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ABSTRAKT 

Střevní mikroflóra zásadně ovlivňuje fungování lidského organismu. V okamžiku, kdy 

je narušena rovnováha v jejím složení, může dojít k indukci nebo prodloužení trvání relapsu 

již existujících chronických zánětlivých onemocnění, mezi něž patří i idiopatické střevní 

záněty (IBD). Mechanismus, jímž by bylo možné odlišit prospěšné mikroby od škodlivých, 

stále není znám. Cílem této práce bylo zkoumat interakce imunitního systému s mikroby, kteří 

jsou různým způsobem spojeny s patogenezí IBD. 

Escherichia coli je převládajícím aerobním mikroorganismem lidského trávicího 

traktu. Tento druh zahrnuje nejen mikroby zapojené v indukci IBD, ale i ty které napomáhají 

s jejich léčbou. Pro další experimenty byly vybrány 4 kmeny E. coli, které mají různý vztah 

k patogenezi IBD: E. coli Nissle 1917 (EcN; je úspěšně používána při léčbě IBD), E. coli 

kmeny LF82 a p19A (patrně hrají roli při patogenezi IBD), E. coli kmen K6 (není používán 

v léčbě a není známo, že by hrál roli při patogenezi IBD). 

K pokusům byly používány jak živé, tak inaktivované bakterie. Různé způsoby 

inaktivace bakterií (1% formaldehyd, teplo, UV záření) mohou měnit jejich antigenní 

strukturu, a proto jsme se zaměřili na sledování změn ve schopnosti inaktivovaných mikrobů 

vyvolat imunitní odpověď. 

Nejprve jsme pomocí nepřímé imunoenzymatické metody (ELISA) analyzovali 

E. coli-specifické sérové IgA a IgG u pacientů s IBD a u zdravých kontrol. Různé způsoby 

inaktivace neměly vliv na protilátkami zprostředkovanou sérovou reaktivitu proti žádnému ze 

sledovaných kmenů E. coli. Taktéž jsme nepozorovali žádné rozdíly v protilátkové odpovědi 

mezi testovanými skupinami, kromě zvýšení koncentrace IgA protilátek proti patogennímu 

kmenu E. coli p19A u pacientů s IBD.  

Dále jsme spolu s inaktivovanými bakteriemi kultivovali splenocyty nebo buňky 

izolované z mezenteriálních uzlin zdravých myší či myší s akutním střevním zánětem. 

Následně jsme měřili časnou aktivaci těchto buněk (exprese CD69) průtokovou cytometrií. 

Také jsme inaktivovanými bakteriemi stimulovali myší makrofágovou buněčnou linii (RAW 

264.7) a stanovovali jsme aktivaci těchto buněk pomocí Griessovy reakce (produkce oxidu 

dusnatého) a průtokové cytometrie (exprese CD40). V žádném ze zmíněných pokusů nebyly 

pozorovány signifikantní rozdíly mezi jednotlivými stimuly. 

Vzhledem k tomu, že porušení epiteliální buněčné vrstvy je významnou součástí 

patogeneze IBD, sledovali jsme pomocí průtokové cytometrie, kolik střevních epitelových 

buněk (myší MODE-k nebo lidské Caco-2) se uvolní ze souvislé buněčné vrstvy po 
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čtyřhodinové kultivaci s živými bakteriemi E. coli. U obou buněčných linií kmen p19A 

uvolnil většinu buněk, zatímco kmen EcN souvislou vrstvu vůbec nenarušil. Ve všech 

případech byly téměř všechny uvolněné buňky buď mrtvé (Hoechst+), nebo ve stavu 

apoptózy (Annexin V+).  

Závěrem lze shrnout, že žádný způsob inaktivace signifikantně nezměnil 

imunogenicitu bakterií. Vazba protilátek na probiotické i patogenní mikroby byla velice 

podobná u pacientů s IBD i kontrol, lišila se pouze u p19A. Při sledování buněčné odpovědi 

na stimulaci různými kmeny E. coli jsme nepozorovali žádné významné rozdíly, ovšem oba 

patobionti in vitro poškozovali vrstvu epitelu. K největšímu poškození epitelialní vrstvy 

během kultivace došlo za přítomnosti kmene p19A. To naznačuje, že by tento mechanismus 

působeni kmene p19A mohl mít zásadní úlohu při vzniku a průběhu IBD. 

 

Klíčová slova: idiopatické střevní záněty (IBD), E. coli, inaktivace, imunitní odpověď 
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ABSTRACT 

Gut microbiota is important for our health and well-being, but when its composition is 

disrupted, it can induce or perpetuate several chronic inflammatory disorders, including 

inflammatory bowel diseases (IBD). The mechanisms which distinguish protective microbes 

from the deleterious or indifferent ones are largely unknown. The aim of this thesis was to 

study the interaction of the immune system with microbes that have different relationships to 

IBD pathogenesis. 

Escherichia coli is a predominant aerobic microorganism of the gastrointestinal tract. 

This species includes microbes implicated in induction of IBD as well as in its therapy. Four 

E. coli strains with different relations to IBD were selected for our experiments: E. coli Nissle 

1917 (EcN), which has been successfully used in IBD therapy, E. coli strains LF82 and p19A, 

which have been implicated in the pathogenesis of IBD, and E. coli strain K6, which has 

neither been implicated in pathogenesis nor in protection from this disease. 

The experiments were performed both with living bacteria and inactivated ones. As 

the mode of inactivation may change the microbial antigenic structure, we measured how 

different methods of inactivation, i.e. 1% formaldehyde, exposure to heat or UV irradiation, 

influence the microbe’s immunogenicity. 

First, we analyzed the serum IgA and IgG against E. coli in sera of patients with IBD 

and healthy controls using indirect ELISA. The different mode of inactivation did not change 

the serum reactivity to any of the E. coli strains. There were no differences in the antibody 

responses among tested groups, except for the increase in IgA against the potentially 

pathogenic E.coli strain p19A in IBD patients. 

Next, we cultivated spleen cells or cells isolated from mesenteric lymph nodes from 

either healthy mice or mice with active intestinal inflammation with inactivated bacteria, and 

measured the early cell activation (expression of CD69) by flow cytometry. In addition, we 

stimulated murine macrophage cell line (RAW264.7) with inactivated bacteria and measured 

the cell activation by Griess assay (nitrite production) and flow cytometry (CD40 expression). 

Overall, there were no significant differences among the stimuli. 

Since the disruption of the epithelial cell layer is an important step in IBD 

pathogenesis, we measured the detachment of intestinal epithelial cells (murine MODE-K or 

human Caco-2) after their 4h cultivation with live E. coli by flow cytometry. In both cell 

lines, p19A detached the most epithelial cells, while EcN did not disrupt the cell monolayer at 
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all. In all cases, almost all detached cells were either dead (Hoechst+) or undergoing apoptosis 

(Annexin V+). 

In conclusion, neither of the inactivation types induced significant changes in bacteria 

immunogenicity. The antibody avidity to both probiotic and pathogenic microbes was very 

similar in IBD patients and controls, except for p19A. We could not find any significant 

changes in cellular response to different E. coli, but both used pathobionts damaged the 

epithelial layer in vitro. Strain p19A caused the most extensive damage to epithelial cells, 

which suggests that this could be the major factor of virulence of this bacterium engaged in 

IBD pathogenesis. 

 

Keywords: inflammatory bowel diseases, E. coli, inactivation, immune response 
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MHC  major histocompatibility complex 

MLN  mesenterial lymph node 
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OD  optical density 
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PMA/iono phorbol 12-myristate 13-acetate / ionomycin 

PMT  photomultiplier tube 

PRR  pattern recognition receptor 
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RPMI  Roswell Park Memorial Institute Medium 

rRNA  ribosomal ribonucleic acid 

RT  room temperature 
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ssRNA  single-stranded RNA 

TGF-β  transforming growth factor β 

Th cell  helper T cell 

Tc cell  cytotoxic T cell 
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TMB  3,3’,5,5’-tetramethylbenzidine 

Tr1  type I regulatory T cell 

Treg cell regulatory T cells 

UC  ulcerative colitis 

 

  



9 

 

TABLE OF CONTENTS 

Acknowledgements ..................................................................................................................... 5 

Abbreviations .............................................................................................................................. 6 

1 Literature review ............................................................................................................... 11 

1.1 Mucosal immune system .............................................................................................. 11 

1.1.1 Mucosal immune system of the gut .................................................................... 12 

1.1.1.1 Structure and main organization......................................................... 12 

1.2 Microbes in health and disease ..................................................................................... 14 

1.3 Gut microbiota .............................................................................................................. 15 

1.3.1 Composition ........................................................................................................ 15 

1.3.2 Bioactive molecules of microbial origin ............................................................. 16 

1.4 Interaction between microbiota and mucosal immune system of the gut ..................... 17 

1.5 The link between microbiota and diseases ................................................................... 18 

1.5.1 Mechanisms of action of probiotics .................................................................... 18 

1.5.2 Probiotics in the therapy of human diseases ....................................................... 19 

2 Hypothesis and aims .......................................................................................................... 23 

3 Materials and methods ....................................................................................................... 24 

3.1 Microbes and inactivation ............................................................................................. 24 

3.1.1 Microbes ............................................................................................................. 24 

3.1.2 Inactivation methods ........................................................................................... 24 

3.1.2.1 Solutions and chemicals ..................................................................... 25 

3.2 Primary murine cells and cell lines ............................................................................... 26 

3.2.1 Isolation and cultivation of primary murine cells ............................................... 26 

3.2.1.1 Solutions and media ........................................................................... 27 

3.2.2 Cell lines and cultivation .................................................................................... 28 

3.2.2.1 Media .................................................................................................. 28 

3.3 Analysis of antibody response ...................................................................................... 28 

3.3.1 Indirect ELISA .................................................................................................... 28 

3.3.1.1 Solutions and chemicals ..................................................................... 28 

3.3.1.2 Antibodies .......................................................................................... 29 

3.4 Analysis of cellular response ........................................................................................ 30 



10 

 

3.4.1 Response in murine RAW264.7 cell line ........................................................... 30 

3.4.1.1 Cultivation with stimuli ...................................................................... 30 

3.4.1.2 Flow cytometry .................................................................................. 30 

3.4.1.3 Griess assay ........................................................................................ 31 

3.4.2 Response in primary murine cells from mesenterial lymph nodes and spleen ... 32 

3.4.2.1 Cultivation with stimuli ...................................................................... 32 

3.4.2.2 Flow cytometry .................................................................................. 32 

3.5 Epithelium detachment assay ....................................................................................... 34 

3.5.1.1 Solutions and media ........................................................................... 34 

3.5.2 Cultivation with stimuli ...................................................................................... 34 

3.5.3 Flow cytometry ................................................................................................... 35 

3.6 Statistical analysis ......................................................................................................... 37 

4 Results ............................................................................................................................... 38 

4.1 Antibody response ........................................................................................................ 38 

4.2 Cellular response to microbes in vitro .......................................................................... 40 

4.2.1 Response in murine RAW 264.7 cell line .......................................................... 40 

4.2.2 Response in primary murine cells from mesenterial lymph nodes and spleen ... 42 

4.3 Epithelium detachment ................................................................................................. 43 

4.3.1 MODE-K ............................................................................................................ 44 

4.3.2 Caco-2 ................................................................................................................. 47 

5 Discussion ......................................................................................................................... 50 

6 Conclusions ....................................................................................................................... 54 

7 References ......................................................................................................................... 55 

  



11 

 

1 LITERATURE REVIEW 

Every single day, one’s immune system deals with a large amount of microbes. Some 

of them represent a serious threat, others live in harmony with the host organism, but 

generally they all influence the host’s life in some way. The site of the main exposure to 

antigens are mucosea. A whole ecosystem of microbes associated with mucosae resides in the 

human organism – this ecosystem is called microbiota. Interaction between the host and a 

particular microbe can result in events, which are beneficial (probiotic), indifferent 

(commensal) or deleterious (pathogen) to the host. However, this is only an anthropocentric 

view on the problem and microbes can possess properties of both “probiotic” and 

“pathogenic” character. Results of the host-microbe interaction depend on the microbe (e.g. 

its adhesive properties, invasion ability) as well as on the host (particularly his health state). 

