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Introduction

As bachelor thesis was concerned with induction of lift acting on �own-around
bodies, master thesis continues in this e�ort and studies what in�uence dissipa-
tive processes have on the acting forces. During these processes, in the course
of change of one form of energy to another, dissipation (loss) of energy happens.
Examples of dissipative processes include: friction, motion of viscous �uid, trans-
fer of heat from a warmer body to a colder one, electrical current �owing through
a resistance, and di�usion. Dissipative processes are real, irreversible, the system
does not return to its original state without interaction with outer environment,
the same as when tea particles infused in water do not organize back into tea
leaves. Entropy production is positive during these processes. Crocco's theorem
connects gradient of entropy with vorticity of velocity �eld. Vorticity results in
circulation. Circulation creates lift.

In this thesis, we will �rst and foremost study dissipation of energy during vis-
cous �ow and, furthermore, di�usion of water vapor in air. Using mathematical
modelling, we will create a program in FEniCS software, we will obtain visual-
ized results and also numerically compute lift. These results can be compared
with the results in the bachelor thesis, where potential �ow of inviscid �uid was
inquired into. We also have great opportunity to compare numerical results with
visualization of the experiment performed by Ing. Zden¥k Trávní£ek and Ing.
Zuzana Brou£ková from Institute of Thermomechanics, Academy of Sciences CR.

Will the in�uence of dissipation be perceptible? Is it nonsense to devise a
plane with wings emitting water vapor on one side?
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Chapter 1

De�nitions of fundamental terms

and relations

Before we start deriving and computing, let us make clear some fundamental
terms used for mathematical description of reality, motion and moving objects.
We will also de�ne essential quantities and express laws of balance, from which
we will proceed in further derivation. Special attention will be paid to terms
and forms of relations connected with �uids. It is relevant to note that while
describing reality and creating model situation we neglect and simplify certain
facts, which leads to inaccurate results.

1.1 Material point, velocity, vorticity

For the sake of simplicity, let us have tree-dimensional vector space including
matter. In reality, matter consists of atoms, molecules and so on, however we will
consider it as a continuum, continuously �lled with mass. On this space, we will
de�ne functions - physical quantities - which will also be time-dependent. Body
is understood as a domain V ⊂ R3, which, in time t0, occupies domain V0 in the
reference frame.

Motion will be described in two di�erent ways: Lagrangian speci�cation of
the �ow �eld (material), and Eulerian speci�cation of the �ow �eld (spatial).

De�nition. Material point is the point in continuum, which has in initial time
t0, or in reference frame, location X = (X1, X2, X3). In time t, it occurs at the
point of space x = (x1, x2, x3) = x(X, t), so it draws a curve in space, which is
called trajectory.

Jacobian matrix of the mapping x = x(X, t) we will call deformation gra-

dient and denote it F. We will assume that the mapping has non-zero Jacobian
(that is the determinant of Jacobian matrix) in every point (X, t) ∈ V0. So

j =

∣∣∣∣∣∣det

 ∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

∣∣∣∣∣∣ 6= 0. (1.1)

Moreover, we assume that the mapping is injective and is an element of C1

(continuous �rst derivatives). These are conditions for the existence of unique
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inverse mapping x = x(X, t)
X = X(x, t). (1.2)

These requirements mean that any two given di�erent material points do not
occupy the same spot at any given time and any material point occurs at one
spot exactly.

In Lagrangian speci�cation of the �ow �eld, all functions (quantities depend-
ing on space) have X as variables, therefore Lagrangian speci�cation is called
'material speci�cation'. In Eulerian speci�cation, the variables are points in space
x, and, at the same time, functions of variables X and t. This is the reason why
material derivative is more di�cult in this speci�cation. It is derived by chain
rule, see theorem 3.

De�nition. Velocity of material point is de�ned as derivative

ṽ(X, t) =
∂x(X, t)

∂t
,

or for i-th component, i=1,2,3

ṽi(X, t) =
∂xi(X, t)

∂t
.

We formulate velocity in spatial speci�cation

ṽ(X, t) = ṽ(X(x, t), t) = v(x, t),

where X(x,t) is the inverse mapping above.

For the sake of comprehensiveness, we write acceleration in both di�erent
speci�cations.

Material speci�cation:

ã(X, t) =
∂ṽ(X, t)

∂t
=
∂2x(X, t)

∂t2
.

Spatial speci�cation:

a(x, t) =
dv(x, t)

dt
=
dv(x(X, t), t)

dt
=
∂ṽ(X, t)

∂t

=
∂v(x(X, t), t)

∂t
+

3∑
i=1

∂v(x(X, t), t)

∂xi

∂xi(X, t)

∂t

=
∂v(x, t)

∂t
+

3∑
i=1

vi(x, t)
∂v(x, t)

∂xi
.

This kind of derivative is called material derivative. From now on, we will not
distinguish ṽ and v.

De�nition. Streamline is a curve in V , such that the vector of velocity is, at
any given time, tangent to it at all (spatial) points.
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It is clear from the de�nition that if dx1, dx2, dx3 are the components of el-
ementary curve at given point, and v1, v2, v3 are the components of velocity at
that point, then dx1 : dx2 : dx3 = v1(x, t) : v2(x, t) : v3(x, t), or

dx1

v1

=
dx2

v2

=
dx3

v3

.

If v(x, t) 6= 0 and v has continuous �rst derivatives with respect to coordi-
nates, then one and only one streamline runs through every point. Points where
v(x, t) = 0 are called stagnation points and streamlines are not uniquely de�ned
there.

In case of steady �ow (�ow which does not change in time), streamlines coin-
cide with trajectories.

De�nition. Let s be closed curve in space. If there runs one and only one stream-
line through every point of this curve and if this closed curve does not coincide
with any streamline, then the set of all streamlines running through curve s is
called a stream tube.

Fluid �owing through a stream tube acts as if the surface of the tube is
impenetrable. The vector of velocity is tangent to the streamlines, thus its normal
component is zero.

De�nition. Gradient of scalar function ϕ : V ⊂ R3 → R is

∇ϕ(b) =

(
∂ϕ

∂x1

,
∂ϕ

∂x2

,
∂ϕ

∂x3

)
(b).

De�nition. Divergence of vector �eld v : V ⊂ R3 → R3 is de�ned as

div v(x) = tr∇v(x), (1.3)

where tr denotes trace of matrix.

De�nition. Let P be a point in space, r a plane that runs through this point, and
o a normal vector to the plane at point P. Let s be a closed curve around P, so
that index of point P to curve s is equal to 1, in other words the curve is oriented
counterclockwise. Circulation of vector v is

γ =

∮
s

v · ds =

∮
s

vsds. (1.4)

Curl of vector v with respect to axis o is

curlo v = lim
∆S→0

1

∆S

∮
s

v · ds.

Expression of curl in Cartesian coordinates follows from its de�nition (see [2]),
i-th component is expressed as (by de�nition, the axis in the equation is the xi
axis)

curli v =
3∑

j,k=1

εijk
∂vk
∂xj

,
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where εijk is Levi-Civita symbol, de�ned as

εijk =


1 if (i, j, k) is odd permutation,
−1 if (i, j, k) is even permutation,
0 otherwise.

