
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Pavel Ludv́ık

Isomorphic and isometric classification
of spaces of continuous and Baire affine

functions

Department of Mathematical Analysis

Supervisor of the doctoral thesis: doc. RNDr. Jǐŕı Spurný, Ph.D.
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Autor: Pavel Ludv́ık
Katedra: Katedra matematické analýzy
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Abstrakt: Tato práce sestává z pěti odborných článk̊u. V prvńım dokazujeme,
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spojitých afinńıch funkćı na kompaktńıch množinách existence homeomorfismu
mezi množinami jej́ıch extremálńıch bod̊u. Předmětem druhého je zkoumáńı
přenosu deskriptivńıch vlastnost́ı prvk̊u biduál̊u Banachových prostor̊u, které
jsou chápány jako funkce na jednotkové duálńı kouli. Zabýváme se také vz-
tahem mezi bairovskými a intrinsic bairovskými tř́ıdami L1-preduál̊u. Ve třet́ım
článku ztotožńıme intrinsic bairovské tř́ıdyX s prostorem lichých, či homogenńıch
bairovských funkćı na extBX∗ , kde X je separabilńı reálný, či komplexńı, L1-
preduál, jej́ıž množina extremálńıch bod̊u duálńı jednotkové koule je typu Fσ.
Poskytneme též př́ıklad separabilńı C∗ algebry takové, že se druhá a druhá intrin-
sic bairovská tř́ıda jej́ıho biduálu lǐśı. Předmětem čtvrtého článku je zobecněńı
některých tvrzeńı článku předchoźıho pro reálné neseparabilńı L1-preduály. V
pátém poč́ıtáme vzdálenost obecného zobrazeńı od tř́ıdy zobrazeńı prvńı re-
solvable tř́ıdy pomoćı kvantity frag a zkoumáme vlastnosti tř́ıdy zobrazeńı se
spočetným oscilačńım rankem.
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Introduction

The doctoral thesis consists of the five original research papers:

1. (with J. Spurný) Isomorphisms of spaces of continuous affine functions on
compact convex sets with Lindelöf boundaries, Proc. Amer. Math. Soc.,
139(3):1099–1104, 2011.

2. (with J. Spurný) Descriptive properties of elements of biduals of Banach
spaces, Studia Math., 209(1):71–99, 2012.

3. (with J. Spurný) Baire classes of L1-preduals and C∗-algebras, submitted.

4. (with J. Spurný) Baire classes of nonseparable L1-preduals, submitted.

5. Distances to spaces of first H-class mappings, submitted.

Each paper corresponds to the one chapter of the thesis. The papers are
presented in their original form (except for correcting a few typing errors). The
first paper substantially comes out from my diploma thesis but the arguments are
simplified and it is enriched by several counterexamples. The first and the second
paper have been already published. The remaining papers have been submitted.

Let us provide a brief introduction to the topics investigated throughout the
thesis. For the more extensive explanation of notions used in the Introduction
we refer reader to the relevant subsequent chapter of the thesis.

In Chapter 1 we prove a generalization of the well-known Banach-Stone the-
orem which states that if X, Y are compact spaces, then X and Y are homeo-
morphic if and only if C(X) (i.e. a Banach space of all continuous functions on
a set X) is linearly isomorphic to C(Y ). The theorem can be carried into the
context of compact convex sets and rephrased in a following form: If X, Y are
Bauer simplices then extX and extY are homeomorphic if and only if Ac(X) is
linearly isomorphic to Ac(Y ).

H. U. Hess, M. Cambern, C. H. Chu, H. B. Cohen and many others have
managed to strengthen the result in several directions. The aim of Chapter 1
is to generalize and integrate two results of C. H. Chu, H. B. Cohen in a more
general setting.

In Chapter 2 we study descriptive properties of strongly affine functions on
compact convex spaces in general at first and then we apply the acquired results
to the theory of Banach spaces.

To be more precise, if E is a (real or complex) Banach space, an element
x∗∗ of its bidual may be understood as a function on the dual space endowed
with the weak* topology. Since the dual unit ball BE∗ is weak* compact, the
set extBE∗ of its extreme points is nonempty and its weak* closed convex hull is
the whole unit ball. Hence one might expect that a behaviour of x∗∗ on the set
BE∗ might be in some sense predestined by the behaviour of x∗∗ on extBE∗ . The
aim of Chapter 2 is to support this expectation and provide several conditions
on descriptive quality of extBE∗ under which we get reasonable results. Our
method lead to the generalization of some attainments of J. Saint Raymond and
F. Jellett. In this chapter we also investigate the relation between Baire classes
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and intrinsic Baire classes of L1-preduals which were introduced by S.A. Argyros,
G. Godefroy and H.P. Rosenthal in [5, p. 1047]. We also present several examples
indicating the natural limits of our positive results.

In Chapter 3 we continue with investigation of L1-preduals but we restrict
our attention to separable (real or complex) L1-preduals. Let X be such an
L1-predual equipped with an additional descriptive property, namely, its dual
unit ball BX∗ has the set extBX∗ of its extreme points of type Fσ. Under this
assumption we identify intrinsic Baire classes of X with the spaces of odd (in
case X is a real Banach space) or homogeneous (in complex case) Baire functions
on extBX∗ . In this chapter we generalize some results from the previous chapter
and of J. Lindenstrauss and D. E. Wulbert.

Further, we answer a question of S. A. Argyros, G. Godefroy and H. P. Rosen-
thal by showing that there exists a separable C∗-algebra X for which the second
intrinsic Baire class of X∗∗ does not coincide with the second Baire class of X∗∗.

Chapter 4 is intended to be a sequel of Chapter 3 where we try to abandon
an assumption of separability. We succeed for the class of real (not necessarily
separable) L1-preduals. We show that the intrinsic Baire classes of X can be
identified with the spaces of odd Baire functions on the set extBX∗ of the extreme
points of the dual unit ball BX∗ if extBX∗ satisfies some topological assumptions.
Namely, if extBX∗ is a Lindelöf H-set. Questioning whether analogous results for
complex non-separable L1-preduals hold true is a subject of our current research.

Chapter 5 has two leading motifs. At first, we study the mappings of the
first resolvable class defined by G. Koumoullis in [47]. These mappings were
intended to generalize functions of the first Baire class. We compute the distance
of a general mapping to the family of mappings of the first resolvable class via
the quantity frag and thus in part generalize a several results of C. Angosto, B.
Cascales, and I. Namioka; B. Cascales, W. Marciszewski, and M. Raja; and J.
Spurný.

In the second part of Chapter 5 we introduce a class of mappings with count-
able oscillation rank and relate its basic properties to the certain well known
classes of mappings. This rank has been in a less general context considered by
S. A. Argyros, R. Haydon and many others.
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1. Isomorphisms of spaces of
continuous affine functions on
compact convex sets with
Lindelöf boundaries
(joint work with Jǐŕı Spurný)

1.1 Introduction

If X is a compact convex set in a real locally convex space, let Ac(X) stand for
the space of all continuous affine functions, Ab(X) for the space of all bounded
affine functions on X, and extX for the set of extreme points.

We refer the reader to [15, pp. 72, 73, 75] for notions of the theory of compact
convex sets. We just mention that X can be embedded to (Ac(X))∗ via the
evaluation mapping φ : X → (Ac(X))∗ defined as φ(x)(f) = f(x), f ∈ Ac(X),
x ∈ X. The dual unit ball B(Ac(X))∗ equals the convex hull co(X ∪ −X), and
(Ac(X))∗ coincides with spanX, the linear span of X. Further, any function
f ∈ Ab(X) has a unique extension to spanX, and this provides an identification
of (Ac(X))∗∗ with Ab(X).

For a set F ⊂ X, the complementary set F cs is defined as the union of all faces
of X disjoint from F . A face F of X is said to be a split face if its complementary
set F cs is convex (and hence a face; see [1, p. 132]) and every point in X \(F ∪F cs)
can be uniquely represented as a convex combination of a point in F and a point
in F cs.

We call x ∈ extX a weak peak point if given ε ∈ (0, 1) and an open neigh-
bourhood U of x, there exists h ∈ Ac(X) such that ‖h‖ ≤ 1, h(x) > 1 − ε and
|h| < ε on extX \ U .

Let us also recall that any weak peak point of a compact convex set X is a
split face and the converse holds if extX is closed; see [15, Proposition 1].

The following results are proved in [15, Theorems 7 and 12] by C. H. Chu and
H. B. Cohen:

Let X and Y be compact convex sets and let T : Ac(X) → Ac(Y ) be an iso-
morphism satisfying ‖T‖ · ‖T−1‖ < 2. If

• X and Y are metrizable and each point of extX and extY is a weak peak
point, or

• the sets extX and extY are closed and each extreme point of X and Y is
a split face,

then the sets extX and extY are homeomorphic.
The aim of our paper is to show that the method of the proof of [15, Theorem 7]

is applicable in a more general setting that covers both results mentioned above.

Theorem 1.1.1. Let X, Y be compact convex sets such that every extreme point
of X and Y is a weak peak point and both extX and extY are Lindelöf spaces.
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Let T : Ac(X)→ Ac(Y ) be an isomorphism with ‖T‖ · ‖T−1‖ < 2. Then extX is
homeomorphic to extY .

As in [15, Corollaries 13 and 14], this yields a corollary for function alge-
bras: Let A and B be function algebras with Lindelöf Choquet boundaries, and
let T : ReA → ReB be an isomorphism satisfying ‖T‖ · ‖T−1‖ < 2. Then the
Choquet boundaries of A and B are homeomorphic.

We recall that the construction from [9, Section VII] (see also [1, Proposi-
tion I.4.15] or [6, Theorem 3.2.4]) yields an example of a non-metrizable simplex
X such that extX is a Lindelöf non-closed subset of X and every extreme point
of X is a weak peak point. To see this, let B ⊂ [0, 1] be a Bernstein set (see [66,
Theorem 5.3]) and let

K = ([0, 1]× {0}) ∪
⋃
x∈B

({x} × [0, 1])

be endowed with the “porcupine” topology (see [9, Section VII]). Precisely, if
x ∈ B and t ∈ (0, 1], then a basis of neighborhoods of (x, t) consists of sets of the
form {x} × U , where U ⊂ [0, 1] is a neighborhood of t. If x ∈ [0, 1], then a basis
of neighborhoods of (x, 0) consists of sets of the form

(U × {0}) ∪
(
(U × [0, 1]) \

n⋃
i=1

({xi} × Fi)
)
,

where n ∈ N, U ⊂ [0, 1] is a neighborhood of x, x1, . . . , xn are points in B ∩ U
and F1, . . . , Fn are compact subsets of (0, 1].

If λ stands for Lebesgue measure on [0, 1], let

H = {f ∈ C(K) : f(x, 0) =

∫
[0,1]

f(x, t) dλ(t), x ∈ B}

and
X = {s ∈ H∗ : s ≥ 0, s(1) = 1}.

ThenX endowed with the weak∗ topology is a simplex and extX is homeomorphic
to (([0, 1]\B)×{0})∪(K \([0, 1]×{0})). It is easy to see that extX is a Lindelöf
non-closed set and every extreme point of X is a weak peak point.

Example 1 on [15, p. 83] shows that Theorem 1.1.1 need not hold even for
compact convex sets in finite dimensional spaces if we omit the assumption that
extreme points are weak peak points. An example due to H. U. Hess (see [33])
shows that for every ε > 0 there exist metrizable simplices X, Y and an iso-
morphism T : Ac(X) → Ac(Y ) such that ‖T‖ · ‖T−1‖ < 1 + ε and extX is not
homeomorphic to extY . Nevertheless, it is not clear whether Theorem 1.1.1 re-
mains valid if we omit the topological assumption on the sets of extreme points.

Question 1.1.2. Let X, Y be compact convex sets such that every extreme point
of X and Y is a weak peak point and let T : Ac(X)→ Ac(Y ) be an isomorphism
with ‖T‖ · ‖T−1‖ < 2. Is it true that extX is homeomorphic to extY ?

We need to recall several notions not explained in [15]. If X is a compact
(Hausdorff) space, we write C(X) for the space of all continuous functions on
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X and M1(X) for the space of all probability Radon measures on X. (By a
Radon measure we mean a complete measure that is inner regular with respect
to compact sets and is defined on a σ-algebra including all Borel subsets of X. We
refer the reader to [26, Section 416] for more information on Radon measures.)
We always consider M1(X) to be endowed with weak∗ topology. We say that
a function f : X → R is universally measurable if f is µ-measurable for every
µ ∈M1(X).

If X is a compact convex subset of a real locally convex space, any µ ∈M1(X)
has its unique barycenter r(µ) ∈ X, i.e., the point x ∈ X satisfying f(x) = µ(f)
for any f ∈ Ac(X). We sometimes say that µ represents x. A function f :
X → R is strongly affine (or satisfies the barycentric formula), if f is universally
measurable, µ(f) exists and f(r(µ)) = µ(f) for any µ ∈ M1(X). We write
Abf(X) for the space of all strongly affine functions on X and recall that it is
easy to see that any strongly affine function is bounded (see the proof of [48, Satz
2.1(c)]). We also recall that any semicontinuous affine function on X is strongly
affine; see [6, Theorem 1.6.1(ix)].

1.2 Proof of Theorem 1.1.1

The proof of the main theorem follows the idea of the proof of [15, Theorems 7
and 12]. Hence we recall the main steps of their proof and point out our mod-
ifications. We start the proof with a minimum principle which is crucial for us
because then [78, Lemma 2.4] is applicable for functions T ∗∗f , f ∈ Abf(X).

Lemma 1.2.1. Let X be a compact convex set such that extX is Lindelöf. If
f ∈ Abf(X) satisfies |f(x)| ≤ c for all x ∈ extX, then |f(x)| ≤ c for all x ∈ X.

Proof. Let x ∈ X be given. We find a maximal measure µ ∈M1(X) representing
the point x (see [6, Theorem 1.6.4]) and define

A = {y ∈ X : |f(y)| ≤ c}.

Then A is a µ-measurable set and we claim that µ(A) = 1.
Indeed, let K ⊂ X be an arbitrary compact set disjoint from A. Since A ⊃

extX, for any y ∈ extX we can find its closed neighborhood not intersecting
K. The set extX is Lindelöf, and thus we can select countably many closed sets
Fn ⊂ X, n ∈ N, such that

extX ⊂
∞⋃
n=1

Fn ⊂ X \K.

By [14, Theorem 27.11], µ(
⋃∞
n=1 Fn) = 1, and hence µ(K) = 0. By the regularity

of µ, µ(X \ A) = 0, and hence

|f(x)| =
∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
A

|f | dµ ≤ c.

This concludes the proof.
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Proof of Theorem 1.1.1. Let T : Ac(X) → Ac(Y ) be an isomorphism satisfying
‖T‖ · ‖T−1‖ < 2. We assume that there exists c, c′ ∈ R such that 1 < c < c′ < 2
and ‖T‖ < 2 and ‖Tf‖ ≥ c′‖f‖ for all f ∈ Ac(X) (otherwise we would find
1 < c < c′ < 2 such that ‖T‖ · ‖T−1‖ < 2

c′
< 2 and consider the mapping

c′‖T−1‖T ; see [15, p. 76]).

Claim 1. For any f ∈ Ab(X) and g ∈ Ab(Y ) non-zero, ‖T ∗∗f‖ > c‖f‖ and
‖(T−1)∗∗g‖ > 1

2
‖g‖.

Proof of Claim 1. The first inequality follows from

‖f‖ = ‖(T−1)∗∗T ∗∗f‖ ≤ (c′)−1‖T ∗∗f‖ < c−1‖T ∗∗f‖,

the second one is analogous.

If x ∈ extX, we recall that (Ac(X))∗ = span{x} ⊕`1 span{x}c because {x} is
a split face; see [15, p. 72]. Hence, given y ∈ Y , following [15, p. 76] we can write

T ∗y = λx+ µ for some λ ∈ R and µ ∈ span{x}cs. (1.1)

It is proved in [15, p. 77] that ‖µ‖ < 2− c whenever y ∈ Y satisfies |λ| > c.
We recall the construction of mappings ρ : Y → extX and τ : X → extY .

Given x ∈ extX, we denote by χ{x} the characteristic function of the set {x}.
The the upper envelope function hx = χ̂{x}, defined as

χ̂{x}(z) = inf{h(z) : h ∈ Ac(X), h > χ{x}} for z ∈ X,

is upper semicontinuous and affine (see [15, p. 73]), and thus strongly affine (see
[6, Theorem 1.6.1(ix)]). By [15, p. 77], for each y ∈ extY there is at most one
point x ∈ extX such that |T ∗∗hx(y)| > c. Let

Y ′ = {y ∈ extY : there exists x ∈ extX with |T ∗∗hx(y)| > c},

and let ρ : Y ′ → X be defined by the property that ρ(y) equals the unique point
x ∈ extX satisfying |T ∗∗hx(y)| > c.

Analogously, if

X ′ = {x ∈ extX : there exists y ∈ extY with |(T−1)∗∗hy(x)| > 1

2
},

then τ : X ′ → extY can be defined by the requirement that τ(x) is the unique
y ∈ extY satisfying |(T−1)∗∗hy(x)| > 1

2
.

Claim 2. For any x ∈ extX, T ∗∗hx ∈ Abf(Y ).

Proof of Claim 2. Since T : Ac(X) → Ac(Y ), we have T ∗ : spanY → spanX. If

f ∈ Ab(X) and f̃ is the linear extension of f to spanX, then T ∗∗f = f̃ ◦ T ∗.
Since ‖T‖ < 2,

T ∗Y ⊂ 2B(Ac(X))∗ = co(2X ∪ −2X).

The sets 2X and−2X are affinely homeomorphic toX, and hence f̃ is strongly
affine on both of them. By [78, Lemma 2.4(b)],

f̃ ∈ Abf(2B(Ac(X))∗) = Abf(co(2X ∪ −2X)).

Since Y is affinely homeomorphic to T ∗Y and T ∗∗f = f̃ ◦ T ∗, we obtain that
T ∗∗f ∈ Abf(Y ).
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Claim 3. The mappings ρ : Y ′ → extX and τ : X ′ → extY are surjective.

Proof of Claim 3. Let x ∈ extX be given and assume that |T ∗∗hx(y)| ≤ c for all
y ∈ extY . By Claims 1, 2 and Lemma 1.2.1, |T ∗∗hx| ≤ c on Y . Then

c ≥ ‖T ∗∗hx‖ > c‖hx‖ = c

gives a contradiction. Hence ρ is surjective.
Analogously, using the second part of Claim 1 we obtain that τ is surjective.

The following claim is essentially Lemma 6 of [15]. However, we recall its
proof since it uses Lemma 1.2.1.

Claim 4. We have X ′ = extX and Y ′ = extY and, for any x ∈ extX and
y ∈ extY , ρ(τ(x)) = x and τ(ρ(y)) = y.

Proof of Claim 4. We show that, for any y ∈ Y ′,

|(T−1)∗∗hy(ρ(y))| > 1

2
. (1.2)

Assuming |(T−1)∗∗hy(ρ(y))| ≤ 1
2
, Claim 2 and Lemma 1.2.1 yield

d = sup
x∈extX

|(T−1)∗∗hy(x)| = sup
x∈X
|(T−1)∗∗hy(x)| = ‖(T−1)∗∗hy‖.

By Lemma 1.2.1 and Claim 1, 1
2
< d. Since c > 1, we have d > d

c
. Let x′ ∈ extX

be chosen such that

|(T−1)∗∗hy(x
′)| > max{d

c
,
1

2
}.

By the assumption, |(T−1)∗∗hy(ρ(y))| ≤ 1
2
, and thus ρ(y) 6= x′.

By Claim 3 we can select y′ ∈ Y ′ with ρ(y′) = x′. Then y′ ∈ {y}cs, and thus
hy(y

′) = 0. If T ∗y′ = λ′x′ + µ′, λ′ ∈ R and µ′ ∈ span{x′}cs (see (1.1)), then

0 = hy(y
′) = (T−1)∗∗hy(T

∗y′) = (T−1)∗∗hy(λ
′x′) + (T−1)∗∗hy(µ

′). (1.3)

Since λ′ = T ∗∗hx′(y
′), it follows from the definition of ρ that |λ′| > c.

Using this, (1.3) and (1.1) along with the subsequent remark, we obtain

d < |λ′|d
c
< |λ′||(T−1)∗∗hy(x

′)|

= |(T−1)∗∗hy(λ
′x′)|

= |(T−1)∗∗hy(µ
′)|

≤ d‖µ′‖ < d(2− c) < d.

This contradiction yields the validity of (1.2).
Now, let x ∈ extX be given. We find y ∈ Y ′ with ρ(y) = x. It follows from

(1.2) that x ∈ X ′ and τ(x) = y. Hence X ′ = extX and τ(ρ(y)) = y for all y ∈ Y ′.
If y ∈ extY is given, let x ∈ extX be such that τ(x) = y. If y′ ∈ Y ′ satisfies

ρ(y′) = x, from the previous argument we obtain

y = τ(x) = τ(ρ(y′)) = y′.

Hence Y ′ = extY and it easily follows that ρ(τ(x)) = x for any x ∈ extX.

By the proof of Theorem 7 on p. 78 in [15], the mappings ρ and τ are contin-
uous (we point out that this part of the argument is valid for arbitrary compact
convex sets as mentioned in [15, p. 83]). This concludes the proof.
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2. Descriptive properties of
elements of biduals of Banach
spaces
(joint work with Jǐŕı Spurný)

2.1 Introduction and main results

If E is a (real or complex) Banach space, an element x∗∗ of its bidual may posses
interesting descriptive properties if x∗∗ is understood as a function on the dual
space endowed with the weak* topology. Since the dual unit ball BE∗ is weak*
compact, the set extBE∗ of its extreme points is nonempty and its weak* closed
convex hull is the whole unit ball. Hence one might expect that a behaviour of
x∗∗ on the set extBE∗ in some sense determines the behaviour of x∗∗ on BE∗ . The
aim of our paper is to substantiate this general idea by presenting several results
on transferring descriptive properties of x∗∗|extBE∗ to x∗∗|BE∗ . To formulate our
results precisely, we need to recall several notions.

Since the main results are mostly formulated for Banach spaces over real or
complex field, we need to work with vector spaces over both real and complex
numbers. So all the notions are considered, if not stated otherwise, with respect
to the field of complex numbers. All topological spaces are considered to be Ty-
chonoff (i.e., completely regular, see [20, p. 39]), in particular they are Hausdorff.

If K is a compact topological space, a positive Radon measure on K is a fi-
nite complete measure with values in [0,∞) defined at least on the σ-algebra of
all Borel sets that is inner regular with respect to compact sets (see [26, Defi-
nition 411H]). A signed or complex measure µ on X is a Radon measure if its
total variation |µ| is Radon. We often write µ(f) instead of

∫
f dµ. We denote

as M(K), M+(K) and M1(K) the set of all Radon measures, positive Radon
measures and probability Radon measures, respectively. Using the Riesz rep-
resentation theorem we view M(K) as the dual space to the space C(K) of all
continuous functions on K. Unless stated otherwise, we consider the spaceM(K)
endowed with the weak* topology. A function f : K → C is universally measur-
able if f is µ-measurable for every µ ∈ M(K). If F is a family of functions, we
write F b for the set of all bounded elements of F .

Let X be a compact convex subset of a locally convex space. Then any
measure µ ∈ M1(X) has its unique barycenter x ∈ X, i.e., the point x ∈ X
satisfying µ(f) = f(x) for each f ∈ Ac(X) (here Ac(X) stands for the space of all
continuous affine functions on X). We writeMx(X) for the set of all probability
measures with x as the barycenter. The mapping r : M1(X) → X assigning to
every probability measure on X its barycenter is a continuous affine surjection,
see [1, Proposition I.2.1] or [58, Proposition 2.38]. A function f : X → C is called
strongly affine (or a function satisfying the barycentric formula) if f is universally
measurable and µ(f) = f(r(µ)) for every µ ∈ M1(X). It is easy to deduce that
any strongly affine function is bounded (see e.g. [58, Lemma 4.5]).

If E is Banach space, BE∗ with the weak* topology is a compact convex set.
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We call an element f ∈ E∗∗ strongly affine if its restriction to BE∗ is a strongly
affine function. We also mention that a continuous affine function f on BE∗ ,
which satisfies f(0) = 0 and f(ix∗) = if(x∗) for x∗ ∈ BE∗ , is in fact an element
of E, i.e., there exists x ∈ E with f(x∗) = x∗(x) for x∗ ∈ BE∗ .

Further we need to recall descriptive classes of functions in topological spaces.
We follow the notation of [79]. If X is a Tychonoff topological space, a zero set in
X is an inverse image of a closed set in R under a continuous function f : X → R.
The complement of a zero set is a cozero set. A countable union of closed sets
is called an Fσ set, the complement of an Fσ set is a Gδ set. If X is normal, it
follows from Tietze’s theorem that a closed set is a zero set if and only if it is also
a Gδ set. We recall that Borel sets are members of the σ–algebra generated by
the family of all open subset of X and Baire sets are members of the σ–algebra
generated by the family of all cozero sets in X. We write Bos(X) and Bas(X)
for the algebras generated by open or cozero sets in X, respectively.

A set A ⊂ X is resolvable (or an H-set) if for any nonempty B ⊂ X (equiv-
alently, for any nonempty closed B ⊂ X) there exists a relatively open U ⊂ B
such that either U ⊂ A or U∩A = ∅. It is easy to see that the family Hs(X) of all
resolvable sets is an algebra, see e.g. [49, § 12, VI]. Let Σ2(Bas(X)), Σ2(Bos(X))
and Σ2(Hs(X)) denote countable unions of sets from the respective algebras.

Let Baf1(X) denote the family of all Σ2(Bas(X))-measurable function on X,
i.e., the functions f : X → C satisfying f−1(U) ∈ Σ2(Bas(X)) for all U ⊂ R
open. Analogously we define families Bof1(X) and Hf1(X).

Now we use pointwise limits to create higher hierarchies of functions. More
precisely, if Φ is a family of functions on X, we define Φ0 = Φ and, for each count-
able ordinal α, Φα consists of all pointwise limits of sequences from

⋃
β<α Φβ.

Starting the procedure with Baf1(X) and creating higher families Bafα(X) as
pointwise limits of sequences contained in

⋃
1≤β<α Bafβ(X), we obtain the hi-

erarchy of Baire measurable functions. Analogously we define, for α ∈ [1, ω1),
families Bofα(X) and Hfα(X) of Borel measurable functions and resolvably mea-
surable functions. (Theorem 5.2 in [79] explains the term ”measurability” in these
definitions.)

If we start the inductive process with the family Φ0 = Φ = C(X), we obtain the
families Cα(X) of Baire-α functions on X, α < ω1. Then the union

⋃
α<ω1

Cα(X)
is the family of all Baire functions. It is easy to see that C1(X) = Baf1(X) (see
Proposition 2.2.3) and thus Cα(X) = Bafα(X) for any α ∈ [1, ω1).

Now we can state our first result concerning a preservation of descriptive
properties. For separable Banach spaces and Baire functions, the results can be
obtained from [73, Corollaire 8].

Theorem 2.1.1. Let E be a (real or complex) Banach space and f ∈ E∗∗ be
strongly affine. Then,

• for α ∈ [1, ω1), f |extBE∗
∈ Hfα(extBE∗) if and only if f ∈ Hfα(BE∗),

• for α ∈ [1, ω1), f |extBE∗
∈ Bofα(extBE∗) if and only if f ∈ Bofα(BE∗),

• for α ∈ [0, ω1), f |extBE∗
∈ Cα(extBE∗) if and only if f ∈ Cα(BE∗).

