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First of all I thank to my family for the support provided and to my supervisor
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I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this thesis as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

V Praze dne 10. dubna 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Abstrakt: Otevřené hvězdokupy jsou často diskutovány z hlediska jejich vývoje
a struktury. V této práci jsme se zaměřili na studium typického představitele
těchto objekt̊u — Velké mlhoviny v Orionu (M 42) — na základě observačńıch dat,
včetně jejich porovnáńı sN -částicovými modely od Šubr et al. (2012). Tyto nume-
rické modely byly inspirovány nedávno navrženým vývojovým schématem, podle
něhož hvězdokupy vznikaj́ı z velmi hustých počátečńıch podmı́nek. Z analýzy
rentgenových zdroj̊u se ukázalo jako pravděpodobné, že M 42 je rotačně symet-
rická ve vnitřńıch oblastech do 0.7 pc. Daľśı analýzou zahrnuj́ıćı též observačńı da-
ta z optického a infračerveného oboru jsme došli k závěru, že M 42 má na větš́ıch
poloměrech (do 2 pc) protáhlý tvar od severovýchodu na jihozápad. Porovnali
jsme rovněž radiálńı profily r̊uzných hmotnostńıch skupin hvězd. Objevili jsme
náznak inverzńı hmotové segregace mezi hvězdami s hmotnost́ı v rozsahu od 1
do 5M⊙ a hvězdami s hmotnost́ı menš́ı než 0.5M⊙, a to v oblasti od 0.5 pc do
1.5 pc. Tento výsledek je v nesouladu s teoretickými očekáváńımi (i s výsledky
numerických model̊u) a zaslouž́ı si daľśı studium.
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Abstract: Young star clusters are widely discussed from the point of view of
their evolution and structure. In this work we focused our attention on studying
a typical representative of these objects — the Orion Nebula Cluster (ONC,
M 42) — based on the observational data, including their confrontation with N -
body models from Šubr et al. (2012). These numerical models were inspired by
the recently proposed evolutionary scenario, according to which the star clusters
begin their evolution from very dense initial conditions. From the analysis of the
X-ray sources we revealed that the ONC is likely to be rotationally symmetric
in the inner area (. 0.7 pc). Further analysis including also optical and IR
observational data led us to the conclusion that the ONC is elongated from the
North-East to the South-West on large scales (up to 2 pc). We also compared
radial profiles of different mass groups of stars and we discovered a possibly
inverse mass segregation between stars with masses in the interval (1 ; 5) M⊙ and
the stars less massive than 0.5M⊙ in the range from 0.5 pc to 1.5 pc. This result
does not correspond to the theoretical expectations (neither to the results from
the numerical models) and it deserves further investigation.
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1. Introduction

Star clusters are numbered among the objects understanding of whose is essential
for many fields in astrophysics. On the one hand they are important for the evo-
lution of galaxies (sometimes being referred to as the building blocks of galaxies).
On the other hand, it is now widely accepted that the vast majority of stars, if
not all of the stars, were born in numerous groups. Those groups that we observe
nowadays in star forming regions are called the young star clusters.

A typical representative of this kind of objects is the Orion Nebula Cluster
(also known as M 42, NGC 1976, or the ONC, see Figure 1.1). It is a part of
a large star forming region in our Galaxy, the Orion Molecular Cloud (OMC-1),
and it can be identified even with the naked eye as the middle “star” of the
Orion’s sword asterism. Its estimated age is less than 2.5 million years (Tobin
et al., 2009), characteristic radius is approximately 2 pc and it contains about
3 000 stars with total mass of nearly 103M⊙ (Robberto et al., 2013). Due to its
relative proximity to the Earth (∼ 400 pc) it is one of the most observed and
theoretically studied star clusters. Despite all of the work, that was invested into
the study of this object (with more than 1 000 scientific papers mentioning it),
many uncertainties still remain.

In the most of astronomical observations (especially the ones concerning the
star clusters), there is not enough of the human lifetime to see even a little
fraction of the object’s evolution. We are provided only with a snapshot in
time. This is what leads to the biggest question that we are facing when making
numerical simulations of the star clusters: “What is the evolutionary state of
the star cluster that we observe?” Considering the ONC, the raw estimate from
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Figure 1.1: Image of the Orion Nebula in visible light placed in RA/DEC
coordinates. c©NASA/ESA (Hubble’s sharpest view of the Orion Nebula,
http://www.spacetelescope.org/images/heic0601a/, September 2013)
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CHAPTER 1. INTRODUCTION

the observationally determined characteristics give us an answer, that the time
needed for this star cluster to pass through a substantial dynamical evolution
is about one order of magnitude longer than its age. Therefore, the ONC is
not yet dynamically evolved. On the other hand, the recent theoretical studies
(e. g. Baumgardt & Kroupa, 2007; Marks & Kroupa, 2012; Šubr et al., 2012) are
emphasising the fact, that dynamics of the young star cluster is too complicated to
assume that the current evolutionary state is representative for its whole lifetime.
In order to create stars, it is essential for the young star cluster to contain a lot
of interstellar matter. The observations of the ONC, however, indicate a lack of
the residual gas. Hence, the above mentioned authors deduced that the initial
state of young star cluster has been much more compact than what we observe
now and that the residual gas was expelled at some time during its evolution.
Consequently, the initially deep potential well was shallowed, which permitted
the less bounded stars to escape, and the star cluster expanded. This kind of
the initial conditions means bigger star density and significantly faster evolution
of the whole system. Therefore, the observed star cluster might be dynamically
relaxed.

A relevant answer to the question about the past evolution of the ONC can-
not be given by the observations nor by the numerical models separately. Only a
careful comparison of these two approaches, with considering various initial con-
ditions and evolutionary scenarios, can support either one theory or the other.
In this work, we attempt to confront a set of numerical models of the ONC (pre-
sented in the work of Šubr et al., 2012) with the publicly available observational
data.

First, in Chapter 2 we are showing our analytical estimates on the star cluster
evolution and introduce the properties of our numerical models. Then in Chap-
ter 3, we are presenting the measured parameters of the Orion Nebula Cluster,
such as its distance from the Earth or extinction, and our collection of data. In
Chapter 4 we are introducing a set of Kolmogorov–Smirnov tests to study symme-
tries, radial profiles and level of mass segregation of the ONC. Later in Chapter 4
we are comparing the numerical models with the observational data. Finally in
Chapter 5 we are discussing our results and we are putting several suggestions
on the future work. In the Appendix, we comment the programs written for the
purpose of this work.
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2. Theoretical expectations

The dynamical evolution of the star cluster is generally a complicated process.
The equations which describe it lead to stochastic solutions. Nevertheless, we
can use the analytical estimates to reveal some of its characteristics.

2.1 Analytical estimates

The observations of the Orion Nebula Cluster make us believe in the possibility,
that we are looking at the young star cluster at the beginning of its life (Hillen-
brand, 1997). We can estimate its characteristic time of evolution, the relaxation
time (Binney & Tremaine, 1994) from

trelax ≈
σ3

8πG2〈ρ〉〈M⋆〉 lnN⋆

, (2.1)

where σ is the mean velocity dispersion, G is the gravitational constant, 〈ρ〉 is
the mean star density, 〈M⋆〉 is the mean mass per star and N⋆ is the number of
stars. Inserting values relevant for the ONC, we obtain trelax ≃ 9.5Myr. We can
see that this result is well beyond the age of the ONC (. 2.5Myr), but there are
some facts which have not been considered in this calculation.

First, the equation (2.1) gives good estimates only for star clusters with the
equal-mass stars. But the process which drives the evolution of a star cluster —
the two-body relaxation (Binney & Tremaine, 1994; Heggie & Hut, 2003) — is
much more effective, when there is the dispersion of masses. As the example, see
Figure 2.1, where we plot the evolution of Lagrange radii of two star clusters.
One of them has equal-mass stars and its evolution is slower, while the other
one has the range of masses, which makes its evolution faster. We can get more
precise results, if we consider the above mentioned dynamical process. Therefore,
we define the dynamical time

tdyn ≈ 〈M⋆〉
M⋆

trelax , (2.2)

where M⋆ is the mass of a star we estimate the dynamical time for. Plugging
in the values for the more massive stars from the ONC, we obtain tdyn ≃ 1Myr,
which is comparable to its estimated age.