Despite the intensive research, mechanisms of these interactions are still largely unknown. 

Nevertheless, main factors influencing the result include: composition and function of the 

microbial community, state of the mucosal barrier, modulation of the immune response by 

microbes. 

 

1.1 Mucosal immune system 

The area of mucosal surfaces in an organism accounts for as much as 300m
2
. The 

mucosae are an important site for the contact with many stimuli from the environment (e.g. 

microbiota, food, antigens from the air). Essential immunological functions of the organism 

are linked to the mucosal tissue; this is illustrated by the following facts. (i) Ninety percent of 

all infectious agents enter the organism through mucosal surfaces. (ii) Mechanisms of the 

innate immune system are strongly developed in the mucosae. (iii) Overall, eighty percent of 

immune cells are connected to the mucosal surfaces, which makes the mucosal lymphoid 

tissue the biggest immune organ in our body. (iv) A vast production of immunoglobulins, 

especially secretory IgA (sIgA) is a characteristic of every mucosal tissue. (v) The immune 

system associated with the mucosae has the ability to either induce reactivity or tolerance to 

recognized antigens. (Tlaskalová-Hogenová and Městecký, 2012) 

All mucosae (i.e. mucosa of the oral cavity, nasal cavity, respiratory tract, digestive 

tract, urogenital tract, mucosa of the eye, internal ear and exocrine gland ducts) are connected 

to each other by cross-communication. This integrated network is termed common mucosal 

immune system (CMIS). The close relation of immune mechanisms in all possible mucosal 
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sites is the reason why intervention in the gut immune system may alter the immune response 

in other mucosal sites. (Iijima et al., 2001) 

1.1.1 Mucosal immune system of the gut 

The IgA secreted into the gut lumen seems to protect the tissue against viral and 

bacterial pathogens as well as to regulate homeostasis of the gut microbiota (Fagarasan and 

Honjo, 2003). The presence of a great number of lymphocytes in the gut mucosa brought 

Cheroutre (2004) and others to the idea that the adaptive immune system may have arisen 

from the mucosal immune system. 

1.1.1.1 Structure and main organization 

The GALT (gut-associated lymphoid tissue) which is the main site of the mucosal 

immune system has two functionally different parts: the inductive and the effector sites. An 

immune response is frequently initiated in the organized lymphoid tissue of the gut – in 

Peyer’s patches or isolated lymphoid follicles (ILFs). Each Peyer’s patch consists of a large 

number of B cells surrounding follicular dendritic cells (FDCs) and a smaller number of 

associated T cells. The route by which an antigen enters the Peyer’s patch leads through 

specialized cells present in the epithelium called microfold cells (M cells). In a process called 

transcytosis, the M cells take up antigens from the mucosal surface by endocytosis and 

phagocytosis and release them at the basal surface where DCs and T cells are waiting. When 

looking at ILFs, a very similar morphological architecture to the Peyer’s patches could be 

seen. (Murphy and Janeway, 2008; Wittig and Zeitz, 2003) 

When transcytosed, antigens are caught upon DCs which process them and present 

them to the naive T cells in the Peyer’s patches causing these T cells to proliferate and 

differentiate into effector cells. The intestinal T cells with regulatory properties, induced by 

intestinal epithelial cells (Artis, 2008), then produce cytokines (mainly TGF-β and IL-10) 

while causing the B cells class-switch to IgA. Following affinity maturation, B cells migrate 

to the mesenteric lymph nodes and finally to the lamina propria, where the last step – 

differentiation into plasma cells – is taken. (Murphy and Janeway, 2008) 

Proliferation and differentiation of lymphocytes does not take place only in Peyer’s 

patches and isolated lymphoid follicles. Effector DCs sampling antigens through the gut 

epithelial layer can interact with naive T and B cells surrounding them, or they can migrate to 

the mesenteric lymph nodes and interact with the lymphocytes there. Equipped with “homing 

molecules”, effector lymphocytes enter the blood circulation and home back to the mucosal 

tissue into the lamina propria. (Abbas et al., 2012) 
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Lamina propria is the main effector site of all the gut immune responses. It is a 

residence to T and B lymphocytes, macrophages, dendritic cells (mainly of regulatory 

phenotype), neutrophils and mast cells. At this location, IgA is produced by plasma cells and 

transcytosed to the lumen of the gut through epithelial cells. The vast majority of T cells of 

the lamina propria express CD4 and are known to produce cytokines or regulate immune 

responses against food proteins and commensals. Oral tolerance, a term related to this T cell 

function, is defined as systemic unresponsiveness to the antigen administered previously 

orally. It was experimentally proved by Titus and Chiller (1981). There are different 

mechanisms leading to oral tolerance, but the most important is the induction of peripheral 

tolerance, which is based on Treg cells. Although CD8+ T cells are quite rare in the lamina 

propria, they often reside directly in the epithelium, and thus have been named intraepithelial 

lymphocytes (IELs). The IELs function as very effective cytotoxic cells by killing infected 

and stressed cells via the perforin/grandzyme or Fas-dependent pathways. (Abbas et al., 2012; 

Murphy and Janeway, 2008; Wittig and Zeitz, 2003) 

 

Fig. 1 – Mucosal immune system of the gut 

 

(Abbas et al., 2012) 
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The picture of immune mechanisms related to the gut tissue would not be complete 

without the most natural, innate immune mechanisms. Apart from regulatory DCs and 

inhibitory macrophages dampening inflammatory reactions in the lamina propria, epithelial 

cells also dispose of indispensable functions. Secretion of mucins by epithelial cells and 

production of antimicrobial peptides (AMPs) by specialized Paneth cells protect the GIT cells 

from direct contact with pathogens from the lumen. Epithelial cells can modulate the immune 

response by secreting cytokines and even expressing MHC class II molecules; however, the 

question whether these cells can act as APCs or not is yet to be answered. (Abbas et al., 2012; 

Forsum et al., 1979) 

The proinflammatory responses of immune cells are, by all means, limited towards 

commensal microbes. This limitation is obvious from the distribution of PRR receptors 

(mostly TLRs and NLRs) among and within epithelial cells. Most of these innate immune 

receptors are expressed on the basal side (Rhee et al., 2005) or in the cytoplasm of epithelial 

cells ensuring restriction of reactivity to invasive microorganisms. (Abreu, 2010) 

 

1.2 Microbes in health and disease 

One of the crucial environmental pressures resides in infections (Bach, 2005). 

Microbes (infectious agents) can trigger autoimmune diseases by several different 

mechanisms. A microbe carrying a peptide similar to some kind of self-peptide can cause a 

shift of the immune response from the nonself microbe to a self-structure in an individual (a 

phenomenon called “molecular mimicry”) (Fujinami and Oldstone, 1989). By activating 

numerous APCs, microbes can indirectly activate autoreactive T cells (an event called 

“bystander activation”) (Fujinami et al., 2006). Production of superantigens by the microbes 

can lead to polyclonal activation of lymphocytes (Herman et al., 1991) and reactivity towards 

autoantigens. (Bach, 2005; Kverka and Tlaskalova-Hogenova, 2013) 

Apart from triggering an autoimmune disease, microbes have been also implicated in 

protection of host by competing with pathogens at mucosal surfaces and regulating the 

immune responses (Kivity, 2009). The interaction between microbes and IECs, mediated by 

PRR receptors, can lead to enhancement of tight junctions and production of AMPs resulting 

in contribution to the maintenance of the mucosal barrier function (Abreu, 2010). Generation 

of IgA producing cells is also promoted by microbes as shown in comparison of the number 

of IgA- producing plasma cells in germ-free mice versus specific-pathogen free mice 

(Macpherson et al., 2001). Additionally, microbes initiate a signal transmission through IECs 
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to immune cells underneath them causing IECs to produce TGF-β and other cytokines. TGF-β 

can convert DCs into regulatory DCs and therefore promotes generation of Treg cells (Iliev et 

al., 2009). Treg cells are known to produce IL-10, an efficient regulatory cytokine, as well as 

to control the activity of constitutively activated Th17 (Chaudhry et al., 2011) and γδT cells 

(Park et al., 2010) in the gut. 

 

1.3 Gut microbiota 

Microbes living among many parts of the human body form a very diverse ecosystem 

called microbiota. The amount of microbial cells is 10 times higher (10
14

) than the amount of 

all eukaryotic cells (of the human body itself), and microbiota is composed of at least 1000 

different bacterial species. Furthermore, the bacterial genome contains at least 450 times more 

genes than the human genome itself (Li et al., 2014). Now that we know the extent of this 

unique ecosystem residing in our bodies, finding out that it holds many various indispensable 

features does not come as a surprise. (Tlaskalova-Hogenova et al., 2011) 

Microbiota reaches highest numbers in the distal gut. To show the importance of gut 

microbiota, gnotobiological techniques are often used. Animals without natural microbiota in 

their bodies, breaded in germ-free conditions, are used to demonstrate what could happen if 

there were no bacteria inside an animal body (Herbst et al., 2011; Neufeld et al., 2011; 

Rodriguez et al., 2011; Schwarzer et al., 2013; Stepankova et al., 2010). It has been shown 

that colonization of germ-free animals has a solemn effect on the development of the immune 

system and on the preservation of the intestinal homeostasis (Cebra, 1999).  

1.3.1 Composition 

A large-scale comparative analysis of 16S rRNA sequences from colonic mucosa and 

feces of healthy subjects revealed that two main phyla dominate in the gut microbiota: 

Firmucutes and Bacteroidetes (Eckburg et al., 2005). Although the bacterial profile of human 

microbiota shows certain resemblance, every individual appears to have its own unique 

microbiota composition. During life, microbiota composition is influenced by many factors. 

These include birth conditions, breast feeding (weaning), nutrition, antibiotic treatment and 

age. Although microbiota of an individual may change, the changes are in general only 

temporary and a stable composition is maintained throughout the individual’s life. (Ottman et 

al., 2012) 
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Interestingly, to classify humans into groups that would presumably respond 

differently to diet or drug intake, a metagenomic study was done and as a result, three 

different enterotypes within the human population were identified (Arumugam et al., 2011). 

Escherichia coli from the phyla Proteobacteria, one of the best characterized bacterial 

species, is also present in the gut microbiota. It is a predominant aerobic microorganism of the 

GIT and it colonizes our intestine very early during infancy (Bezirtzoglou, 1997). However 

commensally behaving may E. coli seem, numerous host and environmental factors can cause 

conversion of this bacterium into a “pathogen” (Tenaillon et al., 2010).  

