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my a robustnost

Autor: RNDr. Václav Kozmı́k
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Title: Multi-Stage Stochastic Programming with CVaR: Modeling, Algorithms
and Robustness

Author: RNDr. Václav Kozmı́k
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Introduction

Stochastic programming evolved from its deterministic counterpart by realizing
that the parameters influencing the objective function and constraints are usually
uncertain, coming from the real world around us. The first pioneering works of
two-stage stochastic programming emerged 60 years ago, see Dantzig [23] and
Beale [12]. Since that time, stochastic programming has grown substantially and
its applications are widespread, from economy to biology or logistics and engi-
neering. Various ways of managing uncertainty were considered, starting with
the straightforward approach to replace random parameters with their expected
values, continued with introduction of the two-stage concept. In the two-stage
program, we choose a single first-stage decision and evaluate its expected perfor-
mance in the second-stage program, which contains random parameters. Oth-
er significant developments include probabilistic constraints, sometimes called
chance constraints, or the introduction of risk measures and dynamics to the
stochastic programming. For a thorough introduction to the stochastic program-
ming field we refer to the book by Shapiro et al. [86].

The two-stage concept has been generalized to multi-stage stochastic pro-
gramming, which allows multiple stages of the decision and data process. Such
models capture the dynamics of the underlying random process, and we are al-
lowed to adjust our decisions based on the random parameters observed so far.
Our decisions cannot depend on the parameters which are still uncertain and
will be resolved in future stages, which means that the decisions fulfill the no-
tion of nonanticipativity. Even though this generalization can be described in a
straightforward manner, it brings substantial issues with theoretical properties,
random process models and tractability. The applicability of such models often
depends on the structure of the problem we are trying to solve. There are many
applications where the two-stage models provide sufficient results and the general-
izations are not necessary. On the other hand, multi-stage stochastic models have
provided valuable improvements in many cases, usually involving some complex
time-dependent structure. Such examples can be found, for instance, in finance,
energy management or transportation.

There are two common ways to describe uncertainty in the stochastic pro-
gramming models. The first approach is to collect some historical values or
experts’ opinion and produce a discrete distribution, which consists of scenarios
with assigned probabilities. The second approach is to assume that the random
inputs follow some continuous distribution and estimate its parameters from the
data or use the experts’ opinion to choose the parameters. When a continuous
distribution is selected, sampling methods are commonly used to convert it to the
discrete version in order to obtain a numerically tractable approximation. For
large-scale problems, we are unable to compute precise solutions even for this
discrete approximation. This brings us to the question of stability and robust-
ness: we should consider what happens with the optimal solutions and objective
values if our assumptions or estimates were imprecise or incorrect, or if our ap-
proximations were not accurate. Various questions of stability are discussed for
example in Fiacco [39], Bonnans and Shapiro [18] or Römisch [75]. Most of the
quantitative techniques rely on various assumptions on the objective function and
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constraints or on the assumption of unique optimal solution. Widely applicable
results are usually asymptotic, which brings the question of their validity for
small size samples. We shall exploit the contamination technique, developed by
Dupačová in papers [27, 29, 30], which provides a generally applicable nonasymp-
totic procedure which fits easily into the standard optimization framework. The
first ideas dealing with contamination for multi-stage stochastic linear programs
were presented in Dupačová [28] and their application to studying the influence
of changes in the structure of multi-stage problems with polyhedral risk measures
can be found in Dupačová et al. [35].

The extension of the random input models to the multi-stage case is rather
complicated. Single scenarios from the discrete distribution are usually organized
into a structure of a scenario tree. The tree structure represents the time dynamics
of the model – we start in a single node, root scenario, which has multiple branches
connected to the considered events for the next stage. Each of these branches
contains a specific scenario of the considered events and is again connected to
multiple scenarios of the following stage. This structure is repeated in the same
manner up to the final stage, sometimes called horizon. If we relate the decisions
with each node of the scenario tree, the condition of nonanticipativity is implicitly
fulfilled. In such complex structure, many new questions arise. These include the
specification of the branching size, e.g. how many descendant scenarios should be
used for each stage, or specification of the corresponding conditional distributions,
which have to be estimated with consideration of their time structure. Moreover,
many of these techniques produce scenario trees of excessive sizes and procedures
to reduce the number of scenarios have to be developed. There are many articles
dealing with the issues discussed above, we refer for instance to Dupačová et al.
[31, 33], Pflug [63], Pflug and Pichler [65] or Heitsch and Römisch [43].

Due to the complexity of stochastic programs, discussed for example in Shapiro
and Nemirovski [85], approximations are often employed. Monte Carlo sampling
and scenario approximations have been used even before they got a name of Sam-
ple Average Approximation in the article of Kleywegt et al. [50]. Approximate
solutions depend on the particular set of sampled scenarios and are therefore ran-
dom in general. Such approximate solutions require statistical validation, which
is usually based on doing multiple replications and examining the stability of so-
lutions and objective values, see Bayraksan and Morton [11] for a recent summary
of available methods. In the multi-stage setting, modern algorithms often em-
ploy sampling techniques even in the case when discrete scenario tree is provided
as the model for random inputs. Sampling techniques usually provide significant
improvement in terms of computational speed, but validation procedures and con-
vergence issues have to be thoroughly analyzed to provide reasonable guarantees
about the solution quality.

Most of the stochastic programming models optimize the expected outcome
of the random costs or returns. Resulting decisions are optimal on average, but
possible risks are neglected. In many cases, this does not have to be an appro-
priate goal, as these decisions could produce a very unsatisfactory performance
or even lead to bankruptcy under the worst-case scenarios. First developments
in modeling risk aversion by using utility functions can be found in Bernoulli
[14], or, more formal and precise description, in von Neumann and Morgenstern
[59]. Other significant ways to producing more robust solutions include mean-risk
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models. These bi-criteria models aim to find an efficient solution with respect
to maximization of the mean return and minimization of the risk which is linked
to the future uncertainty. Basics of the mean-risk concept using variance and
semivariance as a measure of risk were published in the article [57] and book [58]
by Harry Markowitz already in the 1950s. In recent years, risk-averse stochastic
optimization based on various risk measures has received significant attention.
The properties required of coherent risk measures, introduced in Artzner et al.
[8], are now widely accepted for time-static risk-averse optimization. One of the
most popular risk measures, Conditional Value at Risk (CVaR, see Rockafellar
and Uryasev [74]), is known to satisfy these properties; for an overview of many
others see, for instance, Krokhmal et al. [53].

A number of proposals have been put forward to extend the concept of co-
herent risk measures to handle multi-stage stochastic optimization. In addition
to coherency, time consistency may be desired. There are multiple approaches
to time consistency of risk measures and stochastic programs. In the multi-stage
case we seek a policy, which specifies a decision rule at every stage t for any realiza-
tion of the stochastic process up to time t. One of the time consistency concepts
requires that optimal decisions at time t should not depend on future states of the
system, which we already know cannot be realized, conditional on the state of the
system at time t. Despite the natural statement of this requirement, there are a
variety of risk-averse programs that fail to meet this condition. See Shapiro [82]
and Rudloff et al. [77] for such examples, along with further discussions of why
stochastic programs which are not time-consistent can produce unsatisfactory
policies. On the other hand, it should be noted that some of the time consistency
concepts can significantly reduce our choice of available risk measures, up to just
risk-neutral case, see Shapiro [84] or Kupper and Schachermayer [54].

Scenario-based stochastic programs can often be reformulated as one large-
scale standard optimization program, and such program can be solved directly
by solvers like CPLEX [48], Gurobi [42] or COIN-OR [22]. The reformulated
programs are usually very large and require long solving times or are unsolvable
at all. This motivated the development of algorithms which exploit the special
structure of stochastic programs and take advantage of particular properties like
convexity. Optimization problems which include integer variables are known to
be very hard to solve in general, and they are, of course, even more demanding
in the stochastic setting. Most of the recent algorithms employ a technique of
building so-called cuts on the feasible space or objective function. These cuts
are used to eliminate infeasible or suboptimal decisions, or to approximate the
objective function. The basic algorithm – Benders’ decomposition, sometimes
called L-shaped method, was developed by Benders [13], see also Van Slyke and
Wets [89]. There have been many improvements of the basic algorithm, especially
the multicut method by Birge and Louveaux [16], regularized decomposition by
Ruszczyński [78] and stochastic decomposition by Higle and Sen [45]. These
decomposition algorithms usually provide approximate solution and control its
quality by computing lower and upper bounds on the true optimal objective value.

The structure of recourse functions in the multi-stage stochastic programs is
particularly difficult from the algorithmic perspective. If we transform the multi-
stage stochastic program into the dynamic programming recursion, the last stage
program can be solved by the algorithms mentioned above. For the preceding
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stages, we need to realize that the precise form of the recourse function cannot
be obtained, and we need to rely only on its approximation, provided by the cuts.
Therefore we are recursively accumulating approximation error, which leads to
slower convergence and requires further validation of correctness. The basic multi-
stage decomposition algorithm, Nested Benders’ decomposition [15], applied to
a multi-stage stochastic program requires computational effort that grows expo-
nentially in the number of stages. Other important algorithms designed to solve
multi-stage stochastic programs include extensions of stochastic decomposition to
the multi-stage case [46, 88], progressive hedging [72] and stochastic dual dynam-
ic programming (SDDP) [62]. SDDP will be used as the main solution technique
for multi-stage stochastic programs in this thesis.

SDDP originated in the work of Pereira and Pinto [62], and inspired a num-
ber of related algorithms [20, 26, 56, 66], which aim to improve its efficiency.
SDDP-style algorithms have computational effort per iteration that grows lin-
early in the number of stages. To achieve this, SDDP algorithms rely on the
assumption of stage-wise independence. That said, SDDP algorithms can also be
applied in some special cases of additive interstage dependence, such as when an
autoregressive process, or a dynamic linear model, governs the right-hand side
vectors [25, 49]. SDDP-style algorithms extend to handle other types of inter-
stage dependency, such as combining the usual finer grain SDDP dependency
with a coarser grain state of the system. See Philpott and Matos [67] for SDDP
coupled with Markov chain and Rebennack et al. [70] for SDDP coupled with
scenario tree. SDDP has been employed successfully in a range of applications,
exhibiting good computational tractability on large-scale problem instances; see,
e.g., [26, 40, 41, 47, 68, 70].

A standard multi-stage recourse formulation uses an additive form of expect-
ed utility. In this case, the usual upper bound estimator in SDDP algorithms is
computed by solving subproblems along linear sample paths through the scenario
tree, and the resulting computational effort is linear in the product of the number
of stages and the number of samples. As we describe below, this type of estima-
tor performs poorly for a model with a nested CVaR risk measure, and this has
hampered application of SDDP to such nested risk-averse formulations. We are
aware of three approaches that have been proposed in the literature to circumvent
this difficulty. First, we can solve a risk-neutral version of the problem instance
under some suitable termination criterion and determine the number of itera-
tions needed to reach the solution. Then we run the SDDP algorithm again to
solve the risk-averse model under nested CVaR and stop after this fixed number
of iterations. Philpott and de Matos [67] report good computational experience
with this approach. However, this leaves open the question of whether the same
number of iterations is always appropriate for both risk-neutral and risk-averse
model instances. Second, we can compute an upper bound estimator via the con-
ditional sampling method of Shapiro [83]. However, the associated computational
effort grows exponentially in the number of stages, and as Shapiro [83] discusses,
the bound can be loose. Third, a non-statistical deterministic upper bound is
proposed in Philpott et al. [69] based on using an inner approximation scheme.
This approach is attractive in that it does not have sampling-based error, but
as discussed in [69], the upper bound does not scale well as the number of state
variables grows.
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As mentioned above, multi-stage risk-averse stochastic problems are complex
from many perspectives. The first major issue concerns the model itself – we
need to design the model structure, decision steps and constraints. Moreover,
we have to select appropriate objective function and risk measure, while ba-
sic properties, like non-anticipativity, coherence and time consistency, should be
considered. With the introduction of risk measures to the objective function,
tractability plays even more important role in the context of multi-stage stochas-
tic programming and its applications. For CVaR-type risk measures, one of the
biggest issues is policy evaluation, which has been mentioned above: standard so-
lution procedures involving Monte Carlo sampling schemes are usually adjusted
for the risk-neutral setting and their sampling schemes can perform poorly in the
risk-averse setting. The stability concerns are even more involved, because they
usually require additional computation than just a single run of the model. In
this thesis, we will discuss the mentioned issues of model selection, policy eval-
uation and stability considerations in a thorough detail and present some novel
approaches to dealing with them.

In Chapter 1, which is based on the article [4], we formulate a multi-stage
stochastic linear program with CVaR risk measure in various versions. With the
first version, nested CVaR, we follow the same manner as Shapiro [83], largely
following his notation. Secondly, we formulate a multi-stage stochastic program
with a multi-period CVaR risk measure, following the notion of [64]. The last
approach comes from the techniques of multi-objective optimization and consists
of a sum of single-period CVaR risk measures, see again [64]. We will discuss
differences and similarities of the three models as well as their time consistency
properties. SDDP algorithm and procedures for calculation of the upper bound
will be described in Chapter 2.

In Chapter 3 we propose, analyze, and computationally demonstrate a new
upper bound estimator for SDDP algorithms under a nested CVaR risk measure,
based on article [3]. The computational effort required to form our estimator
grows linearly in the number of time stages, and it is not limited to models
with a modest number of state variables. Moreover, our estimation procedure
fits flawlessly in the standard SDDP framework and our bound is significantly
tighter than the estimator based on conditional sampling, which further facilities
application of natural termination criteria. Such termination criteria are usually
based on comparing the difference between an upper bound estimator and the
lower bound. That said, our estimation procedure is not turnkey. Rather, it
requires specification of functions that can appropriately characterize the tail of
the recourse function, as we formalize in our main results and illustrate with an
asset allocation model, cf. [2].

The CVaR risk measure computes the expected shortfall below the specified
quantile level. As we will demonstrate on simple examples, standard Monte Carlo
sampling schemes produce too many scenarios which do not belong to the part
of the distribution that determines the CVaR value. An alternative sampling
scheme is presented in Chapter 4, as proposed in [5]. This scheme rectifies the
imbalance mentioned above and provides better results in terms of a reduced
variance. Computational effort required to use our scheme is only slightly higher
than the one required for the standard Monte Carlo scheme. The results of this
development are further applicable in the improved SDDP upper bound estimator
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and lead to additional variance reduction over the standard setup.
As discussed above, many approximations and estimates are involved in multi-

stage stochastic programs, and we are usually unable to provide precise solutions.
Therefore, it is important to test stability and robustness of our results. However,
standard contamination bounds cannot be used directly in large-scale applica-
tions. In Chapter 5, which is based on article [4], we extend standard contamina-
tion bounds to include only lower bounds and upper bounds of the optimal values,
which are available through the SDDP algorithm and its improvements. Numeri-
cal results with an asset allocation problem provide sufficiently tight bounds that
can be used in practical applications to test stability.

In Chapter 6 we present an illustrative numerical study to demonstrate the
power of our multi-stage risk-averse model for a simple asset allocation problem.
Our multi-stage model is based on the article [2], and it is an extension of the
two-stage results presented in the article [1], where we presented good empirical
performance of SAA under the log-normal distribution. Our model is in line with
the latest research in asset allocation, focused on dynamic models which allow
rebalancing the portfolio multiple times before the final investment horizon is
reached; we refer to the book by Dupačová et al. [32] for an introduction to more
complex stochastic decision models in finance. Wide range of different investment
strategies can be covered by our model, because the risk-aversion settings can be
adjusted separately for each stage. We assume that the price ratios observed in
stock market follow log-normal distribution. We estimate its parameters from the
data and apply our model for various number of stages and risk-aversion settings.
The resulting decisions are compared and summarized, following the article [2].
Moreover, with reference to the article [6], we provide an additional comparison
of the nested and multi-period CVaR model.

The ideas we present in this thesis are described mostly on the nested CVaR
model in the context of SDDP algorithm. We believe that these ideas could be
useful in the extensions of SDDP mentioned above and also in other algorithms for
multi-stage stochastic programs. When sampling of mean-risk functionals with
CVaR is required, many algorithms may benefit from the procedures described
below. Moreover, our extension of contamination bounds does not apply only to
the models with CVaR or SDDP, but it can be used for any multi-stage stochastic
problem where we are able to compute lower and upper bounds. While it is
beyond the scope of this thesis, the ideas behind our proposed estimators and
sampling schemes may also apply to other models with CVaR-style risk measures,
for instance spectral risk measures based on finite combination of CVaR risk
measures, cf. Acerbi [7]. We conclude and discuss ideas for future research in the
last chapter of this thesis.

10



1. Multi-stage stochastic models

1.1 Multi-stage stochastic programs

We first formulate a linear multi-stage stochastic program with an expectation
in the objective function. We suppose that the model has random parameters
in stages t = 2, . . . , T , denoted ξt = (ct,At,Bt, bt), which are governed by a
known, or well-estimated, distribution. The parameters of the first stage, ξ1 =
(c1,A1, b1), are assumed to be known when we make decision x1, but only a
probability distribution governing future realizations, ξ2, . . . , ξT , is known. The
realization of ξ2 is known when decisions x2 must be made and so on up to
stage T . The term Btxt−1 captures the state of the system. For example, in
an asset allocation model, the state could be the total value of the assets in
our portfolio. The components ξ2, . . . , ξT of ξ and the decisions x2, . . . ,xT are
assumed to be random vectors, not necessarily of the same dimension, defined on
some probability space (Ω,F,P), while ξ1 is deterministic and x1 is a nonrandom
vector-valued variable. The sequence of decisions and observations is

x1, ξ2,x2(x1, ξ2), . . . ,xT (xT−1, ξ2, . . . , ξT ). (1.1)

The decision process is nonanticipative which means that decisions taken at
any stage of the process depend neither on future realizations of stochastic da-
ta nor on future decisions, whereas the past information as well as the knowl-
edge of the probability distribution of the data process can be exploited. In
a mathematical way, let Ft ⊆ F be the σ-field generated by the projection
Πtξ = ξ[t] := (ξ1, . . . , ξt) of the stochastic data process ξ that includes data
up to stage t, F1 = {∅,Ω} is the trivial σ-field. The dependence of the t-th stage
decision xt only on the available information means that xt is Ft-measurable.
Similarly we let Πtx = x[t] := (x1, . . . ,xt) denote the sequence of decisions at
stages 1, . . . , t, P the probability distribution of ξ, Pt denotes the marginal proba-
bility distribution of ξt, and Pt

[
·|ξ[t−1]

]
, t = 2, , . . . , T, its conditional probability

distribution. An illustrative scheme of a scenario tree can be found in Figure 1.1.
The first stage decisions consist of all decisions that have to be selected before

further information is revealed whereas the second stage decisions are allowed to
adapt to this information, etc. In each of the stages, the decisions are limited
by constraints that may depend only on the previous decisions and observations.
Stages do not have to coincide with the observations of the random parameters,
they should rather correspond to steps in the decision process. Besides that, time
spans between stages do not have to be equal, which facilitates effective repre-
sentation of problems with far horizon. The decision process (1.1) has a random
outcome, represented by cost f(x, ξ), and the basic goal is to find a nonantici-
pative decision or policy x(ξ) which minimizes the expectation EP [f(x, ξ)] and
satisfies all prescribed constraints. The optimal decision will be denoted x∗. If
there are more optimal solutions, x∗ is used to represent any member of the set
of optimal solutions.

