we can use ¢r(t) = ¢r(t) = ¢(t)/2 to
obtain

N‘ n—1

(n— 1)I(N —n)! (3.31)

Py (t) =

on(®)| [ aton(t)

(3.32)

+ ¢r(t)

() = T 3 {1~ SO S

+ = S@N T+ S

(3.33)
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Alternatively, the above result can be checked by taking the time derivative of both
sides of Eq. since we have ¢,.n(t) = —dS,.n(t)/dt. On the other hand, Eq.
provides a straightforward probabilistic derivation of a somewhat untransparent
sum occurring on the right-hand side of Eq. .

PDF provides the complete description of the absorption time for the tagged
particle for any n, N, and L. This desired information is encoded in a rather complex
structure of the PDF. Consequently, the task to derive any averaged quantity form the
exact result is far from being trivial. Explicit formulas can be obtained only
in a few limiting cases. The first such situation corresponds to the large-N limit of
the first-passage characteristics for the central tracer. The second concerns the tracer
initially located near one of the absorbing boundaries.

Exit time for the central tracer

Let us now assume that initially there are (2N 4 1) particles randomly distributed in
the interval of the length L. The PDF for the absorption time of the central particle
labeled by ¢, ¢ = N + 1, follows form Eq. after the substitutions n — (N + 1),
N — (2N 4+ 1). We get

2N +1) (2N
Ge:an41) (E) = (22N) ( N

>¢(t)[1 —-S2®)N, ¢=N+1. (3.34)

In order, to obtain the large-IN behavior of the PDF, we choose the following stan-
dardizing constants:

ay = (3.35)

i by —
2D’ N= 2D 72

L? L? (&/N)
log .
Note that the first constant, ap, which determines the asymptotic dispersion of the
absorption time is exactly the same as that for the longest-living particle, cf. Egs.
(3.24]). The second constant, by, which determines the mean time of absorption grows
slower with N as compared to that in Eq. (3.24]). Mathematically this fact arises due
to the second power of S(t) in Eq. (3.34) (as compared to the first power of S(t) in Eq.
(3.20)). After the rescaling of the time variable, the following limit holds
2
]\}gnoo 271'3/2

Which means that the large-IN asymptotic behavior of the PDF (3.34) is given by

¢c:(2N+l) (aNt + bN) =e eXp(_e_Qt) . (336)

D
be:(2n+1) () ~ 27T3/2ﬁ e~ (t=bn)/an exp[—e_Q(t_bN)/aN} , N>1. (3.37)

The large-N asymptotic behavior of all moments of the absorption time TC:(Q N+1)
can be derived directly from the asymptotic PDF (3.37)). For the mean and the variance
of the absorption time we obtain

L? 4
<Tc:(2N+1)> ~ 272D {log(N) +y+ 410g(7r>} , N>1, (3.38)
2 1 2\’
<[Tc;(2N+1) - <Tc:(2N+1)>} > ~ 5 <27rD> ;o N>1, (3.39)

respectively.
Thus, the mean absorption time for the central tracer exhibits a similar large-IV
behavior < L? log (N) as that for the longest living particle, cf. Eq. (3.28)). Obviously,
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the absolute value of <TC:(2N+1)> is smaller as compared to <T1ast:(2N+1)> since the
central particle can in general be absorbed earlier than the longest-living particle. The
hindering introduced by surrounding particles reduces the relative fluctuations of the
absorption time as NN is increased. This reduction is however quite weak, the relative
fluctuations decrease as 1/log(N) when N — oc.

Again notice that we have just discussed the large-N limit leaving the interval
length L finite. However, all conclusions holds true also for the system approaching the
thermodynamic limit (N — oo, L — oo and p is fixed) since the limit in Eq. is
valid also in this latter case (that is after the substitution L = N/p).

Exit time for the tracer initially located near the boundary

The second setting, when we can derive explicit results from the exact PDF is
when the tracer is initially located near the absorbing boundary, e.g. near the left one,
and both N and L are large (and n is finite, n < N). In this case the exact PDF
¢n:N(t) converges to the PDF for the absorption time of the nth particle in the
semi-infinite system. Formally, we can write

lim ¢p.n(t) = ¢n(t), N/L=p, pis constant. (3.40)
N—o00

Technically, the limit is performed after we replace the single-particle characteristics
S(t), ¢(t) by their small-time representations , . Then the second sum-
mand on the right-hand side of Eq. , which describes the absorption at the right
boundary, vanishes. The remaining term gives us exactly the right-hand side of Eq.
(12.56]).

3.2.3 Fixed initial density of interacting particles particles
PDF of a tagged particle

Let us now discuss the second possible initial condition. We now assume that N is the
Poisson random variable distributed according to Eq. . For a given IV, the PDF of
the nth tagged particle diffusing in such a system is given by Eq. . The PDF of
the nth tagged particle regardless the initial number of particles is obtained from the
PDF by the weighted summation over all possible initial numbers of particles:

pu@) = 3 pun(a. HPV). (3.41)
N=n

For a fixed n, the summation starts with N = n since for N < n we can formally write
pn:N(x,t) = 0: the nth particle simply does not exist in this case. The summation
yields )
ne
pn(z,t) = pLf(x, t)M e PLE@Y) (3.42)
(n—1)!
where the probability F'(z,t) is defined in Eq. .

In the present fixed-p setting the expression p,(z,t)dz has a similar meaning as its
counterpart p,.n(z,t)dz in the fixed-N case. Both quantities gives us the probability
that at time ¢ the nthe particle is located in (x,z + dx). However, we should mention
one important difference. Since presently N is random, it is no longer sure that the nth
particle is initially located in (0, L) (the interval may contain N particles with N < n).
Therefore, at t = 0, the PDF p,,(x,t) is not normalized to one, in contrast to the PDF
pn:N(z,t) for the fixed-N case. Presently we have

/OL dzpnp(z,0) =1— P(N < n), (3.43)
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where P(N < n) stands for the probability that the initial number of particles is less
than n. For a fixed n, the latter probability vanishes exponentially with increasing
interval length L:

—pL
P(N < n) P Z k' (3.44)
Notice also that the sum of individual tracer PDFs now becomes
o0
an(x,t) = pL f(x,t), (3.45)

n=1
where pL, the mean number of particles initially distributed in (0, L), takes over the
role of the fixed number of particles N in Eq. (2.41)).
Survival probabilities

The probability that, at time ¢, the nth tagged particle is diffusing in (0, L) is defined
by the integral

£ = /0 " 42 pu(on ). (3.46)

If we expand the exponential in Eq. (3.42)) into the power series, the required integration
can be carried out and we obtain

Sn:

pL)* +k +k
n — 1 | Z n -+ k kl {[F(L’t>]n - [F(Oat)]n } . (347)

Eq. (3.47) is valid for any ¢. For ¢t = 0 we get

S,(0)=1—erk nf W, (3.48)
k=0 :

which is nothing but Eq. . Hence apart from the normalization, the probability
Sp(t) possesses an analogous meaning as the survival probability S,,.n(t) given by Eq.
(3.16). Further we will refer to S, (t) as to the survival probability of the nth tracer.

The long-time analysis of S, (t) becomes more transparent when we depart from an
alternative form of S, (t). Namely, the survival probability S, (¢) can be obtained from
Sn.n(t) after performing the following summation

— S Sun(OP(Y), (3.49)
N=n

where P(N) is the Poisson distribution (3.3)). In the long-time limit, each summand
in the above sum is proportional to S(t), cf. Eq. (3.18]). Thus the asymptotic survival
probability is given by

Sp(t) ~ pL% e PLI25(1). (3.50)

Again, the long-time behavior of the survival probability id dictated by the single-
particle exponential decay of S(t). Eq. (3.50) represents the overall contribution to the
long-time properties of all possible initial particle numbers N for which n < N.
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Large-L limit

It turns out that the large-L behavior of first-passage characteristics of the nth trac-
er can be obtained from the large-N asymptotic behavior for the finite-IV case. This
intuitively plausible fact may not be obvious at a first glance, since the survival proba-
bilities in the both cases are given by rather different formulas, cf. Egs. , .
For instance, consider the survival probability for the particle that is trapped as the
last one. Presently, it reads

Shast () = i Stast:N (t) P(N) = 1 — exp[—pLS(t)], (3.51)
N=1

where the single particle survival probability S(t) is given by Eq. (3.7), and the corre-
sponding survival probability for the finite-N case, Sist:n (%), has been introduced in

Eq. (20)

The large-L behavior of St (t) is derived after choosing the standardizing constants
L? _L? 8pL
2p = pplel e )

Notice that the two constants are exactly the constants ay, by, for the finite-N case
as given in Eq. (3.24]), after the substitution N = Lp in by.
After the rescaling of the time variable the following limit, which is an analogue of

the limit (3.26]), holds

. Tlast - bL _ —t
LlE}I;o Prob{aL < t} = exp(—e ) . (3.53)

as

aj, = (3.52)

Therefore, the large-L asymptotic behavior of the survival probability

w2 8pL
Shast (t) ~ 1 — exp [— exp (—LQDt + 10g<7T2> , L — oo, (3.54)

is given essentially by the expression with N replaced by pL. All other limits,
i.e., the limits which concern the central tracer and/or the tracer located near one of
the boundaries, can be derived along the same lines. These results can be obtained
directly from the corresponding finite-IN formulas just by the substitution N — pL.

Random interval length

The present fixed-p setting is a convenient starting point to study the following sce-
nario for which the finite-N assumption would be unnatural. Let us now derive the
asymptotic tagged particle survival probability in the case when L is drawn from the
exponential distribution with the mean 1/pt,. Physically, this corresponds to the mod-
el of diffusion on the real line with randomly distributed perfectly absorbing traps.
The concentration of traps is uniform and it equals p;. In the model we assume that
the initial (i.e., for ¢ < 0) density of particles p is also uniform. Then, at the initial
time t = 0 the randomly distributed traps are activated. We are interested in the
average survival probability of the tagged particle in such a system. Notice that for
noninteracting particles, there exists a large body of literature on the subject, see, e.g.,
Refs. [167-174] and references therein.