Then full notation of all components of curl of vector u in Cartesian coordi-
nates is

curlv =

(
∂v3

∂x2

− ∂v2

∂x3

,
∂v1

∂x3

− ∂v3

∂x1

,
∂v2

∂x1

− ∂v1

∂x2

)
.

De�nition. Vorticity w is de�ned as w = curl v, where v is velocity. Curves,
de�ned analogically as streamlines, namely curves to which vector of vorticity is
tangent in every �xed time in every point, are called vortex lines. Thus

dx1 : dx2 : dx3 = w1(x, t) : w2(x, t) : w3(x, t),

where dxi for i=1,2,3 are elementary components of a curve of a vortex line, and
wi are components of vorticity w.

Vortex tube is a set of all vortex lines passing trough a closed curve, such
that every point of this vortex tube lies on a di�erent vortex line. Let us consider
a cross-section of the tube with a surface S, then vortex �ux is de�ned as

µ =

∫
S

w · νdS =

∫
S

wνdS,

where ν is unit normal vector to the cross-section of the tube. The expression
above represents �ux of a vector �eld of vorticity through a cross-section of the
vortex tube.

If there exists a point such that w 6= 0, then motion of the �uid is rotational,
otherwise it is irrotational and therefore there exists a velocity potential ϕ which
is a scalar function of variables (x, t), is an element of C2(V ), and ful�lls

∇ϕ =

(
∂ϕ

∂x1

,
∂ϕ

∂x2

,
∂ϕ

∂x3

)
= v,∀(x, t),x ∈ V, t ≥ t0. (1.5)

(Proof is to be found in e.g. [6].)
Reverse implication holds as well: if there exists a potential for velocity, then

curlv = 0, which can easily be demonstrated by symmetry of second derivatives
of function ϕ.

Vortex �ux does not depend on the choice of the cross-section of the tube.
(Proof in [2].)

De�nition. Let us have a vector v(x, t), then Laplace operator is de�ned as

∆ v = div(∇v) =
3∑
i=1

∂2vi
∂x2

i

.
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1.2 Balance laws

In the following sub-chapter, we will express balance laws of mass, linear momen-
tum, angular momentum, energy and entropy. Let us assume that there are no
surfaces of discontinuity in our system. (Balance laws for system with surfaces of
discontinuity is to be found in [10]). All functions, unless stated otherwise, have
variables (x, t). Balance laws are written in Eulerian speci�cation.

1.2.1 Mass balance

The mass of the system does not change in time, which is mathematically ex-
pressed as

d

dt
m(t) =

∫
V

(
∂ρ

∂t
+

3∑
i=1

∂(ρvi)

∂xi

)
dv = 0,

where ρ is density. Di�erential form of mass balance is

∂ρ

∂t
+

3∑
i=1

∂(ρvi)

∂xi
=0

or
∂ρ

∂t
+ div (ρv)) =0.

(1.6)

This equation is called continuity equation.
If we consider incompressible �uid, continuity equation is substantially sim-

pli�ed, for ρ = ρ0 ≡ c, c ∈ R+. Consequently, we can write

3∑
i=1

∂vi
∂xi

= div v = 0.

For the important case of steady �ow of compressible �uid, the continuity
equation takes the form

3∑
i=1

∂(ρvi)

∂xi
= div (ρv) = 0.

1.2.2 Linear momentum balance and angular momentum

balance

Change of linear momentum of the system in time is equal to the sum of surface
forces and volume forces acting on the system. Linear momentum (denoted M)
is de�ned as

M(t) =

∫
V

ρvdv.

Note that linear momentum is a vector quantity, and therefore linear momentum
balance provides three equations.

Now we are interested in which forces are acting on the system. Volume forces
are forces that act on every material point, and are long-range. For example
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gravity, electromagnetic forces (we will not consider these), or �ctitious forces,
inertial forces in non-inertial reference frame (in this thesis, however, we are only
concerned with inertia reference frame). Volume forces are expressed as

Fvol(t) =

∫
V

ρfdv,

where f is the density of volume forces.
Surface forces are short-range. They are expressed as

Fsur(t) =

∫
∂V

T(x, t,ν(x))ds,

where T is stress vector, and ν(x) is unit outward normal vector to surface ∂V .
Let us now turn to angular momentum balance.

d

dt

∫
V

r× (ρv)dv =

∫
V

r× (ρf) + ρAdv +

∫
∂V

r×T(x, t, ν(x))ds,

where r(x) = x − x0 is position vector and ρA is density of inner production of
angular momentum (this term is non-zero for so called polar materials). Angular
momentum balance law says that change of angular momentum in time is equal
to moment (torque) of forces acting on the system. It is obvious that angular
momentum depends on the choice of point x0, thus angular momentum is not an
objective quantity and whenever we change coordinate system it is necessary to
add �ctitious forces accordingly.

From Cauchy theorem (see Theorem 2), the relation between stress vector
and stress tensor will be derived. It is su�cient to substitute ν with elements of
orthonormal basis ei, i = 1, 2, 3, in (1), so

τ · ei =
3∑
j=1

τij = T(x, t, ei),

thus τij = Tj(x, t, ei). And for ν

3∑
i=1

νi(x)τij(x, t) = Tj(x, t,ν(x)).

(For details see [2].)
Therefore equation of motion is to be written in the following form, using

divergence theorem (see Theorem 4),

∂(ρvj)

∂t
+ div (ρvjv) =

3∑
i=1

∂τij
∂xi

+ ρfj, j = 1, 2, 3. (1.7)

Elements on diagonal of tensor τ , i.e. τii, i = 1, 2, 3, are called normal stresses,
the other elements are called shear stresses.

In our case, we want to examine �ow of a viscous �uid (viscosity is a property
of a �uid which expresses the resistance of the �uid to deformation) around a
rigid body. We express stress tensor in terms of rate-of-strain tensor. Let us
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denote velocity gradient L = ∇v. Let us make a constitutive assumption on the
form of the stress tensor:

τ = −p0I + C(L),

where p0 is the pressure of the �uid at rest. In case that C is linear function,
�uid is calledNewtonian. Let us consider a Newtonian �uid in conjunction with
incompressible �ow, i.e. trL = div v = 0.

Assumption that C is linear implies that if �uid is at rest then L = 0, C(0) =
0. Cauchy stress has the form τ = −p0I, and the �uid behaves like an ideal,
inviscous one.

Now we will select scalar function of L as

α(L) = −1

3
trC(L),

and Cauchy stress is written as

τ =− (p0 + α(L))I + (C(L) + α(L)I)

=(−p0 +
1

3
trC(L))I + (C(L)− 1

3
trC(L)I).

Let us denote
p = p0 −

1

3
trC(L) = −1

3
tr τ ,

B(L) = C(L)− 1

3
trC(L)I.

So τ = −pI + B(L).

Theorem 1. Response of Newtonian incompressible �uid is independent of the
observer, i.e. it ful�lls objectivity principle if and only if the response function
B(L) has the form

B(L) = 2µD, ∀L : trL = 0

where µ ∈ R+
0 is dynamical viscosity of the �uid,

D =
1

2

(
L + LT

)
,

so (dij)
3
i,j=1 =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.

D being the above-mentioned rate-of-strain tensor.

