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Introduction

The aim of our work are polyominoes and other figures consisting of regular poly-
gons which are edge-to-edge connected. They were introduced at the beginning
of 20th century, but they became much more popular after the work of Solomon
Golomb from the beginning of 50s and his book [6] is still the bible of this area
of combinatorics.

The formal definition of a polyomino says it is a planar figure consisting of
n ∈ N interior disjoint unit squares connected edge-to-edge. An easy generali-
sation into d-dimensional object is possible considering unit d-cubes instead of
unit squares. We can also substitute unit squares by any other planar polygon.
Literature usually mentions polyiamonds (unit regular triangles), polyhexes (unit
regular hexagons), polyabolos (unit right isosceles triangles). The general term
for all kinds of such planar figures is animals. All the mentioned shapes can
tile a plane completely, so the interesting question always was, which animals
can also tile a plane. Later there were introduced generalized polyominoes (au-
thors use the term polyomino, not animal) of any other shapes, which sometimes
even cannot tile the plane, but it was interesting to study how many different
shapes they can make. In our thesis we are focus on the planar figures only. We
study squares, regular triangles and hexagons. The squares/triangles/hexagons
are called cells and if a figure has n cells it is said it has size (or area) n or it is
n-animal, e. g. n-polyomino.

Figure 1: Animals: 7-polyomino, 7-polyiamond and 6-polyhex

As already mentioned, many questions arise. The two basic categories of the
problems with polyominoes are plane-tiling and enumeration. The first problem
is, which figures can tile a plane or rectangle or parts of plane as half-plane, stripe
and so on. Golomb divided the shapes into several classes according their ability
to tile a part of a plane. Some questions from his paper [5] are open till today,
such as if there is a shape which can tile a half of plane, can it always tile the
quarter of the plane, too? Or are the classes of tiling always in proper inclusion?
Also the number of distinct tilings was studied. The variation with coloured tiles
and plane was studied, too, especially the black-and-white case.

The second category, which contains our work, too, contains the problems
how to enumerate all polyominoes with a given property. The original problem
is, how many figures can n unit squares form. It is still an open question, but the
mathematicians tried to restrict on more special classes and so they were able to
answer the question partially. In our thesis we use restriction, which maximise
and minimise some basic geometrical parameters, namely the perimeter and the
area of the convex hull. As the boundaries of the animals consist of segments in
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only two or three directions, the natural criterion is the bounding rectangle or
hexagon with boundary segments in the same directions.

The thesis is divided into three chapters, each focused on one extremal cri-
terion: the bounding rectangle/hexagon, the perimeter and the convex hull. We
try to characterise figures which are minimal or maximal in one of the criteria
and count them for fixed n.

As we enumerate distinct polyominoes we need a definition of the equivalence
of polyominoes. There are three basic function which can identify two polyomi-
noes: translation, rotation and reflection. Equivalence using combination of all
these three function is the one, which we use in the thesis and such polyominoes
are usually called f ree.

The first chapter is about the bounding rectangle for polyominoes and about
the bounding hexagon for polyiamonds and polyhexes. For minimisation and
maximisation we use the length of the perimeter of the bounding rectangle/hexagon.
For the polyominoes we give the estimate on the size of the bounding rectangle.

Theorem 1. The perimeter of a minimal bounding rectangle for polyominoes of
size n is equal to 2ab where |a− b| ≤ 1 and ab ≥ n is minimal possible.

Unfortunately we are unable to enumerate all free polyominoes with the maxi-
mal bounding rectangle. We think the problem is close to the problem of enumer-
ation all polyominoes for fixed n, because k = ab− n ”empty” squares can form
any polyomino which can be placed inside the bounding rectangle to its border.
This process can probably be used for the enumeration of all polyominoes, but
as we said above, the question of enumeration of all free polyominoes for fixed n
is still open. The siuation is similar with the polyiamonds and polyhexes, too.

The problem of maximal bounding rectangle and hexagon is much easier but
surprisingly we did not find any literature about this topic. Therefore we bring out
the theorem about the size of the maximal bounding rectangle for the polyominoes
and the bounding hexagon for polyimonds and polyhexes.

Theorem 2. The maximal possible perimeter of a bounding rectangle of an n-
polyomino is 2(n + 1).

Theorem 3. The maximal perimeter of a bounding hexagon of an n-polyiamond
is n + 2.

Theorem 4. The maximal perimeter of a bounding rectangle of an n-polyhex is
4n + 2.

For the polyominoes the figures with the maximal bounding rectangle look
like stairs which can be extended by piles under the first and on the last step. We
give the algorithm to enumerate all free polyominoes with the maximal bounding
rectangle.

The same description of the figures with the maximal bounding hexagon fits
for the polyiamonds, too. We omit the exact algorithm as we think there is
nothing surprising in it. The polyhexes are a bit different and we prove the only
optimal figure is a line.

The second chapter is about the perimeter. The perimeter is defined as if
the animal is a polygon. The problem of the minimal perimeter of polyominoes
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was solved by F. Harary and H. Harborth in [7], but the enumeration was found
almost thirty years later by S. Kurz in [8].

Theorem 5 (Harary, Harborth). The perimeter of a polyomino of size n with
the minimal perimeter is p(n) = 2d2√ne.

Theorem 6 (Kurz). Any polyomino with minimal perimeter p(n) can be made
from any rectangular poloymino consisting of at least n squares and perimeter
p(n) by removing the squares from corners.

For the exact numbers of the polyominoes of the size n see the theorem 17.
The minimal perimeter for polyiamonds was computed by W. C. Yang and

R. R. Meyer in [11], but they did not give the enumeration of all of them. One
of the authors published similar result for polyhexes in [10]. The question of
enumeration remains open.

Theorem 7 (Yang, Meyer). The minimal perimeter over all polyiamonds of the
size n is d

√
6ne or d

√
6ne+ 1 and it has the same parity as n.

Theorem 8 (Yang). The minimal perimeter over all polyhexes of the size n is
2d
√

12n− 3e
The problem of maximal perimeter was not studied that much, we found only

one paper [7] about it. The authors proved the theorem about the maximal
perimeter for polyominoes, polyiamonds and polyhexes.

Theorem 9 (Harary, Harborth). For triangular (a = 3), square (a = 4) and
hexagonal (a = 6) animals

max p = an− 2n + 2.

