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Studijńı program: Informatika
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jazyka na př́ıkladech shlukováńı dokument̊u a tematických model̊u.

Kĺıčová slova: aktivovanost, salience, koreference, TFA, strojové učeńı

Title: Tracing Salience in Documents

Author: Jan Václ
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Introduction

0.1 Motivation

Discourse can be viewed as a sequence of utterances referring to a set of real-world

objects. By modeling the dynamic appearance of these references throughout

the text, one can acquire a new knowledge about the structure of the text, the

importance of these objects in relation to the text, or even the nature of the

text. This knowledge can be subsequently used for further investigation in the

field of discourse analysis (for example for comparison of the discourse dynamics

between two different languages), as well as enhancing the efficiency of an NLP

application working with the whole bodies of texts (text segmentation, topic

modeling, information retrieval).

0.2 Goals and Contents

There are two main goals of this work. The first one is to investigate more deeply

the notion of salience as it is defined in (Hajičová et al., 2006). This includes

reproducing the experiment described there on a larger amount of data (using the

newly available Prague Discourse Treebank), generating the results in a human-

examinable form, and analyzing them especially from the quantitative point of

view.

The second goal is to examine the salience and its usefulness as an additional

feature for an NLP application. Since the type of information the salience brings

is closely associated with the topic or subject of the text, the topic modeling was

chosen as the exemplar NLP application.

0.3 Content Overview

The chapters in this thesis are ordered roughly from the theory to experiments and

results, corresponding to the order in which the underlying work was undertaken.

In Chapter 1, the reader is introduced to the research context of our topic, being

acknowledged with the related works in the fields we reach into. References to

the historcal research for the salience notion are presented together with works

concerning its main building blocks, coreference and topic-focus articulation; as
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well as topic modeling approaches and applications exploiting similar linguistic

information.

Chapter 2 presents a necessary overview of both the linguistic theories behind

this work and the statistical foundation of the topic-modeling method used and

its possible evaluation. Although this overview is not intended to be exhaustive

and large details, it should provide the reader with the knowledge needed to

understand this work and the presented results, along with directions to further

reading if he will be more interested in any of the subjects.

Data and tools used during the experiments and other parts of the work are

enlisted and described in Chapter 3, each with a brief information of how and

when they contributed.

Perhaps the main part of this work is described in Chapter 4, where the re-

sults of the automatic salience analysis on the larger amount of data are present-

ed, both quantified and visualized. These results are preceded by more general

statistics of the data in question, providing the necessary context for their better

interpretation.

Chapter 5 describes two series of experiments performed to assess the possible

contribution of salience as a feature to a machine learning application. The first

one is an attempt of a simple document clustering based on the importance of

words, the second one is a comparison of topic modeling evaluation featuring a

popular statistic algorithm.

Contents of the enclosed CD-ROM are described in the Appendix, along with

a brief information of each piece of the data and directions how to approach them.

Both the scripts and the results contained on the CD-ROM are an integral part

of this thesis and represents an important amount of work done within its scope.

2



1. Research

1.1 Related Work

Several approaches to the analysis of a discourse structure with its dynamic de-

velopment in relation to a sentence structure can be found among the linguistic

theories. Most of them are based on distinguishing two main semantic types of

information in the sentence: given vs. new (although their terminology varies,

not necessarily according to possible differences in the definitions).

Hajičová (2013) mentions another interesting approach to relating the sen-

tence structure with a dynamicity of the discourse structure, given by (Prince,

1981); a three-level hierarchy of givenness of an information (contrasting the

given-new) between speaker and hearer is presented there. Each level refers to a

different understanding of givenness in the works of previous researchers:

1. givenness as a predictability/recoverability, as defined by (Kuno, 1972) and

(Halliday, 1967) (althour their definitions slightly differ),

2. givenness in the sense of saliency, relating to the assumption of the hearerś

consciousness, referring to (Chafe, 1976),

3. givenness in the relation to a state of a “shared knowledge” according to

(Susan E. Haviland, 1974), focusing on what the hearer “already knows and

accepts to be true” vs. what the hearer “does not yet know”.

Prince then continues with defining a more fine-grained familiarity scale on dis-

course entities.

Another well-known approach of modeling discourse dynamics in terms of

sentence structure is the centering theory introduced in (Joshi and Weinstein,

1981) and further refined in (Grosz et al., 1995), based on the local attentional

states of speaker and hearer. It operates with a forward and backward looking

centers of sentences and defines four types of sentence transitions by the relations

of their centers. One of the characteristic features of this theory is ranking of the

centers according to a language-specific parametrization.

An entity-grid model is presented in (Barzilay and Lapata, 2008), where each

entity appearing in a text (based on a coreference relations) is assigned a column

in a grid, each sentence corresponds to a row in this grid. The cells are then filled

with syntactic roles of the entities in the corresponding sentence, recording also
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the transitions between those sentences. It should be noted that this approach,

among all the mentioned so far, is the most computationally oriented. Distribu-

tional information about the entities are extracted naturally from the entity-grid

as well, forming the parameter of salience as a discourse prominence. However,

our understanding of this notion is slightly different, arguing with Hajičová (2013)

that it should be understood in a more complex way and that neither frequency

nor the length of the referential chain is a sufficient measure of salience.

Even more application-oriented approach is presented in (Sauper et al., 2010),

building a statistical-based model of content structure for using it in a text anal-

ysis. This model combines hidden Markov models and conditional random fields,

employing the expectation-maximization technique for finding their parameters.

1.2 Salience

Our approach directly follows the notion of salience first mentioned and described

in (Hajičová and Vrbová, 1982), revisited in (Hajičová, 2003) and further refined

and tested in (Hajičová et al., 2006). This notion relates the dynamicity of

the discourse with the information structure of its individual sentences, working

with activation of the elements of knowledge shared between the speaker and the

hearer.
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2. Theory

The theory of salience will be introduced in Section 2.3, but first, one has to

understand two main resources standing behind this notion: coreference and

topic-focus articulation.

2.1 Coreference

Coreference is a concept describing a relation of two or more expressions in a text

referring to the same real-world object. These expressions are called referents.

The key approach to coreference in this work is that the groups of coreferents

join together to form a coreference chain. When speaking about two neighbouring

members of the coreference chain and their relation, the first one is often called

the antecedent and the second one the anaphor, with respect to the order of

their occurence in the text. These terms describes the most typical form of the

coreference called anaphora, when the first expression is the more specific one and

the second one relates to the first one – when visualizing the coreference relations,

this is often denoted by an arrow directed from the second one to the first one. The

reverse case, called cataphora is also possible; however, the terminology differs

here, the “target” of the relation is usually denoted as cataphor and it is now

preceded by the “source”, which is often called the postcedent.

The distinction between anaphora and cataphora is illustrated by the simple

examples (1) in Czech (constructed based on our language experience). The

English translations are as literal as possible to retain the structure of the original

sentence. The coreference pairs in both cases are highlighted and subscripted.

(1) a. Krabicea byla tak těžká, že jia Petr raději nechal za dveřmi.

The-boxa was so heavy that it-OBJa Peter-SUBJ rather left behind

the-door.

b. Ačkoliv hoc nikdo nezval, Martinc se-objevil na každém več́ırku.

Although himc no-one invited, Martinc showed-up on every party.