The basic form of a multi-stage stochastic program is the multi-stage stochas-
tic linear program (MSLP). First, we present it in its nested form, which resem-
bles the backward recursion of stochastic dynamic programming with an additive
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stage 1 stage 2 stage 3 stage 4

x1

ξ1

x2(x1, ξ
1
2)

ξ1
2

x2(x1, ξ
2
2)

ξ2
2

x3(x2, ξ1
2, ξ

1
3)

ξ1
3

x3(x2, ξ1
2, ξ

2
3)

ξ2
3

x3(x2, ξ2
2, ξ

3
3)

ξ3
3

x3(x2, ξ2
2, ξ

4
3)

ξ4
3

Figure 1.1: Scenario tree with associated decisions

overall cost function:

min
x1∈X1

c>1 x1 + EP
[
Q2(x1, ξ[2])

]
with X1 := {x1|A1x1 = b1, x1 ≥ 0} , (1.2)

and Qt(xt−1, ξ[t]), t = 2, . . . , T , defined recursively as

Qt(xt−1, ξ[t]) = min
xt
ct(ξ[t−1])

>xt + EPt+1[·|ξ[t]]
[
Qt+1(xt, ξ[t+1])

]
(1.3)

subject to constraints xt ∈ Xt(xt−1, ξ[t]), e.g.

At(ξ[t−1])xt = bt(ξ[t−1])−Bt(ξ[t−1])xt−1, xt ≥ 0 a.s.,

and QT+1(·) is explicitly given, e.g. QT+1(·) ≡ 0.
Matrices At are of a fixed (mt, nt) type, and the remaining vectors and matri-

ces are of consistent dimensions. For the first stage, known values of all elements
of c1,A1, b1 are assumed, and the main decision variable is x1 that corresponds to
the first stage. The first stage problem (1.2) has the form of the expectation-type
stochastic program with the set of feasible decisions independent of P.

One can rewrite (1.2)–(1.3) briefly as

min
x1

c>1 x1 + E
[
min
x2

c2(ξ[1])
>x2 + E

[
· · ·+ E

[
min
xT
cT (ξ[T−1])

>xT

]]]
(1.4)

with corresponding conditional expectations as in (1.3) and subject to linear
constraints xt ∈ Xt(xt−1, ξ[t]), t = 1, . . . , T, on decision variables. The set of all
feasible decisions X (ξ) is given by{
x ∈ Rn1 × · · · × RnT : x1 ∈ X1, x2 ∈ X2(x1, ξ[2]), . . . ,xT ∈ XT (xT−1, ξ[T ])

}
.

12



Constraints involving random elements are supposed to hold almost surely and for
simplicity we will assume that all optimal solutions exist. A common assumption
of relatively complete recourse requires that for each decision of the stage t, there
exists some feasible decision for the stage t + 1. Moreover, we will suppose that
all conditional expectations exist. In the case of stage-wise independence the
conditional probability distributions boil down to marginal distributions Pt of ξt.

An example of a more complicated stochastic program could be an expectation-
based convex stochastic program. The cost fuction f(x, ξ) is supposed to be an
inf-compact convex normal integrand whose finite expectation exists and the set
of feasible decisions X (ξ) should be closed, convex-valued, nonanticipative and
uniformly bounded mapping, i.e. the assumption of relatively complete recourse.
The relation to stochastic dynamic programming is further revealed by the fact
that the optimal decisions can be obtained by telescoping the T stage problem
into t stage ones, as done in Rockafellar and Wets [71]. The following proposition
follows from Theorem 1 of [71] where it was formulated for extended real inte-
grand f(x, ξ). (Here we assume explicitly formulated nonanticipative constraint
mappings as well as existence of expectations and of optimal decisions.)

Theorem 1.1. Consider the T stage stochastic program

minimize EP [f(x, ξ)] (1.5)

subject to constraints xt ∈ Xt(x[t−1], ξ[t]), t = 1, . . . , T.
Put fT (xT ,x[T−1], ξ[T ]) := f(x, ξ) and for t = 1, . . . , T − 1 define the t-th stage
integrands

ft(xt,x[t−1], ξ[t]) = EP

[
min
x[τ ]

{fτ (xτ ,x[τ−1], ξ[τ ]) : Πtξ[τ ] = ξ[t],Πtx[τ ] = x[t]}
]

for t ≤ τ ≤ T and consider the t stage problems

minimize EP
[
ft(xt,x[t−1], ξ[t])

]
(1.6)

subject to constraints xt ∈ Xt(x[t−1], ξ[t]). Then all programs (1.6) are solvable
and the following property holds true:

If x∗ is an optimal solution of (1.5) then its projection Πtx
∗ solves (1.6) and

if x∗[t] solves (1.6), it can be extended to an optimal solution x∗ of (1.5) such that
Πtx

∗ = x∗[t].

This theorem forms a bridge between multi-stage stochastic programs solved
as a sequence of rolling horizon stochastic programs with a reduced number of
stages and the stochastic dynamic programming methodology. For convex multi-
stage expectation-based stochastic programs it can be evidently linked with the
concept of dynamic or time consistency property introduced later on, e.g.

TC1 [19] The sequence of dynamic optimization problems (1.6) is
dynamically consistent if the optimal strategies obtained when solving
the original problem remain optimal for all subsequent problems.

13



When the normal integrand f(x, ξ) is separable with respect to stages, one
can design an alternative dynamic programming recursion such as in (1.2)–(1.3),
or as in Pennanen and Perkkiö [61] where a result similar to Theorem 1.1 can be
found for convex multi-stage stochastic programs.

In applications one mostly approximates the true probability distribution P
of ξ by a discrete probability distribution carried by a finite number of atoms
(scenarios), say, ξ1, . . . , ξK . They are organized in form of a scenario tree and
in principle, the optimal policy can be obtained by solving a large deterministic
program. See e.g. the recent book [86] for details and more general cases. Every
node of the tree is a root of a scenario subtree which does not contain any branches
of other subtrees. Hence, the optimal solutions of a nodal subproblem do not
reflect the future information carried by branches of the full tree that, from the
point of view of the relevant nodal subproblem, cannot happen in the future.
This observation is behind a modified time consistency concept

TC2 [82] At each state of the system, optimality of a decision policy
should not involve states which cannot happen in the future.

Hence, under modest assumptions, optimal solutions of risk-neutral scenario-
based multi-stage stochastic programs possess both of these time consistency
properties, whereas there are still open questions concerning time consistency
notions for risk-averse multi-stage stochastic programs. In the next sections,
we shall discuss the risk-averse formulations and their properties, including time
consistency.

1.2 Risk-averse multi-stage stochastic programs

Maximization of expected gains or minimization of expected losses means to get
decisions that are optimal on average while possible risks are neglected. This
need not be an acceptable goal. The present tendency is to spell out explicitly
the concern for risk monitoring and control. There are various types of risk and
the choice of a suitable risk definition depends on the context, on the decision
maker’s attitude, the company goals, etc.

To reflect risks in the stochastic programming formulation, it is necessary to
quantify them. Both in theoretical considerations and in applications, rational
properties of risk measures are requested. A risk measure is a functional which
assigns a real value to the random outcome f(x, ξ). Similarly as the risk-neutral
expected value criterion, risk measures ρ should not depend on individual realiza-
tions of ξ, but they depend on decisions and probability distribution P. Moreover,
they should also reflect the structure of the filtration F1 ⊂ · · · ⊂ Ft · · · ⊆ F.

Coherence of ρ (monotonicity, translation invariance, positive homogeneity
and subadditivity) cf. [8] is mostly expected. Popular examples of risk measure ρ
include Value at Risk (VaR), which is not coherent in general, and the Conditional
Value at Risk (CVaR), which belongs to the class of coherent risk measures.
Monotonicity with respect to the pointwise partial ordering and subadditivity are
straightforward requirements, coming from the principles of risk quantification.
Convexity is important to keep a manageable structure of the problem both
for computational and theoretical purposes. Polyhedral property, cf. CVaR in
Rockafellar and Uryasev [74], or polyhedral risk measures, cf. Eichhorn and
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Römisch [38], facilitate the application in scenario-based programs with linear
constraints, because we can rely on linear programming techniques.

Whereas there are many suggestions of risk measures for static stochastic
programs, which have performed well in numerical experiments and applications,
see e.g. [53] and references therein, the situation is much more involved for
multi-stage problems. The first idea is to replace the expectation EP [f(x, ξ)] by
a suitable risk measure ρ and to keep all constraints including nonanticipativity.
Assigning a risk measure ρ to the final outcome f(x, ξ) does not take into account
the information structure given by the filtration. It corresponds to monitoring
risk only at the horizon which need not be sufficient. To include risk monitoring
in individual stages, one may relate the risk measure to the partial outcomes
f1(x1), ft(xt,x[t−1], ξ[t]), t = 2, . . . , T . Different risk measures ρt can be applied
in individual stages. As a result we may construct objective function of the form

min
x1

c>1 x1 + ρ2

(
min
x2

c2(ξ[1])
>x2 + ρ3

(
· · ·+ ρT

(
min
xT
cT (ξ[T−1])

>xT

)))
(1.7)

and use it in the place of (1.4). It is important to agree on acceptable properties of
risk measures, usually at least convexity should be satisfied. The full formulation
of the risk-averse stochastic program (1.7) has to include the nonanticipativity
constraints. Depending on the risk-averse problem and on the applied solution
technique, a form of time consistency of optimal solutions is desirable.

Having in mind tractable numerical techniques such as stochastic dual dynam-
ic programming (SDDP) [62] applied to Sample Average Approximation (SAA)
of the underlying problem we shall focus on finite discrete probability distribu-
tions, and we will study mainly multi-period extensions of conditional value at
risk or multi-period polyhedral risk measures. The next section comments on
some important definitions.

1.3 Basic definitions

We will model the risk by representing the loss which could be incurred in stages
1, . . . , T by random functions Z = (Z1, . . . , ZT ) that will be defined on a suitable
linear space Z . The notion of coherent risk measures was introduced in Artzner
et al. [8] and is now widely accepted in static risk-averse optimization. Following
definition, based on Artzner et al. [9] and Eichhorn and Römisch [38], extends
this notion to the multi-stage case.

Definition 1.2 (Multi-period risk measures).
A functional ρ on Z = ×Tt=1Lp (Ω,Ft,P) with p ∈ [1,∞] is called a multi-period
coherent risk measure if it satisfies the following:

1. Zt ≥ Z̃t a.s., t = 1, . . . , T =⇒ ρ (Z1, . . . , ZT ) ≥ ρ
(
Z̃1, . . . , Z̃T

)
(monotonic-

ity);

2. for each r ∈ R: ρ (Z1 + r, . . . , ZT + r) = ρ (Z1, . . . , ZT ) + r (translation
invariance);

3. ρ
(
µZ1 + (1− µ)Z̃1, . . . , µZT + (1− µ)Z̃T

)
≤

≤ µρ (Z1, . . . , ZT ) + (1− µ)ρ
(
Z̃1, . . . , Z̃T

)
for µ ∈ [0, 1] (convexity);
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4. ρ (µZ1, . . . , µZT ) = µρ (Z1, . . . , ZT ) for µ ≥ 0 (positive homogeneity).

Two special classes of multi-period risk measures have received a lot of at-
tention, polyhedral risk measures and conditional risk mappings. Polyhedral risk
measures are defined as the optimal value of a multi-stage stochastic program in
the following way, see Eichhorn and Römisch [38].

Definition 1.3 (Multi-period polyhedral risk measures).
A risk measure ρ on ×Tt=1Lp (Ω,Ft,P) with p ∈ [1,∞] is called multi-period poly-
hedral if there are kt ∈ N, ct ∈ Rkt, t = 1, . . . , T , wt,τ ∈ Rkt−τ , t = 1, . . . , T ,
τ = 0, . . . , t − 1, a polyhedral set M1 ⊂ Rk1, and polyhedral cones Mt ⊂ Rkt,
t = 2, . . . , T , such that

ρ (Z) = inf E

[
T∑
t=1

c>t Yt

]
s.t. Yt ∈ Lp (Ω,Ft,P) ∀t ∈ {1, . . . , T}

Yt ∈Mt a.s. ∀t ∈ {1, . . . , T}
t−1∑
τ=0

w>t,τYt−τ = Zt a.s. ∀t ∈ {1, . . . , T} .

(1.8)

When replacing the expectation of the total outcome of a risk-neutral MSLP
by the multi-period polyhedral risk measure it is possible to carry out the mini-
mization with respect to the original decision variable x and minimization in (1.8)
simultaneously, see Proposition 4.1 in [38]. Moreover, the scenario form of (1.8)
and that of the combined problem is a linear program. Multi-period polyhedral
risk measures are not coherent in general, but coherency can be obtained through
a special choice of parameters, cf. [38].

The class of conditional risk mappings resembles the conditional expectations
in (1.4). This structure is especially convenient for the construction of nested
risk measures in order to obtain the time consistency property. Let F ⊂ F ′ be
σ-fields of subsets of Ω and Z and Z ′ be linear spaces of real-valued functions
f(ω), ω ∈ Ω measurable with respect to F and F ′ , respectively. Following
Ruszcyński and Shapiro [80] we define:

Definition 1.4 (Conditional risk mappings).
We say that mapping ρ : Z ′ → Z is a conditional risk mapping if the following
properties hold:

1. Convexity. If α ∈ [0, 1] and X, Y ∈ Z ′, then

αρ (X) + (1− α)ρ (Y ) � ρ (αX + (1− α)Y ) .

2. Monotonicity. If Y � X, then ρ (Y ) � ρ (X) .

3. Predictable Translation Equivariance. If Y ∈ Z and X ∈ Z ′, then

ρ (X + Y ) = ρ (X) + Y.

The inequalities in 1. and 2. are understood component-wise, i.e., Y � X means
that Y (ω) ≥ X(ω) for every ω ∈ Ω.
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Note 1.5. Predictable Translation Equivariance is similar to translation invari-
ance from Definition 1.2, but in a more general setting. General definition of
this assumption is still a subject of ongoing discussion and the two mentioned
definitions are similar, but not equivalent. Based on our Predictable Translation
Equivariance assumption, the addition of a real number in the first stage leads to
following equation, see [86]:

for each r ∈ R : ρ (Z1 + r, Z2, . . . , ZT ) = ρ (Z1, . . . , ZT ) + r,

compare with Definition 1.2.

For conditional risk mappings defined above we shall use notation ρ (·|F ). Us-
ing Predictable Translation Equivariance, we can construct composite risk mea-
sures as follows: Consider conditional risk mappings ρ2, . . . , ρT and a risk function
ρ : Z1 × · · · × ZT → R given by:

ρ (Z1, . . . , ZT ) = Z1 + ρ2 (Z2 + · · · ρT−1 (ZT−1 + ρT (ZT ))) .

Using Predictable Translation Equivariance we get

ρT−1 (ZT−1 + ρT (ZT )) = ρT−1 ◦ ρT (ZT−1 + ZT ) .

By continuing this process we end up with a composite risk measure ρ̄ := ρ2 ◦
· · · ◦ ρT . It holds

ρ̄(Z1 + · · ·+ ZT ) = ρ (Z1, . . . , ZT ) . (1.9)

Using notation of Definition 1.4 we continue by introducing a concept of dy-
namic or time-consistent conditional risk mappings [52].

Definition 1.6 (Time-consistent risk mappings).
A conditional risk mapping (ρt (·|Ft))t=1,...,T is called time-consistent if for all
1 ≤ t1 ≤ t2 ≤ T and X, Y ∈ Lp (Ω,F,P):

ρt2 (X|Ft2) ≤ ρt2 (Y |Ft2) =⇒ ρt1 (X|Ft1) ≤ ρt1 (Y |Ft1) .

There are various other related consistency concepts for risk mappings, see e.g.
[76]; when demanded, they may substantially limit the choice of risk measures
up to just the risk-neutral case, see e.g. [84]. In comparison with the time
consistency concepts [TC1] and [TC2], which relate to the decisions, Definition 1.6
defines time consistency for the risk mapping itself. In order to evaluate the
properties [TC1] and [TC2] we have to specify the subsequent optimization models
for every state of the system. Without additional assumptions about the model
structure, we cannot expect that time consistency of a risk mapping automatically
guarantees time consistency of the model.

For scenario-based programs the time consistency property [TC1] holds true
whenever it is possible to reformulate the risk-averse multi-stage stochastic prob-
lem into the form of a classical risk-neutral stochastic program. This is provided
by Theorem 1.1 and holds true for instance in the case of multi-period polyhedral
risk measures. It should be noted that such reformulations usually require ad-
ditional decision variables and are therefore harder to solve than corresponding
risk-neutral versions of these models.
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1.4 Multi-stage stochastic programs with CVaR-

type risk measures

We formulate a multi-stage stochastic linear program with CVaR risk measure in
various versions. With the first version, nested CVaR, we follow the same manner
as Shapiro [83], largely using his notation. Second, we formulate a multi-stage
stochastic program with a multi-period CVaR risk measure and with a sum of
CVaR risk measure following the notion of [64]. All models have random parame-
ters in stages t = 2, . . . , T , e.g. ξt =

(
ct(ξ[t−1]),At(ξ[t−1]),Bt(ξ[t−1]), bt(ξ[t−1])

)
in

(1.3), which are governed by a known conditional distribution. All models can be
also formulated in a more general convex form (which is solvable using the SDDP
algorithm), but we have chosen the linear versions for easier presentation of our
results. For simplicity of notation we will drop the (ξ[t−1]) arguments and denote
the random parameters only by ξt = (ct,At,Bt, bt). The parameters of the first
stage, ξ1 = (c1,A1, b1), are assumed to be known. Our models allow specification
of different risk aversion coefficients, λt ∈ [0, 1], and confidence levels, αt ∈ (0, 1),
at each stage, t = 1, . . . , T.