Another correction can be obtained by following the recently discussed evolu-
tionary scenario (e. g. Baumgardt & Kroupa, 2007; Marks & Kroupa, 2012; Šubr
et al., 2012) which is supported by the observed lack of the residual gas in the
ONC (Wilson et al., 1997). These works point out that initially the ONC must
have had considerably more interstellar matter inside. At some time during its
evolution, the radiation pressure of massive stars led to the gas expulsion. The
consequence to this is that the initially deep potential well was reduced and the
less bounded stars escaped. So the ONC expanded, maybe even by a factor of
3 to 5 (Marks & Kroupa, 2012). Such result also means, that this star cluster
must have been denser by a factor of & 10 in the past (Baumgardt & Kroupa,
2007). Similarly the velocity dispersion has been higher as well. The initial
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CHAPTER 2. THEORETICAL EXPECTATIONS
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Figure 2.1: Lagrange radii (0.5%, 1%, 2%, 5%, 10%, 25%, 50%, 75% and 90%)
for two numerical models of two star clusters, both of them have the total mass of
10 000M⊙. The model on the left side has 10 000 stars with 1M⊙ and the model on
the right side has 8 000 stars with 1M⊙ and 200 stars with 10M⊙. The time is in both
cases measured in the crossing times. The core collapse occurred later for the model
with equally massive stars (left) than for the other model (right). This evolutionary
scenario is caused by the dispersion of masses and cannot be explained by lower number
of stars in the second model.

size, density and velocity dispersion will be reducing the characteristic time of
evolution, see equation (2.1), which supports the assumption that the ONC is
dynamically relaxed.

2.2 Numerical models

The dynamics of the young star clusters is, however, very complicated and we
cannot deduce it just from the analytical estimates. This is a reason for making
numerical simulations. In this work, we studied four different numerical models
of the Orion Nebula Cluster, all of which are N -body models. The stars are
represented by point masses and the interactions between them are calculated
from the Newton’s law of universal gravitation. The acceleration of the i-th star,
caused by the j-th star, can be written as

−→ai =
d2−→xi

dT 2
= − GM⋆, j

|−→xi −−→xj |3
(−→xi −−→xj ) , (2.3)

where −→x is the position vector, T is the time, G stands for the gravitational
constant and M⋆, j is the mass of the j-th star. Deriving from this equation,
the input parameters of every star in the numerical model has to be its position
vector, velocity and mass. The numerical integrator, which was used is NBODY6
(Aarseth, 2003).

One of these models (modA) was presented by Šubr et al. (2012) and the other
three are from L. Šubr (private communication, 2014). Initially these models
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CHAPTER 2. THEORETICAL EXPECTATIONS

id radial profile IMS Rhm, 0 Tex fgas runs
[pc] [Myr]

modA Šubr et al. (2008) yes 0.11 0.50 50% 100
modB Plummer (1911) no 0.10 0.70 50% 30
modC Plummer (1911) no 0.15 0.50 50% 30
modD Plummer (1911) no 0.10 0.70 33% 40

Table 2.1: Parameters of the numerical models of the ONC used in this work. IMS
means the initial mass segregation, Rhm, 0 is the initial half-mass radius (the radius
comprising exactly one half of the total mass of stars), Tex is the time, when the gas
expulsion started and fgas is the initial mass fraction of the gas. In the last column is
the number of runs of each model.

are constructed as very compact (by a factor of ∼ 7 smaller than the ONC, see
Table 2.1), spherically symmetric and isolated. The latter characteristic means,
that the Galactic potential and the tidal effects are neglected. All these models
of the ONC have total mass of 2 700M⊙. The individual mass of each star (M⋆)
is defined with respect to the standard Kroupa’s initial mass function (Kroupa,
2001)

ξ (M⋆) =











M−0.3
⋆ , if M⋆ < 0.08

M−1.3
⋆ , if 0.08 ≤ M⋆ < 0.5

M−2.3
⋆ , if M⋆ ≥ 0.5

(2.4)

with the upper limit of M⋆ at 80M⊙ and the bottom cutoff at 0.1M⊙. The func-
tion ξ (M⋆) dM⋆ gives the number of stars in the interval (M⋆ ; M⋆ + dM⋆).
The stellar evolution in these models is present in a form of star collisions and
merges only. Although globally stars behave like point masses, during close en-
counters they are treated as spheres of previously defined radius. When two stars
overlap too much, they merge in one star.

The gas was modelled as well. The correct procedure would be to incorporate
hydrodynamical equations and integrate them. But such models are so compli-
cated and use so much computational time, that it is impossible to use them to
study the whole evolution of the star cluster. Therefore, we have a simplification
in our models — the gas is represented by point masses with low mass. It forms
a substantial fraction of the total mass of the star cluster (see Table 2.1 for fgas).
At the defined time Tex during the simulations (see Table 2.1), the gas has been
expelled and the star cluster begun to expand. In Figure 2.2 we show evolution
of the half-mass radius of the model modA. We can clearly see that shortly after
0.5Myr the star cluster started the expansion. The hump at 0.9Myr is the sign
of resettling of the virial equilibrium. After that, the model does not evolve so
much, which is in agreement with our analytical estimates.

In general, the models of self-gravitating systems are scalable. But we have to
keep the constraints, which come from the equations of motion. For example, if
we want to multiply length by a factor Rscale , the factor Tscale , which multiplies
time, is given by

Tscale ∝ R
3/2
scale , (2.5)

as derives from the equation (2.3). If we do not want an unrealistic evolution
rate, such as 3 times the speed, a good limitation is Rscale . 2. These models,
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Figure 2.2: Evolution of the half-mass radius of model modA (solid line) and the
standard deviation ±σ (dashed lines). Graph taken from Šubr et al. (2012).

however, have a set length scale. The motivation to define it was to set the stellar
radii in order to study the collisions between the stars. If we shrunk the model,
the collisions would be more frequent and vice versa. We also know, that there
were only few collisions during the whole star cluster’s evolution (. 10). So we
can assume, that the global characteristics of the star cluster will not change
dramatically (except the wrong number of collisions), when we free the length
scale and rescale the model to our needs.

2.2.1 Temporal evolution

To be consistent with the observations, we will from now on look only at the
planar projection of the models. We also define a new variable, the half-count
radius, which is the analogy to the half-mass radius, except that it stands for
the radius that comprises one half of the total number of stars, not mass. Note,
that the projected value of the half-count radius is smaller in comparison to the
three-dimensional half-count radius. When projecting, we do not take just the
stars in the central sphere, but we include all stars in the cylinder in our line of
sight, which means that we take into account more stars. Therefore, we come to
the wanted result quicker, hence the radius is smaller.

We do not know the exact age of the ONC, only its upper limit (2.5Myr).
We also showed that the numerical models can be rescaled, which will modify
the time scale by the relation (2.5). Because of these two reasons, it is sufficient
to analyse the models only in chosen time frames, which roughly represent the
model evolution. We chose T = 0Myr (at the beginning), T ≃ 1.2Myr (after the
gas expulsion and resettling of the virial equilibrium) and T ≃ 2.5Myr (at the
maximum estimated age of the ONC and also at the end of integration). From the
computed values of the half-count radii in Table 2.2, we can see that all models
expanded by the factor of > 3 after the phase of the gas expulsion. Between
1.2 and 2.5Myr these models did not evolve as much, as has been predicted by
our analytical estimates.

7



CHAPTER 2. THEORETICAL EXPECTATIONS

id Rhc (0Myr) [pc] Rhc (1.2Myr) [pc] Rhc (2.5Myr) [pc]
modA 0.13 0.58 0.57
modB 0.07 0.32 0.40
modC 0.11 0.37 0.48
modD 0.08 0.42 0.45

Table 2.2: Projected half-count radii of the models in three analysed time frames.

2.2.2 Mass segregation

One of the consequences of the two-body relaxation is the mass segregation —
different distribution of more massive stars in comparison to the less massive
stars. In the case of the star clusters, this usually means that more massive stars
are concentrated towards the centre, while the less massive ones are spread in the
outer regions. Due to the negative heat capacity of the self-gravitating system,
mass segregation will lead to the process called core-collapse (Binney & Tremaine,
1994).

To test the numerical models for the mass segregation, we divided all stars
into four groups of masses within the intervals

M⋆ ≤ 0.5M⊙ ,

0.5M⊙ < M⋆ ≤ 1M⊙ ,

1M⊙ < M⋆ < 5M⊙

and M⋆ ≥ 5M⊙

and compared theirs cumulative distribution functions by the one-dimensional
Kolmogorov–Smirnov test (KS test) from Press et al. (2007). This test analyses
the maximal difference of two cumulative distribution functions and returns the
value QKS (between 0 and 1), which is the probability of this difference to be a
coincidence. We set the boundary value of QKS at 0.05 — when result of the KS
test is below this value, we reject the null hypothesis. As a centre of the model of
the star cluster (a point from which we started to build these cumulative distri-
bution functions), we took the centre calculated by NBODY6 via the algorithm
of Casertano & Hut (1985). Our tests revealed that all models with no initial
mass segregation (IMS, see Table 2.1) evolved already after 1.2Myr into the mass
segregated clusters between all mass groups. They preserved in that state up to
2.5Myr, as shown in Figure 2.3. The probability (QKS) that the stars of any mass
group are distributed with respect to the same distribution function is . 10−5

at these two times. The initially mass segregated model (modA) kept the mass
segregation during its evolution also with QKS . 10−5. This result was expected,
because theoretically, denser star clusters tend to evolve faster, as we showed by
the analytical estimates.

