
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Zdeněk Bouška

HelenOS VFS-FUSE connector

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Děcký

Study programme: Informatics

Specialization: Software Systems

Prague 2014

I’d like to thank my supervisor Mgr. Martin Děcký for his guidance during my
work on this thesis. I’d also like to thank HelenOS developers Jakub Jermář, Jǐŕı
Svoboda and Vojtěch Horký for their work on HelenOS. My thanks also go to my
family who provided moral support.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague April 11, 2014 Zdeněk Bouška

Název práce: HelenOS VFS-FUSE connector

Autor: Zdeněk Bouška

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: Mgr. Martin Děcký, Katedra distribuovaných a spo-
lehlivých systémů

Abstrakt: Tato magisterská práce se zabývá implementaćı konektoru mezi FUSE
ovladači souborových systémů a nativńım VFS rozhrańım v HelenOS. Práce nej-
prve popisuje možné zp̊usoby řešeńı a možnosti, které přicházely v úvahu. Zvo-
leno bylo napojeńı na ńızkoúrovňové vrstvě, které se prokázalo jako nejlepš́ı.
Práce dále popisuje skutečnou implementaci tohoto konektoru. Implementace
byla úspěšná, a proto se práce detailně zaměřuje na toto plně funkčńı řešeńı na
HelenOS operačńım systému. Dané řešeńı mimo jiné umožňuje to, že téměř ne-
jsou potřebné změny na obou spojovaných platformách - FUSE i Helenos VFS.
Implementace konektoru ukazuje reálně použ́ıvaný FUSE souborový systém ex-
FAT na operačńım systému HelenOS.

Kĺıčová slova: HelenOS, VFS, FUSE

Title: HelenOS VFS-FUSE connector

Author: Zdeněk Bouška

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký, Department of Distributed and Dependable
Systems

Abstract: This master thesis deals with the implementation of a connector be-
tween FUSE file system drivers and HelenOS native VFS interface. The thesis
first describes the way of finding the best solution and the potential possibili-
ties. The low level layer solution is described as the best one. Further the thesis
describes the real implementation of the connector. As the implementation of
the connector was successful the thesis then describes in detail the parts of the
fully functional solution in real-life HelenOS system. With this solution in place
almost no changes are necessary to be done neither in FUSE nor in Helenos VFS.
The connector implementation is demonstrated on a real-life FUSE file system
exFAT ported to HelenOS.

Keywords: HelenOS, VFS, FUSE

Contents

Introduction 3

1 Development context 5
1.1 HelenOS architecture summary 5
1.2 Filesystem in HelenOS . 6

1.2.1 Standard library . 6
1.2.2 VFS server . 7
1.2.3 Libfs library . 7

1.3 Developing a file system with FUSE 8
1.4 FUSE architecture in Linux . 8
1.5 FUSE in other operation systems 9

1.5.1 NetBSD . 9
1.5.2 OS X . 9
1.5.3 FreeBDS . 10
1.5.4 Solaris . 10

2 Analysis 11
2.1 Decision whether to use a FUSE server or a library 11
2.2 Layer selection . 11

2.2.1 High level inteface . 12
2.2.2 Low level interface . 12
2.2.3 Kernel channel interface 13
2.2.4 Summary of the selected solution 13

2.3 Own task for each file system driver instance 13
2.4 Reading directories . 15
2.5 Mounting FUSE file systems . 15
2.6 Accessing block devices . 16

2.6.1 POSIX functions overwrite 16
2.6.2 Block device file system server 16
2.6.3 VFS output protocol support in a block device drivers . . 16
2.6.4 Conclusion . 17

3 Implementation 18
3.1 Integration with libfs . 18

3.1.1 Mapping operations . 18
3.1.2 Reply functions from the low level interface 19
3.1.3 Mounting . 19
3.1.4 Mounting other file systems under FUSE 20

1

3.1.5 Storage for data about opened files 20
3.1.6 Multithread support . 20
3.1.7 File indexes . 20
3.1.8 Creating and renaming files 20

3.2 High level interface . 21
3.2.1 Pthread library . 21

3.3 Reused code from Linux FUSE 21
3.4 Other necessary changes in HelenOS 22

3.4.1 HelenOS and POSIX return codes 22
3.4.2 Opendir error in libfs library 22
3.4.3 Pread and pwrite functions 22
3.4.4 POSIX prefix defines collision 23
3.4.5 Comparison between native and FUSE drivers on HelenOS 23

3.5 Development using distributed version control system 23

4 Ported FUSE file systems 24
4.1 ExFAT . 24
4.2 Examples from FUSE package . 25

4.2.1 Hello world in high level interface 25
4.2.2 Hello world in low level interface 25

4.3 Estimation of difficulty to port other file systems 25

Conclusion 27

Bibliography 29

List of Tables 31

Appendices 32

A CD-ROM content 33

B User Documentation 34
B.1 Compiling from sources . 34

2

Introduction

Motivation

There are many FUSE file system drivers because FUSE makes it easier for a
developer to implement a file system driver. This thesis makes it possible to use
these drivers in HelenOS.

Goals

The goal of this master thesis is to design and prototype a connector between
FUSE file system drivers and HelenOS native VFS interface.

The design has to be made in such a way that would minimize the amount of
changes in both the HelenOS VFS and the FUSE file system drivers.

The Linux FUSE implementation should be utilized so that reuse of the code is
maximized, e.g. between libfuse and the connector implementation. The next
goal is to demonstrate the connector implementation functionality as a prototype
on a real-life FUSE file system ported to HelenOS. The part of the goals is
also the intention to compare this implementation of the FUSE interface with
implementations in other operating systems.