See proof in [6].
Now we are able to express Cauchy stress of Newtonian incompressible �uid

τ in this special form. Using the form in motion equation (1.7) we obtain

ρ
∂vj
∂t

+ ρ div(vjv) = − ∂p

∂xj
+ µ

3∑
i=1

∂

∂xi

(
∂vi
∂xj

+
∂vj
∂xi

)
+ ρfj, j = 1, 2, 3.

It is obvious that term

3∑
i=1

∂2vi
∂xi∂xj

=
∂

∂xj
div v = 0.
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Furthermore, motion equation written using Laplace operator is

ρ
∂vj
∂t

+ ρ div (vjv) = − ∂p

∂xj
+ µ∆ vj + ρfj, j = 1, 2, 3.

Let us denote
ν =

µ

ρ
,

and call ν kinematic viscosity. If gravity is the only volume force considered, then
ρf = ρg. Finally we obtain Navier-Stokes equations

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν ∆v + g. (1.8)

I-th component of forces acting on the body is

Fi,sur(t) + Fi,obj(t) = −
∫
V

∂p

∂xi
dv +

∫
V

ρfidv.

Euler equations for inviscid �uid

∂(ρvi)

∂t
+

3∑
k=1

∂(ρviv)

∂xk
= − ∂p

∂xi
+ ρfi,

where x ∈ V , t ≥ t0, i = 1, 2, 3. This form is then:

ρ
∂vi
∂t

+ vi
∂ρ

∂t
+ vi div (ρv) + (ρv) · ∇vi = − ∂p

∂xi
+ ρfi.

Notice that continuity equation (1.6) applies to terms vi(∂ρ∂t + div (ρv)), therefore
these terms vanish. Then

ρ
∂vi
∂t

+ ρ
3∑

k=1

vk
∂vi
∂xk

= − ∂p

∂xi
+ ρfi, i = 1, 2, 3.

If the �uid is incompressible (ρ ≡ c, c ∈ R+), we obtain equations

∂vi
∂t

+
3∑

k=1

vk
∂vi
∂xk

= −1

c

∂p

∂xi
+ fi, i = 1, 2, 3.

1.2.3 Energy balance

Change of total energy (internal energy and kinetic energy) of the system in time
is equal to heat added to the system plus work performed on the system.

E =

∫
V

(
ρu+

ρv · v
2

)
dv

d

dt

∫
V

(
ρu+

ρv · v
2

)
dv =

∫
∂V

3∑
k=1

(
3∑
i=1

τkivi + qk

)
dsk +

∫
V

(
3∑
i=1

ρfivi + q̃

)
dv,

where ρu is density of internal energy, ρv·v
2

is density of kinetic energy, term that
includes τkivi stands for work of surface forces, ρfivi stands for work of volume
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forces, and q̃ is density of exterior energetic in�uences (e.g. radiance). Let us
convert the energy balance law to its proper form:

∂

∂t

(
ρu+

ρv · v
2

)
+

3∑
k=1

[
∂

∂xk

(
ρu+

ρv · v
2

)
vk −

∂

∂xk

(
3∑
i=1

τkivi + qk

)]

−

(
3∑
i=1

ρfivi + q̃

)
= 0.

(1.9)

Let us formulate internal energy balance which is equivalent with the �rst
law of thermodynamics: Change of internal energy is equal to added heat minus
work performed by the system, or dU = dQ− dW , U is internal energy, Q heat,
W work. To express dQ in terms of thermodynamic temperature T : dQ = cdT ,
where c is the speci�c heat capacity of given examined material. Internal energy
balance law says:

∂(ρu)

∂t
+

3∑
k=1

∂

∂xk

(
(ρvku) + qk +

3∑
i=1

τkivi

)
+ q̃ = 0. (1.10)

Some quantities which feature in total energy balance are not objective; it is
necessary to keep this in mind when changing coordinate system to a moving one.

1.2.4 Entropy balance

Quantity S called entropy will be established unusually, with the help of following
Clausius inequality:

dQ

T
≤ dS.

Using entropy, we are able to express the second law of thermodynamics: The
entropy of thermodynamically isolated system does not decrease. Using the ex-
pression of dQ from the �rst law of thermodynamics (dU = dQ−dW ), we obtain
fundamental thermodynamic inequality

TdS − dW − dU ≥ 0.

S =

∫
V

ρsdv,

where ρs stands for density of entropy. Clausius inequality can be formulated

dS

dt
= H(S) + P (S) ≥ dQ

Tdt
= −

∫
∂V

3∑
k=1

qk
T
dsk +

∫
V

q̃

T
dv,

where H(S) is �ux of etropy through the surface of the system, P (S) is the
production of entropy in time unit. General balance law (see [10]) implies that

P (S) =
dS

dt
−H(S).

Using Clausius inequality:

P (S) ≥ −
∫
∂V

3∑
k=1

qk
T
dsk +

∫
V

q̃

T
dv −H(S).

11



Flux of entropy is de�ned:

H(S) = −
∫
∂V

qk
T
dsk +

∫
V

q̃

T
dv.

Thus production of entropy ful�lls:

P (S) =

∫
V

σ(S)dv =

∫
V

[
ρ

(
∂s

∂t
+

3∑
k=1

∂s

∂xk
vk

)
+

3∑
k=1

∂

∂xk

(qk
T

)
− q̃

T

]
dv ≥ 0.

No surfaces of discontinuity were considered in the system, therefore

σ(S) = ρ

(
∂s

∂t
+

3∑
k=1

∂s

∂xk
vk

)
+

3∑
k=1

∂

∂xk

(qk
T

)
− q̃

T
≥ 0,∀x ∈ V,

because Clausius inequality and entropy balance hold for every system we con-
sider, and because all functions are continuous. This can be easily veri�ed by
contradiction.

Internal energy balance (see (1.10)) implies that

3∑
k=1

∂

∂xk

(qk
T

)
− q̃

T
=

3∑
k=1

(
qk

∂

∂xk

(
1

T

)
+

1

T

3∑
i=1

τki
∂vi
∂xk

)
− ρ

T

du

dt
.

Thus the density of the production of entropy is expressed

ρ

(
∂s

∂t
+

1

T

∂u

∂t

)
+

3∑
k=1

[
ρ

(
∂s

∂xk
+

1

T

∂u

∂xk

)
vk + qk

∂

∂xk

(
1

T

)
+

1

T

3∑
i=1

τki
∂vi
∂xk

]
≥ 0.

1.2.5 Constitutive assumptions for thermoviscoelastic �uid

Considering thermoviscoelastic �uid, we are able to use following constitutive
assumptions

qk = −λ(ρ, T )
∂T

∂xk
, k = 1, 2, 3,

where λ is heat conductivity. Further, for Cauchy stress,

τki = −p(ρ, T )δki + τ diski , k, i = 1, 2, 3, (1.11)

where

τ diski = µV (ρ, T ) div vδki + 2µ(ρ, T )

(
dki −

1

3
div vδki

)
,

µV is volume viscosity, µ is shear viscosity, D is rate-of-strain tensor, δki is Kro-
necker delta. Thus

τ =

(
−p+ div v

(
µV −

2µ

3

))
I + 2µD.