8
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Figure 2.3: Evolution of the cumulative distribution functions of different mass groups
(M⋆ ≤ 0.5M⊙ , 0.5M⊙ < M⋆ ≤ 1M⊙ , 1M⊙ < M⋆ < 5M⊙ and M⋆ ≥ 5M⊙) of four
numerical models of the ONC (see Table 2.1).
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3. Observational characteristics

One of the issues we are facing, is the ongoing discussion about the physical pa-
rameters of the Orion Nebula Cluster. Different methods of measurements and
specific assumptions lead to different results of the age of this star cluster or its
distance from the Earth. Another issue is in the inconsistency between measur-
able parameters from the observations and the parameters from the numerical
models. For example the masses of individual stars, which are the essential input
parameters of the numerical models, are not easy to determine from the obser-
vations. In general, masses of the stars cannot be observed, therefore, we have
to use some additional methods, e. g. the models of the stellar evolution, to esti-
mate them from the observable parameters, such as luminosities. Note, that this
approach might not work on all kinds of the stars. Below we present the physical
properties of the ONC and the observational data, that we used in this thesis.

3.1 Properties of the cluster

Due to the character of the astronomical observations, we are able to determine
precisely only the angular sizes of objects. To get the absolute size (e. g. in
parsecs), which is natural for the numerical models, it is crucial to know the
distance from the Earth to the studied object. In Chapter 1, we mentioned
that distance to the ONC is about 400 pc, but this is just the rounded value
and certainly is not definite. In older works, we can find the measurements of the
distance modulus to the star forming regions, using the UBV photometry (Walker,
1969) or the maser radiation (Genzel et al., 1981), which led to value 8.37 for the
ONC, or equivalently 472 pc, where precision of the latter method is only about
±20%. The number 470 pc was thought of as canonical and sometimes used
without any reference or further discussion (e. g. as in Hillenbrand & Hartmann,
1998). Newer methods measured the ONC to be closer with more precise results.
For example Jeffries (2007) got two results from studying the pre-main sequence
stars — first is (440± 34) pc and the second result, when omitting stars with the
accretion disks, is (392± 32) pc. In the same year Menten et al. (2007) obtained
the value of (414±7) pc from measuring the trigonometric parallaxes of the stars
from the ONC. Another recent study (O’Dell & Henney, 2008) places this star
cluster at (436±20) pc. In our work, we adopt the value 414 pc, because it is close
to the average of the previously discussed distances and it also has the smallest
uncertainty. For this distance, the conversion between the angular and the proper
separation reads

1 ′ = 0.1204 pc . (3.1)

The similar problem comes out, when estimating the age of the star cluster.
We have evidence for stars within the ONC which are more than 5Myr old (Huff
& Stahler, 2006). Some works even mention stars, that are up to 12Myr old
(Warren & Hesser, 1977, based on the measurements of Balmer’s Hβ). On the
other hand, the youngest stars are less than 1Myr old. From this spread of ages,
we can see that the ONC did not form in one burst (Palla et al., 2005), as we
assume in the numerical models. The question is, when the forming star cluster
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Figure 3.1: Extinction map of the Orion Nebula with the value of AV defined by
the horizontal colour bar. Data from Scandariato et al. (2011). Green points are the
positions of the Trapezium stars.

becomes really cluster-like, i. e. when we consider that its “age is set to zero”.
In this work and the numerical models, that we used, we assume that the age of
the ONC is estimated from the time of the most active star formation, i. e. 1
to 2Myr ago and does not exceed 2.5Myr (Hillenbrand, 1997; Palla & Stahler,
1999).

The structure of the ONC is complicated as well. The stars are surrounded
and also partially covered by the interstellar medium (see Figure 1.1), which is
part of the Orion Molecular Cloud (Hillenbrand, 1997; Hillenbrand & Hartmann,
1998). This resolves in varying extinction in different wavelengths (Scandariato
et al., 2011, see the extinction map in Figure 3.1). Even though the optical
photometry and spectroscopy can be used in certain areas of the ONC, in some
regions, where the gas is to dense (black colour in the extinction map), only
X-ray observations can give us reliable results, because for the X-ray light, the
interstellar medium is likely more transparent (Flaccomio et al., 2003a,b).
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Figure 3.2: Positions of the ONC members from Hillenbrand (1997). Colour repre-
sents the masses of stars (the range is on the right), the blank circles shows stars with
unknown mass. On the background is the isocontour for AV = 5mag.

data source spectral region number of stars
Hillenbrand (1997) optical 1449
Flaccomio et al. (2003a,b) X-ray 742

optical 696
Da Rio et al. (2009) near-infrared and optical 1228
Da Rio et al. (2012) near-infrared 1583
Simbad: NAME ONC IR, optical and X-ray 2156

Table 3.1: Data used in this work. The tables with detailed informations about each
source are in the electronic version.

3.2 Datasets

Here is the list of the existing data, that we used in this work, which were taken
from publicly accessible database at Vizier1.

Hillenbrand (1997)2

This dataset is a merge of existing optical observations up to 1994 and the new
data acquired by the author of that paper. It gives us large sample of stars (almost
1 500) in the Orion Nebula region. We also adopt masses, which are determined
in the catalogue for 929 stars from theirs luminosities and temperatures, using
Hertzsprung–Russell diagram and evolutionary models of D’Antona & Mazzitelli
(1994), Swenson et al. (1994) and Ezer & Cameron (1967).

1http://vizier.u-strasbg.fr/viz-bin/VizieR
2http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/AJ/113/1733, march 2014
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Following the membership probability discussion in Hillenbrand (1997), from
the total number of 1 578 stars, we excluded those, which were characterised as
the proper motion non-members (Jones & Walker, 1988, total of 127 stars). We
also excluded all the new stars found by the author (their identification number is
from 3 000 to 3 999, from 5 000 to 5 999 or from 7 000 to 7 999), which are farther
from θ1 Ori C than 18.29 ′ (or equivalently farther than 2.5 pc at 470 pc distance).

The complete dataset is in Table 3.2. For the informational purpose we also
plot all these stars in Figure 3.2 with the colour range representing their masses,
or the blank circles, where the mass is unknown.

Flaccomio et al. (2003a,b)3

The authors of these two consecutive papers identified 742 objects active in the
X-ray and 696 in the optical wavelengths. All stars from the optical sample
have been pronounced as likely ONC members — they either have membership
probability greater than 50% or yet unknown. For most of the X-ray sources,
the optical or infrared counterparts have been found. The rest of the stars was,
based on the extinction and other parameters, “associated” with the possible
stars which are deeply embedded in the molecular cloud and not yet observed.
We take the whole X-ray and optical sample in the following calculations. Masses
are present for each star in the optical sample. All sources that we used from
these two papers are listed in Table 3.3 and 3.4.

Da Rio et al. (2012)4

For measurements in the near-infrared wavelengths we used data from Da Rio
et al. (2012), see Table 3.6 for the complete dataset. These observations were fo-
cused on brown dwarfs and pre-main sequence stars in the Orion Nebula Cluster.
To estimate their masses, two evolutionary models were used (Baraffe et al., 1998;
D’Antona & Mazzitelli, 1998). Vast majority of these sources have M⋆ < 1M⊙.
From all of the objects in this dataset, we distinguish between probable members
of the ONC and the foreground/background contamination. This differentiation
is based on the reddening of sources done by Alves & Bouy (2012).

Online database

In addition to the data sources listed above, we also used the online database
service Simbad5, which is populated by data, identifiers and references taken from
large set of journals. The advantage of this website is not only, that it gathers data
from various observations of the individual objects, but that it also connects them
together. One of these datasets is called NAME ONC and is the collection of the
sources, that are part of the Orion Nebula Cluster — the selection of the objects
is done by evaluating theirs properties (M. Wenger, personal communication,
January 29, 2014). Some of the large catalogues are cross-identified, which leads
to the possibility of making one more complete dataset without doubling any

3http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/ApJ/582/382, march 2014
4http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/ApJ/748/14, march 2014
5http://simbad.u-strasbg.fr/simbad
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data. In NAME ONC, there are incorporated data from Hillenbrand (1997) with
identifier [H97b], Da Rio et al. (2009) with the identifier [DRS2009], the X-ray
sources from Flaccomio et al. (2003a,b) with identifier [FDM2003] X and several
others. Together it forms the dataset with the total number of 2 156 stars. From
the list in Table 3.1, there are missing informations about Da Rio et al. (2012)
measurements — request of completing the NAME ONC was transmitted to the
CDS Helpdesk (personal communication, January 30, 2014).