We remark that the assumption of strong affinity is necessary because other-
wise the transfer of properties fails spectacularly. An example witnessing this
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phenomenon can be constructed as follows. Consider the real Banach space
E = C([0, 1]) and the function f :M([0, 1])→ R assigning to each µ ∈M([0, 1])
its continuous part evaluated at function 1. Then f is a weak* discontinuous
element of E∗∗ contained in C2(BM([0,1])) that vanishes on extBM([0,1]). (Details
can be found e.g. in [67, Chapter 14], [5, p. 1048] or [58, Proposition 2.63].)

The next theorem in a way extend results of F. Jellett in [40, Theorem].

Theorem 2.1.2. Let E be a (real or complex) Banach space such that extBE∗

is a Lindelöf set. Let f ∈ E∗∗ be a strongly affine element satisfying f |extBE∗ ∈
Cα(extBE∗) for some α ∈ [0, ω1). Then

f ∈

{
Cα+1(BE∗), α ∈ [0, ω0),

Cα(BE∗), α ∈ [ω0, ω1).

By assuming a stronger assumption on extBE∗ we may ensure the preservation
of all classes, including the finite ones.

Theorem 2.1.3. Let E be a (real or complex) Banach space such that extBE∗

is a resolvable Lindelöf set. Let f ∈ E∗∗ be a strongly affine element satisfying
f |extBE∗ ∈ Cα(extBE∗) for some α ∈ [1, ω1). Then f ∈ Cα(BE∗).

We remark that the shift of classes may really occur without the assumption
of resolvability as it is witnessed by Example 2.8.1. One may also ask whether
results analogous to the ones of Theorems 2.1.2 and 2.1.3 remain true for functions
from classes Bofα and Hfα. Examples 2.8.2 and 2.8.3 show that this is not the
case.

Further we observe that, for a separable space E, the topological condition
imposed on extBE∗ in Theorem 2.1.3 is equivalent with the requirement that
extBE∗ is a set of type Fσ. This can be seen from the following two facts: a
subset of a compact metrizable space is a resolvable set if and only if it is both
of type Fσ and Gδ (use [49, § 30, X] and the Baire category theorem); the set of
extreme points in a metrizable compact convex set is of type Gδ (see [1, Corollary
I.4.4] or [58, Proposition 3.43]).

We also point out that the topological assumption in Theorem 2.1.3 is satisfied
provided extBE∗ is an Fσ set. To see this, we first notice that extBE∗ is then
a Lindelöf space. Second, we need to check that extBE∗ is a resolvable set in
BE∗ . To this end, assume that F ⊂ BE∗ is a nonempty closed set such that both
F ∩ extBE∗ and F \ extBE∗ are dense in F . By [84, Théorème 2], we can write

extBE∗ =
∞⋂
n=1

(Hn ∪ Vn),

where Hn ⊂ BE∗ is closed and Vn ⊂ BE∗ is open, n ∈ N. Thus both F \ extBE∗

and F ∩ extBE∗ are comeager disjoint sets in F , in contradiction with the Baire
category theorem. Hence extBE∗ is a resolvable set.

For a particular class of Banach spaces, namely the L1-preduals, one can
obtain some information on the affine class of a function from its descriptive class
(we recall that a Banach space E is an L1-predual if E∗ is isometric to some space
L1(µ); see [41, p. 59], [51, Chapter 7] or [31, Section II.5]). Affine classes Aα(X),
α < ω1, of functions on a compact convex set X are created inductively from
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A0(X) = Ac(X) (see [11] or [58, Definition 5.37]). We also remark that a pointwise
convergent sequence of affine functions on X is uniformly bounded which easily
follows from the uniform boundedness principle (see e.g. [58, Lemma 5.36]), and
thus any function in

⋃
α<ω1

Aα(X) is strongly affine. If X = BE∗ is the dual unit
ball of a Banach space E, the affine classes are termed intrinsic Baire classes of
E in [5, p. 1047] whereas strongly affine Baire functions on X creates hierarchy
of Baire classes of E. Theorem 2.1.4 relates these classes for real L1-preduals.

We recall that, given a compact convex set X in a real locally convex space,
the real Banach space Ac(X) is an L1-predual if and only if X is a simplex, i.e., if
for any x ∈ X there exists a unique maximal measure δx ∈M1(X) with r(δx) = x
(see [25, Theorem 3.2 and Proposition 3.23]).

(A measure µ ∈ M+(X) is maximal if µ is maximal with respect to the
Choquet ordering, i.e., µ fulfils the following condition: if a measure ν ∈M+(X)
satisfies µ(k) ≤ ν(k) for any convex continuous function k on X, then µ = ν.
We refer the reader to [1, Chapter I ,§ 3] or [58, Section 3.6] for information on
maximal measures.)

Theorem 2.1.4. Let E be a real L1-predual and f ∈ E∗∗ be a strongly affine
function such that f ∈ Cα(BE∗) for some α ∈ [2, ω1). Then

f ∈

{
Aα+1(BE∗), α ∈ [2, ω0),

Aα(BE∗), α ∈ [ω0, ω1).

If, moreover, extBE∗ is a Lindelöf resolvable set, then f ∈ Aα(BE∗).

Let us point out that, for any Banach space E and a strongly affine function
f ∈ E∗∗ satisfying f ∈ C1(BE∗), we have f ∈ A1(BE∗). This follows from [69,
Théorème 80] (see also [5, Theorem II.1.2] or [58, Theorem 4.24]). For higher
Baire classes, there is a big gap between affine and Baire classes which is an
assertion substantiated by M. Talagrand’s example [85, Theorem] where he con-
structed a separable Banach space E and a strongly affine function f ∈ E∗∗ that
is in C2(BE∗) and not contained in

⋃
α<ω1

Aα(BE∗). Further, [78, Theorem 1.1]
shows that the shift of classes in Theorem 2.1.4 for finite ordinals may occur even
for separable L1-preduals.

The strategy of the proofs of our main results is to reduce firstly the problem
to the case of real Banach spaces and then to consider the dual unit ball with
the weak* topology as a compact convex subset of a real locally convex space.
Elements of the bidual are then bounded affine functions on the dual unit ball.
The key results of Sections 2.3–2.6 are thus formulated for this setting. The proof
of Theorem 2.1.4 is moreover based upon a result of W. Lusky stating that any
real L1-predual is complemented in a simplex space (i.e., a space of type Ac(X)
for a simplex X) and thus our above mentioned technique can be used only for
real L1-preduals. Since it is not clear whether Lusky’s result remains true for
complex L1-preduals, the validity of Theorem 2.1.4 for complex spaces remains
open.

The content of our paper is the following. The second section provides a
more detailed information on descriptive classes of sets and functions. Then we
prepare a proof of Theorem 2.1.1 in Section 2.3. Results necessary for dealing
with Lindelöf sets of extreme points are collected in Section 2.4. They are used
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in Sections 2.5 and 2.6, which prepares ground for the proof of Theorems 2.1.2
and 2.1.3. All Sections 2.3–2.6 deal within the context of real spaces. Section 2.7
proves by means of prepared results the theorems stated in the introduction. The
last Section 2.8 constructs spaces witnessing some natural bounds of our positive
results.

When citing references, we try to include several sources to help the reader
with finding relevant results.

2.2 Descriptive classes of sets and functions

We recall that, for a Tychonoff space X, Bas(X), Bos(X) and Hs(X) denote the
algebras generated by cozero sets, open sets and resolvable sets in X, respectively.
These algebras serve as a starting point of an inductive definition of descriptive
classes of sets as was indicated in Section 2.1. More precisely, if F is any of
the families above, Σ2(F) consists of all countable unions of sets from F and
Π2(F) of all countable intersections of sets from F . Proceeding inductively, for
any α ∈ (2, ω1) we let Σα(F) to be made of all countable unions of sets from⋃

1≤β<α Πβ(F) and Πα(F) is made of all countable intersections of sets from⋃
1≤β<α Σβ(F). The family Πα(F) ∩ Σα(F) is denoted as ∆α(F). The union of

all created additive (or multiplicative) classes is then the σ-algebra generated by
F .

(These classes and their analogues were studied by several authors, see e.g.
[30], [68], [36] or [35]. We describe in [79, Remark 3.5] their relations to our
descriptive classes. We refer the reader to [35] for a recent survey on descriptive
set theory in nonseparable and nonmetrizable spaces.)

In case X is metrizable, all the resulting classes coincide (see [79, Propo-
sition 3.4]). These classes characterize in terms of measurability the classes
Bafα(X), Bofα(X) and Hfα(X) defined in the introduction. (We recall that a
mapping f : X → C is called F-measurable if f−1(U) ∈ F for every U ⊂ C open.)
Precisely, it is proved in [79, Theorem 5.2] that given a function f : X → C on a
Tychonoff space X and α ∈ [1, ω1), we have

• f ∈ Bafα(X) if and only if f is Σα+1(Bas(X))–measurable.

• f ∈ Bofα(X) if and only if f is Σα+1(Bos(X))–measurable.

• f ∈ Hfα(X) if and only if f is Σα+1(Hs(X))–measurable.

It follows easily from this characterization that all the classes Bafα(X), Bofα(X)
and Hfα(X) are stable with respect to algebraic operations and uniform conver-
gence (see [58, Theorem 5.10]). Also, a function f is measurable with respect to
the σ-algebra generated by Hs if and only if f belongs to some class Hfα. Anal-
ogous assertions hold true for the algebras Bos and Bas. Thus

⋃
α<ω1

Cα(X) =⋃
α<ω1

Bafα(X) is the family of all functions measurable with respect to the σ-
algebra of Baire sets.

The following characterization of functions from Hf1 follows from the defini-
tion and results of G. Koumoullis in [47, Theorem 2.3].

Proposition 2.2.1. For a function f : K → C on a compact space K, the
following assertions are equivalent:
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(i) f ∈ Hf1(K),

(ii) f |F has a point of continuity for every nonempty closed F ⊂ K (i.e., f has
the point of continuity property),

(iii) for each ε > 0 and nonempty F ⊂ K there exists a relatively open nonempty
set U ⊂ F such that diam f(U) < ε (f is fragmented).

Next we need to recall a characterization of resolvable sets that asserts that
a subset H of a topological space X is resolvable if and only if there exist an
ordinal κ and an increasing sequence of open sets ∅ = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂
Uγ ⊂ · · · ⊂ Uκ = X and I ⊂ [0, κ) such that, for a limit ordinal γ ∈ [0, κ], we
have

⋃
{Uλ : λ < γ} = Uγ and H =

⋃
{Uγ+1 \ Uγ : γ ∈ I} (see [37, Section 2]

and references therein). We call such a transfinite sequence of open sets regular
and such a description of a resolvable set a regular representation (this notion
of regular representation is slightly more useful for us than the one used in [37,
Section 2]).

A family U of subsets of a topological space X is scattered if it is disjoint and
for each nonempty V ⊂ U there is some V ∈ V relatively open in

⋃
V . If (Uγ)γ≤κ

is a regular sequence, then {Uγ+1 \ Uγ : γ < κ} is a scattered partition of X.
It is not difficult to deduce that a scattered union of resolvable sets is again

a resolvable set. (Indeed, let {Hi : i ∈ I} be a scattered family of resolvable sets.
By [36, Fact 4], each Hi is a union of a scattered family Hi of sets in Bos(X).
By [30, Lemma 2.2(c)], the family

⋃
i∈I Hi is scattered, and thus again by [36,

Fact 4], the set
⋃
i∈I Hi is resolvable.)

We will also need a fact that any resolvable subset of a compact space is
universally measurable (see [47, Lemma 4.4]).

The following fact will be used in the proof of Theorem 2.6.4.

Proposition 2.2.2. Let α ∈ [2, ω1) and (Uγ)γ≤κ be a regular sequence in a Ty-
chonoff space X. Let A ⊂ X be such that A∩(Uγ+1 \Uγ) ∈ Σα(Hs(Uγ+1 \Uγ)) for
each γ < κ (or A∩(Uγ+1\Uγ) ∈ Πα(Hs(Uγ+1\Uγ)), γ < κ). Then A ∈ Σα(Hs(X))
(or A ∈ Πα(Hs(X))).

Proof. If α = 2, the assertion for the additive class follows from the fact men-
tioned above that a scattered union of resolvable sets is again a resolvable sets.
By taking complements we obtain the assertion for Π2(Hs). A straightforward
transfinite induction then concludes the proof.

For the sake of completeness, we include a proof of an easy observation men-
tioned in the introduction.

Proposition 2.2.3. If X is a Tychonoff space, C1(X) = Baf1(X).

Proof. If f ∈ C1(X), a straightforward reasoning gives f ∈ Baf1(X). On the
other hand, if f ∈ Baf1(X), it is enough to assume that f is real-valued. If f
is moreover bounded, a standard procedure (see e.g. [58, Lemma 5.7]) provides
a uniform approximation by a sequence of simple functions, i.e., functions of the
form

∑n
i=1 ciχAi , where c1, . . . , cn ∈ R and {A1, . . . , An} is a disjoint cover of X

such that each Ai is a countable unions of zero sets. A moment’s reflection reveals
that any such function is in C1(X). Hence f ∈ C1(X) as well.
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If f is unbounded, we take a homeomorphism ϕ : R → (0, 1) and apply the
procedure above to ϕ ◦ f ∈ Baf1(X) to infer ϕ ◦ f ∈ C1(X). We can then arrange
an approximating sequence (fn) of continuous functions on X in such a way that
0 < fn < 1, n ∈ N. Then ϕ−1 ◦ fn → f , and f ∈ C1(X).

2.3 Transfer of descriptive properties from extX

to X

Throughout this section we work with real spaces. The main result is Theo-
rem 2.3.4 on transferring descriptive properties of strongly affine functions from
the closure of the set of extreme points.

Lemma 2.3.1. Let K be a compact space and H a universally measurable subset
of K. Let H̃ : M1(K)→ R be defined as H̃(µ) = µ(H), µ ∈M1(K). Then

• H̃ ∈ Hf1(M1(K)) if H ∈ Hs(K),

• H̃ ∈ Bof1(M1(K)) if H ∈ Bos(K).

Proof. We first assume that H is a resolvable set. We select a regular sequence
(Uγ)γ≤κ which provides a regular representation of H as mentioned in Section 2.2.
We prove by transfinite induction that, for every γ ≤ κ, the function µ 7→ µ(H ∩
Uγ) is in Hf1(M1(K)).

The statement holds trivially for γ = 0.
We suppose now that γ ≤ κ is of the form γ = δ + 1 and the claim is valid

for δ. Then, for every µ ∈M1(K), we have

µ(H ∩ Uγ) = µ(H ∩ Uδ) + µ(H ∩ (Uδ+1 \ Uδ)).

The second summand is either equal to 0 or µ(Uδ+1)− µ(Uδ). Since the function
µ 7→ µ(U) is lower semicontinuous on M1(K) for every open set U ⊂ K, it
follows e.g. from [47, Theorem 2.3] that the function µ 7→ µ(Uδ+1)− µ(Uδ) is in
Hf1(M1(K)).

The function µ→ µ(H ∩Uδ) is in Hf1(M1(K)) due to the induction hypothe-
sis. Thus µ 7→ µ(H), as a sum of two functions in Hf1(M1(K)), is in Hf1(M1(K))
as well.

Assume now that γ ≤ κ is a limit ordinal and the statement holds for each
ordinal smaller than γ. Let f̃(µ) = µ(H∩Uγ), µ ∈M1(K). By Proposition 2.2.1,

it is sufficient to show that f̃ is fragmented. Let M ⊂M1(K) be nonempty and
ε > 0. Let

s = sup{µ(Uγ) : µ ∈M}

and let µ0 ∈ M be chosen such that µ0(Uγ) > s − ε
4
. By the regularity of µ0,

there exists δ < γ with µ0(Uδ) > s− ε
4
. Then the set

V = {µ ∈M1(K) : µ(Uδ) > s− ε

4
}

is an open neighborhood of µ0.
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Let h̃ : M1(K) → R be defined as h̃(µ) = µ(H ∩ Uδ). Then for µ ∈ M ∩ V
we have

|h̃(µ)− f̃(µ)| = |µ(H ∩ Uδ)− µ(H ∩ Uγ)| ≤ |µ(Uγ \ Uδ)| ≤ s− (s− ε

4
) =

ε

4
,

and, by the induction hypothesis, h̃ is in Hf1(M1(K)) which means that h̃ is
fragmented.

Thus there exists an open set W ⊂ M1(K) intersecting M ∩ V such that

diam h̃(M ∩ V ∩W ) < ε
4
. Then we have for µ1, µ2 ∈M ∩ V ∩W estimate

|f̃(µ1)− f̃(µ2)| ≤ |f̃(µ1)− h̃(µ1)|+ |h̃(µ1)− h̃(µ2)|+ |h̃(µ2)− f̃(µ2)| ≤ 3

4
ε.

Hence diam f̃(M ∩ V ∩W ) < ε and f̃ is fragmented. This proves the claim as
well as the proof of the first assertion (taking γ = κ).

Assume now that H ∈ Bos(K). Then H can be written as a finite disjoint
union of differences of closed sets (see e.g. [58, Lemma 5.12]), i.e., H =

⋃n
i=1Ei \

Fi, where Fi ⊂ Ei are closed and the family {E1\F1, . . . , En\Fn} is disjoint. Then
the function µ 7→ µ(Ei \ Fi), as a difference of a couple of upper semicontinuous
functions on M1(K), is in Bof1(M1(K)) for each pair Ei, Fi.

Hence µ 7→ µ(H), µ ∈ M1(K), is a finite sum of functions contained in
Bof1(M1(K)), and thus contained in Bof1(M1(K)).

Lemma 2.3.2. Let K be a compact space, f : K → R a bounded universally
measurable function and let f̃ : M1(K) → R be defined as f̃(µ) = µ(f), µ ∈
M1(K). Then

• f̃ ∈ Hf1(M1(K)) if f ∈ Hf1(K),

• f̃ ∈ Bof1(M1(K)) if f ∈ Bof1(K).

Proof. We begin with the proof for f ∈ Hf1(K). First, if f = χA is the character-
istic function of a set A ∈ ∆2(Hs(K)), we write A =

⋃
nAn, where A1 ⊂ A2 ⊂ · · ·

are sets in Hs(K). If c ∈ R is given, we have from Lemma 2.3.1 that

{µ ∈M1(K) : f̃(µ) > c} =
∞⋃
n=1

{µ ∈M1(K) : µ(An) > c} ∈ Σ2(Hs(K)).

On the other hand, K \ A ∈ Σ2(Hs(K)) and hence it follows from the previous
reasoning that

{µ ∈M1(K) : f̃(µ) < c} = {µ ∈M1(K) : µ(K \ A) > 1− c} ∈ Σ2(Hs(K)).

We conclude that a function f̃ is Σ2(Hs(M1(K)))-measurable and hence f̃ ∈
Hf1(M1(K)).

If f ∈ Hf1(K) is bounded, it can be uniformly approximated by simple func-
tions in Hf1(K), i.e., functions of the form

∑n
i=1 ciχAi , provided A1, . . . , An ∈

∆2(Hs(K)) are pairwise disjoint and c1, . . . , cn ∈ R (this standard procedure can

be found e.g. in [58, Lemma 5.7]). Hence f̃ can be uniformly approximated by

functions in Hf1(M1(K)), and thus f̃ ∈ Hf1(M1(K)).
The proof for f ∈ Bof1(K) would proceed in a similar fashion.
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Lemma 2.3.3. Let K be a compact space and f : K → R be a bounded uni-
versally measurable function. Let f̃ : M1(K) → R be defined as f̃(µ) = µ(f),
µ ∈M1(K). Then,

(a) for α ∈ [1, ω1), f ∈ Hfα(K) if and only if f̃ ∈ Hfα(M1(K)),

(b) for α ∈ [1, ω1), f ∈ Bofα(K) if and only if f̃ ∈ Bofα(M1(K)),

(c) for α ∈ [0, ω1), f ∈ Cα(K) if and only if f̃ ∈ Cα(M1(K)).

Proof. The ”if” parts of the proof easily follows from the fact f = f̃ ◦ φ where
φ : K → M1(K) sending a point x ∈ K to the Dirac measure εx at x is a
homeomorphic embedding.

The proof of ”only if” part will be given by transfinite induction. If α = 1
in (a) and (b), the assertion follows from Lemma 2.3.2, the case α = 0 in (c) is
obvious.

The assertions for higher ordinals α now follows by a straightforward induc-
tion.

As we mentioned in the introduction, the following theorem is a generalization
of [73, Corollaire 8].

Theorem 2.3.4. Let X be a compact convex set and f : X → R be a strongly
affine function. Then,

• for α ∈ [1, ω1), f |extX ∈ Hfα(extX) if and only if f ∈ Hfα(X),

• for α ∈ [1, ω1), f |extX ∈ Bofα(extX) if and only if f ∈ Bofα(X),

• for α ∈ [0, ω1), f |extX ∈ Cα(extX) if and only if f ∈ Cα(X).

Proof. It is easy to realize that all the families Hfα, Bofα and Cα are preserved
by making restrictions to subspaces of X. This observation gives the ”if” parts
of the proof.

For the proof of the ”only if” parts, let f : X → R be a strongly affine function
with f |extX ∈ F(extX) where F is any of the classes Hfα, Bofα or Cα. Then the
function g̃ :M1(extX)→ R defined as

g̃(µ) = µ(f), µ ∈M1(extX),

is in F(M1(extX)) by Lemma 2.3.3.
The mapping r :M1(extX)→ X, which assigns µ ∈M1(extX) its barycen-

ter r(µ) ∈ X, is a continuous surjection of the compact spaceM1(extX) onto X
(see [1, Proposition I.4.6 and Theorem I.4.8] or [58, Theorem 3.65 and Proposi-
tion 3.64]).

From the strong affinity of f we have g̃ = f ◦ r. Now we use the fact that
g̃ ∈ F(M1(extX)) if and only if f ∈ F(X). This fact can be found in [70,
Theorem 5.9.13] and [58, Theorem 5.26] for classes Cα, and in [37, Theorems 4
and 10] for classes Bofα and Hfα (see also [58, Theorem 5.26]). Thus the function
f is in F(X).
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2.4 Auxiliary result on compact convex sets with

extX being Lindelöf

Throughout this section we work with spaces over the field of real numbers. We
aim for the proof of Proposition 2.4.8 which is a fact used both in Section 2.5
and 2.6. We recall that a topological space X is K-analytic if it is an image
of a Polish space under an upper semicontinuous compact-valued map (see [70,
Section 2.1]).

Lemma 2.4.1. Let ϕ : X → Y be a continuous surjection of a K-analytic space
X onto a K-analytic space Y and let g : Y → R. Then g is a Baire function on
Y if and only if g ◦ ϕ is a Baire function on X.

Proof. If g is a Baire function Y , then g ◦ ϕ is clearly a Baire function on X.
Conversely, if f = g ◦ ϕ is a Baire function on X and U ⊂ R is an open set, then
both f−1(U) and f−1(R \ U) are Baire sets in X. Then they are K-analytic sets
in X (see [70, Section 2]), and thus

g−1(U) = ϕ(f−1(U)), g−1(R \ U) = ϕ(f−1(R \ U))

are K-analytic as well. It follows from the proof of the standard separation
theorem (see [70, Theorem 3.3.1]) that they are Baire sets. Hence g is measurable
with respect to the σ-algebra of Baire sets, and thus it is a Baire function.

Lemma 2.4.2. Let B be a Lindelöf subset of a compact space X and f be a
bounded continuous function on B. Then there exists a bounded Baire function
on X extending f .

Proof. Without loss of generality, let 0 ≤ f ≤ 1. If

h(x) =


f(x), x ∈ B,
lim supy→x,y∈B f(y), x ∈ B \B,
0, x ∈ X \B,

then h is an upper semicontinuous function on X. Hence

h = inf{a ∈ C(X) : h ≤ a ≤ 1}.

By the Lindelöf property of B and the continuity of the function f (see [58,
Lemma A.54]), there exists a countable family {an : n ∈ N} of functions with
h ≤ an ≤ 1, n ∈ N, such that f = inf{an : n ∈ N} on B. Then

g = inf{an : n ∈ N}

is a Baire function on X with values in [0, 1] extending f .

Lemma 2.4.3. Let f : X → R be a strongly affine function on a compact convex
set X for which there exists a Baire set B ⊃ extX such that f |B is a Baire
function. Then f is a Baire function on X.
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Proof. Let B ⊃ extX and f : X → R be as in the hypothesis. Let

M = {µ ∈M1(X) : µ(B) = 1}.

Since the characteristic function of B is a Baire function, the function B̃(µ) =
µ(B), µ ∈M1(X), is a Baire function onM1(X) as well by Lemma 2.3.3(c), and

thus M = {µ ∈ M1(X) : B̃(µ) = 1} is a Baire and consequently K-analytic set
in M1(X).

Since f |B is a Baire function on B, it extends to a bounded Baire function g
on X by Lemma 2.4.2 and transfinite induction. Then

g̃(µ) = µ(g), µ ∈M1(X),

is a Baire function on M1(X) by Lemma 2.3.3(c).

Further, the function f̃ : M → R defined as

f̃(µ) = µ(f), µ ∈M,

coincides on M with g̃. Hence f̃ is a Baire function on M .
Then r : M → X is a continuous surjective mapping satisfying f̃ = f ◦ r

(see [1, Corollary I.4.12 and the subsequent remark] or [58, Theorem 3.79]). By
Lemma 2.4.1, f is a Baire function.

Lemma 2.4.4. Let X be a compact convex set with extX Lindelöf, µ ∈M1(X)
be maximal and B ⊃ extX be µ-measurable. Then µ(B) = 1.

Proof. Given B ⊃ extX and maximal measure µ ∈M1(X), by the regularity of
µ it is enough to show that µ(K) = 0 for every K ⊂ X \B compact. Given such
a set K, for every x ∈ extX we select a closed neighborhood Ux of x disjoint from
K. By the Lindelöf property we choose a countable set {xn : n ∈ N} ⊂ extX
with extX ⊂

⋃
Uxn . By Corollary I.4.12 and the subsequent remark in [1] (see

also [58, Theorem 3.79]), µ(
⋃
Uxn) = 1. Hence µ(K) = 0, which concludes the

proof.

Lemma 2.4.5. Let X be a compact convex set with extX Lindelöf and f ∈
Cb(extX). Then there exist a decreasing sequence (un) of continuous concave
functions on X and an increasing sequence (ln) of continuous convex functions
on X such that

inf f(extX) ≤ inf l1(X), supu1(X) ≤ sup f(extX),

and
un ↘ f, ln ↗ f on extX.

Proof. Without loss of generality we may assume that

0 ≤ i = inf f(extX) ≤ sup f(extX) = s ≤ 1.

We construct a decreasing sequence (un) of continuous concave functions on X
with values in [0, 1] such that un ↘ f on extX. To achieve this, we define
h : extX → [0, 1] as

h(x) =

{
f(x), x ∈ extX,

lim supy→x,y∈extX f(y), x ∈ extX \ extX.
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Then h is upper semicontinuous on extX and the function

h∗ = inf{a ∈ Ac(X) : a ≥ f on extX}

satisfies h = h∗ = f on extX by [1, Proposition I.4.1] (see also [58, Theo-
rem 3.24]). Hence

f = inf{a ∈ Ac(X) : a ≥ f on extX} on extX.

Since extX is a Lindelöf space, there exists a countable family H = {hn : n ∈ N}
of functions in Ac(X) majorizing f on extX such that f = infH on extX (see
[40, Lemma] or [58, Lemma A.54]). Then we obtain the desired sequence by
setting

u1 = s ∧ h1, u2 = s ∧ h1 ∧ · · · ∧ hn, . . . , n ∈ N.

Analogously we obtain an increasing sequence (ln) of convex continuous functions
converging to f on extX.