Remember that div v = trD. Derivation of these assumptions is to be found in
[10].
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Chapter 2

Alternative formulation of linear

momentum balance and energy

balance

2.1 Energy balance using stagnation enthalpy

In the previous considerations, we discussed balance laws in the usual order,
i.e. mass, linear momentum, angular momentum, energy, entropy. Now new
quantity which occurs in energy balance (1.9) will be used to formulate linear
momentum balance. Let us assume that �uid is incompressible and that there
exists potential −∇Φ(x) = f, and assume that q̃ = 0. The equation of total
energy is to be expressed in form

d

dt

(
ρu+ ρ

v · v
2

)
−

3∑
k=1

∂

∂xk

(
3∑
i=1

τkivi − qk

)
− ρdΦ

dt
= 0,

ρ
d

dt

(
u+

v · v
2

+ Φ
)

+
3∑

k=1

∂

∂xk

(
pvk − µ

3∑
i=1

dkivi + qk

)
= 0,

ρ
d

dt

(
u+

v · v
2

+ Φ +
p

ρ

)
− ∂p

∂t
+

3∑
k=1

∂

∂xk

(
−µ

3∑
i=1

dkivi + qk

)
= 0,

using continuity equation (1.6) and incompressibility.

ρ
d

dt

(
u+

v · v
2

+ Φ +
p

ρ

)
=
∂p

∂t
+

3∑
k=1

∂

∂xk

(
µ

3∑
i=1

dkivi − qk

)

The following form of energy balance is ideal for analysis of properties of velocity
�elds, especially for �nding a connection between generation of vorticity and
change of entropy.

d

dt

(
u+

v · v
2

+ Φ +
p

ρ

)
=
∂hc
∂t

+
3∑
l=1

vl
∂hc
∂xl

=

1

ρ

[
∂p

∂t
+

3∑
k=1

(
− ∂qk
∂xk

+ µ
∂

∂xk

3∑
i=1

vi

(
∂vi
∂xk

+
∂vk
∂xi

))]
, (2.1)
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It appears convenient to de�ne a new quantity:

hc = u+
v · v

2
+ Φ +

p

ρ
, (2.2)

This new quantity is called total enthalpy. Its constituents are total energy,
including internal and kinetic energy, pressure energy generated by surface forces
and potential energy of corresponding volume forces. In case of incompressible,
inviscid and heat non-conducting �ow, it holds that quantity hc is constant along
trajectories (see [1]). In case of steady �ow, trajectories and streamlines coincide,
thus hc is constant along streamlines. To express this result in a condensed form:
Total enthalpy (2.2) is preserved in case of steady �ow, neglecting heat conduct
and viscosity.

2.2 Linear momentum balance � Crocco's theo-

rem

Using the �rst law of thermodynamics in form for material point

T
dS

dt
=
du

dt
+ p

d

dt

(
1

ρ

)
= T

(
∂S

∂t
+ v · ∇S

)
=

∂u

∂t
+ v · ∇u+ p

(
∂

∂t

(
1

ρ

)
+ v · ∇

(
1

ρ

))
(2.3)

an alternative expression of linear momentum balance will be provided, using the
concept of total enthalpy. In case of steady �ow, the �rst law of thermodynamics
(2.3) implies

v ·
[
∇u+ p∇

(
1

ρ

)
− T∇S

]
= v ·

[
∇
(
u+

p

ρ

)
− T∇S − 1

ρ
· ∇p

]
= 0, (2.4)

if v 6= 0. We are able to compute gradient of pressure ∇p and use vector identity

v · ∇v = ∇
(v · v

2

)
− v× curlv (2.5)

to convert convective term. We will now use equations (2.4) and (2.5) in the
equation of linear momentum balance for steady �ow of incompressible viscous
Newtonian �uid

(v · ∇)v = −∇p
ρ

+ ν ∆v−∇Φ. (2.6)

We modify this equation to obtain Crocco's theorem:

∇hc − v× curlv = T∇S + ν ∆v, (2.7)

Crocco's theorem provides an alternative expression of stationary linear momen-
tum balance ((1.8), or (2.6)). In case that total enthalpy (2.2) is constant, i.e.
for �ow of inviscid heat non-conducting �uid, it holds that

− v× curlv = T∇S. (2.8)
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Therefore vorticity w = ∇ × v can be generated merely by change of entropy,
e.g. by heat of condensation. In case of constant entropy, the �ow is potential.

Note: Crocco's theorem (2.7) holds only for stationary process. The main
reason is using the �rst law of thermodynamics (2.3). This law holds only for
material point. Flow sets material points in motion, and in the case of non-
stationary �ow, the pressure gradient (which appears in momentum balance (2.6))
is not to be easily excluded from equation (2.3).
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Chapter 3

Numerical simulation of �ow

around rotating cylinder

The bachelor thesis (see [11]) studied, among other things, potential �ow around
cylinder. Potential �ow model describes motion of inviscous incompressible �uid.
In this thesis, we would like to compare the experiment performed by Ing. Zden¥k
Trávní£ek, CSc., and Ing. Zuzana Brou£ková (see e. g. [13]) with numerical com-
putation, using either potential �ow model or stationary Navier-Stokes equations
((1.8)), obtained by �nite element method. These results can later be compared
with �ow around cylinder which emits water vapor.

3.1 Flow around cylinder using complex potential

Potential �ow is irrotational and, in two dimensions, can be described by complex
potential. Complex potential is a complex holomorphic function. Derivative of
complex potential is called complex velocity and it holds that velocity in the
direction of the x-axis is equal to real part of complex velocity and velocity in the
direction of the y-axis is equal to minus imaginary part of the complex velocity.
For more information about potential �ow see [2], [9] or [11]. Complex potential
describing the �ow around cylinder has this form:

u = v∞

(
z +

a2

z

)
+

γ

2πi
ln z,

where v∞ is the velocity of incoming �uid, a is radius of the cylider, γ is circula-
tion. The experiment (Trávní£ek and Brou£ková) consisted in placing a rotating
cylinder (a = 0.0125m) into wind tunnel, v∞ = 0.5m/s, rotational speed ω was,
in sequence, 0, 5, 12.5, 20Hz in clockwise direction. Water mist was used for vi-
sualization of the �ow. Let us compute circulation of velocity �eld in all cases.
Circulation is, by de�nition (1.4):

γ = −
∫ 2π

0

2πa2ω dθ = −4πa2ω.

For resulting values, see table 3.1. Velocity �eld is visualized by Wolfram Mathe-
matica. See �gure 3.1. The lift acting on the 1m long cylinder can be computed,
table 3.1 shows computed values (for derivation of the formula see [2]):

Ry = −Γv∞ρ,
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where density ρ = 1.2041 kg/m3.
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Figure 3.1: Flow around rotating cylinder, rotational speed in sequence 0, 5, 12.5
and 20Hz .