An animal attains this maximum perimeter p if and only if its skeleton is a tree
(for skeleton see figure 2.4).

The problem of enumeration is still open and it seems it would be useful to
use some techniques from graph theory. We can define the dual of an animal as
a graph, where the cells are vertices and the vertices are connected by an edge
if their cells share and edge. It is an interesting question how such a graph class
looks like, if we consider the animals with the maximal perimeter. This class
is subclass of trees. The class of polyiamonds is a subclass of the polyominoes
and their class is a subclass of polyhexes. But the characterisation of this classes
remains open.

The last chapter is about the convex hull. We minimise and maximise its area
while the cells have unit area. The minimal convex hull has in case of polyiamonds
and polyominoes the size equal to n. The number of the figures for a fixed n can
be characterised by the number of solution of equations based on the formulae
for volume of rectangle and hexagon, respectively.

The problem of the maximum convex hull was solved by S. Kurz in [9]. He
gave the bound for the maximal convex hull.

Theorem 10 (Kurz). The area of the convex hull of a planar n-polyomino is at
most n + bn−1

2
cbn

2
c.
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He enumerated all the maximal figures for fixed n. The maximal figures
consist of one line and at most one orthogonal line on each side.

Theorem 11 (Kurz). Denote the number of different n-polyominoes with the
maximal area of the convex hull by c(n). Then we have

c(n) =



n3−2n2+4n
16

if n ≡ 0 mod 4

n3−2n2+13n+20
32

if n ≡ 1 mod 4

n3−2n2+4n+8
16

if n ≡ 2 mod 4

n3−2n2+5n+8
32

if n ≡ 3 mod 4

Inspired by this paper we proved the exactly same theorem for the polyia-
monds.

Theorem 12. The area of the convex hull of any polyiamond consisting of n
triangles is at most

n2 + 10n + 1

12
.

Theorem 13. The polyiamonds with the maximum area of convex hull are three
pointed starts and washtub (see figure 3.10).

We tried to prove it for polyhexes, too, but we did not succeed. We give at
least some basic observations, which can be useful for the following research.
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1. Extremal Bounding Rectangle
And Hexagon

The first chapter is focused on the bounding rectangle (and bounding hexagon for
polyiamonds and polyhexes). The bounding rectangle of a polyomino is defined as
minimal rectangle which contains the whole polyomino and its edges are parallel
to the edges of the squares of the polyomino. The definition of the bounding
hexagon is analogous. See figure 1.1.

Figure 1.1: Bounding rectangle and hexagons

We are interested in the minimal (resp. maximal) bounding rectangle/hexagon
of an n-animal. Here minimising and maximising are measured by the perimeter
of the bounding rectangle/hexagon. The cells have the edges of length one.

Our aim is to compute the minimal and maximal perimeter of the bounding
rectangle/hexagon and to describe, how the rectangle/hexagon looks like. Then
we try to enumerate all the possible free n-polyominoes which have the mini-
mal/maximal bounding rectangle/hexagon.

1.1 Minimal Bounding Rectangle and Hexagon

1.1.1 Polyominoes

First we look at the polyominoes. We were inspired by a compilation [2] pub-
lished on Art of Problem Solving Website, where authors describe how many
polyominoes exist for a chosen size of the bounding rectangle. They don’t fix n,
the number of used squares. This question is very hard to answer for a general
polyomino, so they chose several classes of polyominoes such as so-called skyline,
vertically convex or directed convex polyominoes.

Our approach is a bit different as it was announced in the introduction of
this chapter. We fix the size n of the polyomino and then we want to compute
the perimeter of the minimal (and next the maximal) possible bounding square.
When the perimeter of the bounding rectangle is computed, it is fixed and we
want to enumerate all polyominoes consisting of n squares and having bounding
rectangle with this perimeter.

Theorem 14. Suppose n is the size of a polyomino. Then there is a minimal
bounding rectangle, which has edges a, b so that |a − b| ≤ 1 and ab ≥ n minimal
possible.

6



Proof. The latter condition from the theorem is necessary. If ab < n then the
polyomino cannot fit into the rectangle because the rectangle is too small. The
other condition follows from the observation that if the difference is bigger, then
there exist a1, b1 which sum equals to a + b (so the perimeter is the same) but
the area of the bounding rectangle is bigger, so n squares still fit into it.

Note that because of the minimality the bounding rectangle is determined
uniquely. It can be computed in the following way. Take a square root of n. If√
n ∈ N then a = b =

√
n. Otherwise consider three possible combinations:

1. a = b = b√nc

2. a = b = d√ne

3. a = b√nc, b = d√ne

Choose the combination which minimise a + b and which satisfies the condition
ab ≥ n.

As a corollary recall the theorem from the introduction.

Theorem 1. The perimeter of a minimal bounding rectangle for polyominoes of
size n is equal to 2ab where |a− b| ≤ 1 and ab ≥ n is minimal possible.

There is an important fact, that the minimal bounding rectangle is not unique-
ly determined. For example, let n = 15. Then the optimal rectangle can be 4× 4
(from the theorem), so we know a + b = 8. But 3× 5 is also possible. Of course
using induction we can enumerate all optimal rectangles in time O(n).

Enumeration of all polyominoes with minimal bounding rectangle seems to
be very hard. Let n be the size of the polyomino and let A = ab be the area
of the bounding rectangle. Then we define k = A − n as a number of ”empty”
squares, that means number of squares which are not occupied by any square of
the polyomino. From the theorem we know the size of the bounding rectangle
grows with the size of polyomino, so k can be arbitrarily large, because it can
equal a−1. Now suppose we can enumerate all polyominoes of size k. Almost each
polyominoes can be placed into the bounding rectangle so the ”nonempty” squares
remain connected and the empty squares do not create a hole(see figure 1.2).
So the problem of the enumeration of all polyominoes with minimal bounding
rectangle seems to be very close to the problem of enumeration all polyominoes
of specified size. And this question has not been solved yet.

Figure 1.2: Empty squares can form almost any polyomino inside.
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Note: there are very specific polyominoes which are not convex on any side,
so it is not possible to place them into the bounding rectangle. But we think it
is a very specific class of polyominoes therefore it does not have a big influence
on the problem hardness.

1.1.2 Polyiamonds and Polyhexes

The problem about the minimal bounding hexagon is the same as for the squares.
To enumerate them one would need an enumeration of all figures of size n. We
did not find any literature focused on this topic.