Lemma 2.4.6. Let X be a compact convex set with extX Lindelöf and let f ∈
Cα(extX) have values in [0, 1]. Then there exist a Baire set B ⊃ extX and a
function g ∈ Cα(B) such that

• g = f on extX,

• 0 ≤ g ≤ 1 on B, and

• g(r(µ)) = µ(g) for any µ ∈M1(X) satisfying µ(B) = 1 and r(µ) ∈ B.

Proof. We proceed by transfinite induction on the class of a function f .
Assume first that f is continuous on extX. Using Lemma 2.4.5 we find

relevant sequences (un) and (ln), and define u = infn∈N un, l = supn∈N ln. Then
we observe that l ≤ u by the minimum principle (see [1, Theorem I.5.3] or [58,
Theorem 3.16], both functions are Baire, u is upper semicontinuous concave and
l is lower semicontinuous convex. Let

B = {x ∈ X : u(x) = l(x)} and g(x) = u(x), x ∈ B.

Then B is a Baire set containing extX and, for x ∈ B and µ ∈ Mx(X) with
µ(B) = 1, we have by [58, Proposition 4.7]

g(x) = u(x) ≥ µ(u) = µ(l) ≥ l(x) = g(x).

Since g is continuous on B, the proof is finished for the case α = 0.
Assume now that the claim holds true for all β smaller then some countable

ordinal α. Given f ∈ Cα(extX) with values in [0, 1], let (fn) be a sequence of
functions with fn ∈ Cαn(extX) for some αn < α, n ∈ N, such that fn → f .
Without loss of generality we may assume that all functions fn have values in
[0, 1]. For each n ∈ N, we use the induction hypothesis and find a Baire set
Bn ⊃ extX along with a function gn ∈ Cαn(Bn) with values in [0, 1] that coincides
with fn on extX and satisfies gn(r(µ)) = µ(gn) for any µ ∈ M1(X) satisfying
µ(Bn) = 1 and r(µ) ∈ Bn.
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We set

B = {x ∈
∞⋂
n=1

Bn : (gn(x)) converges} and g(x) = lim
n→∞

gn(x), x ∈ B.

Then B is Baire set containing extX, g ∈ Cα(B) with values in [0, 1],

gn(x) = fn(x)→ f(x) for every x ∈ extX,

and, for x ∈ B and µ ∈Mx(X) with µ(B) = 1,

g(x) = lim
n→∞

gn(x) = lim
n→∞

µ(gn) = µ(g).

This finishes the proof.

Lemma 2.4.7. Let X be a compact convex set with extX Lindelöf and let
f : X → R be a strongly affine function such that f |extX ∈ Cα(extX). Then
there exists a Baire set B ⊃ extX such that f ∈ Cα(B).

Proof. Given a function f as in the hypothesis, we assume without loss of gener-
ality that 0 ≤ f ≤ 1. Using Lemma 2.4.6 we find a Baire set B ⊃ extX together
with a function g ∈ Cα(B) with values in [0, 1] such that g = f on extX and
g(x) = µ(g) for each x ∈ B and µ ∈Mx(X) with µ(B) = 1.

We claim that f = g on B. To verify this, pick x ∈ B and a maximal measure
µ ∈Mx(X). Then µ is supported by B and f = g µ-almost everywhere. (Indeed,
the set {y ∈ X : f(y) = g(y)} is µ-measurable and contains extX. The assertion
thus follows from Lemma 2.4.4.) Hence

g(x) = µ(g) = µ(f) = f(x),

where the last equality follows from the strong affinity of f . This concludes the
proof.

Proposition 2.4.8. Let X be a compact convex set with extX Lindelöf and let
f : X → R be a strongly affine function such that f |extX is Baire. Then f is a
Baire function on X.

Proof. The assertion follows from Lemmas 2.4.7 and 2.4.3.

2.5 Transfer of descriptive properties on compact

convex sets with extX being Lindelöf

The notions in this section are considered with respect to real numbers. The fol-
lowing key factorization result uses a method of a metrizable reduction available
for Baire functions that can be found e.g. in [11], [70, Theorem 5.9.13], [86, Theo-
rem 1], [7] or [58, Theorem 9.12]. The main result in this section, Theorem 2.5.2,
is then consequences of a selection theorem by M. Talagrand (see [83]).
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Lemma 2.5.1. Let X be a compact convex set with extX Lindelöf and let f :
X → R be strongly affine such that f |extX ∈ Cα(extX) for some α ∈ [1, ω1). Then
there exist a metrizable compact convex set Y , an affine surjection ϕ : X → Y , a
strongly affine Baire function f̃ : Y → R and g̃ ∈ Cbα(extY ) such that

g̃(ϕ(x)) = f(x), x ∈ extX ∩ ϕ−1(extY ),

and
f(x) = f̃(ϕ(x)), x ∈ X.

Proof. Given a function f as in the premise, we may assume without loss of
generality that 0 ≤ f ≤ 1. Let F = {gn : n ∈ N} ⊂ C(extX) be a countable
family of functions with values in [0, 1] satisfying f ∈ Fα.

For a fixed index n ∈ N, using Lemma 2.4.5 we select finite families Ukn and
Lkn, k ∈ N, of functions in Ac(X) with values in [0, 1] such that, for

ukn = inf Ukn , lkn = supLkn,

we have

• limk→∞ l
k
n(x) = limk→∞ u

k
n = gn(x) for each x ∈ extX,

• (lkn)∞k=1 is increasing and (ukn)∞k=1 is decreasing.

Further, by Proposition 2.4.8, f is a Baire function on X, say of class β. Let
F ′ = {hn : n ∈ N} ⊂ C(X) be a countable family satisfying f ∈ (F ′)β. For any
n, k ∈ N, by [1, Proposition I.1.1] (or [58, Proposition 3.11]) there exist finite
families Vkn,Wk

n ⊂ Ac(X) such that, for vkn = inf Vkn, wkn = supWk
n, we have

‖hn − (vkn + wkn)‖ < 1

k
.

By setting G = {vkn, wkn : n, k ∈ N}, we obtain a family satisfying f ∈ Gβ.
We set

Φ =
⋃
n,k∈N

(
Ukn ∪ Lkn ∪ Vkn ∪Wk

n

)
and define ϕ : X → RN as

ϕ(x) = (φ(x))φ∈Φ , x ∈ X.

Then Y = ϕ(X) is a metrizable compact convex set and, for each φ ∈ Φ, there

exists φ̃ ∈ Ac(Y ) with φ̃ ◦ ϕ = φ.

For fixed n, k ∈ N, let Ũkn ⊂ Ac(Y ) be such that

Ukn =
{
ũ ◦ ϕ : ũ ∈ Ũkn

}
.

Analogously we pick L̃kn, Ṽkn and W̃k
n in Ac(Y ). Then

ũkn = inf Ũkn , l̃kn = sup L̃kn, ṽkn = inf Ṽkn and w̃kn = sup W̃k
n

satisfy
ũkn ◦ ϕ = ukn, l̃

k
n ◦ ϕ = lkn, ṽ

k
n ◦ ϕ = vkn and w̃kn ◦ ϕ = wkn.
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Given y ∈ extY , we select x ∈ extX ∩ ϕ−1(y). Then

lim
k→∞

ũkn(y) = lim
k→∞

ũkn(ϕ(x)) = lim
k→∞

ukn(x) = gn(x), and

lim
k→∞

l̃kn(y) = lim
k→∞

l̃kn(ϕ(x)) = lim
k→∞

lkn(x) = gn(x).

Thus (ũkn)∞k=1 is a decreasing sequence on extY , (l̃kn)∞k=1 is increasing on extY and
both converge to a common limit g̃n : extY → R given by

g̃n(y) = lim
k→∞

ũkn(y), y ∈ extY,

which is a continuous function on extY with values in [0, 1].
Thus, for every n ∈ N, there exists a function g̃n ∈ Cb(extY ) satisfying

g̃n ◦ ϕ = gn on extX ∩ ϕ−1(extY ). Let F̃ = {g̃n : n ∈ N}.
Now we claim that, for each γ ∈ [0, α] and h ∈ Fγ, there exists h̃ ∈ F̃γ such

that h = h̃ ◦ ϕ on extX ∩ ϕ−1(extY ). To verify this, we proceed by transfinite
induction. The claim is obvious for γ = 0. Assume that it holds for all γ′ < γ
for some γ ≤ α and that we are given h ∈ Fγ. Let γn < γ and hn ∈ Fγn , n ∈ N,

be such that h = limhn. By the inductive assumption, there exist h̃n ∈ F̃γn
satisfying hn = h̃n◦ϕ on extX∩ϕ−1(extY ). Then the sequence (h̃n(y)) converges

for every point y ∈ extY . Hence we may define a function h̃ ∈ F̃γ by

h̃(y) = lim
n→∞

h̃n(y), y ∈ extY,

and then, for every y ∈ extY and x ∈ ϕ−1(y) ∩ extX,

h̃(y) = lim
n→∞

h̃n(y) = lim
n→∞

hn(x) = h(x).

This proves the claim.
It follows from the claim that there exists a function g̃ ∈ Cα(extY ) such that

g̃(ϕ(x)) = f(x), x ∈ extX ∩ ϕ−1(extY ).

Analogously, let G̃ be the family satisfying

G = {z̃ ◦ ϕ : z̃ ∈ G̃}.

Then, for each γ ∈ [0, β] and a function h ∈ Gγ, it follows as above that there

exists a function h̃ ∈ G̃γ satisfying h = h̃ ◦ ϕ. Hence there exists a function

f̃ ∈ (G̃)β satisfying f = f̃ ◦ ϕ. Obviously, f̃ is a Baire function and, moreover, it
is strongly affine by [75, Proposition 3.2] (see also [58, Proposition 5.29]). This
concludes the proof.

Theorem 2.5.2. Let X be a compact convex set with extX Lindelöf and f :
X → R be a strongly affine function. If f |extX ∈ Cα(extX), then

f ∈

{
Cα+1(X), α ∈ [0, ω0),

Cα(X), α ∈ [ω0, ω1).
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Proof. Let f be a strongly affine function f whose restriction to extX is of Baire
class α. If α = 0, i.e., f is continuous and bounded on extX, Lemma 2.4.5
provides the relevant sequences (un) and (ln). For n ∈ N, x ∈ X and µ1, µ2 ∈
Mx(X), we have

µ1(ln) ≤ µ1(f) = f(x) = µ2(f) ≤ µ2(un).

If we denote
(ln)∗ = inf{h ∈ Ac(X) : h ≥ ln on X} and

(un)∗ = sup{h ∈ Ac(X) : h ≤ un on X},
then by [1, Corollary I.3.6] (see also [58, Lemma 3.21]),

(ln)∗ ≤ f ≤ (un)∗.

Using an argument based upon the Hahn-Banach theorem (see e.g. [58, Lem-
ma 4.11]), there exists a sequence (hn) of functions in Ac(X) such that

(ln)∗ − 1

n
< hn < (un)∗ +

1

n
, n ∈ N.

Then f ∈ C1(X) because hn → f on extX, and thus on X. (Indeed, given x ∈ X,
let µ ∈Mx(X) be maximal. Then the set

B = {y ∈ X : hn(y)→ f(y)}

is µ-measurable and contains extX. By Lemma 2.4.4, µ(B) = 1. Hence f(x) =
µ(f) = limµ(hn) = hn(x).)

Assume now that α ≥ 1. Then we use Lemma 2.5.1 to find a continuous affine
surjection ϕ of X onto a metrizable compact convex set Y , g̃ ∈ Cbα(extY ) and a

Baire function f̃ : X → R such that

f = g̃ ◦ ϕ on extX ∩ ϕ−1(extY ) and f = f̃ ◦ ϕ on X. (2.1)

Since extY is a Gδ set and α ≥ 1, we can extend g̃ to the whole set Y (and
denote it likewise) with preservation of class (see [49, § 35, VI, Théorème]). By
[83, Théoréme 1] (see also [58, Theorem 11.41]), there exists a mapping y 7→ νy,
y ∈ Y , such that

(a) νy is a maximal measure in My(Y ),

(b) the function y 7→ νy(h) is Baire-one on Y for every h ∈ C(Y ).

Let
h̃(y) = νy(g̃), y ∈ Y.

Then

h̃ ∈

{
Cα+1(Y ), α ∈ [1, ω0),

Cα(Y ), α ∈ [ω0, ω1).

Indeed, if α < ω0, the claim follows from (b) by induction. If α = ω0, let (g̃n)
be a bounded sequence of functions such that g̃n ∈ Cαn(Y ) for some αn < ω0 and

g̃n → g̃. Then the functions h̃n(y) = νy(g̃n) are in Cαn+1(Y ) and converge to h̃.

Hence h̃ ∈ Cω0(Y ). For α > ω0, the claim follows by transfinite induction.
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Next we prove that h̃ = f̃ . To this end, let y ∈ Y be fixed. Using [58,
Proposition 7.49] we find a maximal measure µ ∈ M1(X) satisfying ϕ]µ = νy
(here ϕ] :M1(X)→M1(Y ) denotes the mapping induced by ϕ : X → Y , see [26,
Theorem 418I ]). Then it is easy to check (see e.g. the proof of Proposition 5.29
in [58]) that

ϕ(r(µ)) = r(ϕ]µ) = r(νy) = y. (2.2)

Further,
µ(ϕ−1(extY )) = 1

and
{x ∈ X : f(x) = g̃(ϕ(x))} ⊃ extX ∩ ϕ−1(extY ).

From these facts and Lemma 2.4.4 it follows that f = g̃ ◦ϕ µ-almost everywhere.
Thus we get from (2.2) and (2.1)

h̃(y) =

∫
extY

g̃ dνy =

∫
extY

g̃ d(ϕ]µ)

=

∫
X

g̃ ◦ ϕdµ =

∫
X

f dµ

= f(r(µ)) = f̃(ϕ(r(µ)))

= f̃(y).

Hence f̃ = h̃ on Y .
By (2.1), f is of the same class as f̃ = h̃. This concludes the proof.

2.6 Transfer of decriptive properties on compact

convex sets with extX being a resolvable Lin-

delöf set

Again we point out that this section works within the context of real spaces. The
first important ingredient is a result on separation of Lindelöf sets in Tychonoff
spaces.

Lemma 2.6.1. Let X1 and X2 be disjoint Lindelöf sets in a Tychonoff space
X. Assume that there is no set G ⊂ X satisfying X1 ⊂ G ⊂ X \ X2 which is
a countable intersection of cozero sets. Then there exists a nonempty closed set
H ⊂ X with H ∩X1 = H ∩X2 = H.

Proof. See [43, Proposition 11].

The following lemma is a kind of a selection result.

Lemma 2.6.2. Let ϕ : X → Y be a continuous surjective mapping of a compact
space X onto a compact space Y and let f : X → R be a bounded Σα(Bos(X))-
measurable function for some α ∈ [2, ω1). Then there exists a mapping φ : Y → X
such that

• ϕ(φ(y)) = y, y ∈ Y ,
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• f ◦ φ is a Σα(Bos(Y ))-measurable function.

Proof. Given a bounded Σα(Bos(X))-measurable function f on X, using a stan-
dard approximation technique and [79, Proposition 2.3(f)] (see also [58, Lem-
ma 5.7]) we construct a bounded sequence (fn) of Σα(Bos(X))-measurable simple
functions uniformly converging to f . More precisely, each fn is of the form

fn =
kn∑
k=1

cnkχAnk , cnk ∈ R, Ank ∈ ∆α(Bos(X)) for k = 1, . . . , kn,

where the family {Ank : k = 1, . . . , kn} is a disjoint cover of X. For every set
Ank we consider a countable family Ank ⊂ Bos(X) satisfying Ank ∈ Σα(Ank). We
include all these families in a single family A.

By [37, Lemma 8], there exists a mapping φ : Y → X such that ϕ(φ(y)) = y
for every y ∈ Y and φ−1(A) ∈ Bos(Y ) for every A ∈ A. Then both φ−1(Ank)
and φ−1(X \Ank) are in Σα(Bos(Y )) for every set Ank. Thus the functions fn ◦φ
are Σα(Bos(Y ))-measurable and consequently, since they converge uniformly to
f ◦ φ, the function f ◦ φ is Σα(Bos(Y ))-measurable as well.

The next assertion provides an inductive step needed in the proof of Theo-
rem 2.6.4.

Lemma 2.6.3. Let X be a compact convex set with extX being a resolvable
Lindelöf set and f : X → R be a strongly affine function such that f |extX ∈
Cα(extX) for some α ∈ [1, ω0). Let K ⊂ X be a nonempty compact set and ε > 0.
Then there exists a nonempty open set U in K and a Σα+1(Hs(U))-measurable
function g on U such that |g − f | < ε on U .

Proof. Without loss of generality we assume that 0 ≤ f ≤ 1. Let K be a compact
set in X and ε > 0. By Lemma 2.4.7, there exists a Baire set B ⊃ extX such
that f ∈ Cα(B). We claim that there exists a Gδ set G with

X \B ⊂ G ⊂ X \ extX. (2.3)

Indeed, if there were no such set, Lemma 2.6.1 applied to X1 = X \ B and
X2 = extX (observe that X \B is Lindelöf since it is a Baire set; see [70, Theo-
rem 2.7.1]) would provide a nonempty closed set H ⊂ X satisfying H ∩ (X \B) =
H ∩ extX = H. But this would contradict the fact that extX is a resolvable set.

We pick a Gδ set G satisfying (2.3) and write F = X \G =
⋃
Fn, where the

sets F1 ⊂ F2 ⊂ · · · are closed in X. Then extX ⊂
⋃
Fn ⊂ B.

For each n ∈ N, we set

Mn = {µ ∈M1(X) : µ(Fn) ≥ 1− ε

2
} and

Xn = {x ∈ X : there exists µ ∈Mn such that r(µ) = x} (= r(Mn)).

Then each Xn is a closed set by the upper semicontinuity of the function µ 7→
µ(Fn) on M1(X) and X =

⋃
Xn. Indeed, for any x ∈ X there exists a maximal

measure µ ∈ Mx(X), which is carried by F (see [1, Corollary I.4.12 and the
subsequent remark] or [58, Theorem 3.79]), and thus µ(Fn) ≥ 1 − ε

2
for n ∈ N

large enough.
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Since K ⊂
⋃
Xn, by the Baire category theorem there exists m ∈ N such

that Xm ∩ K has nonempty interior in K. Let U denote this interior. Since
f |Fm ∈ Cα(Fm), we can extend f |Fm to a function h ∈ Cα(X) satisfying h(X) ⊂
cof(Fm) (see [76, Corollary 3.5] or [58, Corollary 11.25]). Let the functions

h̃, f̃ : M1(X)→ R be defined as

h̃(µ) = µ(h), f̃(µ) = µ(f), µ ∈M1(X).

Then
|f̃(µ)− h̃(µ)| < ε, µ ∈Mm. (2.4)

Indeed, for µ ∈MM we have

|µ(f)− µ(h)| =
∣∣∣∣∫
Fm

(f − h) dµ+

∫
X\Fm

(f − h) dµ

∣∣∣∣
≤
∫
X\Fm

|h− f | dµ ≤ µ(X \ Fm) ≤ ε

2

< ε.

By Lemma 2.3.3(c), h̃ ∈ Cα(M1(X)), and thus it is Σα+1(Bos(M1(X)))-measurable
on M1(X).

We consider the mapping r : Mm → r(Mm) and use Lemma 2.6.2 to find a
selection φ : r(Mm)→Mm such that

• r(φ(x)) = x, x ∈ r(Mm),

• h̃ ◦ φ is Σα+1(Bos(r(Mm)))-measurable on r(Mm).

By setting g = h̃ ◦ φ we obtain the desired function. Indeed, for a given point
x ∈ r(Mm), the measure φ(x) is contained in Mx(X) ∩Mm, and hence by (2.4)
and the strong affinity of f , we have

|g(x)− f(x)| = |h̃(φ(x))− f̃(φ(x))| < ε.

Thus the function g|U is the required one because Σα+1(Bos)-measurability im-
plies Σα+1(Hs)-measurability.

Theorem 2.6.4. Let X be a compact convex set with extX being a resolvable
Lindelöf set. Let f : X → R be a strongly affine function such that f |extX ∈
Cα(extX) for some α ∈ [1, ω1). Then f ∈ Cα(X).

Proof. Given such a function f , we assume that 0 ≤ f ≤ 1. Also we may assume
that α ∈ [1, ω0) since other cases are covered by Theorem 2.5.2. We claim that f
is Σα+1(Hs(X))-measurable.

To this end, let ε > 0 be arbitrary. We construct a regular sequence ∅ = U0 ⊂
U1 ⊂ · · · ⊂ Uκ = X and functions

gγ ∈ Σα+1(Hs(Uγ+1 \ Uγ)), γ < κ,

satisfying |g − f | < ε on Uγ+1 \ Uγ as follows.
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Let U0 = ∅. Using Lemma 2.6.3 we select a nonempty open set U of X along
with a Σα+1(Hs(U))-measurable function g on U with |g − f | < ε on U . We set
U1 = U and g0 = g.

Assume now that Uδ and gδ are chosen for all δ less then some γ. If γ is limit,
we set Uγ =

⋃
δ<γ Uδ.

Let γ = λ + 1. If Uλ = X, we set κ = λ and stop the procedure. Otherwise
we apply Lemma 2.6.3 to K = X \Uλ and obtain an open set U ⊂ X intersecting
K along with a Σα+1(Hs(U ∩ K))-measurable function g on U ∩ K satisfying
|g − f | < ε on U ∩ K. We set Uγ = Uλ ∪ U and gλ = g. This finishes the
construction.

Let g : X → R be defined as g = gγ on Uγ+1\Uγ, γ < κ. By Proposition 2.2.2,
g is a Σα+1(Hs(X))-measurable function.

By the procedure above we can approximate uniformly f by Σα+1(Hs(X))-
measurable functions which yields that f itself is Σα+1(Hs(X))-measurable. But
f is a Baire function by Proposition 2.4.8. Thus Theorem 5.2 and Corollary 5.5
in [79] imply f ∈ Cα(X). This finishes the proof.

2.7 Proofs of the main results

Before proving the main results we recall a simple observation.

Lemma 2.7.1. Let E be a complex Banach space and let f ∈ E∗∗. Then f is
strongly affine on BE∗ if and only if Re f is strongly affine on BE∗.

Proof. If f is strongly affine on BE∗ and µ ∈ M1(BE∗) has x∗ as its barycenter,
then

Re f(x∗) + i Im f(x∗) = f(x∗) = µ(f) = µ(Re f) + iµ(Im f),

and thus µ(Re f) = Re f(x∗) and µ(Im f) = Im f(x∗).
Conversely, assuming that Re f is strongly affine on BE∗ , we infer that so

is Im f . To see this, consider the affine surjective homeomorphic mapping ϕ :
BE∗ → BE∗ defined as

ϕ(y∗) = iy∗, y∗ ∈ BE∗ .

Since Im f(y∗) = −Re f(iy∗) for y∗ ∈ E∗, the function Im f is a composition of
an affine homeomorphism and a strongly affine function, and hence it is strongly
affine as well. Thus, for µ ∈M1(BE∗) with the barycenter x∗,

µ(f) = µ(Re f) + iµ(Im f) = Re f(x∗) + i Im f(x∗) = f(x∗),

and f is strongly affine.

Proofs of Theorems 2.1.1, 2.1.2 and 2.1.3. We proceed to the proofs of Theo-
rems 2.1.1, 2.1.2 and 2.1.3. Let E be a (real or complex) Banach space and
f be an element of E∗∗ whose restriction to BE∗ is strongly affine. By forget-
ting in E∗ the multiplication by complex numbers, we can regard BE∗ to be a
compact convex set in a real locally convex space. The function Re f is then a
strongly affine function on a compact convex set BE∗ that inherits all descriptive
properties from f . Thus if f |extBE∗

∈ Hfα(extBE∗), then Re f is a strongly affine

real-valued function with Re f |extBE∗
∈ Hfα(extBE∗). An application of Theo-

rem 2.3.4 gives Re f ∈ Hfα(BE∗). Then both Re f and Im f are in Hfα(BE∗), and
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thus f = Re f + i Im f is in Hfα(BE∗). Similarly we prove the other assertions of
Theorem 2.1.1.

Apparently, this procedure also verifies Theorems 2.1.2 and 2.1.3, which fin-
ishes their proof.

Proof of Theorem 2.1.4. Now we prove Theorem 2.1.4. From now on we will be
working with real spaces. We start with the following assertion which shows the
required result for Banach spaces of continuous affine functions on simplices. The
general result will be then obtained by means of a result of W. Lusky in [61].

Proposition 2.7.2. Let f : X → R be a strongly affine function on a simplex X
such that f ∈ Cα(X) for some α ≥ 2. Then

f ∈

{
Aα+1(X), α ∈ [2, ω0),

Aα(X), α ∈ [ω0, ω1).

If, moreover, extX is a Lindelöf resolvable set, then f ∈ Aα(X).

Proof of Proposition 2.7.2. If X is a general simplex, the assertion for finite or-
dinals is proved in [11, Théorème 2], for infinite ordinals in [42, Theorem 1.2].

Assume now that X is a simplex with extX being a Lindelöf resolvable set.
For each x ∈ X, let δx denote the unique maximal measure in Mx(X). By [81,
Theorem 1] and [58, Theorem 4.24], the function Tg(x) = δx(g), x ∈ X, is in
A1(X) for any bounded g ∈ C1(X). By induction, Tg ∈ Aβ(X) for any bounded
function g ∈ Cβ(X) and finite ordinal β ∈ [2, ω0). Thus, for any α ∈ [2, ω0) and a
strongly affine function f ∈ Cα(X), f = Tf ∈ Aα(X). This finishes the proof.

Let E be a real L1-predual and f ∈ E∗∗ be a strongly affine function satisfying
f ∈ Cα(BE∗) for some α ∈ [2, ω1). By [61, Theorem], there exist a simplex X, an
isometric embedding j : E → Ac(X) and a projection P : Ac(X)→ j(E) of norm
1. Further, it is proved in [61, Corollary III] that there exists an affine continuous
surjection ϕ : X → BE∗ such that

(1) ϕ(extX) = extBE∗ ∪ {0} and ϕ−1(extBE∗) ⊂ extX,

(2) ϕ|extX is injective,

(3) extX \ ϕ−1(extBE∗) is a singleton,

(4) j(e)(x) = (e ◦ ϕ)(x), e ∈ E, x ∈ X.

(In the notation of [61], the embedding j is denoted by T and ϕ is denoted by q.
Conditions (1), (2) and (3) are explicitly stated in [61, Corollary III], condition
(4) follows from the definitions of T on p. 175 and q on p. 176.)

The projection P provides for each x ∈ X a measure µx ∈ BM(X) such that

Pg(x) = µx(g), g ∈ Ac(X). (2.5)

Since P is identity on j(E), we obtain from (4)

µx(e ◦ ϕ) = (e ◦ ϕ)(x), x ∈ X, e ∈ E.
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We use equality (2.5) to extend the domain of P to any bounded universally
measurable function on X.

We claim that
µx(f ◦ ϕ) = f(ϕ(x)), x ∈ X. (2.6)

To verify this, let x ∈ X be given. We write

µx = a1µ1 − a2µ2, a1, a2 ≥ 0 with a1 + a2 ≤ 1, µ1, µ2 ∈M1(X),

and let x1, x2 ∈ X be the barycenters of µ1 and µ2, respectively. Then

ϕ(x) = a1ϕ(x1)− a2ϕ(x2). (2.7)

Indeed, let e ∈ E be arbitrary. The we compute

e(ϕ(x)) = µx(e ◦ ϕ) = a1µ1(e ◦ ϕ)− a2µ2(e ◦ ϕ)

= a1e(ϕ(x1))− a2e(ϕ(x2))

= e(a1ϕ(x1)− a2ϕ(x2)).