5



2.1.1 Grammatical and Textual Coreference

According to the approach to coreference captured in the Czech dependency

treebanks and described e.g. in (Kučová and Hajičová, 2004) (with its extension

in (Nedoluzhko, 2011)), we distinguish two types of coreference relations in this

work, grammatical and textual. The grammatical coreference in this approach

is such a kind of coreference in which it is possible to pinpoint the coreferred

expression on the basis of grammatical rules; it may involve a verb of control,

reflexive pronouns, verbal complements, reciprocity and relative pronouns. On

the other hand, the textual coreference is not realised by grammatical means

alone, but also via context. The former type of coreference usually occurs with

both the involved coreferents within one sentence, while the latter often cross the

sentence boundaries.

2.1.2 Bridging Anaphora

The term bridging anaphora, also sometimes denoted as associative anaphora, is

used in this work in correspondence to its annotation in the Prague Discourse

Treebank1, described in detail in (Nedoluzhko, 2011). The term describes an

anaphoric relation where the anaphor is not directly coreferential to the an-

tecedent, but an indirect connection is implied. This connection can be identified

by the reader often using a real-world knowledge and a cognitive process, some-

times also based on the context. As it is shown in (2) (taken from (Nedoluzhko,

2011)), some knowledge of semantic structures of the mentioned object has to be

employed to recognize the relationship between classroom and children.

(2) Učitel vešel do tř́ıdy. Děti (se) okamžitě přestaly bavit.

(Teacher entered (to) the-classroom. Children instantly stopped talk-

ing.)

Within the notion of bridging anaphora, more specific subtypes of relations are

distinguished, corresponding to the semantic relation of the two referred ob-

jects. Based on a rigorous research and analysis of the impact of the inter-

annotator agreement, (Nedoluzhko, 2011) settles for the following six subtypes

for the Prague Discourse Treebank annotation task:

1. part-whole relation (asymmetric, with both possible directions)

– e.g. “room”-“ceiling”, “finger”-“hand”

1For details on the treebank, see 3.1
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2. set-subset relation (asymmetric, with both possible directions)

– e.g. “drinks”-“beer”, “drinks”-“soda”

3. functional relation (asymmetric, with both possible directions)

– e.g. “coach”-“team”, “company”-“director”

4. semantic or pragmatic contrast (symmetric), depends heavily on the context

– e.g. “Last year we went abroad on holiday, but this summer we are

staying at home.”

5. non-coreferential anaphoric relation (symmetric)

– e.g. “Love? What does the word even mean?”

6. other – intended for collecting specific types of relations, possibly detachable

into their own category in the future: family membership, place-inhabitant,

author-piece, possession-owner etc.

Although some of the bridging relations are inherently asymmetric, the mem-

bers of the anaphoric chain are considered to be equivalent. Thus, we can actually

speak of chains, with each member referring to the directly previous one.

2.2 Topic-Focus Articulation

Information structure of a sentence is an important aspect of the sentence mean-

ing, especially in the perspective of a discourse analysis. Our understanding of

the sentence information structure is directly based on the Functional Generative

Description framework (FGD), i.e. the approach of the Prague School of Linguis-

tics. An insightful survey of this approach can be found in (Hajičová, 1993), for

more detailed treatment see eg. (Sgall et al., 1986).

The key notion in this approach is the topic-focus articulation2 (or TFA), a

partioning of the sentence into two segments each with different communicational

function. In the topic part of the sentence, the speaker mentions “what he is

talking about”, while the focus part contains new information about the topic,

i.e. “what he wants to say about it”. The dichotomy links the semantic structure

of a sentence with the structure of discourse in its context, and is usually found to

be also anchored in the syntactic structure of the sentence. Natural languages use

various surface means to convey this distinction: word order plays the main role

in inflectional languages, specific morphemes are present in several languages of

2This dichotomy is sometimes described also as theme/rheme, topic/comment or presupposi-
tion/focus by more traditional theories and also by similar contemporary approaches. However,
the main distinguishing principles rarely differs.
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Eastern Asia, e.g. in Japanese, and intonation seems to be important everywhere,

espedal1y in the analytic languages of Western Europe; German combines in

various respects the properties of the latter with these of inflectional languages

(Hajičová, 1993).

An example sentence in Czech (from (Hajičová et al., 2005)) is shown in (3)

to illustrate the topic-focus segmentation.

(3) V noci ze soboty na neděli skončil ve vojenském prostoru Ralsko sjezd

major̊u.

(At night from Saturday to Sunday ended in military area Ralsko meet-

ing(Nom.) of-majors.)

Topic: v noci ze soboty na neděli (at night from Saturday to Sunday)

Focus : skončil ve vojenském prostoru Ralsko sjezd major̊u (ended in mil-

itary area Ralsko meeting(Nom.) of-majors)

As stated in (Hajičová et al., 2005) and following the FGD approach, the semantic

basis of the articulation of the sentence in to Topic and Focus is the relation of

contextual boundness: a prototypical declarative sentence asserts that its Focus

holds (or does not hold) about its Topic. Within both Topic and Focus, an

opposition of contextually bound and non-bound nodes is distinguished, which

is understood as a grammatically patterned opposition, rather than in the literal

sense of the term. Within the contextually bound elements of the sentence, a

difference is made between contrastive and non-contrastive bound elements.

Following the theoretical assumptions of FGD, TFA is captured in the tec-

togrammatical annotation of the Prague Dependency Treebank3 by the TFA at-

tribute, which may obtain one of the three values:

• t : a non-contrastive contextually bound node,

• c: a contrastive contextually bound node,

• f : a contextually non-bound node.

Returning to the relation of the two different views, the semantic view rep-

resented by the contextual boundness and non-boundness serves as a basis for

inferring the syntactic, surface-form Topic/Focus dichotomy and possible seg-

mentation of a sentence. In this direction, a heuristic procedure was proposed by

(Sgall et al., 1986) to identify the sentence bipartition of Topic/Focus based on

the distinction of contextually bound and non-bound items.

3For details on the treebank, see 3.1
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2.3 Salience

The flow of a discourse can be viewed as a sequence of sentences, each with its

own information structure and most of them referring to some real-world objects.

In different parts of the discourse, some of these objects are referred to more

often than the others and vice versa. The notion of salience suggests that at

every point of the discourse, i.e. in every sentence, each of these objects can be

assigned a certain level of activation, or salience.

One can assume that all the objects referred in a discourse are taken from

some stock of knowledge shared between the speaker and the hearer (or, in case

of a written text, the author and the reader). Then we can regard this set of

objects rather as a stack, bearing the most activated items on the top. When an

object is mentioned in a sentence, it is moved to the top of the stack (or closely

to it, depending on the usage of the referring expression in the sentence). Then,

if not referred in the following sentences, it slowly descends, pushed down by the

objects which are mentioned in these sentences. Given this model, the quantity

of salience of an object determines how high this object is located on the stack.

Assumptions have been made (Hajičová, 2003) that if the salience values of

the referenced objects in a discourse could be determined, one would be able

to induce various characteristics of the discourse. One of them is observing a

segmentation of the discourse according to groups of momentarily salient objects

along with the identification of their topic(s). Another one could be prediction of a

grammatical form of the referring expressions (or, more generally, their strength),

eg. pronominal vs. noun referent. Some of these assumptions will be addressed

and analyzed in this work.

2.3.1 Salience algorithm

A deterministic procedure to determine the salience values of the coreference

chain in the flow of a discourse on a sentence-by-sentence basis in (Hajičová

et al., 2006). Its evaluation was presented on one sample document only, because

not much data with the necessary annotation were conveniently available at that

time. However, the results of the algorithm were also visualized to provide more

human-readable feedback.