1.4.1 Nested CVaR model

The nested CVaR model is based on the following composite risk measure [64],
as considered in (1.9):

ρn (Z) = CVaRα [·|F1] ◦ · · · ◦ CVaRα [·|FT−1]

(
T∑
t=1

Zt

)
.

According to [52] this risk measure is time-consistent with respect to the
Definition 1.6. In order to provide a formulation of the nested model we introduce
the following operator, which forms a weighted sum of conditional expectation
and risk associated with random loss Z:

ρt,ξ[t−1]
[Z] = (1− λt)E

[
Z
∣∣ξ[t−1]

]
+ λt CVaRαt

[
Z
∣∣ξ[t−1]

]
. (1.10)

We suppose λt ∈ [0, 1]; with λt = 0 it covers the risk-neutral problems, whereas
λt = 1 puts emphasis on risk control only. The case of λt = 0 for t < T and
λT 6= 0 models importance of risk only at the final stage. CVaR penalizes losses
in the upper α tail of Z with a typical value of α being 0.05.

We can write the corresponding risk-averse linear multi-stage model with T
stages in the following form:

min
A1x1=b1
x1≥0

c>1 x1 + ρ2,ξ[1]

 min
A2x2=b2−B2x1

x2≥0

c>2 x2 + · · ·

· · ·+ ρT,ξ[T−1]

 min
ATxT=bT−BTxT−1

xT≥0

c>TxT

 .
(1.11)

We assume model (1.11) is feasible, has relatively complete recourse, and has a
finite optimal value.
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Our model, with the nested risk measure, allows a dynamic programming
formulation to be developed, as is described in [83]. Using in (1.10) the definition
of conditional value at risk from [74],

CVaRα [Z] = min
u

(
u+

1

α
E [Z − u]+

)
, (1.12)

where [ · ]+ ≡ max{ · , 0}, we can rewrite (1.11) as

min
x1,u1

c>1 x1 + λ2u1 +Q2(x1, u1, ξ[1])

s.t. A1x1 = b1

x1 ≥ 0.

(1.13)

The recourse value Qt(xt−1, ξ[t]) at stage t = 2, . . . , T is given by:

Qt(xt−1, ξ[t]) = min
xt,ut

c>t xt + λt+1ut +Qt+1(xt, ut, ξ[t])

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(1.14)

where

Qt+1(xt, ut, ξ[t]) =

= EPt+1[·|ξ[t]]

[
(1− λt+1)Qt+1(xt, ξ[t+1]) +

λt+1

αt+1

[
Qt+1(xt, ξ[t+1])− ut

]
+

]
.

(1.15)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0 so that the objective function of model (1.14)
reduces to c>TxT when t = T ; compare with (1.2)–(1.3).

The interpretation of the objective function is not straightforward, but it can
be viewed as the real cost we would be willing to pay at the first stage instead of
incurring the sequence of random costs Z1, . . . , ZT ; cf. [79].

The nested model is formulated in the framework of conditional risk map-
pings, and this formulation is time-consistent with respect to both [TC1] and
[TC2], cf. [82]. However, due to its nesting structure, it cannot be represent-
ed as a polyhedral risk measure. We need the value of future recourse function
Qt+1(xt, ut, ξ[t]) from stage t + 1 to calculate the value Qt(xt−1, ξ[t]) at time t.
This is in contradiction with the definition of polyhedral risk measures, which
allows only historical values to be used.

1.4.2 Multi-period CVaR model

The multi-period CVaR model is based on the following risk measure (see [64]):

ρm (Z) =
T∑
t=2

µtE [CVaRαt [Zt|Ft−1]] . (1.16)

with
∑T

t=2 µt = 1, µt ≥ 0 ∀t. The multi-period CVaR risk measure is time-
consistent with respect to the Definition 1.6, according to the Theorem 3.3.11
of [52].

19



Using this risk measure and the mean-risk operator (1.10) we obtain a multi-
period CVaR model:

min
x1,...,xT

c>1 x1 + µ2ρ2,ξ[1]

[
c>2 x2

]
+ · · ·+ µTE

[
ρT,ξ[T−1]

[
c>TxT

]]
s.t. A1x1 = b1

A2x2 = b2 −B2x1

...

ATxT = bT −BTxT−1

xt ≥ 0, xt ∈ Lp (Ω,Ft,P) , t = 1, . . . , T.

(1.17)

We assume model (1.17) is feasible, has relatively complete recourse, and has a
finite optimal value. While ρ2,ξ[1] is deterministic, ρt,ξ[t−1]

, t = 3, . . . , T are random
variables and expectation is applied to get a meaningful model. The difference
between this model and the nested CVaR model (1.11) is that here we apply
expectation instead of the risk measure nesting. We also give a reformulation
which uses the definition (1.12) of conditional value at risk and auxiliary variables
qt to express its nonlinear term:

min
xt,ut,qt∀t

c>1 x1 +
T−1∑
t=1

µt+1E [λt+1ut] +
T∑
t=2

µtE
[
(1− λt) c>t xt +

1

αt
λtqt

]
s.t. A1x1 = b1

Atxt = bt −Btxt−1, t = 2, . . . , T

qt ≥ c>t xt − ut−1, t = 2, . . . , T

qt ≥ 0, t = 2, . . . , T

ut ∈ Lp (Ω,Ft,P) , t = 1, . . . , T − 1

qt ∈ Lp (Ω,Ft,P) , t = 2, . . . , T

xt ≥ 0, xt ∈ Lp (Ω,Ft,P) , t = 1, . . . , T.

(1.18)

As is shown in the book [64] the multi-period risk measure (1.16) is polyhedral.
The multi-period CVaR model is therefore time-consistent with respect to [TC1].
Moreover, with reference to the dynamic programming equations developed be-
low, multi-period CVaR model is time-consistent with respect to [TC2]. Other
concepts of time consistency with this risk measure are discussed in an example
in [9] and also in [52].

Note 1.7. According to the Proposition 3.36 of [64], there is an inequality com-
paring the values of multi-period and nested CVaR risk measures. Under the
assumption of α = αt ∀t we have that: ρn (Z) ≤ α−(T−2)ρm (Z). However, this
bound can be loose for programs with large values of T . Besides that, it cannot
be applied to the optimal values of our optimization problems, since they combine
the value of the risk measure with the mean return.

Similarly as in the case with nested CVaR model we develop dynamic pro-
gramming equations. Contrary to the nested model, CVaR is now evaluated in
the stochastic program which determines the recourse value. In consequence,
notation of the recourse value Qt(xt−1, ut−1, ξ[t]) includes auxiliary variables ut.
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Using the interchangeability principle (see Theorem 14.60 of Rockafellar and Wets
[73]) we get:

min
x1,u1

c>1 x1 + µ2λ2u1 +Q2(x1, u1, ξ[1])

s.t. A1x1 = b1

x1 ≥ 0

(1.19)

with the recourse value Qt(xt−1, ut−1, ξ[t]) at stage t = 2, . . . , T given by:

Qt(xt−1, ut−1, ξ[t]) =

= min
xt,ut,qt

µt (1− λt) c>t xt + µt+1λt+1ut + µt
1

αt
λtqt +Qt+1(xt, ut, ξ[t])

s.t. Atxt = bt −Btxt−1

qt ≥ c>t xt − ut−1

qt ≥ 0

xt ≥ 0,

(1.20)

where:
Qt+1(xt, ut, ξ[t]) = EPt+1[·|ξ[t]]

[
Qt+1(xt, ut, ξ[t+1])

]
. (1.21)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0.

1.4.3 Sum of CVaR model

The weighted sum of CVaR model is based on the following risk measure (see
[38]):

ρs (Z) =
T∑
t=2

µt CVaRαt [Zt]

with
∑T

t=2 µt = 1, µt ≥ 0 ∀t.
It can be shown that sum of CVaR is not a time-consistent risk measure with

respect to the Definition 1.6, see [9, 77]. The sum of CVaR model does not include
nesting of the recourse values. It can be deduced from the scalarization technique
of the multiobjective optimization. Using (1.10) it reads

min
x1,...,xT

c>1 x1 + µ2ρ2,ξ[1]

[
c>2 x2

]
+ · · ·+ µTρT,ξ[1]

[
c>TxT

]
s.t. A1x1 = b1

A2x2 = b2 −B2x1

...

ATxT = bT −BTxT−1

xt ≥ 0, xt ∈ Lp (Ω,Ft,P) , t = 1, . . . , T.

(1.22)

We assume again that model (1.22) is feasible, has relatively complete recourse,
and has a finite optimal value. Please note that no nesting of the CVaR val-
ues is present and that we always condition the operator ρ with the first stage
information ξ[1], i.e. ρt,ξ[1] is deterministic ∀t = 2, . . . , T .
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Using mean-risk operator (1.10) and auxiliary variables qt to express the non-
linear term in (1.12) we can rewrite the model as the following multi-stage stochas-
tic linear program:

min
xt,ut,qt∀t

c>1 x1 +
T−1∑
t=1

µt+1λt+1ut +
T∑
t=2

µtE
[
(1− λt) c>t xt +

1

αt
λtqt

]
s.t. A1x1 = b1

Atxt = bt −Btxt−1, t = 2, . . . , T

qt ≥ c>t xt − ut−1, t = 2, . . . , T

qt ≥ 0, t = 2, . . . , T

ut ∈ Lp (Ω,F1,P) , t = 1, . . . , T − 1

qt ∈ Lp (Ω,Ft,P) , t = 2, . . . , T

xt ≥ 0, xt ∈ Lp (Ω,Ft,P) , t = 1, . . . , T.

(1.23)

It can be seen that the risk measure ρs (Z) used in this linear program satisfies
requirements of Definition 1.3 and is therefore polyhedral and the corresponding
optimization model is time-consistent under the Definition [TC1]. On the other
hand, all variables ut are decided in the first stage, and the model is therefore
not time-consistent according to the Definition [TC2].

We again develop dynamic programming equations using the interchangeabil-
ity principle (see Theorem 14.60 of Rockafellar and Wets [73]):

min
x1,u1,...uT−1

c>1 x1 +
T−1∑
t=1

µt+1λt+1ut +Q2(x1, u1, . . . , uT−1, ξ[1])

s.t. A1x1 = b1

x1 ≥ 0

(1.24)

with recourse value Qt(xt−1, ut−1, . . . , uT−1, ξ[t]) at stage t = 2, . . . , T , given by:

Qt(. . .) = min
xt,qt

µt (1− λt) c>t xt + µt
1

αt
λtqt +Qt+1(xt, ut, . . . , uT−1, ξ[t])

s.t. Atxt = bt −Btxt−1

qt ≥ c>t xt − ut−1

qt ≥ 0

xt ≥ 0,

(1.25)

where:

Qt+1(xt, ut, . . . , uT−1, ξ[t]) = EPt+1[·|ξ[t]]
[
Qt+1(xt, ut, . . . , uT−1, ξ[t+1])

]
. (1.26)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0.
Other multi-period polyhedral risk measures and their comparison can be

found in [38]. The final decision regarding which of the multi-period risk measures
to choose depends on the solved problem.
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1.5 Challenges in the risk-averse models

Risk-neutral models usually employ utility functions to represent the value of
money for an individual, see Neumann and Morgenstern [59] for the formal def-
inition of an additive utility. In contrast to a multi-stage formulation rooted in
expected utility, our multi-stage models with CVaR have additional decision vari-
ables, ut, which estimate the value-at-risk level. After introducing the auxiliary
variables, the problem seems to be converted to a simpler case, involving only ex-
pectations of an additive utility. This impression may lead to the false conclusion
that traditional algorithms can be applied. The nested nonlinearity arising from
the positive-part function precludes this, as we illustrate in the next example.

Example 1.8. Suppose we incur random costs Z2 in the second stage and Z3 in the
third stage. Then under an additive utility with contribution Ut(·) in stage t, we have:

E
[
U2(Z2) + E

[
U3(Z3)

∣∣∣ξ[2]

]]
= E [U2(Z2)] + E [U3(Z3)] .

However, this additive form does not hold under CVaR. Using Predictable Translation
Equivariance from Definition 1.4 we can write the composite risk measure as:

CVaRα

[
Z2 + CVaRα

[
Z3

∣∣∣ξ[2]

]]
= CVaRα

[
CVaRα

[
Z2 + Z3

∣∣∣ξ[2]

]]
,

but the composite risk measure does not lend itself to further simplification. Subadditivity
of CVaR yields

CVaRα

[
Z2 + CVaRα

[
Z3

∣∣∣ξ[2]

]]
≤ CVaRα [Z2] + CVaRα

[
CVaRα

[
Z3

∣∣∣ξ[2]

]]
,

which only bounds the risk measure and, even then, the composite measure still requires

evaluation.

It is for the reasons illustrated in Example 1.8 that Philpott and de Matos [67]
and Shapiro [83] point to the lack of a good upper bound estimator for model
(1.11) when the problem has more than a very small number of stages. The
natural conditional sampling estimator, discussed in [67, 83], has computational
effort that grows exponentially in the number of stages. The following example
points to a second issue associated with estimating CVaR.

Example 1.9. Consider the following estimator of CVaRα [Z], where Z1, Z2, . . . , ZM

are independent and identically distributed (i.i.d.) from the distribution of Z:

min
u

u +
1

αM

M∑
j=1

[
Zj − u

]
+

 .

If α = 0.05 only about 5% of the samples contribute nonzero values to this estimator of

CVaR.

The inefficiency pointed to in Example 1.9 compounds the computational chal-
lenges of forming a conditional sampling estimator of CVaR in the multi-stage
setting. When forming an estimator of our risk measure from equation (1.10),
this inefficiency means that, say, 95% of the samples are devoted to only estimat-
ing expected cost and the remaining 5% contribute to estimating both CVaR and
expected cost. In Section 3.1 we propose an approach to upper bound estima-
tion in the context of SDDP that rectifies this imbalance and has computational
requirements that grow gracefully with the number of stages.
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1.6 Stage independence

To apply SDDP algorithm, we have to assume ξt, t = 2, . . . , T , to be stage-
wise independent. It may seem that such assumption is overly restrictive, but
this is not the case. See discussion in the introduction and further description in
Chapter 2 to find very general models that can be covered under the assumption of
stage independence. Moreover, for tractability and storage reasons, fully general
models cannot be solved in practice for large number of stages.

The assumption of stage-wise independence further simplifies formulations of
the presented models. In the nested CVaR model the function Qt+1(xt, ut, ξ[t])
from equation (1.14) now takes the form Qt+1(xt, ut). The dynamic programming
equations are given by:

min
x1,u1

c>1 x1 + λ2u1 +Q2(x1, u1)

s.t. A1x1 = b1

x1 ≥ 0

(1.27)

with the recourse value Qt(xt−1, ξt) at stage t = 2, . . . T given by:

Qt(xt−1, ξt) = min
xt,ut

c>t xt + λt+1ut +Qt+1(xt, ut)

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(1.28)

where

Qt+1(xt, ut) = E
[
(1− λt+1)Qt+1(xt, ξt+1) +

λt+1

αt+1

[
Qt+1(xt, ξt+1)− ut

]
+

]
.

(1.29)
Similar development applies to the function Qt+1(xt, ut, ξ[t]) from equation (1.21)
and the function Qt+1(xt, ut, . . . , uT−1, ξ[t]) from equation (1.26) which will be
written as Qt+1(xt, ut, . . . , uT−1) in the stage independent case.

1.7 Asset allocation model

1.7.1 Nested model

Our procedures will be demonstrated mostly on a simple asset allocation model,
cf. [2]. We would like to emphasize that our primary purpose is to provide
computational results for our techniques as opposed to building a high-fidelity
model for practical use. At stage t the decisions xt denote the allocations (in
units of a multiple of a base currency, say USD), and rt denotes the gross return
per stage; i.e., the ratio of the price at stage t to that in stage t − 1. These
represent the only random parameters in the model. Without transaction costs,
model (1.28) specializes to:

Qt(xt−1, ξt) = min
xt,ut

−1>xt + λt+1ut +Qt+1(xt, ut) (1.30a)

s.t. 1>xt = r>t xt−1 (1.30b)

xt ≥ 0, (1.30c)
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with recourse fuction given by (1.29).
In the first stage the initial capital of the right-hand side of (1.30b) is assumed

to be equal to 1 and because −1>x1 is then identically -1, we drop this constant
from the objective function. First stage optimal solution is given by a following
program, compare again with (1.27):

min
x1,u1

λ2u1 +Q2(x1, u1)

s.t. 1>x1 = 1

x1 ≥ 0.

(1.31)

We also include an extended version of the asset allocation model, which
contains transaction costs. We consider the case in which transaction costs are
proportional to the value of the assets sold or bought, and in particular that the
fee is ft = 0.3% of the transaction value. The first stage program remains in
the form of (1.31), but we must modify the rebalancing equation between stage
t − 1 and stage t to include the transaction costs of ft1

>|xt − xt−1|, where the
| · | function applies component-wise. Linearizing we obtain the following special
case of model (1.28):

Qt(xt−1, ξt) = min
xt,ot,ut

− 1>xt + λt+1ut +Qt+1(xt, ut)

s.t. 1>xt + ft1
>ot = r>t xt−1

ot − xt ≥ −xt−1

ot + xt ≥ xt−1

xt ≥ 0,

(1.32)

with recourse fuction given by (1.29) and first-stage program given by (1.31).

1.7.2 Multi-period model

In addition, we include computational results for a second model, which is based
on multi-period CVaR risk measure. The decisions, random parameters and
notation remain the same as in the case of a nested model. We also suppose the
same behavior of transaction costs, relative to the volume of traded assets. Under
the assumption of stage independence, first stage of model (1.19) specializes to:

min
x1,u1

λ2u1 +Q2(x1, u1)

s.t. 1>x1 = 1

x1 ≥ 0

(1.33)
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with the recourse value Qt(xt−1, ut−1, ξt) at stage t = 2, . . . , T given by:

Qt(xt−1, ut−1, ξt) =

= min
xt,ot,ut,qt

(1− λt) c>t xt + λt+1ut +
1

αt
λtqt +Qt+1(xt, ut)

s.t. 1>xt + ft1
>ot = r>t xt−1

ot − xt ≥ −xt−1

ot + xt ≥ xt−1

qt ≥ c>t xt − ut−1

qt ≥ 0

xt ≥ 0,

(1.34)

where:
Qt+1(xt, ut) = E

[
Qt+1(xt, ut, ξt+1)

]
. (1.35)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0.