Hence (2.7) holds.
Since f ◦ ϕ is strongly affine on X by [78, Lemma 2.3] (see also [58, Proposi-

tion 5.29]), we get from (2.7)

µx(f ◦ ϕ) = a1µ1(f ◦ ϕ)− a2µ2(f ◦ ϕ) = a1f(ϕ(x1))− a2f(ϕ(x2))

= f(a1ϕ(x1)− a2ϕ(x2)) = f(ϕ(x)).

This verifies (2.6).
Now we prove by induction that Pg ∈ (j(E))β provided g ∈ Aβ(X) for some

β ≥ 1. First consider the case β = 1, i.e., there exists a bounded sequence (gn)
in Ac(X) with gn → g. Then Pgn ∈ j(E) and, by the Lebesgue dominated
convergence theorem, Pgn → Pg.

Assuming the validity of the assertion for all ordinals β̃ smaller then some β,
we consider g ∈ Aβ(X). Let (gn) be a bounded sequence converging pointwise
to g, where gn ∈ Aβn(X) for some βn < β. Then Pgn ∈ (j(E))βn and, as above,
Pgn → Pg.

Now we get back to the function f . Since f ◦ ϕ ∈ Cα(X), Proposition 2.7.2
implies that the function f ◦ϕ belongs to Aβ(X), where either β = α+1 if α < ω0

or β = α otherwise. By the reasoning above and (2.6),

f ◦ ϕ = P (f ◦ ϕ) ∈ (j(E))β.

Since j(e) = e ◦ ϕ for each e ∈ E, it follows that f ∈ Aβ(BE∗). This concludes
the proof of the first part of the theorem.

If, moreover, we assume that extBE∗ is a Lindelöf resolvable set, we observe
that extX is a Lindelöf resolvable set as well. To show this, we first notice that
extX differs from the resolvable set ϕ−1(extBE∗) by a singleton (see (1) and
(3)), and thus it is a resolvable set. Second, let F ⊂ X \ extX be a compact set.
By (1), ϕ(F ) is disjoint from extBE∗ . Since extBE∗ is Lindelöf, [81, Lemma 14]
provides an Fσ set A with

extBE∗ ⊂ A ⊂ BE∗ \ ϕ(F ).
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If x0 ∈ X denotes the singleton extX \ ϕ−1(extBE∗), then ϕ−1(A) is an Fσ set
in X satisfying

extX ⊂ ϕ−1(A) ∪ {x0} ⊂ X \ F.

By [81, Lemma 15], extX is a Lindelöf space.
Now we can conclude the proof as in the first part, the only difference is that

we use the second part of Proposition 2.7.2.

2.8 Examples

Banach spaces constructed in this section are real L1-preduals and they are cre-
ated using a notion of a simplicial function space. In order to illuminate the
construction, we need to recall several definitions and facts.

If K is a compact topological space, H ⊂ C(K) is a function space if H is a
subspace of C(K), contains constant functions and separate points of K. For the
sake of simplicity, we will construct real Banach spaces, and thus we will deal in
this section only with real spaces C(K). For x ∈ K, we write Mx(H) for the set
of all measures µ ∈ M1(K) with µ(h) = h(x) for all h ∈ H. Let ChH(K) be the
Choquet boundary of H, i.e., the set of those points x ∈ K with Mx(H) = {εx}.
By defining Ac(H) = {f ∈ C(K) : µ(f) = f(x), for each x ∈ K,µ ∈ Mx(H)}
we obtain a closed function space satisfying H ⊂ Ac(H) (see [58, Definition 3.8])
and ChH(K) = ChAc(H)(K) (this follows easily from the definitions).

Let
S(H) = {s ∈ H∗ : s ≥ 0, ‖s‖ = 1}

denote the state space of H. Then S(H), endowed with the weak* topology, is a
compact convex set and K is homeomorphically embedded in S(H) via the map-
ping φ : K → S(H) assigning to each x ∈ K the point evaluation at x. Moreover,
φ(ChH(K)) = ext S(H) (see [67, Proposition 6.2] or [58, Proposition 4.26]).

The function space H is called simplicial if S(Ac(H)) is a simplex (see [58,
Theorem 6.54]).

Further, let H⊥⊥ denote the space of all universally measurable functions
f : K → R satisfying µ(f) = 0 for every µ ∈ H⊥ ⊂ M(K). It is proved in
[78, Theorem 2.5] (see also [58, Corollary 5.41]) that for any function f ∈ H⊥⊥
there exists a strongly affine function f̃ : S(H) → R with f = f̃ ◦ φ. Moreover,

the function f̃ inherits from f all descriptive properties considered in the paper,
precisely, for any α ∈ [1, ω1) we have f ∈ Cα(K), f ∈ Bofα(K) and f ∈ Hfα(K)

if and only if f̃ ∈ Cα(S(H)), f̃ ∈ Bofα(S(H)) and f̃ ∈ Hfα(S(H)), respectively
(the first two assertions are proved in [58, Corollary 5.41], the last one follows
from Theorem 2.3.4).

A standard construction from [10, Section VII] of a simplicial function space
H satisfying H = Ac(H) goes as follows. Take a compact space L, a subset B of
L and define

K = (L× {0}) ∪ (B × {−1, 1})

with the “porcupine topology”, i.e., points of K \ (L × {0}) are isolated and a
point (x, 0) ∈ K has a basis of neighborhoods consisting of sets of the form

K ∩ (U × {−1, 0, 1}) \ F,
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where U ⊂ L is a neighborhood of x and F ⊂ K \ (L× {0}) is finite. Then K is
a compact space and

H = {f ∈ C(K) : f(x, 0) =
1

2
(f(x, 1) + f(x,−1)), x ∈ B}

is a simplicial function space satisfying H = Ac(H) and

ChH(K) = K \ (B × {0})

(for the verifications of these facts see [82] or [58, Definition 6.13 and Lem-
ma 6.14]).

If f : K → R is a bounded universally measurable function satisfying f(x, 0) =
1
2
(f(x, 1) + f(x,−1)) for each x ∈ B, it is easy to verify that f ∈ H⊥⊥ (see [58,

Corollary 6.12]), and thus it induces a strongly affine function f̃ : S(H) → R
which satisfies f = f̃ ◦ φ and shares with f all descriptive properties.

By this procedure we obtain a simplex X = S(H) and a strongly affine func-
tion on X with the desired descriptive properties. It is well known (see e.g.
[58, Propositions 4.31 and 4.32]) that, given a compact convex set X, the du-
al space (Ac(X))∗ can be identified with spanX and the dual unit ball with
co(X∪(−X)), whereas the second dual (Ac(X))∗∗ equals to the space of all affine
bounded functions on X. Hence the construction of a simplex X along with a
strongly affine function f with the prescribed descriptive properties yields the
resulting L1-predual E: we set E = Ac(X) and the element x∗∗ ∈ E∗∗ is the
function f .

This general construction is now used in the following examples.

Example 2.8.1. There exist a separable L1-predual E and a strongly affine func-
tion f ∈ E∗∗ such that f |extBE∗ ∈ C1(extBE∗) and f /∈ C1(BE∗).

Proof. Let L = [0, 1] and B denote the set of all rational numbers in L. Let K,
H and X be constructed as above. Then K is metrizable, and thus E = Ac(X)
is a separable space. Let f : K → R be defined as

f(x, t) =

{
1, x ∈ B,
0, x /∈ B,

(x, t) ∈ K.

Then f |ChH(K) ∈ C1(ChH(K)) since f |ChH(K) is the characteristic function of an
open set in ChH(K). On the other hand, f has no point of continuity on L×{0},
and thus f /∈ C1(K).

Example 2.8.2. There exist an L1-predual E and a strongly affine function f ∈
E∗∗ such that extBE∗ is an open set in extBE∗ (hence extBE∗ ∈ Bos(BE∗)),
f |extBE∗ ∈ C(extBE∗) and f is not resolvably measurable on BE∗.

Proof. Let L = B = [0, 1] and A be an analytic non-Borel set in L (see [45,
Theorem 14.2]) and let K, H and X be constructed as above. Then ChH(K) =
K \ (L×{0}) is an open set in ChH(K) = K. Further, let f : K → R be defined
as

f(x, t) =

{
1, x ∈ A,
0, x /∈ A,

(x, t) ∈ K.
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Then f |ChH(K) ∈ C(ChH(K)) since f |ChH(K) is the characteristic function of a
clopen set in ChH(K). Since A is µ-measurable for any Radon measure µ on
[0, 1], f is universally measurable on K (see [45, Theorem 21.10]). Obviously,
f |L×{0} is not Borel on L× {0}. Since the σ-algebra of Borel sets in L coincides
with the σ-algebra generated by resolvable sets in L (see [79, Proposition 3.4]),
f is not measurable on K with respect to the σ-algebra generated by resolvable
sets.

Example 2.8.3. Assuming (CH), there exist an L1-predual E with extBE∗ Lin-
delöf and a strongly affine function f ∈ E∗∗ such that f is not a resolvably
measurable function and f |extBE∗ ∈ Bof1(extBE∗).

Proof. Let L = [0, 1] and Q stand for the set of all rational numbers in L. Assum-
ing the continuum hypothesis, by the method of the proof of [64, Proposition 4.9]
we construct an uncountable set B disjoint from Q that concentrates around the
set Q (i.e., the set B \U is countable for any open set U ⊃ Q). Let K, H and X
be as above. Then ChH(K) = K \ (B × {0}) is Lindelöf. Indeed, if U is an open
cover of ChH(K), we select a countable family V ⊂ U satisfying

(L× {0}) \ (B × {0}) ⊂ V =
⋃
{U ∩ (L× {0}) : U ∈ V}.

Then V is an open set in L×{0} containing Q×{0}, and thus B \V is countable.
Hence we may extract a countable family W ⊂ U which covers that part of
ChH(K) not already contained in V . Thus V ∪ W is a countable subcover of
ChH(K).

Define a function f : K → R by the formula

f(x, t) =

{
1, x ∈ B,
0, x /∈ B,

(x, t) ∈ K.

Then f is universally measurable on K. To see this, it is enough to verify that
B is universally measurable. If µ ∈ M1([0, 1]) is a continuous measure (i.e.,
µ({x}) = 0 for each x ∈ [0, 1]), let (Un) be a sequence of open sets satisfying
µ(Un) < 1

n
and Un ⊃ Q. Then µ(

⋂
Un) = 0 and B \

⋂
Un is countable, and

thus µ-measurable. Hence B is µ-measurable for every continuous measure. Ob-
viously, B is µ-measurable for any discrete probability measure µ, and hence B
is universally measurable.

On the other hand, B is not Borel, because otherwise, as an uncountable set,
it would contain a copy of the Cantor set (see [45, Theorem 13.6]) which would
contradict its concentration around Q.

Since f is the characteristic function of an open set in ChH(K), we have
f |ChH(K) ∈ Bof1(ChH(K)). On the other hand, f is not Borel on L×{0} because
the σ-algebra of Borel sets in L coincides with the σ-algebra generated by resolv-
able sets in L (see [79, Proposition 3.4]). Thus f is the required function.
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3. Baire classes of L1-preduals
and C∗-algebras
(joint work with Jǐŕı Spurný)

3.1 Introduction

A real (or complex) Banach space X is called an L1-predual (sometimes a Linden-
strauss space) if its dual X∗ is isometric to a real (or complex) space L1(X,S, µ)
for a measure space (X,S, µ). Real L1-preduals were in depth investigated in
papers [17], [22], [23], [8], [52], [60], [24], [61], [27], [13] or [16]. The complex
variant of L1-preduals was studied e.g. in [38], [65], [54], [71], [19] or recently in
[62]. It has turned out that a real Banach space V is an L1-predual if and only
if its dual unit ball BV ∗ satisfies a “simplex-like” condition (see [53]). A complex
version of this “simplex-like” characterization was provided by Effros in [18]. It is
mentioned in this paper that “we have reason to believe that this result will make
theory of complex Lindenstrauss spaces as accessible as that for real spaces”.

The goal of our paper is to support this belief by results on real and complex
L1-predual spaces and their Baire classes. The significance of Effros’s characteri-
zation becomes apparent especially from the comparision of Sections 3.2 and 3.3
of the paper in hand.

Let F denote the field R or C.
For a topological space K, let B(K,F) be the space of all Borel functions with

values in F and Bb(K,F) be the space of all bounded Borel functions on K with
values in F. For a compact (Hausdorff) topological space K, let C(K,F) stand
for the space of all continuous functions on K with values in F. In case K is
compact, we write M(K,F) for the space of Radon measures on K and M1(K)
for Radon probability measures on K.

Let H be a subset of C(K,F). Then we set B0(H) = H and, for α ∈ (0, ω1),
let Bα(H) consist of all pointwise limits of elements from

⋃
β<α Bβ(H). Further,

we denote by Bα,b(H) the set of all bounded elements from Bα(H). The symbol
Bα,bb(H) denotes the inductive families created by means of pointwise limits of
bounded sequences of lower classes.

If we start the inductive procedure from the space of all continuous functions,
we write simply Bα(K,F) and Bα,b(K,F) for the obtained spaces of Baire-α func-
tions. Then we have Bα,b(K,F) = Bα,bb(K,F). Let us remind that for a metrizable
K holds Bb(K,F) =

⋃
α<ω1

Bα,b(K,F). Having started with the space A(K,F)
of all continuous affine functions on a compact convex set K in a locally convex
space, we obtain spaces Aα(K,F), Aα,b(K,F) and Aα,bb(K). As a consequence of
the uniform boundedness principle we get Aα,bb(K,F) = Aα,b(K,F) = Aα(K,F)
(see e.g. [58, Lemma 5.36]) and elements of this set we call functions of affine
class α.

If X is a Banach space over F and BX∗ is its dual unit ball endowed with
the weak* topology, X is isometrically embedded in C(BX∗ ,F) via the canonical
embedding. We recall definitions of Baire classes of X∗∗ from [5]. For α ∈ [0, ω1),
we call Bα(X) the intrinsic α-Baire class of X∗∗. Following [5, p. 1044] we
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denote the intrinsic α-th Baire class as X∗∗α . Let us remark, that our definition
is formally slightly different from the one introduced in [5]. While in our case
elements of X∗∗α are restrictions of the uniquely determined elements from X∗∗

to the closed unit ball BX∗ , the functions considered in [5] are precisely these
extensions. This is substantiated by Lemma 3.2.2.

Still considering X as a subspace of C(BX∗ ,F), the α-th Baire class of X∗∗ is
defined as

X∗∗Bα = {x∗∗ ∈ X⊥⊥; x∗∗|B∗X ∈ B
α(BX∗ ,F)}.

It can be verified that x∗∗ ∈ X∗∗Bα if and only if x∗∗|BX∗ ∈ Bα(BX∗ ,F) and x∗∗|BX∗
satisfies the barycentric calculus, i.e.,

x∗∗
(∫

BX∗

id dµ

)
=

∫
BX∗

x∗∗ dµ

for every probability measure µ ∈ M1(BX∗). Where no confusion can arise, we
do not distinguish between X∗∗Bα and X∗∗Bα |BX∗ .

Obviously, X∗∗α ⊂ X∗∗Bα but the converse need not hold by [85, Theorem] (for
a detailed exposition on Baire classes of Banach spaces we refer the reader to [5,
pp. 1043–1048]).

The first goal of our paper is the extension of the following result by Linden-
strauss and Wulbert proved in [55, Theorem 1]:

Let X be a real L1-predual and T stand for the closure of extreme points
extBX∗ of BX∗. If T = extBX∗, then X = CΣ(T,R), where Σ(x∗) = −x∗,
x∗ ∈ T and CΣ(T,R) consists of real continuous functions on T satisfying f(x∗) =
−f(−x∗).

We show in Theorem 3.2.10 that for a real L1-predual X the space X∗∗α can be
identified with the space Bα,bσ (extBX∗ ,R) of all odd bounded Baire-α functions in
case extBX∗ is of type Fσ. An analogous result for complex L1-predual is proved
in Theorem 3.3.10.

The second goal of the paper is to extend to the complex setting the following
result from [57] (see [57, Theorem 1.4]):

Let X be a real L1-predual and let x∗∗ ∈ X∗∗ satisfy f = x∗∗|BX∗ ∈ Bα(BX∗ ,R)
for α ∈ [2, ω1). Then f ∈ X∗∗α+1 if α < ω0 and f ∈ X∗∗α if α ≥ ω0.

Proposition 3.3.6 fulfils our intentions at least for separable complex L1-
preduals.

Finally, a question posed in [5, p. 1048] asks whether for a separable C∗-algebra
X holds X∗∗Bα = X∗∗α . We answer this question in the negative, more precisely
we prove using [62] and [78] that there is a separable C∗-algebra X satisfying
X∗∗B2 6= X∗∗2 .

Throughout the paper we work within separable Banach spaces, since our
methods are based on the metrizability of their dual unit balls. The question of
validity of the presented results for the case of nonseparable spaces is still open.

3.2 Real L1-preduals

Let K be a compact convex set in a locally convex topological vector space. To a
point x ∈ K, we can assign the setM1

x(K) consisting of all probability measures
on K satisfying

∫
K

id dµ = x (equivalently, µ(h) = h(x) for any continuous affine
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function h on K). A function f on K is strongly affine if f is µ-measurable for
each µ ∈M1(K) and f(x) = µ(f) for any x ∈ K and µ ∈M1

x(K). Any strongly
affine function is bounded (see e.g. [58, Lemma 4.5]).

The usual dilation order ≺ on M1(K) is defined as µ ≺ ν if and only if
µ(f) ≤ ν(f) for any convex continuous function f on K. We writeMmax(K) for
the set of all probability measures on K which are maximal with respect to ≺.
A measure µ ∈ M(K,F) is boundary if either µ = 0 or the probability measure
|µ|
‖µ‖ is maximal.

For a function f ∈ C(K,R), let

f̂(x) = sup{µ(f); µ ∈M1
x(K)}.

By the Choquet representation theorem, for any x ∈ K there exists µ ∈M1
x(K)∩

Mmax(K) (see [51, p. 192, Corollary]). The set K is termed simplex if this mea-
sure is uniquely determined for each x ∈ K (see [51, § 20, Theorem 3]). In case
K is metrizable, maximal measures are carried by the Gδ set extK of extreme
points of K (see [51, § 20, Theorem 5]).

Let X be a real Banach space. Then σ(x∗) = −x∗, x∗ ∈ BX∗ , is a natural affine
homeomorphism of BX∗ onto itself. A set B ⊂ BX∗ is symmetric if σ(B) = B.
An example of a symmetric set is the set extBX∗ . For a function f defined on a
symmetric set B ⊂ BX∗ we define

(odd f)(x∗) =
1

2
(f(x∗)− f(−x∗)), x∗ ∈ B.

A function f defined on a symmetric subset is odd if odd f = f .
For µ ∈M(BX∗ ,R), let oddµ ∈M(BX∗ ,R) be defined as

(oddµ)(f) = µ(odd f), f ∈ C(BX∗ ,R).

The following characterization of L1-preduals is due to Lazar (see [53, Theo-
rem] or [51, § 21, Theorem 7])):

Let X be a Banach space. Then X is an L1-predual if and only if oddµ =
odd ν for each x∗ ∈ BX∗ and µ, ν ∈M1

x∗(BX∗) ∩Mmax(BX∗).
Let X be a real separable L1-predual and f be a bounded Borel function f

defined on a Borel subset of BX∗ containing extBX∗ . We define

Tf(x∗) = (oddµ)(f), x∗ ∈ BX∗ , µ ∈M1
x∗(BX∗) ∩Mmax(BX∗). (3.1)

Notice that Tf is well defined because of Lazar’s characterization and because
oddµ, as a boundary measure, is carried by the Gδ set extBX∗ .

The described mapping T is a natural generalization of a dilation mapping
defined in the simplicial case e.g. in [58, Definition 6.7].

Proposition 3.2.1. Let X be a real separable L1-predual and T be defined as in
(3.1).

(a) If f ∈ C(BX∗ ,R), then Tf is Baire-1.

(b) If f ∈ Bb(extBX∗ ,R), then Tf is an odd Borel strongly affine function on
BX∗.
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Proof. Since X is separable, BX∗ is a metrizable compact convex set (see [72,
Theorems 3.15, 3.16]), and thus there exists a mapping S : BX∗ →Mmax(BX∗)
such that Sx∗ = νx∗ ∈M1

x∗(BX∗) and the function Sf : x∗ 7→ νx∗(f) is a Baire-1
function on BX∗ for each continuous function f on BX∗ (see [83, Théoréme 1] or
[58, Theorem 11.41]).

(a) Let f ∈ C(BX∗ ,R) be given. Then odd f is a continuous function on BX∗

and, for a fixed x∗ ∈ BX∗ , we have

Tf(x∗) = (odd νx∗)(f) = νx∗(odd f) = S(odd f)(x∗).

Thus Tf = S(odd f) is a Baire-1 function on BX∗ .
(b) Let now

F = {f ∈ Bb(BX∗ ,R); Tf is Borel}.
Then F is closed under the taking pointwise limits of bounded sequences by
the Lebesgue dominated convergence theorem and contains C(BX∗ ,R). Hence it
contains any bounded Borel function on BX∗ .

Let f be a bounded Borel function on extBX∗ . Since extBX∗ is a Borel set,
we can consider f to be a bounded Borel function on BX∗ . Hence f ∈ F and Tf
is Borel.

Let us show that Tf is strongly affine, i.e., that ν(Tf) = Tf(y∗) for each
y∗ ∈ BX∗ and ν ∈ M1

y∗(BX∗). Given y∗ and ν as above, let µ ∈ M1(BX∗) be
defined as

µ(g) =

∫
BX∗

νx∗(g) dν(x∗), g ∈ C(BX∗ ,R).

If g is a convex continuous function and ĝ is its upper envelope, due to Moko-
bodzki’s maximality test (e.g. [51, § 20, Theorem 2]) we have νx∗(g) = νx∗(ĝ),
x∗ ∈ BX∗ , and thus

µ(ĝ) =

∫
BX∗

νx∗(ĝ) dν(x∗) =

∫
BX∗

νx∗(g) dν(x∗) = µ(g).

Hence µ is maximal. Further, for an affine continuous function h on BX∗ we have

µ(h) =

∫
BX∗

νx∗(h) dν(x∗) =

∫
BX∗

h(x∗) dν(x∗) = h(y∗),

and thus µ ∈M1
y∗(BX∗). Hence Tf(y∗) = (oddµ)(f) and it follows that

ν(Tf) =

∫
BX∗

Tf(x∗) dν(x∗) =

∫
BX∗

νx∗(odd f) dν(x∗)

= µ(odd f) = (oddµ)(f) = Tf(y∗).

Hence ν(Tf) = Tf(y∗) and Tf is strongly affine.
Finally we show that Tf is odd. Since Tf is affine, it is enough to show

that Tf(0) = 0. Let x∗ be an extreme point of BX∗ . Then the combination
µ = 1

2
(εx∗ + ε−x∗) of the Dirac measures εx∗ , ε−x∗ is contained in M1

0(BX∗) ∩
Mmax(BX∗). Because odd f is an odd function,

Tf(0) = (oddµ)(f) = µ(odd f) =
1

2
((odd f)(x∗) + (odd f)(−x∗)) = 0.

Hence Tf is odd.
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Lemma 3.2.2. Let X be a real Banach space and let f be an odd strongly affine
function on the closed unit ball BX∗. Then f is a restriction of a uniquely deter-
mined element of X∗∗.

Proof. This simple observation is based on the fact that a strongly affine function
f on BX∗ is bounded (e.g. [58, Lemma 4.5]). Thus the uniquely defined linear
extension of f is an element of X∗∗.

Proposition 3.2.3. Let X be a real separable L1-predual and f ∈ Bb(extBX∗ ,R).
If h is an odd strongly affine function on BX∗ extending f , then h = Tf .

Proof. The function f , being extended by an odd function h, is odd as well.
Let y∗ ∈ BX∗ be given. We choose a maximal measure µ ∈ M1

y∗(BX∗) and
compute

Tf(y∗) = (oddµ)(f) = µ(odd f) = µ(f) =

∫
extBX∗

h(x∗) dµ(x∗) = h(y∗).

This concludes the proof.

Proposition 3.2.4. Let X be a real separable L1-predual and assume that f ∈
Bα,b(extBX∗ ,R).

(a) If α ∈ [1, ω0), then Tf ∈ X∗∗α+1.

(b) If α ∈ [ω0, ω1), then Tf ∈ X∗∗α .

(c) If α ∈ [1, ω1) and extBX∗ is of type Fσ, then Tf ∈ X∗∗α .

Proof. (a) If α = 1, f can be extended to a bounded Baire-1 function on BX∗ ([1,
Corollary I.4.4] and [49, § 35, VI, Theorem]). Let (fn) be a bounded sequence
in C(BX∗) converging to this extension on BX∗ . For a given x∗ ∈ BX∗ , let
µ ∈M1

x∗(BX∗) ∩Mmax(BX∗) be chosen. Then we have

Tfn(x∗) = (oddµ)(fn)→ (oddµ)(f) = Tf(x∗).

Since Tfn = odd fn on extBX∗ , each Tfn is a continuous function on extBX∗ .
By Proposition 3.2.1 and [57, Theorem 5.2], each Tfn is an odd Baire-1 strongly
affine function on BX∗ . By the Mokobodzki theorem ([5, Theorem II.1.2(a)]),
Tfn ∈ X∗∗1 . Hence Tf ∈ X∗∗2 .

The rest of the proof follows by induction.
(b) Let α = ω0 and f ∈ Bα,b(extBX∗ ,R). Let (fn) be a bounded sequence of

functions from Bαn,b(extBX∗ ,R), where αn < α, converging to f . Then Tfn →
Tf and Tfn ∈ X∗∗αn+1 by (a). Hence Tf ∈ X∗∗α . For higher Baire classes the proof
follows by transfinite induction.

(c) Let extBX∗ is of type Fσ. If f ∈ B1,b(extBX∗ ,R), then also odd f ∈
B1,b(extBX∗ ,R). Because a restriction of Tf to extBX∗ is equal to odd f , it is
of Baire class 1. By Proposition 3.2.1 and [57, Theorem 1.3], Tf is a strongly
affine function in B1,b(BX∗ ,R), and it is in X∗∗1 by the Mokobodzki theorem (see
[5, Theorem II.1.2(a)]).

For functions of higher Baire classes we proceed by transfinite induction.
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We follow with a consequence of [52, Theorem 4.4] which could serve as a
motivation for Proposition 3.2.6.

Corollary 3.2.5. Let X be a real L1-predual with extBX∗ ∪ {0} closed. If α ∈
[0, ω1) and f is an odd strongly affine function on BX∗ such that f |extBX∗∪{0} is
a function of Baire class α, then f ∈ X∗∗α .

Proof. If α = 0, then using the proof of [52, Theorem 4.4] we deduce that Tf ∈ X
and Tf |extBX∗∪{0} = f |extBX∗∪{0}. Then due to Proposition 3.2.3 f = Tf ∈ X =
X∗∗0 .

The proof for higher Baire classes follows by transfinite induction.

Proposition 3.2.6. Let X be a real separable L1-predual, f an odd strongly affine
function on BX∗ such that f |extBX∗ is of Baire class α on extBX∗.

(a) If α ∈ [0, ω0), then f ∈ X∗∗α+1.

(b) If α ∈ [ω0, ω1), then f ∈ X∗∗α .

(c) If α ∈ [1, ω1) and extBX∗ is of type Fσ, then f ∈ X∗∗α .

Proof. (a) Let α ∈ [0, ω0) and f be an odd strongly affine function on BX∗ such
that f |extBX∗ is of Baire class α. If α = 0, i.e., f is continuous on extBX∗ , then
f is Baire-1 on BX∗ by [57, Theorem 5.2]. As an odd strongly affine Baire-1
function, f is in X∗∗1 by [5, Theorem II.1.2(a)]. If α ∈ [1, ω0), f = Tf due to
Proposition 3.2.3. By Proposition 3.2.4(a), f ∈ X∗∗α+1. This finishes the proof of
(a).