The average of the survival probability S, (t) over the probability distribution of
the interval lengths is given by

Su(t) = /0 AL pue e P8, (1), (3.55)
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In order to investigate the long-time properties, we insert the asymptotic expression
(13.50) into the above integral. After that the integral is evaluated by a saddle-point
method P The result is

1/3
S, (t) ~ A(Dt)2n+1/6 exp{—g [27r2 <ptr + g) Dt} } , t — oo, (3.56)

where the prefactor reads

21 16pu (p/2)"  (2m?)n /6
3 w2 (n—1)! (pu + p/2) D)3

A= (3.57)

As it is for the single noninteracting particle |167], the decay of the survival probability
is slower than that when the interval length is fixed. The stretched exponential relax-
ation in Eq. results from very large (and extremely rare) interval lengths which
significantly enhance the asymptotic long-time survival probability [170]. A remarkable
feature, which is not present in a noninteracting model, is the dependence of the factor
in the exponential on p. That is on the initial concentration of particles and not only
on the concentration of traps pt;. This dependence is again the consequence of the
entropic repulsion among the interacting particles — the higher the initial concentration
the stronger the effective force that drives the tagged particle into the trap.

3.3 The left boundary is absorbing, the right boundary is
reflecting

Let us now discuss the first-passage properties of the tagged particle in a finite interval
where the right boundary is reflecting and the left boundary is absorbing. The setting
shares many common features with both the semi-infinite system of Chap. [2] and the
finite system with two absorbing boundaries discussed in the present chapter. There-
fore, instead of a full thorough derivation of all the, we restrict ourselves to a brief
exposition of the main similarities and differences of the present scenario as compared
to the two aforementioned cases.

3.3.1 Single noninteracting particle

Now, the PDF of the single noninteracting particle, f(x,t), satisfies the diffusion equa-
tion subject to the absorbing boundary condition at the origin, f(0,¢) = 0, to
the reflecting boundary condition at the right end of the interval, df/dx|,—r = 0, and
to the homogeneous initial condition f(z,0) = 1/L, z € (0,L). The solution of this

2The integral in Eq. (3.55) has the form
= n pt
I(t;n) = dL L exp{faLfﬁ}, a, 8> 0.
0

The substitution L = t}/3z brings us to the expression

I(t;n) = t(n+1)/3/ dz =" exp [—t1/3 (aﬂc + %)} .

0

In the long-time limit, the above integral is approximated by the Laplace’s method [175/176]:

(2n+1)/6
. - (2n+1)/6 _§ 2,\1/3 _ 27 (28)
I(t;n) ~ Cht exp{ 5 (Qﬁa t) } , Cn =1/ ERN S
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initial-boundary value problem can be expressed as the eigenfunction expansion:

4 & (-DF
L = 2k +1

Fz,t) = cos {M (2k+1) (L — :c)} exp{— [;L(Qk + 1)] i Dt} . (3.58)

Again, as it is the case for two absorbing boundaries (cf. Eq. ), each term of the
above series decays exponentially in time with the decay rate being higher for higher
values of k.

The survival probability of the single noninteracting particle,

L
_ /0 dz f(z, 1), (3.59)

is given by the sum

2
22 2k+1 { [QL(2]€+ )] Dt}, (3.60)

which in the long-time limit is dominated by the first term

8 7T\ 2
S(t) ~ 3 eXP|— (2L) Dt|, t — oo. (3.61)
The survival probability should be compared with the survival probability
for the finite interval with two absorbing boundaries. The two survival probabilities
coincide except for the fact that the damping factors in exponentials in Eq.
depend on 2L whereas their counterparts in Eq. depend on L. This fact follows
from the reflection principle. Any trajectory that hits the reflecting boundary at x = L
and then is absorbed at x = 0 possesses an image which passes freely through the
point x = L and is absorbed at x = 2L. Thus, as for the first-passage properties,
the diffusion of a single particle in the finite interval with the reflecting boundary at
x = L is equivalent to the diffusion of the particle in the twice as large interval with
two absorbing boundaries[|

3.3.2 Fixed initial number of particles

The very basic fact that presently we have only one absorbing boundary implies that
we can adopt all general formulas from Chap. [2] with just minor changes. Namely,
the PDF of the position of the nth tracer possesses exactly the same structure (and
interpretation) as that occurring in Eq. . Now the probability F(x,t) is given by

Fla,t) = [1 - S(t)] + /0 Cad f( ), (3.62)

which is formally equivalent to Eq. (2.40)). However, presently, the single-particle quan-
tities f(x,t), S(t), used in Eq. (3.62) are defined in Egs. (3.58)), (3.60)), respectively.

The second quantity which we can adopt formally without changes is the survival
probability for the tagged particle (2.43]) which reads

n—1 _1\k n—
Snn(t) = n(f ) > ]V_(nl+)k+1< . 1) [S(t) N (3.63)

k=0

3The equivalence holds for the first-passage properties only. The dynamics of the particle, e.g., the
time-evolution of its mean position, is rather different in the two systems. Indeed, in the present setting
the particle is pushed out of the interval by an entropic repulsion emerging from the collisions with the
reflecting boundary, whereas in the setting with two absorbing boundaries there is no boundary-induced
entropic repulsion at all.
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Notice that each summand of the above sum decays exponentially with time, cf. Eq.
(3.61). Hence the main asymptotic term in the long-time regime is that with £ = 0. It
reads

Spn(t) ~ N+71+1 (JZ ) SOt . (3.64)

After inserting the asymptotic representation (3.61)) into the above result we obtain the
explicit form of the tagged particle asymptotic survival probability:

Spn () ~ Crun eXpl—(N Cnt1) (;’L)Q Dt] Lt oo, (3.65)

where the prefactor is given by

n N 8 N—-n+1

Thus the asymptotic survival probability of the nth tagged particle decays exponen-
tially with time. The decay rate increases with the number of particles located between
the tagged particle and the reflecting wall at © = L, i.e., with (N —n). In particular,
the survival probability of the rightmost particle (n = N) decays exactly with the same
rate as that of the single-diffusing particle. In this respect the result is similar to
the one obtained in Chap. [2| for a semi-infinite interval with the absorbing boundary at
the origin (where the single-particle survival probability decays as the power law t=1/2,
cf. Eq. ) On the other hand, the asymptotic behavior is rather different
from that in the system with two absorbing boundaries, where the decay rate of the
asymptotic tagged particle survival probability is independent of both n, and N, cf.
Eq. .

We can proceed further and adopt the PDF for the exit time of the nth particle
and/or investigate the large-N behavior of the first-passage characteristics. For
instance, it turns out that the large-IN asymptotic behavior of Sy.n is given by Eq.
(3.27) with L being replaced by 2L. This is intuitively plausible since now the rightmost
particle is the particle that is certainly absorbed as the last one. Further, the large-N
limit of ¢1.n5(t) is exactly the same as in the case with two absorbing boundaries, cf.

Eq. @0)

3.3.3 Fixed initial density of particles

For a given N, Egs. , clearly demonstrate the consequences of the entropic
repulsion among the particles: the more particles are located between the tagged parti-
cle and the reflecting boundary the higher the decay rate of the tagged particle survival
probability. Hence, in the case when p is given (i.e., N is drawn from the Poisson
distribution ), one could expect that the decay rate of the tagged particle survival
probability is controlled by an average number of particles located between the tagged
particle and the reflecting boundary. However, this is not the case.

The survival probability of the nth tracer averaged over the initial number of par-
ticles is obtained by the summation

Sult) = 3 Sun (PN, (3.6)
N=n

where S,,.y(t) comes from Eq. (3.63), and P(N) is the Poisson distribution (3.3]). In the
long-time limit, only the first term contributes significantly to the sum (3.67)), since all
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other terms decay much faster with time, cf. Egs. (3.64), (3.65)). Thus the asymptotic
survival probability reads

n—1

S, (t) ~ pL((flL_)l)! e PES(t). (3.68)
The above result is formally similar with Eq. . However, the physical back-
grounds of both asymptotic representations are rather different. In the present case
described by Eq. , the long-time behavior of the survival probability Sy, (t) is dom-
inated by those events when the tagged particle is initially the right-most one (n = N).
On the other hand, Eq. represents the overall contribution of all possible initial

conditions for which n < .

3.4 Summarizing remarks

In the present chapter we have studied first-passage properties of the nth tagged par-
ticle diffusing in a finite interval with two types of boundary conditions: 1) the both
boundaries are absorbing; 2) the left boundary is absorbing and the right boundary
is reflecting. Let us now summarize the main physical consequences of the hard-core
interaction.

When the right boundary is reflecting, the particles located between the reflecting
boundary and the nth tagged particle create an effective (entropic) repulsive force which
shortens the time spent by the nth tagged particle in the interval. This is behind the
dependence of the decay rate of the asymptotic survival probability on (N —n).
This behavior is parallel of what has been observed in the semi-infinite system of Chap.
where, however, the asymptotic survival probability has decayed as the power
law. When, instead of the precise initial number of particles, the initial mean density
is given then Eq. yields the asymptotic survival probability averaged over all
possible initial particle numbers. In fact, Eq. represents only the first term of
the sum . Thus, in the fixed-p case, the long-time properties are controlled solely
by the initial configuration in which the nth particle is the right-most one.