1.7.3 Numerical experiments

We have considered three different data sets in our allocation model. First set
consists of the stock market indices DJA, NDX, NYA, and OEX and captures
price ratios observed month-to-month from September 1985 until September 2011.
The set consists of 311 observations and their summary can be found in the
Table 1.1. Two other data sets are based on price data of the most important
assets traded on the Prague Stock Exchange. For monthly data, it means the
total of 33 observations from January 2009 till February 2012, the summary
can be found in the Table 1.2. Last data set is based on weekly data from
November 2007 to March 2012 with 229 observations. The week-to-week price
ratios were adjusted to include stock dividends, and their basic characteristics
are reported in the Table 1.3. We have fitted a multidimensional correlated log-
normal distribution to all of the data sets to obtain a continuous distribution,
which has been used independently for all stages of the considered problems.
Illustrative numerical study using these data sets can be found in Chapter 6.

All numerical experiments were performed with empirical scenario trees con-
structed by Algorithm 2.1. While sampling from the log-normal distribution, we
have used the polar method [51] for sampling of the underlying normal distri-
butions. The L’Ecuyer random generator [55] was used to generate the required
uniform random variables. We implemented the SDDP algorithm in C++ soft-
ware, using CPLEX [48] and COIN-OR [22] to solve the required linear programs
and Armadillo [60] library for matrix computations.

asset mean std. deviation
DJA 0.9949 0.0459
NDX 0.9967 0.0948
NYA 0.9954 0.0469
OEX 0.9986 0.0701

Table 1.1: US assets data summary

26



asset mean std. deviation
AAA 1.0290 0.1235
CETV 0.9984 0.2469

ČEZ 0.9990 0.0647
ERSTE GROUP BANK 1.0172 0.1673

KOMERČNÍ BANKA 1.0110 0.1157
ORCO 1.0085 0.2200
PEGAS NONWOVENS 1.0221 0.0863

PHILIP MORRIS ČR 1.0213 0.0719

TELEFÓNICA C.R. 0.9993 0.0595
UNIPETROL 1.0079 0.0843
VIENNA INSURANCE GROUP 1.0074 0.1100

Table 1.2: Czech monthly data summary

asset mean std. deviation
AAA 0.9980 0.0716
CETV 0.9929 0.0995

ČEZ 0.9994 0.0406
ERSTE GROUP BANK 0.9983 0.0795

KOMERČNÍ BANKA 1.0018 0.0543
ORCO 0.9899 0.0938
PEGAS NONWOVENS 0.9995 0.0398

PHILIP MORRIS ČR 1.0035 0.0368

TELEFÓNICA C.R. 1.0004 0.0266
UNIPETROL 0.9986 0.0506

Table 1.3: Czech weekly data summary
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2. SDDP algorithm

2.1 Stochastic dual dynamic programming

We use stochastic dual dynamic programming to approximately solve models
presented in Section 1.4. SDDP algorithm can be used to solve any convex multi-
stage stochastic program, but we will restrict our description to the model (1.11)
for simplicity. Similar development applies to the models (1.17) and (1.22). We
assume model (1.11) is feasible, has relatively complete recourse, and has a finite
optimal value. SDDP does not operate directly on model (1.11). Instead, we
first form a sample average approximation (SAA) of model (1.11), and SDDP
approximately solves that SAA. Thus in our context SDDP forms estimators by
sampling within an empirical scenario tree. Algorithm 2.1 describes how we form
the sampling-based scenario tree for the SAA. Then in the remainder of this
thesis we restrict attention to solving that SAA via SDDP. See Shapiro [81] for
a discussion of asymptotics of SAA for multi-stage problems, Philpott and Guan
[66] for convergence properties of SDDP, and Chiralaksanakul and Morton [21] or
Bayraksan and Morton [10] for procedures to assess the quality of SDDP-based
policies.

To apply SDDP, we have to assume ξt, t = 2, . . . , T , to be stage-wise indepen-
dent, which means that the distribution of ξt does not depend on the previous
realizations of ξ[t−1]. We further assume that for each stage t = 2, . . . , T there is a
known (possibly continuous) distribution Pt of ξt and that we have a procedure to
sample i.i.d. observations from this distribution. Using this procedure we obtain
a single empirical distribution for each stage, denoted P̂t, t = 2, . . . , T , and the
associated empirical scenario tree is interstage independent. The scenarios gen-
erated by this procedure are equally probable, but this is not required to apply
SDDP.

Algorithm 2.1 (Sampling under interstage independence).

1. Let ξ1 denote the deterministic first stage parameters.

2. Sample D2 i.i.d. observations ξ1
2, . . . , ξ

D2
2 from P2. These are the descen-

dants of the first stage scenario (node) {ξ1}.

3. Sample D3 i.i.d. observations ξ1
3, . . . , ξ

D3
3 from P3, independent of those

formed in stage 2. Let these denote the same set of descendant nodes for
each of the N2 = D2 nodes {ξ1} ×

{
ξ1

2, . . . , ξ
D2
2

}
.

...

t. Sample Dt i.i.d. observations ξ1
t , . . . , ξ

Dt
t from Pt, independent of those formed

in stages 2, . . . , t−1. Let these denote the same set of descendant nodes for

each of the Nt−1 =
∏t−1

i=2 Di nodes {ξ1}×
{
ξ1

2, . . . , ξ
D2
2

}
×· · ·×

{
ξ1
t−1, . . . , ξ

Dt−1

t−1

}
.

...

T. Sample DT i.i.d. observations ξ1
T , . . . , ξ

DT
T from PT , independent of those

formed in stages 2, . . . , T − 1. Let these denote the same set of descendant
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nodes for each of the NT−1 =
∏T−1

i=2 Di nodes {ξ1} ×
{
ξ1

2, . . . , ξ
D2
2

}
× · · · ×{

ξ1
T−1, . . . , ξ

DT−1

T−1

}
.

Distribution P̂t has Dt realizations and stage t has Nt scenarios, where Nt =∏t
i=2Di. We construct the sampling-based scenario tree for SDDP by using the

same set of Dt observations at stage t to form the descendant nodes of all Nt−1

scenarios at stage t − 1, where Nt−1 =
∏t−1

i=2 Di. The SDDP algorithm does not
apply, for example, to a scenario tree in which we use a separate, independent
set of i.i.d. observations ξ1

t , . . . , ξ
Dt
t for each of the stage t− 1 nodes, because

the resulting empirical scenario tree would not be stage-wise independent. Pro-
cedures for construction of trees with general dependency structures are much
more involved than Algorithm 2.1. However, fully general forms of interstage
dependency lead to inherent computational intractability as even the memory
requirements to store a general sampled scenario tree grow exponentially in the
number of stages. Therefore, we do not focus on such procedures and estima-
tion of possible conditional distributions, but rather point to several tractable
dependency structures in the introduction. Tractable dependency structures are
typically rooted in some form of independent increments between stages; e.g.,
autoregressive models, moving-average models, and dynamic linear models [90].

We let Ω̂t denote the stage t sample space, where |Ω̂t| = Nt. We use jt ∈ Ω̂t

to denote a stage t sample point, which we call a stage t scenario. We define the
mapping a(jt) : Ω̂t → Ω̂t−1, which specifies the unique stage t − 1 ancestor for

the stage t scenario jt. Similarly, we use ∆(jt) : Ω̂t → 2Ω̂t+1 to denote the set
of descendant nodes for jt, where |∆(jt)| = Dt+1. The empirical scenario tree
therefore has stage t realizations denoted ξjtt , jt ∈ Ω̂t. At the last stage, we have
ξjTT , jT ∈ Ω̂T , and each stage T scenario corresponds to a full path of observations
through each stage of the scenario tree. That is, given jT , we recursively have
jt−1 = a(jt) for t = T, T − 1, . . . , 2. For this reason and for notational simplicity,
when possible, we suppress the stage T subscript and denote jT ∈ Ω̂T by j ∈ Ω̂.

We briefly describe SDDP to give sufficient context for our results. For further
details on SDDP, see [62, 83]. The simplest SDDP algorithm applies to the risk-
neutral version of our model, which means setting λt = 0 for t = 1, . . . , T in
equation (1.10) and model (1.11) or equivalently in (1.27)–(1.29). We denote the
recourse value for the risk-neutral version of our model by QN

t (xt−1, ξt), which
for t = 2, . . . , T , is given by:

QN
t (xt−1, ξt) = min

xt
c>t xt +QNt+1(xt)

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(2.1)

where
QNt+1(xt) = E

[
QN
t+1(xt, ξt+1)

]
, (2.2)

and where QNT+1(·) ≡ 0. The risk-neutral formulation is completed via model
(1.27) with λ2 = 0 and Q2(x1, u1) replaced by QN2 (x1).

During a typical iteration of SDDP, cuts have been accumulated at each stage.
These represent a piecewise linear outer approximation of the expected future
cost function, QNt+1(xt). On a forward pass we sample a number of linear paths
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through the tree by sampling from a uniform distribution of j ∈ Ω̂. As we solve a
sequence of master programs (which we specify below) along these forward paths,
the cuts that have been accumulated so far are used to form decisions at each
stage. Solutions found along a forward path in this way form a policy, which
does not anticipate the future. In fact, the solutions can be found at a node on a
sample path via the stage t master program, even before we sample the random
parameters at stage t + 1. The sample mean of the costs incurred along all the
forward sampled paths through the tree forms an estimator of the expected cost
of the current policy determined by the master programs.

In the backward pass of the algorithm, we add cuts to the collection defining
the current approximation of the expected future cost function at each stage. We
do this by solving subproblems at the descendant nodes of each node in the linear
paths from the forward pass, except in the final stage, T . The cuts collected at
any node in stage t apply to all the nodes in that stage, and hence we maintain a
single set of cuts for each stage. We let Ct denote the number of cuts accumulated
so far in stage t. This reduction is possible because of our interstage independence
assumption. Every cut, based on a decision xjt , is represented by the average value
of descendant recourse functions Q̂jt+1 and average of their subgradients gjt+1. An
illustrative scheme of a single iteration of the SDDP algorithm can be found in
Figure 2.1.

stage 1 stage 2 stage 3 stage 4

Forward pass
Backward pass

Figure 2.1: SDDP algorithm scheme
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Model (2.3) acts as a master program for its stage t+ 1 descendant scenarios
and acts as a subproblem for its stage t− 1 ancestor:

Q̂t = min
xt,θt

c>t xt + θt (2.3a)

s.t. Atxt = bt −Btxt−1 : πt (2.3b)

θt ≥ Q̂jt+1 +
(
gjt+1

)> (
xt − xjt

)
, j = 1, . . . , Ct (2.3c)

xt ≥ 0. (2.3d)

Decision variable θt in the objective function (2.3a), coupled with cut con-
straints in (2.3c), forms the outer linearization of the recourse function QNt+1(xt)
from model (2.1) and equation (2.2). The structural and nonnegativity con-
straints in (2.3b) and (2.3d) simply repeat the same constraints from model (2.1).
In the final stage T , we omit the cut constraints and the θT variable. While we
could append an “N” superscript on terms like Q̂t, Q̂jt+1, gjt+1, etc., we suppress
this index for notational simplicity.

As we indicate in constraint (2.3b), we use πt to denote the dual vector
associated with the structural constraints. Let jt denote a stage t scenario from
a sampled forward path. With xt−1 = x

a(jt)
t−1 and with ξt = ξjtt in model (2.3),

we refer to that model as sub(jt). Given model sub(jt) and its solution xt, we
form one new cut constraint at stage t for each backward pass of the SDDP
algorithm as follows. We form and solve sub(jt+1), where jt+1 ∈ ∆(jt) indexes all
descendant nodes of jt. This yields optimal values Q̂

jt+1

t+1 (xt) and dual solutions

π
jt+1

t+1 for jt+1 ∈ ∆(jt). We then form

g
jt+1

t+1 = −
(
B
jt+1

t+1

)>
π
jt+1

t+1 , (2.4)

where g
jt+1

t+1 = g
jt+1

t+1 (xt) is a subgradient of Q̂
jt+1

t+1 = Q̂
jt+1

t+1 (xt). The cut is then
obtained by averaging over the descendants:

Q̂t+1 =
1

Dt+1

∑
jt+1∈∆(jt)

Q̂
jt+1

t+1 (2.5)

gt+1 =
1

Dt+1

∑
jt+1∈∆(jt)

g
jt+1

t+1 . (2.6)

As we indicate above, both Q̂t+1 and gt+1 depend on xt, but we suppress this

dependency for notational simplicity. We also suppress the jt index on Q̂t+1 and
gt+1, because we append a new cut to the stage t collection of cuts and do not
associate it with a particular stage t subproblem. Note that from the manner in
which we express constraint (2.3c), it may appear as if we must keep track of the
solution, xjt , at which we form the cut, but this is not the case. Rather we store
the term,

Q̂jt+1 −
(
gjt+1

)>
xjt ,

as a scalar intercept term for each cut. For simplicity in stating the SDDP
algorithm below, we assume we have known lower bounds Lt on the recourse
functions.
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Algorithm 2.2 (Stochastic dual dynamic programming).

1. Let iteration k = 1 and append lower bounding cuts θt ≥ Lt, t = 1, . . . , T−1.

2. Solve the stage 1 master program (2.3), t = 1, and obtain xk1, θ
k
1 .

Let zk = c>1 x
k
1 + θk1 .

3. Forward pass: sample i.i.d. paths from Ω̂ and index them by Sk.

For all j ∈ Sk {
For t = 2, . . . , T {

Form and solve sub(jt) given by (2.3) to obtain
(
xjtt
)k

;
}

}

Form the upper bound estimator:

zk = c>1 x
k
1 +

1

|Sk|
∑
j∈Sk

T∑
t=2

(cjtt )>
(
xjtt
)k
. (2.7)

4. If a stopping criterion, given zk and zk, is satisfied then stop and output
first stage solution x1 = xk1 and lower bound z = zk.

5. Backward pass:

For t = T − 1, . . . , 1 {
For all j ∈ Sk {

For all descendant nodes jt+1 ∈ ∆(jt) {
Form and solve sub(jt+1) given by (2.3) to obtain Q̂

jt+1

t+1 and π
jt+1

t+1 ;

Calculate g
jt+1

t+1 using formula (2.4);
}
Calculate optimal value Q̂t+1 using equation (2.5);
Calculate cut gradient gt+1 using equation (2.6);
Append the resulting cut to the collection (2.3c) for stage t;

}
}

6. Let k = k + 1 and goto step 2.

See Bayraksan and Morton [11] and Homem-de-Mello et al. [47] for stopping
rules that can be employed in step 4.

2.2 Risk-averse approach

The SDDP algorithm of Section 2.1 must be modified to handle the risk-averse
model (1.11). The auxiliary variables ut now play a role both in computing the
cuts and in determining the policy from the master programs. In the modified
SDDP algorithm we select the VaR level, ut, along with our stage t decisions, xt,
and then solve the subproblems at the descendant nodes. The VaR level influences
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the value of the recourse function estimate and therefore is included in the cuts,
in the same way as any other decision variable. Extending the development from
the previous section, the stage t subproblem in the risk-averse case is given by:

Q̂t = min
xt,ut,θt

c>t xt + λt+1ut + θt

s.t. Atxt = bt −Btxt−1 : πt

θt ≥ Q̂jt+1 +
(
gjt+1

)> [( xt
ut

)
−
(
xjt
ujt

)]
, j = 1, . . . , Ct

xt ≥ 0.

(2.8)

While Q̂t+1 = Q̂t+1(xt), we now have Q̂t+1 = Q̂t+1(xt, ut) and gt+1 = gt+1(xt, ut)
as a function of both the stage t decision and the VaR level. The subgradient
of Q̂t+1(xt) is still computed by equation (2.4). However, the function value
Q̂t+1(xt, ut) and its subgradient have to be adjusted to reflect the differences
between the risk-neutral and risk-averse cases. Shapiro et al. [87] describe an ap-
proach in which the VaR level does not appear explicitly in model (2.8). However,
as we describe below, our upper bound estimators require explicit VaR levels.

As in Section 2.1, we let jt denote a stage t scenario from a sample path. We let
sub(jt) denote model (2.8) when we set xt−1 = x

a(jt)
t−1 and ξt = ξjtt . Given sub(jt)

and its solution (xt, ut), we form a new cut constraint at stage t as follows. We
form and solve sub(jt+1), where jt+1 ∈ ∆(jt) indexes all descendant nodes of jt.
This yields optimal values Q̂

jt+1

t+1 and dual solutions π
jt+1

t+1 , along with subgradients

g
jt+1

t+1 via equation (2.4), for jt+1 ∈ ∆(jt). The sample mean variant of equation
(1.29) then yields:

Q̂t+1 =
1

Dt+1

∑
jt+1∈∆(jt)

[
(1− λt+1) Q̂

jt+1

t+1 +
λt+1

αt+1

[
Q̂
jt+1

t+1 − ut
]

+

]
. (2.9)

To compute a subgradient of Q̂t+1(xt, ut) we must employ the chain rule for
subdifferentials to deal with the positive-part operator. Following [83] this leads
to

gt+1 =
1

Dt+1

(
(1− λt+1)

∑
jt+1∈∆(jt)

g
jt+1

t+1 + λt+1

αt+1

∑
jt+1∈Jt+1

g
jt+1

t+1

−λt+1

αt+1
|Jt+1|

)
, (2.10)

where the index set

Jt+1 =
{
jt+1 : Q̂

jt+1

t+1 > ut, jt+1 ∈ ∆(jt)
}
.

In modifying the SDDP algorithm for the risk-averse formulation, equations
(2.9) and (2.10) replace equations (2.5) and (2.6) in the backward pass of step 5 of
Algorithm 2.2 to provide the piecewise linear outer approximation of Qt+1(xt, ut).
One issue that remains concerns evaluation of an upper bound; i.e., an analog of
estimator (2.7) for the risk-averse setting. As we illustrate in Example 1.8, we can-
not expect an analogous additive estimator to be appropriate for the risk-averse
setting. Example 1.8 suggests that to compute the conditional risk measure, we
should start at the last stage and recurse back to the first stage to obtain an esti-
mator of the risk measure evaluated at a policy. This differs significantly from the
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risk-neutral case, where the costs incurred at any stage can be estimated just by
averaging costs at sampled nodes. Starting at the final stage, T , our cost under
scenario jT is (cjTT )>xjTT . For the stage T − 1 ancestor scenario jT−1 = a(jT ) we
must calculate

(c
jT−1

T−1 )>x
jT−1

T−1 + λTu
jT−1

T−1 +QT (x
jT−1

T−1 , u
jT−1

T−1 ).