Structure of the thesis

The first chapter (Development context) of the thesis deals with the context of
the connector implementation. Deep knowledge of both parts which are being
connected is necessary. This chapter describes HelenOS architecture with a view
to kernel and servers IPC communication. It also includes information about file
systems in the HelenOS operating system and describes how it works there. The
last part of this chapter is about how FUSE file systems are developed and how
FUSE architecture looks on Linux and other platforms.

The second chapter describes the analysis which is necessary to choose the right
solution. All available possibilities to make the connector are described. The
advantages and disadvantages will be carefully considered. The more detailed
view is focused on the connection layer selection, whether to choose a high level,

3

low level or kernel channel layer. The problem with accessing block devices from
FUSE drivers in HelenOS is also described in this chapter.

The third chapter includes details of implementation. It shows how results from
analysis were transformed into a working connector prototype. Firstly the in-
tegration with libfs library deals with the necessary parts such as operations
mapping, storing data from mounted file systems and opened files. This chapter
lists reused source code from Linux FUSE and then other necessary changes in
the HelenOS operating system that had to be done.

FUSE file system drivers, that were ported as part of this thesis, are described
in the fourth chapter of the thesis. Namely exFAT and some examples from the
Linux FUSE package are described.

4

Chapter 1

Development context

This chapter includes a summary of the development context and the background
which is necessary for understanding of this thesis. The summary includes both
FUSE and HelenOS point of view.

1.1 HelenOS architecture summary

HelenOS[1] is an operating system that is based on the microkernel architecture.
The developement of this system started at the Faculty of Mathematics and
Physics, Charles University. HelenOS is very portable and can run on several
platforms - e.g. IA-32, x86-64, IA-64, PowerPC, ARM, MIPS.

HelenOS microkernel architecture provides the possibility to have a smaller kernel
with less bugs. More about microkernel architecture can be found in Modern
Operating Systems [5] on page 62. HelenOS can be also seen as a component
system. The aim of the HelenOS’s microkernel and component based design is to
provide a system that can be called ”smart design, simple code”.

The kernel of HelenOS implements only several most important features like mul-
titasking, virtual memory management, symmetric multiprocessing and ability for
communication between processes - inter process communication (IPC). All other
services are implemented as common user processes. Also file system drivers are
implemented in this way.

Traditional systems distinguish very much between system and end-user applica-
tions. HelenOS architecture makes no distinction between the operating system
and end-user applications. Applications that provide services to other applica-
tions are called servers.

Userspace tasks in HelenOS are separated, each of them has its own address
space. Because of this fact tasks need a way to communicate with the kernel
and other tasks. The kernel provides an IPC communication which is mostly
asynchronous. There is also an asynchronous framework which provides layer
over IPC communication. This asynchronous framework makes it easier to write

5

Standard
library

VFS
server

libfs
libraryTMPFS driver

FAT driver

Client application Client application

Client application

VFS_IN

VFS_OUT

VFS_OUT

VFS_OUT

Figure 1.1: Filesystems in HelenOS

a task which communicates through IPC. Article IPC for Dummies [17] describes
in detail the IPC communication and the asynchronous framework.

1.2 Filesystem in HelenOS

HelenOS file system architecture is described by Jakub Jermář in [4]. HelenOS
file system architecture can be divided into three sections: Standard library, VFS
server and file system driver which uses the libfs library. How this works together
is the best seen in figure 1.1

1.2.1 Standard library

The standard library contains a code that transforms POSIX calls from the us-
er task to the VFS input protocol. This protocol is understood by the entry
part of the VFS server. Some calls as opendir(), readdir(), rewinddir() and
closedir() are implemented by the standard library directly by calling functions
open(), read(), lseek() and close().

The standard library translates relative paths to absolute paths because the VFS

6

server can work only with the absolute file paths. The Standard library by itself
implements getcwd() and chdir() calls. The current directory is stored only in
the standard library.

The standard library has no data structures and algorithms for a file system
support. This means that every task that this library cannot realize by itself is
given via IPC to the VFS server.

1.2.2 VFS server

The virtual file system server plays a central role in the file system support in
HelenOS. This server can be divided to the input and output parts.

The input part receives calls from client tasks. If the parameter of the call is the
descriptor of the file, then VFS looks in the table of opened files and finds the
pointer to the structure that represents the open file. If the parameter of the
call is a path, VFS performs a lookup which returns a VFS triplet. The triplet
identifies the file by the global number of the file system, the global number of
the device and the number of the file. Based on this triplet the VFS server tries
to find the VFS node. All files are represented by these VFS nodes.

The output part of the VFS communicates with the driver of the end file system.
It includes a code which calls the file system drivers using output operations.
Only a lookup operation uses a path as a parameter. Other operations use VFS
node as parameter. That means the global number of the file system, number of
the device and file identification.

1.2.3 Libfs library

The libfs library implements structures and design patterns which have to be
implemented by almost all file system drivers. These structures are often very
similar or even the same for each file system driver. The libfs library also contains
a code which registers a file system to the VFS server during the initialization.

The other fundamental role of the libfs library is connected with the functional-
ity of the function libfs lookup(). This function implements the VFS output
lookup operation (VFS OUT LOOKUP). This operation must be implemented
by every file system. The libfs lookup() function does not only implement file
lookup but also manages creating and deleting files. This operation also includes
the creating and the deleting links to files.

Several libfs operations must be implemented by a file system driver to ensure
the functionality of libfs lookup(). Those operations ”tell” the libfs library
how to list a directory, how to create or delete a file in the directory tree.

7

1.3 Developing a file system with FUSE

FUSE (File System in User Space) has its origins in 1995 in GNU Hurd operating
system. The concept was based on the file system driver placed not in the kernel
of the system but in an userspace. This method is intended for Unix operating
systems and enables to create specific file systems without changing the kernel of
the system. The real FUSE development started in October 2004 as a separate
project.

The FUSE file system drivers run in the userspace. Therefore their development
is as simple as the development of other userspace applications.