(b) If α ∈ [ω0, ω1), f is an odd strongly affine function and f |extBX∗ is of Baire
class α, then f = Tf by Proposition 3.2.3. It follows from Proposition 3.2.4(b)
that f ∈ X∗∗α .

(c) It suffices to use Propositions 3.2.3 and 3.2.4(c).

Theorem 3.2.7. Let X be a real separable L1-predual and let f be an odd function
in Bα,b(extBX∗ ,R).

(a) If α ∈ [0, ω1) then there exists a function h such that h = f on extBX∗ and
h ∈ X∗∗α+1 in case α ∈ [0, ω0) and h ∈ X∗∗α in case α ∈ [ω0, ω1).

(b) If extBX∗ is of type Fσ, then for any α ∈ [1, ω1) and an odd function
f ∈ Bα,b(extBX∗ ,R) there exists a function h ∈ X∗∗α such that h = f on
extBX∗.

Proof. (a) Let f be an odd bounded Borel function on extBX∗ . Thus by Propo-
sition 3.2.1 the function Tf is an odd Borel strongly affine function on BX∗

satisfying

Tf(x∗) = (odd εx∗)(f) = εx∗(odd f) = f(x∗), x∗ ∈ extBX∗ .

By Proposition 3.2.6(a),(b), the function h = Tf is in X∗∗α+1 in case α ∈ [0, ω0)
and h ∈ X∗∗α in case α ∈ [ω0, ω1).

(b) We argue as above, only we use Proposition 3.2.6(c) instead.
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Theorem 3.2.8. Let X be a real separable L1-predual. If the set extBX∗ is not
of type Fσ, then there exists an odd function f ∈ B1,b(extBX∗ ,R) that is not
extensible to a function from X∗∗1 .

Proof. Assume that extBX∗ is not of type Fσ. Since it is a Gδ subset of a compact
metrizable space, by the Hurewicz theorem (see [45, Theorem 21.18]) there exists
a closed set A ⊂ BX∗ satisfying

A ∩ extBX∗ = A \ extBX∗ = A

with A \ extBX∗ countable. Let {x∗n; n ∈ N} be an enumeration of A \ extBX∗ .
For each n ∈ N we select a maximal measure µn ∈ M1

x∗n
(BX∗) and using the

regularity of Radon measures we find a compact set Kn ⊂ extBX∗ such that
µn(Kn) > 1 − 1

n
. Without loss of generality we may assume that Kn = −Kn.

Since
⋃
nKn is an Fσ set and A ∩ extBX∗ \

⋃
Kn cannot be Fσ-separated from

A \ extBX∗ (otherwise A ∩ extBX∗ would be an Fσ set which is impossible), an
application of [45, Theorem 21.22] provides a closed set B ⊂ A\

⋃
nKn such that

B ∩ extBX∗ = B \ extBX∗ = B.

Let b∗ ∈ B be distinct from 0 and V be its closed neighborhood satisfying V ∩
−V = ∅. Set C = B ∩ V . Then

C ∩ (−C) ⊂ V ∩ (−V ) = ∅.

Let

f(x∗) =
1

2
(χC(x∗)− χ−C(x∗)), x∗ ∈ BX∗ .

Then f is a bounded odd Baire-1 function on BX∗ , and thus its restriction to
extBX∗ is also a bounded odd Baire-1 function on extBX∗ . We show that there
is no odd Baire-1 strongly affine extension of f |extBX∗ to BX∗ .

Let h be such an extension. Then h = Tf by Proposition 3.2.3. Let n ∈ N be
such that

x∗n ∈ C \ extBX∗ ⊂ A \ extBX∗ = {x∗k; k ∈ N}.

Since Kn = −Kn and C ∩Kn = ∅, (C ∪ −C) ∩Kn = ∅. Thus µn(C ∪ −C) < 1
n

by the choice of the set Kn. Then we get

|Tf(x∗n)| = |(oddµn)(f)| = |µn(f)|

≤ 1

2
(µn(C) + µn(−C)) ≤ 1

n
.

On the other hand, if x∗ ∈ C ∩ extBX∗ , then x∗ /∈ −C as C ∩−C = ∅. Hence
it follows that

|Tf(x∗)| = |(odd εx∗)(f)| = |εx∗(f)| =
∣∣∣∣12(1− 0)

∣∣∣∣ =
1

2
.

Since both C ∩ extBX∗ and C \ extBX∗ are dense in C, h = Tf has no point
of continuity on C. In particular, h is not a Baire-1 function on BX∗ by [45,
Theorem 24.14], which concludes the proof.
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By a rephrasing a part of the previous results we get an analogue of [52,
Theorem 4.4].

Corollary 3.2.9. Let X be a separable real Banach space. Then the following
statements are equivalent.

(i) A space X is a real L1-predual and extBX∗ is an Fσ set.

(ii) Every odd function f ∈ B1,b(extBX∗ ,R) can be extended to a function in
X∗∗1 .

Proof. (i) =⇒ (ii). Due to Theorem 3.2.7(b).
(ii) =⇒ (i). Assume x∗ ∈ X∗ and let µ, ν ∈ M1

x∗(BX∗) ∩ Mmax(BX∗).
For any f ∈ C(BX∗ ,R) then there exists by (ii) a function h ∈ X∗∗1 extending
odd f |extBX∗ . Maximal measures are carried by extBX∗ and h is a strongly affine
function, hence

(oddµ)(f) = µ(odd f) = µ(h) = h(x∗) = ν(h) = ν(odd f) = (odd ν)(f).

Thus oddµ = odd ν and using Lazar’s characterization of the real Lindenstrauss
spaces (see [53, Theorem] or [51, § 21, Theorem 7]) we get that X is an L1-
predual.

Finally, due to Theorem 3.2.8, the set extBX∗ is of type Fσ.

For a symmetric set B and α ∈ [0, ω1) we denote a space of all bounded odd
Baire-α function on B by Bα,bσ (B,R).

The following result extends [55, Theorem 1] of Lindenstrauss and Wulbert.

Theorem 3.2.10. Let X be a real separable L1-predual such that extBX∗ is
an Fσ set. Then for any α ∈ [1, ω1), the space X∗∗α is isometric to the space
Bα,bσ (extBX∗ ,R).

Proof. A function f ∈ X∗∗α is bounded, Baire-α and strongly affine. The re-
striction mapping r : X∗∗α → Bα,bσ (extBX∗ ,R) is therefore an isometric isomor-
phism due to Theorem 3.2.7(b) and the minimum principle exposed by [58, The-
orem 3.86].

Further, one can be tempted to investigate whether a topological quality of
extBX∗ can characterize possibility of extending Baire functions of higher classes.
Theorem 3.2.11 below shows that this is not the case.

Let K be a compact convex set in a locally convex space and set X = A(K,R).
Then we can make the natural identifications

BX∗ = co(K ∪ −K),

extBX∗ = extK ∪ − extK
(3.2)

using an affine homeomorphism ϕ : co(K ∪ −K) → BX∗ defined by the formula
ϕ(λk1 − (1− λ)k2)(h) = λh(k1)− (1− λ)h(k2), λ ∈ [0, 1], k1, k2 ∈ K and h ∈ X.

Further, we need to establish a mapping I from the space Aα(K,R) to a space
of all affine functions on BX∗ by setting

If(s) = µ(f), where µ ∈ BM(K,R) is any measure extending s ∈ BX∗ .

For more detailed information concerning the mapping I consult e.g. [78,
Theorem 2.5] or [58, Chapter 5.6].
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Theorem 3.2.11. There exist real separable L1-preduals X, Y with the following
properties.

(a) The set extBX∗ is homeomorphic to extBY ∗.

(b) For any α ∈ [2, ω1) and any function f ∈ Bα,bσ (extBY ∗ ,R) there exists a
function h ∈ Y ∗∗α such that h = f on extBY ∗.

(c) There exists a function f ∈ B2,b
σ (extBX∗ ,R) not extensible to an element of

X∗∗2 .

Proof. By [77, Theorem 1.1], there exists a couple of metrizable simplices K,L
with the following properties:

• The set extK is homeomorphic to extL.

• For α ∈ [2, ω1), any bounded Baire-α function on extL can be extended to
a function of affine class α on L.

• There exists a bounded function g on extK of Baire-2 class that is not
extensible to a function on K of affine class 2.

We set X = A(K,R) and Y = A(L,R). Then X and Y are separable L1-
preduals (see [51, § 19, Theorem 2]).

(a) The assertion follows from the identification (3.2).
(b) We claim that, for any α ∈ [2, ω1), every function f ∈ Bα,bσ (extBY ∗ ,R)

can be extended to a function h ∈ Y ∗∗α .
Indeed, let f ∈ Bα,bσ (extBY ∗ ,R). Using the identification (3.2) we may assert

that f |extL ∈ Bα,b(extL,R) and set g = f |extL. Due to the hypotheses there
exists a function g̃ ∈ Aα(L,R) extending g. Then Ig̃|L = g̃ and applying [78,
Theorem 2.5(f)] (see also [58, Theorem 5.40(f)]) we get that Ig̃ ∈ Y ∗∗α . Hence
Ig̃ = f on extBY ∗ and we may define h = Ig̃ as the desired function.

(c) Let g ∈ B2,b(extK,R) be a function not extensible to a function from
A2(K,R). The function g can be nevertheless naturally extended to an odd
function g̃ defined on extK ∪− extK. Due to the identification (3.2) we may see
g̃ as a function from B2,b

σ (extBX∗ ,R). We claim that the function g̃ cannot be
extended to an element of X∗∗2 .

Suppose the contrary and let f̃ ∈ X∗∗2 be an extension of g̃. Due to [78,
Theorem 2.5(f)] (see also [58, Theorem 5.40(f)]) there exists f ∈ A2(K,R) such
that If = f̃ . The definition of I immediately provides that f = g on extK which
gives us a contradiction with the properties of g.

3.3 Complex L1-preduals

Main results, as well as their proofs, of this section are rather similar to those in
Section 3.2. The principal technical inconvenience consists in the impossibility
of using the notion of odd functions in the complex setting. The role of odd
functions play homogeneous functions here.

Following notions are due to Effros (see [18]). Let T stand for the unit circle
endowed with the unit Haar measure dα. Let X be a complex Banach space. A
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set B ⊂ BX∗ is called homogeneous if αB = B for each α ∈ T. An example of
a homogeneous set is extBX∗ . A function f on a homogeneous set B ⊂ BX∗ is
called homogeneous (see e.g. [18, p. 53], [51, p. 240]) if

f(αx∗) = αf(x∗), (α, x∗) ∈ T×B.

If f is a Borel function defined on a homogeneous Borel set B ⊂ BX∗ , we set

(hom f)(x∗) =

∫
T
α−1f(αx∗) dα, x∗ ∈ B.

Then the function hom f is homogeneous on B and it is easy to see that it
is continuous in case f ∈ Cb(B,C). By the Lebesgue dominated convergence
theorem, hom f is well defined for each bounded Baire function on B and hom f
is Baire-α whenever f ∈ Bα,b(B,C). A function f is homogeneous if and only if
hom f = f .

The mapping hom provides a mapping on M(K,C) defined as

(homµ)(f) = µ(hom f), f ∈ C(K,C), µ ∈M(K,C).

For x∗ ∈ BX∗ , let M1
x∗(BX∗) be defined as in Section 3.2. Similarly, symbols ≺

and Mmax(BX∗) are defined as above.
If X is a complex Banach space, then we have the following analogue of [53,

Theorem] due to Effros:
The Banach space X is an complex L1-predual if and only if, for any x∗ ∈ BX∗

and measures µ, ν ∈ M1
x∗(BX∗) ∩Mmax(BX∗), it holds homµ = hom ν (see [18,

Theorem 4.3] or [51, § 23, Theorem 5]).
This theorem permits to define a mapping T analogously as in the real case

(see Section 3.2). Namely, for a separable complex L1-predual X and a bounded
Borel function f defined at least on extBX∗ we set

Tf(x∗) = (homµ)(f), µ ∈M1
x∗(BX∗) ∩Mmax(BX∗). (3.3)

Since homµ is a boundary measure if µ is maximal (see [18, Lemma 4.2] or [51,
§ 23, Lemma 10]), the mapping T is well defined.

The first result is an extension of [5, Theorem II.1.2(a)] to the context of
complex Banach spaces.

Proposition 3.3.1. Let X be a complex Banach space and f a Baire-1 affine
homogeneous function on BX∗. Then f ∈ X∗∗1 .

Proof. We first notice that for a homogeneous function φ : Y → C, where Y is a
complex Banach space, holds the identity

Imφ(y) = −Reφ(iy), y∗ ∈ Y. (3.4)

Let f = Re f + i Im f . Then both Re f and Im f are Baire-1 and affine. Since
f is homogeneous, f(0) = Re f(0) = Im f(0) = 0.

Let XR be the real version of X (we forget multiplication by complex numbers)
and π : X∗ → (XR)∗ be defined as

π(x∗) = Rex∗, x∗ ∈ X∗.
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Then π is a weak*-weak* homeomorphic isometric isomorphism of X∗ and (XR)∗

(due to (3.4)). Thus the function

(Re f) ◦ π−1 : B(XR)∗ → R

is a Baire-1 affine odd function on B(XR)∗ . By [5, Theorem II.1.2(a)], there exists
a sequence (xn) in X such that

(Re f) ◦ π−1(x∗) = lim xn(x∗), x∗ ∈ B(XR)∗ .

Then we have for x∗ ∈ BX∗

f(x∗) = Re f(x∗)− iRe f(ix∗) = (Re f ◦ π−1)(π(x∗))− i(Re f ◦ π−1)(π(ix∗))

= limxn(π(x∗))− i limxn(π(ix∗)) = lim(π(x∗)− iπ(ix∗))(xn)

(3.4)
= lim(Rex∗ + i Imx∗)(xn) = lim xn(x∗).

Hence f ∈ X∗∗1 .

Proposition 3.3.2. Let X be a complex separable L1-predual and T be the map-
ping defined by (3.3).

(a) If f ∈ C(BX∗ ,C), then Tf is Baire-1.

(b) If f ∈ Bb(extBX∗ ,C), then Tf is a homogeneous Borel strongly affine func-
tion on BX∗.

Proof. Since X is separable, BX∗ is a metrizable compact convex set (see [72,
Theorems 3.15, 3.16]), and thus there exists a mapping S : BX∗ →Mmax(BX∗)
such that Sx∗ = νx∗ ∈M1

x∗(BX∗) and the function Sf : x∗ 7→ νx∗(f) is a Baire-1
function on BX∗ for each continuous function f on BX∗ (see [83, Théoréme 1] or
[58, Theorem 11.41]).

(a) Let f be a continuous function on BX∗ . Then the function

g(α, z∗) = α−1f(αz∗), (α, z∗) ∈ T×BX∗

is continuous on T×BX∗ , and thus the function

h(z∗) =

∫
T
g(α, z∗) dα, z∗ ∈ BX∗ ,

is continuous on BX∗ .
Then, for each x∗ ∈ BX∗ ,

Tf(x∗) = (hom νx∗)(f) = νx∗(hom f) = νx∗(h) = Sh(x∗).

Thus Tf = Sh is a Baire-1 function on BX∗ .
(b) Let now

F = {f ∈ Bb(BX∗ ,C); Tf is Borel}.

Then F is closed under the taking pointwise limits of bounded sequences by
the Lebesgue dominated convergence theorem and contains C(BX∗ ,C). Hence it
contains any bounded Borel function on BX∗ .
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Let f be a bounded Borel function on extBX∗ . Since extBX∗ is a Borel set,
we can consider f to be a Borel function on BX∗ . Hence f ∈ F and Tf is Borel.

Further, Tf is homogeneous. Indeed, let β ∈ T be given and let an affine
homeomorphism σβ : BX∗ → BX∗ be defined as σβ(x∗) = βx∗. Given y∗ ∈
BX∗ and a maximal measure µ ∈ M1

y∗(BX∗), the measure σβµ ∈ M1
βy∗(BX∗) ∩

Mmax(BX∗). Thus

Tf(βy∗) = (hom σβµ)(f) = (σβµ)(hom f) =

∫
extBX∗

(hom f)(βx∗) dµ(x∗)

= βµ(hom f) = β(homµ)(f) = βTf(y∗).

Hence Tf is homogeneous.
Let us show that Tf is strongly affine, i.e., that ν(Tf) = Tf(y∗) for each

y∗ ∈ BX∗ and ν ∈M1
y∗(BX∗). Given y∗ and ν as above, let

µ(g) =

∫
BX∗

νx∗(g) dν(x∗), g ∈ C(BX∗ ,C).

As in the proof of Proposition 3.2.1 we obtain that µ is maximal and contained
in M1

y∗(BX∗). Thus Tf(y∗) = (homµ)(f) and it follows that∫
BX∗

Tf(x∗) dν(x∗) =

∫
BX∗

νx∗(hom f) dν(x∗)

= µ(hom f) = (homµ)(f) = Tf(y∗).

Hence ν(Tf) = Tf(y∗) and Tf is strongly affine.

Proposition 3.3.3. Let X be a complex separable L1-predual and f be a Borel
bounded function on extBX∗. If h is a homogeneous strongly affine function on
BX∗ extending f , then h = Tf .

Proof. Since f is extended by a homogeneous function h, it is homogeneous on
extBX∗ . Let y∗ ∈ BX∗ be given. We pick a maximal measure µ ∈ M1

y∗(BX∗)
and obtain

Tf(y∗) = (homµ)(f) = µ(f) =

∫
extBX∗

h(x∗) dµ(x∗) = h(y∗).

Proposition 3.3.4. Let X be a complex separable L1-predual and assume that
f ∈ Bα,b(extBX∗ ,C).

(a) If α ∈ [1, ω0), then Tf ∈ X∗∗α+1.

(b) If α ∈ [ω0, ω1), then Tf ∈ X∗∗α .

(c) If α ∈ [1, ω1) and extBX∗ is Fσ, then Tf ∈ X∗∗α .

Proof. (a) If α = 1, f can be extended to a Baire-1 function on BX∗ by [1,
Corollary I.4.4] and [49, § 35, VI, Theorem]. Let (fn) be a bounded sequence of
continuous functions on BX∗ converging to f on extBX∗ .
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For a given x∗ ∈ BX∗ , let µ ∈M1
x∗(BX∗) ∩Mmax(BX∗) be chosen. Then

Tfn(x∗) = (homµ)(fn)→ (homµ)(f) = Tf(x∗).

By Proposition 3.3.2, each Tfn is a Baire-1 homogeneous strongly affine function
on BX∗ . By Proposition 3.3.1, Tfn ∈ X∗∗1 . Hence Tf ∈ X∗∗2 .

The rest of the proof follows by induction.
(b) Let α = ω0 and f ∈ Bα,b(extBX∗ ,C). Let (fn) be a bounded sequence of

functions from Bαn,b(extBX∗ ,C), αn < α, converging to f . Then Tfn → Tf and
Tfn ∈ X∗∗αn+1 by (a). Hence Tf ∈ X∗∗α . For higher Baire classes the proof follows
by transfinite induction.

(c) Let extBX∗ be of type Fσ and f ∈ B1,b(extBX∗ ,C). We have hom f ∈
B1,b(extBX∗ ,C). Then Tf is a homogeneous strongly affine function on BX∗

whose restriction to extBX∗ equals hom f , and thus it is of Baire class 1 on
extBX∗ . By [57, Theorem 1.3], Tf is of Baire class 1 on BX∗ , and thus it is in
X∗∗1 by Proposition 3.3.1.

For functions of higher classes we proceed by transfinite induction.

As a motivation for Proposition 3.3.6 we offer the following consequence of
[65, Theorem 9].

Corollary 3.3.5. Let X be a complex separable L1-predual with extBX∗ ∪ {0}
closed. If α ∈ [0, ω1) and f is a homogeneous strongly affine function on BX∗

such that f |extBX∗ is of Baire class α on extBX∗, then f ∈ X∗∗α .

Proof. If α = 0, then using the proof of [65, Theorem 9] we get Tf ∈ X and
Tf |extBX∗ = f |extBX∗ . Then due to Proposition 3.3.3 f = Tf ∈ X = X∗∗0 .

The proof for higher Baire classes follows by transfinite induction.

The subsequent result is also an improvement of [57, Theorem 1.4] for the
case of separable complex spaces.

Proposition 3.3.6. Let X be a complex separable L1-predual and f be a homo-
geneous strongly affine function on BX∗ such that f |extBX∗ is of Baire class α on
extBX∗.

(a) If α ∈ [0, ω0), then f ∈ X∗∗α+1.

(b) If α ∈ [ω0, ω1), then f ∈ X∗∗α .

(c) If extBX∗ is of type Fσ, α ∈ [1, ω1), then f ∈ X∗∗α .

Proof. (a) Let α ∈ [0, ω0) and f be a homogeneous strongly affine function on
BX∗ such that f |extBX∗ is of Baire class α. If α = 0, i.e., f is continuous on
extBX∗ , then f is Baire-1 on BX∗ by [57, Theorem 5.2]. As a homogeneous
strongly affine Baire-1 function, f ∈ X∗∗1 by Proposition 3.3.1.

If α ∈ [1, ω0), f = Tf due to Proposition 3.3.3. By Proposition 3.3.4(a),
f = Tf ∈ X∗∗α+1. This finishes the proof of (a).

(b) If α ∈ [ω0, ω1) and f is homogeneous strongly affine such that f |extBX∗ is
of Baire class α, then f = Tf by Proposition 3.3.3 and it follows from Proposi-
tion 3.3.4(b) that f = Tf ∈ X∗∗α .

(c) It is enough to use Propositions 3.3.3 and 3.3.4(c).
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Theorem 3.3.7. Let X be a complex separable L1-predual and let f be an ho-
mogeneous function in Bα,b(extBX∗ ,C).

(a) If α ∈ [0, ω1) then there exists a function h such that h = f on extBX∗ and
h ∈ X∗∗α+1 in case α ∈ [0, ω0) and h ∈ X∗∗α in case α ∈ [ω0, ω1).

(b) If extBX∗ is of type Fσ and α ∈ [1, ω1) then there exists a function h ∈ X∗∗α
such that h = f on extBX∗.

Proof. (a) Let f be an homogeneous bounded Borel function on extBX∗ . Thus by
Proposition 3.3.2 the function Tf is a homogeneous Borel strongly affine function
on BX∗ satisfying

Tf(x∗) = (hom εx∗)(f) = εx∗(hom f) = f(x∗), x∗ ∈ extBX∗ .

By Proposition 3.3.6(a),(b), the function h = Tf is in X∗∗α+1 in case α ∈ [0, ω0)
and h ∈ X∗∗α in case α ∈ [ω0, ω1).

(b) We argue as above, only we use Proposition 3.3.6(c) instead.

Theorem 3.3.8. Let X be a separable complex L1-predual whose set of extreme
points is not of type Fσ. Then there exists a homogeneous bounded Baire-1 func-
tion on extBX∗ that is not extensible to a function from X∗∗1 .

Proof. We start the reasoning as in the proof of Theorem 3.2.8. Let A be a
nonempty closed set in BX∗ with A \ extBX∗ countable enjoying the property
A ∩ extBX∗ = A \ extBX∗ = A. Let {x∗n; n ∈ N} be an enumeration of A \
extBX∗ and let µn be chosen fromM1

xn∗(BX∗)∩Mmax(BX∗). Let Kn, n ∈ N, be
compact sets in extBX∗ satisfying µn(Kn) ≥ 1− 1

n
. Without loss of generality we

may assume that Kn are homogeneous. The Fσ-separation argument provides a
nonempty closed set B ⊂ A \

⋃
nKn such that B ∩ extBX∗ = B \ extBX∗ = B.

Fix δ ∈ (0, π
2
). We pick a nonzero element b∗ ∈ B and choose its closed

neighborhood V such that

∀t1 ∈ [−δ
2
,
δ

2
] ∀t2 ∈ [−π,−δ] ∪ [δ, π] : eit1V ∩ eit2V = ∅.

Let

C = B ∩ V, D = {eitc∗; t ∈ [−δ
2
,
δ

2
], c∗ ∈ C} and f = homχD.

We claim that f has no extension in X∗∗1 . Assume that h is such an extension.
Then h = Tf by Proposition 3.3.3. Let n ∈ N satisfy x∗n ∈ C. Then

∀α ∈ T ∀x∗ ∈ Kn : αx∗ /∈ D. (3.5)

Indeed, if αx∗ were in D for some α ∈ T and x∗ ∈ Kn, then there would exist
t ∈ [− δ

2
, δ

2
] and c∗ ∈ C such that αx∗ = eitc∗. Then e−itαx∗ ∈ Kn ∩ C, a

contradiction.
Thus we have from (3.5)

|Tf(x∗n)| = |(homµn)(f)| =
∣∣∣∣∫
BX∗

∫
T
α−1χD(αx∗) dα dµn(x∗)

∣∣∣∣
=

∣∣∣∣∫
Kn

∫
T
α−1χD(αx∗) dα dµn(x∗) +

∫
extBX∗\Kn

fdµn

∣∣∣∣
=

∣∣∣∣∫
extBX∗\Kn

fdµn

∣∣∣∣ ≤ 1

n
.
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On the other hand, let x∗ ∈ C ∩ extBX∗ be given. Then we have

∀t ∈ [−π,−δ] ∪ [δ, π] : χD(eitx∗) = 0. (3.6)

Indeed, if eit1x∗ ∈ D for some t1 ∈ [−π,−δ]∪ [δ, π], then there exists t2 ∈ [− δ
2
, δ

2
]

and c∗ ∈ C such that eit1x∗ = eit2c∗. Then

eit1x∗ ∈ eit1V ∩ eit2V = ∅,

a contradiction. Thus (3.6) holds.
Further, we have

∀t ∈ [−δ
2
,
δ

2
] : χD(eitx∗) = 1. (3.7)

Using (3.6) and (3.7) we obtain

|Tf(x∗)| = |(hom εx∗)(x
∗)| = |εx∗(f)| = |f(x∗)|

=

∣∣∣∣∫
extBX∗

α−1χD(αx∗) dα

∣∣∣∣ =

∣∣∣∣∫
α∈{eit; t∈[−δ,δ]}

α−1χD(αx∗) dα

∣∣∣∣
≥
∣∣∣∣Re

∫
α∈{eit; t∈[−δ,δ]}

α−1χD(αx∗) dα

∣∣∣∣
=

∣∣∣∣∫
α∈{eit; t∈[−δ,δ]}

(Reα−1)χD(αx∗) dα

∣∣∣∣
≥ (cos δ)

∫
α∈{eit; t∈[− δ

2
, δ
2

]}
χD(αx∗) dα

= (cos δ)

∫
α∈{eit; t∈[− δ

2
, δ
2

]}
1 dα

= (cos δ)δ.

Thus h = Tf has no point of continuity in the set C, a contradiction with
h ∈ X∗∗1 . This concludes the proof.

Corollary 3.3.9. Let X be a separable complex Banach space. Then the following
assertions are equivalent.

(i) The space X is an L1-predual and extBX∗ is an Fσ-set.

(ii) Every homogeneous function f ∈ B1,b(extBX∗ ,C) can be extended to a func-
tion in X∗∗1 .

Proof. The implication (i) =⇒ (ii) follows from Theorem 3.3.7(b).
(ii) =⇒ (i). Let x∗ ∈ BX∗ and µ, ν ∈ M1

x∗(BX∗) ∩Mmax(BX∗) be given.
Pick an arbitrary f ∈ C(BX∗ ,C). Then hom f |extBX∗ is a homogeneous function
on extBX∗ , and thus there exists its extension h ∈ X∗∗1 . Since µ, ν are carried by
extBX∗ and h is strongly affine, we obtain

(homµ)(f) = µ(hom f) = µ(h) = h(x) = ν(h) = ν(hom f) = (hom ν)(f).