The question that remains is how to estimate QT (x
jT−1

T−1 , u
jT−1

T−1 ). We maintain
a parallel with the estimator in the risk-neutral version of the SDDP algorithm in
the sense that we estimate this term using the value of one descendant scenario
along the corresponding forward path in step 3 of Algorithm 2.2. This means
that based on equation (1.29) we estimate QT (x

jT−1

T−1 , u
jT−1

T−1 ) by

(1− λT ) (cjTT )>xjTT +
λT
αT

[
(cjTT )>xjTT − u

jT−1

T−1

]
+
.

Removing the expectation operator in equation (1.29), the associated recur-
sion of the objective function in model (1.28) and equation (1.29) yields the
following recursive estimator of Qt(xjt−1

t−1 , u
jt−1

t−1 ) for t = 2, . . . , T :

v̂t(ξ
jt−1

t−1 ) = (1− λt)
(
(cjtt )>xjtt + v̂t+1(ξjtt )

)
+

λtu
jt−1

t−1 +
λt
αt

[
(cjtt )>xjtt + v̂t+1(ξjtt )− ujt−1

t−1

]
+
,

(2.11)

where v̂T+1(ξjTT ) ≡ 0. We denote the estimator for sample path j by

v̂(ξj) = c>1 x1 + v̂2. (2.12)

Because the first stage parameters, ξj11 , are deterministic, we simply write v̂2 =
v̂2(ξj11 ), dropping its argument.

Having selected scenario j and solved all node subproblems (2.8) associated
with realizations ξj11 , . . . , ξ

jT
T along the sample path, we form the estimator recur-

sively as follows. We start at the stage T −1 node, compute v̂T (ξ
jT−1

T−1 ), substitute

it into formula (2.11) for t = T − 1 to obtain v̂T−1(ξ
jT−2

T−2 ) and so on until we

obtain v̂2 and hence can compute the value of v̂(ξj) via equation (2.12). Then
if ξj, j = 1, . . . ,M , are i.i.d. sample paths, sampled from the scenario tree’s em-
pirical distribution as in step 3 in Algorithm 2.2, the corresponding upper bound
estimator is given by:

Un =
1

M

M∑
j=1

v̂(ξj). (2.13)

We use the “n” superscript to indicate that we use naive Monte Carlo sampling
here, and to distinguish it from estimators we develop below.

We can attempt to use estimator (2.13), which is the natural analog of (2.7),
to solve the risk-averse problem. Unfortunately, this estimator has large vari-
ance. The main shortcoming of this estimator lies in the imbalance in sampled
scenarios we point to in Example 1.9 coupled with the policy now specifying an
approximation of the value at risk level via ut−1. If the descendant node has value
less than ut−1 then the positive-part term in equation (2.11) is zero. When the
opposite occurs, the difference between the node value and ut−1 is multiplied by
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α−1
t , which can lead to a large value of the estimator because a typical value of
α−1
t is 20. When v̂t(ξ

jt−1

t−1 ) is large, this increases the likelihood that preceding
values are also large and hence multiplied by α−1

t−1, α
−1
t−2, . . . many more times in

the backward recursion. This leads to a highly variable estimator which is of little
practical use, particularly when T is not small.

To overcome the issues we have just discussed, Shapiro [83] describes an esti-
mator which uses more nodes to estimate the recourse value. This estimator for
three-stage problems is obtained by sampling and solving subproblems associated
with i.i.d. realizations ξ1

2, . . . , ξ
M2
2 from the second stage, and for each of these

solving subproblems associated with i.i.d. realizations ξ1
3, . . . , ξ

M3
3 from the third

stage in order to estimate the future risk measure. This requires solving sub-
problems at a total of M2M3 nodes. More generally under this approach, given
a stage T − 1 scenario ξ

jT−1

T−1 , we estimate the recourse function value by:

v̂eT (ξ
jT−1

T−1 ) =
1

MT

MT∑
jT=1

[
(1− λT ) (cjTT )>xjTT + λTu

jT−1

T−1 +
λT
αT

[
(cjTT )>xjTT − u

jT−1

T−1

]
+

]
.

For stages t = 2, . . . , T − 1 we have:

v̂et (ξ
jt−1

t−1 ) =
1

Mt

Mt∑
jt=1

[
(1− λt)

(
(cjtt )>xjtt + v̂et+1(ξjtt )

)
+λtu

jt−1

t−1 +
λt
αt

[
(cjtt )>xjtt + v̂et+1(ξjtt )− ujt−1

t−1

]
+

]
.

(2.14)

And finally for the upper bound estimator we compute:

Ue = c>1 x1 + v̂e2. (2.15)

Shapiro [83] discusses two significant problems with the upper bound estima-
tor (2.15). First, the estimator requires solving an exponential number,

∏T
t=2 Mt,

of subproblems in the number of stages (thus the “e” superscript) and hence is
impractical unless T is small. Second, as we examine further in Section 3.2, even
when we can afford to compute the bound provided by (2.15), the bound is not
very tight. For these reasons, estimator (2.15) is not typically used in practice.

Philpott and de Matos [67] mention another approach. They avoid computing
an upper bound for the risk-averse model by first solving the risk-neutral version
of the problem, in which one can compute reliable upper bound estimators and
hence employ a reasonable termination criterion. When the SDDP algorithm
stops, we fix the number of iterations needed to satisfy the termination criterion.
We then form the risk-averse model and run the SDDP algorithm, without eval-
uating an upper bound estimator. The solution and corresponding lower bound
obtained after that fixed number of iterations are considered the algorithm’s out-
put. However, this approach has some pitfalls. It is unclear that the number
of iterations for the risk-averse model should be the same as in the risk-neutral
case, because the shape of the cost-to-go functions differs. This approach gives us
no guarantees on the quality of the solution and requires that we run the SDDP
algorithm twice.

To our knowledge, the most effective procedure currently available to compute
an upper bound is proposed by Philpott et al. [69]. They develop an inner
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approximation scheme that provides a candidate policy and a deterministic upper
bound on the policy’s value, using a convex combination of feasible policies. This
bound provides significantly better results than estimator (2.15), and it does not
have sampling error. However, as Philpott et al. [69] discuss, its main drawback
is that the computational effort increases rapidly in the dimension of the decision
variables. Applicability of the type of Monte Carlo estimators we propose tends
to scale more gracefully with dimension. We further discuss the approach of [69]
in Section 3.2.

When we restrict attention to statistical upper bound estimators, we have
three possible approaches at this point. The two upper bound estimators (2.13)
and (2.15) are available in the risk-averse case, and there is also a heuristic based
on solving the risk-neutral model to determine the stopping iteration. In our
view, all three of these approaches are unsatisfactory. We are either forced to
use loose upper bounds that lead to very weak guarantees on solution quality
and scale poorly. Or, we are forced to use the third approach which provides no
guarantees on solution quality, even if reasonable empirical performance has been
reported in the literature. In the next chapter we propose a new upper bound
estimator to overcome these difficulties. Our estimator scales better with the
number of stages and can yield greater precision than the previous approaches.
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3. Policy evaluation with CVaR

3.1 Improved upper bound estimation

To overcome the shortcomings of the upper bound estimators (2.13) and (2.15)
let us first focus on the main issue causing the estimators to be poor: A rela-
tively small fraction of the sampled scenario-tree nodes contributes to estimating
CVaR, for reasons we illustrate in Example 1.9. To sample in a better manner we
assume that for every stage, t = 2, . . . , T , we can cheaply evaluate a real-valued
approximation function, at(xt−1, ξt), which estimates the recourse value of our
decisions xt−1 after the random parameters ξt have been observed.

The functions at play a central role in our proposal for sampling descendant
nodes. Rather than solving linear programs at a large number of descendant
nodes, as is done in estimator (2.15), we instead evaluate at at these nodes and
then sort the nodes based on their values. This guides sampling of the nodes to
estimate CVaR. Having such a function at indicates that once we observe the
random outcome for stage t + 1, we have some means of distinguishing “good”
and “bad” decisions at stage t without knowledge of subsequent random events
in stages t + 2, . . . , T . Sometimes this is possible via an approximation of the
recourse value associated with the system state. For example, when dealing with
some asset allocation models, we may use current wealth to define at.

Algorithm 2.1 forms an empirical scenario tree with equally-weighted scenar-
ios and discrete empirical distributions P̂t, t = 2, . . . , T . The probability mass
function (pmf) governing the conditional probability of the descendant nodes
from any stage t− 1 node is given by:

gt(ξt) =
1

Dt

I
[
ξt ∈

{
ξ1
t , . . . , ξ

Dt
t

}]
, (3.1)

where the indicator function I[·] takes value 1 if its argument is true and 0 oth-
erwise.

We will need to compute value at risk levels, which will be defined as (1− α)
quantiles of the underlying distributions. Consider random loss Z and following
definition of VaR at level α:

VaRα [Z] = inf {u ∈ R : P [Z > u] ≤ α} (3.2)

We propose a sampling scheme based on importance sampling. The scheme de-
pends on the current state of the system, giving rise to a new pmf, which we denote
ht(ξt|xt−1). This pmf is tailored specifically for use with CVaR. Alternative pmfs
would be needed to apply the proposed ideas to other risk measures. An example
of possible extension would be spectral risk measures, based on a finite combina-
tion of CVaR risk measures. Given the current state of the system we can compute
the value at risk for our approximation function, ua = VaRαt [at(xt−1, ξt)], and
partition the nodes corresponding to ξ1

t , . . . , ξ
Dt
t into two groups by comparing

their approximate value to ua. We note that the value ua is a function of the cur-
rent decision, state of the system and confidence level, but we drop its arguments
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for simplicity. In particular, the importance sampling pmf is:

ht(ξt|xt−1) =


1

2

1

bαtDtc
I
[
ξt ∈

{
ξ1
t , . . . , ξ

Dt
t

}]
, if at(xt−1, ξt) ≥ ua

1

2

1

Dt − bαtDtc
I
[
ξt ∈

{
ξ1
t , . . . , ξ

Dt
t

}]
, if at(xt−1, ξt) < ua,

(3.3)
where the b·c operator rounds down to the nearest integer. The factor of 1

2
in

the pmf ht(ξt|xt−1) modifies the probability masses so that the probabilities of
drawing sample observation above and below ua = VaRαt [at(xt−1, ξt)] are equal.
Here, we choose 1

2
for simplicity, but in general a good choice of this factor could

be tailored to the values of the confidence levels, αt, and risk aversion coefficients,
λt. We will further analyze this issue in Chapter 4.

In accordance with importance sampling schemes, we can compute the re-
quired expectation under our new measure via

Egt [Z] = Eht
[
Z
gt
ht

]
,

for any random variable Z for which the expectations exist. If the expectation is
taken across the distributions for all T stages we denote the analogous operators
by Eg [·] and Eh [·].

If we omit the rounding operations in equation (3.3), we have that the likeli-
hood ratio satisfies:

gt
ht
≈
{

2αt, if at(xt−1, ξt) ≥ ua
2(1− αt), if at(xt−1, ξt) < ua.

We can form an estimator similar to (2.13), except that we employ our im-
portance sampling distributions, ht, in place of the empirical distributions, gt, in
the forward pass of SDDP when selecting the sample paths. In particular, given
a single sample path from stage 1 to stage T , ξj, we form estimator (2.12), which
uses recursion (2.11) and preserves the good scalability of the estimator with the
number of stages. We carry this out for a set of samples drawn using the new
measure ht to select the sample paths.

Thus we have weights for each stage

wt(ξt|xt−1) =
gt(ξt)

ht(ξt|xt−1)
,

which yields weights along a sample path

w(ξj) =
T∏
t=2

wt(ξ
jt
t |xt−1),

and an estimator of the form

1

M

M∑
j=1

w(ξj)v̂(ξj).
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This estimator is a weighted sum of the upper bounds (2.12) for the sampled
scenarios. Normalizing the weights reduces the variability of the estimator (see
Hesterberg [44]) and yields:

U i =
1∑M

j=1w(ξj)

M∑
j=1

w(ξj)v̂(ξj), (3.4)

where “i” indicates that the estimator uses importance sampling. We summarize
the development so far in the following proposition.

Proposition 3.1. Assume model (1.11) has finite optimal value, relatively com-
plete recourse and interstage independence. Let ϕ denote the optimal value of
model (1.11) under the empirical distributions, P̂t, t = 2, . . . , T , generated by
i.i.d. sampling. Let ξ denote a sample path selected under the empirical distribu-
tion, and let v̂(ξ) be defined by (2.12) for that sample path. Then Eg [v̂(ξ)] ≥ ϕ.
Furthermore if ξj, j = 1, . . . ,M , are i.i.d. and generated by the pmfs (3.3) and
U i is defined by (3.4) then U i → Eg [v̂(ξ)] , w.p.1, as M →∞.

Proof. The optimal value of model (1.11) as reformulated in model (1.27) yields ϕ.
Along sample path ξ, under the assumption of relatively complete recourse,
the cuts in subproblems (2.8) generate a feasible policy in the space of the
(xt, ut) variables. Removing the expectation operator in equation (1.29), the asso-
ciated recursion of the objective function in model (1.28) and equation (1.29) coin-
cides with the recursion in equation (2.11). Taking expectations yields Eg [v̂(ξ)] ≥
ϕ.

Since the expected value of importance sampling weights is equal to one, we
have by the law of large numbers that

lim
M→∞

1

M

M∑
j=1

w(ξj) = 1, w.p.1 (3.5)

For ξ generated by the empirical pmfs (3.1) and for each ξj, generated by the
pmfs (3.3), we have

Eh
[
w(ξj)v̂(ξj)

]
= Eg [v̂(ξ)] .

Thus by the law of large numbers we have

lim
M→∞

1

M

M∑
j=1

w(ξj)v̂(ξj) = Eg [v̂(ξ)] , w.p.1 (3.6)

From the definition of U i from (3.4) we have

U i =
1

M−1
∑M

j=1w(ξj)

1

M

M∑
j=1

w(ξj)v̂(ξj).

Using a converging-together result with equations (3.5) and (3.6) we then have

U i → Eg [v̂(ξ)] , w.p.1,

as M →∞.
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In the sense made precise in Proposition 3.1, estimator (3.4) provides an
asymptotic upper bound on the optimal value of model (1.11). The naive estima-
tor Un of (2.13) is an unbiased and consistent estimator of Eg [v̂(ξ)]. However, if
the functions at provide a good approximation, in the sense that they order the
state of the system in the same way as the recourse function, we anticipate that
U i will have smaller variance than Un. That said, we view estimator (3.4) as an
intermediate step to an improved estimator. Under an additional assumption, the
estimator can be improved significantly. We now consider a stricter assumption,
with the simplified notation Qt = Qt(xt−1, ξt) and at = at(xt−1, ξt).

Assumption 3.2. For every stage t = 2, . . . , T and decision xt−1 the approxi-
mation function at satisfies:

Qt ≥ VaRαt [Qt] if and only if at ≥ VaRαt [at] .

Assumption 3.2 requires that our approximation function can fully describe
which observations belong to the tail of the recourse function, which is used for
the evaluation of CVaR. Under this assumption we can strengthen the estimator
through a reformulation. Given a sample path ξ we modify the recursive estimator
(2.11) for t = 2, . . . , T as:

v̂at (ξ
jt−1

t−1 ) = (1− λt)
(
(cjtt )>xjtt + v̂at+1(ξjtt )

)
(3.7a)

+λtu
jt−1

t−1 + I[at ≥ VaRαt [at]]
λt
αt

[
(cjtt )>xjtt + v̂at+1(ξjtt )− ujt−1

t−1

]
+
, (3.7b)

where v̂aT+1(ξjTT ) ≡ 0, and we let

v̂a(ξ) = c>1 x1 + v̂a2 . (3.8)

Like the estimators Un and U i, which are based on (2.11) and (2.12), we note
that the estimator we propose next, based on equations (3.7) and (3.8), requires
explicit estimation of the VaR-level by the ut−1 decision variables. With ξj,
j = 1, . . . ,M , i.i.d. from the pmfs (3.3) we form the upper bound estimator:

Ua =
1∑M

j=1w(ξj)

M∑
j=1

w(ξj)v̂a(ξj). (3.9)

Proposition 3.3. Assume the hypotheses of Proposition 3.1. Let ξ denote a
sample path selected under the empirical distribution, let v̂a(ξ) be defined by (3.8)
for that sample path, and let Assumption 3.2 hold. Then Eg [v̂a(ξ)] ≥ ϕ. If ξj,
j = 1, . . . ,M , are i.i.d. and generated by the pmfs (3.3) and Ua is defined by
(3.9) then Ua → Eg [v̂a(ξ)] , w.p.1, as M → ∞. Furthermore if subproblems
(2.8) induce the same policy for both v̂(ξ) and v̂a(ξ) then Eg [v̂(ξ)] ≥ Eg [v̂a(ξ)].

Proof. Let (x1, u1), . . . , (xT−1, uT−1),xT be the feasible sequence to models (1.27)
and (1.28) for t = 2, . . . , T , specified by (2.8) along sample path ξ. The result
Eg [v̂(ξ)] ≥ Eg [v̂a(ξ)] holds because I[at ≥ VaRαt [at]] can preclude some positive
terms in the recursion (3.7) that are included in (2.11).
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The terms in (3.7b) are used to estimate CVaR. Thus to establish the proof
of the proposition it suffices to show:

VaRαt [Qt] +
1

αt
E
[
[Qt − VaRαt [Qt]]+

]
≤

≤ut−1+
1

αt
E
[
I[at ≥ VaRαt [at]] [Qt − ut−1]+

]
because the rest of the proof then follows in the same fashion as that of Propo-
sition 3.1.

First consider the case in which ut−1 ≥ VaRαt [Qt]. We have:

VaRαt [Qt] +
1

αt
E
[
[Qt − VaRαt [Qt]]+

]
≤ ut−1 +

1

αt
E
[
[Qt − ut−1]+

]
= ut−1 +

1

αt
E
[
I[Qt ≥ VaRαt [Qt]] [Qt − ut−1]+

]
= ut−1 +

1

αt
E
[
I[at ≥ VaRαt [at]] [Qt − ut−1]+

]
,

where the inequality follows from CVaR’s definition as the optimal value of a
minimization problem, the first equality holds because the indicator has no effect
when ut−1 ≥ VaRαt [Qt], and the last equality follows from Assumption 3.2.

We will need following inequality to continue the proof: P [Qt ≥ VaRαt [Qt]] ≥
αt. In the continuous case, we clearly have P [Qt ≥ VaRαt [Qt]] = αt and the in-
equality holds. In the discrete case, VaRαt [Qt] has to be an atom of the distribu-
tion, otherwise there exists ε > 0 such that P [Qt > VaRαt [Qt]− ε] ≤ αt, which is
in contradiction with the definition of VaR (3.2). Now if P [Qt ≥ VaRαt [Qt]] < αt,
then again there exists ε > 0 such that P [Qt > VaRαt [Qt]− ε] ≤ αt, con-
tradiction with the fact that VaRαt [Qt] fulfills the definition (3.2). Therefore
P [Qt ≥ VaRαt [Qt]] ≥ αt holds in both cases.