As for the later analysis and comparisons with the numerical models, we need
coordinates and masses of the stars. Simbad makes possible to display multiple
identifiers from different catalogues for each star, which was useful to retrieve
necessary informations about stars listed in the NAME ONC. The coordinates are
present for every star, while the masses are estimated only in Hillenbrand (1997)
and Da Rio et al. (2009) datasets, which means 1 023 stars. See Table 3.5 for the
complete set of the stars.

RA J2000 DEC J2000 [H97b] prob Rproj M⋆
[

h m s
]

[◦ ′ ′′] [%] [m] [M⊙]
05 34 14.87 −05 15 48.96 3024 17.14 0.34
05 34 31.71 −05 35 20.32 21 95 16.37

. . . . . . . . . . . . . . . . . .

Table 3.2: The header and few lines of the dataset from Hillenbrand (1997). First
two columns are the right ascension and declination, [H97b] is the identifier of each
star, in the next column is the value of proper motion membership probability, Rproj

stands for the projected radius from θ1 Ori C in arc minutes and M⋆ is the mass of
each star in M⊙. The electronic version is in the file Table H97.

RA J2000 DEC J2000 [FDM2003] X
[

h m s
]

[◦ ′ ′′]
05 34 14.46 −05 28 16.62 1
05 34 18.23 −05 33 28.53 2

. . . . . . . . .

Table 3.3: The header and few lines of the X-ray dataset from Flaccomio et al.
(2003a,b). First two columns are the right ascension and declination and [FDM2003] X

is the identifier of each star. The electronic version is in the file Table F03 X.

RA J2000 DEC J2000 [FDM2003] Opt M⋆
[

h m s
]

[◦ ′ ′′] [M⊙]
05 34 12.81 −05 28 48.28 1 0.72
05 34 14.39 −05 28 16.77 2 1.74

. . . . . . . . . . . .

Table 3.4: The header and few lines of the optical dataset from Flaccomio et al.
(2003a,b). First two columns are the right ascension and declination, [FDM2003] Opt

is the identifier of each star, in the next column is the mass of each star in M⊙. The
electronic version is in the file Table F03 Opt.
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Figure 3.3: Mass histograms of stars from Hillenbrand (1997) — H97, Flaccomio et al.
(2003a,b) — F03, Da Rio et al. (2012) with masses from D’Antona & Mazzitelli (1998)
— DM98, and Da Rio et al. (2012) with masses from Baraffe et al. (1998) — BCAH98.
Dashed and solid lines are representing the initial mass functions from Kroupa (2001)
and Salpeter (1955) respectively.

3.3 Mass distribution

As it is mentioned above, some of the stars from our observational datasets have
the mass unknown. Nevertheless, we assume that all heavy stars (M⋆ & 5M⊙)
and the majority of the moderate stars (1M⊙ . M⋆ . 5M⊙) have theirs masses
estimated (Hillenbrand, 1997). In Figure 3.3 we present the histogram of the star
masses and the mass functions from Kroupa (2001), also shown in the equation
(2.4), and from Salpeter (1955), described by

ξ (M⋆) = M−2.3
⋆ . (3.2)

Both of these theoretical functions are compatible with our datasets at higher
masses, but neither of them fits the low mass stars well, most probably because
of the observational limit. In this graph we can also see the dependency on the
model of the stellar evolution which is being used — we have clearly different
counts of the stars from Da Rio et al. (2012) in various mass intervals, depending
on whether the masses are estimated by Baraffe et al. (1998) or by D’Antona &
Mazzitelli (1998).
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RA J2000 DEC J2000 [DRS2009] [H97b] MH97
⋆ MS00

⋆ MP99
⋆

[

h m s
]

[◦ ′ ′′] [M⊙] [M⊙] [M⊙]
05 34 30.25 −05 11 48.20 344 10 0.59 1.02 1.005
05 34 48.82 −05 33 33.06 899 100 0.26 0.343 0.32

. . . . . . . . . . . . . . . . . . . . .

Table 3.5: The header and few lines of the dataset from NAME ONC. First two columns are the right ascension and declination. The Simbad
identifier of Da Rio et al. (2009) is in the column [DRS2009], the identifier of Hillenbrand (1997) is in [H97b]. The masses from Hillenbrand (1997)
are denoted MH97

⋆ , the masses determined by Siess et al. (2000) are in MS00
⋆ and the masses from Palla & Stahler (1999) in the column MP99

⋆ . The
electronic version is in the file Table NAME ONC.

RA J2000 DEC J2000 id MBCAH98
⋆ σBCAH98

M⋆
MDM98

⋆ σDM98
M⋆

AV σAV
[

h m s
]

[◦ ′ ′′] [M⊙] [M⊙] [M⊙] [M⊙] [mag] [mag]
05 34 15.10 −05 23 00.0 1 0.243 0.053 0.255 0.038 0 0.30
05 34 17.26 −05 22 36.7 2 0.481 0.028 0.447 0.034 0.77 0.238

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3.6: The header and few lines of the dataset from Da Rio et al. (2012). First two columns are the right ascension and declination, in
the next column is the identifier of each star (not integrated in the Simbad database), MBCAH98

⋆ is the mass determined by Baraffe et al. (1998),

MDM98
⋆ stands for the mass calculated by D’Antona & Mazzitelli (1998) and AV is the extinction in the V band. The value σ is the uncertainty.

The electronic version is in the file Table D12.
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4. Structure of the cluster

In order to analyse the structure of the Orion Nebula Cluster from the point of
view of the symmetries and the radial profiles, we have to find its centre. There is,
however, no unambiguous definition of such a point. We can use several methods
that will find some centres, but there is no direct answer to the question, which
of these methods is correct. For example the centre of mass might be a good
solution, but in the case of the star cluster, one star far away from the rest can
shift it outside the area occupied by the majority of stars (where we would expect
it to be). Here we introduce two methods that we applied on the data presented
in Chapter 3. We also discuss their advantages and limitations.

4.1 Centre of mass / Numerical centre

The coordinates of the centre of mass (CoM) are given by

−→x CoM =

∑N⋆

i
−→xiM⋆, i

∑N⋆

i M⋆, i

, (4.1)

where −→xi is the position vector of the i-th star, M⋆, i is its mass and N⋆ is the
total number of the stars. Because this method is applicable only on those stars
which have determined masses, we defined its simplification — the numerical
centre (NC). The only difference between these two approaches is that the latter
works with counts of stars, instead of theirs masses. The equation which describes
it, is defined as

−→x NC =

∑N⋆

i
−→xi

N⋆

. (4.2)

Both of these variations, equation (4.1) and (4.2), have to be used carefully
because of their dependence on the layout of stars. If we take the whole star
cluster, we might get a not reliable result, as is mentioned above. To eliminate
such error as much as possible, we looked for the centre of the ONC only in
the restricted areas close to the central region only. For this purpose we used
the iterative process (source code is included in the Appendix B), which can
determine the centre inside a given radius or for a fraction of stars, e. g. the
half-count.

1. The program estimates the position of the centre for all the stars,

2. from that point it either

(a) sets the limit radius to the value we input and then a new number of
stars inside this area (N⋆) is counted,

(b) or calculates the limit radius for the fraction of stars we input (this
gives the number N⋆ automatically),

3. then it uses either
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CHAPTER 4. STRUCTURE OF THE CLUSTER

(a) the equation (4.1), if we want to calculate the centre of mass,

(b) or the equation(4.2) for the numerical centre,

4. from which it computes the position of the new centre for the stars within
the wanted area.

5. Now it resets N⋆ to the total number of stars in the dataset and loop back
to the step 2, until the results from two consecutive loops are the same.

This iterative process can give us up to four different centres for one input dataset
just by combining the methods in the step 3 with the type of centre from the
step 4. Other results are dependent on the input parameters. We can see in the
upper panel of Figure 4.2 that the centre for 90% of the stars is slightly shifted
upwards and to the right from the centre for 50% because of the lack of stars on
the left. The assumption that all observations we have are uniformly distributed
through the ONC led us to the conclusion, that into further searching we can
include only so many stars, that their surrounding radius does not intercept the
area with high extinction (AV & 5mag). That is why we defined two limit radii
(see Figure 4.1), one at

R5 = 0.05 ◦ = 3 ′ , (4.3)

which roughly comprises one half of the X-ray sample or one third of the stars
from Hillenbrand (1997). We also defined one limit radius even more centred at

R3 = 0.03 ◦ = 1.8 ′ . (4.4)

The results for these two radii are plotted in the bottom panel of Figure 4.2. We
can see that they are less spread than the centres for 50% and 90%.
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Figure 4.1: Circles with limit radii defined in equations (4.3) and (4.4). The bigger
circle (R5) is set to barely touch the area with the extensive extinction (AV & 5mag).
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Figure 4.3: Density centres for the Simbad sample NAME ONC (half-filled circle), Da Rio
et al. (2012, triangle) — D12, X-ray sources of Flaccomio et al. (2003a,b, up side down
triangle) — F03, Hillenbrand (1997, pentagon) — H97. On the background, there are
all the stars from NAME ONC and Da Rio et al. (2012).