Let us recall the salience algorithm, as defined in (Hajičová et al., 2006) –

consider the following situation: An object x represented by the referent r has

the salience degree dgnx(r) after the n-th sentence of a document is uttered. Then,
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the salience value of the object x is defined after its first mentioning by the linear

sentence-by-sentence processing as follows:

After each sentence, the salience degree of the object x is modified:

1. dgnx(r) = −1 if r carries TFA value t or c in the n-th sentence,

2. dgnx(r) = 0 if r carries TFA value f in the n-th sentence,

3. dgnx(r) = dgn−1x (r)−2 if r is not included in the n-th sentence and has been

mentioned in the Focus of the last (not necessary immediately) preceding

sentence ((n− 1)-th through 1st sentence),

4. dgnx(r) = dgn−1x (r)−1 if r is not included in the n-th sentence and has been

mentioned in the Topic of the last (not necessary immediately) preceding

sentence ((n− 1)-th through 1st sentence).

Note that this formulation of the salience algorithm does not define the

salience value of x before it is first mentioned in the document.

The salience algorithm distinguishes between the Topic/Focus dichotomy and

the TFA attribute values (c/t/f), according to the theoretical background sum-

marized in 2.2. However, in the scope of this work, we will make a simplification

at this point and use the notion Focus synonymously to the TFA value f and

likewise Topic synonymously to the TFA values c or t. The reasons are rather of

technical nature; although a heuristic algorithm proposed by (Sgall et al., 1986)

has been stated and tested in (Hajičová et al., 2005) for “converting” the c/t/f

values to Topic/Focus, its results were not fully deterministical. Furthermore, this

algorithmic procedure could not be reproduced within the scope of this work.

2.4 Latent Dirichlet Allocation

Currently one of the best known and very broadly used methods for topic mod-

eling tasks is Latent Dirichlet Allocation (or simply LDA). It was introduced in

(Blei et al., 2003) as a generative probabilistic model for collections of discrete da-

ta, such as text corpora. The model has three layers: the items of such collection

are modeled as a finite mixture over an underlying set of topic probabilities, each

topic modeled as an infinite mixture over an underlying set of topic probabilities;

the topic probabilities provide an explicit representation of a document.

The output of the model is a given number of topics, each of which, as men-

tioned earlier, is a defined by a list of probabilities over a set of words. Thus,
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Figure 2.1: Graphical model representation of the unsmoothed LDA model in a
plate notation (source: (Blei et al., 2003)).

no single representant or a name for a topic is inferred, a “meaning” of a top-

ic is present only inherently, by a collective contribution of words with higher

probabilities. Also, no word is exclusive for any topic, its “assignment” is always

proportionally divided between more of them.

The plate notation of the LDA model in Figure 2.1 summarizes its three-

layer architecture with the probabilistic distributions and their corresponding

parameters. The boxes are “plates” representing replicates. The outer plate

represents documents, the inner plate represents the repeated choice of topics

and words within a document. M denotes the number of documents, N the

number of words in a document. The parameters are then as follows:

• α is the parameter of the Dirichlet prior on the per-document topic distri-
butions,

• β is the parameter of the Dirichlet prior on the per-topic word distribution,

• θi is the topic distribution for document i,

• φk is the word distribution for topic k,

• zij is the topic for the jth word in document i, and

• wij is the specific word.

LDA assumes the following generative process for a corpus D consisting of M

documents each of length Ni:

1. Choose θi ∼ Dir(α) , where i ∈ {1, . . . ,M} and Dir(α) is the Dirichlet
distribution for parameter α

2. Choose φk ∼ Dir(β) , where k ∈ {1, . . . , K}

11



3. For each of the word positions i, j, where j ∈ {1, . . . , Ni} , and i ∈
{1, . . . ,M}

(a) Choose a topic zi,j ∼ Multinomial(θi).

(b) Choose a word wi,j ∼ Multinomial(φzi,j) .

Given the parameters α and β, the joint distribution of a topic mixture θ, a

set of N topics z, and a set of N words w is given by:

p(θ, z, w|α, β) = p(θ|α)
∏

p(zn|θ)p(wn|zn, β) (2.1)

Inference Learning the various distributions (the set of topics, their associated

word probabilities, the topic of each word, and the particular topic mixture of

each document) is a problem of Bayesian inference. The original paper used

a variational Bayes approximation of the posterior distribution, although more

efficient alternative inference techniques exist using a collapsed Gibbs sampling

and expectation propagation (Minka and Lafferty, 2002).

2.4.1 Evaluation

The task of evaluating an LDA model is a general task of a generative model

evaluation: we want to compute the probability of a held-out document collection

given this trained model. In particular, we want to maximize the probability:

P (W |φ, αm) =
∏
d

P (w(d)|φ, αm) (2.2)

Since the topic assignments for one document are independent of the topic as-

signments for all other documents, each held-out document can be evaluated

separately.

However, the exact computation of this probability is intractable, thus various

estimators are used, such as harmonic mean or empirical likelihood method and

others. A rigorous experimental comparisons of these estimators is presented in

(Wallach et al., 2009) and more accurate alternatives are proposed; a Chib-style

estimator and a left-to-right evaluation algorithm. The latter was introduced in

(Wallach, 2008) and is observed to be even more accurate on real-world datasets

than the former. It is currently commonly used method for the LDA evaluation

and was chosen also for the task in this work.

12



Left-to-right evaluation For each document w, its latent topic assignments

z and its document-specific topic distribution θ, we compute:

P (w|φ, αm) =
∏
n

P (wn|w<n, φ, αm)

=
∏
n

∑
z≤n

|w<n, φ, αm)
(2.3)

Each sum over z ≤ n can then be approximated using an approach inspired by

sequential Monte Carlo methods, the algorithm pseudo-code being as follows:

Algorithm 1 Left-to-right evaluation algorithm

1: initialize l := 0
2: for each position n in w do
3: initialize pn := 0
4: for each particle r = 1 to R do
5: for n′<n do
6: sample z

(r)
n′ ∼ P (z

(r)
n′ |wn′ , {z(r)<n}\n′ , φ, αm)

7: end for
8: pn := pn +

∑
t P (wn, z

(r)
n = t|z(r)<n, φ, αm)

9: sample z
(r)
n ∼ P (z

(r)
n |wn, z

(r)
<n, φ, αm)

10: end for
11: pn := pn/R
12: l := l + log pn
13: end for
14: logP (w|φ, αm) ' l

13



3. Data and Tools

3.1 Data Sources

3.1.1 PDT 2.0 and 2.5

The Prague Dependency Treebank (PDT) represents the largest annotated corpus

of Czech language.1 The texts are syntactically analyzed using the dependency

approach with the main role of the verb. The annotations go from the morpho-

logical layer through to the intermediate syntactic-analytical layer to the tec-

togrammatical layer (the layer of an underlying syntactic structure). The process

of annotation was performed in the same direction, i.e. from the simplest layer

to the most complex. This fact corresponds to the amount of data annotated on

each level – 2 million words have been annotated on the lowest morphological

layer, 1.5 million words on both the morphological and the syntactic layer, and

0.8 million words on all three layers.

The format of the files containing the annotated data of the PDT family (since

PDT 2.0) is called the Prague Markup Language (PML) and is based on XML.

Each document data consists of four XML files (typically compressed), one file

with the tokenized documents only, each of the rest corresponding to one layer

of the annotation and referencing the layer directly superior. Thus, e.g. the

tectogrammatical layer as the deepest one, does not contain any surface word

forms or purely morphological information itself, but they are accessible through

the references.

In 2012, an updated version of PDT 2.0 was released, denoted PDT 2.5.

From the aspects examined in this work, the changes between these two versions

were not significant. However, instead of one of these two versions, the treebank

directly related to PDT 2.5 was used in this work, the Prague Discourse Treebank.