3.2 Flow around rotating cylinder using N-S equa-

tions and their numerical solution

The �ow around rotating cylinder can be described better � by stationary Navier-
Stokes equations. The �ow is incompressible, the same as in potential �ow model,
but it is also viscous. The equations of steady viscous incompressible �ow (no
volume forces are considered) are

div v = 0 in Ω

v · ∇v =
1

ρ
div τ in Ω,

(3.1)

where ρ = const is density, v is velocity �eld, τ = −pI + 2µD is Cauchy
stress, p is pressure, µ is dynamic viscosity, D = 1

2

(
∇v + (∇v)T

)
is rate-of-

strain tensor. The domain is depicted in �gure 3.2. Boundary conditions are
following:
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ω[Hz] γ[m2/s] Ry [N ]
0 0 0
5 −0.03084 0.01857

12.5 −0.07711 0.04642
20 −0.1234 0.0743

Table 3.1: Circulation depending on rotational speed of the cylinder and com-
puted lift.

v = vin on Γin

v = 0 on Γ1 ∪ Γ2

v = vθ on Γc

τ · n = −pout n + µ (∇v)T · n on Γout,

where vin is velocity of incoming �uid, Γ1 ∪ Γ2 are solid walls and the �ow
is viscous, therefore �uid is sticking to the walls, vθ = 2πωa (sin θ,− cos θ) is
velocity of the surface of the rotating cylinder (using polar coordinates), ω is
rotational speed of the cylinder, a is radius of the cylinder, θ is the angle, pout is
pressure on Γout.

Γin

Γ1

Γ2

Γout

Γc

Ω

Figure 3.2: Domain where the equations of �ow around rotating cylinder are to
be solved.

3.2.1 Weak formulation of equations of �ow around rotat-

ing cylinder

Let v̂ ∈ W 1,2 (Ω) be such that

18



Tr v̂ = vin on Γin

= vθ on Γc,

whereW 1,2 (Ω) is a Sobolev space and Tr is a trace operator. Let us de�ne spaces

Ṽ =
{
u ∈ W 1,2(Ω),u = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc

}
P̃ =

{
q ∈ L2(Ω)

}
.

Weak formulation of the problem above is:
We search for the functions ṽ ∈ Ṽ and p ∈ P̃ such that

∫
Ω

q div (ṽ + v̂) dx = 0 ∀q ∈ P̃∫
Ω

(ṽ + v̂) · ∇ (ṽ + v̂) · u dx

+
1

ρ

∫
Γout

(
pout − µ∇ (ṽ + v̂)T

)
n · u ds

+
1

ρ

∫
Ω

(
−pI + µ

(
∇ (ṽ + v̂) + (∇ (ṽ + v̂))T

))
: ∇u dx = 0 ∀u ∈ Ṽ .

The solution will then be v = ṽ + v̂ and p.

Figure 3.3: Discretisation of the domain Ω, mesh A.
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Figure 3.4: Discretisation of the domain Ω, mesh B.

mesh number of vertices number of cells dim
A 2951 5730 26215
B 11632 22920 104000
C 46184 91680 414280

Table 3.2: Number of vertices, cells and dimension of space Ṽh × P̃h

3.2.2 Discretisation

Discretisation of the domain Ω was created using Gmsh and FEniCS software.
Three meshes were used. Mesh A is the roughest, mesh B is re�ned mesh A, mesh
C is re�ned mesh B. See �gures 3.3, 3.4 and 3.5. In the process of re�nement,
each triangle was divided into four, thus mesh C has sixteen times more cells than
mesh A. Ωh denotes discretisation of the domain Ω.

Spaces of functions Ṽ and P̃ are approximated by their �nite-dimensional
subspaces Ṽh and P̃h, where

Ṽh =
{
vh ∈ C (Ωh) ,vh|E ∈ P 2 (E) ∀E ∈ A,vh = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc

}
,

P̃h =
{
ph ∈ C (Ωh) , ph|E ∈ P 1 (E) ∀E ∈ A

}
,

where E is an element in triangulation A. Discretisations of function spaces
using meshes B or C have analogic de�nitions. For total dimension of space
Ṽh × P̃h see table 3.2. FEniCS used Newton's method to solve algebraic system
obtained by �nite element method (for more information see [15]).

Following computation used these data:
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Figure 3.5: Discretisation of the domain Ω, mesh C.

density ρ = 1.2041 kg/m3

dynamic viscosity µ = 18 · 10−5 Pa · s
Ω was a rectangle 0.4m× 0.3m minus circle, its center located at [0.1, 0.15],

its radius a = 0.0125m
vin =

(
0.5·4·y·(0.3−y)

0.32
, 0
)
m/s

vθ = 2πωa (sin θ, − cos θ), where ω is rotational speed of cylinder
pout = 101325Pa
ω was, in sequence, 5 /s, 12.5 /s, 20 /s
Computed solution is visualized in Paraview. Lift and drag acting on the

cylinder (on the cylinder 1m long) was computed for all meshes and all rotational
speeds, see table 3.3.
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ω [Hz] mesh drag [N ] lift [N ]
0 A 4.298214 · 10−3 1.263989 · 10−5

0 B 4.646994 · 10−3 3.613350 · 10−6

0 C 4.658672 · 10−3 7.840737 · 10−7

5 A 4.328917 · 10−3 7.093461 · 10−3

5 B 4.379473 · 10−3 7.087945 · 10−3

5 C 4.390504 · 10−3 7.079696 · 10−3

12.5 A 4.012619 · 10−3 2.108079 · 10−2

12.5 B 4.054664 · 10−3 2.108019 · 10−2

12.5 C 4.071689 · 10−3 2.105339 · 10−2

20 A 6.318441 · 10−3 4.161933 · 10−2

20 B 6.353315 · 10−3 4.167484 · 10−2

20 C 6.378742 · 10−3 4.161071 · 10−2

Table 3.3: Drag and lift acting on the rotating cylinder, using meshes A, B and
C.
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As we can see, computed solution is more precise when re�ned mesh is used.
However, mesh A was created to be �ner in the neighbourhood of the cylinder.
The table 3.3 shows that computed force acting on the rotating cylinder di�ers,
except for steady cylinder, less than 1% whether computed using mesh A or using
re�ned meshes. In the case of steady cylinder, the lift should be zero, because
the cylinder is placed symmetrically in the wind tunnel. Computed values of lift
are therefore subject to numerical error, which has order 10−5 for mesh A, 10−6

for mesh B and 10−7 for mesh C. This all indicates that for computation of the
force acting on the rotating cylinder mesh A was chosen well.

Furthermore, �gures visualizing velocity �eld with streamlines of �ow around
cylinder rotating at higher speed, e. g. �gure 3.16, show that the �uid returns
back into the domain on the boundary Γout. Does it mean that the boundary
condition (do-nothing condition) on the out�ow was not right? This leads us to
another problem: What if the domain was longer, what would the velocity �eld
look like? Let Ωlong = 1m × 0.3m minus circle, its center located at [0.1, 0.15],
its radius a = 0.0125m. Again, discretisation was created using Gmsh and
FEniCS. Rotational speed is 20Hz. See �gures of used mesh and velocity �eld
with streamlines (3.18 and 3.19).

The �uid is rotating near upper wall. The restricted velocity �eld is similar to
the one computed on the smaller domain. Boundary condition is therefore right.
It seems that the �uid is �ung at the lower wall of the domain by the rotating
cylider, and the �uid near the upper wall has almost zero velocity. The �ow in
the lower part causes the slow rotation of the �uid near upper wall.