4.2 Density centre

Due to the core-collapse, the star clusters form during their evolution a very com-
pact core and wide outer regions with low density of stars (Binney & Tremaine,
1994). This motivated Casertano & Hut (1985) to define the density centre. It
is done by using an algorithm, which finds the n-th closest star to each star in
the particular dataset. The centre is then the star, where this calculated distance
is minimal (for the numerical implementation see Appendix B). The positions of
these centres are shown in Figure 4.3 for the datasets that we analysed.

A considerable advantage of this method is its independence on masses, the
limit radius and partly on the observational biases. The only thing, that is
considered, is the star density. On the other hand, the result might be misled by
some local fluctuation of density. To overcome this problem, we set the number
of the closest stars to n = 10. This was enough for our datasets, because we
obtained the same results when setting n between 10 and 20, while setting it
between 5 and 10 gave us different centres.

4.3 New coordinates

We can see from our results that all the methods of finding the centre of the ONC
led us to the area of the Trapezium association — a place considered to be the
core of this star cluster (Hillenbrand & Hartmann, 1998). It was discussed, that
the centre of mass is not a reliable solution because we do not have information
about mass of every star in each dataset. We can see as well that the centre of
mass is shifted from the numerical centre and the density centre (Figure 4.2). For
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Figure 4.4: New coordinate system inside the Orion Nebula Cluster. Its origin is
defined as an average from the centres (red is for density centres, green represents
numerical centres), that we found using methods described above.

these reasons, we excluded results from this method from further analysis. As we
do not see any clear preference between the other approaches (the numerical and
the density centre), we took an average from all solutions, that we obtained, as
origin of the new coordinate system (see Figure 4.4). We transformed all of our
datasets into these newly defined coordinates and all of the following analyses are
made with respect to them. The exact position of our new centre of the Orion
Nebula Cluster is

RAnew = 83◦ 49′ 13.08′′

DECnew = −5h 22m 57.90s . (4.5)

4.4 Angular profiles

Using the observational data described in Chapter 3 we studied the angular pro-
files of the ONC up to the defined limit radii (Rlim). To create the angular
cumulative distribution functions, we ran continuously from −π to π (see Fig-
ure 4.5 for our definition of angular limits) through all the stars from the given
dataset that are inside a disk of radius Rlim, and added 1 every time we spotted
a star. We tested the rotational symmetry with the KS test at a predetermined
confidence level QKS = 0.05. The analysis of the X-ray dataset from Flaccomio
et al. (2003a,b) revealed, that the angular profiles are compatible with the homo-
geneous distribution function up to Rlim = 0.7 pc (see Figure 4.6 and Table 4.1).
We also got an agreement with the rotational symmetry from the optical sample
(Hillenbrand, 1997) but only up to Rlim = 0.5 pc. Tests of the IR dataset from
Da Rio et al. (2012) gave lower confidence level than 0.05, but we can assume

21



CHAPTER 4. STRUCTURE OF THE CLUSTER

−π
π

ϕ

Rlim

−π
2

0

π
2

RAD
E
C

Figure 4.5: Definition of the angle ϕ and the limit radius Rlim used in the construction
of the angular profiles, displayed in the coordinate system.

data Rlim

0.5 pc 0.7 pc 1.0 pc 1.5 pc 2.0 pc
Flaccomio et al. (2003a,b) 0.34 0.06 < 10−3 < 10−5 < 10−5

Hillenbrand (1997) 0.26 0.04 < 10−4 < 10−5 < 10−6

Da Rio et al. (2012) 0.03 0.02 < 10−3 < 10−3 < 10−7

Table 4.1: The results of Kolmogorov–Smirnov test (QKS) for the X-ray dataset
(Flaccomio et al., 2003a,b), the optical dataset (Hillenbrand, 1997) and the infrared
dataset (Da Rio et al., 2012) at the given limit radius Rlim.

that it is a consequence of some observational bias. The objects measured by
Da Rio et al. (2012) are mostly brown dwarfs and pre-main sequence stars, which
means light objects, as is presented in Figure 3.3, therefore, harder to detect.
From all the results in Table 4.1, we can see that the closer we were to the centre
of the ONC, the higher value of QKS we obtained. Deducing from the results
above and assuming that there is no physical mechanism, which would distribute
sources active in different wavelengths differently, and that our results are influ-
enced only by the extinction, we can extend the rotational symmetry up to the
area limited by Rlim = 0.7 pc, where the X-ray sources are showing statistically
significant agreement.

Our results derived from the analysis of the optical data correspond to the
results of Hillenbrand & Hartmann (1998), who fitted the spherically symmetric
models of the star clusters to the optical and IR data and came to a result that the
central regions of the ONC are in agreement with spherical symmetry. Further,
they stated that the ONC is clearly not spherically symmetric on larger radii
than 0.5 pc. Taking into account their conversion between angular and proper
distance, 0.5 pc is in our length scale 0.44 pc. However, considering more recent
X-ray data, which are also better seen through the nebula (Flaccomio et al.,
2003a,b), we found the rotational symmetry to the larger radii. The probability
that we observe the ONC from a special direction (e. g. looking on a base of a
cylinder) is negligible. Therefore, we assume that the rotational symmetry of the
central area of the ONC implies the spherical symmetry in that area too.
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Figure 4.6: The cumulative distribution functions of Da Rio et al. (2012) — D12,
Flaccomio et al. (2003a,b) — F03, Hillenbrand (1997) — H97, and the homogeneous
distribution in angle (dashed line). Left panel corresponds to the area with the limit
radius 0.7 pc and the right panel is for 0.5 pc.

4.4.1 Centre of symmetry

The results from the previous testing motivated us to formulate an alternative
approach to the question of the rotational (perhaps spherical) symmetry. If we
assume that the observational data are rotationally symmetric, there must exist
a point from which the rotational symmetry originates. We expect from such
point to reach the maximal level of confidence when compared to the rotationally
symmetric profile. Therefore, we covered the central region of the ONC by a grid
and in each of its node we created the angular profile of the star number density.
We evaluated the confidence level by the KS test. Because of the computational
difficulty, we present only the result for the X-ray dataset (in Figure 4.7). We
can see that the other centres of the X-ray dataset are very close to the maximal
result of the KS test (QKS ≃ 0.86). This supports the other methods of finding the
centre of the ONC and also the conclusion we made on the rotational symmetry.

4.4.2 Large scale shape

We can see that there is varying extinction in the ONC (Figure 3.1). This fact
motivated us to divide this star cluster into the angular sections with roughly
homogeneous distribution of stars and use them to analyse the overall shape of
the ONC (up to the radius of 2 pc). As the first attempt we cut the ONC into
four quadrants

Q0: ϕ ∈
(

−π ; −π
2

)

,

Q1: ϕ ∈
(

−π
2
; 0

)

,

Q2: ϕ ∈
(

0 ; π
2

)

,

Q3: ϕ ∈
(

π
2
; π

)

.
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Figure 4.7: Visualisation of the results of the KS test on the X-ray data (Flaccomio
et al., 2003a,b) in the central region of the ONC. Limit radius, for which the KS test was
evaluated is R5 = 0.05 ◦. We also plot the density centre (red up side down triangle),
numerical centre for R5 (green circle) and for R3 (green square).
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Figure 4.8: The normalised cumulative distribution functions of the count of stars
from different quadrants. Data are taken from NAME ONC.

We then used the KS test to compare the cumulative distribution functions of
the star radial number density of these quadrants with respect to each other. We
found out that the opposite quadrants, i. e. the pair Q0 with Q2 and the pair
Q1 with Q3, showed statistically more similar radial profiles than the adjacent
quadrants, e. g. Q0 and Q1. Although our division into the quadrants was rough,
we can still see, that this results disproves the rotational symmetry of the ONC
at large scales. This stays even for the X-ray data on large radii. Instead, our
results indicate (with no direct proof) that the whole cluster is rather centrally
symmetric (e. g. like an ellipsoid). From the Figure 4.8, where we plot the radial
profiles of these quadrants, we can see that the ONC is likely to be elongated
from the South-West (Q1) to the North-East (Q3). This result is in agreement
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Figure 4.9: The radial profiles of different mass groups of the ONC. The curves are
made of the stars with known masses from NAME ONC dataset.

with Hillenbrand & Hartmann (1998), who derived to the vertically elongated
elliptical shape of the ONC by analysing the distribution of the optical and the
infrared sources within the nebula.