Thus homµ = hom ν and X is an L1-predual by the omnipresent result of Effros
(see [18, Theorem 4.3] or [51, § 23, Theorem 5]). The fact that extBX∗ is of type
Fσ then follows from Theorem 3.3.8.
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Theorem 3.3.10. Let X be a complex separable L1-predual such that extBX∗ is
of type Fσ. Let α ∈ [1, ω1). Then the space X∗∗α is isometrically isomorphic to the
space Bα,bhom(extBX∗ ,C) of homogeneous bounded Baire-α functions on extBX∗.

Proof. Obviously, for any f ∈ X∗∗α the restriction f |extBX∗ is clearly

in Bα,bhom(extBX∗ ,C) and it also preserves a norm. Indeed, consider a homogeneous
set B ⊂ BX∗ and a bounded complex function g on B. Then

sup{|g(x∗)|;x∗ ∈ B} = sup{|Re g(x∗)|;x∗ ∈ B}.

Moreover, for any g ∈ X∗∗α the function Re g is strongly affine. Thus due to the
previous observations and [58, Theorem 3.86] we get

‖f‖ = ‖Re f‖ = ‖(Re f)|extBX∗‖ = ‖f |extBX∗‖.

On the other hand, by Proposition 3.3.4(c), any function in Bα,bhom(extBX∗ ,C)
is extended by Tf to the element of X∗∗α . The restriction mapping is thus the
required isometric isomorphism.

3.4 C∗-algebras

The main result of this section answers a question from [5, p. 1048].
In order to prove it we need to recall a notion of a function space which is a

linear subspace of C(K,F) containing constants and separating points of K. If
H ⊂ C(K,F) is a function space, we write H⊥⊥ for the set of all bounded Borel
functions on K satisfying µ(f) = 0 for each µ ∈ H⊥.

Proposition 3.4.1. Let K be a metrizable compact space and f ∈ Bb(K,C).
Then the function F : BM(K,C) → C defined as F (µ) = µ(f), µ ∈ BM(K,C), is
strongly affine on BM(K,C).

Proof. If f ∈ C(K,C), F is strongly affine on BM(K,C) by the definition. If (fn)
is a bounded sequence of Borel functions pointwise converging to f such that the
relevant functions Fn are strongly affine on BM(K,C), (Fn) converges pointwise to
F by the Lebesgue dominated convergence theorem. Since Fn are strongly affine,
F is strongly affine as well again due to the Lebesgue dominated convergence
theorem.

Hence the family of all Borel functions f , for which F is strongly affine,
is closed under the taking pointwise limits of bounded sequences and contains
continuous functions. Hence it contains any bounded Borel function.

Next we recall a result which is essentially from [75].

Proposition 3.4.2. Let π : K → L be a continuous affine surjection of a compact
convex set K onto a compact convex set L. Let g : L→ C be a bounded function.
Then g is strongly affine on L if and only if g ◦ π is strongly affine on K.

Proof. We notice that a function g : L→ C is strongly affine if and only if both
Re g and Im g are strongly affine. Then use [75, Proposition 3.2] (see also [58,
Proposition 5.29]).
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Proposition 3.4.3. Let K be a metrizable compact space, A ⊂ C(K,C) be a
function space and let π : BM(K,C) → BA∗ be the restriction mapping. If f ∈
Bα,b(K,C) ∩ A⊥⊥, then the function F : BA∗ → C defined as

F (a∗) = µ(f), µ ∈ BM(K,C), π(µ) = a∗,

is a well defined homogeneous strongly affine function on BA∗ of Baire class α.

Proof. Let f ∈ Bα,b(K,C)∩A⊥⊥. First we notice that F is well defined. Indeed,
if a∗ ∈ BA∗ , let µ ∈ BM(K,C) be extending a∗. If ν ∈ BM(K,C) is another extension,
then µ− ν ∈ A⊥, and thus µ(f) = ν(f).

Let α ∈ T, a∗ ∈ BA∗ and µ ∈ BM(K,C) such that π(µ) = a∗. Then π(αµ) = αa∗

and F (αa∗) = αF (a∗), thus F is homogeneous. For the verification of the strong
affinity of F we use Proposition 3.4.2. Let G : BM(K,C) → C be defined as
G(µ) = µ(f), µ ∈ BM(K,C). Then

G = F ◦ π.

Since π is a continuous affine surjection of the compact convex set BM(K,C) on-
to the compact convex set BA∗ , the strong affinity of F follows from Proposi-
tions 3.4.1 and 3.4.2. If f is of Baire class α, G is of class α as well by the
Lebesgue dominated convergence theorem. Hence F is of class α by [73] (see also
[58, Theorem 5.16]).

Theorem 3.4.4. There exists a separable C∗-algebra X such that X∗∗B2 6= X∗∗2 .

Proof. Let H ⊂ C(K,R) be the real function space constructed in [78, Section 5].
By the construction, H is closed in C(K,C) (see [78, p. 1674]) and K is metrizable
(see [78, p. 1673]). Further, H is a real L1-predual (see [78, Lemma 6.1(a)] and
[58, Theorem 6.25]) and

B2,bb(H) ( B2,b(K,R) ∩H⊥⊥

by [78, Lemmas 6.5, 6.6]. Let

A = {g ∈ C(K,C); Re g, Im g ∈ H}.

Then A is selfadjoint and ReA = H is a real L1-predual. Thus A is a complex
L1-predual by [34, Theorem 2] (see also [51, § 23, Theorem 6]). We claim that
A∗∗2 ( A∗∗B2 . Indeed, pick

f ∈ (B2,b(K,R) ∩H⊥⊥) \ B2,bb(H).

Since f ∈ H⊥⊥, clearly f ∈ A⊥⊥ as well. Due to Proposition 3.4.3 we are able to
define F : BA∗ → C as

F (a∗) = µ(f), µ ∈ BM(K,C), π(µ) = a∗,

such that F is a homogeneous strongly affine function on BA∗ of Baire class 2.
On the other hand, F /∈ A∗∗2 . Indeed, assume that F ∈ A∗∗2 . Let

S = {φ(k); k ∈ K} ⊂ BA∗ ,
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where φ(k)(a) = a(k), a ∈ A. Then φ : K → S is a homeomorphic embedding
and f = F ◦ φ. Since F ∈ A∗∗2 , also f = F ◦ φ ∈ B2,bb(A). So let

{ank; n, k ∈ N}

be a family in A such that
f = lim

n→∞
lim
k→∞

ank,

where (limk→∞ ank)n∈N is a bounded sequence as well as every sequence (ank)k∈N
for any given n ∈ N. Since f is real,

f = Re f = lim
n→∞

lim
k→∞

Re ank,

and thus f ∈ B2,bb(H), which is not the case. Thus F /∈ A∗∗2 .
Now we use [62, Theorem] asserting that A is a 1-complemented subspace

of a separable C∗-algebra X. We claim that X∗∗B2 6= X∗∗2 . Indeed, recall that
F ∈ A∗∗B2 \A

∗∗
2 . Let P : X → A be a projection of norm 1 and π : BX∗ → BA∗ be

the restriction mapping. Then

(π ◦ P ∗)(a∗) = a∗, a∗ ∈ BA∗ .

Let
G = F ◦ π.

By Proposition 3.4.2, G ∈ X∗∗B2 . Suppose G ∈ X∗∗2 and let (xnk)n,k∈N witness that
G ∈ X∗∗2 . Then (Pxnk)n,k∈N witness that F ∈ A∗∗2 , because

F (a∗) = F (π(P ∗a∗)) = G(P ∗a∗) = lim
n→∞

lim
k→∞

xnk(P
∗a∗)

= lim
n→∞

lim
k→∞

Pxnk(a
∗), a∗ ∈ BA∗ .

But this contradicts our choice of F .
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4. Baire classes of nonseparable
L1-preduals
(joint work with Jǐŕı Spurný)

4.1 Introduction

A Banach space X is called an L1-predual (or a Lindenstrauss space) if its dual
X∗ is isometric to a space L1(X,S, µ) for a measure space (X,S, µ). Real L1-
preduals were in depth investigated in papers [17], [22], [23], [8], [52], [60], [24],
[61], [16], [27], [13] or [57]. It has turned out that a real Banach space X is an
L1-predual if and only if its dual unit ball BX∗ satisfies a “simplex-like” condition
(see [53]). This result indicates that methods developed in the theory of simplices
might be useful in the study of L1-preduals.

The paper is intended to follow the line of the cited papers and present a more
detailed knowledge of the structure of L1-preduals, namely, we generalize some
results of Lindenstrauss and Wulbert in [55], Jellett in [40] and of ours in [56].

We work within the context of the field of real numbers and all topological
spaces are considered to be Hausdorff.

For a topological space K, let C(K) be the space of all continuous functions
on K, B(K) be the space of all Borel functions on K and Bb(K) be the space
of all bounded Borel functions on K. In case K is compact, we write M(K)
for the space of Radon measures on K and M1(K) for the set of all Radon
probability measures on K. For a point x ∈ K, εx stands for the Dirac measure
at x. If B ⊂ K is a Borel subset of K, we writeM1(B) for the subset ofM1(K)
containing measures µ satisfying µ(B) = 1.

Let K be a topological space and H be a subset of C(K). We set B0(H) = H
and, for α ∈ (0, ω1), let Bα(H) consist of all pointwise limits of elements from⋃
β<α Bβ(H). Further we denote by Bα,b(H) the set of all bounded elements from

Bα(H). The symbol Bα,bb(H) denotes the inductive families created by means of
pointwise limits of bounded sequences of lower classes.

If we start the inductive procedure from the space of all continuous functions,
we write simply Bα(K) and Bα,b(K) for the spaces of Baire-α functions. Then
we have Bα,b(K) = Bα,bb(K). Let us remind that for a metrizable space K holds
Bb(K) =

⋃
α<ω1

Bα,b(K). Having started with the space A(K) of all continuous
affine functions on a compact convex set K in a locally convex space, we obtain
spaces Aα(K), Aα,b(K) and Aα,bb(K). As a consequence of the uniform bounded-
ness principle we get Aα,bb(K) = Aα,b(K) = Aα(K) (see e.g. [58, Lemma 5.36])
and elements of this set we call functions of affine class α.

If X is a Banach space and BX∗ is its dual unit ball endowed with the weak*
topology, X is isometrically embedded in C(BX∗) via canonical embedding. We
recall definitions of Baire classes of X∗∗ from [5]. For α ∈ [0, ω1), we call Bα(X)
the intrinsic α-Baire class of X∗∗. Following [5, p. 1044], we denote the intrinsic
α-th Baire class as X∗∗α . Let us remark that our definition is formally slightly
different from the one in [5]. While in our case elements of X∗∗α are restrictions of
uniquely determined elements from X∗∗ to the closed unit ball BX∗ , the functions
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considered in [5] are precisely these extensions.
Still considering X as a subspace of C(BX∗), the α-th Baire class of X∗∗ is

defined as
X∗∗Bα = {x∗∗ ∈ X⊥⊥ : x∗∗|B∗X ∈ B

α(BX∗)}.

Given an element x∗∗ ∈ X∗∗, it can be verified that x∗∗ ∈ X∗∗Bα if and only if
x∗∗|BX∗ ∈ Bα(BX∗) and x∗∗|BX∗ satisfies the barycentric calculus, i.e.,

x∗∗
(∫

BX∗

id dµ

)
=

∫
BX∗

x∗∗ dµ

for every probability measure µ ∈ M1(BX∗). Where no confusion can arise, we
do not distinguish between X∗∗Bα and X∗∗Bα |BX∗ .

Obviously, X∗∗α ⊂ X∗∗Bα but the converse need not hold by [85, Theorem] (we
refer the reader for a detailed exposition on Baire classes of Banach spaces to [5,
pp. 1043–1048]).

In [56] we have proven [56, Theorem 2.7]: Let X be a separable L1-predual.

(a) Let α ∈ [0, ω1) and f be an odd function in Bα,b(extBX∗). Then there exists
a function h such that h = f on extBX∗ and h ∈ X∗∗α+1 in case α ∈ [0, ω0)
and h ∈ X∗∗α in case α ∈ [ω0, ω1).

(b) If extBX∗ is of type Fσ, then for any α ∈ [1, ω1) and an odd function
f ∈ Bα,b(extBX∗) there exists a function h ∈ X∗∗α such that h = f on
extBX∗.

The first goal of the paper is to give an argument that the previous asser-
tion can be generalized to the nonseparable setting. This is accomplished by
Theorems 4.2.14 and 4.2.15.

The second goal of our paper is to extend [56, Theorem 2.10] which states:
Let X be a separable L1-predual such that extBX∗ is an Fσ set. Then for any
α ∈ [1, ω1), the space X∗∗α is isometric to the space of all bounded odd Baire-α
functions on extBX∗.

Corollary 4.2.16 carries the result to the context of nonseparable L1-preduals.
It generalizes a result by Lindenstrauss and Wulbert proved in [55, Theorem 1].

It is worth pointing out that for a separable Banach space X, the set of
extreme points extBX∗ is an Fσ set if and only if it is a Lindelöf H-set. In the
nonseparable case only one implication remains valid in general: extBX∗ is a
Lindelöf H-set provided it is of type Fσ. For a detailed argument consult e.g.
[57, p. 4].

4.2 Results

Let K be a compact convex set in a locally convex topological vector space. For a
point x ∈ K, we can assign the setM1

x(K) consisting of all probability measures
on K satisfying

∫
K

id dµ = x (equivalently, µ(h) = h(x) for any continuous affine
function h on K). Given a measure µ ∈ M1(K), we write r(µ) for the unique
point x ∈ K satisfying x =

∫
K

id dµ (see [1, Proposition I.2.1] or [51, Chapter 7,
§ 20]).
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A function f on K is strongly affine if f is µ-measurable for each µ ∈M1(K)
and f(x) = µ(f) for any x ∈ K and µ ∈M1

x(K).
The usual dilation order ≺ on M1(K) is defined as µ ≺ ν if and only if

µ(f) ≤ ν(f) for any convex continuous function f on K. We writeMmax(K) for
the set of all probability measures on K which are maximal with respect to ≺. A
measure µ ∈M(K) is boundary if either µ = 0 or the probability measure |µ|

‖µ‖ is

maximal. The symbol Mbnd(K) denotes the space of all boundary measures on
K.

For a function f ∈ C(K), let

f̂(x) = sup{µ(f); µ ∈M1
x(K)}, x ∈ K.

By the Choquet representation theorem, for any x ∈ K there exists µ ∈M1
x(K)∩

Mmax(K) (see [51, p. 192, Corollary]). The set K is termed simplex if this mea-
sure is uniquely determined for each x ∈ K (see [51, § 20, Theorem 3]). In case
K is metrizable, maximal measures are carried by the Gδ set extK of extreme
points of K (see [51, § 20, Theorem 5]). If K is a simplex, the space A(K) is an
example of an L1-predual (see [25, Proposition 3.23]).

We recall that a topological space X is K-analytic if it is the image of a Polish
space under an upper semicontinuous compact-valued map (see [70, Section 2.1]).

If K is a topological space, a zero set in K is the inverse image of a closed set
in R under a continuous function f : K → R. The complement of a zero set is a
cozero set. A countable union of closed sets is called an Fσ set, the complement
of an Fσ set is a Gδ set. If K is normal, it follows from Tietze’s theorem that
a closed set is a zero set if and only if it is also a Gδ set. We recall that Borel
sets are members of the σ–algebra generated by the family of all open subset of
K and Baire sets are members of the σ–algebra generated by the family of all
cozero sets in K.

A set A ⊂ K is an H-set (or a resolvable set) if for any nonempty B ⊂ K
(equivalently, for any nonempty closed B ⊂ K) there exists a relatively open
U ⊂ B such that either U ⊂ A or U ∩ A = ∅. It is easy to see that the family of
all H-sets is an algebra (see e.g. [49, § 12, VI]).

We say that a function f : K → R from a topological space K is a Baire
function if it is measurable with respect to the σ-algebra of Baire sets (i.e., f−1(U)
is a Baire set for every open set U ⊂ R). It is well known that any Baire function
belongs to some Bα(K) for a suitable ordinal α ∈ [0, ω1).

Lemma 4.2.1. Let K,L be K-analytic topological spaces and r : K → L be a
continuous surjection. Let g : L → R. Then g is a Baire function on L if and
only if g ◦ r is a Baire function on K.

Proof. If g is a Baire function L, then g ◦ r is clearly a Baire function on K.
Conversely, if f = g ◦ r is a Baire function on K and U ⊂ R is an open set, then
both f−1(U) and f−1(R \ U) are Baire sets in K. Then they are K-analytic sets
in K (see [70, Section 2]), and thus

g−1(U) = r(f−1(U)), g−1(R \ U) = r(f−1(R \ U))

are K-analytic as well. It follows from the proof of the standard separation
theorem (see [70, Theorem 3.3.1]) that they are Baire sets. Hence g is measurable
with respect to the σ-algebra of Baire sets, and thus it is a Baire function.
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Lemma 4.2.2. Let K be a compact convex set with extK Lindelöf and let f ∈
Bα,b(extK). Then there exist a Baire set B ⊃ extK and a function g ∈ Bα,b(B)
such that

• g = f on extK,

• µ(g) = ν(g) for any µ, ν ∈M1(B) with µ ≺ ν.

Proof. We proceed by transfinite induction on the class of a function f .
Assume first that f is a bounded continuous function on extK. Using [57,

Lemma 4.5] we find sequences (un) and (ln) such that

• the functions un are continuous concave on K, ln are continuous convex on
K,

• inf f(extK) ≤ inf l1(K), supu1(K) ≤ sup f(extK),

• un ↘ f , ln ↗ f on extK.

We define u = infn∈N un, l = supn∈N ln. Then we observe that l ≤ u by the
minimum principle (see [1, Theorem I.5.3] or [58, Theorem 3.16]), both functions
are Baire, u is upper semicontinuous concave and l is lower semicontinuous convex.
Let

B = {x ∈ K : u(x) = l(x)} and g(x) = u(x), x ∈ B.
Then B is a Baire set containing extK and, for µ, ν ∈ M1(B) with µ ≺ ν, we
have by [58, Proposition 3.56]

µ(g) =

∫
B

g dµ =

∫
B

u dµ ≥
∫
B

u dν =

∫
B

g dν

=

∫
B

l dν ≥
∫
B

l dµ =

∫
B

g dµ = µ(g).

Hence µ(g) = ν(g). Finally, since g is continuous on B, the proof is finished for
the case α = 0.

Assume now that the claim holds true for all β smaller then some countable
ordinal α. Given f ∈ Bα,b(extK), let (fn) be a bounded sequence of functions
with fn ∈ Bαn,b(extK) for some αn < α, n ∈ N, such that fn → f . For each
n ∈ N, we use the induction hypothesis and find a Baire set Bn ⊃ extK along
with a function gn ∈ Bαn,b(Bn) that coincides with fn on extK and satisfies
µ(gn) = ν(gn) for any µ, ν ∈M1(Bn) with µ ≺ ν.

We set

B = {x ∈
∞⋂
n=1

Bn : (gn(x)) converges} and g(x) = lim
n→∞

gn(x), x ∈ B.

Then B is a Baire set containing extK, g ∈ Bα,b(B),

g(x) = lim
n→∞

gn(x) = lim
n→∞

fn(x) = f(x), x ∈ extK,

and, for µ, ν ∈M1(B) satisfying µ ≺ ν,

µ(g) =

∫
B

(lim gn) dµ = limµ(gn) = lim ν(gn) =

∫
B

(lim gn) dν = ν(g).

This finishes the proof.
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Lemma 4.2.3. Let K be a compact convex set, B ⊃ extK be a Baire set and
f : B → R be a function such that

(a) f is bounded and Baire,

(b) µ(f) = ν(f) for every µ, ν ∈M1(B) with µ ≺ ν,

(c) µ(f) = 0 for every µ ∈Mbnd(K) ∩ A(K)⊥.

Then there exists an affine bounded Baire function h : K → R such that

(d) h = f on B,

(e) µ(h) = h(r(µ)) for any µ ∈Mmax(K) ∩M1(K).

Proof. Let B ⊃ extK and f : B → R be as in the hypothesis.
We set

h(x) = ν(f), ν ∈M1
x(K) ∩Mmax(K), x ∈ K.

Then h is correctly defined because of (c) and the fact that any maximal measure
is carried by B (see [1, Remark, p. 38] or [58, Theorem 3.79(a)]).

Further, h is affine. Indeed, let αx + (1 − α)y be a convex combination of
points x, y ∈ K. Pick νx ∈ M1

x(K) ∩Mmax(K) and νy ∈ M1
y(K) ∩Mmax(K).

Since the set of maximal measures is a convex cone and the mapping r is affine,

ανx + (1− α)νy ∈M1
αx+(1−α)y(K) ∩Mmax(K).

Thus

h(αx+(1−α)y) = (ανx+(1−α)νy)(f) = ανx(f)+(1−α)νy(f) = αh(x)+(1−α)h(y),

and h is affine.
Obviously, due to (b), the fact that any maximal measure is carried by B and

the definition of h we have

h(x) = ν(f) = εx(f) = f(x), ν ∈M1
x(K) ∩Mmax(K), x ∈ B,

h(r(µ)) = µ(f) = µ(h), µ ∈M1(K) ∩Mmax(K).

Thus (d) and (e) hold.
Finally we show that h is Baire. Since the characteristic function of B is a

Baire function, the function B̃(µ) = µ(B), µ ∈ M1(K), is a Baire function on
M1(K) as well. Thus

M1(B) = {µ ∈M1(K) : B̃(µ) = 1}

is a convex Baire set. Consequently, it is a K-analytic set in M1(K) (see e.g.

[70, Section 2.5]). Since f is a bounded Baire function on B, the function f̃ :
M1(B)→ R defined as

f̃(µ) =

∫
B

f dµ, µ ∈M1(B),

is a well defined Baire function on M1(B). The mapping r :M1(B) → K is an
affine continuous surjection (this follows from [1, p. 12] or [58, Proposition 2.38])

and f̃ = h ◦ r.
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Indeed, let µ ∈ M1(B). We pick a maximal measure ν ∈ Mmax(K) with
µ ≺ ν. Then ν ∈M1(B) and r(µ) = r(ν), thus due to (b)

f̃(µ) = µ(f) = ν(f) = h(r(ν)) = h(r(µ)) = (h ◦ r)(µ).

By Lemma 4.2.1, h is a Baire function on K.

Lemma 4.2.4. Let K be a topological space, H ⊂ C(K), α ∈ [0, ω1) and f ∈
Bα(H). Then there exists a countable set F ⊂ H such that f ∈ Bα(F).

Proof. The assertion follows by transfinite induction.

Lemma 4.2.5. Let K be a compact convex set and f : K → R be a bounded
Baire affine function such that µ(f) = f(r(µ)) for every µ ∈ Mmax(K). Then f
is strongly affine.

Proof. Since f is a Baire function, there exists an ordinal α ∈ [0, ω1) and a count-
able family F ⊂ C(K) such that f ∈ Bα(F) (see Lemma 4.2.4). Then each func-
tion in F can be uniformly approximated by a sequence of functions of the form
p1 − p2, where p1, p2 are continuous convex functions (see [1, Proposition I.1.1]).
We denote the set of all functions p1, p2 needed in the approximation of elements
in F by P . Next, every continuous convex function in P can be uniformly ap-
proximated by a sequence of functions of the form sup{a1, . . . , an}, where n ∈ N
and a1, . . . , an are continuous affine functions (see [1, Corollary I.1.3]). Let us
denote the countable set of all such continuous affine functions involved in the
approximation of functions in P by {an : n ∈ N}.

We define an affine continuous mapping

ϕ : K → RN

x 7→ {an(x)}n∈N, x ∈ K,

which maps X onto a metrizable compact convex set L = ϕ(K). Further, if
ϕ(x1) = ϕ(x2) for x1, x2 ∈ K, then clearly f(x1) = f(x2). Thus we can define
a function

g : L→ R
y 7→ f(x), x ∈ ϕ−1(y), y ∈ Y.

Then f = g ◦ ϕ.
By Lemma 4.2.1, the function g is Baire and it is easy to see that it is bounded

and affine. Further, for any ν ∈Mmax(L) we have ν(g) = g(r(ν)).
Indeed, let ν ∈ Mmax(L) be given. We find a measure µ ∈ Mmax(K) with

ϕµ = ν (see [58, Proposition 7.49]). Since

h(ϕ(r(µ))) = µ(h ◦ ϕ) = (ϕµ)(h) = ν(h) = h(r(ν)), h ∈ A(L),

we obtain ϕ(r(µ)) = r(ν). Thus

ν(g) = µ(g ◦ ϕ) = µ(f) = f(r(µ)) = (g ◦ ϕ)(r(µ)) = g(r(ν)),

and the claim is proved.
Since L is metrizable, by [85, Théorème 1] (see also [58, Theorem 11.41])

there exists a Borel mapping S : y 7→ νy from L to M1(L) such that νy ∈
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M1
y(L) ∩Mmax(L) for each y ∈ L. Now we prove that g is strongly affine. Let

ν ∈M1(L) be given. We define a measure ω ∈M1(L) as

ω(c) =

∫
L

νy(c) dν(y), c ∈ C(L).

Since, for any c ∈ C(L),

ω(ĉ) =

∫
L

νy(ĉ) dν(y) =

∫
L

νy(c) dν(y) = ω(c),

ω is maximal due to [58, Theorem 3.58]. Further,

ω(h) =

∫
L

νy(h) dν(y) = ν(h) = h(r(ν)), h ∈ A(L),

and thus ω ∈M1
r(ν)(L).

Hence

g(r(ν)) = ω(g) =

∫
L

νy(g) dν(y) =

∫
L

g(y) dν(y) = ν(g),

and g is strongly affine.
Now it suffices to use [75, Proposition 3.2] (see also [58, Proposition 5.29]) to

conclude that f is strongly affine.

Definition 4.2.6. Let X be a Banach space. Then σ(x∗) = −x∗, x∗ ∈ BX∗ , is a
natural affine homeomorphism of BX∗ onto itself. A set B ⊂ BX∗ is symmetric
if σ(B) = B. An example of a symmetric set is the set extBX∗ . For a function
f defined on a symmetric set B ⊂ BX∗ we define

(odd f)(x∗) =
1

2
(f(x∗)− f(−x∗)), x∗ ∈ B.

A function f defined on a symmetric subset of BX∗ is odd if odd f = f .
For µ ∈M(BX∗), let oddµ ∈M(BX∗) be defined as

(oddµ)(f) = µ(odd f), f ∈ C(BX∗).

The following characterization of L1-preduals is due to Lazar (see [53, Theo-
rem] or [51, § 21, Theorem 7])):

Let X be a Banach space. Then X is an L1-predual if and only if oddµ =
odd ν for each x∗ ∈ BX∗ and µ, ν ∈M1

x∗(BX∗) ∩Mmax(BX∗).

Lemma 4.2.7. Let X be an L1-predual such that extBX∗ is Lindelöf. Then for
every bounded odd Baire function on extBX∗ there exist its odd Baire strongly
affine extension on BX∗.

Proof. Let f be an odd bounded Baire function on extBX∗ . By Lemma 4.2.2
there exist a Baire set B̃ ⊃ extBX∗ and a bounded Baire function h̃ : B̃ → R
such that

• h̃ = f on extBX∗ ,
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• µ(h̃) = ν(h̃) for any µ, ν ∈M1(B̃) with µ ≺ ν.

We set
B = B̃ ∩ −B̃ and h = odd h̃ on B.

Then h is an odd Baire function on a symmetric Baire set B ⊃ extBX∗ extending
f and satisfying µ(h) = ν(h) for any µ, ν ∈M1(B) with µ ≺ ν.