The situation is rather different when both boundaries are absorbing. For a given N,
the long-time regime is governed by the scenario when the tagged particle remains alone
in the interval, cf. Eq. . Then the long-time dynamics of the tracer resembles
that of the single noninteracting particle. The only trace of the hard-core interaction
is contained in the pre-exponential factor of the asymptotic survival probability .
For a given p, all terms of the sum are asymptotically proportional to the survival
probability of the single noninteracting particle. Hence all initial conditions with all
possible initial particle numbers contribute to the asymptotics .

The exact PDF for the exit time of the nth tagged particle, cf. Eq. , allows
us to study the large-N (and/or large-L) behavior of the time spent by the particle in
the interval before it is absorbed. For the single noninteracting particle, the Brownian
scaling holds, i.e., the mean time of absorption is proportional to L?. The hard-core
interaction changes this scaling law by introducing a (marginal) logarithmic dependence
on N. More precisely, the mean time to absorption of the central tracer grows with N
as L?log(N), and its relative fluctuations decrease as 1/log(N), cf. Egs. , (13-39)).
The same holds true for the particle which leaves the interval as the last one (for both
types of boundary conditions), cf. Egs. , . The large-N behavior of the
tracer initially located in the vicinity of the absorbing boundary approaches that of
the tracer diffusing in the semi-infinite system in the thermodynamic limit discussed in

Chap. [2] Sec. [2:3:3]
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Finally, when L is random (and p is given), the tagged-particle asymptotic survival
probability exhibits a stretched-exponential decay. This behavior is observed
also in the case without the hard-core interaction. A remarkable consequence of the
hard-core interaction is the dependence of the asymptotic survival probability on
the combination (py, + p/2). That is, the lifetime of the tagged particle is reduced not
only by increasing the concentration of the traps pi, (as it is the case for noninteracting
particles) but it is also the initial density p of the interacting particles which controls
the time-asymptotic decay rate of the survival probability.
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4. Basics of stochastic
thermodynamics

Stochastic thermodynamics is a discipline exhibiting a rapid development over the past
two decades. The progress is driven by many applications to small (nano-sized) systems
of current interest (such as individual Brownian particles, biomolecules, quantum dots)
and, from the theoretical point of view, by recent discoveries of rather general relations
called fluctuation theorems. The adjective “stochastic” in the name of the field means
that the dynamics of the system under consideration is governed by stochastic evolution
equations, which in our case is the Langevin equation. The key quantities of the
classical thermodynamics such as heat, work and entropy are (within the framework
of the stochastic thermodynamics) defined along individual trajectories of the system.
Thus defined quantities are valid for finite, and even small systems which are driven
arbitrarily far from equilibrium, in contrast to their classical counterparts which are
used for macroscopic systems in equilibrium (or in a linear-response regime).

The main aim of the present chapter is to introduce basic concepts and relations
which are necessary for the study presented in Chap. First, we identify the work
and the heat for the system whose dynamics obeys the Langevin equation (Sec. ,
second we introduce two fluctuation theorems which proved to be useful in experiments
(Sec. , and third, we provide references to several reviews and to just a few selected
original works in the field (Sec. [4.3)).

4.1 Definition of stochastic work and heat

Nonequilibrium processes in biology and nanosystems are generally strongly affected
by thermal fluctuations. A paradigmatic model for gaining a better understanding of
nonequilibrium processes in such systems is a colloidal particle diffusing in water and
driven by an externally controlled potential. In the overdamped regime (characterized
by low Reynolds numbers) the position of the particle evolves according to the Langevin
equation

dX(t) = F(X(t),t)dt + V2D dB(t), (4.1)

where D controls the strength of the thermal noise and B(¢) is the standard Wiener
process. Specifically, in the present case of a thermal environment, the noise strength
is proportional to the heat-bath temperature, D = kgT (the particle mobility is set
to one). The external force, F(z,t), is derived from the potential U(z,t), F(x,t) =
—9oU Oz, which represents, e.g., the confinement imposed by an optical trap.

If the potential is modulated in time following a given externally imposed protocol,
the position of the particle evolves along a stochastic trajectory. Any single trajectory
of the particle in the time interval [0, ¢] yields a single value of the work W (¢) done on
the particle by an external filed. The work W(t) is a functional of the position process
X(t'), 0 <t <t and it is distributed with a probability density function p(w,t). The
probability p(w, t)dw that the work W(¢) falls into an infinitesimal interval (w, w+dw)
equals the probabilistic weight of all trajectories giving work values in that interval.
Analogical reasoning holds true for the heat exchanged with the heat reservoir, Q(t).

The stochastic heat and work are identified with the aid of the first law of thermo-
dynamics. In the overdamped regime which we consider here, the “internal energy” of
the particle is given by its mean potential energy (U(X(¢),t)). The total differential of
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the potential energy

oU oU

is decomposed into two parts. If we substitute into the above expression the (random)
position of the particle at time ¢, x — X(t), the following interpretation emerges
136,[37]. The first term on the right-hand side describes the infinitesimal increment of
the potential energy due to the particle relaxation in the time-independent potential.
We identify this term with the heat accepted by the system from heat bath:

5Q(t) = —F(X(t), t)dX(t). (4.3)

This relation is physically plausible since in the overdamped regime the total mechan-
ical force times the displacement corresponds to dissipated energy. The minus sign
corresponds to the convention that the heat transferred into the system is positive.

The second term on the right-hand side of Eq. describes the increment of the
potential energy due to the time-variation of the potential while the particle position is
held constant. In this case, the potential energy of the particle is either raised or lowered
purely due to the externally controlled modulation of potential U. Correspondingly,
this term describes as the work performed on the particle:

SW(t) = (8(]) dr, (4.4)
at X(t)
and hence altogether we have
dU(X(t),t) = 0Q(t) + IW (¢). (4.5)

The above definition of the stochastic work is in agreement with the definition of
“thermodynamic work” used in equilibrium theory [177]. However, the definition is not
identical to that used in introductory courses of classical mechanics, where to “work =
force times displacemen ”EI For the discussion of (un)ambiguity of the definition used
see Refs. [178-181] and references therein. See also Refs. [182,/183] for implications of
different work definitions in context of fluctuation relations.

4.2 Crooks fluctuation theorem and Jarzynski equality

Many important processes in biophysics take place in the liquid environment which is
maintained at a constant temperature. In classical thermodynamics, work w required
to transfer the system from the specified initial equilibrium state ¢ to the specified
final equilibrium state f by the means of an isothermal process is equal to the increase
of the system’s free energy AF, AF = Fy — F;, only if the process is carried out
quasistatically. That is the variation of the external parameters must be so slow that
the system is at any instant in the state of thermodynamic equilibrium with the heat
bath (the environment). Theoretically such a process would take an infinite time.
Contrary to this, any finite-time process is accompanied by the dissipation and the
required work fulfills w > AF. The extra amount of work performed on the system
during the nonequilibrium process as compared to the equilibrium one is dissipated as
heat which is accepted by the heat bath. The Crooks fluctuation theorem [184}|185]
states something remarkable. Consider the process ¢ — f, carried out at an arbitrary

!The mechanical definition of work is used whenever it is meaningful to split the total potential
energy U into two contributions: U = Up(z) + Uext(x, t), the first being an intrinsic time-independent
potential and the second describes the external driving. Then the “mechanical work”, dWyech =
—(OUext /Ox)dz, satisfies the integrated first law of the form AUy = Q(t) + Wiecn ().
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rate. At the initial state ¢ the system resides in a thermal equilibrium and the external
potential is equal to U(zx,0). Afterwards, in a finite time interval [0, t], the potential is
varied according to a given (forward) protocol U(z, ), 7 € [0,¢]. Then the PDF of the
work performed on the particle during the described nonequilibrium process fulfills

p(w,1)

D) exp[f(w — AF)], (4.6)
where 1/5 = kgT is the thermal energy, and pg(w, t) stands for the PDF of the work
performed on the particle during the reversed process: the process that departs from
the equilibrium state f (in this state the potential is equal to U(z,t)) and, during
the process, the potential is varied according to the time-reversed protocol U(z,t — 1),
7 € [0,1].

If we multiply the both sides of the Crooks theorem by pg (—w, t)e " and then inte-
grate over all possible values of w we obtain perhaps the most widely known fluctuation
theorem, the Jarzynski equality [186]

+o00
/ dw e PUp(w, t) = <e_ﬂw(t)> — e PAF, (4.7)

—00

The equality relates the free energy difference between two equilibrium configurations
of the system to the exponential average of the work done during a finite-time far-from-
equilibrium (forward) process.

Notice that the both above relations are perfectly consistent with the classical ther-
modynamics. If the process ¢ — f is reversible, then the work done during the reversed
process has exactly the same distribution as that in the forward one and the Crooks
relation implies that w = AF. This should be understood in the sense that the work
loses its stochastic nature and it simply becomes a number. On the other hand, for
an arbitrary process the Jensen relation (e*) > e'®) applied on the Jarzynski equality
gives us (W(t)) > AF.

The both fluctuation theorems provide us a completely new possibility how to mea-
sure equilibrium thermodynamic properties of small systems. Instead of trying to
perform an equilibrium manipulation e.g. with the single RNA macromolecule, one can
carry out a far-from-equilibrium experiment and use one of the fluctuation theorems
to recover the free energy differences. The latter procedure is favorable in systems
with complex free-energy landscapes where the condition of equilibrium manipulation
cannot be achieved in a reasonable time. Indeed, the Crooks fluctuation theorem has
been experimentally used e.g. in RNA pulling experiments with optical tweezers [187]
proving to be a reliable tool for extracting the free energy differences. In the (bidi-
rectional) experiment the both distributions p(w,t) and pr(—w, t) are measured, then,
according to Eq. , AF equals to value of w at which the two histograms p(w, ),
pr(—w,t) intersect when plotted against the common w axis.