For the case when ut−1 < VaRαt [Qt] we first drop the positive part operator,
because it is handled by the indicator, and write:

VaRαt [Qt] +
1

αt
E
[
[Qt − VaRαt [Qt]]+

]
= VaRαt [Qt] +

1

αt
E [I[Qt ≥ VaRαt [Qt]] (Qt − ut−1 + ut−1 − VaRαt [Qt])]

=

(
1− P [Qt ≥ VaRαt [Qt]]

αt

)
VaRαt [Qt] +

(
P [Qt ≥ VaRαt [Qt]]

αt

)
ut−1

+
1

αt
E [I[Qt ≥ VaRαt [Qt]] (Qt − ut−1)]

≤
(

1− P [Qt ≥ VaRαt [Qt]]

αt

)
ut−1 +

(
P [Qt ≥ VaRαt [Qt]]

αt

)
ut−1

+
1

αt
E [I[Qt ≥ VaRαt [Qt]] (Qt − ut−1)]

= ut−1 +
1

αt
E
[
I[Qt ≥ VaRαt [Qt]] [Qt − ut−1]+

]
= ut−1 +

1

αt
E
[
I[at ≥ VaRαt [at]] [Qt − ut−1]+

]
,
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where the inequality holds because P [Qt ≥ VaRαt [Qt]] ≥ αt means that the term
before VaRαt [Qt] is negative and we have that ut−1 < VaRαt [Qt]. This completes
the proof as the desired result holds in both cases.

As Proposition 3.3 indicates, Ua provides an asymptotic upper bound estima-
tor for the optimal value of model (1.11). It also provides a tighter upper bound
in expectation than estimators Un and U i. We also anticipate that estimator
Ua will have smaller variance than U i provided the “induce the same policy” hy-
pothesis holds. Note the same-policy hypothesis is not needed for the consistency
result of this proposition. As we discuss in Section 2.2, when a sample path is
such that the positive-part term in (2.11) does not equal to zero, it is multiplied
by α−1

t = 20 (say). This increases the likelihood that as we recur backward in
time, we obtain large values, repeatedly multiplied by α−1

t−1, α−1
t−2, etc. This re-

peated multiplication should occur for some samples, but it can also occur when
it should not. The indicator function in Ua helps to avoid this issue and hence
tends to reduce variance.

Under Assumption 3.2, the approximation function, at, characterizes the re-
course value in that it fully classifies whether a realization is in the upper α tail
of the recourse values. We now weaken Assumption 3.2 to incorporate the notion
of what we call a margin function, mt(xt−1, ξt), in order to address a broader
class of stochastic programs. Under Assumption 3.4, given below, the margin
function is sufficient to classify a realization as not being in the upper α tail of
the recourse values. It accomplishes this by effectively lowering the threshold
that approximates the upper tail and has the effect of increasing the number of
descendant scenarios that contribute to the positive-part CVaR term.

Assumption 3.4. For every stage t = 2, . . . , T and decision xt−1 we have real-
valued functions at(xt−1, ξt) and mt(xt−1, ξt) which satisfy:

if at < mt then Qt < VaRαt [Qt] .

Given a sample path ξ we modify the recursive estimators (2.11) and (3.7)
for t = 2, . . . , T as:

v̂mt (ξ
jt−1

t−1 ) = (1− λt)
(
(cjtt )>xjtt + v̂mt+1(ξjtt )

)
+ λtu

jt−1

t−1 + I[at ≥ mt]
λt
αt

[
(cjtt )>xjtt + v̂mt+1(ξjtt )− ujt−1

t−1

]
+
,

(3.10)

where v̂mT+1(ξjTT ) ≡ 0, and we let

v̂m(ξ) = c>1 x1 + v̂m2 . (3.11)

With ξj, j = 1, . . . ,M , i.i.d. and from the pmfs (3.3), which use functions at, we
form the upper bound estimator:

Um =
1∑M

j=1w(ξj)

M∑
j=1

w(ξj)v̂m(ξj). (3.12)

Again, note that we do not modify the importance sampling procedure here to
use the margin value. The sampling scheme still relies on the VaRαt [at] level
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of the approximation function via the pmfs (3.3). However, the estimator based
on (3.11) is more generally applicable than the estimator based on (3.8) because
we can drop Assumption 3.2 and instead require only the weaker implication of
Assumption 3.4.

Proposition 3.5. Assume the hypotheses of Proposition 3.1. Let ξ denote a
sample path selected under the empirical distribution, let v̂m(ξ) be defined by
(3.11) for that sample path, and let Assumption 3.4 hold. Then Eg [v̂m(ξ)] ≥ ϕ.
If ξj, j = 1, . . . ,M , are i.i.d. and generated by the pmfs (3.3) and Um is defined
by (3.12) then Um → Eg [v̂m(ξ)] , w.p.1, as M →∞. Furthermore if subproblems
(2.8) induce the same policy for both v̂(ξ) and v̂m(ξ) then Eg [v̂(ξ)] ≥ Eg [v̂m(ξ)].
Finally, if Assumption 3.2 also holds and subproblems (2.8) induce the same policy
for both v̂m(ξ) and v̂a(ξ) then Eg [v̂m(ξ)] ≥ Eg [v̂a(ξ)].

Proof. We have:

VaRαt [Qt] +
1

αt
E
[
[Qt − VaRαt [Qt]]+

]
≤ ut−1 +

1

αt
E
[
I[Qt ≥ VaRαt [Qt]] [Qt − ut−1]+

]
≤ ut−1 +

1

αt
E
[
I[at ≥ mt] [Qt − ut−1]+

]
where the first inequality comes from following the steps of the proof of Proposi-
tion 3.3 (in both of the cases considered) and the second inequality follows from
Assumption 3.4. From this we have Eg [v̂m(ξ)] ≥ ϕ, and the consistency result
for Um follows in the same manner as in the proof of Proposition 3.1. Inequality
Eg [v̂(ξ)] ≥ Eg [v̂m(ξ)] holds because I[at ≥ mt] can preclude some positive terms
in the recursion (3.10) that are included in (2.11). Finally, Eg [v̂m(ξ)] ≥ Eg [v̂a(ξ)]
holds because under Assumptions 3.2 and 3.4 the indicator I[at ≥ mt] allows in-
clusion of some positive terms that the indicator I[at ≥ VaRαt [at]] does not.

In order to ensure that Ua is a valid upper bound estimator we require that we
have an approximation function that can fully order states of the system in the
sense of Assumption 3.2, and this limits applicability of the estimator in some
cases. Assumption 3.4 weakens considerably this requirement, and widens the
applicability of estimator Um. While Um again provides an asymptotic upper
bound estimator for the optimal value of model (1.11), the price we pay is that
it is weaker than Ua as Proposition 3.5 indicates.

For the types of approximation and margin functions (at and mt) that we
envision, our importance-sampling estimators (U i, Ua, and Um) require mod-
est additional computation relative to estimator Un, which uses samples from
the empirical pmfs (3.1). In particular with Dt denoting the number of stage t
descendant nodes formed in the sampling procedure, the bulk of the additional
computation requires evaluating at and mt at each of these Dt nodes and deter-
mining ua = VaRαt [at], which can be done by sorting with effort O(Dt logDt)
or in linear time in Dt (see [17]). This effort is small compared to solving linear
programs for modest values of Dt, particularly recalling that in SDDP’s backward
pass we must solve linear programs at all Dt nodes to compute a cut. Further-
more, in Sections 2.1–3.1, we have simplified the presentation by using an SDDP
tree with equally-likely realizations. However, our ideas generalize in a straight-
forward manner to handle general discrete distributions.
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3.2 Performance of upper bound estimators

We present computational results for applying SDDP with the upper bound esti-
mators described in Sections 2.2 and 3.1 to two variants of asset allocation model
under nested CVaR risk measure. We present results for our four new upper
bound estimators: (i) Un from equation (2.13); (ii) U i from equation (3.4); (iii)
Ua from equation (3.9); and, (iv) Um from equation (3.12). We compare their
performance with that of the existing upper bound estimator from the literature:
Ue from equation (2.15). The two asset allocation models (1.30) and (1.32) differ
only in whether we include transaction costs or not. As we detail below, estimator
Ua cannot be used in the case with transaction costs, but estimator Um remains
applicable even in this more complex model.

The assets in our allocation model (1.30) consist of the stock market indices
DJA, NDX, NYA, and OEX. We used monthly data for these indices from Septem-
ber 1985 until September 2011 to fit the multivariate log-normal distribution to
the price ratios observed month-to-month. The data summary can be found in
the Table 1.1. The confidence level was set to αt = 5% and the risk coefficients
were set to λt = t−1

T
, t = 2, . . . , T so that risk aversion increases in later stages.

Table 3.1 shows the sizes of the empirical scenario trees formed by Algorithm 2.1
for our test problem instances.

stages (T ) descendants per node (Dt) total scenarios (|Ω̂|)
2 50,000 50,000
3 1,000 1,000,000
4 100 1,000,000
5 50 6,250,000
10 50 ≈ 1015

15 50 ≈ 1024

Table 3.1: Sizes of empirical scenario trees for test problem instances

The approximation function, at(xt−1, ξt), that we use for the importance
sampling estimators U i and Ua is simply our current wealth, which is determined
by the previous stage decisions and the current price:

at(xt−1, ξt) = −r>t xt−1.

Note that this function meets the requirements of Assumption 3.2, because when
we have no transaction costs, the specific allocations in the vector xt−1 can be
rebalanced with no loss. This is captured mathematically in model (1.30) in
that at = −r>t xt−1 acts as the sole state variable; i.e., the equality constraint of
(1.30b) could be used to replace the first term in the objective function of (1.30a).
Hence, we see Qt also depends solely on at and that dependence is monotonic in
at due to monotonicity of CVaR.

Our primary purpose is to compare the upper bound estimators that we have
developed. For this reason we ran the SDDP algorithm with each of the upper
bound estimators until the algorithm reached nearly the same optimal value as
estimated by the first stage master program’s objective function; i.e., the lower
bound z from step 2 of Algorithm 2.2 for the risk-averse model. Specifically, SD-
DP was terminated when z did not improve by more than 10−6 over 10 iterations.
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All lower bounds obtained across the four runs were equal. A total of 100 itera-
tions of SDDP sufficed to accomplish this for problem instances with T = 2, . . . , 5
and a total of 200 iterations sufficed for the larger instances with T = 10 and 15.
For estimators Un, U i, and Ua on problem instances with T = 2, 3, 4, and 5 we
used respective sample sizes of M = 1001, 501, 334, and 251. In this way, forming
the estimators required solving around 1000 linear programming subproblems in
each case. For T = 10 and 15 we used M = 1112 and 3572 so that forming the
estimator required solving about 10,000 and 50,000 linear programs, respectively.
For the estimator Ue we must specify a sample size Mt for each stage: For T = 2
we used M2 = 1000. For T = 3 we used M2 = M3 = 32 because this means form-
ing the estimator requires solving 322 ≈ 1000 linear programs and this allows for
a fair comparison with the single-path estimators Un, U i, and Ua. With similar
reasoning for T = 4 we used Mt = 11 ∀t, and for T = 5 we used Mt = 6 ∀t, for
the largest value of T for which we compute Ue, T = 10, we used Mt = 3∀t.

T z Un (s.d.) U i (s.d.) Ua (s.d.) U e (s.d.)
2 -0.9518 -0.9515 (0.0020) -0.9517 (0.0012) -0.9517 (0.0011) -0.9518 (0.0019)
3 -1.8674 -1.8300 (0.0145) -1.8285 (0.0108) -1.8656 (0.0060) -1.8013 (0.0302)
4 -2.7811 -2.4041 (0.1472) -2.3931 (0.1128) -2.7764 (0.0126) -2.6027 (0.0883)
5 -3.6794 -3.4608 (0.1031) -3.4963 (0.1008) -3.6731 (0.0303) -2.9031 (0.5207)
10 -7.6394 9.3× 104 (1.4× 104) 9.0× 104 (8.7× 104) -7.5465 (0.2562) 1.5× 107 (1.3× 106)
15 -11.5188 NA NA -11.0148 (0.6658) NA

Table 3.2: Comparison of four upper bound estimators, including the point es-
timates and their standard deviations (s.d.) for the model with no transaction
costs.

Table 3.2 shows results for four estimators for the asset allocation model with-
out transaction costs. These results were computed using the sample sizes that
we indicate above, except that we formed 100 i.i.d. replicates of the estimators.
For a particular problem instance, all 100 replicates used the same single run
of 100 or 200 iterations of SDDP. Each cell in Table 3.2 reports the mean and
standard deviation of the 100 replicates of the estimator. The table also shows
the lower bound z for the models obtained as we describe above. The estimators
perform similarly for the two-stage problem instance, but the advantages of the
proposed estimator, Ua, are revealed as the number of stages grows. Note that
estimators Un, U i and Ue degrade at T = 10 for reasons we discuss above involv-
ing recursive multiplication by α−1

t = 20 along some sample paths. Due to this
degradation we do not report results for these estimators for T = 15. We suspect
it is for this same reason that the benefit of the importance sampling scheme
is only fully realized when we include the indicator functions shown in equation
(3.7); compare the performance of U i and Ua in the table. For T = 2, . . . , 5
the variance reduction of Ua relative to Ue grows from roughly 3 to 25 to 50 to
300. The smaller standard deviations of Ua could facilitate its use in a sensible
stopping rule.

For our second set of problem instances the model incorporates transaction
costs, see (1.32). This allows us to show how to implement our upper bound
estimation procedure in a more complex model. The transaction costs are pro-
portional to the value of the assets sold or bought, and the fee is ft = 0.3% of
the transaction value.

We again use the approximation function at(xt−1, ξt) = −r>t xt−1. With
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nonzero transaction costs the conditions of Assumption 3.2 are no longer satis-
fied: Suppose in the third stage it is optimal to invest all money in stock A.
Arriving at this point with the second stage portfolio consisting only of stock
A is convenient because we need not rebalance and incur a transaction cost. A
portfolio of less worth, in the sense of r>t xt−1, consisting only of stock A may
be preferred to another portfolio with larger value of r>t xt−1 but consisting of
other stocks. Fortunately, we can still compare some portfolios. Consider the
worst case scenario in which we must rebalance the entire portfolio; i.e., sell all
our assets and buy some other assets at stage t. This would increase the loss by
a factor of 1+ft

1−ft . However, this portfolio is still better than any other portfolio
whose total loss exceeds this portfolio’s loss adjusted by the same factor. This
leads us to the margin function given by:

mt =

(
1 + ft
1− ft

)
VaRαt [at] .

Functions at and mt satisfy Assumption 3.4, and we can apply the upper
bound estimator Um. This construction, of course, increases the bias of the
estimator as we indicate in Proposition 3.5. However, if the transaction costs are
modest compared to market volatility, we may expect our estimator to provide
reasonable results.

Table 3.3 reports results in the same manner as Table 3.2, now comparing
Um and Ue. The value z is computed in the same way we describe above. From
Table 3.2 we see that the point estimate Ua as a percentage of z drops from
99.8% to 98.8% to 95.6% for T = 5, 10, and 15, respectively. The analogous
values for Um from Table 3.3 are weaker as expected, dropping from 99.6% to
98.7% to 90.5%. Note that these same values for Ue for T = 5 are 78.9% without
transaction costs and 75.3% with transaction costs. For T = 2, 3, 4, 5 the variance
reduction of Um over Ue grows from roughly 3 to 20 to 40 to 400, again indicating
that our proposed upper bound estimator is superior to the previously available
estimator.

T z Um (s.d.) U e (s.d.)
2 -0.9518 -0.9517 (0.0011) -0.9518 (0.0019)
3 -1.8668 -1.8642 (0.0060) -1.8043 (0.0282)
4 -2.7697 -2.7555 (0.0138) -2.5878 (0.0858)
5 -3.6653 -3.6508 (0.0306) -2.7582 (0.6197)
10 -7.5579 -7.4562 (0.2339) 5.2× 106 (7.8× 105)
15 -11.3379 -10.2662 (0.8511) NA

Table 3.3: Comparison of the estimators for the model with transaction costs

To assess the required computational effort, for the model instances without
transaction costs for T = 5, 10, and 15 stages we ran 100 replications of estimators
Un and Ua. For each estimator we used a sample size of M = 1000 and the
subproblems in each stage had 1000 cuts. The computations were performed
using a single thread on an Intel 2.53 GHz Core2 Duo with 4 GB of RAM and
CPLEX version 12.2. The average computation time for estimator Un grew from
8.7 seconds to 31.6 sec. to 67.4 sec. for the respective model instances with T = 5,
10, and 15 stages. The computation times, again averaged over 100 replications
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of the estimators, for Ua grew from 6.8 sec. to 30.0 sec. to 66.5 sec. for the same
instances. (The standard deviations associated with the run times are at most
1% of the average.) Like estimator Un, the computational effort we require to
compute Ua scales well with the number of stages. We note that the estimator
Ua does have additional computational overhead, relative to Un, that grew from
an average 0.3 sec. to 1.2 sec. to 2.9 seconds for T = 5, 10, and 15 stages.
However, for these particular problem instances the linear programming master
programs happen to solve slightly more quickly for estimator Ua compared to Un.
We obtained very similar scaling results with T for the estimator Um applied to
problem instances with transaction costs.

Although we stop short of a computational comparison, we discuss similari-
ties and differences between our estimators (Ua and Um) and the inner approx-
imation bound of Philpott et al. [69]. The computational work in [69] is on a
hydro-thermal scheduling model that maintains an inventory of water (or ener-
gy) in four aggregate reservoirs. The analogous dimension for our first set of
computational examples is one (current wealth), and the dimension is five for our
second set of problem instances. Our largest models have 15 stages while those of
Philpott et al. have 24 stages. The problems to which the respective bounds are
applied are quite different, but our point estimate with the largest gap is about
10% (see T = 15 row of Table 3.3), and the gap reported in Table 3 of [69] with
10,000 cuts is of similar magnitude. With 10,000 cuts the inner approximation of
[69] would require solving 150, 000 linear programs for our 15-stage models, while
we report results for our estimators solving 50, 000 linear programs. We suspect
that our approach will scale well with dimension, although we have yet to inves-
tigate this computationally. We note that our estimators require specification of
functions that appropriately characterize the tail of the recourse function while
the inner approximation of Philpott et al. does not have this requirement. A
final distinction is that, like the SDDP algorithm for the risk-neutral model, our
upper bound estimators are for the policy dictated by the cuts, i.e., the policy
associated with the outer approximation. Philpott et al. do not provide an upper
bound for this cut-based policy. Rather, their bound is for a policy associated
with a set of points employed in developing the inner approximation.