1.2 Maximal Bounding Rectangle

1.2.1 Polyominoes

The problem of the maximal bounding rectangle is much easier but it was not
studied that much. We found only the paper [1] in which authors enumerate all
polyominoes of minimal size which can be inscribed into a specified rectangle.
This theorem is used to count n-polyominoes with maximal bounding rectangle.
But they omit the symmetries, so in the view of standard polyomino enumeration
their results are not that interesting. This subsection presents our own results.

Before we start we want to recall that we maximise the perimeter of the
bounding rectangle. We can choose another parameter, for example the area of
the bounding rectangle. In that case the bounding rectangle will have the maxi-
mal perimeter too, but the size of edges would differ by at most one. Therefore
we decided to consider the perimeter as it is more general and our algorithm can
be easily restricted to the maximal area.

Recall the theorem from the introduction.

Theorem 2. The maximal possible perimeter of a bounding rectangle of an n-
polyomino is 2(n + 1).

Proof. We prove the theorem by induction on n. One square has the bounding
rectangle with the perimeter 4 = 2(1 + 1). Any other square can enlarge the
bounding rectangle only in one direction (to enlarge it in both direction it has to
be connected only by a corner and it is not allowed). It adds 2 to the bounding
rectangle’s perimeter. That proves the upper bound. We can create a line of
squares of length n and it has the perimeter 2n + 2 = 2(n + 1).

As the proof of the previous theorem shows any figure whose construction
enlarge the bounding rectangle in every step is optimal. The example of line
in the proof is only one of many possible figures. The other are polyominoes
look like crosses, stairs or other similar variations. It is not easy to see how to
enumerate all of them with the respect to symmetries.

We give an algorithm which describe how all the optimal figures look like and
how to enumerate all of them. We omit the exact formula for the number of all
different figures, because it is really complicated to express. Using the description
one can make a program, which generate the numbers easily.
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Figure 1.3: A square line

Definition. Square line is a polyomino of the line shape. See figure 1.3.
Stairs are a polyomino consisting of one or more square lines l1, l2, . . . lk where

li, li+1 for i ∈ [1 . . . k − 1] are connected by one edge, for the lower line it is the
top right edge, for the higher line it is the bottom left edge. One square line is
called layer. The stairs with k layers are denoted as k-stairs. The top and bottom
layer consists of at least two squares. Any other layer can consist of one square
only. See figure 1.4 for some examples.

Figure 1.4: The stairs in green, invalid shapes in red (one square in last layer,
two connected squares between two lines, from right to left)

The stairs go up from the left to the right. We could define stairs in the
other orientation, but it is not necessary as we want to enumerate all shapes with
the respect to all symmetries, we can get the right-left stair using the mirror
symmetry. The condition for two squares in the outer layers is described in the
algorithm and it also helps to count a figure only once.

Theorem 15. The polyominoes with the maximal bounding rectangle are stairs
with a pile of squares on the top layer and other one under the bottom layer. One
or both piles can be missing. See Figure 1.5.

1.

2. 3. 4.

Figure 1.5: 1. 1-stairs, 2. 3-stairs, 3. 3-stairs with a 2-pile under the bottom
layer, 4. 1-stairs with two 2-piles.
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Proof. Consider the construction square-by-square. We can form without loss of
generality a horizontal line of squares and it has the maximal bounding rectangle
(from the previous theorem). If we add a square to a side of the line, say to the
upper side, we cannot add any other square to this side, because it will not enlarge
the bounding square. The only place, where it can be added is to the first square.
We can always add it on the last square, so we build a pile, or we can add it to
left or right side, but only if there are no squares in the same vertical coordinates
already. Consider this construction restrictions the only possible shapes are stairs
with piles at the ends. Because of the mirror symmetry it is enough to build stairs
from the left to the right.

The theorem describes, which shapes are optimal, but it does not specified,
how to enumerate them such that each shape is counted only once with the respect
to all symmetries. The algorithm is described in the following paragraphs.

Enumeration algorithm We enumerate the figures so that the following prop-
erty is fulfilled. The bounding rectangle is of the form a× b where a ≥ b.

The input of the algorithm is n, the size of the polyomino. From the previous
condition it is obvious that b ≤ bn

2
c.

The algorithm constructs the polyominoes according the number of the layers
of the stairs. We denote the number of layers by i ∈ [1, . . . bn

2
c].

i = 1: If there is only one layer it is kind of a special case. There is 1 square
line and then there are other ”cross-like” polyominoes formed by one layer and a
pile on one or both sides. There are dn+1

2
e . . . n squares in the layer. Define k as

the number of squares which are not in the layer, they can be used in the piles,
and nl = n − k, the number of squares in the layer. Divide k squares into two
groups of size k1, k2 where k1 ∈ [0, . . . k] and k2 = k − k1. If k1 6= 0 and k2 6= 0
then there are n2

l figures. If k1 = k2 = 0 then there is 1 figure. If k1 = 0 and
k2 6= 0 then there are nl figures and the same number is in the last case. In total
there are kn2

l + 2nl figures for a fixed k, but we must consider the symmetries.
If nl is odd, we add 2 to the total number of figures, so each figure where

k1 = 0 or k2 = 0 appears four times (the figure with a pile in the middle appears
only twice), because of vertical and horizontal mirror symmetries.

If k is even, we add n2
l to the total number of figures, so each figure where

k1 = k2 appears four times. All other figures appears four times naturally.
In total we have

1 +

bn−1
2
c∑

k=1

(k − 1)n2
l + even(k)n2

l + 2nl + 2odd(nl)

4
(1.1)

distinct figures with one layer. We used two functions even : N → {0, 1}, which
returns 1 if the argument is even and returns 0 otherwise, and odd : N→ {0, 1},
which returns 1 if the argument is odd and returns 0 otherwise.

i ∈ [2, . . . bn
2
c]: If we have more then one layer we must keep at least two

squares in the top layer and in the bottom layer, too. If we allow to have only
one square in one of these layers, we cannot distinguish the case, when it is a
layer and when it is a part of a pile.

In the following we consider two cases: figures with no piles and figures with
nonzero piles.
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Without piles: We need to distribute all squares into the layers. There are
4 squares fixed in the top layer and in the bottom layer and 1 square in each
layer, so all the layers are nonempty. There are l = n− i− 2 squares left. They
are distributed into all i layers. So according the formula for combination with
repetition we get(
i+l−1

l

)
2

+
1

2
(even(i)even(l)

( i
2

+ l
2
− 1

l
2

)
)+odd(i)

l∑
c=0

even(l− c)

( i−1
2

+ l−c
2
− 1

l−c
2

)
.