Indeed, let µ ≺ ν with µ, ν ∈ M1(B) be given. Then µ, ν ∈ M1(B̃) as well

as σµ, σν ∈M1(B̃). Further, σµ ≺ σν. Thus σµ(h̃) = σν(h̃) and

µ(h) = µ(odd h̃) =

∫
B

1

2
(h̃(x∗)− h̃(−x∗)) dµ(x∗)

=
1

2
(µ(h̃)− σµ(h̃)) =

1

2
(ν(h̃)− σν(h̃)) = ν(h).

Let
ω ∈Mbnd(BX∗) ∩ A(BX∗)

⊥

be given. Without loss of generality we may assume that ω = µ−ν, where µ, ν ∈
Mmax(BX∗). By Lazar’s theorem [53, Theorem] (see also [51, § 21, Theorem 7]),

µ(h) = µ(oddh) = (oddµ)(h) = (odd ν)(h) = ν(oddh) = ν(h).

Hence ω(h) = 0. By Lemma 4.2.3 there exists an affine bounded Baire extension
g of h satisfying µ(g) = g(r(µ)) for each µ ∈ Mmax(BX∗). By Lemma 4.2.5, the
extension g is strongly affine.

To show that g is odd, it is enough to verify that g(0) = 0. But this is obvious
since, for a point x∗ ∈ extBX∗ ,

g(0) =
1

2
(εx∗ + ε−x∗)(g) =

1

2
(εx∗ + ε−x∗)(h) = 0.

This concludes the proof.

Lemma 4.2.8. Let K be a compact convex set with extK being Lindelöf. Then
any bounded Baire function on extK can be extended to a bounded Baire function
on K.

Proof. Let F be the family of all bounded Baire functions on extK that are
extendable to a bounded Baire function on K.

By [43, Theorem 30], F contains any bounded Baire-1 function on extK.
Let (fn) be a bounded sequence of functions from F converging to a function

f on extK. Let f̃n be a bounded Baire extension of fn, n ∈ N. Without loss
of generality we may assume that the functions f̃n are bounded by the same
constant. By setting

f̃ = lim sup f̃n,

we obtain a bounded Baire function extending f . Hence F is closed with respect
to taking pointwise limits of bounded sequences. Thus F contains every bounded
Baire function on extK.
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Definition 4.2.9. LetX be an L1-predual with extBX∗ Lindelöf. For any bound-
ed Baire function f on extBX∗ we define

Tf(x∗) = (oddµ)(f̃), µ ∈M1
x∗(BX∗) ∩Mmax(BX∗), x

∗ ∈ BX∗ ,

where f̃ is an arbitrary bounded Baire function on BX∗ extending f .
We hasten to add that Tf is well defined since

• oddµ = odd ν for any µ, ν ∈ M1
x∗(BX∗) ∩Mmax(BX∗) and x∗ ∈ BX∗ by

the mentioned Lazar theorem,

• f has a bounded Baire extension on BX∗ (see Lemma 4.2.8),

• given two bounded Baire extensions f̃1, f̃2 of f , they coincide on a Baire
set containing extBX∗ , and thus (oddµ)(f̃1) = (oddµ)(f̃2) for any µ ∈
Mmax(BX∗) .

The described mapping T is a natural generalization of the dilation mapping
defined in the simplicial case e.g. in [58, Definition 6.7].

Lemma 4.2.10. Let X be an L1-predual with extBX∗ Lindelöf. Let f be a
bounded Baire function on extBX∗. Then Tf is a bounded odd Baire strongly
affine function on BX∗ such that Tf = odd f on extBX∗.

Proof. Let f̃ be a bounded Baire function on BX∗ extending f (see Lemma 4.2.8).

Since odd f̃ is an odd bounded Baire function on BX∗ , by Lemma 4.2.7 there exists
an odd Baire strongly affine function h on BX∗ satisfying h = odd f̃ on extBX∗ .
Let x∗ ∈ BX∗ be given and let µ ∈ M1

x∗(BX∗) ∩ Mmax(BX∗). Since oddµ is

boundary and h = odd f̃ on a Baire set containing extBX∗ , we obtain

Tf(x∗) = (oddµ)(f̃) = µ(odd f̃) = µ(h) = h(x∗).

Thus Tf is an odd Baire strongly affine function on BX∗ .
Finally, for a point x∗ ∈ extBX∗ we have

Tf(x∗) = h(x∗) = (odd f̃)(x∗) = (odd f)(x∗).

The proof is finished.

Lemma 4.2.11. Let X be an L1-predual with extBX∗ Lindelöf. Let (fn) be a
bounded sequence of Baire functions on extBX∗ converging pointwise to f on
extBX∗. Then Tfn → Tf .

Proof. Let f̃n be bounded Baire extensions of the functions (fn) (see Lemma 4.2.8),
obviously we may assume that they are bounded by the same constant. Then

f̃ = lim sup f̃n

is a bounded Baire function extending f . The set

B = {x∗ ∈ BX∗ : f̃(x∗) = lim
n→∞

f̃n(x∗)}

is a Baire set containing extBX∗ . Thus, for x∗ ∈ BX∗ and µ ∈ M1
x∗(BX∗) ∩

Mmax(BX∗), we have

Tfn(x∗) = (oddµ)(f̃n) =

∫
B

f̃n d(oddµ)→
∫
B

f̃ d(oddµ) = (oddµ)(f̃) = Tf(x∗).

The proof is finished.
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Lemma 4.2.12. Let X be an L1-predual with extBX∗ Lindelöf and α ∈ [0, ω1).
Let f ∈ Bα,b(extBX∗). Then

• Tf ∈ X∗∗α+1 if α ∈ [0, ω0),

• Tf ∈ X∗∗α if α ∈ [ω0, ω1).

Proof. If α = 0, then Tf is a strongly affine function whose restriction to extBX∗

is equal to a continuous function odd f (see Lemma 4.2.10). By [57, Theorem 5.2],
Tf ∈ B1,b(BX∗). Thus Tf ∈ X∗∗1 by [5, Theorem II.1.2(a)].

For α < ω0 now the proof follows by induction using Lemma 4.2.11.
If α = ω0, let fn ∈ Bαn,b(extBX∗), αn < α, form a bounded sequence converg-

ing to f ∈ Bα,b(extBX∗). By Lemma 4.2.11, Tfn → Tf . By the first part of the
proof, Tf ∈ X∗∗α .

For higher Baire classes we use again transfinite induction.

Lemma 4.2.13. Let X be an L1-predual with extBX∗ being a Lindelöf H-set and
α ∈ [1, ω1). Let f ∈ Bα,b(extBX∗). Then Tf ∈ X∗∗α .

Proof. The proof is analogous to the proof of Lemma 4.2.12, we only use instead
of [57, Theorem 5.2] as the starting point of transfinite induction the following
fact from [57, Theorem 6.4]: If extBX∗ is a Lindelöf H-set and h is a strongly
affine function on BX∗ whose restriction on extBX∗ is Baire-1, then h is Baire-1
on BX∗ . Any such function is then in X∗∗1 by [5, Theorem II.1.2(a)].

Theorem 4.2.14. Let X be an L1-predual with extBX∗ Lindelöf and α ∈ [0, ω1).
Then for every odd function f ∈ Bα,b(extBX∗) there exists a function h on BX∗

extending f such that

• h ∈ X∗∗α+1 if α ∈ [0, ω0),

• h ∈ X∗∗α if α ∈ [ω0, ω1).

Proof. By Lemma 4.2.12, if α ∈ [0, ω0) then the function Tf is in X∗∗α+1, and if
α ∈ [ω0, ω1) then Tf ∈ X∗∗α . Since Tf = odd f = f on extBX∗ , the proof is
finished.

Theorem 4.2.15. Let X be an L1-predual such that extBX∗ is a Lindelöf H-set.
Let α ∈ [1, ω1). Then for every odd function f ∈ Bα,b(extBX∗) there exists a
function h ∈ X∗∗α extending f .

Proof. The proof is analogous to the proof of Theorem 4.2.14, only we use Lem-
ma 4.2.13 instead of Lemma 4.2.12.

Corollary 4.2.16. Let X be an L1-predual such that extBX∗ is a Lindelöf H-set.
Let α ∈ [1, ω1). Then the space X∗∗α is isometric to the space of all bounded odd
Baire-α functions on extBX∗.

Proof. A function f ∈ X∗∗α is bounded, Baire-α and strongly affine. The restric-
tion mapping f ∈ X∗∗α 7→ f |extBX∗ is therefore an isometric isomorphism onto the
space of all bounded odd Baire-α functions on extBX∗ due to Theorem 4.2.15
and the minimum principle [58, Theorem 3.86].
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4.3 Questions

Let X be an L1-predual. Theorems 4.2.14 and 4.2.15 show that under some topo-
logical assumptions on extBX∗ it is possible to extend odd bounded Baire func-
tions from extBX∗ to odd strongly affine Baire functions on BX∗ . The question
is whether the topological assumptions are not only sufficient but also necessary.
To be more precise, we propose the following questions.

Question 4.3.1. Let X be an L1-predual such that every continuous odd bound-
ed function on extBX∗ can be extended to an element from X∗∗1 . Is the set extBX∗

Lindelöf?

This question stems from the result of Jellett in [40] stating that any bound-
ed continuous function on the set of all extreme points of a simplex K can be
extended to an affine Baire-1 function provided the set extK is Lindelöf.

Question 4.3.2. Let X be an L1-predual such that every odd bounded Baire-1
function on extBX∗ can be extended to an element from X∗∗1 . Is the set extBX∗

a Lindelöf H-set?

The answer to Question 4.3.2 is known to be positive in case X is the space
A(K) for a simplex K (see [81]).
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5. Distances to spaces of first
H-class mappings

5.1 Introduction

We open the section with an important notion of fragmented mapping introduced
in [47]. Let X be a topological space and E a metric space. Then a mapping
f : X → E is called ε-fragmented if for every nonempty (equivalently, nonempty
closed) set F ⊂ X there exists an open set V ⊂ X such that V ∩ F 6= ∅ and
diam f(V ∩ F ) ≤ ε. We write briefly

frag(f) = inf{ε > 0 : f is ε-fragmented}

and term f to be fragmented if frag(f) = 0. We designate the set of all fragmented
mapping f : X → E by Frag(X,E).

A set H in X is resolvable if its characteristic function χH is fragmented,
that is, for any nonempty (equivalently nonempty closed) A ⊂ X there exists a
nonempty relatively open set U ⊂ A such that either U ⊂ H or U ⊂ X \H. We
refer the reader to [49, § 12, V-VI] or [47, Section 2] for elementary properties of
resolvable sets. We just recall that the family Hs(X) of all resolvable sets forms
an algebra containing all open sets.

A useful characterization of resolvable sets says that a set H ⊂ X is resolvable
if and only if there exist an ordinal κ, an ordinal interval I ⊂ [0, κ) and an
increasing sequence of open sets ∅ = U0 ⊂ U1 ⊂ · · · ⊂ Uκ = X satisfying

• Uγ =
⋃
{Uλ : λ < γ} for a limit ordinal γ ≤ κ,

• H =
⋃
{Uγ+1 \ Uγ : γ ∈ I}.

A system of sets {Uα+1 \ Uα : α < κ} with such properties is called a resolvable
partition of X whereas a system of open sets {Uγ : γ ≤ κ} is termed a regular
sequence of open sets.

Let F be a family of subsets of X. Then f is ε-σ-fragmented by sets of F if
there is a system {Xn : n ∈ N} ⊂ F covering X such that f |Xn is ε-fragmented
for each n ∈ N.

We set

σ-fragF(f) = inf{ε > 0 : f is ε-σ-fragmented by sets of F}

and say that f is σ-fragmented by sets of F if σ-fragF(f) = 0. For the sake of
brevity we write just σ-frag instead of σ-fragHs(X) if F = Hs(X) (cf. [39]).

Following Koumoullis in [47], we consider a certain generalization of functions
of Baire class 1 (i.e. functions expressible as pointwise limits of sequences of
continuous functions) from the metric spaces within the context of topological
spaces. Let Bos(X) stand for the algebra generated by open sets and Hs(X)
for the algebra of all resolvable sets. Let Σ2(Bos(X)) stand for the family of
all countable unions of sets from Bos(X), analogously we define Σ2(Hs(X)). We
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say that f : X → E is a mapping of the first Borel class if f is Σ2(Bos(X))-
measurable, that is, f−1(U) ∈ Σ2(Bos(X)) for every open set U ⊂ X. The family
of such mappings is designated by Bof1(X,E). Similarly we define the family of
all mappings of the first resolvable class and denote them by Hf1(X,E). If X is
metrizable then Hf1(X,E) and Bof1(X,E) coincide.

It is easy to check that any function of Baire class 1 is also of the first Borel
class (see, e.g., [59, Exercise 3.A.1]) and that any function of the first Borel class
is also of the first resolvable class.

The aim of our paper is twofold. In Section 5.3 of the paper we extend some
results of [12], [4] and [80] by computing the distance of a general mapping to the
family of mappings of the first resolvable class via the quantity frag. In Section 5.4
we provide results analogous to those in [3], [4] concerning quantitative difference
between countable compactness and compactness in Hf1(X,E). Kindred results
may be also found in [2].

Second, in Section 5.5 we study a class of mappings with a countable oscillation
rank and relate its basic properties to the aforementioned classes of mappings.
This rank has been in a less general context considered by many authors (see, e.g.,
[32]). It also possess a connection to the Szlenk index (e.g., [21, Definition 8.5])
in a following way. Assume X is an infinite-dimensional Banach space and K a
w∗-compact subset of X∗. Let f be an identity mapping of (K,w∗) onto (K, ‖·‖).
Then a Szlenk index of K is equal to the oscillation rank of f .

An investigation of a class of mappings with a countable oscillation rank is
also motivated by the following well known characterization of functions of Baire
class 1: Let E be a compact metrizable space. Then a function f : E → R is of
Baire class 1 if and only if its oscillation rank is countable ([46, Proposition 2]).

5.2 Preliminaries

This section contains auxiliary results dealing particularly with an approxima-
tion of fragmented mappings which serves us well in the arguments appearing in
Section 5.3.

Having a metric space E, the function diam of making a diameter is always
meant with respect to the metric of the space E. Having a subset A of a lin-
ear space X we denote its convex hull (i.e., intersection of all convex sets of X
containing A) by coA. Throughout the paper we also adopt a convention that
inf ∅ =∞.

Lemma 5.2.1. Let X be a hereditarily Baire topological space, E a metric space.
Then for a mapping f : X → E holds σ-frag(f) = frag(f).

Proof. An inequality σ-frag(f) ≤ frag(f) follows immediately from the defini-
tions.

If σ-frag(f) =∞ then also the remaining inequality holds. Provided
σ-frag(f) 6=∞, let us assume that σ-frag(f) < ε for some ε ∈ R. Then there ex-
ists a sequence {Hn : n ∈ N} ⊂ Hs(X) covering X such that f |Hn is ε-fragmented
for each n ∈ N. Given a closed subset F of X let us define resolvable sets
En = Hn ∩ F , n ∈ N. From the proof of [47, Proposition 2.1(iv)] follows that
for each n ∈ N there exist sets Un, Nn respectively open and nowhere dense in F
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satisfying En = Un ∪ Nn. Since F is a Baire space there exists k ∈ N such that
Uk 6= ∅.

Employing ε-fragmentability of f |Hk we find an open subset V of X such that
V ∩ Uk ∩ F 6= ∅ and diam f(V ∩ Uk ∩ F ) < ε. Hence, f is ε-fragmented and
frag(f) ≤ σ-frag(f).

Lemma 5.2.2. Let X be a topological space, (E, ρ) a metric space and f : X → E
an ε-fragmented mapping for some ε > 0. Then there exists a mapping g : X → E
which is constant on each set of some resolvable partition of X and ρ(f(x), g(x)) <
ε for every x ∈ X.

Moreover, if E = R then such g can be found that ρ(f(x), g(x)) < ε
2

for every
x ∈ X.

Proof. We find an ordinal Γ and construct sets Gα, Fα for α < Γ by transfinite
induction.

Set G0 = F0 = ∅. Let us assume that sets Gξ, Fξ are constructed for every
ξ < γ. If

⋃
ξ<γ Gξ = X we set Γ := γ and stop the construction. Otherwise, due

to ε-fragmentability of f there exists an open set Gγ satisfying

diam f(Gγ \
⋃
ξ<γ

Gξ) < ε.

We set Fγ = Gγ \
⋃
ξ<γ Gξ.

Then {Fγ : γ < Γ} is a resolvable partition of X and we can define a mapping
g : X → E as follows: Given γ < Γ and x ∈ Fγ we set g(x) = tγ where in the
general case tγ ∈ f(Fγ) is chosen arbitrarily whereas in case E = R we take tγ as
the center of co(f(Fγ)).

A moment of reflection shows that g ∈ Hf1(X,E). Moreover, in the general
case the inequality ρ(f(x), g(x)) < ε holds for every x ∈ E and if E = R then
even ρ(f(x), g(x)) < ε

2
for every x ∈ E holds.

Remark 5.2.3. Realize that a mapping g : X → E from a topological space X
to a metric space E, which is constant on each set of some resolvable partition
{Gα+1 \ Gα : α < κ} of X, is fragmented. Indeed, let ε > 0 and F be a closed
subset of X and set δ = inf{α ≤ κ : Gα ∩ F 6= ∅}. It can be easily observed that
δ is a successive ordinal, i.e., there exists γ < κ such that δ = γ + 1. Hence, the
mapping g is constant on the set

F ∩Gγ+1 = F ∩ (Gγ+1 \Gγ)

and therefore diam g(F ∩ Gγ+1) = 0. The function g is thus ε-fragmented for
every ε > 0 and hence fragmented.

Corollary 5.2.4. Let X be a topological space and (E, ρ) a metric space. Then
f : X → E is a fragmented mapping if and only if there exists a sequence of
mappings (fn)n such that fn ⇒ f and every fn is constant on each set of some
resolvable partition of X.

Proof. ”Only if part” is a straightforward consequence of Lemma 5.2.2.
For the proof of the ”if part” let ε > 0. Then there exists k ∈ N such that

ρ(f(x), fk(x)) < ε
3

for every x ∈ X. Then, due to Remark 5.2.3 for every closed set
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F in X there is an open set U in X satisfying U ∩F 6= ∅ and diam fk(U ∩F ) < ε
3
.

Hence, diam f(U ∩ F ) < ε which concludes the proof.

5.3 Distances to spaces of first resolvable class

mappings

The aim of this section is to estimate a distance between a general mapping
from a topological space X to a metric space E and the family Hf1(X,E) via
the quantity frag. However, as is demonstrated later in this chapter, these two
quantities are not related in general and to get reasonable results we were forced
to restrict ourselves to the particular pairs of spaces X and E.

Let X be a topological space and (E, ρ) a metric space. We define a distance
of a pair of mappings f, g : X → E by

d(f, g) = sup{ρ(f(x), g(x)) : x ∈ X}.

If F is a system of mappings from X to E, we denote

d(f,F) = inf{d(f, g) : g ∈ F}.

Proposition 5.3.1. If X is a topological space, (E, ρ) a metric space, then for a
mapping f : X → E holds

d(f,Hf1(X,E)) ≤ σ-frag(f). (5.1)

Moreover, if E = R, then d(f,Hf1(X,R)) ≤ 1
2
σ-frag(f).

Proof. If σ-frag =∞ then (5.1) clearly holds.
Suppose otherwise that σ-frag(f) < ε for some ε ∈ R. Then X can be covered

by a system {Xn : n ∈ N} of resolvable sets such that f |Xn is ε-fragmented for
every n ∈ N.

If we construct a partition {Yn : n ∈ N} of X in a usual way

Y1 = X1 and Yn = Xn \
n−1⋃
m=1

Xm,

then f |Yn is ε-fragmented for every n ∈ N.
For every n ∈ N we apply Lemma 5.2.2 and obtain a mapping gn : Yn → E

constant on each set of some resolvable partition of Yn and satisfying
ρ(gn(x), f(x)) < ε, x ∈ Yn. Now we define a mapping g : X → E by setting
g(x) = gn(x) for x ∈ Yn, n ∈ N.

For every x ∈ X holds ρ(f(x), g(x)) < ε and it can be easily checked that
g ∈ Hf1(X,E). Hence ρ(f,Hf1(X,E)) ≤ σ-frag(f).

The special case for E = R follows from Lemma 5.2.2 analogously.

We would like to use the quantity σ-frag (or frag) to get a lower estimate of
d(f,Hf1(X,E)). We proceed in two steps. First, we show that a certain qualita-
tive property of the space ∈ Hf1(X,E) already guaranties a quantitative estimate.
Second, we bring out examples of families of spaces X, E with Hf1(X,E) having
the mentioned qualitative property.
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Proposition 5.3.2. Let X be a topological space and (E, ρ) a metric space such
that every h ∈ Hf1(X,E) satisfies σ-frag(h) = 0.

Then for every mapping f : X → E holds

1

2
σ-frag(f) ≤ d(f,Hf1(X,E)). (5.2)

Proof. If d(f,Hf1(X,E)) =∞ then the statement is clearly valid.
Otherwise, suppose d(f,Hf1(X,E)) < α for some α ∈ R. Then there exists

h ∈ Hf1(X,E) such that ρ(f(x), h(x)) < α for every x ∈ X.
Due to the hypothesis σ-frag(h) = 0 holds and hence, for a given ε > 0 there

exists a system {Hn : n ∈ N} of resolvable sets covering X such that h|Hn is
ε-fragmented for each n ∈ N.

Fix n ∈ N and let F be a closed subset of Hn. Then there exists an open
subset U of X such that U ∩ F 6= ∅ and diamh(U ∩ F ) < ε. From

diam f(U ∩ F ) = sup
a,b∈U∩F

ρ(f(a), f(b))

≤ sup
a,b∈U∩F

ρ(f(a), h(a)) + ρ(h(a), h(b)) + ρ(h(b), f(b)) ≤ 2α + ε,

we conclude that σ-frag(f) ≤ 2α and this finally yields

1

2
σ-frag(f) ≤ d(f,Hf1(X,E)).

The following examples indicate that the assumption of Proposition 5.3.2 need
not be satisfied even in case X is a metric space or a hereditarily Baire topological
space.

Example 5.3.3. Assuming Martin’s Axiom and the negation of the continuum
hypothesis, [63, p. 162] assures the existence of an uncountable set Z in R whose
every subset is an Fσ set in Z. Let E be the set Z endowed with the Euclidean
metric and D be Z with the discrete metric. Consider the identity mapping
h : E → D.

Since E is a metric space, the family of sets Σ2(Hs(E)) corresponds to the
family of Fσ subsets of E (see [79, Proposition 3.4(d2)]). Hence h ∈ Hf1(E,D).

On the other hand, σ-frag(h) = 1. Indeed, given 0 < ε < 1 and a system
{En : n ∈ N} of resolvable sets covering E, the mapping h|En cannot be ε-
fragmented on each En. If that was the case, we would select k ∈ N with Ek
uncountable. Observe that every subset of Ek would have an isolated point due
to the ε-fragmentability of h|Ek . Since Ek has a countable base, Ek would be a
countable set, which would contradict the cardinality of the selected Ek. Since
clearly σ-frag(h) ≤ 1, the desired conclusion follows.

Example 5.3.4. In [47, Examples 2.4(2)] there is a construction carried out of a
hereditarily Baire space X, a metric space E and a mapping h ∈ Hf1(X,E) such
that h has no point of continuity. Such a mapping cannot satisfy σ-frag(h) = 0.
Indeed, assume it does. Then Lemma 5.2.1 implies σ-frag(h) = frag(h) = 0.
Hence, h is fragmented and thus its set of points of continuity is comeager in
X by [47, Theorem 2.3], in particular, it is nonempty. But h has no point of
continuity.
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However, the following result documents that if we consider the target space to
be a separable metric space, the property needed in Proposition 5.3.2 is satisfied.

Proposition 5.3.5. Let X be a topological and (E, ρ) a separable metric space.
If f ∈ Hf1(X,E), then σ-frag(f) = 0.

Proof. Given ε > 0, we find a set of points {yi ∈ E : i ∈ N} such that the system
of open balls {B(yi,

ε
2
) : i ∈ N} covers E. Then f−1(B(yi,

ε
2
)) ∈ Σ2(Hs(X)), and

thus there exists a family of resolvable sets {Hi,n: i, n ∈ N} satisfying

f−1(B(yi,
ε

2
)) =

∞⋃
n=1

Hi,n, i ∈ N.

Then {Hi,n : i, n ∈ N} is a countable cover of X such that diam f(Hi,n) < ε,
for every i, n ∈ N. We may conclude that σ-frag(f) = 0.

Let us recall some topological notions needed in the rest of the chapter. A
subset of a topological space X is said to be Suslin if it arises as a result of the
Suslin operation applied to a system of closed sets in X.

A topological space X is an absolute Suslin space if it is homeomorphic to a
Suslin set in a complete metric space.

Let V be a family of sets in a topological space X. Then it is Suslin-additive
if
⋃
U is Suslin for every subfamily U ⊂ V .

Let us also remind that a family V is called discrete if every point x ∈ X has a
neighborhood that intersects at most one set of V . A family {Aα : α ∈ I} is said
to be σ-discretely decomposable if there exists a family {Aα,n : α ∈ I, n ∈ N} of
sets in X such that {Aα,n : α ∈ I} is discrete for every n ∈ N and Aα =

⋃
n∈NAα,n.

For more details regarding these concepts consult, e.g., [28], [29]. Introducing
the notion of an absolute Suslin space allows us to find another relation between
mapping of the first H-class and the quantity σ-frag.

Proposition 5.3.6. Let X be an absolute Suslin and E a metric space. If h ∈
Hf1(X,E), then σ-frag(h) = 0.

Proof. Let ε > 0. Stone’s theorem (see [20, Theorem 4.4.1]) provides an open
cover V of E consisting of open sets of diameter smaller then ε such that V =

⋃
Vn,

where a family Vn is discrete for every n ∈ N.
Fix n ∈ N. Then a family {h−1(V ) : V ∈ Vn} is disjoint and since any

resolvable set in a metric space is Borel (see [49, § 30, X, Theorem 5]) it is also
Suslin-additive.

Due to [44, Theorem 1], the above-mentioned family is σ-discretely decompos-
able, namely, there exists a family {HV,k : V ∈ Vn, k ∈ N} such that the family
{HV,k : V ∈ Vn} is discrete for every k ∈ N and h−1(V ) =

⋃
k∈NHV,k for every

V ∈ Vn. Without loss of generality we may assume that {HV,k : V ∈ Vn, k ∈ N} ⊂
Σ2(Hs(X)) (otherwise we would consider a family {HV,k∩h−1(V ) : V ∈ Vn k ∈ N}
instead).

Then for every HV,k, where V ∈ Vn, k ∈ N, there exists its partition {HV,k,m :
m ∈ N} comprised of resolvable sets. We define sets

Hk,m,n =
⋃
V ∈Vn

HV,k,m, where k,m, n ∈ N,
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which are unions of discrete families of resolvable sets and hence resolvable as
well.

A straightforward verification suffices to realize that X =
⋃
k,m,nHk,m,n and

the mapping h|Hm,n,k is ε-fragmentable for each k,m, n ∈ N. Hence σ-frag(h) < ε
and σ-frag(h) = 0.

Now we can summarize the results of this section in the following theorem.

Theorem 5.3.7. If one of the following conditions is satisfied

• X is a topological space and E a separable metric space,

• X is an absolute Suslin space and E a metric space,

then for every f : X → E holds

1

2
σ-frag(f) ≤ d(f,Hf1(X,E)) ≤ σ-frag(f).

Moreover, if X is a topological space and E = R, then

σ-frag(f) = d(f,Hf1(X,R)).

Proof. A consequence of Propositions 5.3.1, 5.3.2, 5.3.5 and 5.3.6.