There are two different interfaces: A low level interface and a high level interface.

The high level interface identifies files by their names in all cases. For example
when you want to read a file content you create a function which does this:

int read(const char *path, char *buf, size t size, off t offset,

struct fuse file info *fi);

On the other hand the low level API uses numbers to identify files. So for exam-
ple when reading a directory both file names and numbers are returned. Later
when reading a file, the low level driver function uses only this number for file
identification purpose. In the following example ”ino” is the file number:

int ll read(fuse req t req, fuse ino t ino, size t size, off t off,

struct fuse file info *fi);

1.4 FUSE architecture in Linux

FUSE (Filesystem in Userspace)[6] has two parts: a kernel module and an userspace
library. When a call is made for example to read a file the FUSE kernel module
forwards this call to an userspace driver. How does it work is best seen in the
figure 1.2.

The kernel channel interface is used for exchanging messages between the userspace
library and the Linux kernel. The main operations of this interface are receive

and send. These messages are exchanged through a device /dev/fuse. The
userspace library decodes these messages upon an arrival and encodes the replies
before sending them back to the kernel.

When the messages are decoded by the library then an appropriate low level
operation function in the low level driver is called. This function is later supposed
to call a reply function with an answer. That answer is encoded and passed to
the kernel through the send function from the kernel channel interface.

The high level interface is implemented as a library. This library is written in the
same way as low level drivers are. The main purpose of the high level library is
a mapping between file numbers and names.

8

Figure 1.2: Filesystem in Userspace in Linux [8]

1.5 FUSE in other operation systems

FUSE is supported in other operation systems than just in Linux. A list of them
can be found on the FUSE website [9]

1.5.1 NetBSD

NetBSD has its own file system in userspace. It is called PUFFS (Pass-to-
Userspace Framework File System) and its architecture is similar to FUSE on
Linux.

ReFUSE [12] library was introduced in NetBSD 5.0. It linked FUSE drivers with
userspace PUFFS library. It only supported FUSE High Level Drivers.

PERFUSE (PUFFS Enabled Relay to FUSE) is implementing PUFFS to FUSE
kernel API bridge in NetBSD 6.0. Userspace daemon Perfused[13] translates
PUFFS requests into FUSE messages. This daemon creates /dev/fuse, which
FUSE drivers connects to. Modified version of FUSE library from [6] is used in
this case. mount() and open() of /dev/fuse are modified to use their variants
from libperfuse [14]. Both low and high level interfaces are supported.

1.5.2 OS X

FUSE for OS X [10] has two parts: OS X specific in-kernel loadable file system
and a userspace library based on the FUSE project [6]. Userspace library has
numerous OS X specific extensions and features.[11]

9

1.5.3 FreeBDS

FUSE was ported to FreeBSD [15] during Google Summer of Code 2007 and
2011. It uses the userspace library from the FUSE project [6] and is currently
maintained. The architecture is similar to FUSE for Linux.

1.5.4 Solaris

In Solaris only the high-level FUSE interface from version 2.7.4 is present. Solaris
FUSE uses header files ported from Linux but the implementation is Solaris
specific. It is ’just’ a wrapper over libuvfs. UVFS is the Solaris equivalent of
FUSE. UVFS uses doors calls and a pseudo file system for communication between
the kernel and the userspace. [16]

10

Chapter 2

Analysis

This chapter includes the analysis of problems connected with the different possi-
ble solutions. In the end of each section of this chapter the final selected solution
is described.

2.1 Decision whether to use a FUSE server or a

library

One important decision is to choose a form for the connector between FUSE
drivers and HelenOS VFS server.

One way to connect a specific FUSE file system driver to the VFS server is
to create a FUSE server. This new server would do all the data recoding and
therefore it would smooth out the differences between FUSE and HelenOS VFS.
This server would forward requests and responses to and from specific FUSE file
system driver servers.

Another possible solution is to create a library that would convert the FUSE
driver to HelenOS file system server. Basically this library would convert the
FUSE driver to the HelenOS file system driver server. This solution removes the
need for changes in the VFS server.

2.2 Layer selection

It is important to choose a FUSE interface layer which would best fit to connect
a FUSE driver and HelenOS’s VFS. As described in section 1.4 there are three
interface layers: the kernel channel inteface, the low level inteface and the high
level inteface.

The connection can be made in all these three layers. Every solution has its own
advantages and disadvantages.

11

+ Code which best fits HelenOS VFS
- No support for low level API drivers
- File names vs. file numbers problem
- Almost all must be written from scratch

Table 2.1: Advantages and disadvantages of connection at high level interface
layer

+ Similar to VFS OUT and libfs operations
+ No need for FUSE server
+ High level interface code from Linux FUSE library
+ Both high and low level interface drivers supported
- Not using low level code from Linux FUSE library

Table 2.2: Advantages and disadvantages of connection at low level layer

2.2.1 High level inteface

The high level inteface uses file names for identification. This fact means a
great complication because HelenOS VFS output interface uses integer indexes
to identify files.

Choosing this layer would mean rewritting all the code which is already present
in the Linux FUSE library. On the other hand this new code could be more
suitable for VFS output and libfs operations.

Another drawback of choosing the high level layer solution is that it doesn’t
support the low level interface file systems.

Solaris 1.5.4 and NetBSD 5.0 1.5.1 use this choice.

The advantages and disadvantages of connection at the high level interface layer
can be seen in the table 2.1.

2.2.2 Low level interface

This interface is the most similar to HelenOS VFS output protocol. Both of
them use integer indexes to represent files. The only exception is the VFS output
operation lookup. Fortunately the libfs library divides this operation into several
operations which are similar to the ones in the FUSE low level interface.

Because of this similarity this interface represents a good choice for creating a
library which could convert the FUSE driver to the HelenOS file system server.