(1.2)
The division by 2 is necessary because each distribution can be turned by

180◦ and it gives us an already counted figure. The only exception are symmetric
distributions, for example (3, 1, 3) for odd number of layers or (3, 1, 1, 3) for even
number of layers, which are counted only once. As we divide the original number
by 2 we have to add the lost half of the symmetric figures again. The number of
symmetric figures depends on the parity of the number of layer and of the parity
of l. If all parity condition are fulfilled then we distribute the half of the l squares
into the upper half layers and the rest of the distribution is given. The formula
explains all the parity conditions and gives the number of symmetric distribution
in all cases. Note that if the number of layers is odd, then we choose number of
squares in the central layer (the number is denoted by c) and then distribute the
rest into the layers above the central layer.

With piles: In the last case we combine the previous computations. We
denote the number of squares which are used in piles by k (same as in case
i = 1). It can be chosen from k ∈ [1, . . .min(l, bn

2
c − i)], because we can use

only squares which are not fixed in a layer and we cannot use more than bn
2
c − i

squares, because each square in pile add 1 to the b size of the bounding rectangle
and the size of this side is at most bn

2
c, where i was already used by layers. In

addition we use nl for the number of squares in layers, therefore n = nl + k as in
the case of i = 1.

The exact formulae start to be really complicated, so we describe here, how
to get them but for the exact values would be better to use a computer.

Let the previous case generate all possible figures for all possible nl. For
each nl group the figures according the number of the squares in the top layer
p1 and bottom layer p2. So we have groups for each pair (p1, p2) of size s. We
use analogous formula as (1.1) to get the total number of the figures of specified
parameters:

s((k − 1)p1p2 + p1 + p2).

Note there is no need to add ”fake” figures, because each figure is already gen-
erated only once, because the original figures are generated with respect to all
symmetries already.

The algorithm is finished and from its description it is obvious it generate all
figures and it generates each of them only once.

1.2.2 Polyiamonds

The polyiamonds behave a bit differently. The first triangle has the perimeter of
the bounding hexagon equal to 3. If we construct a line, each triangle adds one to
the perimeter. If we add a triangle in any other direction, it enlarges the bounding
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rectangles by 1 on both side edges, but it shortened the edge parallel to the one
which is the connection between the triangle and the rest of the polyiamond. See
figure 1.6. As a corollary of this observation we get the theorem about the size
of the maximal bounding hexagon.

a
b

c

+1 +1
−1

Figure 1.6: The added triangle enlarged a, c by 1, but shortened b by 1

Recall the theorem from the introduction.

Theorem 3. The maximal perimeter of a bounding hexagon of an n-polyiamond
is n + 2.

Therefore the shapes of the maximal figures are similar to the stairs figures
for polyominoes. We think the algorithm for polyominoes can be easily modified
to get the same enumeration for the polyiamonds. We omit this generalisation,
because we think there is nothing tricky or new in it.

1.2.3 Polyhexes

The hexagons behaves in absolute different way. The only optimal figure is a line.
Forming a line, each hexagon adds one to four sides of the bounding hexagon (see
figure 1.7). It not possible that one hexagon enlarge more than four sides. But
the thing is, one hexagon can enlarge one side by more than one, by at most two
exactly.

+1

+1

+1

+1

Figure 1.7: Hexagon line, the original bounding hexagon has the perimeter 22,
the new one 22 + 4 = 26

12



Let us describe the situation, when a side of the bounding rectangle is enlarged
by 2. We denote three side of the bounding hexagon by a, b, c. The new hexagon is
added to b. Then a, c is enlarged by at most 2, but b is shortened by 2. Therefore
the perimeter of the bounding rectangle was enlarged by 2 and it is definitely
worse then in the case of line (see figure 1.8). It can happen one side is enlarged
by two and the other only by 1 and then b is shortened only by 1. But again the
perimeter is enlarged by 2 only.

a

b

c

+2 −2

+2

Figure 1.8: The added hexagon enlarged a, c by 2, but shortened b by 2

From the argument above it is obvious any other figure must contains a step
when the perimeter was enlarged by 2 or less and hence the line is the only
optimal polyhex.

As corollary recall the theorem from the introduction and formulate the the-
orem about the optimal polyhex figure.

Theorem 4. The maximal perimeter of a bounding rectangle of an n-polyhex is
4n + 2.

Theorem 16. The only polyhex with the maximal bounding hexagon is a line of
hexagons.

13



2. Extremal Perimeter

The perimeter is one of the most studied parameter of polyominoes. The general
problem of enumaration all polyominoes for a fixed perimeter have not been
solved in past years. So again the scientist try to restrict the enumeration on
special classes of polyominoes. See [4] for examples of column-convex or staircase
polyominoes.

Another nice class polyominoes are the equable polyominoes. The definition
says that they are polyominoes whose size equals their perimeter. It is a simple
observation you cannot make an equable polyomino of size less than 15 and all
equable polyominoes has even size.

In our thesis we consider only standard perimeter (sum of external edges), but
one can often find a term site-perimeter. This kind of perimeter counts the cells
adjacent to the polyomino by an edge. Surprisingly this parameter seems to be
easier to describe and was fully characterized for polyominoes and enumeration
of minimal polyiamonds and polyhexes.

2.1 Minimal Perimeter

2.1.1 Polyominoes

The answer about minimal perimeter was completely solved by Sascha Kurz in
[8], but before[7] published the exact formula for the minimal perimeter. The
description of the optimal polyomino of size n is quite simple. Let take a rectangle
with area at least n and minimal perimeter. Then remove from corners k squares,
where k is the difference between n and rectangle area. The sketch of proof is
described below.

Recall the theorem from the introduction.

Theorem 5 (Harary, Harborth). The perimeter of a polyomino of size n with
the minimal perimeter is p(n) = 2d2√ne.

The proof of this theorem was published in [7] and it is based on the spiral
construction. See Figure 2.1.