1.3.2 Bioactive molecules of microbial origin 

Molecular biologists put great effort into uncovering molecular core of many 

immunological processes, interaction between the immune system and microbiota being one 

of them. Microbes generally dispose of many molecules that cause a specific immune (or 

generally organismal) response and thus we term them bioactive. For some experiments, the 

whole microbe needs to be used, but commonly the same effect can be achieved by only a 

bacterial lysate. For many of these bioactive molecules, recognition receptors (PRRs) are 

found in an organism. Some of the extracellular molecules (structures) and their recognition 

receptors are mentioned here: lipopolysaccharide (LPS), a component of the outer membrane 

of Gram-negative bacteria, can be recognized by TLR4; peptidoglycan and lipoteichoic acid 

(LTA) of Gram-positive bacteria are recognized by TLR2; the flagellin protein from bacterial 

flagella is recognized by TLR5. On the other hand, recognition of double-stranded RNA 

(dsRNA) and numerous other signs of viral infection is performed by TLR3 and induces 

production of type I interferon as well as inflammatory cytokines. Similarly, TLR7 recognizes 

single-stranded RNA (ssRNA) derived from RNA viruses. Specific CpG (DNA) motifs, 

frequently found in bacterial and viral DNA (but not in mammalian DNA), can be recognized 

by TLR9. (Kawai and Akira, 2010) 

Products of microbial metabolism which make an essential source of energy for 

ruminants (cows, sheep) are short-chain fatty acids (SCFAs). Although SCFAs have been 

proved to supply the host with energy from digestion of dietary fiber, it is not their only 

characteristics. According to Høverstad (1986), SCFAs have the ability to stimulate the 

absorption of chloride, sodium and water in the colon environment. Additionally, 

inflammation and atrophy of the colon mucosa can be caused by the absence of SCFAs. 

Interestingly, these microbial metabolites have been also shown to regulate the size and 

function of the colonic pool of Tregs. (Brody, 1998; Smith et al., 2013) 
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1.4 Interaction between microbiota and mucosal immune system of 

the gut 

The relationship between two distinct compartments of the body, the gut-associated 

immune system and the gut microbiota, needs to be very well structured and balanced. 

Immune cells of the gut are in constant contact with bacterial antigens and thus any step 

towards enhanced reactivity to microbiota could lead to a rapid development of inflammation 

and destruction of the mucosal barrier. Some immunopathologies are believed to be 

associated with altered immune response to microbiota (e.g. Fava and Danese, 2011). 

Although immune response is tolerogenic towards commensal microbes, response to 

pathogens must be adequately strong and result in elimination of the causative agent. The 

mechanisms of distinguishing between commensal and pathogenic bacteria is still not 

completely understood. However, some mechanisms how commensal/probiotic bacteria 

maintain the homeostasis are known: 1) the influence on TLR (toll-like receptor) signaling 

- Profound research has shown that gram-positive and gram-negative bacteria, as well as 

commensal (including probiotic) and pathogenic bacteria, affect the expression of TLRs on 

IECs differently (Miettinen et al., 2008; Trevisi et al., 2008; Voltan et al., 2007). Additionally, 

commensal bacteria have the ability to induce expression of negative regulators of TLR 

signaling (Kelly et al., 2004; Otte et al., 2004) or interfere with the NFκB (Neish et al., 2000) 

and MAPK (Lin et al., 2008) signaling pathways. 2) the influence on cytokine induction - 

Probiotic and commensal strains of bacteria modulate production of cytokines in the gut in 

both inflammatory (e.g. Hoffmann et al., 2008) and anti-inflammatory fashion. Induction of 

regulatory and anti-inflammatory cytokine production, particularly IL-10 and TGF-β, by 

probiotic and commensal bacterial strains prevents excessive inflammation in the gut (Niers et 

al., 2005; Zeuthen et al., 2007). 3) the influence on lymphocyte differentiation – The 

cytokine environment plays a crucial role in lymphocyte differentiation. Therefore, induction 

of specific cytokine production by commensal/pathogenic bacteria (O’Mahony et al., 2006) 

may determine into which subset the lymphocyte will develop. Commensal and some 

probiotic bacteria induce regulatory T cell (Treg) development (O’Mahony et al., 2008; Smits 

et al., 2005). Two types of Tregs have been defined according to location of induction – while 

natural Tregs (nTregs) develop in the thymus, induced Tregs (iTregs) develop post-thymically 

in the presence of cytokine TGF-β (Murai et al., 2010). Despite the fact that nTregs and 

iTregs interact (Zheng et al., 2004) and create a suppressive environment in the gut, 

commensal bacteria are linked only to iTreg induction (Round and Mazmanian, 2010). 
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Among iTregs, Tr1 and Th3 are known to mediate the mucosal immune tolerance in the gut 

(Hořejší and Bartůňková, 2009). As for B cell differentiation, commensal and some probiotic 

bacteria activate local APCs to increase sIgA production in B cells (Majamaa et al., 1995). 

 

1.5 The link between microbiota and diseases 

Altered microbiota and gut barrier failure are the key players in many inflammatory 

and autoimmune diseases (Tlaskalová-Hogenová et al., 2011). These events together with the 

dysregulation of mucosal immune response can lead to intensified penetration of microbial 

components into the mucosa and in consequence lead to exaggerated immune response and 

inflammation. As an example, the role of microbiota in inflammatory bowel diseases is 

described below: 

Inflammatory bowel diseases (IBD) such as the Crohn’s disease and ulcerative colitis 

are chronic, relapsing, immunologically mediated disorders caused by aberrant immune 

response to commensal gut microbiota (Sartor, 2006). Experiments with germfree animals 

revealed that, in the absence of microbiota, intestinal inflammation is reduced or actually fails 

to develop (Hudcovic et al., 2001; Taurog et al, 1994). Furthermore, the fact that “lesions in 

IBD predominate in areas of the highest bacterial exposure” (Seksik et al., 2006) also points 

to the involvement of microbiota in the disease pathogenesis. Therefore, oral administration 

of probiotics may be successful in treatment of IBD patients. 

Probiotics are defined as "live microorganisms, which when consumed in adequate 

amounts, confer a health effect on the host" (Guarner and Schaafsma, 1998). However, this 

definition is very nondescriptive. After all, many microbes residing in the gut of every 

individual may possess properties, which could be described as “probiotic”. 

1.5.1 Mechanisms of action of probiotics 

Probiotics (used as food supplements) can dampen or even prevent gut tissue 

inflammation by three main mechanisms. First, they may shape the gut ecosystem by 

decreasing the local pH by organic acid production, competing for limited resources and sites 

of adhesion and producing specific antibacterial substances (Stecher and Hardt, 2008) or 

quorum sensing modifiers which signal the need of growth adjustment to neighboring bacteria 

(Boyer and Wisniewski-Dyé, 2009). Additionally, certain probiotics can directly induce the 

production of antimicrobial peptides (AMPs) in the host (Schlee et al., 2008). Secondly, 

probiotics can ameliorate the gut barrier function and thereby protect it from pathogenic 
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invasion. They can inhibit the adhesion and invasion of pathogenic bacteria (Boudeau et al., 

2003; Ingrassia et al., 2005) or even convert the adherent bacteria into nonadherent (Medellin-

Peña et al., 2007). Finally, probiotics possess immunomodulatory properties such as 

downregulation of pro-inflammatory cytokine production, PRR expression and NFκB 

signaling (Grabig et al., 2006; Matsumoto et al., 2005; Sougioultzis et al., 2006).  

 

Fig. 2 – The mechanisms of action of probiotics 

 

(http://www.customprobiotics.com/about_probiotics_continued.htm, downloaded: 2.1.2014, modified by: Jana 

Málková) 

 

1.5.2 Probiotics in the therapy of human diseases 

Health promoting effect of the administration of probiotics has been confirmed in 

patients suffering from numerous diseases and it is not restricted to the gastrointestinal tract. 

In fact, disorders that can be attenuated by probiotics are of huge variability. Nevertheless, 

exact properties affecting the therapy have not yet been established. 

Claiming that probiotics bring a health benefit to the patients with inflammatory 

diseases of the gut tissue comes as no surprise. When treating the most common disease of the 

GIT – diarrhea (acute infectious, traveler’s or antibiotic-associated) by probiotics, the risk 

and average duration are often reduced (Corrêa et al., 2011; McFarland, 2007; Szajewska et 
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al., 2006). Another disease of the GIT, which occurs in premature infants, is the necrotizing 

enterocolitis (NEC). A meta-analysis by Deshpande et al. (2010) showed that probiotic 

supplements significantly reduce the risk of NEC and death of preterm neonates suffering 

from NEC. A group of intestinal diseases that affect an increasing number of patients is called 

inflammatory bowel diseases (IBD). This group consists of ulcerative colitis (UC), which is 

manifested by chronic inflammation in the distal parts of the gut (rectum and colon), and 

Crohn’s disease affecting the gastrointestinal wall particularly in the terminal part of the 

ileum. Treatment of children suffering from UC by a specific probiotic preparation resulted in 

a remission of the disease in the majority of patients; moreover, endoscopic and histological 

scores were significantly lower than in the placebo group and a potential relapse of the 

disease was postponed (Miele et al., 2009). In total, a meta-analysis done by Shen et al. 

(2014) comparing 23 randomized trials confirmed that probiotics significantly increase the 

remission rates in patients (both children and adults) with active UC. Although studies that 

show efficacy of probiotics in treatment of Crohn’s disease exist (Fujimori et al., 2007), the 

beneficial effect is still very much debatable (Doherty et al., 2010; Rahimi et al., 2008). One 

of the other diseases influencing the gut is a functional disorder characterized by abdominal 

pain and defecation discomfort or a general change in bowel habits. This functional 

gastrointestinal disorder is called the irritable bowel syndrome (IBS). The question of 

efficiency of probiotic treatment of IBS is still controversial (Hoveyda et al., 2009). Although 

not common in the population, celiac disease is a well explored autoimmune disorder. It is 

the only autoimmune disease, where the triggering agent is known – it is dietary gluten. In 

vitro studies and animal models brought great hope for celiac disease patients (D’Arienzo et 

al., 2011; Lindfors et al., 2008), but only a few clinical trials with probiotic treatment have 

been performed to date. For example, Smecuol et al. (2013) have recently demonstrated that 

Bifidobacterium infantis can alleviate the symptoms in untreated celiac disease. There are 

many other treatment approaches to celiac disease, aside from administration of probiotics, 

for example a peptide-based therapeutic vaccine and usage of genetically modified gluten in a 

patient’s diet (Bakshi et al., 2012). Outside of the gut, diseases of other parts of the GIT have 

been investigated for the role played by microbiota. Inflammation in the oral cavity (e.g. in 

periodontitis or halitosis) can be prevented or treated by probiotics. In periodontitis, the 

mechanisms of action are the decrease of pH in the oral cavity and/or production of 

antioxidants (Shiva manjunath, 2011); in halitosis, it is competition with bacteria implicated 

in the disease (Burton et al., 2006). 
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Prevention of allergy by a probiotic E. coli (Lodinova-Zadnikova et al., 2003) has 

raised interest in this kind of approach towards allergies. Later, various allergic diseases have 

been investigated for efficacy of probiotic therapy. As for asthma and allergic rhinitis, the 

clinical symptom scores decreased in probiotically (Lactobacillus gasseri A5) treated children 

(Chen et al., 2010). Even though clinical trials show a limited effectivity of probiotics in the 

treatment of asthma, animal models bring great hope for future prevention and treatment 

(Jang et al., 2012). In allergic rhinitis, the ability of probiotics to alleviate nasal symptoms 

and prevent the pollen-induced infiltration of eosinophils into the nasal mucosa was reported 

(Ouwehand et al., 2009). A very common allergic disease which affects around one fifth of 

the world’s population during their lifetime (Thomsen, 2014), atopic dermatitis, can be 

prevented by administration of probiotics (Drago et al., 2011; Lee et al., 2008). For example, 

Lactobacillus rhamnosus strain GG had a preventive effect on atopic eczema in children at 

risk and a 4-year follow-up confirmed the effect shown in the randomized placebo-controlled 

study (Kalliomäki et al, 2001; Kalliomäki et al., 2003). On the other hand, in a clinical trial 

regarding food allergy, oral supplementation with combination of probiotics did not 

accelerate the tolerance to cow’s milk in infants with cow’s milk allergy (Hol et al., 2008). A 

meta-analysis by Osborn and Sinn (2007) showed that the evidence supporting addition of 

probiotics to infant feeds to prevent food allergy and other allergic diseases was not sufficient. 