The advantages and disadvantages of connecting at the low level interface layer
of FUSE can be seen in the table 2.2.

12

+ Designed for connection in this layer
+ Almost all Linux library code reusable
+ Works good with other programing languages then C
- encoding and decoding messages
- FUSE server is necessary

Table 2.3: Advantages and disadvantages of connection at kernel channel interface

2.2.3 Kernel channel interface

In FUSE all the file system operations are encapsulated into the kernel channel
interface messages. In order to select this layer VFS output operations need to
be converted into these messages.

The best way to implement the connector while using this interface would be to
use a FUSE server. Kernel channel API messages would then be sent between the
FUSE server and a specific FUSE file system driver in the form of IPC messages.
The implementation would be very similar to how the FUSE driver works in
Linux from its point of view.

Connecting the FUSE file system driver to the VFS server based on the kernel
channel interface allows using almost all code from Linux’s FUSE library.

NetBSD 6.0 1.5.1 uses a similar solution by its Perfused daemon.

The advantages and disadvantages of connecting at the kernel channel interface
layer can be seen in the table 2.3.

2.2.4 Summary of the selected solution

According to the previously described analysis the low level interface layer is
the most suitable solution for connecting FUSE file system driver to HelenOS
VFS server. The main reason for this suitability is the great similarity of this
layer to HelenOS libfs and VFS output operations. There is also no need for
encoding operations into messages (as would be the case case with the kernel
channel interface) or to convert file paths into file node integer indexes (as would
be in case of the high level interface).

FUSE server does not need to be present in this solution and the connector can
be implemented as a library. The FUSE library will use the libfs library in the
same way as other file systems do. This minimizes changes in both HelenOS VFS
and FUSE (library and drivers). The description of how the selected solutions
will work in HelenOS’s file system architecture can be seen in the figure 2.1.

2.3 Own task for each file system driver instance

One file system server in HelenOS serves more instances of the same file system.
On the other side each instance of FUSE driver needs its own task. Fortunately

13

Standard
library

VFS
server

libfs
library

native
TMPFS driver

FUSE
low level

library

hello_ll
low level API
FUSE driver

FUSE
high level

library

XMP
high level API

FUSE driver

hello
high level API

FUSE driver

exFAT
high level API

FUSE driver

Client application Client application

Client application

VFS_IN

VFS_OUT

VFS_OUT

VFS_OUT

Figure 2.1: FUSE in HelenOS

14

this feature causes no problem since the new HelenOS file system task can be
launched for each FUSE driver instance.

The FUSE drivers also mount itself during the driver initialization. This can be
done automatically after the start of the FUSE file system server. The FUSE file
system server suspends itself later after the FUSE file system is unmounted.

2.4 Reading directories

There is a difference in reading directories in the HelenOS VFS output operation
and the FUSE low level interface.

The HelenOS VFS output operation is performed for each file in a directory. This
operation has a file offset as a parameter. This parameter represents a file order in
a directory. So for example index 5 means 5th file in a directory. When HelenOS
VFS is reading a directory it gives the position of the file in a directory.

The FUSE low level interface requests a byte offset when it is reading a directory.
This byte offset points to a directory entity structures. It is not possible to request
a specific (for example 5th) file name from a directory because the byte offset of
that file name is not known.

In the current connector implementation the whole directory is read until the
desired file is found.

Before the FUSE low level driver returns a directory structure it adds directory
entities to the buffer using the low level interface function fuse add dirent().
It seems like this function could count positions in a directory and save offset for
each file. This offset would be later used in order to read a desired file position
without going from the beginning. Unfortunately this solution is not possible
because there is no guarantee that the function fuse add dirent() is called with
the same buffer which is then returned by the reply function fuse reply buf.

The reading of the whole directory is not efficient since the whole directory must
be read again for each file. This can be accelerated by caching the bytes offset
of the last read file and requesting that offset in readdir low level operation.
Another possibility is to cache next directory entries. This way the readdir low
level operation would not be called more times than it is really necessary. The
connector prototype currently does not implement either of these caches.

2.5 Mounting FUSE file systems

The FUSE file system drivers are standalone applications. They receive a mount
point path as a parameter from a command line. This behaviour is different in
the native HelenOS file system drivers. The native drivers are started before the
mount action happens.

mount.file system name script can be used in order to mount FUSE file systems
in the same way as the native HelenOS file systems (mount command) are being

15

mounted. For each FUSE file system there would be a specific script. This script
would start FUSE file system driver and mount it. The standard system library
would then determine whether this script existed before the standard mount
procedure. If the script exists it would launch this script instead of sending
VFS IN MOUNT method.

2.6 Accessing block devices

There is a difference in accessing block devices in HelenOS and FUSE drivers.
The FUSE drivers access block devices directly as files. For example exFAT [18]
uses pread function. Block devices are accessed through a block device servers
in the native HelenOS drivers.

Of course there is a possibility to change some parts of the code of a FUSE
driver. Namely parts that access block devices. But this would need to be made
for each file system again and again. There are three possibilities how to solve
this problem without modifying all ported FUSE file system drivers.

2.6.1 POSIX functions overwrite

The native HelenOS applications does not follow the POSIX specification. But
there is POSIX library in HelenOS. This library makes it possible to run the
POSIX applications. The POSIX calls are converted to the native calls in this
library.

The FUSE drivers also follow the POSIX specification. One possible solution is
to overwrite POSIX read and write functions. This means adding conditions to
the POSIX library. For some prefix it would send read or write requests to block
device server instead of sending them to the VFS server.

2.6.2 Block device file system server

The second possibility to access block devices is to create a special newly designed
file system server that would enable the access to the block devices via VFS. This
file system would have a virtual file for each block device. Accessing this file
would result in accessing the block device server.