Figure 2.1: Spiral construction
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Theorem 17. The number e(n) of polyominoes with n squares and minimum
perimeter p(n) is given by following cases:

e(n) =



1 if n = s2

b− 1
2
+ 1

2

√
1+4s−4tc∑

c=0

rs−c−c2−t if n = s2 + t (0 < t < s)

1 if n = s2 + s

qs+1−t +
b
√
s+1−tc∑
c=1

rs+1−c2−t if n = s + s + t (0 < t ≤ s)

where s = b√nc and with rk, qk being the coefficient of xk in the following
generating function r(x) and q(x), respectively. The two generating functions

s(x) = 1 +
∞∑
k=1

xk2
k∏

j=1

1

1− x2j

and

a(x) =
∞∏
j=1

1

1− xj

are used in the definition of

r(x) =
1

4

(
a(x)4 + 3a(x2)2

)
and

q(x) =
1

8

(
a(x)4 + 3a(x2)2 + 2s(x)2a(x2) + 2a(x4)

)
.

We can see from the function definition that when the squares are able to make
a square or rectangle which sides differ only by one, there is only one optimal
polyomino. Local maximum is reach for n = s2 + 1 and n = s2 + s+ 1. The exact
values for small cases are presented in [8]

It is obvious that optimal polyomino must be connected and without holes.

Observation 1. Denote the number of common edges in polyomino by B(n).
Then we have

B(n) =
4n− p(n)

2
= 2n− d2√ne

The proof of the theorem require the definition of bounding walk.

Definition. The bounding walk H is a closed walk trough all edge-to-edge neigh-
bouring squares of the perimeter (squares which are not disjoint with the perime-
ter, even by a vertex only).

If we consider the squares as vertices of a graph, which are connected by an
edge if they are adjacent. Then we can define |H| as the length of the “cycle”
defined by it (note that the vertices can repeat on the cycle). Let furthermore hi

denote the number of squares of degree i. See

|H| = h1 + h2 + h3 + h4.
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If h1 > 0 then B(n)−B(n− 1) = 1, because if the square is removed the number
of common is decreased by its degree. Therefore if h1 > 0 then n = s2 + 1 or
s2 + s + 1, because of the original equation for B(n) = 2n − 2d√ne. In general
we can assume h1 = 0

Following lemmas express technical properties and we omit their proof.

Lemma 1. If h1 = 0thenh2 = h4 + 4.

Lemma 2. If h1 = 0 then the number m of common edges of squares of the
polyomino is

m = 2n− |H|
2
− 2.

Lemma 3. For the maximum area A(|H|) of a polyomino with boundary H and
h1 = 0 we have

A(|H|) =


( |H|+4

4
)2 if |H| ≡ 0 mod 4

( |H|+4
4

)2 − 1
4

if |H| ≡ 2 mod 4

Lemma 4. For a polyomino with h1 = 0 with minimum perimeter p(n) we have
|H| = 2d2√ne − 4.

From these technical lemmas we can derive the theorem describing how to
create a polyomino with minimal perimeter. Let us recall the theorem from the
introduction.

Theorem 6 (Kurz). Any polyomino with minimal perimeter p(n) can be made
from any rectangular poloymino consisting of at least n squares and perimeter
p(n) by removing the squares from corners.

Proof. First consider h1 = 0. Denote the bounding rectangle by R. If the car-
dinality of the boundary of R is smaller then |H| then due to Lemma 2 and the
fact B(n) is increasing. Thus |H| equals the cardinality of R and the polyomino
can be obtained from R removing the squares. Only the squares of degree 2 can
be removed, because they don’t change the perimeter. Such squares are only in
the corners.

For h1 > 0 we know n = s2 + 1 or s2 + s + 1 and can be created by removing
s− 1 squares from s× s + 1 from the shorter side, from s2 + 1× s2 + 1 or from
s2 × s2 + 2 respectively.

The rest of the proof describes how to get the exact formula for the number of
different polyominoes of the size n and minimal perimeter p(n). The idea is based
on the observation, that the shape of a removed corner can be associated with a
Ferrer’s diagram, so we can use the generating function for Ferrer’s diagram to
describe the situation in one corner. The combination of the function for all four
corners and usage of Cauchy - Frobenius’s Lemma completes the proof.
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2.1.2 Polyiamonds

The question about the minimal perimeter for polyiamonds was solved by Win-
ston C. Yang and Robert R. Meyer in [11]. they proved the exact formula for the
minimal perimeter over all polyiamonds of the size n. Their construction and the
idea of its proof is presented below.

Recall the theorem from the introduction.

Theorem 7 (Yang, Meyer). The minimal perimeter over all polyiamonds of the
size n is d

√
6ne or d

√
6ne+ 1 and it has the same parity as n.

To prove the theorem above the authors use maximal polyiamonds which are
figures for the fixed perimeter p containing maximum number of triangles. They
state the theorem about number of the triangles, then describe an algorithm for
construction of the maximum polyiamond and then they derive the figure of the
same perimeter but with minimal number of triangles. The result follows.

The proofs are based on the structure of the polyiamond slices. Let have a
polyiamond. Triangles on one line in one of three direction (horizontal, antidi-
agonal, diagonal) are a slice. The slice consist of subslices, a subslice is a group
of connected triangles in one slice. See Figure 2.2 for an example. We sum all
subslices in horizontal direction and denote the number by h. Do the same with
antidiagonal (a) and diagonal (d) direction. We get (h, a, d) the description of
the polyiamond. If the polyiamond has (h, a, d) subslices we say it has HAD (h,
a, d).

1

1

3

2

1

1

2

1 3 2 2 1 2 1 1 3

2

Figure 2.2: Polyiamond with HAD (9, 9, 11)

Theorem 18. The maximum number of triangles in a polyiamond with perimeter
p is

round(
p2

6
)−

{
0 if p ≡ 0 mod 6
1 else
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Proof. Sketch: They design an linear integer program to get the meximum num-
ber of triangles based on several observation about HAD. The most important
observation is, that h + a + d = p.

Theorem 19. The algorithm for the maximal polyiamond with perimeter p.
Choose (h, a, d) so that p = h + a + d and h ≤ a ≤ d. Draw parallelogram
with HAD (a+d, a, d). Pick up the horizontal lines with the most triangles.

The authors gives another alternative algorithm using spiral construction. It
is very similar to the spiral construction for the polyominoes.

They use the spiral construction for construction of the polyiamonds with
minimal perimeter. The theorems above are used for the proof such a figure is
minimal.