Thus, further research is needed to assess recommendations for probiotic treatment of allergic 

patients. 

Type I diabetes mellitus (TID, also known as the insulin-dependent diabetes or 

juvenile-onset diabetes) is an organ-specific autoimmune disease, where T lymphocytes 

selectively destroy pancreatic β cells and thus disable the production of insulin (Paik et al., 

1980). Although probiotics proved to be efficient in preventing animal models of TID 

(Calcinaro et al., 2005; Valladares et al., 2010), the evidence supporting probiotic usage in 

children at high risk of disease development is not sufficient (Ljungberg et al., 2006). Studies 

on multiple sclerosis (Fleming et al., 2011), rheumatoid arthritis (Mandel et al., 2010; de 

los Angeles Pineda et al., 2011) and psoriasis (Groeger et al., 2013) bring promising results. 

Type II diabetes is a metabolic disorder which affects approximately 10% of European 

population according to the World Health Organization (data from the year 2010). After 

administration of probiotics repression of oxidative stress (Ejtahed et al., 2012), reduction of 

total cholesterol levels (Ejtahed et al., 2011) and moderation of systemic inflammation 

(Alokail et al., 2013) were observed. In addition, beneficial effects of probiotics are studied 

http://d360prx.biomed.cas.cz:2259/pubmed?term=Lodinov%C3%A1-Z%C3%A1dn%C3%ADkov%C3%A1%20R%5BAuthor%5D&cauthor=true&cauthor_uid=12876412
http://d360prx.biomed.cas.cz:2259/pubmed?term=Kalliom%C3%A4ki%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11297958
http://d360prx.biomed.cas.cz:2259/pubmed?term=Kalliom%C3%A4ki%20M%5BAuthor%5D&cauthor=true&cauthor_uid=11297958
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for future treatment or prevention of liver diseases (Cesaro et al., 2011) and atherosclerosis 

(Hlivak et al., 2004). 
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2 HYPOTHESIS AND AIMS 

Our study is built on the hypothesis that bacterial strains of the same species, but with 

different relationships to IBD pathogenesis, could induce a different immune response in the 

host. As the methodological approach in most used experiments does not allow the use of 

living bacteria, we inactivated the microbes. Here, we hypothesized that the mode of 

inactivation may influence the microbe’s immunogenicity. To confirm or disprove this 

assumption, we inactivated the microbes differently and compared the inactivation protocols 

in subsequent experiments. 

 

This thesis had four main aims: 

 To analyze if the mode of inactivation (formaldehyde, heat or UV irradiation) 

influences the immune response to given microbes. 

 To compare the antibody response to E. coli strains between IBD patients and 

healthy controls. 

 To compare the immune response to probiotic, commensal and pathogenic 

bacterium of the same species (Escherichia coli). 

 To analyze how different live E. coli strains interact with the intestinal 

epithelial cells in vitro. 
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3 MATERIALS AND METHODS 

 

3.1 Microbes and inactivation 

Four different strains of E. coli (Nissle 1917, K6, LF82 and p19A) were used to study 

the differences between immune response to these microbes. The non-pathogenic strain E. 

coli Nissle 1917, frequently described as a probiotic, may be useful in treatment of IBD, as 

shown in several clinical trials (Kruis et al., 1997; Matthes et al., 2010; Rembacken et al., 

1999). The adherent-invasive E. coli strain LF82 is considered as a possible agent responsible 

for the onset and development of IBD (Darfeuille-Mischaud et al., 2004). The pathobiont, 

E. coli strain p19A, was isolated from a patient with active ulcerative colitis and therefore 

linked to IBD (Petersen et al., 2009). The commensal E. coli strain K6 has not been 

implicated in pathogenesis or in protection from IBD. 

3.1.1 Microbes 

The non-pathogenic E.coli Nissle 1917 (EcN) isolated from human intestinal flora was 

kindly provided by Ardeypharm (Germany). The E.coli K6 was taken from the collection of 

bacteria at the Institute of Microbiology, Academy of Sciences of the Czech Republic. The 

E.coli LF82 was isolated from a chronic ileal lesion of a patient with Crohn’s disease 

(Boudeau et al., 1999). The E. coli strain p19A was isolated from a patient with active 

ulcerative colitis (Petersen et al., 2009). 

All bacterial strains were cultivated aerobically either on Nutrient agar No.2 

(HIMEDIA) or in Lysogeny broth (HIMEDIA) for 24h at 37°C. 

After harvesting, concentrations of the bacterial suspensions were assessed by 

measurement of optical density (OD600) using a cell density meter Ultrospec 10 (GE 

Healthcare Bio-Sciences AB). All bacterial suspensions were brought to the same OD600 

value. 

3.1.2 Inactivation methods 

The need to inactivate E.coli strains using different modes of inactivation emerged 

from assumption that the mode of microbe inactivation may influence its immunogenicity. 

For this purpose, three commonly used methods were chosen: addition of formaldehyde (3h, 

room temperature, 1% solution; for details see protocol n.1), heat inactivation (60 min, 70°C; 
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for details see protocol n.2), and UV irradiation (75 min under UV-C lamp; for details see 

protocol n.3). 

3.1.2.1 Solutions and chemicals 

PBS (phosphate buffered saline) 

– 1,2g Na2HPO4.12H2O (Lachema) + 0,2g NaH2PO4.2H2O (Lachema) + 9,0g NaCl 

(Lachema) + relevant volume of distilled water to gain 1l of solution 

– pH value is set to 7,35 using 4M NaOH 

– sterilization using an autoclave (121°C, 30 min) 

Formaldehyde 

– 1% solution prepared from the 36-38% formaldehyde (Lach-Ner) 

 

Protocol n.1 – Inactivation by formaldehyde 

1) Prepare a 1% formaldehyde solution in PBS. 

2) Centrifuge 1 ml of the bacterial culture (3000 x g, 10 min, 4°C) and discard the 

supernatant. 

3) Add 10 ml of the formaldehyde solution and incubate 3h at room temperature. 

4) Centrifuge (3000 x g, 10 min, 4°C). Wash 3 times with sterile PBS. 

5) Resuspend in PBS. 

6) Verify the effectivity of inactivation by 24h cultivation of bacteria on agar Petri dishes 

(Nutrient agar No.2). 

 

Protocol n.2 - Heat inactivation 

1) Transfer the bacterial suspension in an Erlenmeyer's flask and plug it with a cotton wool. 

2) Immerse the flask into a 70°C water bath (the suspension must be under water). 

3) Inactivate the bacteria for 60 min. 

4) Wash with sterile PBS, centrifuge (3000xg, 10min, 10°C) and discard the supernatant - 

repeat 3 times. 

5) Resuspend in PBS. 

6) Verify the effectivity of inactivation by 24h cultivation of bacteria on agar Petri dishes 

(Nutrient agar No.2). 

 

Protocol n.3 - Inactivation by UV irradiation 
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1) Irradiate 5 ml of sample in a 15 ml tube for 20 min – at 10 cm distance from the UV-C 

lamp. 

2) Wash with sterile PBS, centrifuge (3000 x g, 10min, 4°C) and discard the supernatant - 

repeat 3 times. 

3) Resuspend in PBS. 

4) Verify the effectivity of inactivation by 24h cultivation of bacteria on agar Petri dishes 

(Nutrient agar No.2). 

3.2 Primary murine cells and cell lines 

To study the cell response to distinct bacterial strains, both primary cells and cell lines 

were used. Primary murine cells from the mesenterial lymph nodes and spleen were chosen 

for the analysis of the T cell activation levels. The appropriate cells were isolated from mice 

with active intestinal inflammation and healthy mice to assess the difference between these 

distinct environments. 

In order to analyze the activation of macrophages, a murine monocyte/macrophage 

cell line RAW264.7 was used. This cell line was established from a tumor induced by 

Abelson murine leukemia virus in BALB/c mice (Raschke et al., 1978). 

For the epithelial detachment assay, both human and murine epithelial cell lines were 

used, because various human diseases are studied in a mouse model. The human epithelial 

cell line Caco-2 was originally isolated from a colorectal adenocarcinoma (Fogh et al., 1977) 

and the murine epithelial cell line MODE-K is derived from the small intestine of healthy 

germ-free C3H/HeJ mice; these cells were subsequently transfected by a defective virus and 

thus immortalized (Vidal et al., 1993). 

3.2.1 Isolation and cultivation of primary murine cells 

Cell from the mesenterial lymph nodes (MLN) and spleen (SPL) were isolated (for 

details, see protocol n.4) from healthy mice and mice with active intestinal inflammation. 

Female BALB/c mice used in these experiments were obtained from a breeding colony at the 

Institute of Physiology, Academy of Sciences of the Czech Republic. The active intestinal 

inflammation (acute colitis) in mice was induced by 3% dextran sodium sulphate (DSS) 

dissolved in tap water for 7 days ad libitum (Wirtz et al., 2007). 

Murine SPL and MLN cells were cultivated in a 96-well cultivation plate in Roswell 

Park Memorial Institute (RPMI) medium supplemented with fetal bovine serum (FBS) and 

antibiotic mixture (ATB). Flow cytometry analysis of murine SPL and MLN cells was 

http://en.wikipedia.org/wiki/Roswell_Park_Memorial_Institute_medium
http://en.wikipedia.org/wiki/Roswell_Park_Memorial_Institute_medium
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preceded by 12-hour cultivation with stimuli and Brefeldin A which allowed the subsequent 

measurement of intracellular production of interferon γ (IFN-γ). 

In any step of centrifugation, the mid bench centrifuge Universal 32R (Hettichlab 

zentrifugen) was used. For work with organs, cell suspension and cells, we employed the 

laminar flow cabinet Steril-Antares 72 (Foester Wheeler divison, Steril Factory). 

3.2.1.1 Solutions and media 

FF (saline solution) 

– 0,9% solution of sodium chloride in water for injection (Ardeapharma a.s.) 

ACK lysing buffer 

– 8,3 g NH4Cl + 1 g KHCO3 + 200 µl 0,5M EDTA + 800 ml dH2O 

– pH was set to 7,2 – 7,4 

Complete RPMI-1640 medium 

– RPMI 1640 (Sigma) + 1% ATB (antibiotic antimycotic solution; Sigma) + 2mM L-

glutamine (Sigma) + 10% FBS (BIOCHROM) 

 

Protocol n.4 – Isolation of primary murine cells 

1) After sacrificing the mice, isolate at least three mesenterial lymph nodes and spleen from 

each mouse and put the organs quickly into a tube with sterile FF. 

Keep the isolated organs on ice! 

2) Mash spleen into the single-cell suspension in FF using sterile syringe, needles and Petri 

dishes and pass the cells through a 70μm nylon mesh into 50ml tubes. Mash MLN into single-

cell suspension in FF using two microscope slides and pass the cells through a 70μm nylon 

mesh into 50ml tubes. 