This part of the thesis studied �ow around rotating cylinder. The problem
was de�ned, numericaly computed and the solution will be compared with the
experimental data.
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Figure 3.6: Computed velocity �eld for �ow around cylinder without rotation on
mesh A, mesh B and mesh C.
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Figure 3.7: Streamlines for �ow around cylinder without rotation, mesh A, mesh
B and mesh C.
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Figure 3.8: Relative pressure, i. e. p − 101325Pa, for �ow around cylinder
without rotation, mesh A, mesh B and mesh C.
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Figure 3.9: Computed velocity �eld for cylinder rotating 5 times per second, mesh
A, mesh B and mesh C.
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Figure 3.10: Streamlines for cylinder rotating 5 times per second, mesh A, mesh
B and mesh C.
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Figure 3.11: Relative pressure, i. e. p− 101325Pa, for cylinder rotating 5 times
per second, mesh A, mesh B and mesh C.
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Figure 3.12: Computed velocity �eld for cylinder rotating 12.5 times per second,
mesh A, mesh B and mesh C.
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Figure 3.13: Streamlines for cylinder rotating 12.5 times per second, mesh A,
mesh B and mesh C.
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Figure 3.14: Relative pressure, i. e. p − 101325Pa, for cylinder rotating 12.5
times per second, mesh A, mesh B and mesh C.
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Figure 3.15: Computed velocity �eld for cylinder rotating 20 times per second,
mesh A, mesh B and mesh C.
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Figure 3.16: Streamlines for cylinder rotating 20 times per second, mesh A, mesh
B and mesh C.
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Figure 3.17: Relative pressure, i. e. p− 101325Pa, for cylinder rotating 20 times
per second, mesh A, mesh B and mesh C.
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Figure 3.18: Discretisation of the domain Ωlong, mesh D.

Figure 3.19: Top: computed velocity �eld with streamlines for cylinder rotating
20 times per second on the longer domain, mesh D. Bottom: velocity �eld with
streamlines for cylinder rotating 20 times per second on the original domain,
computed on mesh C.
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Chapter 4

Numerical simulation of �ow

around cylinder emitting vapor

In the previous part of the thesis, the rotating cylinder problem was solved, its
weak formulation was derived and its numerical solution was visualized. Now
we would like to compare this solution with the solution of �ow around cylinder
emitting vapor problem. The task is to show the similarity of e�ects of dissipative
processes on �ow in both cases. Flow will be considered stationary, viscous and
incompressible, but density of air will change depending on concentration of water
vapor in air.

4.1 Humid air

Humid air is a mixture of dry air and water vapor. Humid air can also contain
small drops of water (e. g. fog) or small pieces of ice (e. g. snow�akes), which are
visible, unlike water vapor. To simplify the problem, we will omit the possibility
that water in both liquid and solid state is present in the air. Dry air is a
mixture of gases, like nitrogen, oxygen, argon, carbon dioxide and other gases.
Its composition is internationally standardized (see [4]).

Molar mass of dry air (denotedMa) is 28.964 kg ·kmol−1. Molar mass of water
(denoted Mv) is 18.01534 kg · kmol−1. Dry air, under common atmospherical
conditions, can be considered ideal gas. Water vapor at low pressure can also be
considered ideal gas. Therefore, the equation for ideal gas can be used for humid
air consisting of dry air and water vapor at low partial pressure:

p

ρ
=
RT

M
, (4.1)

where p is pressure, ρ is density, T is temperature, M is molar mass and R =
8314.41 J · kmol−1 ·K−1 is ideal gas constant.

Let pa be partial pressure of dry air, pv be partial pressure of water vapor and
p be total pressure of humid air. It holds that

p = pa + pv.

Let ρa be density of dry air, ρv be density of water vapor and ρ be density of
humid air. Then

ρ = ρa + ρv.
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Using equation for ideal gas (see (4.1)),

ρ =
paMa

RT
+
pvMv

RT
=
Map

RT

(
pa + pvMv

Ma

pa + pv

)
=
Map

RT

(
1 + pvMv

paMa

1 + pv
pa

)
. (4.2)

Expression pvMv

paMa
is speci�c humidity. Concentration of water vapor (denoted wv)

is de�ned:
wv =

ρv
ρa + ρv

.

Let us derive, using (4.2):

ρa = ρ− ρv =
Map

RT

(
1 + pvMv

paMa

1 + pv
pa

)
− ρv =

Map

RT

(
paMa + pvMv − ρvRT

paMa + pvMa

)
=
Map

RT

(
paMa + pvMv − pvMv

paMa + pvMa

)
=
Map

RT

(
paMa

paMa + pvMa

)
=
Map

RT

(
1− pvMa

paMa + pvMa

)
=
Map

RT
− ρvMa

Mv

.

Thus,

ρa =
Map

RT
− ρvMa

Mv

. (4.3)

4.2 Equations of �ow around cylinder emitting

water vapor

The equations are similar to equations describing �ow around rotating cylinder
(see (3.1)), but the density in motion equation is not constant. It depends on
the concentration of water vapor in air. Partial density of dry air ful�lls equation
(4.3). Moreover, we will use equation of di�usion. If we assume that di�usion
coe�cient D is constant, steady di�usion equation is

v · ∇wv = D∆wv.

(See [8].) Thus, all equations of �ow around cylinder emitting water vapor are

div v = 0 in Ω

v · ∇v =
1

ρa + ρv
div τ in Ω

v · ∇
(

ρv
ρv + ρa

)
= D∆

(
ρv

ρv + ρa

)
in Ω,
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where v is velocity �eld, τ = −pI+2µD is Cauchy stress, µ is dynamic viscosity of
dry air, D = 1

2

(
∇v + (∇v)T

)
is rate-of-strain tensor, D is di�usivity coe�cient

of water vapor in dry air. Dynamic viscosity in the real world is not constant,
since concentration of water vapor changes in Ω and the properties of humid air
vary depending on humidity. This time, change of dynamic viscosity is neglected.
Also, the �ow is considered to be isothermic: the value of temperature in�uences
partial density of water vapor in saturated humid air, as can be seen from ideal
gas equation (see (4.1)). Density of dry air that has no contact with vapor is
ρa, dry = const. Boundary conditions are following:

v = vin on Γin

v = 0 on Γ1 ∪ Γ2 ∪ Γc, up ∪ Γc, low

τ · n = −pout n + µ (∇v)T · n on Γout

ρv = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc, low

ρv = ρv, sat on Γc, up
∂ρv
∂n

= 0 on Γout,

where vin is velocity of incoming �uid, Γ1 ∪Γ2 are solid walls, pout is pressure
on Γout, ρv, sat is partial density of water vapor on the surface of the cylinder,
where the air is saturated. It can be computed using Antoine equation, which
provides formula for partial pressure of water vapor in saturated humid air:

pv, sat (T ) = 105e(11.964− 3984.95
T−39.724) (4.4)

Then, partial density of water vapor on the upper part of the surface of the
cylinder is equal to

ρv, sat (T ) =
pv, sat (T )Mv

RT

See �gure of the domain Ω (4.1).
Numeric solution of this problem will be obtained as the limit of sequence of

numeric solutions of these problems: Let k = 0, . . . , ∞, ρa, 0 = ρa, dry, ρv, 0 = 0.
The �rst two equations have the unknowns vk and pk, ρv, k+1 is the unknown in
the last equation. First, continuity and motion equations are solved; ρa, k and
ρv, k are functions which were obtained in the previous step. Second, di�usion
equation is solved, the unknown function is ρv, k+1.

div vk = 0 in Ω

v · ∇vk =
1

ρa, k + ρv, k
div
(
−pkI + µ

(
∇vk + (∇vk)T

))
in Ω

vk · ∇
(

ρv, k+1

ρv, k+1 + ρa, k

)
= D∆

(
ρv, k+1

ρv, k+1 + ρa, k

)
in Ω

(4.5)
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Γin

Γ1

Γ2

Γout

Ω

Γc, up

Γc, low

Figure 4.1: Domain Ω, where equations of �ow around cylinder emitting water
vapor are to be solved.