5.4 Quantitative difference between compactness

and countable compactness in Hf1(X,E)

We follow the line of reasoning which has appeared in [3] and [4] where the quan-
titative differences between compactness and countable compactness in C(X,E)
(see [3, Theorem 2.3]) and B1(X,E) (see [4, Corollary 3.2]) have been studied.
The goal of this chapter is to provide analogous results for Hf1(X,E).

For this purposes we adopt the following notions. Let X be a topological
space. Given a subset A ⊂ X, we denote the set of all sequences in A by AN and
the set of all cluster points of a sequence ϕ ∈ AN in X by clust(ϕ).

Let A, B be nonempty subsets of a metric space (E, d). We employ a notion
of a usual distance between A and B defined by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

and the Hausdorff non-symmetrical distance from A to B defined by

d̂(A,B) = sup{d(a,B) : a ∈ A}.

The following theorem is proved as [4, Proposition 3.1] provided X is a sepa-
rable metric space, nevertheless the same arguments serve equally well in a little
more general setting:

Theorem 5.4.1. Let X be a second countable topological space, E a metrizable
space and H a pointwise relatively compact subset of (EX , τp). Then

sup
f∈Hτp

frag(f) = sup
ϕ∈HN

inf{frag f : f ∈ clust(ϕ)}.
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Let X be a topological space, (E, d) a metric space and H a relatively compact
subset of the space (EX , τp). Then we may define the quantity

ck(H) = sup
ϕ∈HN

d(clust(ϕ),Hf1(X,E)).

Remark 5.4.2. Note that for a general topological space X, a metric space E
and a relatively compact set H ⊂ (EX , τp) trivially holds

ck(H) ≤ d̂(H
τp
,Hf1(X,E)).

If H is moreover a countably compact subset of (Hf1(X,E), τp), then ck(H) =
0 (use, e.g., [20, Theorem 3.10.3]).

Now, with the aid of the previous results we deduce a few corollaries.

Corollary 5.4.3. Let X be a second countable hereditarily Baire topological space,
E be a metric space and H be τp-relatively compact subset of EX . If moreover
one of the following conditions is satisfied

(i) X is an absolute Suslin topological space,

(ii) E is a separable metric space,

then
d̂(H

τp
,Hf1(X,E)) ≤ 2 ck(H).

Proof. Taking the definition of d̂ into consideration and following Theorem 5.3.7
together with Lemma 5.2.1 we infer that

d̂(H
τp
,Hf1(X,E)) = sup

f∈Hτp

d(f,Hf1(X,E)) ≤ sup
f∈Hτp

σ-frag(f) = sup
f∈Hτp

frag(f) = (∗).

We continue by employing Theorem 5.4.1 and a closing argument is again due to
Theorem 5.3.7 and Lemma 5.2.1

(∗) = sup
ϕ∈HN

inf{frag f : f ∈ clust(ϕ)}

≤ sup
ϕ∈HN

inf{2d(f,Hf1(X,E)) : f ∈ clust(ϕ)} = 2 ck(H).

Corollary 5.4.4. Let X be a separable completely metrizable space and H be a
τp-relatively compact subset of RX . Then

d̂(H
τp
,Hf1(X)) = ck(H).

Proof. An argument makes use of Theorems 5.4.1, 5.3.7, Lemma 5.2.1 and Re-
mark 5.4.2 and goes along a similar pattern as a proof of Corollary 5.4.3.
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5.5 Oscillation rank

In this section we recall a definition of the oscillation rank which has been adopted
by many authors, including S. Argyros, R. Haydon, A. S. Kechris and A. Louveau
(see, e.g., [32], [46]). However, this rank has been so far investigated for the
functions defined on metrizable compact spaces. The main purpose of this section
is to provide a view on general situation considering the oscillation rank of the
mappings from topological spaces to metric spaces.

We adhere to a standard convention that inf ∅ = ∞ and ∞ is greater then
any ordinal.

Definition 5.5.1. Let X be a topological space, (E, ρ) a metric space and ε > 0.
For a given mapping f : X → E and an ordinal α we construct the open set Uα.
We proceed by transfinite induction.

Let U0 = ∅. Assume that Uγ is constructed for every ordinal γ < α. If
α = γ′ + 1 is a successive ordinal then we set

Uα = Uγ′ ∪ {x ∈ X \ Uγ′ : ∃ open set U 3 x such that diam f(U \ Uγ′) < ε}.

If α is a limit ordinal we set Uα =
⋃
γ<α Uγ.

We define β(f, ε) as the first ordinal α satisfying Uα = X and if such an
ordinal does not exist we set β(f, ε) =∞.

Then we define the oscillation rank of a mapping f as

β(f) = sup
ε>0

β(f, ε).

Further, we define

β∗(f, ε) = inf{κ : there exists a transfinite sequence (Vα)α≤κ of sets in X

with a property ∗(f, ε)},

where we say that a transfinite sequence (Vα)α≤κ of sets in X has the property
∗(f, ε) if

(i) A transfinite sequence (Vα)α≤κ is nondecreasing, composed of open sets in
X and such that V0 = ∅ and Vκ = X.

(ii) For a limit ordinal γ ≤ κ holds Vγ =
⋃
α<γ Vα.

(iii) For each ordinal α < κ holds: Let x ∈ Vα+1 \Vα. Then there exists an open
neighborhood V of x such that diam f(V \ Vα) < ε.

If there is no such a transfinite sequence we set β∗(f, ε) =∞.
We define

β∗(f) = sup
ε>0

β∗(f, ε).

Remark 5.5.2. In some cases it is more convenient to use a slightly modified
definition of β(f, ε) where instead of constructing open subsets Uα ⊂ X for or-
dinals α we construct its complements Fα. Then F0 = X, for a limit ordinal α
holds Fα =

⋂
β<α Fβ and for a successive ordinal α = β′ + 1 we set
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Fα = {x ∈ Fβ′ : ∀ open set U 3 x holds diam f(U ∩ Fβ′) ≥ ε}

= Fβ′ \
⋃
{U ⊂ X : U is open, diam f(U \ Uβ′) < ε}.

Then β(f, ε) is the first ordinal α such that Fα = ∅.

Remark 5.5.3. We have adopted a notation of [32], though our definition of the
oscillation rank is formally different. A glimpse of these two definitions shows,
however, that they provide identical concepts.

The following lemma proves that concepts β and β∗ actually coincide.

Lemma 5.5.4. Let X be a topological space, (E, ρ) a metric space and ε > 0.
Then for a mapping f : X → E holds β(f, ε) = β∗(f, ε).

Proof. An inequallity β∗(f, ε) ≤ β(f, ε) follows immediately from the definitions.
If β∗(f, ε) =∞ then clearly β(f, ε) =∞.

Let β∗(f, ε) = κ0 take any ∞ 6= κ1 > κ0. Then there exists an ordinal
κ0 ≤ κ < κ1 and a corresponding transfinite sequence (Vα)α≤κ of sets in X with
∗(f, ε). We find a transfinite sequence (Uα)α≤κ provided by the construction in
the definition of β(f, ε). Now we observe that for every α ≤ κ holds Vα ⊂ Uα.

Indeed, for α = 0 the statement follows immediately from the definitions of
indices. Assume that γ ≤ κ is an ordinal and the statement is valid for every
α < γ. If γ is a limit ordinal then Vγ =

⋃
α<γ Vα ⊂

⋃
α<γ Uα = Uγ. If γ is a

successive ordinal then γ = α + 1 for some ordinal α and

Uα+1 = Uα ∪ {x ∈ X \ Uα : ∃ open set U 3 x such that diam f(U \ Uα) < ε}.

Let x ∈ Vα+1. Then either x ∈ Uα ⊂ Uα+1, or x ∈ Vα+1 \ Uα ⊂ Vα+1 \ Vα and
due to ∗(f, ε) there exists an open neighborhood V of x such that diam f(V \Vα) <
ε and thus also x ∈ Uα+1.

It follows that Vκ ⊂ Uκ and hence β(f, ε) ≤ κ for every selected κ1 > κ0.
Consequently, β(f, ε) ≤ κ0 which concludes the proof.

We may ask whether a transfinite process described in a definition of the
oscillation rank must always stop. A quite natural answer is given by a following
lemma.

Lemma 5.5.5. Let X be a topological space, (E, ρ) a metric space and f : X →
E. Then β(f) 6=∞ if and only if f is fragmented.

Proof. If f is fragmented then a moment of reflection shows that β(f) 6= ∞.
Specifically, β(f) ≤ card(X), where card(X) is a cardinality of X.

Suppose f is not fragmented. Then there exists a nonempty closed set F ⊂ X
and ε > 0 such that for every open set U ⊂ X intersecting F holds diam f(F ∩
U) > ε. We prove that then β(f, ε) =∞. Suppose the contrary, let β(f, ε) = κ 6=
∞ and let a transfinite sequence (Uα)α≤κ be the one constructed in the definition
of β(f, ε).

Let δ = min{α : Uα ∩ F 6= ∅}. It is easy to see that δ ≤ κ is a successive
ordinal, hence there exists an ordinal γ such that δ = γ + 1.
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We choose a point x ∈ F ∩ Uγ+1 = (F ∩ Uγ+1) \ Uγ. Therefore, we can find
an open neighborhood U of x such that diam f(U \ Uγ) < ε. Then

∅ 6= U ∩ F ∩ Uγ+1 = U ∩ F ∩ (Uγ+1 \ Uγ) ⊂ U \ Uγ

and from the assumption follows that diam f(U∩F ∩Uγ+1) < ε which contradicts
the properties of the set F . Hence, for every α ≤ κ holds Uα∩F = ∅. We conclude
that β(f, ε) =∞.

Let X be a topological space and E a metric space. We denote the set of the
mappings f : X → E satisfying β(f) < ω1 by the symbol ω1-β(X,E).

In the following statements we examine a stability of ω1-β(X,E) under making
uniform limits of nets (Lemma 5.5.6) and composing with a uniformly continuous
mappings (Lemma 5.5.7).

Lemma 5.5.6. Let X be a topological space and (E, ρ) a metric space. If (fγ)γ∈Γ

is a net of mappings in ω1-β(X,E) which converges uniformly to f , then f ∈
ω1-β(X,E).

Proof. Let ε > 0. Then there exists γ ∈ Γ such that ρ(f(x), fγ(x)) ≤ ε
3

for every
x ∈ X. We set κ = β(f, ε

3
) = β∗(f, ε

3
) < ω1 (see Lemma 5.5.4) and find a family

(Uα)α≤κ with ∗(fγ, ε3). Then for each α < κ and x ∈ Uα+1 \ Uα there exists a
neighborhood U of x such that

diam f(U \ Uα) ≤ diam fγ(U \ Uα) +
2ε

3
≤ ε.

Hence, β∗(f, ε) ≤ κ and due to Lemma 5.5.4 also β(f) ≤ κ and f ∈ ω1-β(X,E).

Lemma 5.5.7. Let X be a topological space, (E, ρ), (F, σ) metric spaces and κ
an ordinal. If f : X → E is a mapping satisfying β(f) ≤ κ and h : E → F is an
uniformly continuous mapping, then β(h ◦ f) ≤ κ.

Proof. Let ε > 0. We find δ > 0 such that for any x, y ∈ E satisfying ρ(x, y) < δ
holds σ(h(x), h(y)) < ε. Lemma 5.5.4 allows us to find a family {Uα : α ≤ κ}
with ∗(f, δ).

For each α < κ and x ∈ Uα+1 \ Uα there exists a neighborhood U of x such
that diam f(U \ Uα) < δ. Hence

diam(h ◦ f)(U \ Uα) ≤ ε,

which finalizes the proof of the statement.

The subsequent example indicates that continuous mappings do not generally
preserve the oscillation rank.

Example 5.5.8. Let f : Q+ → R+ be defined as f(p
q
) = 1

q
for p

q
∈ Q+ where

p, q ∈ N are coprime numbers. Further, we define a function h : R+ → R+

by setting h(x) = 1
x

for x ∈ R+. Notice that h is a continuous function and
β(f) < ω1. Yet, the composition h ◦ f : Q+ → R+ is not fragmented and hence
β(h ◦ g) =∞.
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Lemmas 5.5.10, 5.5.11 and 5.5.12 provide us an information about stability of
ω1-β(X,E) on making various algebraic operations. First, we prove the following
auxiliary result.

Lemma 5.5.9. Let X be a topological space, (E, ρ) a metric space, κ1, κ2 ordinals
and f, g : X → E mappings satisfying β(f) ≤ κ1, β(g) ≤ κ2, where κ1, κ2 > 0.
Then for a diagonal mapping f∆g : X → (E × E, ρmax) defined by (f∆g)(x) =
(f(x), g(x)), x ∈ X, holds β(f∆g) ≤ κ1κ2 (ρmax is a maximal metric).

Proof. Let ε > 0. Due to Lemma 5.5.4 we may find (Uα)α≤κ1 in X with ∗(f, ε)
and (Vα)α≤κ2 in X with ∗(g, ε).

We remind that considering γ < κ1κ2 there exists a uniquely determined
pair of ordinals α, β such that γ = κ1β + α and α < κ1, β < κ2 (e.g., [50,
Theorem VII.5.4]). Hence, we may define

Gγ = (Uα ∩ Vβ+1) ∪ Vβ, γ < κ1κ2, and Gκ1κ2 = X.

In the remainder of the proof we verify that the transfinite sequence (Gα)α≤κ1κ2
satisfies ∗(f∆g, ε). First, Gγ is an open set in X for every γ ≤ κ1κ2, G0 = ∅ and
Gκ1κ2 = X. Let γ, γ′ < κ1κ2 be ordinals satisfying γ < γ′. Then γ = κ1β + α
and γ′ = κ1β

′ + α′ where either β < β′, or β = β′ together with α < α′ holds. In
case β < β′ holds

Gγ = (Uα ∩ Vβ+1) ∪ Vβ ⊂ Vβ′ ⊂ Gγ′ ⊂ X

and if β = β′ with α < α′ is the case then

Gγ = (Uα ∩ Vβ+1) ∪ Vβ ⊂ (Uα′ ∩ Vβ+1) ∪ Vβ = Gγ′ ⊂ X.

Second, let γ ≤ κ1κ2 be a limit ordinal with the unique decomposition γ =
κ1β + α, α < κ1, β ≤ κ2. Then either α is a limit ordinal as well:

Gγ = (Uα ∩ Vβ+1) ∪ Vβ =
⋃
α′<α

(
(Uα′ ∩ Vβ+1) ∪ Vβ

)
=
⋃
γ′<γ

Gγ′ ,

or α = 0 and κ1 is a limit ordinal:

Gγ = Vβ =
⋃
β′<β

(Vβ′+1 ∪ Vβ′) =
⋃
β′<β

⋃
α′<κ1

(Uα′ ∩ Vβ′+1) ∪ Vβ′ =
⋃
γ′<γ

Gγ′ ,

or α = 0 and β is a limit ordinal:

Gγ = Vβ =
⋃
α<κ1

Vβ =
⋃
α<κ1

⋃
β′<β

(Uα ∩ Vβ′+1) ∪ Vβ′ =
⋃
γ′<γ

Gγ′ .

Third, let x ∈ Gγ+1 \ Gγ, where γ = κ1β + α < κ1κ2. A decomposition of
γ + 1 is then either κ1β + (α + 1) or κ1(β + 1) (when Vα+1 = X). Both cases
imply

Gγ+1 \Gγ = (Uα+1 \ Uα) ∩ (Vβ+1 \ Vβ)

and we can find open sets U, V ⊂ Gγ+1 enjoying the following properties: x ∈ U ,
x ∈ V , diam f(U\Uα) < ε and diam g(V \Vβ) < ε. It follows that diam(f∆g)((U∩
V ) \Gγ) < ε.

Hence, β∗(f∆g, ε) ≤ κ1κ2 and employing Lemma 5.5.4 completes the proof.
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Lemma 5.5.10. Let X be a topological space and E a Banach space. If f, g ∈
ω1-β(X,E) then f + g ∈ ω1-β(X,E).

Proof. Let f, g ∈ ω1-β(X,E). We define h : E × E → E as h(x, y) = x + y for
every x, y ∈ E. It can be verified straightforwardly that a mapping h is uniformly
continuous and that f + g = h ◦ (f∆g). Applying Lemmas 5.5.9 and 5.5.7 we get
a required inequality β(f + g) < ω1.

Lemma 5.5.11. Let X be a topological space and E a Banach lattice. If f, g ∈
ω1-β(X,E) then inf(f, g), sup(f, g) ∈ ω1-β(X,E).

Proof. First, we realize that the lattice mappings i : E×E → E and j : E×E →
E, defined as i(x, y) = inf(x, y) and j(x) = sup(x, y) for x, y ∈ E, are uniformly
continuous (cf. [74, Proposition 5.2]). For any f, g ∈ ω1-β(X,E) and x ∈ X the
following identities clearly hold:

sup(f, g)(x, y) = sup(f(x), g(x)) = (i ◦ f)(x, y),

inf(f, g)(x, y) = inf(f(x), g(x)) = (j ◦ f)(x, y).

Thanks to Lemma 5.5.7 holds sup(f, g), inf(f, g) ∈ ω1-β(X,E).

Concerning stability under making products we were able to achieve only a
partial result.

Lemma 5.5.12. Let X be a topological space, E a commutative Banach algebra
and f, g ∈ ω1-β(X,E) bounded mappings. Then fg ∈ ω1-β(X,E).

Proof. Since fg = 1
2

((f + g)2 − f 2 − g2) it suffices to prove that for every bound-
ed f : X → E such that f ∈ ω1-β(X,E) holds f ∈ ω1-β(X,E).

We may write f 2 as a composition f 2 = ϕ ◦ f where ϕ : E → E is defined as
ϕ(x) = x2 for each x ∈ E. Since f is a bounded mapping, ϕ|range f is uniformly
continuous and employing Lemma 5.5.7 finishes the proof.

However, the general problem remains unsolved.

Question 5.5.13. Let X be a topological space, E a commutative Banach alge-
bra and f, g ∈ ω1-β(X,E). Is it then true that fg ∈ ω1-β(X,E)?

We summarize the previous stability results in the following proposition.

Proposition 5.5.14. Let X be a topological space.

(a) If E is a Banach space then the space of all bounded elements of ω1-β(X,E)
endowed with a supremum norm (i.e., ‖f‖ = sup{‖f(x)‖ : x ∈ X}) is a
Banach space.

(b) If E is a Banach lattice then the space of all bounded elements of ω1-β(X,E)
is a Banach lattice in a supremum norm and a pointwise ordering.

(c) If E is a commutative Banach algebra then the space of all bounded elements
of ω1-β(X,E) a commutative Banach algebra.

Proof. A straightforward verification using Lemmas 5.5.10, 5.5.11 and 5.5.12.
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The following lemma shows that the oscillation rank β may attain a value of
arbitrary ordinal.

Lemma 5.5.15. For every α ≤ ω1 there exists a hereditarily Baire metrizable
topological space Xα and a function fα : Xα → {0, 1} satisfying β(fα) = α and
fα ∈ Bof1(X,E).

Proof. Let α ≤ ω1. Then we find a hereditarily Baire metrizable topological space
Xα and its subset Aα ⊂ Xα such that for its characteristic function χAα holds
β(χAα) = α.

The construction proceeds by transfinite induction on α < ω1. Let X0 = A0 =
∅. Then for every 0 < ε < 1 holds β(χA0) = β(χA0 , ε) = 0.

Assume that α < ω1 is a limit ordinal and for every β < α we have constructed
a hereditarily Baire metrizable topological space Xβ and its subset Aβ ⊂ Xβ such
that β(χAβ) = β. We define topological spaces

X =
⋃
β<α

Xβ × {β} and A =
⋃
β<α

Aβ × {β}

equipped with the disjoint union topology (e.g., [20, Section 2.2]). A space X
is clearly hereditarily Baire and due to [20, Theorem 4.2.1] also metrizable.

Now, let us fix 0 < ε < 1. For β < α let {Uγ
β : γ < ω1} be the open sets

emerging in the definition of β(χAβ , ε). The system of sets{ ⋃
β<α

Uγ
β × {β} : γ < ω1

}
is then precisely that one constructed in the definition of β(χA, ε) and γ = α is
clearly the first ordinal satisfying

⋃
β<α U

γ
β × {β} = X. Hence, β(χA) = α and

we may set Xα = X and Aα = A.
Let us assume that for an ordinal α < ω1 we have a corresponding set Aα and

a topological space Xα constructed. We define topological spaces

X = {p}∪
( ⋃
n∈N

Xα×{n}
)

and A = {p}∪
( ⋃
n∈N

Aα×{2n}
)
∪
(
(Xα\Aα)×{2n−1}

)
with a following topology: points of the form (x, n) ∈ Xα × {n}, where n ∈ N,
has a basis of neighborhoods consisting of sets U × {n} where U ⊂ Xα is a
neighborhood of x ∈ Xα and the point p ∈ X has a basis of neighborhoods
consisting of sets of the form

{p} ∪
⋃
n≥n0

Xα × {n},

where n0 ∈ N. A routine verification shows that the described topological space
X is metrizable and hereditarily Baire.

Following the inductive process in the definition of β(f, ε) (considering Re-
mark 5.5.2) we construct closed sets {Fβ : β ≤ β(f, ε)}. It is easy to realize that
if f : X → R is a characteristic function of a set A ⊂ X then for every β < ω1

holds
Fβ+1 = Fβ ∩ A ∩ Fβ \ A (5.3)
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Our aim is to prove that Fα = {p}. Once this assertion is justified it follows
that β(χA) = β(χA, ε) = α + 1 and we may set Xα+1 = X and Aα+1 = A.

First, we take a system {Hβ : β ≤ α} of closed sets {Hβ : β ≤ α} from
the definition of β(χAα , ε) (considering Remark 5.5.2). We prove by transfinite
induction on β a claim that Fβ = {p} ∪

⋃
n∈NHβ × {n} for every β ≤ α.

A little reflection on (5.3) makes it clear that it suffices to prove that for every
β ≤ α holds p ∈ Fβ. The statement is obvious for β = 0. Assuming β ≤ α is
a limit ordinal and p ∈ Fγ for every γ < β we have p ∈ Fβ =

⋂
γ<β Fγ. Now

suppose β < α and p ∈ Fβ = {p} ∪
⋃
n∈NHβ × {n}.

Then Hβ 6= ∅, because β < α. Hence at least one of the sets Hβ ∩Aα, Hβ \Aα
is nonempty. A glance at the definitions of the set A and its topology shows that
both cases guarantee p ∈ Fβ \ A. Since also trivially p ∈ Fβ ∩ A, we may infer
that p ∈ Fβ+1 and the claim is proved.

The claim implies that

Fα = {p} ∪
⋃
n∈N

Hα × {n} = {p},

which was to prove.

Remark 5.5.16. According to [32, Proposition 2.8] for all α < ω1 there exists
a quasireflexive (of order 1) Banach space Qα such that Q∗∗α = Qα ⊕ 〈fα〉 where
β(fα) > α.

Now we clarify the relations between ω1-β(X,E) and the following classes
of mappings: Bof1(X,E), Hf1(X,E), Frag(X,E), mappings with the point of
continuity property and mappings of Baire class 1. The positive results of this
kind are summarized in Theorem 5.5.18.

Lemma 5.5.17. Let X be a topological space, E a metric space and f : X → E
with β(f) < ω1. Then f ∈ Bof1(X,E).

Proof. For every n ∈ N we set αn = β(f, 1
n
) < ω1 and find open sets {Un

α : α ≤
αn} from the definition of the oscillation rank. Then, we define the families

Dαn = {G ⊂ X : G is open, diam f(G \ Un
α ) <

1

n
}, n ∈ N, α ≤ αn,

and set D =
⋃
n∈NDαn .

Now, let U ⊂ E be an open set. Then clearly

f−1(U) =
⋃
n∈N

⋃
α≤αn

{G \ Un
α : G ∈ Dαn , f(G \ Un

α ) ⊂ U} =
⋃
n∈N

⋃
α≤αn

Gα
n \ Un

α ,

where Gn
α =

⋃
{G ∈ Dαn : f(G \ Un

α ) ⊂ U} for every n ∈ N and α ≤ αn.
Since αn < ω1 for every n ∈ N, it follows that f ∈ Bof1(X,E).

Theorem 5.5.18. Let X be a topological space and E a metric space. Then the
following schema holds true

Hf1(X,E) ⊃ Bof1(X,E)
∪ ∪

Frag(X,E) ⊃ ω1-β(X,E)

and no other nontrivial inclusion is valid generally.
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Proof. Inclusion Frag(X,E) ⊂ Hf1(X,E) was established by [47, Theorem 2.3].
Inclusion Bof1(X,E) ⊂ Hf1(X,E) is a direct consequence of definitions. As-

suming Martin’s Axiom and the negation of the continuum hypothesis there is
a function from Bof1(X,E) constructed in [47, Example 2.4(3)] which is not
fragmented. Therefore Bof1(X,E) * Frag(X,E) and hence also Hf1(X,E) *
Frag(X,E).

Inclusion ω1-β(X,E) ⊂ Frag(X,E) is the content of Lemma 5.5.5 and in-
clusion ω1-β(X,E) ⊂ Bof1(X,E) is exactly Lemma 5.5.17. The preceding two
inclusions generally cannot be reversed due to Lemma 5.5.15.

In [79, Remark 3.3] there is a space constructed containing a resolvable non-
Borel set A. A characteristic function χA of a set A is clearly fragmented
and χA /∈ Bof1(X,E). Hence, Frag(X,E) * Bof1(X,E) and consequently
also Bof1(X,E) * ω1-β(X,E), Hf1(X,E) * Bof1(X,E) and Frag(X,E) *
ω1-β(X,E) in general.

Remark 5.5.19. It is worth mentioning that a mapping f : X → E, where X is
a topological space, E a metric space and β(f) < ω1, need not have a separable
range. A simple counterexample provides the identity mapping on [0, 1] endowed
with a discrete topology. Such a mapping has β(f) = 1 despite having a non-
separable range.

From the viewpoint of Theorem 5.5.18 and [47, Theorem 2.3] it seems reason-
able to investigate a relation between the mappings with the point of continuity
property and the mappings with a countable oscillation rank. Let us remind that
a mapping f from a topological space X to a metric space E has the point of
continuity property provided for every nonempty closed F ⊂ X, the restriction
f |F of f to a set F has a point of continuity.

Example 5.5.20. There exists a function f : Q→ R lacking the point of conti-
nuity property such that f ∈ ω1-β(Q,R).

Proof. A function f from [47, Examples 2.4(4)] does the job.

Example 5.5.21. There exists a topological space X, a metric space E and a
mapping f : X → E with the point of continuity property and satisfying β(f) =
ω1.

Proof. Lemma 5.5.15 provides a function f : X → {0, 1} such that β(f) =
ω1. A glance at Lemma 5.5.5 shows that f is fragmented and hence, as f is a
characteristic function of a resolvable set, it clearly has the point of continuity
property.

Let K be a compact metrizable space. Then, according to [46, Proposition 2],
a function f : K → R is of Baire class 1 if and only if β(f) < ω1. A question
arises whether there is a chance for an analogous proposition to hold in a more
general setting. Alas, there is no relation between functions of Baire class 1 and
class ω1-β(X,R) for a general topological space X.

Example 5.5.22. There exists a function g : Q → R of Baire class 1 which is
not fragmented.
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Proof. The function g from [47, Examples 2.4(4)] has the desired properties.

Example 5.5.23. There exists a topological space X and a function f : X → R
such that f ∈ ω1-β(X,R) but which is not of Baire class 1.

Proof. It suffices to consider a nonmetrizable topological X and a characteristic
function of an open set in X which is not Fσ.
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[42] M. Kačena and J. Spurný. Affine Baire functions on Choquet simplices.
Cent. Eur. J. Math., 9(1):127–138, 2011.
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[56] P. Ludv́ık and J. Spurný. Baire classes of L1-preduals and C∗-algebras.
preprint.
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