In situations when the forward and reverse work distributions are separated by a
large gap on the w axis the above bidirectional method is biased by a rather large error
[188]. In these cases, the Jarzynski equality, or its modification due to Hummer and
Szabo [189] can be used to extract AF from a unidirectional experiment only [190/196].
In general, however, the application of Eq. can be difficult, because the exponential
average (exp[—FW(t)]) is dominated by rare trajectories with exceptionally low work
values w < AF. In experiments these rare trajectories are almost never observed
and even in computer simulations it is difficult to generate them with a sufficient
statistical weight. A possible solution is to extend measured histograms to the tail
regime w < AF by fitting to theoretical predictions. To this end, some generic behavior
in the tail regime needs to be assumed and attempts have been made recently in this
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direction [197-199]. For example, in the case of DNA/RNA unfolding, Palassini and
Ritort [197] suggested that the lower tail of the work distribution is unbounded and
decays as

p(w t) ~ q <|,w_wc|>ye_(|w_ﬂwc)5 w — —0o0 (4 8)

’ Q Q ' ’ '

with ¢ > 0 and Q > 0, w, is a characteristic work value. For the Jarzynski equality
to hold, it needs to be either § > 1, or 2 < 1 and § = 1. Interestingly, the asymptotic
behavior of the work distribution for a driven Brownian particle in a harmonic potential
was found to satisfy Eq. with 0 =1 and v = —1/2 [199,200]. One of the important
results of the analysis presented in the next chapter is that Eq. holds with § =1
also for an asymmetric and anharmonic potential, the exponent v in this case quantifies
a degree of anharmonicity.

A further information on experiments with single biomolecules (mechanical manipu-
lation of biomolecules by optical tweezers, or an atomic force microscope) can be found
e.g. Refs. [201-207]. Recent progress in fluctuation theorems and free energy recovery
is reviewed in Ref. |18§].

The above discussion may evoke an impression that the work fluctuations are ob-
servable in small systems only. Notice, however, that both the Jarzynski equality and
the Crooks theorem does not refer explicitly to the system size. As a matter of fact, the
two fluctuation theorems have been confirmed in an experiment involving a macroscop-
ic torsional pendulum [208}209]. See also Ref. [210] for an experiment with a granular
gas.

4.3 Further reading

The stochastic thermodynamics, despite its long history [211], experiences a rather
rapid development in recent years. The growing interest in the field is certainly stim-
ulated by discoveries of fluctuation theorems (FTs). Two prominent examples of FTs,
the Crooks theorem and the Jarzynski equality, have been discussed in Sec. The
theorems are remarkable for their generality and they extend our understanding of
thermodynamics far beyond its original area of validity (i.e., to small systems driven
arbitrarily far from the thermal equilibrium). Besides new relationships for free-energy
differences, the theorems resulted in a long-awaited breakthrough in our understand-
ing of how macroscopic irreversibility (dictated by the second law) emerges from a
time-reversal symmetric microscopic dynamics [212].

Probably the first appearance of fluctuation relations in the literature can be found
in papers by Bochkov and Kuzovlev [213]214]. The two works, however, have remained
unnoticed until recently, see Refs. [182,|183,215| for detailed discussion. A fluctuation
theorem for entropy production was first observed in simulations of sheared fluids by
Evans et al. [216,217]. Shortly after that a related FT for the deterministic dynamics
has been proven by Gallavotti and Cohen [218|, for the Langevin dynamics by Kur-
chan [219], and for fairly general Markov processes by Lebowitz and Spohn [220] and
Maes [221]. The (experimental) usefulness of fluctuation relations has been recognized
after Jarzynski [186,222] and Crooks [184,/185] demonstrated how to relate equilibrium
quantities to non-equilibrium work measurements. A fluctuation theorem (analogous
to Jarzynski equality) that applies to transitions between two different non-equilibrium
steady states has been derived by Hatano and Sasa [223].

Since 2000 a number of significant contributions to stochastic thermodynamics and
to fluctuation theorems have been published (see e.g. Refs. [224/235] to name just
a few). Fortunately, the rapidly growing amount of literature has became a subject
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of numerous reviews, lecture notes and introductory texts [35,212,236-250|. In par-
ticular, for a pedagogical introduction to fluctuation relations and related topics we
recommend recent book [249]. For a comprehensive overview of the stochastic ther-
modynamics including the fluctuation relations, their classification and interrelations
see the review by Seifert [35], which is possibly the most complete survey in the field.
Further, nonequilibrium work relations for Langevin dynamics are summarized by Kur-
chan [242]. Fluctuation theorems for the systems governed by the Master equation are
reviewed by Harris and Schiitz [243]. For other reviews focusing on different aspects re-
lated to fluctuation relations we refer to Van den Broeck [247] (performance of Brownian
machines), Sevick et al. [212] (irreversibility of macroscopic dynamics), Maes [237}23§]
(entropy in out-of-equilibrium systems), Ritort [204}239] and Bustamante et al. [240]
(FTs from experimental perspective), and Gaspard [241] (statistical mechanics based
on Hamiltonian dynamics).

Finally, it should be noted that also quantum versions of FTs are nowadays subject
to an active (mainly theoretical) development. For the reviews we refer to Refs. [251,
252].
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5. Work distribution in
logarithmic-harmonic potential

5.1 Definition of the model

Consider an overdamped motion of a Brownian particle in the logarithmic-harmonic
potential

1
U(z,t) = —glog(z) + ik(t):vz, g>0, x>0, (5.1)

where the parameter g specifies the strength of the logarithmic part and k(t) is a time-
dependent force constant. The potential is illustrated in Fig. for two values of g.
For g < 0, the potential tends to minus infinity as coordinate x approaches the origin
from the right. For g > 0 the logarithmic part grows to positive infinity as x — 07
and the whole potential forms an asymmetric and anharmonic potential well, cf. Fig.
b). We always assume the latter setting.

In the deterministic limit, i.e., in absence of thermal noise, the particle moves along
the positive z-axis as driven by the time-dependent force F(x,t) = —0U/0x (without
inertia). Taking into account the thermal noise, the combined process {X(t), W(t)} is
described by the system of Langevin equations

dX(t) = % — k()X (t)] dt + V2D dB(t), (5.2)
AW (#) :%l%:(t)X2(t) dt, (5.3)

where D quantifies the strength of the noise, B(t¢) is the standard Wiener process
and k(t) stands for the time derivative of force constant k(t). Specifically, the noise
strength is proportional to the heat-bath temperature, D = kgT (the particle mobility
is set to one). The first equation is nothing but the Langevin equation , the second
equation follows from the definition where we have replaced the symbol “§”, which
emphasized that the work is not a state function, by the differential symbol “d” which
is more common for Langevin equations.

Primarily we are interested in the distribution of work performed on the particle
when the potential U(x,t) changes in time according to the prescribed protocol k(t'),
t' € [0,t]. Because the work is a functional of the whole stochastic trajectory, e.g. in
the present case we have

Wi(t) = % /0 Lt k)X, (5.4)

it is not easy to gain an explicit insight into behavior of work distributions in far-from-
equilibrium processes. Hence in general exact analytical results can be obtained only
in a few exceptional cases. An analytical progress is possible for Markovian two level
systems driven by a time-dependent external field [205],206.253-257] and for continuous
diffusive systems driven by simple (harmonic as a general rule) external potentials
[198H2004258-277]. The present work broadens the second group adding there exact
results for the anharmonic and asymmetric potential. In particular, setting g = 0,
our model reduces to the so called “breathing parabola” model. The work PDF for the
breathing parabola model has been studied analytically in Refs. [198], [199], [274], [275],
[276] and [277]. In Refs. [198], [199], the authors considered an expansion around a single
trajectory attributed to a prescribed rare value of the work and derived asymptotic

62



15 10

a) b)
10 8
= 5 7{6
= =
> 0 -
2
-5
0
19 5 10 0 5 10
xXr X

Figure 5.1: Sketch of the potential in Eq. (5.1)) for k(¢) = 0.2 and a) negative g = —0.9
and b) positive g = 0.9. The analysis in the main text corresponds to the case b) g > 0.
Decreasing the force constant k(t), the well broadens and its minimum shifts further
from the origin.

results for the tails of the work PDF in the small the small limit of vanishing noise.
The solution reported in [274] is formally exact for arbitrary protocol k(t), explicit
results are given in the limit of slow driving, when the process is close to a quasi-static
equilibrium and the work PDF can be approximated by a Gaussian. In Ref. [275]
the work-weighted propagator was derived by the path integral method. In Ref. [276]
the Onsager-Machlup’s formalism is discussed. Ref. [277] extends the analysis beyond
an overdamped limit. Another closely related setting, where the work PDF can be
calculated analytically, is for a parabolic potential with a time-dependent position of the
minimum (“sliding parabola”). See Refs. [258-273| for a further discussion of different
analytical approaches which yield distributions of work, heat, and power in the latter
model.

Finally it should be noted that the exact PDF of the particle position for the
logarithmic-harmonic potential was obtained in Refs. [278,1279]. In the following, we
recover this result as a byproduct of the Lie algebraic approach to the solution of
the Fokker-Planck equation for the combined process {X(¢), W(¢)}. The solvability of
this problem stems from the fact that the operators entering the Fokker-Planck equa-
tion form a Lie algebra [280H282]. More precisely, if one considers the Fokker-Planck
equation for the joint PDF of position and work (cf. Eq. ), the corresponding
differential operators no do not generate a Lie algebra. However, if one starts with
the Fokker-Planck equation for the joint PDF and performs a Laplace transformation
with respect to the work variable w, a Lie algebraic structure is recovered. Solution
of the Fokker-Planck equation then provides the characteristic function for the work
process. Then the moments of the work distribution may be obtained by taking an
appropriate derivative of the characteristic function. The tails of the work PDF can
be extracted using asymptotic analysis of Laplace transforms. The present chapter is
based on Ref. [200].
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5.2 Solution of the Fokker-Planck equation for arbitrary
protocol

5.2.1 Green function for logarithmic potential

An important auxiliary quantity in deriving all subsequent results is the Green function

0? g 01
q(z, t|xo) = exp[t <8x2 — Daxx>] d(x —xp), w0 >0, (5.5)

which represents the solution of the Fokker-Planck equation

0 9?2 g 01
EQ(%t‘xO) = (W - D8a:x> Q(mat’x0)7 q(xao‘x()) =d(x — $0)a (5-6)

for the diffusion in the time-independent logarithmic potential. In the mathematical
literature the diffusion process described by the Fokker-Planck equation is known
as the Bessel process [2831284]. It represents e.g. the diffusion of the radial coordinate
of a Brownian particle in d-dimensional space (g «x (d —1)). Notably, the diffusion in
the logarithmic potential has recently regained a considerable attention of the physical
community due to its frequent occurrence in real situations [285], rich first-passage
proprties [286] and intriguing relaxation behavior [287-292].