Boudary conditions for problem (4.5) ∀k = 0, . . . , ∞ are:

vk = vin on Γin

vk = 0 on Γ1 ∪ Γ2 ∪ Γc, up ∪ Γc, low

τk · n = −pout n + µ (∇vk)T · n on Γout

ρv, k = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc, low

ρv, k = ρv, sat on Γc, up
∂ρv, k
∂n

= 0 on Γout,

Assuming that ideal gas equation (see (4.1)) holds, (4.3) also holds and we
can compute ρa, k+1 for the next step:

ρa, k+1 =
Mapk
RT

− ρv, k+1Ma

Mv

. (4.6)

The same problem in di�erent notation using concentration of water vapor(
wv, k =

ρv, k+1

ρa, k+ρv, k+1

)
:

div vk = 0 in Ω

v · ∇vk =
1

ρa, k + ρv, k
div
(
−pkI + µ

(
∇vk + (∇vk)T

))
in Ω

vk · ∇wv, k = D∆wv, k in Ω.

(4.7)
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Boundary conditions:

vk = vin on Γin

vk = 0 on Γ1 ∪ Γ2 ∪ Γc, up ∪ Γc, low

τk · n = −pout n + µ (∇vk)T · n on Γout

wv, k = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc, low

wv, k =
ρv, sat

ρv, sat + ρa, k
on Γc, up

∂wv, k
∂n

= 0 on Γout,

(4.8)

4.2.1 Weak formulation of equations of �ow around cylin-

der emitting vapor

Let v̂ ∈ W 1,2 (Ω) and ŵv, k ∈ W 1,2 (Ω), ∀k = 0, . . . , ∞, be such that

Tr v̂ = vin on Γin

Tr ŵv, k =
ρv, sat

ρv, sat + ρa, k
on Γc, up.

Let us de�ne spaces

Ṽ =
{
u ∈ W 1,2(Ω),u = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc, up ∪ Γc, low

}
P̃ =

{
q ∈ L2(Ω)

}
W̃v =

{
wv, test ∈ W 1,2(Ω), wv, test = 0 on Γin ∪ Γ1 ∪ Γ2 ∪ Γc, up ∪ Γc, low

}
.

We search for the functions ṽk ∈ Ṽ , pk ∈ P̃ such that

∫
Ω

q div (v̂ + ṽk) = 0 ∀q ∈ P̃∫
Ω

(ρa, k + ρv, k) (v̂ + ṽk) · ∇ (v̂ + ṽk) · u dx

+

∫
Ω

(
−pI + µ

(
∇ (v̂ + ṽk) + (∇ (v̂ + ṽk))

T
))

: ∇u dx

+

∫
Γout

(
pout − µ (∇ (v̂ + ṽk))

T
)
· n · u ds = 0 ∀u ∈ Ṽ .

(4.9)

The solution will be vk = v̂ + ṽk and pk. Having obtained vk and pk, we search
for the function ˜wv, k ∈ W̃v such that

∫
Ω

vk · ∇ (ŵv, k + ˜wv, k) · wv, test dx

+D

∫
Ω

∇ (ŵv, k + ˜wv, k) · ∇wv, test dx = 0 ∀wv, test ∈ W̃v.

(4.10)

The solution will be wv, k = ŵv, k + ˜wv, k.
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mesh number of vertices number of cells dim of Ṽh × P̃h dim of W̃v, h

A 2951 5730 26215 11632
B 11632 22920 104000 46184
C 46184 91680 414280 184048

Table 4.1: Number of vertices, cells and dimension of spaces Ṽh × P̃h and W̃v, h.

temperature [K] mesh drag [N ] lift [N ] power [W ]
293.15 A 4.598289 · 10−3 1.151051 · 10−5 3.32 · 10−5

293.15 B 4.647143 · 10−3 2.497831 · 10−6 1.21 · 10−5

293.15 C 4.658793 · 10−3 −3.135890 · 10−7 2.75 · 10−6

313.15 C 4.46993 · 10−3 −2.465866 · 10−6 1.5 · 10−4

Table 4.2: Drag and lift acting on the cylinder emitting vapor computed using
meshes A, B and C. Power needed for vaporization.

4.2.2 Discretisation

We will use the same discretisation of the domain Ω as in the problem of the
rotating cylinder (see mesh A, B and C). Ωh denotes discretisation of the domain.
Function spaces Ṽ , P̃ and W̃v were approximated by their �nite-dimensional
subspaces Ṽh, P̃h and W̃v, h, where

Ṽh =
{
vh ∈ C (Ωh) ,vh|E ∈ P 2 (E) ∀E ∈ A,vh = 0 on Γ

}
,

P̃h =
{
ph ∈ C (Ωh) , ph|E ∈ P 1 (E) ∀E ∈ A

}
,

W̃v, h =
{
wv, h ∈ C (Ωh) , wv, h|E ∈ P 2 (E) ∀E ∈ A,wv, h = 0 on Γ

}
where E is a cell in triangulation A, Γ = Γin ∪ Γ1 ∪ Γ2 ∪ Γc, up ∪ Γc, low.

Discretisations of function spaces using meshes B or C have analogic de�nitions.
For total dimensions of space Ṽh × P̃h and W̃v, h, see table 4.1. FEniCS used
Newton's method, and algebraic system obtained by FEM from di�usion equation
was solved by direct solver (Krylov solver).

The following computation used these data:
ρa, dry = 1.2041 kg/m3

dynamic viscosity µ = 18 · 10−5 Pa · s
Ω was a rectangle 0.4m × 0.3m without circle, center [0.1, 0.15], radius a =

0.0125m
vin =

(
0.5·4·y·(0.3−y)

0.32
, 0
)
m/s

pout = 101325Pa
T = 293.15K
D = 282 · 10−7m2/s
Numerical solution of the problem consists in solving a sequence of problems.

The di�erence in L2-norm between new and previous solution ρv, k is watched
and this process runs until the di�erence is reasonably small (in this case, lower
than 10−8, which was achieved by 4 iterations, or, at higher temperature by 5
iterations).
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Drag and lift was computed for the problem of the �ow around cylinder emit-
ting vapor, see table 4.2. These values can be compared with computed force
acting on the rotating cylinder. It seems that vapor on the upper part of the
cylinder has some in�uence on the lift acting on the cylinder. The lift, compared
with the lift acting on steady cylinder (see table 3.3), has lower value. Thus,
the in�uence of vapor is that the lift acts downwards. In case the temperature
is higher (313.15K), the partial density of saturated air is higher and the value
of lift is one order higher than error. See also �gure 4.7. Power needed for va-
porization of water in quantity corresponding to the model, was computed using
formula

P = −hvapD
∫

Γc, up

∇wv · ds,

where enthalpy of vaporization hvap = 2.5 · 106 J/kg. See table 3.3. Computed
values of power are very low and change a lot when they are computed on meshes
A, B and C. Further re�nement of mesh would be needed to obtain more precise
value.