47



4. Variance reduction with CVaR

4.1 Mean-risk estimators

We will consider random variable Z representing losses and the definition of
conditional value at risk (1.12). CVaR penalizes losses in the upper α tail of Z
with a typical value of α being 0.05. Under this setup, we consider a mean-risk
functional, which forms a convex sum of expectation and risk associated with
random loss Z. We will use a single-period version of (1.10) for our analysis:

Qα [Z] = (1− λ)E [Z] + λCVaRα [Z] , (4.1)

with λ ∈ [0, 1]. In the following text, we will consider the confidence level α as
fixed and omit it from our notation. When it is clear from the context, we write
just Q or QZ instead of Qα [Z] for notational simplicity. CVaR is generally harder
to estimate than the expectation operator, as we have illustrated in Section 1.5.

As we have pointed out in Example 1.9, standard Monte Carlo estimators
may be inefficient when applied to functionals of the form (4.1). We have tackled
this issue in Section 3.1 by using the importance sampling technique with a fixed
choice of the importance sampling weights. Benefits of this technique are not
restricted to the SDDP algorithm, our importance sampling scheme may be used
in all procedures which employ sampling of CVaR value. Therefore, we will focus
on the choice of importance sampling weights in a more general setup.

We suppose that a probability density function (pdf) of Z exists and denote it
by g. Consider scenarios Z1, Z2, . . . , ZM independent and identically distributed
(i.i.d.) from the distribution given by g. Using equation (1.12), the standard
Monte Carlo estimator of the functional Q takes the form:

Q̂s = min
u

(
1

M

M∑
j=1

(1− λ)Zj + λ

(
u+

1

α

[
Zj − u

]
+

))
. (4.2)

Following sampling scheme is based on importance sampling with a new pdf,
which we denote h. Given the original distribution of Z represented by the pdf
g, we are able to compute the value at risk uZ = VaRα [Z], which represents the
1 − α quantile, and partition the support of the distribution into two groups by
comparing the value of the random variable with uZ . Alternatively, the value uZ
could be estimated by sampling or computed from the given discrete distribution.
In particular, the proposed importance sampling pdf is, with β ∈ (0, 1):

h(z) =


β

α
g(z), if z ≥ uZ

1− β
1− α

g(z), if z < uZ ,

(4.3)

compare with (3.3). The idea of pdf h is a modification of the probability masses
so that we are more likely to draw sample observations above uZ = VaRα [Z]. We
will try to find a suitable choice of the factor β, which should be based on the
values of the confidence level α and risk aversion coefficient λ.

48



In accordance with importance sampling schemes, we can compute the required
expectation under our new measure via

Eg [Z] = Eh
[
Z
g

h

]
, (4.4)

for any random variable Z for which the expectations exist.
Consider i.i.d. scenarios Z1, Z2, . . . , ZM from the distribution given by h. The

importance sampling estimator of the functional Q takes the form:

Q̂i = min
u

1

M

M∑
j=1

g(Zj)

h(Zj)

(
(1− λ)Zj + λ

(
u+

1

α

[
Zj − u

]
+

))
. (4.5)

It follows from equation (4.3) that the likelihood ratio satisfies:

g

h
=


α

β
, if Z ≥ uZ

1− α
1− β

, if Z < uZ .

(4.6)

The terms wj = g(Zj)
h(Zj)

can be viewed as weights in a weighted sum of estimators
for the sampled scenarios. Normalizing the weights reduces the variability of the
estimator (see Hesterberg [44]) and yields:

Q̂m = min
u

1∑M
j=1w

j

M∑
j=1

wj
(

(1− λ)Zj + λ

(
u+

1

α

[
Zj − u

]
+

))
. (4.7)

4.2 Variance reduction

Using the CVaR definition (1.12), the objective value (4.1) can be computed as:

Q = min
u

Eg
[(

(1− λ)Z + λ

(
u+

1

α
[Z − u]+

))]
. (4.8)

It can be shown that the optimal value for the u in the problem above is uZ ,
value at risk at the level α, see [74]. Hence:

Q = Eg
[
(1− λ)Z + λ

(
uZ +

1

α
[Z − uZ ]+

)]
. (4.9)

Now, instead of the standard pdf, we will use the importance sampling under the
measure h. Using the equation (4.4) we have:

Q = Eh
[
g

h

(
(1− λ)Z + λ

(
uZ +

1

α
[Z − uZ ]+

))]
. (4.10)

For further development we define:

Qs = (1− λ)Z + λ

(
uZ +

1

α
[Z − uZ ]+

)
Qi =

g

h

(
(1− λ)Z + λ

(
uZ +

1

α
[Z − uZ ]+

))
.
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It clearly holds Eh [Qi] = Eg [Qs], but our aim would be on decreasing the vari-
ance, e.g. finding suitable parameter β, so that varh [Qi] < varg [Qs]. In the
following text, we will be working with several random variables. Therefore all
symbols defined so far would be appended with the index of the random variable’s
name. We first show how variance of the operator Qi behaves when we add a
constant.

Proposition 4.1. Let X, Y be random variables, Y = X + µ, µ ∈ R, gX and gY
the corresponding pdfs. Suppose that their importance sampling versions hX and
hY are defined using the same value of parameter β. Then

varhY
[
Qi
Y

]
= varhX

[
Qi
X

]
+ 2µE

[(
gX
hX
− 1

)
Qs
X

]
+ µ2 (α− β)2

β(1− β)
. (4.11)

Proof. From the basic properties of expectation and CVaR we have E [Y ] =
E [X] + µ and CVaRα [Y ] = CVaRα [X] + µ. Therefore:

EhY
[
Qi
Y

]
= (1− λ)E [Y ] + λCVaRα [Y ] = (1− λ)E [X] + λCVaRα [X] + µ

= EhX
[
Qi
X

]
+ µ

Clearly, VaRα [Y ] = VaRα [X] + µ and Y ≥ uY ⇐⇒ X ≥ uX . Moreover,
Qs
Y = Qs

X + µ and from equation (4.6) we have gY
hY

= gX
hX

. Altogether:

EhY
[(
Qi
Y

)2
]

= EhY
[
g2
Y

h2
Y

(Qs
Y )2

]
= E

[
gY
hY

(Qs
Y )2

]
= E

[
gX
hX

(Qs
Y )2

]
= E

[
gX
hX

(
(Qs

X)2 + 2µQs
X + µ2

)]
= EhX

[(
Qi
X

)2
]

+ 2µEhX
[
gX
hX

Qi
X

]
+ µ2E

[
gX
hX

]
= EhX

[(
Qi
X

)2
]

+ 2µEhX
[
gX
hX

Qi
X

]
+ µ2

(
(1− α)2

1− β
+
α2

β

)
varhY

[
Qi
Y

]
= EhY

[(
Qi
Y

)2
]
−
(
EhY

[
Qi
Y

])2

= EhX
[(
Qi
X

)2
]

+ 2µEhX
[
gX
hX

Qi
X

]
+ µ2

(
(1− α)2

1− β
+
α2

β

)
−

−
((

EhX
[
Qi
X

])2
+ 2µEhX

[
Qi
X

]
+ µ2

)
= varhX

[
Qi
X

]
+ 2µEhX

[(
gX
hX
− 1

)
Qi
X

]
+ µ2 (α− β)2

β(1− β)

= varhX
[
Qi
X

]
+ 2µE

[(
gX
hX
− 1

)
Qs
X

]
+ µ2 (α− β)2

β(1− β)

Next, we will focus on scale transformations.

Proposition 4.2. Let X, Y be random variables, Y = σX, σ > 0, gX and
gY the corresponding pdfs. Suppose that their importance sampling versions hX
and hY are defined using the same value of parameter β. Then varhY [Qi

Y ] =
σ2 varhX [Qi

X ].
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Proof. Similarly as in previous proof E [Y ] = σE [X] and CVaRα [Y ] = σCVaRα [X].
Therefore EhY [Qi

Y ] = σEhX [Qi
X ]. Clearly, VaRα [Y ] = σVaRα [X] and Y ≥

uY ⇐⇒ X ≥ uX . Moreover, from equation (4.6) we have gY
hY

= gX
hX

and there-

fore Qi
Y = σQi

X .

varhY
[
Qi
Y

]
= EhY

[
Qi
Y − EhY

[
Qi
Y

]]2
= EhX

[
σQi

X − σEhX
[
Qi
X

]]2
= σ2EhX

[
Qi
X − EhX

[
Qi
X

]]2
= σ2 varhX

[
Qi
X

]
.

We will denote the probability density function of standardized normal distri-
bution φ(x) and Φ(x) its distribution function. Recall that for N (0, 1) we have
uZ = Φ−1(1− α).

Proposition 4.3. Let Y ∼ N (µ, σ2) be a random variable. Denote X ∼ N (µ
σ
, 1)

and Z ∼ N (0, 1). In order to minimize the variance varhY [Qi
Y ], the optimal value

of the importance sampling parameter β can be obtained by solving the quadratic
equation:

∂

∂β

(
varhX

[
Qi
X

])
= 0, (4.12)

with

∂

∂β

(
varhX

[
Qi
X

])
=

=
1− α

(1− β)2
(1− λ)2 (1− α− uZφ(uZ))− α

β2
(1− λ)2 (α + uZφ(uZ))

− λ2

αβ2

(
α− uZφ(uZ) + u2

Zα
)

+ λ2u2
Z

(
(1− α)2

(1− β)2
− α2

β2

)
− 2

λ(1− λ)α

β2
+ 2λuZ (1− λ)φ(uZ)

(
− α

β2
− 1− α

(1− β)2

)
− 2

λ2

β2
uZ (φ(uZ)− αuZ) + 2

µ

σ
(1− λ)φ(uZ)

(
− α

β2
− 1− α

(1− β)2

)
− 2

µ

σ

λ

β2
(φ(uZ)− αuZ) +

2α2β − 2αβ2 − α2 + β2

β2(1− β)2

(
2
µ

σ
λuZ +

µ2

σ2

)
.

(4.13)

Proof. Following are known integrals with normal pdfs:∫
zφ(z)dz = −φ(z) + C,∫
z2φ(z)dz = Φ(z)− zφ(z) + C.

We will write f instead od fZ and g instead of gZ for simplicity and expand the
basic formula for variance:

varh
[
Qi
Z

]
= Eh

[(
Qi
Z

)2
]
−
(
Eh
[
Qi
Z

])2
,
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Eh
[(
Qi
Z

)2
]

=Eh
[
g2

h2
(1− λ)2 Z2

]
︸ ︷︷ ︸

(1)

+Eh
[
g2

h2

λ2

α2
[Z − uZ ]2+

]
︸ ︷︷ ︸

(2)

+Eh
[
g2

h2
λ2u2

Z

]
︸ ︷︷ ︸

(3)

+

+ 2Eh
[
g2

h2
(1− λ)

λ

α
Z [Z − uZ ]+

]
︸ ︷︷ ︸

(4)

+ 2Eh
[
g2

h2
(1− λ)λuZZ

]
︸ ︷︷ ︸

(5)

+

+ 2Eh
[
g2

h2

λ

α
λuZ [Z − uZ ]+

]
︸ ︷︷ ︸

(6)

.

(4.14)

Next, we calculate all terms from the previous equations:

Eh
[(
Qi
Z

)]
=

∫ ∞
uZ

(z − uZ)
α

β

λ

α

β

α
φ(z)dz + λuZ

=
λ

α

(∫ ∞
uZ

zφ(z)dz − uZ
∫ ∞
uZ

φ(z)dz

)
+ λuZ

=
λ

α
(φ(uZ)− uZ(1− Φ(uZ)) + λuZ =

λ

α
φ(uZ).

(1) Eh
[
g2

h2
(1− λ)2 Z2

]
=

=

∫ uZ

−∞
z2 (1− α)2

(1− β)2
(1− λ)2 1− β

1− α
φ(z)dz +

∫ ∞
uZ

z2α
2

β2
(1− λ)2 β

α
φ(z)dz

=
1− α
1− β

(1− λ)2 (Φ(uZ)− uZφ(uZ)) +
α

β
(1− λ)2 (1− Φ(uZ) + uZφ(uZ))

=
1− α
1− β

(1− λ)2 (1− α− uZφ(uZ)) +
α

β
(1− λ)2 (α + uZφ(uZ))

(2) Eh
[
g2

h2

λ2

α2
[Z − uZ ]2+

]
=

=

∫ ∞
uZ

(z − uZ)2α
2

β2

λ2

α2
φ(z)

β

α
dz

=
α

β

λ2

α2

∫ ∞
uZ

(z2 − 2uZz + u2
Z)φ(z)dz

=
1

β

λ2

α

(
1− Φ(uZ) + uZφ(uZ)− 2uZφ(uZ) + u2

Z − u2
ZΦ(uZ)

)
=

λ2

αβ

(
α− uZφ(uZ) + u2

Zα
)

(3) Eh
[
g2

h2
λ2u2

Z

]
=

=

∫ uZ

−∞

(1− α)2

(1− β)2
λ2u2

Z

1− β
1− α

φ(z)dz +

∫ ∞
uZ

α2

β2
λ2u2

Z

β

α
φ(z)dz

=
1− α
1− β

(1− α)λ2u2
Z +

α

β
αλ2u2

Z = λ2u2
Z

(
(1− α)2

1− β
+
α2

β

)
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(4) 2Eh
[
g2

h2
(1− λ)

λ

α
Z [Z − uZ ]+

]
=

= 2

∫ ∞
uZ

z(z − uZ)
α2

β2
(1− λ)

λ

α

β

α
φ(z)dz

= 2
α

β
(1− λ)

λ

α

(∫ ∞
uZ

z2φ(z)dz − uZ
∫ ∞
uZ

zφ(z)dz

)
= 2

λ(1− λ)

β
(1− Φ(uZ) + uZφ(uZ)− uZφ(uZ))

= 2
λ(1− λ)α

β

(5) 2Eh
[
g2

h2
(1− λ)λuZZ

]
=

= 2

∫ uZ

−∞

(1− α)2

(1− β)2
λuZ (1− λ)

1− β
1− α

zφ(z)dz + 2

∫ ∞
uZ

α2

β2
λuZ (1− λ)

β

α
zφ(z)dz

= 2λuZ (1− λ)φ(uZ)

(
α

β
− 1− α

1− β

)

(6) 2Eh
[
g2

h2

λ

α
λuZ [Z − uZ ]+

]
=

= 2

∫ ∞
uZ

α2

β2

λ

α
λuZ

β

α
(z − uZ)φ(z)dz

= 2
α

β

λ

α
λuZ (φ(uZ)− αuZ)

= 2
λ2

β
uZ (φ(uZ)− αuZ)

Substituting all above terms into (4.14):

varh
[
Qi
Z

]
=

1− α
1− β

(1− λ)2 (1− α− uZφ(uZ)) +
α

β
(1− λ)2 (α + uZφ(uZ))

+
λ2

αβ

(
α− uZφ(uZ) + u2

Zα
)

+ λ2u2
Z

(
(1− α)2

1− β
+
α2

β

)
+ 2

λ(1− λ)α

β
+ 2λuZ (1− λ)φ(uZ)

(
α

β
− 1− α

1− β

)
+ 2

λ2

β
uZ (φ(uZ)− αuZ)−

(
λ

α
φ(uZ)

)2

.

(4.15)

Consider a random variable X = Z + µ
σ
. Then by using Proposition 4.1:

varhX
[
Qi
X

]
= varhZ

[
Qi
Z

]
+ 2

µ

σ
E
[(

gZ
hZ
− 1

)
Qs
Z

]
+
µ2

σ2

(α− β)2

β(1− β)
(4.16)
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Since E [Z] = 0:

E
[(

gZ
hZ
− 1

)
Qs
Z

]
= E

[(
gZ
hZ
− 1

)(
(1− λ)Z + λ

(
uZ +

1

α
[Z − uZ ]+

))]
= (1− λ)E

[
gZ
hZ
Z

]
︸ ︷︷ ︸

(a)

+λuZ E
[(

gZ
hZ
− 1

)]
︸ ︷︷ ︸

(b)

+

+
λ

α
E
[(

gZ
hZ
− 1

)
[Z − uZ ]+

]
︸ ︷︷ ︸

(c)

,

(4.17)

where

(a) E
[
gZ
hZ
Z

]
=

∫ uZ

−∞

1− α
1− β

zφ(z)dz +

∫ ∞
uZ

α

β
zφ(z)dz =

= φ(uZ)

(
α

β
− 1− α

1− β

)
,

(b) E
[(

gZ
hZ
− 1

)]
=

(1− α)2

1− β
+
α2

β
− 1 =

(α− β)2

β(1− β)
,

(c) E
[(

gZ
hZ
− 1

)
[Z − uZ ]+

]
=

∫ ∞
uZ

(
α

β
− 1

)
(z − uZ)φ(z)dz =

=

(
α

β
− 1

)
(φ(uZ)− αuZ) ,

Substituting all above terms into (4.17):

E
[(

gZ
hZ
− 1

)
Qs
Z

]
= (1− λ)φ(uZ)

(
α

β
− 1− α

1− β

)
+ λuZ

(α− β)2

β(1− β)
+

+
λ

α

(
α

β
− 1

)
(φ(uZ)− αuZ)

(4.18)

Combining (4.15), (4.16) and (4.18):

varhX
[
Qi
X

]
=

1− α
1− β

(1− λ)2 (1− α− uZφ(uZ)) +
α

β
(1− λ)2 (α + uZφ(uZ))

+
λ2

αβ

(
α− uZφ(uZ) + u2

Zα
)

+ λ2u2
Z

(
(1− α)2

1− β
+
α2

β

)
+ 2

λ(1− λ)α

β
+ 2λuZ (1− λ)φ(uZ)

(
α

β
− 1− α

1− β

)
+ 2

λ2

β
uZ (φ(uZ)− αuZ)−

(
λ

α
φ(uZ)

)2

+ 2
µ

σ
(1− λ)φ(uZ)

(
α

β
− 1− α

1− β

)
+ 2

µ

σ

λ

α

(
α

β
− 1

)
(φ(uZ)− αuZ)

+
(α− β)2

β(1− β)

(
2
µ

σ
λuZ +

µ2

σ2

)
.