4.5 Radial profiles and mass segregation

The next step in the analysis of the ONC was to evaluate the level of the mass
segregation within this star cluster. We set the limit radius for the whole star
cluster to 2 pc. Accordingly to the model analysis (Chapter 2.2.2), we divided
the stars (with known masses) from the NAME ONC dataset into four mass groups
(M⋆ ≤ 0.5M⊙ , 0.5M⊙ < M⋆ ≤ 1M⊙ , 1M⊙ < M⋆ < 5M⊙ and M⋆ ≥ 5M⊙)
and compared their radial profiles by the KS test. From the cumulative distri-
bution functions in Figure 4.9, we can see that stars with M⋆ ≥ 5M⊙ are more
concentrated to the centre of the ONC and thus mass segregated from the other
mass groups. We can base this hypothesis on low compatibility (QKS < 10−3)
of this group with the less massive stars. We do not observe a statistically
significant mass segregation between the groups of less massive stars alone for
R ∈ [0 pc ; 2 pc].

4.5.1 Possible detection of inverse mass segregation

From all tests we realized, only the comparison of the stars with 1M⊙ < M⋆ <
5M⊙ and the stars with M⋆ ≤ 0.5M⊙ in the region of R ∈ [0 ; 2] pc gave us the
result almost equal to the predetermined level of significance of the KS test. This
motivated us to focus on the radial profiles of these two groups. From the graphs
in Figure 4.9, we can see that the cumulative distribution function of the more
massive stars from these two groups is clearly under the cumulative distribution
function of the less massive stars at R & 0.75 pc. This indicates, that the group
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annulus M⋆ [M⊙]
[pc] less than 0.5 0.5 to 1 1 to 5 more than 5

0 to 0.5 182 28 38 8
0.5 to 1.0 251 20 19 2
1.0 to 1.5 167 16 38 0
1.5 to 2.0 124 14 30 0

Table 4.2: The counts of stars in different annuli for specific mass groups.

of stars with masses in 1M⊙ < M⋆ < 5M⊙ might be inversely mass segregated
from the group of stars with M⋆ ≤ 0.5M⊙.

We can support the above hypothesis in two ways. The first way is by com-
paring the star count ratios (f⋆) in the annulus with R ∈ [0.5 ; 1] pc and in the
annulus defined by R ∈ [1 ; 1.5] pc.

f
M⋆≤0.5M⊙

⋆ =
N

M⋆≤0.5M⊙

⋆ (R ∈ [0.5 ; 1] pc)

N
M⋆≤0.5M⊙

⋆ (R ∈ [1 ; 1.5] pc)
=

3

2
(4.6)

f
1M⊙<M⋆<5M⊙

⋆ =
N

1M⊙<M⋆<5M⊙

⋆ (R ∈ [0.5 ; 1] pc)

N
1M⊙<M⋆<5M⊙

⋆ (R ∈ [1 ; 1.5] pc)
=

1

2
, (4.7)

From the theory, we expect the ratio of low mass stars, i. e. the equation (4.6), to
be lower than the ratio of more massive stars, i. e. equation (4.7). Our results are
opposite to that (for the total counts of stars in all mass groups, see Table 4.2).
The other way is to determine the statistical weight of this result. We created the
cumulative distribution functions of these two mass groups in the annulus with
R ∈ [0.5 ; 1.5] pc and compared them by the KS test. We obtained the result,
that the probability of these two functions being from the same distribution is
around 2× 10−4.

The previous argumentation supported our conjecture of the inverse mass seg-
regation. This result goes opposite to the predictions, where the mass segregation
is a strong effect, which drives the star cluster evolution (Binney & Tremaine,
1994; Heggie & Hut, 2003). We must, however, be careful when interpreting the
results. There are some limitations to the KS test — we can influence the re-
sults by selecting the border values, e. g. the radii, or by a low number of stars.
There is also no way how to decide between the inverse and classic mass segrega-
tion solely from the KS test. We must also analyse the shape of the cumulative
distribution functions or evaluate the ratios of stars, as we did.

4.5.2 Comparison with the numerical models

The following analysis is oriented to compare the models, that we presented in
Chapter 2, to the observational data (Chapter 3). To do this comparison properly,
we have to scale the models to the same size. We used the half-count radii for
the size check. The half-count radius of the ONC is Rhc = 0.81 pc for stars up to
2 pc. Note, that this scaling cannot be done by taking the values of the half-count
radii for models from Table 2.2 and multiply all distances in the models of the
star cluster by the factor derived from the size of the ONC. The reason was in
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id S (0Myr) S (1.2Myr) S (2.5Myr)
modA 7.13 2.06 1.66
modB 12.91 3.65 2.52
modC 8.31 2.81 1.99
modD 12.41 3.33 2.30

Table 4.3: The values of the scaling factor S of the numerical models presented in
Chapter 2. The limit radius of the ONC and of the rescaled models is 2 pc.
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Figure 4.10: The cumulative distribution functions of the models and the ONC, fitted
to the half-count radius of the ONC, Rhc = 0.81 pc.

the normalisation of the KS test, which we used. Although all half-count radii
were originally counted from stars within the same limit radius (Rlim = 2pc), by
rescaling the model, its limit radius increases as well. Therefore, the half-count
radii would not be comparable any more. We had to use an iterative process,
which determined the limit radius of the models of the star cluster with the
following constraint — after rescaling the whole model to the size where the half-
count radii of the model and the ONC fit, the new modelled cluster radius must
be equal to 2 pc. We are interested only in the time frames T ≃ 1.2Myr and
T ≃ 2.5Myr. The initial cluster is not adequate for the comparison, because its
size has been intentionally defined several times more compact than the ONC.
From the values of the scaling factor S of all models (shown in Table 4.3), we can
see that modA, which has been published as the best representation of the ONC
(Šubr et al., 2012), is in fact the best fitting one. Other models are struggling in
fitting by less than a factor of 2, which is crucial for having realistic time evolution
of the model (see Chapter 2).

Next we created the cumulative distribution functions of the star radial num-
ber density from all stars of the models and all stars in the NAME ONC dataset and
compared them among themselves. Although the evolution of these functions was
roughly the same (as seen in Figure 4.10), we were not able to find any model
among the four tested, which would be also statistically comparable.

The possible reason for this is in the inverse mass segregation between the
mass group with 1M⊙ < M⋆ < 5M⊙ and the less massive stars. When analysing
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the radial profiles of the same mass groups from the model and the observational
data (plotted in Figure 4.11), we came to an agreement in all of the tests, except
for the mass group of 1M⊙ < M⋆ < 5M⊙, as it has been expected from the
previous results.
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Figure 4.11: Cumulative distribution functions of the models and the ONC for dif-
ferent mass groups in three time frames. We can see the initial mass segregation of the
model modA and also the compatibility of measured data with the numerical models,
except for the mass group of 1M⊙ < M⋆ < 5M⊙.
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5. Conclusions

In this work, we focused on studying the structure of the Orion Nebula Cluster
and comparing the results of numerical simulations with the observational data.
First, we analysed the numerical models of this star cluster. The level of the mass
segregation has been tested on the evolved models by the Kolmogorov–Smirnov
test, using four different mass groups (≤ 0.5M⊙, 0.5M⊙ to 1M⊙, 1M⊙ to 5M⊙

and ≥ 5M⊙). We revealed, that all four mass groups have different cumulative
distribution functions at high level of statistical significance. Also more massive
stars were more concentrated than the less massive stars. We can summarize,
that all models of this star cluster were mass segregated after their evolution,
including those without the initial mass segregation.

When analysing the observational data we had to overcome several issues
caused by the observational incompleteness. One of them is varying extinction
in the nebula, from AV ≃ 1mag up to AV ≃ 10mag in certain regions, due to
which we cannot see all stars properly. Because the interstellar medium is more
transparent in the X-ray than in the visible light, we collected data from the
multi-wavelength observations, i. e. IR, optical and X-ray, and tested different
characteristics of the ONC on these datasets separately.