3.1.2 PDiT 1.0

The Prague Discourse Treebank 1.0 (PDiT)2 is an extension upon the PDT 2.0.

It represents a new manually annotated layer of language description, above the

existing layers of the PDT (morphology, surface syntax and underlying syntax)

and it portrays linguistic phenomena from the perspective of discourse structure

and coherence. The discourse layer of the treebank contains two subprojects:

1http://ufal.mff.cuni.cz/pdt2.0
2http://ufal.mff.cuni.cz/discourse
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• lexically-grounded approach of identification of discourse connectives, dis-

course units linked by them and semantic relations between these units;

• annotations of extended textual coreference and bridging relations.

With its 49,431 manually annotated sentences from Czech newspapers, the project

serves as a large-scale resource for linguistic research in the area of discourse anal-

ysis as well as for computational experiments concerning automatic text analysis,

information extraction, text summarization and other branches of NLP research.

Figure 3.1 taken from the Prague Discourse Treebank annotation manual visu-

alizes the tectogrammatical tree structure of one sentence, along with an arrow vi-

sualization of the coreference relations. The notation also distinguishes the gram-

matical and textual reference and includes a bridging anaphora relation. Each

tectogrammatical node (or simply t-node) has its attributes visualized, such as its

tectogrammatical lemma (“potřebovat”), functor (“ACT”, “PAT”, “PRED”,...)

or a specific sub-type of its reference relation (“SPEC”, “WHOLE PART”). Also

note that there are some t-nodes added without any counterpart in the surface

representation – such as the root node of the sentence. Another examples would

be technical nodes generated e.g. in places of naturally elided expressions, such

as zero pronouns. On the other hand, some surface tokens are not represented

in the tectogrammatical structure, such as prepositions or auxiliary verbs, their

function in the sentence is captured by the attributes of the existing t-nodes.

The Prague Discourse Treebank is the only source of linguistically annotated

data used for the purposes of this work.

3.1.3 PDT 3.0

Shortly before finishing this thesis, a new member of the PDT series was pub-

lished: the Prague Dependency Treebank 3.0.3 Compared to PDiT, it has been

enriched by new types information such as genre annotation, extension of the

textual coreference with 1st and 2nd person pronominals; as well as revised in

various aspects. This version of PDT was not yet used in this work, however, it

is encouraged by any possible following research to use it.

3.2 Training and Test Datasets

PDiT has already prepared 3 groups of datasets according to the data partition-

ing typical for the NLP tasks: the training data, the development test data and

3http://ufal.mff.cuni.cz/pdt3.0
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t-cmpr9413-006-p23s2
root

#PersPron
ACT

zásobování
AIM

Ostravsko
PAT

a
CONJ

Frýdeckomístecko
PAT

firma
ACT

potřebovat enunc
PRED

#PersPron
APP

jatka
PAT

firma

SPEC

Ostravsko

SPEC

sever

WHOLE_PART

SPEC

.

Figure 3.1: Example of coreference annotation for the following sentence: Pro
zásobováńı Ostravska a Frýdeckomı́stecka potřebuje firma svá jatka. (The com-
pany needs its slaughterhouse in order to supply the Ostrava and Frydek-Mistek
regions.) The dark red arrow is used for a grammar coreference relation, dark-
blue arrows for textual coreference; light-blue arrow for bridging reference (to an
expression in another sentence).
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the evaluation test data. The training datasets cover approximately 80%, devel-

opment 10% and evaluation 10% of the whole set of data (these proportions hold

for all the three layers of annotation).

In this work, we exploit the prepared partitioning of PDiT, but we do not use

the evaluation data at all. Furthermore, for preliminary experiments and some

of the more time-consuming tasks, we use only one eighth of the whole training

data, the part denoted train-1. Throughout this work, we will often refer to this

smaller subset as train-1, in contrast to the whole training set, denoted as train-

all. The development-test data, used for the evaluation of the experiments, will

be referred to as dtest.

For a more detailed quantitative analysis of the datasets from the perspective

of the features investigated in this work, see Section 4.1.1.

3.3 Tools

3.3.1 Tools for PML

For the batch-processed salience analysis, more convenient data browsing and

other manipulation, several tools were used:

• btred4 – Perl-based interface for macro scripting specialized on processing

the PML data. Created as a tool for PDT 2.0 (thus applicable also on

PDiT), and used in this work especially for various data format conversions.

• Tree Editor TrEd5 – a viewer and editor of the PDT annotation files, part

of the PDT 2.0 distribution. Additional plugins were installed for handling

the extra attributes, e.g. color of the coreference strings.

• XSH26 – XML editing shell, used for the extraction of lemmata from the

PDT XML format.

3.3.2 Topic Modeling Tools

• MALLET7 (McCallum, 2002) – MAchine Learning for LanguagE Toolkit, a

Java-based package for statistical natural language processing, document

classification, clustering, topic modeling, information extraction, and other

4http://ufal.mff.cuni.cz/~pajas/tred/btred.html
5http://ufal.mff.cuni.cz/~pajas/tred/index.html
6http://xsh.sourceforge.net/
7http://mallet.cs.umass.edu/
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machine learning applications to text. In this work, it was used for the

topic modeling and evaluation.

• gensim8 (Řeh̊uřek and Sojka, 2010) – a free Python library for scalable

statistical semantic analysis and topic modeling. Its implementation of

LDA was used in preliminary experiments with topic modeling.

3.3.3 Miscellaneous

• R9 – the R language for statistical computing was used for plotting the

salience graphs.

• Perl10 programming language – used for simpler text and data manipula-

tion.

• Python11 programming language – used for various more complicated data

manipulation, as well as for plotting some of the bar charts.

• pygraphviz12 – a Python interface to the Graphviz13 open source graph

layout and visualization package. It was used here for the visualization of

the preliminary topic modeling experiment.

• LibreOffice14 Calc – a spreadsheet program used for manipulating and

plotting especially the data of salience leap heights.

• various Unix shell scripts and makefiles – for the smaller tasks, especially

for the purposes of batch execution of the tasks, some simple scripts were

written for the purposes of this work. These tasks included especially the

output evaluation, but also grid-searching for parameters or format conver-

sions and adaptations of the data. All these scripts are also present as a

part of this work on the enclosed CD-ROM (see Section 5.4.1).

8http://radimrehurek.com/gensim
9http://www.r-project.org/

10http://www.perl.org/
11http://www.python.org/
12http://pygraphviz.github.io/
13http://www.graphviz.org/
14http://www.libreoffice.org/
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4. Salience Analysis and

Interpretation

4.1 Sentences, Coreference and TFA Statistics

Before we proceed to analyze the salience models and its behavior, we should

present some statistics about the data and the features which the salience is built

upon. Also, the quantitative characteristics of the documents at hand will be

useful in the later part, when building and testing the topic models.

4.1.1 General and Sentence Statistics

Table 4.1 presents an overview of general quantitative characteristics for both

training sets used further in the experiments.

train-1 train-all

No. of documents 316 2533

Total no. of sentences 4700 38727

Avg. no. of sentence per doc. 14.9 15.3

Total no. of t-nodes 68626 567258

Avg. no. of t-nodes per sentence 14.6 14.6

Avg. no. of t-nodes per doc. 217.2 223.9

Table 4.1: General statistics of the datasets.

More detailed distribution of the sentence counts in documents is shown in

Figures 4.1 and 4.2. Note that the most typical sentence count in both cases is

8, which is far below the average value.