2.6.3 VFS output protocol support in a block device drivers

The third possibility is to add VFS interface support to the specific block device
driver servers directly. Only some VFS output operations would be neccessary
for this (VFS OUT READ and VFS OUT WRITE).

The console device drivers use a similar solution.

16

In this case the block device driver servers use shared common skeleton library
(bd srv.h). There would be no need to add support of those VFS output oper-
ations into every single block device driver. They could be implemented directly
in the common skeleton library (in bd srv.c). The VFS output operations would
be implemented by a block manipulation functions for reading or writing blocks.

2.6.4 Conclusion

The POSIX function overwrite is probably the easiest way to implement this
access though it is not the cleanest way.

The block device file system server is a nice clean solution. The downside is that
it adds another layer between the FUSE file system driver and the block device.
It is also probably the hardest way for the implementation.

Supporting VFS output protocol in block device drivers is clean and the most
efficient way how to solve this problem.

This problem is not the main topic of this thesis so it is not implemented in the
connector prototype.

17

Chapter 3

Implementation

This chapter describes implementation details of the HelenOS VFS-FUSE connec-
tor. The source code of the FUSE library can be found in uspace/lib/posix/fuse

in HelenOS tree.

3.1 Integration with libfs

As discussed in the chapter 2 there is no need to do any changes in libfs. The
connector works as a library implementing libfs and VFS output operations in
the same way as any other file system.

3.1.1 Mapping operations

The mapping between HelenOS VFS output operations (including libfs opera-
tions) and the FUSE low level operations is described in the table 3.1. From
the FUSE point of view there is no difference in mapping libfs and VFS OUT
operations.

Some libfs operations do not need to call FUSE low level operations. The fol-
lowing operations is directory, is file, lnkcnt get, size get only return
data retrieved by the previous call of libfs operation node get. node put only
frees data from memory. Some other operations are not necessary for functional
prototype of the connector and therefore are not implemented.

The call to FUSE driver is delayed until the first link operation because the file
name is not known in libfs operation create node.

Most of the low level interface conversion code can be found in the file
lib/fuse lowlevel.c.

18

HelenOS libfs operations FUSE low level operations

root get getattr
node get getattr

node open opendir, open
link node mkdir, mknod, link

unlink node rmdir, unlink

HelenOS VFS OUT operations FUSE low level operations

mounted getattr
unmounted destroy

read getattr, read, readdir
write getattr, writebuf, write
close release, releasedir, flush

truncate setattr
sync fsync, fsyncdir

Table 3.1: Operations mapping between HelenOS FS and FUSE lowlevel interface

3.1.2 Reply functions from the low level interface

The implementations of FUSE low level operations use reply functions. These
functions return the status of operations and they send back the actual requested
data for some operations (like read). In the original FUSE library [6] these reply
functions send messages back to the kernel.

It was neccessary to create reply structure as part of the FUSE request structure
fuse req t. This request structure is passed as the first parameter in all FUSE
low level operations. FUSE reply function adds data to the reply part of the re-
quest structure. These data are then extracted after the FUSE low level function
call is finished. It is necessary to convert some of this data and then return them
using the asynchronous framework.

In some cases more then one FUSE low level operation is called in one libfs or
VFS output operation. This is another reason why data can not be send to VFS
in the reply function.

3.1.3 Mounting

The FUSE driver is mounted automatically during the initialization to the mount-
point path specified in a command line.

The Linux FUSE library mounts a filesystem in function fuse mount common in
helper.c file. This mounting is done too early in the HelenOS. The mountpoint
is saved into fuse chan structure and later used in fuse session loop function
in the file fuse lowlevel.c.

The driver termination after unmounting is not implemented in the connector
prototype.

19

3.1.4 Mounting other file systems under FUSE

Sometimes other file systems are mounted within the FUSE file system directory
tree. The libfs library then needs to store some data about nodes which function
as mount point for them.

These data are stored in a hash table.

3.1.5 Storage for data about opened files

The FUSE low level driver allows storing some file system specific data for opened
files (in structure fuse file info). These data are later used in all other FUSE
low level file operations (read, write, flush, release, fsync).

It is necessary to store these data somewhere. Opened files data are stored in a
hash table similarly as the data about the mountpoints. This data are removed
from the hash table when the file is closed.

3.1.6 Multithread support

A multithread support in the connector prototype is limited since the Pthread
support in HelenOS POSIX is also limited. The multithread access is supported
only for low level layer drivers. There are locks around all low level operations.
These locks are ignored when the driver starts from the multithread function
fuse session loop mt.

3.1.7 File indexes

Both HelenOS VFS output operations (including libfs library operations) and
FUSE low level interface operations use integer file indexes.

Libfs operations and VFS output operations use the same file indexes as the
FUSE low level interface.

3.1.8 Creating and renaming files

mkdir or mknod FUSE low level operations are not called from the libfs operation
create when a file or a directory is created. Instead of this a dummy node with
empty file index is returned. The reason for this behavior is that the file name
is not known at that moment. mkdir or mknod FUSE low level operations are
called later when libfs calls the first link operation on this node.

There is one problematic issue: It is not possible to rename files, when the
file system does not support link operation. The VFS server does not have
VFS OUT RENAME operation and instead of this just calls link(new name) and
then unlink(old name). This issue is not specific only to the FUSE drivers in

20

include/fuse.h
include/fuse lowlevel.h
include/fuse compat.h

include/fuse common compat.h
include/fuse kernel.h

include/fuse lowlevel compat.h
include/fuse opt.h

lib/fuse misc.h
lib/fuse opt.c

Table 3.2: Files from Linux FUSE library with no changes

HelenOS. It is also present in other native HelenOS file system drivers which
cannot handle more than one link to a file.

3.2 High level interface

The high level interface source code implements the low level interface operations.
Almost all code that implements the high level interface is reused from Linux
FUSE library. There is also some code which is not used (not called from the
connector library). It is left there to enable easier upgrades based on newer
versions of Linux FUSE library.