Let us now present the explicit form of the Green function. Notice that for a fur-
ther convenience the above equation is written in the rescaled time variable, tD — t,
and hence the diffusion constant appears in the combination with parameter g of the
logarithmic potential. The fraction (g/D) determines the relative strength of the loga-
rithmic potential as compared to the strength of thermal fluctuations. One of the pecu-
liarities of the diffusion in the logarithmic potential is the following (see e.g. Ref. [284]).
When the potential “is weak” as compared to the strength of thermal fluctuations, the
particle may reach the origin despite the fact that the potential diverges at x = 0 (cf.
Fig. panel b)). This may happen when

9/D <1. (5.7)

In this case, we assume that there is a reflecting boundary placed at x = 0 (since we
do not want to let the diffusing particle to escape from the log-harmonic well). On the
other hand, when the logarithmic potential “is sufficiently strong”, the probability that
the particle will ever hit the origin equals to zero. This holds true when

9/D > 1. (5.8)

In the latter case we do not need to prescribe a boundary condition at the origin.
The explicit form of the Green function that satisfies the above boundary conditions

is given by
xo [z \'! 2+ m% (xm0>
tlag) = =2 (= - I, (=2 5.9
q(x¢ ‘$0) 2t (1}0) eXp< At v\t ) ( )
where I,,(.) is the modified Bessel function of order v,
179 1
=—|l=-1 > ——. 1
Y79 (D ) V=T (5.10)

In all subsequent results the parameter g enters solely through combination v defined
in Eq. (5.10)). In particular, the combination v will determine the exponent of the pre-
exponential factor of the asymptotic behavior of the work PDF for |w| — co. We will
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demonstrate that the resulting asymptotic formula is precisely of the form of Eq. ED
(cf. Eq. - Where the symbol v in agrees with its present meaning (]E

Equation (5.9)) is the unique norm-preserving solution of the diffusion problem in the
domain x > 0, i.e., the probability current at = 0 vanishes. Therefore, performing the
limit g — 0 and using I_; 5(z) = \/2/m cosh(z)/y/z, we obtain the standard solution

for free diffusion with a reflecting boundary at = 0:

1 2 5
i | e —(ZU—.Z‘()) /4t _(x+330) /4t
égOQ(%ﬂﬂco) N {e +e ] : (5.11)

5.2.2 Joint Green function for work and position

Let us denote by p(z,w,t|zo,0) the joint PDF for the process {X(t), W(¢)} given that
at time t = 0 the particle is at position zg, xg > 0, and no work has been done on it
yet,

p(z,w,0|zp,0) = d(z — z9)d(w), xg > 0. (5.12)

The time evolution of the joint PDF is given by the Fokker-Planck equation

2
%p(:ﬂ,w,ﬂxg, 0) = [Dﬁa:v? - a% ( yany ) - fk( Vo 8(1] p(z,w,tz0,0). (5.13)

The differential operators on the right-hand side do not possess closed commutation
relations. However, after performing the two-sided Laplace transformation [293]

+o0
ﬁ(x7§7t|m0) = / dweigwp(x7w7t|x070)7 (514)

the Fokker-Planck equation ([5.13]) assumes the form

0
875(

where the differential operators

2 g o1 ~ 1/ 0 ~ 1,
b= bme H-s(mov) Ryt 61

2,6, tz0) = [DJo + 2k(8) s — 4€k(t) o + (v + 1) k(t)| B, &, tz0),  (5.15)

satisfy the closed commutation relations
o, il =Jo,  [Jo, ol =1, [Ji, o] = o (5.17)

This allows us to derive the exact solution of Eq. (5.15)) by the Lie algebraic method,
as discussed, e.g., in Refs. [280-282|. First, we write the solution of Eq. (5.15) in the
factorized form

t - - ~
B, &, t]z0) = exp{(w 1) /0 dt’k(t’)} exp|bs (t)13 exp|bi (£)1 ] exp|bo(t)Jo| 3 — wo),
(5.18)
then we use commutation relations (5.17)) to derive the ordinary differential equations
for time-dependent coefficients by(t), b1(t), b2(t). After some algebra, it turns out that
the coeflicient by(t) satisfies the Riccati differential equation

bo(t) = gbg(t) + 2k(t)bo(t) — 4€k(t),  by(0) = 0. (5.19)

Assume we are able to solve this equation. Then the other coefficients are given by
t t
(t) = 2/ dt'k(t') + D/ dt'be(t'), D/ dt'ehr (5.20)
0 0

65



In the last step, we act, using Egs. 1) and 1} with the operator exp [bo (t)jo} on

the delta function in Eq. (5.18]), and subsequently we apply to the emerging result the
two remaining exponential operators in Eq. (5.18]). This yields

t t
(@, €, t]70) = exp [ / At k(#) _% vD / dt’bg(t’)+é bQ(m?} g(2e30 0 b () |zo). (5.21)
0 0

In the derivation we have utilized the operator identity

exp(nxa‘i) F@) = f (). (5.22)

The exact solution is the central result of the present section and it constitutes
the starting point of all subsequent analyses.

It should be noted that the Laplace-transformed Fokker-Planck operator in Eq.
(5.15) is a linear combination of generators of the Lie algebra of SU(1,1) group. How-
ever, instead of standard generators [294], we prefer to use the operators (5.16). The
advantage of the present approach is that it treats the boundary conditions in a very
natural and straightforward way. Indeed, the exact solution is built on the basis
of Green function ¢(z,t|zp) which ensures that also for the dynamics described by the
transformed Green function the probability current through the origin x = 0
vanishes (see Sec. for a discussion of boundary conditions).

5.3 PDF of particle position and its long-time asymptotics

After integrating the joint PDF p(z,w,t|xo,0) over the work variable, the transition
PDF p(z,t|xo) for the particle coordinate alone is obtained. Equivalently, the w-
integration is accomplished by evaluating the result at £ = 0. Notice that the
variable £ enters the solution (5.21)) only through the Riccati equation . When
taking & = 0, this equation reduces to the Bernoulli differential equation, where the
unique solution satisfying b2(0) = 0 is the trivial one, ba(¢) = 0. The remaining coeffi-
cients in Eq. are then given by

bi(t) =2 /O "AE(),  bo() =D /0 "t exp [2 ‘ dt”k(t”)} . (5.23)

0

Hence the PDF for the particle position readsﬂ

vE2 ) (t) v41 2.b1(t) 4 .2 Lpi(t)
Toe 2 T x’e +xj TIpe2
t — - — L — . .24
P o) = 5 (:co) exP( 4bo(t) ) ( 2bo(t) ) 21

This result is valid for an arbitrary driving protocol k(t). If k(t) is a positive constant,
say k(t) = ko, and kg > 0, then the system approaches the Gibbs canonical equilibrium
at long times. If the constant force is superimposed with a periodically oscillating
component, a gradual constitution of a nontrivial steady state occurs. In this steady
state, the PDF does not depend on the initial condition xg and, for any given x > 0, it
is a periodic function of time with the fundamental period given by that of k(t).

To exemplify the PDF in the steady state, let us take

k(t) = ko + k1 sin(wt), ko > 0. (5.25)

!This result agrees with Eq. (19) in Ref. [278], where it has been derived in connection with a
diffusion problem with logarithmic factors in drift and diffusion coefficients. See also Refs. [279}[295].
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The asymptotic analysis of Eq. ([5.24)) for long times requires the evaluation of the limit

ea b1 (t)
im —— <
tliglo o) a<l. (5.26)
If a < 1, the limit exists and, using L’Hopital’s rule, it equals zero. Hence for any finite
x and g, the argument z = zz0e®(Y)/2/[2bo(t)] in the Bessel function appearing in Eq.
(5.24) becomes small for large ¢ and we can write I, (z) ~ (32)/T'(v+1). If « = 1, the
limit does not exist and e?*(®) /by(t) ~ 1/f(t) for t — oo, where

o0 inwt
2%
S 1, (—1> k>0 (5.27)

S w ) 2k +inw’

f(t) = Dexp {251 cos(wt)

Accordingly, for t — oo we have

p(x,t|zo) ~ pas(w,t) = I‘(yl—i—l) <f(1t))’/+1 (;C)?VH exp [— <;3>2fgt)] . (5.28)

In the limit k1 — 0 or w — 0, f(t) — D/(2ko), and p(z,t|xo) approaches the Gibbs
equilibrium distribution.

Finally, the limit ¢ — 0 in Eq. yields the exact transition PDF for the
breathing parabola model with reflecting boundary at the origin. Correspondingly, Eq.
yields exact time-asymptotic PDF in the same model. Since the parameter g
enters only via v defined in Eq. , g — 0 limit corresponds to v — —1/2 in Egs.

E29. B-29).

5.4 Work fluctuations

5.4.1 Characteristic functions

By integration of the joint PDF in Eq. over the spatial variable x, we obtain the
characteristic function for the work done on the particle during the time interval [0, ¢].