This part of the thesis studied the �ow around cylider with evaporation, and
it was shown that there is some in�uence of nonconstant density on the lift; the
in�uence on the velocity �eld is not perceptible in �gures. Also when the tem-
perature was higher, the in�uence of water vapor on the lift was more apparent.
We cannot forget that there were some restrictions, as the viscosity and the tem-
perature were constant. In the real world, if there was a phase transition on the
cylinder, there would probably be some change in temperature and in entropy.
As we saw in Crocco's theorem (see (2.7)), change in entropy causes nonzero
vorticity and lift is induced. The e�ect of evaporization on lift could be stronger
than our results would suggest.
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Figure 4.2: Computed velocity �eld for �ow around cylinder emitting water vapor
on mesh A, mesh B and mesh C.
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Figure 4.3: Streamlines for �ow around cylinder emitting water vapor, mesh A,
mesh B and mesh C.
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Figure 4.4: Partial density of water vapor for �ow around cylinder emitting water
vapor, mesh A, mesh B and mesh C.
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Figure 4.5: Partial density of dry air for �ow around cylinder emitting water
vapor, mesh A, mesh B and mesh C.
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Figure 4.6: Relative pressure, i. e. p − 101325Pa, for �ow around cylinder
emitting water vapor, mesh A, mesh B and mesh C.
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Figure 4.7: Computed partial density of water vapor for �ow around cylinder
emitting water vapor, T = 313.15K, mesh C.

49



Chapter 5

Comparison of numerical solution

with experiment

In previous chapters, we visualized potential �ow around cylider and numerical
solution of steady Navier-Stokes equations. The �gures will be compared with
visualization of the experiment performed by Ing. Z. Trávní£ek, CSc., and Ing.
Z. Brou£ková from the Institute of Thermomechanics AS CR (see [13]). The ex-
periment was already explained in chapter 3. The visualization of the experiment
focused on the neighbourhood of the cylinder. There are groups of �gures, each
obtained by a di�erent method, describing the same situation, or at least similar
situation.

5.1 Steady cylinder

The �rst �gure in this chapter (see 5.1) shows �ow around steady cylinder: us-
ing potential �ow method, the visualization of experiment, numerical solution of
Navier-Stokes equation using mesh C and numerical solution of �ow around cylin-
der emitting vapor problem using mesh C. The potential �ow describes motion
of inviscous incompressible �uid, meaning it di�ers a little from other pictures in
that the �uid does not create circular streamlines behind the cylinder. It can be
seen that numerical solution of Navier-Stokes equations corresponds to reality. In
addition to, we computed the lift (see table 3.3), meaning that if the experiment
included measurement of lift, the values could be compared. Flow around cylin-
der emitting vapor has almost the same velocity �eld as the �ow around steady
cylinder, but lift is slightly di�erent (compare tables 3.3 and 4.2).

5.2 Rotating cylinder

More comparative �gures follow, the comparison always includes potential �ow,
the visualization of the experiment and numerical solution of N-S equations. See
�gures 5.2, 5.3 and 5.4. It can be seen that the higher circulation is, the more
potential �ow model di�ers from the visualization of the experiment. On the
other hand, numerical solution of N-S equations is similar to the experiment.
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Figure 5.1: Flow around steady cylinder. Bottom: cylinder with evaporation.
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Figure 5.2: Flow around rotating cylinder, ω = 5Hz.
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Figure 5.3: Flow around rotating cylinder, ω = 12.5Hz.
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Figure 5.4: Flow around rotating cylinder, ω = 20Hz.
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Conclusion

The thesis was concerned with the in�unce of dissipative processes in boundary
layers on forces acting on �own-around body. It studied the in�uence of viscosity
of the �uid and the in�uence of di�usion of water vapor in air. Both cases were
modelled, numerically computed using FEM in FEniCS software, visualized in
Paraview and compared with the experiment performed by Ing. Z. Trávní£ek,
CSc., and Ing. Z. Brou£ková.

The conclusion is that the in�uence of viscosity is apparent unlike the in�uence
of di�usion. The results demonstrate, that rotating cylinder is better described
by Navier-Stokes equations than by model of potential �ow. Lift was computed.
Model of cylinder emitting vapor showed that di�usion has very little e�ect on
both velocity �eld and lift.

We have to bear in mind that in case of real �ow around cylinder with evapo-
ration, the gradient of entropy would be nonzero, as a result of phase transition.
There would probably be temperature change; depending on concentration of
water vapor, change in viscosity of humid air would also play a part. This would
have to be demonstrated by further experiment with cylinder placed in wind
tunnel, with some moistened porous material on its upper part.
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Used theorems

Theorem 2. Cauchy theorem, existence of stress
Let the same volume forces and surface forces as above act on moving system

composed of non-polar materials. Then linear momentum balance and angular
momentum balance hold if and only if there exists tensor τ = (τij)

3
i,j=1, called

Cauchy stress, such that:
(1) ∀νT(x, t,ν) = τ · ν;
(2) τ is symmetric (τij = τji,∀i, j = 1, 2, 3);
(3) τ satis�es equation of motion

div τ + ρf = ρ

(
∂v

∂t
+

3∑
i=1

∂v

∂xi
vi

)
.

Proof is to be found in [6].

Theorem 3. Derivative of composed mapping

Let ϕ1, . . . , ϕr be real functions of s variables which have di�erentials at point
a = (a1, . . . , as), bj = ϕj(a), j = 1, . . . , r. Let f be a function of r vari-
ables, and let f have di�erential at point b = (b1, . . . , br). Then function F (t) =
f(ϕ1(t), . . . , ϕr(t)) has di�erential at point a, which is expressed:

L(h) =
r∑
j=1

∂f(b)

∂xj

s∑
k=1

∂ϕj(a)

∂tk
hk,

and for k = 1, . . . , s it holds

∂F (a)

∂tk
=

r∑
j=1

∂f(b)

∂xj

∂ϕj(a)

∂tk
.

Proof is to be found in [7].

Theorem 4. Divergence theorem

Let V be bounded regular domain in R3, ∂V is boundary of V , let v : V → R
be smooth vector �eld, then∫

∂V

v · ν dS =

∫
V

div v dv,

where ν is unit outward normal to ∂V .
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See [6].

Theorem 5. Stokes' theorem Let v be smooth vector �eld in V ⊂ R3. Let S
be a disc, c be a curve encircling S such that ν unit normal to S ful�lls righ-had
rule. Then ∫

S

curl v · νdS =

∫
c

v · ds.

Proof is to be found in [6].

Theorem 6. Cauchy-Riemann equations

Let f is complex function of complex variable. Let us denote f̃ = (f̃1, f̃2)
function of two real variables with values in R2 corresponding with f by matching
C and R2, i.e. such that f(x + iy) = f̃1(x, y) + if̃2(x, y), x + iy in domain of
f . z = a + ib, where a, b ∈ R. Then f has at point z derivative with respect to
complex variable if and only if f̃ has at point (a, b) di�erential and it hold that

∂f̃1

∂x
(a, b) =

∂f̃2

∂y
(a, b)

∂f̃1

∂y
(a, b) = − ∂f̃2

∂x
(a, b).

Proof in [3].
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3.3 Drag and lift acting on the rotating cylinder, using meshes A, B

and C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Number of vertices, cells and dimension of spaces Ṽh× P̃h and W̃v, h. 42
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