The problem of the enumeration seems to be much more difficult than for
the polyominoes. We cannot use the argument of minimal bounding rectan-
gle/hexagon, because removing one triangle never preserve the perimeter (the
perimeter has always the same parity as n). The extension can be done be re-
moving diamonds from corners (diamond = two adjacent triangles). But still
there is a problem we cannot achieve all optimal figures. For example n = 5 has
the optimal perimeter p = 7 and one optimal figure is regular hexagon with edge
of the size 1 with one missing triangle. We may construct the hexagon polyia-
monds with perimeter p−1 and start the removing process by one triangle which
will improve the perimeter. Then we can proceed by removing diamonds. But
this algorithm would need more careful analysis.

2.1.3 Polyhexes

Winston C Yang, who was on e of the authors of the paper about minimal perime-
ter of polyiamonds, is the author of the paper about the polyhexes, too. In [10]
he use absolutely same approach, which he used in the previous paper. The enu-
meration of all possible minimal polyhexes with minimal perimeter is missing.

Recall the theorem from the introduction.

Theorem 8 (Yang). The minimal perimeter over all polyhexes of the size n is
2d
√

12n− 3e

2.2 Maximal Perimeter

Compare to the minimal perimeter, the topic of the maximal perimeter was not
studied that much. The only information which we found is in the paper [7],
where the authors proved the following theorem for all animals, that means for
polyiamonds, polyominoes and polyhexes. We call a cell one triangle, square or
hexagon of an animal.

Definition. Edge of an animal is an edge of a cell of the animal. If two cells
share an edge, this edge is taken as one edge. We denote by q the number of all
edges in an animal. See figure 2.3.

Skeleton of an animal is defined as its dual, that is a graph where vertices are
cells and there is an edge between two vertices if their cells share an edge. See
figure 2.4
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Figure 2.3: Number of edges from left to rigth: q = 12, q = 11, q = 23

Figure 2.4: Skeletons - vertices are inside the cells and edges a dashed.

Theorem 20. For triangular (a = 3), square (a = 4) and hexagonal (a = 6)
animals

max q = (a− 1)n + 1.

An animal attains this maximum number of edges if and only if its skeleton is a
tree.

Proof. Let q1 and q2 denote the number of lines which belong to one and two
cells, respectively, so that q = q1 + q2. With respect to the number and kind of
cells we get na = q1 + 2q2 = q + q2 and from which we derive

q = na− q2. (2.1)

We observe the skeleton G(V,E) has |V | = n and |E| = q2 therefore it is obvious
that max q means min q2 = n− 1 and so the skeleton is a tree. From (2.1) we get
max q = (a− 1)n + 1 and by the fact that such an animal exists (e. g. path) the
theorem is proven.

As a corollary of this theorem we recall the theorem from the introduction.

Theorem 9 (Harary, Harborth). For triangular (a = 3), square (a = 4) and
hexagonal (a = 6) animals

max p = an− 2n + 2.

An animal attains this maximum perimeter p if and only if its skeleton is a tree
(for skeleton see figure 2.4).

This theorem says what the size of the perimeter is and how does the animal
looks like. However the question about the enumeration all shapes remains open.
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One can consider all trees of degree at most three for triangles and for hexagons,
four for squares. But we cannot use it, not only because of symmetries, but also
because there exist trees which has the correct degree, but does not represent any
animal.

1

2

3

45

1211

7

6

8

9 10

1

2

3

4

5

6

7

8

9

10

11

Figure 2.5: The tree has degree 3, but it is not a skeleton of any animal. On
the left you see the analysis for polyhexes (for polyiamonds and polyominoes it
is obvious).

The problem of enumeration can be translated onto enumeration of trees of
unit length edges and edges in only few possible direction (two orthogonal for
squares and three for triangles and hexagons). It looks as a very interesting class
of trees, but we did not find any literature with at least the definition of such a
class.
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3. Extremal Convex Hull

The last chapter is about the convex hull. As the problem of the minimal convex
hull is usually pretty simple we focus on the maximal convex hull. For all animals
we consider the cells of the area equal to one. For polyominoes it means the unit
squares, but for the triangles the size of its edges is 2/ 4

√
3. For hexagon it is

2/6 4
√

3.

3.1 Minimal Convex Hull

3.1.1 Polyominoes

It is obvious that the best way how to arrange the unit squares so they have the
minimal convex hull is to place them into a rectangle so they fill it completely.
The number of ways how to do it is the same how many ways we can write n as
product of two integers. Each partition n = n1n2 then corresponds to a rectangle
n1 × n2.

3.1.2 Polyiamonds

The situation of the minimal convex hull of a polyiamond is similar to the situa-
tion of polyominoes. We can always create a long strip consisting of unit triangles,
so the area of its convex hull equals the area of the triangles, so it is minimal.

a = 2

b = 2

c = 1

d = 3

e = 1

f = 2

Figure 3.1: Convex figure example with the labels of the edges

As squares can form rectangles which are convex, so they have minimal convex
hull, triangles can form hexagons with the same property. The area of a hexagon
can be computed as

n = 2(ac + bc + bd)− (a− d)2 (3.1)

where a, b, c, d are sizes of four consecutive edges of the polyiamond. Four seg-
ments determine the hexagon, because the sizes of the other two can be expressed
as

e = a + b− d

f = c + d− a
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Setting some of the variables to 0 we get another shapes, which are illustrated on
the picture 3.2.

a = c = e = 0 a = d = 0 a = c = 0 c = 0

Figure 3.2: Possible convex polyiamonds beside hexagon

So the number of the distinct figures is the number of integral solutions of 3.1
with the respect to the twelve symmetries (identity, rotation, reflection through
a vertex, reflection through an edge).

3.1.3 Polyhexes

We wanted to solve the problem of the minimal convex hull for the polyhexes,
too, but it turned out it is much more difficult then for the other two cases. Here
we give some observations and conjectures we were unable to prove.

The complication of the minimal convex hull is, that we cannot create a convex
figure. Even two hexagons are not convex, so their convex hull must be strictly
larger than two, it is 21

3

There is no obvious way how to create minimal shapes, but it is possible to
make them such that each hexagon creates at most 1/6 area, that is the case of
the line of hexagons.

Theorem 21. The minimal area of the convex hull of an n-polyhex is at most
n + n/6.