4.1.2 Coreference

Perhaps the more important one of the two main pillars which the salience concept

is built upon, is the concept of the coreference relation. To understand the salience

models, we have to explore first the basic characteristics of the coreference chains

themselves in our data.

The counts of the grammatical and textual coreference links in train-1 and

train-all are summarized in Table 4.2 and Figure 4.3 along with the counts of

bridging anaphora links. Those are not coreference relations in the strict sense,
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Figure 4.1: Distribution of the per-document sentence counts in train-1 dataset.
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Figure 4.2: Distribution of the per-document sentence counts in train-all dataset.
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coreference type train-1 train-all

grammatical 2226 18156

textual 7514 67535

bridging anaphora 1987 23512

Table 4.2: Coreference type link counts
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Figure 4.3: Counts of the coreference link types in train-1 and train-all dataset.

but since we have experimented with using them as such (see Section 4.1.2), the

numbers are listed there for comparison.

Another important data are the counts of the whole coreference chains, pre-

sented in Table 4.3. These frequencies, especially when related to the number of

documents, might be crucial in some decisions concerning topic modeling, espe-

cially when using bag-of-words models and simulating the word counts with the

coreference chains (see further in Chapter 5).

train-1 train-all

No. of documents 316 2533

Total no. of coref. chains 4519 39415

Avg. no. of coref. chains per doc. 14.3 15.8

Table 4.3: Counts of the whole coreference chains in the datasets, related to
numbers of documents.

Chain lengths When speaking of the length of a coreference chain, we have

adopted the definition of coreference chain length being the number of corefer-

ence nodes (i.e. co-referring expressions) in the chain. Thus the most frequently
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Figure 4.4: Frequency of lengths of coreference chains in train-1 dataset; cut off
at length of 26 nodes.

appearing chain has length of 2, meaning two anaphoric expressions referring to

the same item (in the PML representation, this is represented by two tectogram-

matical nodes with one coreference relation between them, typically the first one

being the antecedent of the second one). According to this definition, we have

acquired the length-frequency figures presented in Figure 4.4. The distribution is

not suprising; the chain length of 2 coreferents is the most typical case, whereas

the frequency of longer chains drops rapidly. However, although the “tail” of the

graph was cut off for sake of readability, the longest chain encountered in the

data was 89 nodes long (and it was found in a document of 114 sentences). To

complete the data, we will add that the average length of a corefence chain in

train-1 is 5.1.

Adding Bridging Anaphora The coreference chains are the main platform

for the salience analysis and modeling of a text. If the salience should be used to

model the dynamics of some inherent topics of the text, it would be convenient

to have at our disposal the coreference chains “as long as possible”. In other

words, one should make effort to identify as many connecting relations between
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Figure 4.5: Frequency of lengths of coreference chains in train-1 dataset – the
impact of adding bridging anaphora.

associated expressions as possible. In this pursuit, we have experimented also

with using the annotation of bridging anaphora as an additional source of coref-

erence relations. The experimental approach was quite straightforward; since the

salience algorithm does not distinguish between types of coreference, we can let

it treat the bridging relations the exact same way as the “regular” coreference.

However, when commiting to this step, one has to bear in mind that the

bridging relations does not have so “strict” characteristics, which can, to a certain

degree, also affect the results of the subsequent salience modeling. The measure

of this effect can be hardly anticipated – ideally, one would have to perform two

sets of all the planned experiments and maintain two sets of results, comparing

them and evaluating the differences continuously.

Furthermore, when we examine the actual impact on the length of the coref-

erence chains (see Figure 4.5), the influence is obvious, but not as large as we

presumed. Taken into account the above objections, we have finally decided to

abandon this path in the scope of this work and perhaps leave it for further

investigation.

4.1.3 TFA

The proportion of the TFA markers for the tectogrammatical nodes in train-1

dataset is visualized in Figure 4.6. In accordance to the PML annotation customs,
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Figure 4.6: Frequency of TFA values in train-1 dataset.

t stands for non-contrastively contextually bound expression (represented by the

node), c for contrastive contextually bound expression and f for contextually

non-bound expression. Finally, the - part of the chart represents the amount of

nodes not marked with TFA values1.

4.2 Salience Graphs and Interpretation

4.2.1 Salience Graphs

Figure 4.2.1 presents an example of a salience graph for a short document. The

graph was generated from the Czech original of the document, the presented

English translation tries to preserve partially the original sentence structure. In

the chart, each coreference chain is represented by a numbered polyline, the

members of the chain are marked by the corresponding color in the text.

1These are mostly technical cases, e.g. root of the tectogrammatical tree or of a paratactic
construction, or a foreign-language expression, which has often a special treatment in the PML
annotation scheme
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Figure 4.7: Example of a short document from PDiT along with its salience
graph.

(1) Accounter and one million have disappeared

(2) Brno

(3) Since 11th June, when (he) left the work around 3 AM and did not come home,
the police is searching for a 27-year-old Stefan Misik, main accounter of casino 777
on the Svobody square in Brno.

(4) The searched-for man had over million crowns with him and could be a victim of
a violent crime.

(5) Stefan Misik resides in Pradlacka street and has a well-built, 178-cm-high figure,
short brown hair and a pea-sized birthmark on a left side of his neck.

(6) During the speech, (he) burrs.

(7) Last time (he) was wearing (on him) a bright shirt, black jeans and brown loafers.

(8) On the neck, (he) was wearing a silver chainlet with a sign of Cancer, in a black
bag had also a new passport and magnetophone tapes.

(9) Witnesses can report to the nearest police office, the 158 (phone) line or the I.
department of Crime Service in Brno, phone 05/4116 2525.
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4.2.2 Salience Graph Generation Procedure

One of the main parts of this work was to automatize the procedures needed

for the visualization of the salience for each document. This consists of several

steps, the whole process being summarized in 4.2.2. Each step is performed by

a procedure in a script file, making the intermediate results analyzable. Each

of these script files uses a language which seemed the most appropriate for the

task: When working with the PML files, btred is used, Perl itself is employed

for non-PML text manipulations, and R language was chosen for the graph vi-

sualization part. Some parts of the scripts were originally created during the

preparation of Hajičová et al. (2006). However, their ad-hoc nature made them

largely impossible to suit our purposes, thus they were all significantly rewritten,

made more readable, documented, and hopefully reusable.

The first step is to modify the PML files by identifying the nodes of each

coreference string and marking them accordingly – this process is often called

“coloring the coreference strings”. This is achieved by applying a simple algo-

rithm of linearly going through the tectogrammatic tree nodes, inspecting their

direct coreference antecedents and denoting them by the according color number

identifier. The next small step, rather technical, is to order the color identifiers

sequentially with respect to the linear flow of the sentences (this process actually

is not necessary for the functionality, rather a convenience for further inspection).

Computing the salience degree of each coreference string members is done

in the subsequent step. This is where the salience algorithm is applied on the

colored nodes. In each sentence in the “colored” PML files, salience degree is

computed for each coreference string which has appeared so far, and extracted

into an external file. This information, serving as “coordinates”, is then fed into

the R script described further.

The actual graphical form of the salience graphs is generated by a script in the

R programming language. As its input, it is given a set of files (each corresponding

to one document) with salience “coordinates”: for each occurence of a coreference

string member, there is a line in the file with its coreference string identifier,

sentence number and the salience degree of the member’s occurence. From this

coordinates of each point of the salience graph, a graphical file is generated –

either as a bitmap (PNG) or in a vector-based format (SVG or PostScript). The

output is made as readable as possible, providing both colors and numbers for each

coreference string curve, as well as a slight shifting of the curves to reduce their

overlaps. However, the variability of the salience behavior of the strings, inherent

density of the curves in a large part of the documents and the variability of the

documents’ lengths make it hard to effectively generalize some of the techniques
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Figure 4.8: Flowchart of the data processing from PML corpus data to the salience
graph visualization embedded in an HTML page.
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used for improving the readability and clarity of the graphs.