We found out that stars from the ONC are distributed with respect to the ro-
tational symmetry (and perhaps spherical symmetry) in the central region. The
limit radius of this area is for the optical sources at 0.5 pc, which corresponds
to the results from Hillenbrand & Hartmann (1998), who stated that the central
regions of the ONC are in agreement with spherical symmetry. Their results fur-
ther showed that the ONC is not spherically symmetric above 0.44 pc. However,
when analysing more recent X-ray sources, we revealed that the area, where the
rotational symmetry is statistically significant, has the limit radius of 0.7 pc —
almost the half-count radius of the ONC. Under assumption that stars visible
in different wavelengths are not distributed differently, we concluded that the
ONC is rotationally (spherically) symmetric in the central region of maximum
radius 0.7 pc. We also studied the structure of the ONC on larger scales (up to
2 pc). Our test showed that this star cluster is likely to be elongated from the
North-East to the South-West, which is also in agreement with the above cited
paper.

Next, we focused on the question of the mass segregation in the ONC. We
found out, that the stars more massive than 5M⊙ are mass segregated from the
less massive stars, as in the models of the star cluster. But the mass segregation
among the less massive stars alone is not as evident as in the numerical models.
Focussing on the radial profiles, we discovered the potential inverse mass segrega-
tion of stars with masses between 1 and 5M⊙ and stars less massive than 0.5M⊙

in the annulus from 0.5 to 1.5 pc. Such result is unexpected, because it was not
predicted by the analytical view on the evolution of the star clusters nor by its
implementation into the N -body simulations that we used. Among the works
that studied the mass segregation in the ONC (e. g. Allison et al., 2009; Hillen-
brand & Hartmann, 1998), none discussed the possibility that this star cluster is
partly inversely mass segregated.
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CHAPTER 5. CONCLUSIONS

We believe that the inverse mass segregation may be caused by an uneven
star formation in the outer regions of the ONC, perhaps due to the gas expulsion.
To support this conjecture, we will have to consider in the numerical models the
varying star formation in space and time. We can improve in that manner the
existing N -body models that we used in this thesis. One possible way to do it
is to concentrate on the local density of gas particles. We then set a condition
according to which some gas particles will transform into one star particle, if their
local density reaches a predetermined value.
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Appendix

A Kolmogorov–Smirnov test

For analysing the Orion Nebula Cluster, e. g. finding symmetries and comparing
radial profiles of the observational data and the numerical model, we used the
statistical one-dimensional Kolmogorov–Smirnov test (KS test), which gives the
confidence level (QKS) of the tested hypothesis. In this appendix, we want to
illustrate the use of KS test in this work and connect the method to a program
written in programming language awk (inspired by Press et al., 2007).

There is only one requirement for the input data — that they are sorted in
ascending order by the value, we want to test. Sorting data can be done by
external tools, such as sort (in Linux), so it is not part of any source code listed
below.

The confidence level QKS can be calculated from its complement PKS defined
as

PKS(z) =

√
2π

z

∞
∑

j=1

exp

(

−(2j − 1)2π2

8z2

)

= 1−QKS(z) , (A.1)

where the argument z derives from the maximal difference between two nor-
malised cumulative distribution functions (Dmax), and the effective number of
data points (Neff) as

z = Dmax

(

√

Neff + 0.12 +
0.11√
Neff

)

(A.2)

(see Press et al., 2007, and references in there).

A.1 One sample testing

We must initialize several values. The total number of entries n for later normal-
isation, two variables which represent the cumulative distribution functions. One
for the sum of data points (data) and second for the sum of theoretical points
(dist). Then we define the current difference between the data and the distri-
bution, called D, the maximal value Dmax of this difference, the argument z for
the KS statistics, variable e to store the value of the exponential function and of
course Q and P, which are the results.

BEGIN{

n = 0;

data = 0.; dist = 0.;

D = 0.; Dmax = 0.;

z = 0.;

e = 0.;

Q = 0.; P = 0.;

limit = 0.;

}
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A. KOLMOGOROV–SMIRNOV TEST

In our case, we often set a limit radius around the data, in which we tested the
null hypothesis (see the parameter limit). If its value is equal to zero (as in this
example), the border is unset and we test the whole input datafile. Radius was
stored in the fourth column of the input file, which is why we compare limit to
$4.

The main program will now read the input file line by line and store necessary
data into the array var[] — for us, it was the information about angle, which was
in the third column, hence $3. Useful trick is written on the first line, which tells
the program to skip empty lines and lines beginning by # in the input datafile
(e. g. for the possibility of having comments in there).

NF && $1!~/^#/{

if (limit)

{

if ($4 <= limit)

{

var[n] = $3;

n++;

}

}

else

{

var[n] = $3;

n++;

}

}

Before proceeding to the KS test, two additional functions are needed. By
definition, we shall put them either at the beginning or at the end of the source
code, but the logical steps require to place them here. First one is the absolute
value.

function abs(x){

return ((x < 0.0) ? -x : x);

}

The second one — also the most important one — is evaluating the distribution
function for a homogeneous disk at any given angle x in radians inside the interval
[−π; π).

function f(x){

Beginning by the definition of π

PI = atan2(0, -1);

recalculating the angle for the interval [0; 2π), because it is easier to work with
positive numbers.

x += PI;

And finally return how full the disk should be in theory.
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return (x / (2 * PI));

}

Now, for the data, that we gathered in the main part of our program, we want
to calculate the absolute difference from the corresponding theoretical value.

END{

for (i = 0; i < n; i++)

{

dist = f(var[i]);

Note, that the difference for one theoretical value dist has to be calculated
before . . .

D = abs(dist - data);

Dmax = (Dmax >= D ? Dmax : D);

data = i / n;

. . . and after increasing the cumulative function data by one step.

D = abs(dist - data);

Dmax = (Dmax >= D ? Dmax : D);

}

We now use equation (A.2), where the effective number of data points Neff is
equal to the actual number of data points n. Then we define π and finally set
the summation upper limit N to “almost” infinity — the series (A.1) converges
quickly, which means that bigger number than 200 is not needed. The exponential
function in awk does not support very small numbers and returns zeros instead.
This is why there is the command to break the sum, when this occurs, mainly
due to the reduction of the computational time.

z = (sqrt(n) + 0.12 + (0.11 / sqrt(n))) * Dmax

PI = atan2(0, -1);

N = 200;

for (i = 1; i <= N; i++)

{

e = exp(0. - ((((2. * i - 1.)**2) * PI * PI) / (8. * z * z)));

if (e > 0) P += sqrt(2. * PI) / z * e;

else break;

}

Finally we calculate the complement of PKS.

Q = 1. - P;

The only thing left is to print the results.

print "D_max = " Dmax ", n_tot = " n;

print "z = " z ", P = " P ", Q = " Q;

}

At this point, we can compare the value of QKS, to the predetermined signif-
icance level, that we wanted to achieve.
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A.2 Two sample testing

Instead of comparing one dataset to a theoretical distribution, we can compare
two different datasets together. Here lies one major advantage of the KS test
— we do not need to modify the data in any way, e. g. same binning. But
the requirement, which was mentioned before, that data have to be sorted in
ascending order of the value, we wish to test, remains.

At the beginning, we need few definitions. The number of stars in both
datasets (n1, n2), the value of the cumulative distribution functions (data1,
data2) and two variables for later use (d1, d2). Other declarations are the same
as in the one sample testing.

BEGIN{

n1 = 0; n2 = 0;

data1 = 0.; data2 = 0.;

d1 = 0.; d2 = 0.;

D = 0.; Dmax = 0.;

z = 0.;

e = 0.;

Q = 0.; P = 0.;

limit = 0.05;

}

In this case we set a value to limit to compare both datasets only up to a certain
radius, here 0.05, and instead of the angle we compare radii (in the fourth column,
$4). Arrays for storing the value to compare are called var1[] and var2[]. Now
we proceed to read the first file. That is controlled by the condition that the
number of records read from the current file (FNR) has to be equal to the total
number of records read so far (NR).

(FNR == NR) && NF && $1!~/^#/{

if (limit)

{

if ($4 <= limit)

{

var1[n1] = $4;

n1++;

}

}

else

{

var1[n1] = $4;

n1++;

}

}

At this point, we can read the second file. Look at the condition, that total
number of records is not equal to the number of records in the current file.
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(FNR != NR) && NF && $1!~/^#/{

if (limit)

{

if ($4 <= limit)

{

var2[n2] = $4;

n2++;

}

}

else

{

var2[n2] = $4;

n2++;

}

}

Now we define two indices i1 and i2, which will be used to go through our
arrays.

END{

i1 = 0;

i2 = 0;

while ((i1 < n1) && (i2 < n2))

{

This statement says, that for the purpose of finding the biggest difference between
two datasets, there is no need to continue after one of them achieves its maximal
value — that function will stay constant, while the other will grow, so the dif-
ference will only decrease. Now we save both radii in d1 and d2 respectively and
work with the lower one.

if ((d1 = var1[i1]) <= (d2 = var2[i2]))

{

do

{

i1++;

data1 = i1 / n1;

We increase the value of its distribution function until the radius is the same (or
we still have data points).