Let us first consider the particle dynamics conditioned on the initial position xg. In
this case the characteristic function for the work reads

+oo
(€, t]zo) = /0 da iz, £, t|xo) - (5.29)

At the same time the, this function is the two-sided Laplace transformation of the
work PDF conditioned on xy (cf. Eq. (5.14))). Carrying out the spatial integration of

the formula (5.21)), we find

¢ v+1
26b1 (t)_%Dfodt,bZ(t,) b2 (t) Zo 2
D&t = 2 ’ '

(&, t|zo) <2eb1 © — bo(£)ba(t) P D bi () — bo(£)b(t) ( 2 > (5.30)

A physically more important situation is when the particle coordinate is initially
equilibrated with respect to the initial value k(0) = kg, ko > 0, of the force constant. In
order to obtain the characteristic function for this situation we have to integrate over
x¢ the product of the conditioned characteristic function ® (¢, t|xp) and the equilibrium
PDF peq which is given by the right-hand side of Eq. with f(t) = D/(2kg). The
result of this integration is

t v+1
- Ak ebl(t)—éDfodt'bg(t')
P(&,t) = <e 5W(t>> — ( 0 0 . (5.31)

4k0eb1(t) — [D + Qkobo(t)]
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Notice that equation is valid for an arbitrary driving protocol k(t). The Laplace
variable & enters ®(&,t) through coefficients b;(t), i = 0,1,2 (cf. the Riccati equation
and Eqgs. ) In particular, for £ = 3, ®(4,t) is nothing but the exponential
average that appears in the Jarzynski equality (notice that in the present setting
we have # = 1/D since the particle mobility is set to one).

In the limit ¢ — 0 (v — —1/2), Egs. , give the corresponding charac-
teristic functions for the breathing parabola model with refiecting boundary at x = 0.
These characteristic functions are also valid for the breathing parabola model without
reflecting boundary, if rather obvious changes are made of the meaning of the initial
coordinate xg in Eq. , and of the initial Gibbs equilibrium state underlying Eq.
. In the breathing parabola model without reflecting boundary, Eq. is valid
for zyp € (—o0,+00) and Eq. corresponds to the initial Gibbs equilibrium in the
parabolic potential U(zg) = kox3/2. The equivalence of the characteristic functions
for the problems with and without reflecting boundary is due to the symmetry of the
parabolic potential, which implies that the work done on the particle that crosses the
origin is the same as the work done on the particle reflected at the origin. This reason-
ing (which is a kind of the reflection principle for the work variable) can be supported
by an independent calculation if one notices that both models, the present model with
the logarithmic-harmonic potential and the breathing parabola one, possess the same
operator algebra.

5.4.2 Simple example

A reasonable example of a driving protocol which allows for an explicit solution of the
Riccati equation ([5.19) in terms of elementary functions can be given, is

ko

k(t)=——, k . .32
()= 5 Ko>0 93>0 (5.2)

Notice that the same protocol was considered in Refs. |[198}/199].

Solution of the Riccati equation

In order to study work fluctuations for the protocol (5.32)) the Riccati equation ([5.19)
needs to be solved. This nonlinear differential equation is equivalent to the linear
second-order differential equation with variable coefficients [296]

§() — 2k(8)(t) — 2DER(Y(t) =0, §(0) =0, (5.33)
Specifically, if y(t) solves Eq. (5.33)), then the logarithmic derivative
2 9(t)
bo(t) = ——==—= 5.34

is the solution of Eq. (5.19).

For the sake of transparency, let us take kg = 1, v = 1. Then the second order

equation ([5.33)) with the protocol (5.32]) can be written as

d

3 |1+ 0%(0)] = 2Dgy o). (5.35)

The above equation suggests that we may look for the solution of the form

y(t) = (14t)7, (5.36)
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where A is an unknown constant to be determined. After introducing the ansatz (5.36)
into Eq. (5.35) the quadratic equation for A is obtained:

A\ + 1) = 2DE. (5.37)
Hence the general solution of Eq. (5.35)) is given by
y(t) = Cr (1 + )N + Co(1 + )™ (5.38)

where Aq 2 are the two solutions of the quadratic equation (5.37)). The general solution
(5.38)) contains two undetermined constants C1, Cy. One of the constants is ruled out
by the initial condition ¢(0) = 0:

CiA1 + Caxg = 0. (5.39)

Having eliminated one of the two constants, the solution will be proportional to
the remaining one. The actual value of the remaining (nonzero) constant is irrelevant
since the sought-after function be(t) is proportional to the logarithmic derivative of
y(t), cf. Eq. (5.34).

The solution of the Riccati equation for general values of kg, «v can be derived along
the similar lines. After some algebra we get

d i - ; -
(1) =~ 34 1o {(1 ) (BN =AOT (1 4 ) A0 Ezkﬁ ; 3 - Ag” } ’
(5.40)
where
A(€) = \/(2ko + )% — SkoyDE. (5.41)

Work distribution

For the sake of transparency, we take v = 1 and kg = 1 in the following. The exact
expression for by(t) can be integrated as required in Egs. . This somewhat lengthy
but straightforward calculation gives us functions bg(t) and b1 (t), and eventually, the
exact expression for the characteristic function is obtained:

2A(E)(1 4 t)2B+AQ) Vi
(¢ 1) = (A(é) [(1+6)A© +1] + (3 — 2D€) [(1 + £)A© — 1]> :

(5.42)

According to Eq. , the time derivative k:(t) is negative, the potential well widens
with time and hence Eq. implies that the work done on the particle is negative
for any ¢ > 0 and for any trajectory. Therefore the domain of analyticity of ®(&,t) is
the complex half-plane Re[¢] < a, where a, a € R, is the abscissa of convergence. The
Jarzynski equality guarantees that the Laplace transform ®(¢,t) is well defined for £ =
1/D. As a matter of fact, from Eq. (5.42)), we have ®(1/D,t) = exp [(v + 1) log(1 + t)].
Hence even without any examination of formula we know (on physical grounds)
that it is certainly analytic when Re[¢] < 1/D.

Successive derivatives of the characteristic function with respect to £ evaluated at
& = 0 yield the moments of the work distribution. The mean work done on the particle
during the time interval [0, ] is given by

3+ 3t2 + 3¢

o (5.43)

(W(t))=—-(v+ 1)% 6log(1+1t) +
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It is a monotonically decreasing function of ¢, where for small times, the decrease is
linear, while in the long-time limit, it is logarithmic. For the variance we find

2 43 2
<[W(t) - <W(t)>]2> =@+l <l9)) W (5.44)

x [£3 436 4 3t + 24(1 + ) log(1 + 1)

This increases monotonically, where the increase is quadratic for small times and log-
arithmic for long times. The strength g of the logarithmic potential barrier enters the
above formulas only through the multiplicative prefactor (v + 1). This holds true for
all cumulants of the work. For stronger repulsion, the particle predominantly diffuses
in a region further away from the origin. The decrease of its typical potential energy
results in a larger absolute value of the mean work. At the same time, the width of the
work PDF increases, since the initial particle position is sampled from a broader Gibbs
distribution.

The characteristic function entails the complete information about the work
distribution p(w,t). In particular it allows one to derive the tails of the work PDF for
both w — 0~ and w — —oo without carrying out the inverse Laplace transformation
of the complete exact expression for ®(£,¢) [293].

The asymptotics of p(w,t) for w — 0~ (at fixed ¢) is related to the asymptotics of
®(&,t) for £ — —oo, which follows from ,

£ — —00. (5.45)

exp| V2 log (1+1) v=D¢ | "
VD¢ |

B(E, 1) ~ <\/§(1+t)3

By taking the inverse Laplace transform of this asymptotic form (cf. Ref. [297]), we
obtain a parabolic cylinder function (cf. Ref. [298]) with argument proportional to
v/ D/|w|. Considering the limit of large arguments of this function [298], we find

pw, 1) ~ e1(t) ('l“;‘)y_? L N (5.46)
where
v+l : 18 o[ 2040t |
eo(t) = \/ilog(l—kt)} , cl(t)_D\/;(lth) e | - (54

For any g and any ¢, the PDF almost vanishes in an interval (w.(t),0), where its width
|we(t)] is controlled by the “damping constant” cy(t). The width increases both with
time and the strength of the logarithmic potential. This can be understood from the
fact that any trajectory yielding a small (absolute) value of the work, must necessarily
depart from a position close to the origin and remain in its vicinity during the whole
time interval [0,¢]. The probabilistic weight of such trajectories decreases with both ¢
and g.

The asymptotics of the work PDF p(w,t) for w — —oo (at fixed t) is determined
by the expansion of the characteristic function ®(£,t) at such &y(t), which represents
the singularity of ®(,t) lying closest to its abscissa of convergence [293|. To find &y(t),
we numerically solved the transcendental equation 1/®(&y(t),t) = 0. In the vicinity of
the singularity,

1 v+1
B(Et) ~ (1) (—M) £ G), (5.48)
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Figure 5.2: Positions of the singularity in the expression (5.48) (left panel), and the
prefactor (5.49) (right panel) as functions of time. These functions control, through

Eq. (5.50)), the large |w| asymptotics of the work PDF. In the right panel we have taken
D=1landg=1.
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Figure 5.3: a) Simulated work PDF in comparison with the asymptotic behavior pre-
dicted by Eq. (Jw] large, solid line) and Eq. (Jw| small, dashed line) for
parameters g = 1.5, D = 1 and ¢t = 1. In the simulations 10°® trajectories were gener-
ated with the time step At = 0.001 (adapted when the particle is near the origin, see
text). b) Semi-logarithmic plot of simulated p(w,t) vs. w (circles), demonstrating the
agreement with Eq. (solid line) for large |w|. ¢) Semi-logarithmic plot of simu-
lated p(w;t) vs. w (circles) in comparison with the first leading term of the asymptotic
expansion for small |w| (Eq. , solid line), and when including the second leading
term according to Eq. (5.51) (dashed line).
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with
r(t) = (=D)"* lim ¢ = Q@] (). (5.49)

From this result we obtain the required tail of the work PDF:

1 (@) \w|>y —Deo () Ll
p(w, t) DT+ 1) (D e D, w — —00, (5.50)

where D¢&y(t) is a real, positive, decreasing function of ¢, it is plotted in Fig. [5.2| (the
left panel). For small ¢, the work PDF is very narrow (D¢&(t) large). With increasing
t, the weight of the trajectories yielding large (absolute) values of the work increases.
This is reflected by the decrease of Dfo(t)ﬂ Contrary to the function co(t) in , the
present “damping constant” D&y(t) does not depend on the strength of the logarithmic
potential. The parameter g enters only the pre-exponential factor in Eq. .