4.2.3 Vertical Cut

Moving on the “horizontal” axis, i.e. sentence by sentence, and observing the

current trend of all the chains at once, certain vertical breaks can be identified

in the salience models. These suggest a slight change of topic in the particu-

lar sentence, where several new objects emerge or re-activate and the old ones

fade away. From this point of view, the salience models can be used e.g. for

automatic segmentation of previously unsegmented text by “cutting” the text at

this breaks, perhaps into paragraphs. Furthermore, the objects emerging at the

identified breaks (or later in the beginning segment) can suggest the topic of the

current segment. The design of an actual algorithm for such automatic process

is not covered by this work, although one should be able to test it rather con-

veniently on the PDiT data with the original paragraph segmentation preserved,

thus applicable as the gold standard.

4.2.4 Horizontal Cut and Leap Height

Another approach to the models would be to draw one or more horizontal lines

in the graph to mark a certain level of salience. One can assume that these levels

can express the amount of activation of an object must have to be referred to by

certain grammatical means – a weak or zero pronoun is expected to refer to an

object with high activation, whereas less salient objects are re-activated by more

specific expressions, e.g. a definite noun phrase.

To verify these hypotheses, let us introduce a new quantity: salience leap

height, or simply leap height. Each time an object (represented by its coreference

chain, i.e. chain of expressions referring to it) is mentioned in a sentence, the leap

height value indicates the difference of its current salience level and its salience

level in the previous sentence. More rigorously, let the leap height value of an

object x (or, from another point of view, of its coreferents’ chain) in sentence

number n (where x is mentioned) be defined as such:

LeapHeight(x, n) := dgxn − dgxn−1 (4.1)

Note that this definition contains not only the “depth” from which the men-

tioned object emerges, but takes into account also the TFA value of the current

referring expression, in the form of its current salience value – being it either

0 or −1. This reflects the idea of differentiating the referent’s actual sentence
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Figure 4.9: Proportions of the leap heights comparing the coreferents’ TFA values;
from train-1 data. (The y-axis units are ratios of leap heights for the given sempos
value normalized to sum to 1.)

function. This differentiating is proportionally more important with the smaller

leap heights and losing its importance with their higher values, which may not

necessarily be harmful. This property also results in a possibility of the leap

height having a zero value, or even a negative value, specifically −1; when the

last reference of x was in the focus (had TFA value f) of the previous sentence

and the current reference is in the topic (has TFA value t or c). This situation

is actually quite common in the discourse; it corresponds to the usual case of a

newly emerged object in the (n − 1)-th sentence, which is subsequenly referred

to in the n-th sentence, serving in it as a “starting point” (a topic, in the TFA

terms).

All the leap-heght charts presented in this section has their values normalized

to sum up to 1 within the given feature value. The reason is that in these analyses,

we are mostly interested on the distribution within the given value, rather than

directly comparing the two absolute values at any fixed leap height.

Leap Heights and TFA Figure 4.2.4 shows the frequency of the leap heights

depending on the TFA value of the referring expression. A general rule may be

stated that shorter leaps are typical for mentioning in topic (c/t), while the longer

ones are slightly more common for mentioning in focus (f).

Also note the fact that the leaps to the topic are apparently more frequent

for the odd leap heights, whereas the focus “destination” favors the even leap

heights. This is an inherent property stemming from the inclusion of the TFA in

the definition of the leap height.
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Figure 4.10: Proportions of the leap heights for the chosen sempos categories;
from train-1 data. (The y-axis units are ratios of leap heights for the given
category normalized to sum to 1.)

Pronominal vs. denominating referents Let us return to the above men-

tioned hypothesis about the grammatical form of referents typical for certain

salience ranges. Thanks to an elaborate system of the tectogrammatical layer

annotation in PD(i)T, we can use the t-node attribute sempos2. The pronominal

expressions are marked with sempos value containing .pron. (e.g. n.pron.indef

standing for “indefinite pronominal semantic noun”), whereas the sempos value of

the denominating expressions contains .denot. (e.g. n.denot means “denominat-

ing semantic noun”); the rest being only quantificational expressions and verbs.

With this division, we can visualize the proportions of the leap heights within

each of these sempos categories in Figure 4.2.43.

From the chart, it is obvious that there is some disproportion in the behav-

ior of the pronominal referents in comparison to the denominating ones. The

quick drop of the pronominals’ values beyond the leap height of 1, along with the

rather steady decline of the denominators, seems to confirm the declared hypoth-

esis. However, the dominance of the −1 value is quite surprising and calls for a

deeper analysis. The Figure 4.2.4 thus focuses only on comparing demonstrative

and personal pronouns (sempos values n.pron.def.demon and n.pron.def.pers,

respectively), because these two are by far the most frequent types among the

pronominal coreferents. The difference between them is apparent: while the

demonstrative pronouns almost fails to refer beyond the leap height of 1 and

2From the PDT t-layer annotation manual: “The sempos attribute (semantic part of speech)
contains the information regarding the membership of a complex node in a semantic part of
speech.” (Hajič et al., 2006)

3Although the leap height values goes as far as 172, the tail is long and its values neglectable
for our purposes – thus the charts are often cut off at the leap height value of 30
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Figure 4.11: Proportions of the leap heights for the chosen two pronominal sempos
values; from train-1 data. (The y-axis units are ratios of leap heights for the given
sempos value normalized to sum to 1.)

serves mostly for the −1-leap reference, the personal pronouns, although also

“specialized” on the low leaps, perform best for the leaps of 1 or 0. From this

comparison, it is also evident that the demonstrative pronouns were almost fully

responsible for the high values of leap height −1 for pronominals in the previous

categorial comparison.
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5. Topic Modeling Experiments

5.1 Preliminary Experiment – Clustering

Before performing the experiments with evaluating a topic modeling application,

one preliminary experiment was conducted to form an idea of how the salience

information could contribute to the document information. A visual compari-

son of the document relations was created between the document information

contrasting simple word counts against average salience of coreference chains.

This visualization was based on representing the document collection as a

graph – with documents as the graph nodes and pairwise document overlap defin-

ing the graph edges. The contrastive comparison was then made by changing the

definition of how the overlap is computed. The generic idea was for each document

to list some of its characteristic items in the order of their supposed importance,

cut this list off at some point, and then look for matching items in the other

documents’ lists.

5.1.1 Sorting the Nouns by Counts

One of the most straightforward and yet most frequently used features of extract-

ing key words from a document is the word count. Usually it is complemented

by a filter of stop-words, but in our case, when we have the information about

the word types at our disposal, the simplest way is to work with nouns only.

5.1.2 Sorting the Chains by Average Salience

Average salience, adjusted When looking for an optimal measure for order-

ing the whole coreference chains in terms of a coarse informative representative-

ness, the average salience is a natural choice. However, to avoid favoring chains

which first occur lately in the document, their salience must be adjusted to bet-

ter reflect their inactivity before their first occurence. According to the idea that

these chains are in the stock of shared knowledge, but not mentioned, their initial

course is simulated similarly as if they had been mentioned in the topic of the

first sentence. Thus, until their first mention, they undergo a descent by 1 from

the value of −1. The general formula for computing the average salience of chain
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referring to an object x is then as follows:

AvgSal(x) : =
1

N

(
m−1∑
i=1

(−i) +
N∑

i=m

dgxi

)

=
1

N

(
−(m− 1)m

2
+

N∑
i=m

dgxi

) (5.1)

where m is index of the sentence with the first mention of x and N is the total

number of sentences in the document.