} while ((i1 < n1) && (d1 == var1[i1]));

}

if (d1 >= d2)

{

If d1 was not smaller than d2, this part would have been executed.

do

{
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i2++;

data2 = i2 / n2;

} while ((i2 < n2) && (d2 == var2[i2]));

}

At the end, we calculate the actual difference and compare it to the maximum.
Then we loop the previously mentioned steps.

D = abs(data1 - data2);

Dmax = (Dmax > D ? Dmax : D);

}

There is one difference in calculating the effective number of points. We use the
following equation

Neff =
N1N2

N1 +N2

, (A.3)

where N1 and N2 correspond to n1 and n2 respectively. Finally we use equations
(A.2) and (A.1) and print out the results in order to compare them later.

n = (n1 * n2) / (n1 + n2);

z = (sqrt(n) + 0.12 + (0.11 / sqrt(n))) * Dmax;

PI = atan2(0, -1);

N = 200;

for (i = 1; i <= N; i++)

{

e = exp(0. - ((((2. * i - 1.)**2) * PI * PI) / (8. * z * z)));

if (e > 0) P += sqrt(2. * PI) / z * e;

else break;

}

Q = 1. - P;

print "# n1_tot = " n1 ", n2_tot = " n2;

print "# D_max = " Dmax ", n_eq = " n;

print "# z = " z ", P = " P ", Q = " Q;

}
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B Centre of the cluster

In this appendix we show the source code, that was used to calculate different
types of centres of the ONC. In order to give the following explanation a clean-
er look, all the bits, where input or output files are managed are intentionally
excluded (the complete source code is attached on CD).

B.1 Centre of mass / Numerical centre

The following function, which computes the position of the centre of mass or the
numerical centre (see Chapter 4), needs some parameters. First is the number
of lines (entries or stars) in the input data file (nol). As it is described in the
main text, we searched for a cluster centre either in a given limit radius (limR)
or in the area, where is the specified fraction of stars (per, number between 0
and 100). The number of iterations is iter — there is no need for setting this
number very high, because the iterative process converges quickly (in few steps).

We also define some local variables, such as the summation index i, right
ascension and declination of the centre (c ra and c dec respectively), total mass
M tot of the cluster and the number arr, which will later determine the last star,
that is included in the calculation. For the first estimate, we use every star in
the input dataset, which is why it is set to nol.

int mass_centre(int nol, float per, int iter, float limR)

{

int i;

float c_ra, c_dec, M_tot;

int arr = nol;

Before we proceed to the iteration itself, we must present one last unknown —
the array stars[nol][3]. The first dimension, stars[i][], serves for counting
stars and the second one has been filled by theirs properties, namely the right
ascension (stars[][0]), declination (stars[][1]) and mass, or the number 1, if
we are calculating the numerical centre (stars[][2]).

while (iter >= 0)

{

c_ra = 0.;

c_dec = 0.;

M_tot = 0.;

for (i = 0; i < arr; i++)

{

c_ra += stars[i][0] * stars[i][2];

c_dec += stars[i][1] * stars[i][2];

M_tot += stars[i][2];

}

c_ra /= M_tot;

c_dec /= M_tot;

At this place we can print out the results from each step of the iteration, which
is not shown here. The following lines will tell us the number of stars (arr),
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for which we wanted to calculate the centre initially (depending on the method
used). Both of the following functions will be explained afterwards.

if (limR > 0.) arr = limit_R(limR, nol, c_ra, c_dec);

else arr = rl(per, nol, c_ra, c_dec);

The number of steps left is decreased by 1.

iter--;

}

At the end of this function, we shall return some integer, for example nol.

return nol;

}

We presented two functions to deduce the number of stars, for whose we
calculated the centre of mass (or numerical centre). Here they are explained.

The function used to deduce the number of stars inside the limit radius needs
the number limR, then the total number of stars (nol) and position of the current
centre (c ra, c dec). All stars have to be sorted in ascending order of radius from
the current centre, which can be done by various methods — for example a bubble
sort (here called sort r()).

int limit_R(float limR, int nol, float c_ra, float c_dec)

{

sort_r(nol, c_ra, c_dec);

int i;

for (i = 0; i < nol; i++)

{

Running through all the stars, it finds the first, which is on bigger radius than
limR. Then it breaks this loop, because it is not necessary to continue, and returns
its index — the cycle in mass centre() runs only for i smaller than arr, which is
why, we returned the index of the first star, which is not inside the radius.

if (limR < sqrt((stars[i][0] - c_ra) * (stars[i][0] - c_ra) +

(stars[i][1] - c_dec) * (stars[i][1] - c_dec)))

{

break;

};

}

return i;

}

The other method is based on calculating the Lagrange radius (radius con-
taining given percentage of the total mass). We parse the fraction, the number
of stars and coordinates of the current centre. Data must be sorted in ascending
order of radius as well as in the previous function. Then we define mass of the
whole sample M tot, mass M lagr comprised inside the examined area (or equally
the number of stars, if the mass is set to 1) and index i.
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int rl(float per, int nol, float c_ra, float c_dec)

{

sort_r(nol, c_ra, c_dec);

float M_tot = 0.;

float M_lagr = 0.;

int i;

for (i = 0; i < nol; i++) M_tot += stars[i][2];

Note that this value of M tot is different from the M tot used in mass centre().
Earlier it stood for a mass given by the first arr stars, whereas now it means
the mass of the whole dataset. We proceed to the computation of the Lagrange
radius. The next few lines are determining whether the mass of the i-th star plus
the mass cumulated so far is still less or equal to the wanted percentage of the
total mass. If not, the loop breaks and the current index is returned to be stored
in arr.

for (i = 0; i < nol; i++)

{

if ((M_lagr + stars[i][2]) <= (per / 100. * M_tot))

{

M_lagr += stars[i][2];

}

else break;

}

return i;

}

B.2 Density centre

Another approach to find the centre, discussed in Chapter 4, is via the star
density. Similarly to the centre of mass, one of the input parameters for this
function is the total number of stars in the dataset (nol). No other parameter,
except the number of the closest stars n, is needed for this function to work.
Before we start explaining the code, several declarations have to be done. All
the integers are defined in order to count elements in the arrays, then we need
an array star min[], which will store the radii of n closest stars. Variable min

will be used to save the smallest distance to the n-th star, hence the reason to
initialize it at a very high value. Finally, the coordinates of the centre (c ra and
c dec), differences in right ascension and declination and one dummy variable to
store whatever is needed.

int density_centre(int n, int nol)

{

int i, j, k, l, dn, count;

float *star_min, min = INT_MAX;

float c_ra, c_dec;
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float dra, ddec, dummy;

star_min = (float*)malloc(n * sizeof(float));

For every single star in the dataset (index i), the algorithm will run through all
other stars (index j),

for (i = 0; i < nol; i++)

{

count = 0;

for (j = 0; j < nol; j++)

{

if (j != i)

{

calculate the distance from the i-th to the j-th star, not including itself,

dra = stars[i][0] - stars[j][0];

ddec = stars[i][1] - stars[j][1];

dummy = sqrt(dra * dra + ddec * ddec);

and put the first n stars (theirs distances from the i-th one) into the array
star min[] in ascending order, which is why we set count to zero earlier.

if (count < n)

{

star_min[count] = dummy;

count++;

for (k = 0; k < count; k++)

{

for (l = k + 1; l < count; l++)

{

if (star_min[k] > star_min[l])

{

dummy = star_min[k];

star_min[k] = star_min[l];

star_min[l] = dummy;

};

}

}

}

For the remaining stars, it tests if they are closer to the i-th star than the others,
previously saved.

else

{

for (dn = 0; dn < n; dn++) if (dummy < star_min[dn])

{
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When this occurs, it will put that star into star min[] at the correct position
— to maintain the ascending order of the calculated distance — and move the
others inside the array one position up, while discarding the current outermost
star.

for (k = n - 1; k > dn; k--)

{

star_min[k] = star_min[k - 1];

}

star_min[dn] = dummy;

break;

}

}

};

}

At this point, we shall have the closest n stars to the i-th one saved in star min[].
Now we will compare the biggest distance in this array (the last record) to the
current minimal distance stored in min. If it is smaller, we rewrite min, if not,
nothing happens. In either case, we proceed to the next star in the dataset and
do this procedure again. Note, that it is not strictly necessary to initialize min to
a very high value at the beginning, because the following condition will be true
in the first step either way.

if ((star_min[count - 1] < min) || (i == 0))

{

c_ra = stars[i][0];

c_dec = stars[i][1];

min = star_min[count - 1];

};

}

Before ending this function, we must free the memory of star min[] and return
an integer value.

free(star_min);

return nol;

}
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