One filter can be used per organ per group. 

3) Centrifuge (300 x g, 4° C, 5 min) and discard supernatant. 

4) Add 5 ml of ACK lysing buffer to the pellet of splenocytes and incubate 5 min at room 

temperature. Mix gently a few times. Centrifuge (300 x g, 4° C, 5 min) and discard 

supernatant. 

5) Calculate cells and bring them to a concentration of 2 x 10
6
 cells/ml in complete RPMI-10 

medium. 
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3.2.2 Cell lines and cultivation 

RAW264.7 (ATCC TIB-71), Caco-2 (ATCC HTB-37) and MODE-K (INSERM Unit 

851, Lyon, France) cell lines were used for the analysis of cell response to E.coli strains 

described above. Before analysis, the cell lines were cultivated for several days in complete 

DMEM medium (Sigma-Aldrich) at 37°C and 5% CO2 in a CO2 incubator (SANYO Electric 

CO.). For any work with cell lines, we employed the laminar flow cabinet Steril-Antares 72 

(Foester Wheeler divison, Steril Factory). 

3.2.2.1 Media 

Complete DMEM (Dulbecco's Modified Eagle's Medium) 

– High glucose DMEM (Sigma)+ 1% ATB (antibiotic antimycotic solution; Sigma) + 

2mM L-glutamine (Sigma) + 10% FBS (BIOCHROM) 

 

3.3 Analysis of antibody response 

To detect the serum antibodies (of IgA and IgG isotype) against different strains of 

E.coli in IBD patients and controls, indirect enzyme-linked immunosorbent assay (ELISA) 

was used. Patient sera were collected at Hepato-gastroenterology clinic of IKEM. 

3.3.1 Indirect ELISA 

ELISA was performed with sera samples from ten IBD patients and ten controls for 

both IgA and IgG detection. Three independent experiments were done; the detailed steps of 

procedure are in protocol n.5, which was previously optimized for performance of our 

experiments. In the procedure, a microplate washer (TriContinent MultiWash II) was used for 

washing wells. Measurement of reaction was performed on ELISA reader (Multiskan Ascent 

Plate Reader) and captured by Ascent™ Software 2.4.1 (Thermo Scientific). 

3.3.1.1 Solutions and chemicals 

PBS 

– 1,2g Na2HPO4.12H2O (Lachema) + 0,2 g NaH2PO4.2H2O (Lachema) + 9,0 g NaCl 

(Lachema) + relevant volume of distilled water to gain 1l of solution 

– pH value is set to 7,35 using 4M NaOH 

Wash buffer 

– 0,05 % solution of Tween20 (Sigma) in PBS 

1% BSA (bovine serum albumin)  

– 1 g of BSA (Sigma) dissolved in 99 ml of PBS 

http://www.sigmaaldrich.com/life-science/cell-culture/classical-media-salts/dmem.html
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TMB (3,3’,5,5’-tetramethylbenzidine) 

– 40 mg TMB (Sigma) + 27 ml DMF (Lachema) + 73 ml distilled water 

Citrate buffer 

– 2,94 g Trisodium citrate (Lachema) + 100 ml distilled water 

– pH value is set to 4,2 using Citric acid 

Substrate solution 

– 3 ml TMB + 3 ml Citrate buffer + 1,2 µl H2O2 (Chemapol) 

H2SO4 (sulfuric acid) 

– 96% solution of H2SO4 (Lach-Ner) 

3.3.1.2 Antibodies 

anti- human IgA-PEROX (alpha chain) (AFF) (THE BINDING SITE) 

anti-human IgG-PEROX (gamma chain) (THE BINDING SITE) 

 

Protocol n.5 – Indirect ELISA with sera samples 

1) COAT: Dilute the bacteria to 10
5
 at 50 l/well. Prepare all solutions (if needed). Leave 

overnight at 4°C. 

2) ASPIRATE and WASH: Aspirate and wash 1x with wash buffer. 

3) BLOCK: Block each well with 300 l of 1% BSA in PBS, incubate 1-2 h at room 

temperature. 

Prepare the samples in the meantime using FACS tubes. 

4) ASPIRATE and WASH: Aspirate and wash 1x with wash buffer. 

5) SAMPLES: Add relevant serum samples diluted 1:100 in 1% BSA 50 l/well, and incubate 

2h at RT. Prepare detection antibodies in the meantime. 

6) ASPIRATE and WASH: Aspirate and wash 5x with wash buffer (>400 l/well). 

This is a critical step for low background! 

7) DETECTION ANTIBODY: Incubate for 2h at room temperature in the dark with 50 

l/well of detection antibody: 

anti-human IgG-PEROX diluted 1:2000 in 1% BSA 

anti- human IgA-PEROX diluted 1:3000 in 1% BSA 

8) ASPIRATE and WASH: Aspirate and wash 5x with wash buffer (>400 l/well). 

This is a critical step for low background. 

9) SUBSTRATE: Add 50 l/well of substrate solution and incubate for approx. 10-30 min at 

RT in the DARK! 
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10) STOP: Stop the reaction with 50 l/well of 2M H2SO4. Work fast! 

11) MEASURE: within 20 minutes, measure the absorbance at 450 nm (sample) and 650 nm 

(correction – not essential). 

 

3.4 Analysis of cellular response 

3.4.1 Response in murine RAW264.7 cell line 

In order to assess the differences between macrophage responses to different E. coli 

strains, murine monocyte/macrophage RAW264.7 cell line was cultivated with inactivated 

E. coli. Subsequently, CD40 expression and nitrite production were measured by flow 

cytometry and Griess assay, respectively. 

3.4.1.1 Cultivation with stimuli 

RAW264.7 cells were cultivated with the four inactivated E. coli strains or LPS for 24 

hours at 37°C and 5% CO2 in a CO2 incubator (SANYO Electric CO.). All stimuli added to 

the cells were diluted in complete DMEM medium, LPS (lipopolysaccharides from E.coli 

O55:B5; Sigma) was used as a positive control (for details, see protocol n.6). 

 

Protocol n.6 – Cultivation of RAW264.7 cells with stimuli 

1) Scrape the RAW 264.7 cells off the cultivation flask with a cell scraper. 

2) Calculate cells in the suspension and bring them to a concentration of 2 x 10
6
 cells/ml. 

Now, pipette 50 µl of the cell suspension into all used wells of the cultivation plate. 

3) Add 100 µl of the bacterial suspension (10
7
 CFU/ml) to each well. Don’t forget to add 

positive (LPS 1ng/ml) and negative (cells without stimuli) controls. 

4) Cultivate 24h at 37°C, 5% CO2. 

 

3.4.1.2 Flow cytometry 

For flow cytometry analysis, macrophage cells were stained with Hoechst 33258 (Life 

Technologies) and PE-conjugated anti-CD40 (clone 1C10; eBioscience). In any step of 

centrifugation, the mid bench centrifuge Universal 32R (Hettichlab zentrifugen) was used (for 

detailes, see protocol n.7). Measurement of cell surface markers was performed on the 

Becton Dickinson LSR II Flow Cytometer equiped with HTS. The measurement includes 3 

crucial steps: 

1) Fine tuning of PMT voltage – Check some wells for compensation at speeds 

0.5 µl/s (Sample: 15 µl; Mixing: 10 µl). 
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2) Sample measurement – Collect 200k in 60 µl in samples and 50k in 30 µl in 

controls (Flow rate: 1.5 µl/s; Sample: 65 µl; Mixing: 55 µl; Mixing speed: 140 

µl/s; Mixes: 3x; Wash: 400 µl). 

3) Cleaning – 4wells of bleach, 4 wells of dH2O. 

Data were captured by software BD FACS DIVA 6.1.3 and subsequently evaluated using 

FlowJo 7.2.5 software. 

 

Protocol n.7 – Preparation for flow cytometry analysis of surface markers. 

Before transferring cells, take away the supernatant for further analysis (Griess reaction), 

then resuspend cells in FF or PBS. 

1) Transfer cells to the 96-well U plate. 

Add 100 μl of each dublet from cultivation, the final volume in the wells should be 200 μl. Mix 

the leftovers to get cells for singlestains.) 

2) Centrifuge (300 x g, 4°C, 5 min), decant the supernatant and gently tap the plate on paper 

towels. 

3) Block each well with 20 μl of 10% NMS (diluted in PBS) and incubate 20 min at 4°C. – 

Mix the cells well by gentle vortexing. 

In the meantime, prepare mixtures of antibodies for surface staining. 

4) Add 180 μl of PBS to each well. Centrifuge (300 x g, 4°C, 5 min), decant the supernatant. 

5) Mix the cells well by gentle vortexing. Then, add 10 μl of PE-conjugated anti-CD40 

antibody (diluted in PBS) to all sample wells and to the CD40 singlestain well. Incubate for 

30 min at 4°C in the dark. 

6) Add 180 μl of PBS and centrifuge (300 x g, 4°C, 5 min), decant the supernatant. 

7) Resuspend in 180 μl of FACS and centrifuge. 

8) Resuspend in 100 μl of FACS. 

9) Add 10 μl of Hoechst to all sample wells and to the Hoechst singlestain well. 

10) Now, you are prepared to measure your samples with flow cytometry. 

 

3.4.1.3 Griess assay 

Nitrite production of macrophages was assessed by Griess assay after 24-hour 

cultivation with stimuli (for details, see protocol n.8). Measurement of reaction was 

performed on ELISA reader (Multiskan Ascent Plate Reader) and captured by Ascent™ 

Software 2.4.1 (Thermo Scientific). 



32 

 

 

Protocol n.8 – Griess assay with supernatants from RAW264.7 cells. 

1) Add 50 µl of supernatant to each used well of the 96-well F plate. Add 50 µl of standard 

NaNO2. The standard is diluted to the concentrations from 125 µM to 1 µM by two-fold 

dilution in medium. Wells with 50 µl of medium serve as blank. The assay control is 50 µl of 

dH2O. 

2) Add 50 µl Griess reagent (Sigma-Aldrich) diluted in dH2O (40 mg/ml) to each well. 

3) Within a few minutes, measure the absorbance at 540 nm. 

 

3.4.2 Response in primary murine cells from mesenterial lymph nodes and 

spleen 

The early activation of T cells from the population of splenocytes (SPL) and cells from 

the mesenterial lymph nodes (MLN) was measured by flow cytometry after cultivation with 

inactivated E. coli. We also measured the intracellular production of IFN-γ in these cells. 

3.4.2.1 Cultivation with stimuli 

Primary murine cells (from SPL or MLN of healthy/DSS-treated mice) were isolated 

and brought to cell suspensions. Then, we added the inactivated bacteria and Brefeldin A 

(1000x Brefeldin A solution; eBioscience) and cultivated the cells for 12 hours at 37°C and 

5% CO2 in a CO2 incubator (SANYO Electric CO.) (for details, see protocol n.9). 

 

Protocol n.9 – Cultivation of MLN and SPL cells with stimuli 

1) Pipette SPL and MLN cells from the suspension to the cultivation plates. 

2) Add inactivated bacteria (10
7
 CFU/ml) and Brefeldin A (20 µl/well) diluted in complete 

RPMI medium. Don’t forget to add the positive (PMA/iono) and negative (cells without 

stimuli) controls. 

3) Cultivate 12 hours at 37°C and 5% CO2. 