In order to verify the exact asymptotic expansions of the work PDF, we have per-
formed extensive Langevin dynamics simulations using the Heun algorithm [299] for
several sets of parameters and different time intervals. A typical PDF together with
the predictions for its asymptotic behavior according to Egs. and is shown
in Fig.[5.3] In order to avoid nonphysical negative values of the particle position in the
numerics, which can originate from a fixed time discretization, we have implemented
a time-adapted Heun scheme. If a negative (attempted) coordinate along a trajectory
is generated, the time step At is reduced until the attempted particle position is posi-
tive. In order to achieve a better agreement of the analytical asymptotic representation
and the simulated data for small |w| (cf. Fig. [5.3), we have derived also the second
leading term in the asymptotic expansion for |w| — 0. After somewhat lengthy but
straightforward calculation, we obtain

1 1
\w|>”2 4 (rw|>”+2 e -
1 _ - [w]
(D v+ Dlog(l+1) \ D ¢ w0,

where ¢;(t) and co(t) are given in Eq. ((5.47)).

p(w,t) ~ c1(t)

5.5 Summarizing remarks

In the present chapter, we have calculated the characteristic function for the work in
a simple setting which, however, may be realized in experiments [300,301]. Based
on a Lie algebraic approach we have succeeded to derive the closed expression
for the joint PDF of work and position for a Brownian particle in a time-dependent
anharmonic potential. In order to deduce further explicit results from Eq. for a
given driving protocol, the Riccati equation needs to be solved. We have focused
on the protocol for which both the solution of the Riccati equation and the
work characteristic function can be expressed in terms of elementary functions. The
protocol should exemplify typical asymptotic features of the work PDF for monotonic
external drivings. It has been shown that the tail of work PDF for large negative
work values, cf. Eq. , is in agreement with the formula proposed by Palassini
and Ritort, cf. Eq. , with 6 = 1 and v being dependent on the strength of the
logarithmic potential. The latter exponent, given by Eq. in our model, can be
interpreted as follows. Notice that v is composed of two parts: v = —1/2 + g/(2D).
The first part is independent of the strength of the logarithmic potential (v = —1/2

*For t = 2 and g = 0 we obtain D&(2)=1.827, r(2)/T'(1/2)=1.021, which is in perfect agreement
with Eq. (5.30) in [109].
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0 0

Figure 5.4: a) Simulated work distribution p(w,t) (symbols) at time ¢ = 1 for the
protocol k(t) = koexp(—~yt) with kg = 1, v = 1, and parameters ¢ = 1.5 and D =
1; in b) the associated Jarzynski integrand p(w,t)exp(—fw) is displayed in a semi-
logarithmic representation. The solid blue line is a fit of Eq. to the left tail. The
best parameters are r(1) ~ 2.833, D&y(1) ~ 1.757. In the simulations 10° trajectories
were generated with time step At = 1073,

for the purely harmonic potential), and the second one quantifies the deviation of the
external potential from the parabolic one. Thus the pre-exponential factor in the tail
formula for the work PDF reflects the anharmonicity of the external potential.
The solution of the Riccati equation for several reasonable driving protocols, e.g.,
for the exponential protocol
k(t) = ko exp(—~t), (5.52)

or for k(t) = ko + kit, k(t) = kit™, can be written in terms of higher transcendental
functions. Corresponding results are rather involved and are briefly discussed in App.
[C] In these cases, the complexity of the solution makes the analytical progress impos-
sible. However, the sequence of steps used in the derivation of formula (5.50) suggests
that the asymptotic form should be applicable for any monotonous driving with
nonuniversal (protocol-dependent) parameters r(t), D&y(t). To test this hypothesis,
the numerical analysis of the work PDF has been performed for the above mentioned
protocols showing an excellent agreement with the formula @ . The outcome of the
simulation for the exponential protocol is fitted by the formula (5.50) in Figs.

For nonmonotonous driving protocols the work can assume any real value. Then
the work PDF has the support (—oo, +00) and its two-sided Laplace transform will be
analytic within a stripe parallel to the imaginary axis. In this case, the w — o0 tail
of the work PDF is determined by the singularity, which is closest to the stripe on its
left side, and w — —oo tail is controlled by the closest singularity on the right side.
We hence expect an asymptotics

1 re(t) (w|>y D (1)l
p(w, t) DTw+1 \D e D, w— too, (5.53)

where the coefficients £+ (t), r+ (), depend on the driving protocol k(t). Periodic driving
protocols play an important role in the analysis of Brownian motors. A deeper analysis
of the work PDF for this class of protocols seems to be worthy of further study.
Interestingly enough, the validity of the derived results can be extended beyond the
diffusion in the anharmonic potential with a single minimum. Namely, the reflection
principle for the work variable presented in the last paragraph of Sec. allows us
to consider an anharmonic bistable potential. Indeed, for g = 0, the reflection principle
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Figure 5.5: Simulated work distribution (symbols) at time ¢ = 1 for a protocol k(t) =
ko exp(—~t) with v = —1, and otherwise the same parameters as in Fig. [5.4In a) p(w, t)
is plotted in a linear representation and in b) in a semi-logarithmic one. The solid blue
line is a fit of Eq. to the right tail with the best parameters are r(1) ~ 1.916,
D&y(1) ~ 1.124. In the simulations 10° trajectories were generated with time step
At =1073,

guarantees the equivalence of the work distributions in the present model (with the
reflecting boundary at the origin) and in the parabolic one defined on the whole real
line. Considering g > 0, the application of the reflection principle makes sense only if
there exist trajectories which can reach the origin (where they are reflected). As we
know, such trajectories indeed exist if g/D < 1, cf. Eq. . Assuming this condition,
imagine that instead of the reflection at « = 0, the particle passes through the origin into
the second log-harmonic well located on the negative half-line x < 0. More precisely,
the reflection principle yields the equivalence of the work distributions in the present
semi-infinite system described by the potential U(x,t) = —glog(z) + k(t)22/2, = > 0,
and in that described by the double-well potential U(z,t) = —glog(|z|) + k(t)z2/2
defined for = € (—o0,+00). Thus all conclusions concerning the work PDF in the
present setting holds true also for the extended symmetric bistable model. (For the
previous study of the work distribution in a bistable potential see Ref. [302].)
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Conclusions and outlook

In the thesis we have concentrated on two topics. First, in Chaps. and |3| we have
discussed the single-file diffusion. Second, in Chaps.[4], and [5] we have addressed stochas-
tic thermodynamics and in particular the work distribution for the Brownian particle
diffusing in the time-dependent anharmonic potential. We would like to emphasize that
detailed concluding sections discussing main physical features of individual models are
presented at the ends of Chaps. and [5l see Secs. and respectively.
Therefore, let us now mention some rather general aspects and outlook for the future.

As for the single-file diffusion, after the review of known results (Chap. [I)), we have
focused on the dynamics and first-passage properties of a tagged-particle in open single-
file systems (Chaps. [2[ and . The model is exactly solvable. This is guaranteed by
the statistical equivalence of trajectories of interacting particles and the trajectories of
noninteracting ones. In the thesis we have developed the mapping between two sets of
trajectories for SFD in the presence of absorbing boundaries. The mapping has turned
out to be particularly useful for derivation of exact one-time characteristics like PDF
for position of a given tagged particle. Starting from this PDF, the effects induced by
the presence of boundaries and by interparticle interactions were described in detail for
various initial and boundary conditions (cf. Chaps. [2| and .

There are many directions in which the present analysis could be generalized. For
instance, a challenging problem is to develop the probabilistic reasoning for the single-
file system coupled to a reservoir of particles. Another still unsolved task is the exact
description of a first-passage time for the setting, when only the tracer interacts with
the absorbing boundary, whereas all other particles diffuse freely on an unbounded
real line. A rather hard and important problem is SFD under the action of external
forces. This setting opens the possibility to address, besides the dynamics itself, also
the stochastic energetics of a tagged particle. Since the dynamics of a tagged particle
becomes subdiffusive one expects anomalous fluctuation theorems to hold.

Notice that SFD model provides us an “exactly solvable playground” for our un-
derstanding of subdiffusion. Gaining an intuition with this particular model could
significantly contribute to development of a theory for general anomalous dynamics.

As for the stochastic thermodynamics, in Chap. after a brief review of basic
notions (definitions of stochastic work and heat), we have discussed the two most widely
known fluctuation theorems (the Crooks theorem and the Jarzynski equality) and their
roles in free-energy measurements. Then, in Chap. [5] we have introduced and solved
the model for the Brownian motion in the time-dependent anharmonic potential. For
the model the exact form of the work characteristic function has been obtained. This
success is based on the fact that (after the Laplace transform in work variable) the
differential operators entering the Fokker-Planck equation possess closed commutation
relations. This allowed us to reduce the Fokker-Planck equation for the joint PDF of
work and position (using the Lie-algebraic method) to the Riccati equation and some
quadratures. For the model, the PDF of the particle position can be derived in a closed
form for any external driving. But it is just for a few specific driving protocols that
characteristic function for work can be obtained in a closed form, yielding the desired
information about the work PDF including all moments and the both tails.