3.2 Maximal Convex Hull

3.2.1 Polyominoes

The problem of polyominoes with the maximal convex hull is much more inter-
esting. It was firstly introduced in [3] in 1994. They conjectured that the volume
of the maximal convex hull of a polyomino in d-dimensional space equals∑

I⊆{1,...,d}

1

|I|!
∏
i∈I

bn− 2 + i

d
c

and proved it for d = 2.
Ten years later Sascha Kurz proved in [9] their conjecture for general dimen-

sion and enumerate all planar polyominoes. His proof is presented bellow and
our own result for polyiamonds follows the same idea.

Recall the 2-dimensional case from the introduction.

Theorem 10 (Kurz). The area of the convex hull of a planar n-polyomino is at
most n + bn−1

2
cbn

2
c.
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Before we start the proof we need to define a function, which we use to bound
the area of convex hull.

Definition. The description of a planar polyomino p is the 4-tuple (l1, l2, v1, v2)
such that for a single square it is (1, 1, 0, 0) and for a bigger polyomino we consider
the following process of its construction square-by-square. If the square enlarges
the actual bounding rectangle in width then l1 increase by one. If the square
changes the height of the bounding rectangle then l2 increase by one. Otherwise
v1 (resp. v2) increase by one if the square is adjacent to the rest in horizontal
(resp. vertical) direction. If the square is adjacent in both direction we can choose
either v1 or v2 arbitrary and let it increase by one. See figure 3.3.

Figure 3.3: Possible descriptions: (3, 3, 2, 1), (3, 3, 1, 2), (3, 3, 3, 0), (3, 3, 0, 3)

Observation 2. The following equation expresses the relationship between poly-
omino size and its description

n = l1 + l2 − 1 + v1 + v2.

Definition. The bounding function is a function f : N4 → R defined by the
following expression:

f(l1, l2, v1, v2) = l1+l2−1+
(l1 − 1)(l2 − 1)

2
+v1+v2+

v1(l2 − 1)

2
+
v2(l1 − 1)

2
+
v1v2

2

Proof. First we prove that the area of the convex hull of any polyomino is at most
the value of its bounding function. We prove it by induction on n.

For n = 1 we have f(1, 1, 0, 0) = 1 so the statement holds. Now we assume
it is true for any description such that n − 1 = l1 + l2 − 1 + v1 + v2. Because of
symmetry we can omit the cases of increasing l2 and v2.

Suppose first l1 be increased by one and the new square has a neighbour on
the left side. We can see on the picture 3.4 that the square enlarge the convex
hull at most by 1 (square itself), and by l2−1

2
(two triangles). While we have

f(l1 + 1, l2, v1, v2)− f(l1, l2, v1, v2) = 1 +
l2 − 1

2
+

v2
2

the statement is satisfied and the first part of the induction step is done.
It remains to prove it for v1 and its increase by 1. Again we suppose there is

a neighbour on the left side. On the figure 3.5 we can see two triangles, which
are beside the square itself the biggest possible contribution of the new square to
the convex hull. From the similar computation we get

f(l1, l2, v1 + 1, v2)− f(l1, l2, v1, v2) = 1 +
l2 − 1

2
+

v2
2
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≤ l2

Figure 3.4: l1 increase

≤ l2

Figure 3.5: v1 increase

so the proof, that the bounding function bounds the area of the convex hull is
finished.

To finish the proof of the theorem we need to find the maximum of the function
and compare it with the given estimate.

First we observe v1 = v2 = 0. It follows from the symmetry and f(l1 +
1, l2, v1 − 1, v2) − f(l1, l2, v1, v2) = 0. Without loss of generality we can assume
l1 ≤ l2. Now from

f(l1 + 1, l2 − 1, 0, 0)− f(l1, l2, 0, 0) =
l2 − l1 − 1

2
> 0

we observe l2 − l1 ≤ 1. Because of n = l1 + l2 − 1 we derive l1 = bn+1
2
c and l2 =

bn+2
2
c. Finally substitution into the bounding function proves the theorem.

Beside the theorem about the maximal size of the convex hull Sasha Kurz
shows in his paper all possible shapes of the polyominoes. The shape is described
as a linear strip with at most two orthogonal strips on each side. Using Cauchy-
Frobenius lemma he calculated the exact number of extremal polynominoes for
fixed n. Let us recall this theorem from the introduction.

Theorem 11 (Kurz). Denote the number of different n-polyominoes with the
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maximal area of the convex hull by c(n). Then we have

c(n) =



n3−2n2+4n
16

if n ≡ 0 mod 4

n3−2n2+13n+20
32

if n ≡ 1 mod 4

n3−2n2+4n+8
16

if n ≡ 2 mod 4

n3−2n2+5n+8
32

if n ≡ 3 mod 4

Using the same idea and generalized version of the bounding function he
proved the estimate for maximal convex hull of polyominoes in d-dimensional
space. The question of enumeration all shapes in general dimension remains
open, but the conjecture is that the polyomioes consist of several orthogonal
arms.

3.2.2 Polyiamonds

In this section we give estimate for the maximal convex hull of a polyiamond and
enumerate all possible figures for given n. The idea of the proof of the estimate
follows the proof of Kurz for polyominoes.

Recall the theorem from the introduction.

Theorem 12. The area of the convex hull of any polyiamond consisting of n
triangles is at most

n2 + 10n + 1

12
.

Before we start with the proof we need to define description for polyiamonds
and bounding function for them.

Definition. The description of a polyiamond p is the 6-tuple (l1, l2, l3, v1, v2, v3)
such that for a single triangle it is (1, 1, 1, 0, 0, 0) and for a bigger polyiamond
we consider the following process of its construction triangle-by-triangle. If the
triangle enlarge the actual bounding hexagon l1, l2 or l3 increase by one depends
on the direction in which the hexagon changed (see on the picture 3.6). Otherwise
either v1, v2 or v3 increase by one depends on the side which is adjacent to the rest
of the polyiamond. If it is adjacent in more directions it can be chosen arbitrary.
See figure 3.7.