 

3.4.2.2 Flow cytometry 

For flow cytometry analysis, SPL and MLN cells were stained with eFluor 780-conjugated 

FVD (eBioscience), FITC-conjugated anti-CD3 (clone 145-2C11; BD Bioscience), BV605-

conjugated anti-CD4 (clone RM4-5; Life Technologies), APC-conjugated anti-CD8 (clone 

53-6.7; eBioscience), BV510-cojugated anti-CD69 (clone H1.2F3; BD Horizon) and after 

permeabilization with PE-conjugated IFN-γ (clone XMG1.2; eBioscience). In any step of 
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centrifugation, the mid bench centrifuge Universal 32R (Hettichlab zentrifugen) was used (for 

detailes, see protocol n.10). Measurement of cell surface markers and intracellular cytokine 

was performed on the Becton Dickinson LSR II Flow Cytometer equiped with HTS. The 

measurement includes 3 crucial steps (see chapter 4.4.1.2). Data were captured by software 

BD FACS DIVA 6.1.3 and subsequently evaluated using FlowJo 7.2.5 software. 

 

Protocol n.10 – Preparation for flow cytometry analysis for surface markers and intracellular 

cytokine 

1) Prepare FACS+i (Brefeldin A diluted 1:1000 in PBS). 

2) Transfer 200 l of cells to the FACS plates. 

Add 100 μl of each dublet from cultivation, the final volume in the wells should be 200 μl. Mix 

the leftovers to get cells for singlestains.) 

3) Centrifuge (300 x g, 5 min, 4°C), decant the supernatant, turn and gently tap the plate on 

the paper towels. 

4) Block each well with 20 l of 10 % NMS (diluted in FACS+i), incubate 20 min at 4°C. 

Prepare the mixtures of antibodies for surface staining in the meantime. 

5) Centrifuge (300 x g, 5 min, 4°C), decant the supernatant. 

6) Add 10 l of antibody mixture in FACS+i (or only FACS+i or single stain mixture in 

FACS+i), and incubate for 30 min at 4°C in the DARK. 

7) Add 160 l of FACS+i, and centrifuge, decant the supernatant. 

8) Resuspend in 180 l of FACS+i, and centrifuge. 

9) Permeabilize the cells with Fix/Perm solution (Fixation/Permeabilization 

diluent/concentrate 3:1; eBioscience) 180 l/well for 30-45 min at RT in the dark (from here, 

the inhibitor is not needed). 

10) Cetrifuge (300 x g, 5 min, 4°C) and decant the supernatant. 

11) Wash 2 times with 150 l of Permeabilization buffer 10x (eBioscience) diluted in dH2O 

and centrifuge (350 x g, 5 min, 4°C). 

12) Add 10 l of anti-IFN-γ in PERM, and incubate for 30 min at 4°C in the DARK. 

13) Add 150 l of PERM, and centrifuge. 

14) Resuspend in 170 l of PERM, and centrifuge. 

15) Resuspend in 100 l of PBS. 

10) Now, you are prepared to measure your samples with flow cytometry. 
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3.5 Epithelium detachment assay 

To analyze the differences between bacterial strains in the ability to disrupt the 

epithelial layer, we performed experiments with the cell lines MODE-K and Caco-2. After 

cultivation with live E. coli, we measured the detached cells with flow cytometry. The 

numbers of detached cells and the proportions of live/early apoptotic/late apoptotic/primarily 

necrotic cells were measured. After dissociation of adhered cells by trypsin-EDTA solution, 

the numbers and viability of these cells were determined. 

3.5.1.1 Solutions and media 

Trypsin/EDTA (Sigma) 

HEPES (Sigma) 

Complete DMEM (Dulbecco's Modified Eagle's Medium) 

– High glucose DMEM (Sigma)+ 1% ATB (antibiotic antimycotic solution; Sigma) + 

2mM L-glutamine (Sigma) + 10% FBS (BIOCHROM) 

DMSO (Sigma) 

5-FU 

– 3,25 mg 5-FU, minimum 99% TLC (Sigma) + 5 ml DMSO 

H2O2 

– H2O2 (Chemapol) diluted in DMEM medium without ATB 

3.5.2 Cultivation with stimuli 

The MODE-K and Caco-2 cells were dissociated using trypsin/EDTA solution and 

then transferred to a cultivation plate. Then, we let the cells devide for several days until they 

established a confluent cell layer (for details, see protocol n.11). The cultivation at 37°C and 

5% CO2 took place in a CO2 incubator (SANYO Electric CO.). When the cell layer was 

confluent, we added live E. coli to the cells and cultivated them for another 4 hours. 

 

Protocol n.11 – Cultivation of MODE-K and Caco-2 cell lines in a cultivation plate 

1) Dissociate the cells from the bottom of the cultivation flask with trypsin/EDTA solution. 

Dilute the cells to a suspension of 10
5
 cells/ml. 

2) Transfer 0,5 ml of the cell suspension to each well of a 48-well plate. Let the cells cultivate 

at 37°C, 5% CO2 until the cell layer is confluent. 

MODE-K cells need 2,5 day, while Caco-2 need 3 or more days of cultivation before other 

steps can be taken. 

http://www.sigmaaldrich.com/life-science/cell-culture/classical-media-salts/dmem.html
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3) Wash cells with DMEM medium not including ATB. Then, add 1ml of stimuli - bacteria/ 

5-FU (apoptosis control)/H2O2 (necrosis control). Incubate 4h at 37°C, 5% CO2. 

 

3.5.3 Flow cytometry 

For flow cytometry analysis, both detached cells and adhered cells were used. The 

cells detached by E. coli were stained with Dyomics 647-conjugated Annexin V (BD 

Pharmingen) and Hoechst 33258 (Life Technologies) to determine apoptotic and early 

necrotic cells by flow cytometry. Cells, which stayed adhered to the bottom of the cultivation 

plate were stained with eFluor 780-conjugated FVD (eBioscience). After dissociation of these 

cells by trypsin/EDTA solution, they were measured by flow cytometry. From the adhered 

cells, dead and live cells were determined. (for detailes, see protocol n.12) 

In any step of centrifugation, the mid bench centrifuge Universal 32R (Hettichlab zentrifugen) 

was used. Measurement of MODE-K and Caco-2 cells was performed on the Becton 

Dickinson LSR II Flow Cytometer equiped with HTS. The measurement includes 3 crucial 

steps (see chapter 4.4.1.2). Data were captured by software BD FACS DIVA 6.1.3 and 

subsequently evaluated using FlowJo 7.2.5 software. The gating strategy for detached cells is 

shown in Fig.3 and for adhered cells in Fig.4. 

 

Protocol n.12 – Preparation for flow cytometry analysis of detached and adhered MODE-K 

and Caco-2 cells 

1) Very gently collect the supernatant from cells into 1,5 ml tubes. 

All subsequent steps apply to the detached cells (supernatant from adhered cells). 

2) Centrifuge (350 x g, 5min, 4°C) and discard the supernatant. 

3) Resuspend in 100µl of HEPES buffer and transfer cells to 96-well U plate. Don't forget the 

apoptosis (5-FU) and necrosis(H2O2) controls. 

4) Centrifuge (350 x g, 5min, 4°C). Discard the supernatant. 

5) Resuspend in 200µl of HEPES buffer. 

6) Centrifuge (350 x g, 5min, 4°C). Discard the supernatant. 

7) Add 10µl of Annexin V diluted in HEPES buffer (1:100) to each well. Incubate 10 min at 

RT in the dark. 

8) Add 90 µl of HEPES buffer per well. 

9) Add 10 μl of Hoechst to all sample wells and to the Hoechst singlestain well. Now, 

measurement of the detached cells will be done. 
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10) Stain the adhered cells (that are left at the bottom of wells) with 100 µl of FVD (1:500). 

Incubate 30 min at RT in the dark. 

11) Discard the supernatant and wash the cells with 500 µl PBS (=add 500 µl PBS and 

discard the supernatant).  

12) Dissociate the cells from the bottom of the wells with 200 µl trypsin/EDTA per well. 

13) Collect the cells into 1,5 ml tubes and centrifuge (350 x g, 5min, 4°C). 

14) Discard the supernatant and transfer cells to the 96-well U plate in 100 µl of PBS. 

Centrifuge (350 x g, 5min, 4°C) 

15) Add 200 µl of PBS and centrifuge (350xg, 5min, 4°C). Discard the supernatant. 

16) Resuspend in 100 µl of FACS. 

17) Now, measurement of the adhered cells will be done. 

 

Fig.3 – Example of the gating strategy applied on the detached cells. 

 

The gating strategy in steps: 1) Singlets are gated on the basis of a control well containing only bacteria. 

Therefore, this step substitutes also gating for cells. 2) A 30-second time section is gated (for subsequent 

calculation of flow rate). 3) Cells are devided into 4 subpopulations: live (FITC negative, Hoechst negative), 

early apoptotic (FITC positive, Hoechst negative), late apoptotic (FITC positive, Hoechst positive) and “primary 

necrotic” (FITC negative, Hoechst positive). 
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Fig.4 – Example of the gating strategy applied on the adhered cells. 

 

The gating strategy in steps: 1) Singlets are gated on the basis of a control well containing only bacteria. 

Therefore, this step substitutes also gating for cells. 2) A 30-second time section is gated (for subsequent 

calculation of flow rate). 3) Cells are divided into live (APC-H7 negative) and dead (APC-H7 positive). 

 

3.6 Statistical analysis 

For statistical analysis of all experimental data, the GraphPad Prism 5.03 software was 

used. In the case of antibody measurement and epithelium detachment measurement, 3 

repetitions of experiment were done. In the case of measurements of cell response towards 

inactivated bacteria, 5 repetitions of experiments were done. Only two types of tests were 

used: one-way ANOVA (analysis of variance) with Tukey’s post test and unpaired t-test. For 

our experiments, we chose the significance level to be α=0,05. 
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4 RESULTS 

4.1 Antibody response 

To analyze how different modes of inactivation and different bacterial strains 

influence the antibody response, indirect ELISA was performed. Avidity of IgA and IgG 

antibodies was measured. To analyze whether or not the chronic intestinal inflammation can 

change this response, we compared sera from ten IBD patients with ten healthy controls. The 

same default data were used to generate Fig. 5 and Fig. 6, however, for better illustration of 

the conclusions, the two different figures were composed. 

In general, the avidity of antibodies, both IgA and IgG, did not show any statistically 

significant difference between sera of control group of patients and sera of IBD group of 

patients (Fig.5). The only exception was significantly higher IgA response to p19A in IBD 

patients as compared to controls, regardless of the mode of microbe inactivation (Fig.5, on the 

top on the right). This result was consistent in all three independent experiments. 

There were no statistically significant differences between the avidity of IgA/IgG 

antibodies to bacteria inactivated by different methods or between antibody-binding to 

different strains of E. coli. 

The IgG response to p19A has a tendency to be higher than to the other strains of E. 

coli, but this reached statistical significance only in case of UV-inactivated p19A in IBD 

patients (Fig.6). 
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Fig. 5 – The differences in antibody response to E coli between IBD patients and 

healthy controls as measured by indirect ELISA. 

 

The graphs show the differences in IgA or IgG response to differently inactivated strains of E. coli in IBD 

patients and healthy controls. The results are a pool of 3 independent experiments; mean (bar) with SEM 

(whisker) are shown (n=10). Each inactivation of each bacterial strain were analyzed separately (unpaired t 

test).*P<0,05. 
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Fig. 6 – There is a significantly higher IgA response to p19A in IBD patients as 

compared to controls, regardless of the mode of microbe inactivation as measured by indirect 

ELISA. 