The most of the high level interface source code is in lib/fuse.c file.

3.2.1 Pthread library

The high level interface uses pthread locks and condition variables. In order to
make this work then pthread locks and condition variables are transformed to
HelenOS fibril variants of locks.

3.3 Reused code from Linux FUSE

The table 3.2 lists files with no changes to upstream Linux FUSE library[6].

The table 3.3 lists files with small changes. Those changes are separated by
#ifdef HelenOS in order to make it easier to update them to new versions
of Linux FUSE library.

The last table 3.4 lists files with HelenOS specific code.

21

include/fuse common.h
lib/fuse i.h
lib/fuse.c

lib/buffer.c
lib/helper.c

Table 3.3: Files from Linux FUSE library with small changes

include/config.h
lib/fuse kern chan.c
lib/fuse lowlevel.c

lib/fuse mt.c
lib/fuse session.c
lib/fuse signals.c

Table 3.4: Files with almost all code being HelenOS specific

3.4 Other necessary changes in HelenOS

It was necessary to make some changes in HelenOS code. Almost all of them
are the improvements which can be easily integrated in the HelenOS mainline
without causing any harm.

3.4.1 HelenOS and POSIX return codes

It was necessary to use both POSIX and HelenOS native error codes in the file
fuse lowlevel.c. Definions of POSIX error codes overwrite the native ones in
POSIX programs in HelenOS. So it was necessary to introduce other names for
these native error codes. The native error codes are now also accessible in the
POSIX applications with the NATIVE prefix.

3.4.2 Opendir error in libfs library

This thesis uncovered a bug in lookup function in libfs library. Among other
things lookup function manages opening of directories. The lookup function in
libfs did not call libfs operation node open when lflag = L OPEN | L CREATE.
These flags represents an opening of a new file. This bug was not found earlier
because most file systems has a stateless open where the node open operation
does nothing. It got unnoticed for a few years.

3.4.3 Pread and pwrite functions

The FUSE drivers use pwrite and pread functions for accessing block devices.
Those functions were not implemented in HelenOS. New VFS input operations

22

VFS IN PREAD and VFS IN PWRITE were introduced in order for these func-
tions to work. The only difference between them and VFS IN READ and
VFS IN WRITE consists of having another parameter: offset in a file.

For the simplicity of the implementation HelenOS does not read or write the
whole buffer even when there is no end of file. This feature causes a problem
because some FUSE drivers expect full buffer usage. For solving this problem
POSIX pwrite and pread were mapped to pwrite all and pread all versions.
These functions call the native pwrite and pread more times until the whole
buffer is used.

3.4.4 POSIX prefix defines collision

During the development there were problems with collisions with POSIX def-
initions. This was caused by the fact that FUSE operations are implemented
as structure members. Unfortunately they had sometimes the same name as
POSIX functions. And POSIX functions were implemented like #define read

posix read. The code was requesting different structure members.

The pushing and poping of those definitions was used as a workaround. Later
this was solved directly in the HelenOS mainline by Vojtěch Horky by overwriting
function names at link time and this problem vanished.

3.4.5 Comparison between native and FUSE drivers on
HelenOS

The connector adds another layer of code. FUSE file system drivers are therefore
a bit slower than the native file system drivers on HelenOS.

The connector is adding a data copying in the fuse reply buf and
fuse reply data. The reason for this is described in section 3.1.2.

The directory reading is also not optimized. See section 2.4.

Another difference is connected with the access to block devices. Currently FUSE
driver can access only disk images. This will change by implementing one of the
solutions which are proposed in section 2.6.

3.5 Development using distributed version con-

trol system

A distributed version control system and a public repository[22] were used for
the development of VFS-FUSE connector. This was a great help during the
development and the merge process with HelenOS mainline repository[3]. It will
also help future merging of this work to the mainline repository.

23

Chapter 4

Ported FUSE file systems

This chapter describes the FUSE file systems which were ported to the HelenOS
as part of this thesis.

4.1 ExFAT

ExFAT[19] is a file system from Microsoft. ExFAT is optimized for flash drives.
It uses FUSE high level API.

Free exFAT file system implementation[18] was ported to HelenOS at the same
time as the connector was developed.

ExFAT FUSE driver can be found in the userspace part of HelenOS sources:
uspace/srv/fs/fuse/exfat/. It also uses the exFAT library which can be found
in uspace/lib/posix/libexfat/.

Free exFAT file system implementation has operation system specific section for
detection of endianness and byte swapping. During the porting of the exFAT
driver it was necessary to add a specific HelenOS section to this driver for handling
a detection of endianness and byte swapping.

ExFAT uses pread and pwrite POSIX functions (section3.4.3) to access block
device. The implementation of these functions was added to HelenOS in this
thesis in order for ExFAT to work. This allows mounting a file system image.
Another work is necessary to be done for the mounting of the real block devices.
Possible solutions are described in 2.6.

There still remains one problem: It is not possible to rename files on exFAT.
VFS server does not have VFS OUT RENAME operation and instead of this just calls
link(new name) and then unlink(old name). This means that for a moment there
are at least 2 links to the file which is being renamed. However, exFAT does not
support more then one link and therefore the rename operation fails. This issue
is not specific for FUSE file system drivers on HelenOS. It is also present in other
native HelenOS file system drivers which cannot handle more than one link to a
file.

24

HelenOS also has a native file system driver for exFAT. The same file system was
selected for porting because it is possible to test a file system image in another
working implementation of the same file system. This helped during development
of VFS-FUSE connector.

4.2 Examples from FUSE package

The Linux FUSE package includes some example file systems. Some of them were
ported during VFS to FUSE connector development as the first working FUSE
file system drivers. They were easy enough for debugging during the beginning
of the connector development.