Figure 3.6: Directions from left to right: 1, 2, 3
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Figure 3.7: Possible descriptions: (3, 3, 3, 1, 1, 1), (3, 3, 3, 2, 1, 1)

Observation 3. Following equation express the relationship between the size of
the a polyiamond and its description.

n = l1 + l2 + l3 − 2 + v1 + v2 + v3

Definition. Let f : N6 → R bounding function be defined by following expres-
sion:

f(l1, l2, l3, v1, v2, v3) = l1 + l2 + l3 − 2 +
(l1 − 1)(l2 − 1)

4
+

(l1 − 1)(l3 − 1)

4

+
(l2 − 1)(l3 − 1)

4
+ v1 + v2 + v3 +

v1(l2 − 1)

4
+

v1(l3 − 1)

4

+
v2(l1 − 1)

4
+

v2(l3 − 1)

4
+

v3(l1 − 1)

4
+

v3(l2 − 1)

4

+
v1v2

4
+

v1v3
4

+
v2v3

4

Proof. At first we prove the area of the convex hull is at most the value of the
bounding function.

We prove it by induction on n. For n = 1 we have f(1, 1, 1, 0, 0, 0) = 1 so
the statement holds. Now we assume it is true for any description such that
n− 1 = l1 + l2 + l3− 2 + v1 + v2 + v3. Because of symmetry we can omit the cases
of increasing l2, l3 and v2, v3.

Let increase l1 by one and the new triangle has neighbour at the bottom. We
can see on the figure 3.8 the triangle enlarge the convex hull by 1 (triangle itself)
and by at most l2−1

4
+ l3−1

4
. While we have

f(l1 + 1, l2, l3, v1, v2, v3)− f(l1, l2, l3, v1, v2, v3) = 1 +
l2 − 1

4
+

l3 − 1

4
+

v2
4

+
v3
4

the statement holds and the first step of the induction is completed.
Let increase v1 by one and the new triangle has neighbour at the bottom.

We can see on the picture the new triangle enlarge the convex hull by 1 or less
(triangle itself) and by at most l2−1

4
+ l3−1

4
. While we have

f(l1, l2, l3, v1 + 1, v2, v3)− f(l1, l2, l3, v1, v2, v3) = 1 +
l2 − 1

4
+

l3 − 1

4
+

v2
4

+
v3
4

the statement holds and the proof, that the bounding function bounds the
area of the convex hull, is finished.
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≤ l3
2

≤ l2
2

≤ l3
2

≤ l2
2

l1 increase v1 increase

Figure 3.8: Induction step illustration

To finish the proof of the theorem we need to find the maximum of the bound-
ing function and compute the estimate from it.

At first we observe v1 = v2 = v3 = 0. It follows from the symmetry and
f(l1 + 1, l2, l3, v1, v2, v3)− f(l1, l2, l3, v1 + 1, v2, v3) = 0. Without loss of generality
we assume l1 ≤ l2 ≤ l3. Now from

f(l1 + 1, l2 − 1, l3, v1, v2, v3)− f(l1, l2, l3, v1, v2, v3) =
l2 − l1 − 1

2
> 0

we observe l2 − l1 ≤ 1 and similarly l3 − l1 ≤ 1, l3 − l2 ≤ 1. Because of n =
l1 + l2 + l3 − 2 we get

l1 = bn + 2

3
c l2 = bn + 3

3
c l3 = bn + 4

3
c

Finally the substitution into the bounding function prove the theorem.

Enumeration of optimal polyiamonds is a bit more complicated than it was
in the case of polyominoes, because we cannot omit all figures with non-zero vi.

Recall the theorem from the introduction.

Theorem 13. The polyiamonds with the maximum area of convex hull are three
pointed starts and washtub (see figure 3.10).

Proof. Firstly we observe polyiamond cannot contain subfigure on picture 3.9,
because its area of convex hull is strictly less than area of a star or a washtub.
We also know |l1 − l2| ≤ 1, |l1 − l3| ≤ 1 and |l2 − l3| ≤ 1, therefore the only

Figure 3.9: Forbidden subfigure
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Figure 3.10: Optimal figures

possible shape is star and washtub for n ≥ 7. For n ≤ 6 we need to analyse the
shape one by one and the result of our computation is on 3.11.

Analysis of the star gives us the result that the length of star arms should
differ by at most one. For the washtub we observe similar result. So for each
n ≥ 7 there is one star and for odd n one washtub, too.

Figure 3.11: Optimal figures for n ≤ 6

3.2.3 Polyhexes

Sasha Kurz conjectured in his paper [9] that the maximal area convex hull of a
polyhex is

1

6
bn2 +

14

3
n + 1c

and he thought it is possible to prove it in the same way as the similar theorem
for squares. We tried to prove it, but it seems much more difficult, because for
squares there are only two ways how a square can enlarge the area of the convex
hull, but the hexagon shape is more complicated. We were unable to design the
bounding function for the hexagons which would converge to the estimate for the
area of the convex hull.

Anyway, our analysis of the shapes discovered interesting unexpected fact.
For the polyhexes the optimal shape is probably only the washtub, because the
star has strictly less value. For example for n = 10 the area of the tub is 24.5,
but for star it is only 23.5 (see figure 3.12).
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Figure 3.12: Difference between star and washtub for n = 10, violet areas equal
to 1/6 and pink areas to 1/2

We derive the formulae for the area of the convex hull for the washtub and the
star. The area of the convex hull of the washtub equals to the Kurz’s estimate.
The area of the convex hull of the star equals to 1

6
(n2 + 4n + 1) for n ≡ 1 mod 3

and 1
6
(n2 + 4n) for others. That proves the washtub has always (for n ≤ 4, for

smaller n the shapes are same) a larger convex hull than the star of the same
size.
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Conclusion

We gave an exhaustive report about the topic of the extremal animals. We
considered the following characteristics: the bounding rectangle/hexagon, the
perimeter and the convex hull. We minimised and maximised all off them and
looked through the literature to find any remark about the chosen categories.

We solved two problems, the first one is about enumeration all polyominoes
with the maximal bounding rectangle, the second one is about enumeration all
polyiamonds with the maximal convex hull. The solution for the first problem
can be probably applied on polyiamonds, too.

Our work can serve as a source for further research, because there are still
several topics, which we did not solve. At least we found the reference literature
connected to these problems and tried to give some observation, how one can try
to solve the problem and which problems are probably more difficult than they
seem to be.

We hope we can continue in the research and finish the algorithm for the
maximum bounding hexagon for the polyiamonds and the maximum convex hull
of the polyhexes. We really want to see the progress in the problem of the max-
imum perimeter, because it seems challenging, but probably using tools from
graph drawing it can happen to be solved easily. The minimum bounding rect-
angle is even more difficult and so far we have no idea how it can be solved. For
this parameter it would be nice to see the solution for at least some restricted
classes of polyominoes.
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