    

The graphs show the differences in IgA or IgG response to differently inactivated strains of E. coli in IBD 

patients and healthy controls. The results are a pool of 3 independent experiments; mean (bar) with SEM 

(whisker) are shown (n=10). Each inactivation and each antibody were analyzed separately (unpaired t 

test).*P<0,05. 

 

Collectively, these results clearly show that patients with IBD have higher IgA 

response against the pathobiont p19A regardless of the mode of inactivation. Generally, the E. 

coli strain p19A tends to bind more IgA and IgG antibodies, particularly in the IBD group of 

patients. The mode of inactivation does not change the magnitude of IgA or IgG response. 

 

4.2 Cellular response to microbes in vitro 

4.2.1 Response in murine RAW 264.7 cell line 

To assess the differences between bacterial strains and modes of inactivation, the cell 

response (expression of CD40 and production of nitrite) of murine macrophage cell line 

RAW264.7 was measured by flow cytometry and Griess assay, respectively. The 
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cell/supernatant measurements were done after 24 hours of cultivation with inactivated 

E. coli. 

We found no statistically significant differences (P<0,05) between the CD40 

expression ratios of RAW 264.7 cells . Although not statistically significant (P=0,24), the 

strains EcN and LF82 have a tendency to activate (induce expression of CD40) the 

RAW264.7 cells more than strains K6 and p19A (Fig.7); this tendency appears less noticeable 

in the comparison of the heat-inactivated bacteria. All bacterial strains induce high expression 

of CD40 in RAW 264.7 cells compared to non-treated cells (P<0,05). 

 

Fig. 7 – There are no differences between the CD40 expression ratios of RAW264.7 

cells cultivated with different strains of E. coli as measured by flow cytometry. 

 

The graphs show the differences in RAW264.7 activation (CD40 expression) in response to different inactivated 

strains of E. coli. The results are a pool of 5 independent experiments; mean (bar) with SEM (whisker) are 

shown (n=5). Each inactivation was analyzed separately (1-way ANOVA, Tukey’s post test). Maximal 

activation of cells is 74,92% (cells + LPS). Negative control for activation of cells is 0,90% (cells). 

 

There are no statistically significant differences between the bacterial strains or modes 

of inactivation in terms of nitrite production by RAW 264.7 cultivated with inactivated E. coli 

(Fig.8). Nevertheless, similarly as in case of CD40 expression, the strains EcN and LF82 tend 

to induce higher production of nitrite by RAW 264.7 cells than the strains K6 and p19A 

(P=0,32) as shown in Fig.8. All tested bacteria induced high production of nitrite in 

comparison with non-treated cells (P<0,05). 
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Fig. 8 – There are no differences between the amounts of produced nitrate by 

RAW264.7 cells cultivated with different strains of E. coli as measured by Griess assay. 

 

The graphs show the differences in RAW264.7 activation (nitrite production) in response to different inactivated 

strains of E. coli. The results are a pool of 5 independent experiments; mean (bar) with SEM (whisker) are 

shown (n=5). Each inactivation was analyzed separately (1-way ANOVA, Tukey’s post test). Maximal nitrite 

production by cells is 19,98 µM (cells + LPS). Negative control of nitrite production is 0,15 µM (cells). 

 

In conclusion, there are no differences in activation (CD40 expression or nitrite 

production) of murine macrophages RAW 264.7 cultivated with different strains of differently 

inactivated microbes. As compared to non-treated cells (negative control), all microbes induce 

high expression of CD40 and strong production of nitrite. 

 

4.2.2 Response in primary murine cells from mesenterial lymph nodes and 

spleen 

To assess the influence of mode of inactivation and type of bacterial strain on the early 

activation of primary murine cells, flow cytometry was used. The viability and CD69 

expression were measured in murine cells isolated from the spleen and mesenterial lymph 

nodes after 12-hour cultivation with inactivated E. coli. In order to study the changes in 

immune response during acute intestinal inflammation, differences between cell responses to 

microbes were studied in the non-treated vs. DSS-treated groups of mice. 

Statistical analysis did not reveal any significant differences (P<0,05) between 

bacterial strains or modes of inactivation in terms of induction of early activation (CD69 

expression) in MLN or SPL cells. Similarly, no statistically significant differences were found 

between the early activation of MLN or SPL cells from non-treated and DSS-treated mice. 

However, the MLN cells from DSS-treated mice tend to (P=0,16) express slightly higher 

amounts of CD69 than MLN cells from non-treated mice (Fig.9). 
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Fig. 9 – There are no differences between the CD69 expression ratios of MLN or SPL 

cells cultivated with inactivated E. coli as measured by flow cytometry. 

    

The graphs show the differences in MLN or SPL cell (isolated from DSS-treated or healthy mice) early 

activation in response to different inactivated strains of E. coli. The results are a pool of 5 independent 

experiments; mean (bar) with SEM (whisker) are shown (n=5). Each inactivation in each group of cells (from 

DSS-treated or non-treated mice) were analyzed separately (1-way ANOVA, Tukey’s post test). Maximal 

activation of MLN cells is 45,47% and SPL cells is 20,43% (cells + PMA/Ionomycin). Negative control for 

activation of MLN cells is 9,06% and SPL cells is 4,23% (cells). 

 

In conclusion, the bacterial strain, as well as the mode of inactivation, do not affect the 

cell response (early activation) of MLN or SPL cells. Nevertheless, MLN cells from mice 

with active intestinal inflammation (DSS-treated) tend to express higher amounts of CD69 

than MLN cells from healthy mice (not statistically significant). 

 

4.3 Epithelium detachment 

To analyze the differences between bacterial strains in the ability to disrupt the 

epithelial layer, experiments with the murine (MODE-K) or human (Caco-2) intestinal 

epithelial cell lines were done. First, the epithelial cells were cultivated for four hours with the 

live E.coli strains, and then flow cytometry was performed with detached cells that were 
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gently washed out from the cultivation wells. These cells were than stained with Hoechst 

33258 and Annexin V to measure the proportions of live/early apoptotic/late 

apoptotic/primarily necrotic cells among the detached cells. Next, the adhered cells were 

stained for viability with fixable viability dye and then dissociated by trypsin-EDTA solution. 

The numbers and viability of these cells were determined. 

4.3.1 MODE-K 

No statistically significant differences (P<0,05) were found between bacterial strains 

in the ability to detach MODE-K cells from the cell layer (Fig.10; all cells). However, the 

numbers of detached epithelial cells in the phase of late apoptosis were significantly higher 

(P<0,05) in the case of E. coli strain p19A in comparison to the negative control (Fig.10; late 

apoptosis) – this applies only to the highest number of bacterial cells per epithelial cell 

(100:1). Here, comparison of p19A with the strains EcN and K6 also revealed statistically 

significant differences (P<0,05). Comparisons of the numbers of early apoptotic/necrotic cells 

detached by distinct bacterial strains did not reveal any statistically significant differences 

(P<0,05). 
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Fig. 10 – The highest concentration (100:1; bacteria:cells) of strain p19A detached a 

higher number of MODE-K than strains EcN, K6 and negative control as measured by flow 

cytometry. 

 

The graphs show flow rate of detached MODE-K cells after cultivation with different E. coli strains. The results 

are a pool of 3 independent experiments.. *P<0,05 (in comparison to negative control). Each concentration of 

bacteria was analyzed separately (1-way ANOVA, Tukey’s post test). Negative control (cells) and necrosis 

control (H2O2) are shown in each graph. Apoptosis control (5-FU) is not shown. 

 

In the analysis of adhered cells, the number of not-detached (adhered) live cells was 

significantly lower (P<0,05) in the case of strains p19A and K6 in comparison to the negative 

control (Fig. 11; live) – this applies only to the highest number of bacterial cells per epithelial 

cell (100:1). Among adherent cells, dead cells form only a minority and there were no 

statistically significant differences (P<0,05) between the differently treated cells (Fig.11; 

dead). 

Data from the analysis related to the strain LF82 are disputable as cells cultivated with 

this strain act irregularly in the Annexin V/Hoechst quadrants (Fig.12; on the left). 
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Fig. 11 – Lower numbers of live cells stayed adhered after the cultivation with 

bacterial strains p19A and K6 in comparison with negative control. This applies only to the 

highest concentration of bacteria (100:1; bacteria:cells). 

 

The graphs show flow rate of adhered MODE-K cells after cultivation with different E. coli strains. The results 

are a pool of 3 independent experiments. *P<0,05 (in comparison to negative control). Each concentration of 

bacteria was analyzed separately (1-way ANOVA, Tukey’s post test). Negative control (cells) is shown in each 

graph. 

 

Fig. 12 – Detached MODE-K and Caco-2 cells cultivated with E. coli strain LF82 act 

irregularly in the Annexin V/Hoechst quadrants. 

  

Bacterial strain LF82 causes specific appearance of cell distribution in the live/early apoptotic/late 

apoptotic/primary necrotic quadrants. This pattern was seen consistently in all three independent experiments. 

MODE-K cells (on the left) appear as if they moved diagonally from the third quadrant to the second quadrant. 

The same accounts for Caco-2 cells (on the right). 
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4.3.2 Caco-2 

The E. coli strain p19A detaches significantly higher numbers (P<0,05) of Caco-2 

cells than negative control in all used concentrations of bacteria per cells (Fig.13; all cells). 

Furthermore, in the two higher concentrations, p19A detached significantly more (P<0,05) 

epithelial cells than all the other bacterial strains. The cells detached by p19A are mostly in 

the phase of late apoptosis (Fig.13; late apoptosis). Comparison of the numbers of late 

apoptotic cells showed significant differences (P<0,05) between the bacterial strain p19A and 

negative control/all the other strains. 

The highest concentration (100:1; bacteria:cells) of bacterial strain LF82 detached 

significantly more (P<0,05) Caco-2 cells from the cell layer than strain EcN and negative 

control. However, similarly to the experiments with MODE-K cells, data from the analysis 

related to the strain LF82 are disputable as cells cultivated with this strain act irregularly in 

the apoptotic quadrants (Fig.12; on the right). 

The total amounts of epithelial cells detached by EcN and K6 during the 4-hour 

cultivation are not significantly different (P<0,05) from the negative control. This applies to 

all used concentrations of bacteria. 
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Fig. 13 – The bacterial strain p19A detached the highest numbers of Caco-2 cells, 

most of these cells were in the phase of late apoptosis. 

 

The graphs show flow rate of detached Caco-2 cells after cultivation with different E. coli strains. The results are 

a pool of 3 independent experiments. *P<0,05 (in comparison to negative control). Each concentration of 

bacteria was analyzed separately (1-way ANOVA, Tukey’s post test). Negative control (cells) and necrosis 

control (H2O2) are shown in each graph. Apoptosis control (5-FU) is not shown. 

 

In the analysis of adhered cells, the number of not-detached (adhered) live cells was 

significantly lower (P<0,05) in the case of strain p19A in comparison with strains K6 and 

EcN (Fig. 14; live) – this applies only to the lowest number (1:1) of K6 and highest number 

(100:1) of EcN per epithelial cell. 

No statistically significant differences (P<0,05) were found between the numbers of 

not-detached (adhered) dead cells (Fig.14; dead). 
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Fig. 14 – Lower numbers of live cells stayed adhered after the cultivation with 

bacterial strain p19A in comparison with strains EcN and K6. This applies only to the lowest 

concentration (1:1) of K6 and highest concentration (100:1) of EcN.

 

The graphs show flow rate of adhered Caco-2 cells after cultivation with different E. coli strains. The results are 

a pool of 3 independent experiments. Each concentration of bacteria was analyzed separately (1-way ANOVA, 

Tukey’s post test). Negative control (cells) is shown in each graph. 