4.2.1 Hello world in high level interface

This is the simplest example file system which demonstrates using of the FUSE
high level API. It can be found in uspace/srv/fs/fuse/hello/

4.2.2 Hello world in low level interface

This is the simplest example file system which demonstrates using of the FUSE
low level API. It was the first working FUSE file system in HelenOS. It can be
found in uspace/srv/fs/fuse/hello ll/

4.3 Estimation of difficulty to port other file

systems

The main problem when porting FUSE file systems to HelenOS is that the most
of the FUSE file systems depend on some other library. This is especially the case
of pseudo file systems (for example an access to archive) or network file systems
(for example sshfs). It is somewhat harder to port these libraries to HelenOS
because of the limited POSIX support.

Some FUSE file system drivers work as a layer over another file system. Thit
means that they store some data in other file system. HelenOS VFS server has
a problem with namespace read-write lock. This lock locks too much code and
it causes deadlock in some of these file systems. The only exception is when the
file in other file system is opened during a file system initialization. The solution
to this problem is necessary to be done before porting them to HelenOS. There
is an issue [20] about this deadlock in the HelenOS issue tracker.

File systems which access block devices can now only mount a file system image.
One of the solutions that can be found in section 2.6 is neccessary in order to
change this limitation.

25

file system porting problems

MP3FS VFS server deadlock, libraries
Ramfuse VFS server deadlock, PERL

squashfuse block devices solution, libraries, OS specific
CryptoFS VFS server deadlock, libraries
LoggedFS VFS server deadlock

SshFS libraries
ZFS block devices solution, OS specific

NTFS-3G block devices solution, OS specific
gitfs VFS server deadlock, libraries

Table 4.1: Porting other FUSE file systems

Some FUSE file systems need to add HelenOS specific section in them. For
example for a byte swaping and a changing endian ordering.

The table 4.1 shows an estimation of the porting difficulty for some popular file
systems from [7].

26

Conclusion

The goal of this master thesis was to design and implement the connector be-
tween FUSE file system drivers and HelenOS native VFS interface. The goal of
finding the solution and consequently the development of the implementation of
the connector was achieved.

The important part of this work was the decision how to implement the connector.
The selected decision to implement connection at low level layer has proved as
a very good choice. This allowed reusing of a great portion of code from Linux
FUSE implementation. Practically no changes were necessary to be made in the
FUSE file system drivers. In fact almost all of those changes do not relate to
FUSE but to the limited POSIX libraries in HelenOS.

The implementation of the connector at low level layer also allowed the use of the
same libraries as the native HelenOS file system drivers are using and therefore
no changes in HelenOS VFS server were necessary to be done. This fact will
make the future development of the HelenOS VFS easier because there will be
no need to have FUSE in mind.

Also the FUSE variant of exFAT file system driver was ported to HelenOS. This
did not add new features because HelenOS already has the native exFAT file
system driver. This was intentional for help in the development.

The performance and speed was not the goal of this thesis. This is similar to
the concept of the rest of the HelenOS operating system. So no speed tests were
performed.

Future work

The current implementation provides a solid base for the direct use of FUSE file
system drivers in HelenOS. Although several FUSE features can be developed in
a deeper level and optimization. This includes for example mutithreaded drivers
and the readdir operation.

Introducing mount scripts will enable to mount FUSE file systems in the same
way as the native file systems do. FUSE drivers should also terminate themselves
after being unmounted.

Some FUSE file system drivers work as a layer over another file system. The
solution to the problem with namespace read-write lock [20] is neccesary to be

27

done before porting them to HelenOS.

The ability to read block devices as discussed in section 2.6 will be also an im-
portant issue in the future.

The last but not least work to be done will be porting other FUSE file system
drivers to HelenOS.

28

Bibliography

[1] HelenOS, http://www.helenos.org/

[2] HelenOS documentations, http://www.helenos.org/documentation

[3] HelenOS sources, http://www.helenos.org/sources

[4] Jakub Jermář: Implementation of file system in HelenOS operating system,
http://www.helenos.org/doc/papers/HelenOS-EurOpen.pdf

[5] Andrew S. Tanenbaum: Modern Operating Systems, 3rd edition, ISBN 0-13-
813459-6978-0-13-813459-4

[6] Filesystem in Userspace, http://fuse.sourceforge.net/

[7] File systems using FUSE, http://sourceforge.net/apps/mediawiki/

fuse/index.php?title=FileSystems

[8] FUSE structure image, http://en.wikipedia.org/wiki/File:FUSE_

structure.svg

[9] Operating Systems - FUSE, http://sourceforge.net/apps/mediawiki/

fuse/index.php?title=OperatingSystems

[10] FUSE for OS X, http://osxfuse.github.io/

[11] FUSE for OS X FAQ, https://github.com/osxfuse/osxfuse/wiki/FAQ

[12] ReFUSE (NetBSD), http://netbsd.gw.com/cgi-bin/man-cgi?refuse+

3+NetBSD-6.0

[13] PUFFS Enabled Relay to FUSE Daemon (NetBSD), http://netbsd.gw.

com/cgi-bin/man-cgi?perfused+8+NetBSD-6.0

[14] PUFFS enabled relay to FUSE Library (NetBSD), http://netbsd.gw.com/
cgi-bin/man-cgi?libperfuse++NetBSD-6.0

[15] FreeBSD FUSE module, https://wiki.freebsd.org/FuseFilesystem

[16] Jǐŕı Svoboda: discussion about FUSE in Solaris, http://lists.modry.cz/
private/helenos-devel/2012-June/005773.html

[17] IPC for Dummies, http://trac.helenos.org/wiki/IPC

[18] Free exFAT file system implementationFree exFAT file system implementa-
tion, https://code.google.com/p/exfat/