The model clearly illustrates a disparity in our understanding of properties of the
PDF for the particle position on one hand and of those of PDFs for energetic charac-
teristics like work on the other. While the behavior of the PDF for the position is well
understood for a wide range of external potentials, the opposite holds true for the cor-
responding work PDFs. To this end, the only general (well known) result is that near
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equilibrium (slow driving) and in the vicinity of its maximum the work PDF could be
approximated by a Gaussian function. Certainly this state is very unsatisfactory and
we hope that study of exactly solvable models could shed some light on the qualitative
features of the work PDF.

Our findings concerning the work PDF (together with previous studies cited in
Chaps. indicate the following universality. It seems that the exponential tail
with polynomial prefactor as given by Eq. is a rather universal feature of the
Langevin dynamics starting from the equilibrium initial condition. The parameters of
the external driving affect merely the “damping constant” of the asymptotic exponential
decay, and the exponent of the algebraic pre-exponential factor. Actually, in the present
setting, this exponent quantifies the anharmonicity of the external potential. These
findings could improve the fitting of the histogram of experimentally measured work
values. In addition, from the comparison against numerical results it follows that the
range of validity of the scaling form includes also a region of typical (i.e., not too
rare) values of work, cf. Figs. and Hence the fitting parameters could be
obtained with a sufficient precision. In a further research it would be very interesting
to classify the conditions for which the asymptotics of the work PDF could be different
from that described by Eq. . To this end, it is necessary to understand how (i) a
shape of the external potential, (ii) a time-dependence of external driving (slow, fast,
monotonous, oscillating), and also (iii) initial conditions control the overall features of
the work PDF.
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Appendices

7



A. Limit distribution of the
extreme

Let X1,Xg,...,X,, be independent and identically distributed random variables, each
with the cumulative distribution function F(z). The asymptotic theory of the sample
extreme X,., = max{Xy,Xa,...,X,}, is concerned with the limit behavior of the
maximum X,., as n — oo. The theory, in a certain sense, resembles the central limit
theory for partial sums of random variables. In the present Appendix we just list
possible asymptotic distributions of X,,.,. For a readable introduction to asymptotic
theory we refer the reader to Chapter 10 of Ref. [53]. The book [53] contains about
1500 references, including numerous applications of order statistics. A more advanced
discussion of limit distributions can be found in Ref. [303].

For an arbitrary distribution F'(x), the maximum X,., will in general not possess
a limiting distribution. However, if there exist standardizing constants a,, > 0 and b,
and the distribution G(z) such that

Fun(apz + by) = [Flapz + by)]" — G(z) at all continuity points of G, (A.1)

i.e., if the distribution of the maximum F},.,(z) converges to the limit distribution G(z),
then the limit distribution G(z) must be one of just three types. The three types are:
(A) a Fréchet distribution when f(x), f(x) = dF/dz, decays as a power law =1,
a >0, as r — oo; (B) a Weibull distribution when the support of f(z) is bounded; (C)
a Gumbel distribution when f(x) decays faster than a power law as © — oco. The three
distributions read

0 z<0,a>0
Fréchet Gi(z;a) = - A2
mice) G ={ LT (A2)
(Weibull) ol a) = { exp{— (—x) } x<0,a>0 (A3)
1 z > 0;
(Gumbel) Gs(z; ) = exp(—e™™) — 00 << H400. (A4)

Throughout the thesis the Gumbel distribution appears in Eq. as the distri-
bution for the position of the (single-file) diffusion front and in Eqs. (3.26), as
the distribution for the absorption time of the longest-living particle in a finite interval.
The Fréchet distribution can be found in Eq. , it gives the asymptotic distribu-
tion for the time of absorption of the longest-living particle in the semi-infinite system.
Notice that the limit PDF for the central tracer in a finite system, Eq. , after an
appropriate normalization becomes proportional to e™® exp(—efz‘”), which resembles
the PDF of the Gumbel distribution g3(z;a) = e ¥ exp(—e™").
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B. Asymptotic expansion of
conditioned PDF

The main aim of this Appendix is to justify relations (2.18]) and (2.22)). To this end,
we treat separately the numerator and the denominator in Eq. (2.17)).
As for the numerator, we insert the explicit expression (2.8]) into the mean value in

Eq. (2.9). This yields

2 e—"/4D1 2X(0)\ _x2
_ 2 : ~X2(0)/4Dt
f(z,t) D <smh( 5D ) e > . (B.1)

Using the power series representation for the functions inside the averaging brackets,
we obtain

C2X(0)\ _x2(01ap (—1)i2-2 /1 \FHL g2 \F
<Smh(2Dt)e X()/4D> 2Dt klzoz'(2k+ 1)! (Dt) <4Dt> <X2(k+l)+1(0)>'
(B.2)

The above double sum is treated by the index substitution p = k + I:

 we /DX (0)) & & 2\ 1y
fat) = =T S S elkp) (wt) (%) @3

where the time-independent coefficients c(k,p) carry the information concerning the
initial condition. Explicitly, they read

(_1)p—k 22k—2p <X2p+1 (0)>

)= TR T (X(0)

(B.4)

We now prepare similar expansion for the survival probability S(t) as defined in
Eq. (2.11). Inserting the power series [304]
)k 2k+1
erf(z Z Mk 1 (B.5)
into the averaging in (2.11]), we immediately obtain

_ (X)) g~ (=DP (XEEH0)) (1P
S(t) = TD“;)?W(%H) X)) (Dt> : (B.6)

Interestingly, the numerical factors 22Pp!(2p + 1) in the denominators of individual
terms of form a sequence 1,12, 160, 2688, 55296, ... (for p = 0,1,2,3,4,...), which
is A167558 sequence in Sloane’s On-Line Encyclopedia of Integer Sequences [305]. This
sequence originally emerged in a completely different situation without any obvious
connection to the expansion of the error function (see also A167546).

One can arrive at an alternative equivalent expansion of the function S(t¢) by staring
with the first equality in Eq. from the main text. The series is integrated
term by term and it assumes the form

S(t) = i/ﬁzzyf'ckp< )p. (B.7)

p=0£k=0
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By term by term comparison of the series and (B.7) one obtains a non-trivial
identity
2o (—nk2%*El 1

];)(p_k)!(Qk—i—l)! - p!(2p+1>.

Returning to the main goal of the Appendix, we divide the series (B.3) by (B.6).
Notice that the prefactor (X(0)) /v 7Dt appears in both and (B.6]), therefore it
cancels. Representing the fraction 1/S(¢) by a geometric series, we finally obtain the
sought-after asymptotic expansion

(B.8)

2

1 k
1+ 3 ek, 1) (fm) % +0 (t2>]
k=0

f(z,Dt| T >t) = _T —w?/4Dt

2Dt
= (B.9)
L0 1,
1+ — — .
"1 X©0) Dt T ()
The asymptotic expansion of the corresponding distribution function, i.e.,
z f(l‘/,t) 2 -~
da’ =1—e@/4Dt )] 1 B.1
/0 x S@) e {—FO( )}, (B.10)

has been employed in steps leading from Eq. (2.59) to Eq. (2.60)), and from Eq. ([2.62))
to Bq. (Z63).
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C. Different driving protocols

In order to derive explicit results from Eq. for a given protocol, the Riccati equa-
tion needs to be solved. This nonlinear differential equation is equivalent to the
linear second-order differential equation . Specifically, if y(¢) solves , then
the logarithmic derivative is the solution of Eq. (5.19)). Hence the characteristic
function can be expressed in terms of the function y(¢). The solution of for
several reasonable driving protocols can be expressed in terms of higher transcendental
functions.
Firstly let us consider the exponential protocol

k(t) = koe . (C.1)

For the sake of simplicity we assume that kg = 1, and v = 1. Then the substitution
7 = 2e~! transforms the second-order equation ([5.33) into the form

d?y 1\ dy D¢
d7‘2+< +7‘>d7+ T 7 0, (C2)

-7

which after another substitution, y(7) = e
equation

w(7), reduces to Kummer’s differential

2w

=

Thus the general solution of the original problem for the exponential driving is
given by the linear combination

+(1—7)%’_(1—Dg)w:o. (C.3)

y(r)=Cre "1F1(1—-D¢& 1;7)+ Coe U1 — DE, 15 7), T =2t (C.4)

of confluent hypergeometric functions of the first and of the second kind [304]. An
alternative form of the solution can be derived by the Laplace transform method of
Ref. [255]. Having obtained the exact expression for y(t), one can try to derive the
characteristic function for the work as given by Eq. (5.31). To this end, one of the
constants C1, Cy is ruled out by the initial condition ¢(0) = 0. The remaining constant
cancels after forming the logarithmic derivative y(¢)/y(t) which is proportional to the
solution by(t) of the Riccati equation, cf. Eq. (5.34). Differently speaking, we are free
to supplement Eq. with the initial condition prescribing y(0), e.g. y(0) = 1.
However, and this is the main obstacle on our way to the exact characteristic function,
the function be(t) still must be integrated according to Eqgs. . Unfortunately the
integration cannot be accomplished analytically.
Intuitively one may guess that the most simple results should be obtained for the
linear protocol
k(t) = ko + kit. (C.5)

However, this is not the case. The transformation of the time variable k17 = (ko +
k1t)? reduces the second-order differential equation (5.33)) again to Kummer’s equation.
Presently we have
d?y ko dy D¢ 1 2
— 4+ —=y=0 = — (ko + k1t)~. C.6
(3-r) L+ Fu=0 =itk (C6)

And again, there seems to be no reasonable way how to get a closed formula for the
characteristic function ([5.31)) starting from the exact formula for y(¢).
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