 

In conclusion, both epithelial cell lines, murine MODE-K and human Caco-2, show 

similar tendencies in the epithelium-detachment experiments. However, statistical analysis 

proved significant differences (P<0,05) mostly in the Caco-2 cell line. The potential 

pathobiont E. coli p19A was shown to detach the highest numbers of Caco-2 cells; these 

detached cells appear to be in the phase of late apoptosis. Probiotic strain EcN and commensal 

strain K6 are generally shown to detach similar amounts of cells (P<0,05) as the negative 

control.  
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5 DISCUSSION 

Microbes in general dispose of many features allowing them to induce as well as 

protect from inflammatory diseases. Research studying the inflammatory bowel diseases 

showed several potential pathobionts (Carvalho et al., 2009; Momotani et al., 2012; Thomson 

et al., 2011) and probiotics (Fujimori et al., 2007; Hudcovic et al., 2007; Miele et al., 2009) 

influencing the pathology of these diseases. The main aim of this thesis was to study the 

interaction of the immune system with microbes that, despite of their closely related 

phylogenesis, have a different relationship to IBD pathogenesis. 

Escherichia coli is a predominant aerobic microorganism of the gastrointestinal tract 

(Bezirtzoglou, 1997). Studies investigating the role of this bacterium in the pathogenesis of 

IBD appear quite often (de Souza, et al., 2012; Vejborg et al., 2011). In a comparative 

genomic study, Vejborg et al. (2011) showed that E. coli strains isolated from IBD patients 

represent a heterogeneous population with a wide variety of gene regions identified as 

possible virulence factors; whether these E. coli strains are responsible for intestinal 

inflammation or are simply a product of the inflammatory environment, remains unclear. In 

this thesis, we tried to answer the question, whether closely related microbes with different 

biological activities induce a different immune response. Therefore, we selected four strains 

of E. coli with different relation to IBD (EcN, K6, LF82 and p19A). 

Measurement of the antibody response against commensal microbes in IBD patients 

can be an auxiliary diagnostic tool for determination of Crohn’s disease (Adams et al., 2008). 

This fact brought us to the idea to measure the antibody response to E. coli strains. Serum 

samples were collected from IBD patients and controls, because antibody response to 

microbiota is changed in patients with IBD (Macpherson et al., 1996). We found that patients 

with IBD have a higher IgA response against the pathobiont E. coli p19A, isolated from 

patients with IBD (Petersen et al., 2009). Interestingly, the antibody response to p19A in both 

IgA and IgG tends to be higher than similar response to other strains, especially in IBD 

patients. However, this difference is not statistically significant. It must be taken into account, 

that the group of patients was relatively small (10 individuals in each group). The observed 

tendency in antibody response of the IBD patients is in agreement with the study of 

Macpherson et al. (1996), where IBD patients have an exaggerated immune response towards 

their own microbiota. In our experiments, very few statistically significant differences were 

found in the analysis of antibody response. This may be due to the resemblance between 

bacterial strains, as all of them are of the same species, so we expect the majority of their 
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antigens to be the same. Although anti-E.coli antibodies are a common finding both in IBD 

patients and healthy individuals, only a small portion of the protein fraction is usually used as 

an antigen for ELISA (Bernstein et al., 2011; Hevia et al., 2014; Petersen et al., 2011). In 

contrast to the authors mentioned above, we were interested in the differences between 

pathobionts and probiotic E. coli and not in antigens common to various bacteria which could 

be used for disease diagnosis. Additional experiments are to be performed (e.g. Western blot 

or 2-D electrophoresis) in order to characterize the microbial antigens to which given 

antibodies bind. This is also the reason why mode of inactivation, which may change the 

antibody binding, was an important part of our study. We found that the mode of inactivation 

does not change the ability of the antigens to bind IgA or IgG, which suggests that whichever 

inactivation protocol (described in the section Materials and methods) may be used for 

subsequent measurement of sera antibodies against microbes by ELISA. 

The course of the immune reaction to a particular microbe is often determined by its 

first interaction with the innate immune system, which forms the first line of defense in the 

gut mucosa. From the innate immune cells we selected macrophages, because they play an 

important role in intestinal inflammation (Dieleman et al., 1994; Murano et al., 2000). 

Measurements of the CD40 expression and production of nitrite were done to determine the 

activation state of macrophages (RAW 264.7) and LPS-stimulated and non-treated cells were 

used as the positive and negative control, respectively. Using flow cytometry, we found that 

there are no differences between the magnitude of macrophage activation in response to 

probiotic, commensal and potentially pathogenic E. coli. The mentioned results could be 

ascribed to the resemblance between bacterial strains, as all of them are of the same species. 

Another explanation may be the high content of LPS in the outer-membrane of all used 

bacteria, which could cause the effect of other minority antigens (on macrophage activation) 

to be imperceptible. CD40 expression and production of nitrite should be tested also in 

different cell lines as RAW264.7 is derived from a murine tumor and thus the biological 

features of this cell line might be “non-physiological”. In the future, we would like to measure 

cytokines from the supernatant gained in our experiments (for example TNFα, IL-1β or IL-6) 

as these cytokines have an essential role in the pathogenesis of IBD (Mahida et al., 2000). 

Some might object to the usefulness of experiments with cell lines as they are an artificial 

substitute for cells or tissues present in the complex organism. Bearing this in mind, we 

decided to perform experiments with primary cells. From the innate immune cells, we moved 

to the adaptive immunity, as it represents the next step in an immune reaction. Cells from the 
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mesenterial lymph nodes and spleen were isolated to see the difference between two distinct 

compartments of the adaptive immune system, the systemic immunity (represented by spleen) 

and the mucosal compartment (represented by mesenterial lymph nodes). In addition, we were 

interested in the difference between immune responses of cells from an organism with acute 

inflammation in the gut vs. healthy organism. This is why we isolated MLN cells and SPL 

cells from mice with DSS-induced colitis (Wirtz et al., 2007), a chemically induced mouse 

model of IBD, and from healthy mice. Activation of the primary murine cells (in particular 

CD69 expression and production of IFN-γ) was measured by flow cymetry. Similarly to the 

study of Håkansson et al. (2014) or Hall et al. (2011), the proportions of early activated 

(CD69+) T cells from MLN and SPL were determined. In accordance with the results of Hall 

et al. (2011), the MLN cells from mice with active intestinal inflammation (DSS-treated) tend 

to express higher amounts of CD69 than MLN cells from healthy mice (not statistically 

significant) – however, this does not apply to SPL cells. This result comes as no surprise, as 

the acute inflammation of gut tissue is linked mainly to the mucosal department of the 

immune system. The relative lowness of early activation ratios in cells from DSS-treated mice 

in comparison to cells from non-treated mice could be ascribed to the short time of cultivation 

with stimuli. Splenic T cells are probably not activated by APCs in such a short period of 

time. Apart from the measurement of early activation in T cells, Håkansson et al. (2014) 

measured the levels of specific cytokines in serum of DSS-treated and non-treated mice, 

which is an interesting approach we could integrate into our research. As for the production of 

intracellular IFN-γ, Hall et al. (2011) found significantly higher amounts of IFN-γ producing 

cells in both MLN and SPL cells in the DSS-treated group (on day 8 of DSS treatment). To 

the contrary, the numbers of cells intracellulary producing IFN-γ in our experiments were 

very low and no differences between the cells from DSS-treated and non-treated mice were 

found in this regard. This could be explained by a presumably low amount of antigen-specific 

T cells (Hommel et al., 2004), which were identified by the IFN-γ production and are 

responsive to the given E. coli. The main aim the performed experiments, however, was to 

determine the difference between T cell response to distinct bacterial strains. We can 

conclude that the bacterial strain did not affect the early activation of T cells in MLN or SPL 

cells. 

For technical reasons, we wanted to assess whether the mode of inactivation can 

change the response to E. coli strains. Need for this kind of determination was patterned on 

the fact that different types of inactivation treatments have an effect on the bacterial structure 

http://d360prx.biomed.cas.cz:2259/pubmed?term=H%C3%A5kansson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24414342
http://d360prx.biomed.cas.cz:2259/pubmed?term=H%C3%A5kansson%20A%5BAuthor%5D&cauthor=true&cauthor_uid=24414342
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and components (Ananta and Knorr, 2009). In all the mentioned experiments so far, the mode 

of inactivation did not change the response to E.coli strains. Inactivation of microbes in 

mainly studied in the case of subsequent vaccination usage (Datta et al., 2006), which does 

not correspond with our aims. 

The damage of epithelial cells occurs in the inflammatory bowel diseases and it is an 

important step in the IBD pathogenesis (Boudeau et al., 2003; Matalka et al., 2013; Parlato 

and Yeretssian, 2014; Roda et al., 2010). Mucosa-associated strains of E. coli are augmented 

in the gut of IBD patients (De Souza et al., 2012). However, subsequent research in this group 

of E. coli did not specify any pathogenic features that would provide them with intracellular 

access to the epithelial cells (Elliott et al., 2013). To assess the effect of different E. coli 

strains on epithelia, we measured the capacity of bacteria to detach intestinal epithelial cells in 

vitro. For this purpose, murine MODE-K or human Caco-2 cell lines were cultivated in the 

presence of bacterial strains for several hours and subsequently measured by flow cytometry. 

Annexin V/Hoechst staining was used to distinguish live, early apoptotic, late apoptotic and 

primarily necrotic populations within detached epithelial cells. This method is similar to the 

frequently used method of staining which uses the Annexin V/PI (propidium iodide) 

combination for apoptosis detection (Pan et al., 2014; Roshan et al., 2014). The pathobiont, 

E. coli strain p19A, detached the highest numbers of Caco-2 cells and most of the detached 

cells were in the phase of late apoptosis. The epithelial cells cultivated with the adherent-

invasive strain LF82 acted irregularly in the apoptotic-quadrants; this effect could be ascribed 

to the adhesive characteristic of the mentioned E.coli strain (Darfeuille-Michaud, 2002) and is 

a subject of our current investigations. Probiotic strain EcN and commensal strain K6 were 

generally shown to detach similar amounts of cells to the negative control. In MODE-K cells, 

similar, but not significant effects of microbes on the epithelial layer were observed. This 

could be ascribed to substantial differences between data obtained from every repetition of 

experiment. With the increasing concentration of EcN bacterial cells, we could see a slight 

increase in the viability ratios of Caco-2 cells that stayed adhered to the cultivation plate. This 

phenomenon could be explained by the probiotic characteristics of EcN and would make 

sense as other probiotics have been shown to improve the gut epithelial barrier function 

(Sokol et al., 2008; Okada et al., 2006). Analysis of adhered (not detached) cells in our 

experiments did not show any significant differences between distinct bacterial strains as 

compared to negative control. The question is, whether the trypsin/EDTA dissociation of cells 

used in the protocol was successful in all performed experiments and in both cell lines.  
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6 CONCLUSIONS 

On the base of the experiments performed in the diploma thesis, we can conclude, that: 

 The mode of inactivation (formaldehyde, heat or UV irradiation) did not 

influence the immune response to tested Escherichia coli strains. 

 The antibodies from IBD patients and controls show similar reactivity to both 

probiotic microbes and pathobionts, except for higher reactivity to the strain 

p19A. 

 There were no significant changes in the cell response to distinct Escherichia 

coli strains. 

 Unlike the probiotic bacterium, co-cultivation of either pathobiont with the 

intestinal epithelial cells led to significant damage of epithelial layer in vitro. 
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