29

http://www.helenos.org/
http://www.helenos.org/documentation
http://www.helenos.org/sources
http://www.helenos.org/doc/papers/HelenOS-EurOpen.pdf
http://fuse.sourceforge.net/
http://sourceforge.net/apps/mediawiki/fuse/index.php?title=FileSystems
http://sourceforge.net/apps/mediawiki/fuse/index.php?title=FileSystems
http://en.wikipedia.org/wiki/File:FUSE_structure.svg
http://en.wikipedia.org/wiki/File:FUSE_structure.svg
http://sourceforge.net/apps/mediawiki/fuse/index.php?title=OperatingSystems
http://sourceforge.net/apps/mediawiki/fuse/index.php?title=OperatingSystems
http://osxfuse.github.io/
https://github.com/osxfuse/osxfuse/wiki/FAQ
http://netbsd.gw.com/cgi-bin/man-cgi?refuse+3+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?refuse+3+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?perfused+8+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?perfused+8+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?libperfuse++NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?libperfuse++NetBSD-6.0
https://wiki.freebsd.org/FuseFilesystem
http://lists.modry.cz/private/helenos-devel/2012-June/005773.html
http://lists.modry.cz/private/helenos-devel/2012-June/005773.html
http://trac.helenos.org/wiki/IPC
https://code.google.com/p/exfat/

[19] exFAT File System, http://www.microsoft.com/en-us/legal/

intellectualproperty/IPLicensing/Programs/exFATFileSystem.aspx

[20] VFS deadlock ticket, http://trac.helenos.org/ticket/480.

[21] QEMU machine emulator and virtualizer, http://qemu.org

[22] Development brach in Launchpad, https://code.launchpad.net/

%7ezdenek-bouska/helenos/fuse

30

http://www.microsoft.com/en-us/legal/intellectualproperty/IPLicensing/Programs/exFATFileSystem.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/IPLicensing/Programs/exFATFileSystem.aspx
http://trac.helenos.org/ticket/480
http://qemu.org
https://code.launchpad.net/%7ezdenek-bouska/helenos/fuse
https://code.launchpad.net/%7ezdenek-bouska/helenos/fuse

List of Tables

2.1 Advantages and disadvantages of connection at high level interface
layer . 12

2.2 Advantages and disadvantages of connection at low level layer . . 12
2.3 Advantages and disadvantages of connection at kernel channel in-

terface . 13

3.1 Operations mapping between HelenOS FS and FUSE lowlevel in-
terface . 19

3.2 Files from Linux FUSE library with no changes 21
3.3 Files from Linux FUSE library with small changes 22
3.4 Files with almost all code being HelenOS specific 22

4.1 Porting other FUSE file systems 26

31

Appendices

32

Appendix A

CD-ROM content

This thesis includes a CD-ROM medium on which you will find:

• HelenOS sources with VFS-FUSE connector inside in the tar archive
called helenos fuse.tgz

• HelenOS bootable CD image image.iso

• README a readme text file, reading it is recommended.

• Qemu wrapper script run.sh starts HelenOS in Qemu[21] emulator.

• An electronic version of this thesis in the file thesis.pdf.

33

Appendix B

User Documentation

Easier way how to run HelenOS operating system is Qemu[21]. It emulates the
whole PC and is the recommended emulator for HelenOS. You can do this by
starting Qemu with run script:

./run.sh

In order to mount exFAT image with FUSE exFAT driver run

fuse exfat exfat.img /mnt

You can see this at screenshot in the figure B.1.

B.1 Compiling from sources

Linux operating system is recommended for compiling. First you need to unpack
the sources:

tar -zxvf helenos fuse.tgz

and then move to the newly created directory

cd helenos fuse

Next install the development toolchain. Specific versions of the compiler and
binutils are necessary to compile HelenOS. The toolchain has dependencies. Most
of them are listed when you run it. In order to save time install these depen-
dencies first. The toolchain will be installed to the directory specified by the
CROSS PREFIX environment variable. If the variable is not defined,

34

Figure B.1: Screenshot of FUSE exFAT file system usage

/usr/local/cross will be used by default.

./tools/toolchain.sh ia32

After that run

make

and in configurator select

--- Load preconfigured defaults ...

ia32

Done

For cleaning after compilation you can use

make clean

or for cleaning config as well

make distclean

35

	Introduction
	Development context
	HelenOS architecture summary
	Filesystem in HelenOS
	Standard library
	VFS server
	Libfs library

	Developing a file system with FUSE
	FUSE architecture in Linux
	FUSE in other operation systems
	NetBSD
	OS X
	FreeBDS
	Solaris

	Analysis
	Decision whether to use a FUSE server or a library
	Layer selection
	High level inteface
	Low level interface
	Kernel channel interface
	Summary of the selected solution

	Own task for each file system driver instance
	Reading directories
	Mounting FUSE file systems
	Accessing block devices
	POSIX functions overwrite
	Block device file system server
	VFS output protocol support in a block device drivers
	Conclusion

	Implementation
	Integration with libfs
	Mapping operations
	Reply functions from the low level interface
	Mounting
	Mounting other file systems under FUSE
	Storage for data about opened files
	Multithread support
	File indexes
	Creating and renaming files

	High level interface
	Pthread library

	Reused code from Linux FUSE
	Other necessary changes in HelenOS
	HelenOS and POSIX return codes
	Opendir error in libfs library
	Pread and pwrite functions
	POSIX prefix defines collision
	Comparison between native and FUSE drivers on HelenOS

	Development using distributed version control system

	Ported FUSE file systems
	ExFAT
	Examples from FUSE package
	Hello world in high level interface
	Hello world in low level interface

	Estimation of difficulty to port other file systems

	Conclusion
	Bibliography
	List of Tables
	Appendices
	CD-ROM content
	User Documentation
	Compiling from sources