Having defined the average salience, the graph of document overlaps based on

that measure can be constructed analogously:

For each document:

1. for each coreference chain, extract the list of nouns from the chain along

with the average salience of the whole chain,

2. sort the chains according to their average salience,

3. cut the list at 10% of its length, so that the most salient chains remain.

Then, the overlap of two documents is defined as the number of overlapping chain

pairs from the lists of these documents.

5.1.3 Clustering Visualization

A collection of documents can be viewed as a graph where each node represents

one document. Two documents have a common edge iff there is a (non-zero)

overlap between them, and the weight of this edge equals the size of this overlap.

Then, with the help of a commonly used graph visualizing tool (in our case,

pygraphviz, see Section 3.3.3), the two graphs resulting from the definitions above

were drawn for a visual evaluation only. Having no “correct” results of a real

proximity or topic relationships, any numeric evaluation would be hard and was

omitted here because of the preliminary nature of the experiment. However, the

goal of this experiment was to get a basic idea of how the salience information

could alter the results of a computational analysis of the document collection.

The resulting graph visualization of the noun-based overlaps and salience-based

overlaps can be seen on Figures 5.1 and 5.2, respectively.
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Figure 5.1: Noun-based document overlap.
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Figure 5.2: Salience-based document overlap.
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5.2 Latent Dirichlet Allocation and Salience

The definition of the salience values can be also viewed as assigning some mo-

mentary importance to each object mentioned in the document and represented

by a set of its co-refering expressions. And the notion of importance is actually

a key feature in the discipline of information retrieval, where given a set of doc-

uments, one is trying to find the most important and distinguishing keywords,

or topics. It is natural to assume that knowing the salience values would help in

this pursuit.

During the preliminary research of the LDA approach and for the first exper-

iments with it, Python-based gensim framework was used. This was primarily

because of its customization options, modularity and easy access and possibility

of modification of its data structures. However, due to an absence of a reasonable

interface for an automatic evaluation, gensim was eventually abandoned in favor

of Java-based MALLET. This wide-ranged NLP processing toolkit widely used for

the topic modeling tasks provides a robust usage of the LDA computation. It is

not so directly customizable as gensim, but still modular to a certain extent, and

offers a straightforward way for evaluating the LDA results automatically, which

was a key factor in this decision.

Among the possible LDA evaluation techniques, we have chosen the use the

left-to-right algorithm, based on the arguments presented in (Wallach et al., 2009)

(see also Section 2.4.1). Concerning the speed of the algoritm applied in our

settings: on a common laptop hardware configuration, both the training on train-

1 (2533) and the evaluation of 150 topics on the dtest (316 documents) usually

lasted not much more than one minute.1

5.2.1 LDA without Salience

Before we will try to employ the salience into the LDA machine learning algo-

rithm, we have to establish a baseline for the upcoming comparison. Thus, we

have performed a series of experiments of applying the LDA on the (preprocessed)

PDiT data and evaluating it using the left-to-right procedure.2

During these experiments, only lemmata of nouns were used. This was a result

of two directions of reasoning, besides a simplicity and easy human assessment of

1The processing time of the two phases should be considered together, because lots of prepa-
ration and pre-calculations for the evaluation phase is already being done in the training phase,
during the model building – hence the existence of the “evaluator” file created in the training
phase.

2For the theoretical details, see Section 2.4.1.
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the results. The first reason relates to a common practice in an environment of

bag-of-words models: establishing a list of stopwords and leaving them out dur-

ing a preprocessing phase. This is motivated by their very little informativeness

across a set of documents. Our idea was taken from the opposite-side view –

keeping only the supposedly most informative set of words. When the linguistic

annotation is at hand, the most straightforward approach was to assume that

the nouns are the most informative class (in the sense of their key-ness). The

second reason concerned the upcoming comparison and anticipating the form of

engagement of the salience information. Since the approach was going to be rep-

resenting each coreference chain with one of its members, the most comparable

variant seemed to be again the restriction to nouns only. Indeed, from this point

of view, this is definitely not a well designed universal baseline; if another ap-

proach was be chosen for the salience involvement, the results would hardly be

comparable.

Gridsearch for parameters Since the LDA is a model parametrized by several

variables, a grid-search was performed on train-1 to find the most promising

pair of at least two most important for them; the number of topics and the

main α parameter. Subsequently, usually only this pair was used in the further

experiments, sometimes supported by another one or two more promising pairs

to confirm the results.

5.2.2 LDA with Salience

Coercing chains to words The main design decision in this phase was how to

transform the salience-related data to the document format needed as an input

for the LDA computation. We are actually looking for a way to convert the

rich information about the annotated documents in PDiT, with emphasis on the

coreference chains and their salience values, to a simple bag-of-words document

model to feed into the LDA. Although this is probably the most determining

decision in this experiment, we have eventually settled for a quite simple idea:

The document will consist of a bag of representants of coreference

chains only. Each coreference chain will be represented by the lemma

of its first member, and this lemma will be repeated n-times in the

document, where n is an adapted value of the average salience3 of the

coreference chain.

3For the average salience definition, see Equation 5.1.
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Let us present some notes as a reasoning behind this definition:

• First member of a chain as its representant – this was led by the natural

intuition (supported by the data) that the first mentioning of the referred

object is almost always the most specific. Thus, when comparing chains

across documents, this representant should function as a quite efficient iden-

tificator of the referred objects, matching when the objects are the same

and vice versa.

• Multiplicity of representants – this notion exploits the bag-of-words doc-

ument represantation of LDA which discards any information about word

ordering and keeps just the distinct word counts.

• Average salience – similarly to the preliminary clustering experiment (Sec-

tion 5.1), we are working with coreference chains as a whole and in the

bag-of-words model, the only quantitative information expected is their fre-

quency count. Thus, the average salience comes as a natural choice of the

only one number to be “disguised” as the count, carrying the information

about the chain importance within the document.

The “adaptation” of the average salience mentioned in the definition is a

solution to the problem of converting the negative decimal value (average salience)

to an integer value (word count) while preserving its monotonicity. For this task,

the following simple numeric conversion was devised:

AvgSal(x)′ :=

⌈
− 100

AvgSal(x)

⌉
(5.2)

There is an obvious side-effect of this definition following its non-proportional

nature: the chains with an extremely low value of the average salience will have

a very similar resulting “word-count” (usually 1 or 2). This might be intuitively

beneficial, since at the extreme poles of a scale, even large differences are percieved

as relatively small.

5.3 Performance measures

The main performance measure of the comparison experiment is the output of

the left-to-right evaluation method from the trained model. Its output values are

logarithms of probabilities of heldout documents given the trained topic distribu-

tions. In our case, the topic distribution models were trained either on train-1,

or on train-all dataset, each preprocessed according to the definitions described
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in Section 5.2. The dtest dataset was used as the held-out data for all the exper-

iments performed, preprocessed accordingly.

The logarithms of probabilities (or simply log-probabilities) are monotonous

to the original probabilities, so the inter-comparability is preserved in this sense.

5.4 Results

In the Tables 5.1 through 5.4, the log-probabilities of the above described exper-

iments are displayed and summarized. The discussion of these results follows.

HH
HHHHtopics

α
0.1 0.5 1 5 10 20 50

10 -228956 -227344 -226574 -226294 -226541 – –

20 -226801 -223922 -223414 -222086 -222251 – –

50 -225177 -220072 -218890 -217602 -217292 -217513 -218919

100 -226753 -219534 -217944 -215475 -215399 -215326 –

150 -226677 -220368 -218126 -215543 -214672 -215179 –

200 -227646 -221380 -218760 -215787 -215547 – –

500 -231848 -226808 -223626 -219749 -218982 – –

Table 5.1: Results of grid-evaluation of num-topics and α parameters; log-
likelihoods trained on train-1 and evaluated on dtest noun-lemmata.

HHH
HHHtopics

α
10 20

100 -208491 -209504

150 -207766 -208547

Table 5.2: Results of the best main parameter pairs with training on train-all
and evaluated on dtest noun-lemmata.

5.4.1 Discussion

Unfortunately, the results presented in the Tables 5.1-5.4 does not suggest at all

that the salience information used in the way described in the previous sections

should bring any improvements to the LDA results. However, the radical differ-

ences in the results suggest rather that there is a substantial flaw in the whole

experiment settings.

Especially the results in Tables 5.3 and 5.4, which seemingly favors models

with far more topics than there are documents in the held-out dataset (or in

train-1 ) points to a fundamentally wrong design of the document synthetization.

38



HH
HHHHtopics

α
0.1 0.5 1 5 10 20

10 -1291347 -1284963 -1280990 -1277357 -1275835 –

20 -1237530 -1221743 -1216872 -1213659 -1211691 –

50 -1165614 -1137140 -1129198 -1121563 -1116290 –

100 -1111397 -1068746 -1059458 -1046104 -1042701 –

150 – – – – -995740 –

200 -1025492 -1006016 -956812 -969008 -906184 –

500 -987313 -930654 -915353 -869368 -857240 –

Table 5.3: Results of grid-evaluation of num-topics and α parameters; log-
likelihoods trained on train-1 and evaluated on dtest with average salience-word
counts.

HH
HHHHtopics

α
10 50

150 -861420 -1002466

200 -830238 -970996

500 -738437 -847686

Table 5.4: Results of the best main parameter pairs with training on train-all
and evaluated on dtest with average salience-word counts.

With this kind of results at hand, it is impossible to confirm or disprove the

possibility of the benefits of salience for an NLP application like topic modeling.

Evident is that some crucial decisions about the experiment design in this chapter

were wrong and any possible future research should try to avoid those directions.
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Conclusion

We have presented a reproduction and a data-oriented analysis of the salience

algorithm formulated earlier, along with visualizing its results and confirming

some of the hypotheses behind the salience notion. This was achieved using

the data of the Prague Discourse Treebank 1.0, especially its annotation of the

coreference relations and the topic-focus articulation. A brief experiment with the

bridging anaphora annotation data was conducted in an attempt for broadening

the coverage of the salience models, but deeper investigation in this field remains

to further research.

The visualization procedure suggested earlier was made more robust and au-

tomatized to allow larger amount of documents to be processed. Also it was

extended with procedures which makes the results human-accessible even in this

scale.

Another key features of this work were the attempts to interpret the output of

the salience procedure, the salience graphs. A notion of salience leaps and their

height was introduced and used to confirm the hypothesis about the importance

of salience in the decisions about the syntactic form of the referent.

Finally, two series of experiments in the area of document processing were

performed to estimate a possible contribution of the salience information in this

field. However, the results especially of the second one were unfortunately unsat-

isfactory, due to its poorly designed settings.

Let us hope that at least the first part of the work stimulates a further research

in this undoubtedly promising area, while the second part might serve as an

indication of an impasse direction.
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Řeh̊uřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta. http:

//is.muni.cz/publication/884893/en.

Wallach, H. M. (2008). Structured topic models for language. Ph.D. thesis, Uni-
versity of Cambridge.

Wallach, H. M., Murray, I., Salakhutdinov, R., and Mimno, D. (2009). Evaluation
Methods for Topic Models. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pp. 1105–1112. ACM, New York,
USA. ISBN 978-1-60558-516-1.

42

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en


List of Figures

2.1 Graphical model representation of the unsmoothed LDA model in
a plate notation (source: (Blei et al., 2003)). . . . . . . . . . . . . 11

3.1 Example of coreference annotation for the following sentence: Pro
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ka. (The company needs its slaughterhouse in order to supply the
Ostrava and Frydek-Mistek regions.) The dark red arrow is used
for a grammar coreference relation, dark-blue arrows for textual
coreference; light-blue arrow for bridging reference (to an expres-
sion in another sentence). . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Distribution of the per-document sentence counts in train-1 dataset. 20

4.2 Distribution of the per-document sentence counts in train-all dataset. 20

4.3 Counts of the coreference link types in train-1 and train-all dataset. 21

4.4 Frequency of lengths of coreference chains in train-1 dataset; cut
off at length of 26 nodes. . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Frequency of lengths of coreference chains in train-1 dataset – the
impact of adding bridging anaphora. . . . . . . . . . . . . . . . . 23

4.6 Frequency of TFA values in train-1 dataset. . . . . . . . . . . . . 24

4.7 Example of a short document from PDiT along with its salience
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 Flowchart of the data processing from PML corpus data to the
salience graph visualization embedded in an HTML page. . . . . . 27

4.9 Proportions of the leap heights comparing the coreferents’ TFA
values; from train-1 data. (The y-axis units are ratios of leap
heights for the given sempos value normalized to sum to 1.) . . . 29

4.10 Proportions of the leap heights for the chosen sempos categories;
from train-1 data. (The y-axis units are ratios of leap heights for
the given category normalized to sum to 1.) . . . . . . . . . . . . 30

4.11 Proportions of the leap heights for the chosen two pronominal sem-
pos values; from train-1 data. (The y-axis units are ratios of leap
heights for the given sempos value normalized to sum to 1.) . . . 31

5.1 Noun-based document overlap. . . . . . . . . . . . . . . . . . . . . 34

5.2 Salience-based document overlap. . . . . . . . . . . . . . . . . . . 34

43



List of Tables

4.1 General statistics of the datasets. . . . . . . . . . . . . . . . . . . 19

4.2 Coreference type link counts . . . . . . . . . . . . . . . . . . . . . 21

4.3 Counts of the whole coreference chains in the datasets, related to
numbers of documents. . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Results of grid-evaluation of num-topics and α parameters; log-
likelihoods trained on train-1 and evaluated on dtest noun-lemmata. 38

5.2 Results of the best main parameter pairs with training on train-all
and evaluated on dtest noun-lemmata. . . . . . . . . . . . . . . . 38

5.3 Results of grid-evaluation of num-topics and α parameters; log-
likelihoods trained on train-1 and evaluated on dtest with average
salience-word counts. . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Results of the best main parameter pairs with training on train-all
and evaluated on dtest with average salience-word counts. . . . . 39

44



Appendix – CD-ROM Contents

• data folder – Contains sample data from the PDiT 1.0 corpus (pdit sample).
All the files with the .t.gz extension in this folder are in the PML format
and ready to be used by the btred scripts (however, some of the btred

scripts will modify them, so make sure the data files have a write permission
and you have a backup of them before running those scripts).

• scripts folder – All the non-trivial script files used in this work; btred,
Perl, Python, R files, bash scripts. Most of them require to be run on a
Linux machine, btred scripts require the btred application to be installed.
The scripts-readme.txt file provides the overview of the script files along
with a brief information about their functionality and usage.

• vacl-dipl thesis.pdf file – This work in pdf format.

• readme.txt file – General information about contents of the CD-ROM.
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