(4.19)
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We want to find a minimum with respect to the parameter β and therefore we
differentiate:

∂

∂β

(
varhX

[
Qi
X

])
=

=
1− α

(1− β)2
(1− λ)2 (1− α− uZφ(uZ))− α

β2
(1− λ)2 (α + uZφ(uZ))

− λ2

αβ2

(
α− uZφ(uZ) + u2

Zα
)

+ λ2u2
Z

(
(1− α)2

(1− β)2
− α2

β2

)
− 2

λ(1− λ)α

β2
+ 2λuZ (1− λ)φ(uZ)

(
− α

β2
− 1− α

(1− β)2

)
− 2

λ2

β2
uZ (φ(uZ)− αuZ) + 2

µ

σ
(1− λ)φ(uZ)

(
− α

β2
− 1− α

(1− β)2

)
− 2

µ

σ

λ

β2
(φ(uZ)− αuZ) +

2α2β − 2αβ2 − α2 + β2

β2(1− β)2

(
2
µ

σ
λuZ +

µ2

σ2

)
.

Consider now Y = σX, Y ∼ N (µ, σ2). Using Proposition 4.2 we have varhY [Qi
Y ] =

σ2 varhX [Qi
X ]. Therefore by solving the quadratic equation

∂

∂β

(
varhX

[
Qi
X

])
= 0,

we obtain the optimal selection of β with respect to the choice of parameters α
and λ under the assumption of normal distribution.
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Figure 4.1: Variance as a function of β with α = 5% and λ = 0.5

We can see that the importance sampling variance clearly depends on our
choice of parameter β and the problem setup – confidence level α and the risk
aversion coefficient λ. As expected, in the case of normal distribution the variance
as a function of beta is a U-shaped function with minimums around the center
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of the interval (0, 1) and huge values near the boundaries of this interval. An
example of this function is shown in Figure 4.1. When increasing the mean of
the normal distribution, variance of our importance sampling estimator tends to
grow faster with increasing β. The opposite holds for the variance parameter of
the normal distribution, higher variance slows down the growth rate of variance
with respect to β. The optimal choice of the parameter β for different choices of
λ is depicted in Figure 4.2.
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Figure 4.2: Optimal β as a function of λ with α = 5%

In the case of other distributions, one can proceed in the same way as we did
with normal distribution. If the integrals are too hard to compute analytically,
numerical solutions or sampling methods could be used. Following algorithm
presents a simple approach to obtain a suitable value for parameter β for general
distributions.

Algorithm 4.4 (Sampling algorithm to determine β).
Let α and λ be specified from the model. Suppose we are able to draw i.i.d. samples
from the distribution of Z, which could be continuous or discrete.

1. Calculate the quantile uZ = VaR1−α [Z]. For discrete distributions, this can
be done in linear time with respect to the number of scenarios, see [17]. For
continuous distributions, use the analytical value or an estimate produced
by sampling with the same procedure as for discrete distributions.

2. Set up a mesh of possible β values, e. g. B = {0.01, 0.02, . . . , 0.99}. Choose
a number of iterations J , for instance J = 106.

For all β ∈ B {
For j = 1, . . . , J {

Sample uniformly a random number r ∈ (0, 1);
If r < β {

Sample Zj from the distribution of Z until Zj ≥ uZ;
Set Qj = λuZ + λ

α
(Zj − uZ) + (1− λ)Zj;

Set wj = α
β

;

} else {
Sample Zj from the distribution of Z until Zj < uZ;
Set Qj = λuZ + (1− λ)Zj;
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Set wj = 1−α
1−β ;

}
}
Calculate sampling mean: Qβ = 1∑J

j=1 w
j

∑J
j=1w

jQj;

Calculate sampling variance: varβ = 1∑J
j=1 w

j

∑J
j=1

(
wjQj −Qβ

)2
;

}

3. Choose the suitable β∗ as β∗ = arg min
β∈B

varβ.

We have chosen log-normal distribution to present the results of Algorithm 4.4.
Since the distribution is not symmetrical, it is important to specify which tails
are going to be connected with the greatest loss. We used three different setups
of mean and variance and supposed that the heavier tails of the distribution are
representing the greatest loss. Compared to the normal distribution, we can see
a different shape of the variance function for certain parameters, see Figure 4.3.
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Figure 4.3: Variance as a function of β with α = 5% and λ = 0.5 for log-normal
distribution

4.3 Comparison with standard Monte Carlo

We have applied our importance sampling schemes to asset allocation model
(1.34), with stock market indices DJA, NDX, NYA, and OEX as considered assets.
We used monthly data for these indices from September 1985 until September
2011 to fit the multivariate log-normal distribution to the price ratios observed
month-to-month. The data summary can be found in the Table 1.1. The con-
fidence level was set to αt = 5% and the risk coefficients were set to λt = 1

2
,

t = 2, . . . , T .
The importance sampling pdf (3.3) is further enhanced to include the analysis

performed in this section:

ht(ξt|xt−1) =


βt
αt
gt, if at ≥ VaRαt [at(xt−1, ξt)]

1− βt
1− αt

gt, if at < VaRαt [at(xt−1, ξt)].

(4.20)
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The optimal choice of the parameter βt depends on the underlying distri-
bution, as well as on parameters λt and αt. The random inputs in our model
have log-normal distribution, but even their sum, which is the total portfolio
value, is not log-normal anymore. These values are then used in the multi-stage
model, which leads to complicated transformations consisting of the conditional
expectations mixed with CVaR. Moreover, the parameters of the distribution are
different for each stage of the problem and different values of the parameter β
should be chosen for each stage.

We have used Algorithm 4.4 to find the best values of β. We ran the SDDP
algorithm with standard Monte Carlo setup until the algorithm reached nearly
the same optimal value z as estimated by the first stage master program’s objec-
tive function; i.e., the lower bound for the risk-averse model. Specifically, SDDP
was terminated when lower bound did not improve by more than 10−6 over 10
iterations. Afterwards, we have performed a single run of the upper bound esti-
mator and collected total of 100, 000 scenarios, equally distributed between the
stages. The analysis was performed on large instances, represented by three pos-
sible numbers of stages, T = 5, 10 and 15, with 50 descendant scenarios per node
in all of them. The results presented in Figure 4.4 show the impact of our nested
transformations, the optimal value of beta is very low (0.03) for the last stage
but grows significantly when progressing to the first stages (up to 0.58 for the
fifteen-stage problem). The results of optimal β values show pretty convincing
trend of monotonicity for 5 and 10 stages, however, they seem to be a bit unstable
for the fifteen-stage problem. We believe that this is due to the sensitivity of the
problem with respect to the extreme values of CVaR, which is fully exploited in
the standard Monte Carlo scheme used for sampling the scenarios needed to run
the Algorithm 4.4. One of the possible solutions could be to run the algorithm
under importance sampling scheme and adjust its results. We would like to focus
on this idea in our future research.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Be
ta

Stage

Asset allocation - values of beta

5-stage

10-stage

15-stage

Figure 4.4: Choice of β for our asset allocation problem

We compare two estimators, both based on equation (3.9), but using the pdf
(4.20) instead of (3.3) to sample i.i.d. scenarios ξj, j = 1, . . . ,M . First setup Q̂s
is based on standard Monte Carlo estimator, that means setting βt = αt = 0.05 so
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that our importance sampling pdf reduces to the standard one. The importance
sampling setup Q̂i is based on our variance reduction analysis and values of βt
presented in Figure 4.4. We ran the SDDP algorithm again with each of the
upper bound estimators until the algorithm reached nearly the same optimal
value. We formed 100 i.i.d. replicates of the estimators, each of them required
approximately 10, 000 linear programs to be solved. For a particular problem
instance, all 100 replicates used the same single run of SDDP. We report the
total number of scenarios, lower bound z and means and standard deviations of
the upper bound estimators in the Table 4.1.

T total scenarios z Q̂s (s.d.) Q̂i (s.d.)
5 6, 250, 000 -3.5212 -3.5166 (0.0168) -3.5170 (0.0111)
10 ≈ 1014 -7.3885 -7.2833 (0.2120) -7.2838 (0.0303)
15 ≈ 1025 -10.4060 -10.1482 (0.8184) -10.1245 (0.1355)

Table 4.1: Comparison of the standard Monte Carlo approach and our importance
sampling procedure, including the point estimates and their standard deviations
(s.d.).

The estimators perform similarly in terms of bias from the lower bound z , but
our importance sampling procedure is significantly better in terms of variance.
For T = 5, 10, 15 we achieved roughly 35%, 85% and 85% reduction of standard
deviation, Q̂i relative to Q̂s. Similar results can be obtained with a slightly
suboptimal, but constant choice of β. When an easy approach is required, we
may use for example β = 0.3, which seems to be in the low variance part of all
of our normal distribution variance curves.

It may seem that we present our results only on a very simple model. How-
ever, the proposed upper bound estimation procedure can be employed also in
more complex models, for example with transaction costs included in our asset
allocation model. In that case, the importance sampling pdfs have to be adjusted
to deal with the fact that our wealth is not enough to determine the system state.
For more details, we refer to the Chapter 3. Based on the computational results
presented therein, we can say that our estimator scales well with the number of
stages and the additional computational effort is negligible in comparison with
the effort required by the SDDP procedure. We would like to note that our sam-
pling scheme is not restricted to the context of SDDP, but it can be applied in
a similar fashion to any other Monte Carlo sampling scheme or algorithm, which
employs sampling with CVaR.
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5. Contamination technique

5.1 Contamination for multi-stage problems

The contamination technique for stochastic programs was developed in a series
of papers as one of the tools for analysis of robustness of the optimal value with
respect to deviations from the assumed probability distribution P and/or its pa-
rameters. The results were applied mainly to scenario-based two-stage stochastic
linear programs, see e.g. [27, 29] for static and two-stage stochastic programs,
[34] for CVaR and VaR risk criteria and [30] for polyhedral risk measures.

The first ideas dealing with contamination for multi-stage stochastic linear
programs were presented in [28] and their application to study the influence of
changes in the structure of multi-stage problems with polyhedral risk measures
can be found in [35].

For construction of global contamination bounds, it is important that the
stochastic program gets reformulated as

min
x∈X

F (x,P) := min
x∈X

∫
Ω

f(x, ξ)P(dξ) (5.1)

with X independent of P, such as (1.13). Notice that the reformulations of the
three models with multi-period CVaR-type risk measures presented in Section 1.4
comply with this requirement. If these basic conditions are not satisfied, local
contamination bound can be constructed under additional assumptions, see [36,
37].

Possible changes in probability distribution P are modeled using contaminated
distributions Pk,

Pk := (1− k)P + kQ, k ∈ [0, 1],

with Q another fixed probability distribution. Via contamination, robustness
analysis with respect to changes in P gets reduced to a much simpler analysis
with respect to a scalar parameter k.

Assume that (5.1) was solved for a probability distribution P and denote ϕ(P)
the optimal value and X ∗(P) the set of optimal (first stage) solutions.

The objective function in (5.1) is linear in P, hence

F (x,Pk) =

∫
Ω

f(x, ξ)Pk(dξ) = (1− k)F (x,P) + kF (x,Q)

is linear in k. Suppose that the stochastic program (5.1) has an optimal solution
ϕ(Pk) for all considered distributions Pk, 0 ≤ k ≤ 1. Since we restrict our analysis
to the development with respect to a parameter k, we will sometimes write ϕ(k)
instead of ϕ(Pk) for notational convenience. The optimal value function

ϕ(k) = min
x∈X

F (x,Pk)

is concave on [0, 1] which implies its continuity and existence of directional deriva-
tives in (0, 1). Continuity at the point k = 0 is a property related to sta-
bility results for the stochastic program in question. In general, one needs a
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nonempty, bounded set of optimal solutions X ∗(P) of the initial stochastic pro-

gram (5.1). This assumption together with stationarity of derivatives ∂F (x,Pk)
∂k

=
F (x,Q)− F (x,P) is used to derive the form of the directional derivative

ϕ′(0+) = min
x∈X ∗(P)

F (x,Q)− ϕ(0) (5.2)

which enters the upper bound for the concave optimal value function ϕ(k)

ϕ(0) + kϕ′(0+) ≥ ϕ(k) ≥ (1− k)ϕ(0) + kϕ(1), k ∈ [0, 1]; (5.3)

see [27, 29, 34] and references therein. Contamination bounds (5.3) can be relaxed
to

(1− k)ϕ(P) + kF (x,Q) ≥ ϕ(Pk) ≥ (1− k)ϕ(P) + kϕ(Q) (5.4)

valid for an arbitrary x ∈ X ∗(P) and k ∈ [0, 1].
The development so far applies to general distributions P and Q. To be able

to solve the problem in practice, we usually form a Sample Average Approxima-
tion version of the problem and obtain a finite discrete distribution P̂. In order
to have the contaminated problem solvable, the same property is required for
the distribution Q̂. To apply the SDDP algorithm we have to assume that stage
independence holds true for both the original distribution P̂ and the contaminat-
ing distribution Q̂. That way the contaminated distribution P̂k shares the same
property.

When the problem is too large to be solved precisely, we obtain only approx-
imate suboptimal solutions. In that case, an SDDP algorithm provides a lower
bound ϕ and a statistical upper bound ϕ for the optimal objective function value.
Since we always have ϕ < ϕ, the contamination lower bound follows easily:

ϕ(P̂k) ≥ (1− k)ϕ(P̂) + kϕ(Q̂). (5.5)

With an approximate (suboptimal) solution x̃∗ of the problem with original
distribution P̂ we proceed in a following fashion. Since x̃∗ is feasible, but in
general suboptimal for the contaminated problem with P̂k, we have:

ϕ(P̂k) ≤ F (x̃∗, k) = F (x̃∗, P̂) + k
∂F (x̃∗, P̂k)

∂k

= F (x̃∗, P̂) + k
(
F (x̃∗, Q̂)− F (x̃∗, P̂)

)
.

(5.6)

Therefore, following is a valid upper bound for the contaminated problem:

ϕ(P̂k) ≤ (1− k)F (x̃∗, P̂) + kF (x̃∗, Q̂). (5.7)

Since the upper bound ϕ is provided by the approximate solution x̃∗ we can
replace the deterministic quantity F (x̃∗, P̂) by its statistical estimator ϕ. We
will use the estimators Ua from equation (3.9) and Um from equation (3.12),
developed in Chapter 3. By Proposition 3.3 and Proposition 3.5 we have that
ϕ → ϕ∗, w.p.1, as the number of scenarios used to compute ϕ grows to infinity,
and that ϕ∗ ≥ F (x̃∗, P̂).

Likewise, the value F (x̃∗, Q̂) cannot be computed directly. Instead, we form
an upper bound estimator under the distribution Q̂ in a fashion similar to the
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SDDP algorithm (see Step 3 in Algorithm 2.2), but this time we use decisions
x̃∗ as given. In a practical large-scale application, the decisions x̃∗ cannot be
stored in a memory. We solve the original problem and store the cuts that are
collected when the algorithm ends. Then, we proceed with the upper bound
estimator under the distribution Q̂ and sample the scenarios. For these sampled
scenarios, we use the stored cuts to obtain decisions x̃∗ and apply these under the
new distribution Q̂. With this approach, we are again getting a statistical upper
bound F̄ (x̃∗, Q̂) for the value of F (x̃∗, Q̂). Plugging this value into our formula
we reach the final upper contamination bound:

(1− k)ϕ(P̂) + kF̄ (x̃∗, Q̂). (5.8)

This bound is based on the set of scenarios used to compute the upper bounds
and therefore it is not deterministic. We have an asymptotic validity of this bound
provided again by the results of Proposition 3.3 and Proposition 3.5:

(1− k)ϕ(P̂) + kF̄ (x̃∗, Q̂)→ ϕ∗F , w.p.1.; ϕ(P̂k) ≤ ϕ∗F , (5.9)

as the sizes of samples to compute both upper bounds grow to infinity.
The contamination bounds we have just developed depend on the specification

or choice of Q and Q̂, respectively. When the contaminating distribution Q is not
fully specified, a natural idea is to use the worst distribution of the considered
alternatives. For simple uncertainty sets and under the assumption of stage
independence such worst-case or robust contamination bounds can be applied.
For instance when a probability set is specified by a known support [l, u] and
expectation µ, we can show that the worst-case measure is concentrated on the
points l and u for risk-neutral problems. Moreover, this can be applied stage
by stage to a multi-stage problem with one resulting measure of 2T−1 scenarios,
where T denotes number of stages.

5.2 Shape of contamination bounds

We used monthly price data of the most important assets traded on the Prague
Stock Exchange, January 2009 to February 2012 in the models (1.30) without
transaction costs and (1.32) with transaction costs, based on the nested CVaR
risk measure. The data summary can be found in the Table 1.2. We have fit-
ted a multidimensional correlated log-normal distribution to the adjusted price
ratios to obtain the original distribution P. The contaminating distribution Q
was then constructed from P by increasing the variance by 20%. Scenario trees
were constructed independently for each stage by sampling P̂ and Q̂ from these
distributions. The CVaR levels αt were always set to 5%.

We evaluated the model with fixed value of risk coefficients λt = 0.1 for all
stages. Both cases, with transaction costs of 0.3% and without transaction costs,
were considered. We have computed the contamination bounds for problems with
horizon of T = 3 and T = 5 stages. In the Table 5.1, we show the setup for the
scenario trees used in our algorithm.

The three-stage problems can be solved to optimality using our SDDP al-
gorithm, meaning that there is no gap between the lower bound and the upper
bound, which is formed by computing the population mean rather than sampling.
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stages descendants per node total scenarios
3 1, 000 1, 000, 000
5 1, 000 1012

Table 5.1: Testing problems setup for contamination bounds

Figures 5.1 and 5.2 present the obtained lower and upper contamination bounds
based on inequalities (5.5) and (5.7).
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Figure 5.1: Three-stage problem contamination bounds with no transaction costs

For the case of five-stage problems we are unable to compute the solutions
exactly and we provide the contamination bounds based on the lower and upper
bounds from the SDDP algorithm. The lower bound based on the inequality (5.5)
remains deterministic, but the terms present in inequality (5.8) are estimated for
10 times and we provide their mean as well as the empirical statistical upper
bounds with confidence level of 95%. The results are presented in Figures 5.3
and 5.4.

The presented results show that for smaller problems we are able to obtain
tight contamination bounds, in our testing setup with three stages we have the
spread of 0.09% in the case without transaction costs and 0.17% spread in the
case with transaction costs, both cases considering k = 50% contamination. For
large-scale problems, we can rely on the statistically valid bound or on the mean
of sampled estimates. For our five-stage setup, we obtained the spread of 1.13%
and 1.03% in the analogous cases when using empirical statistical upper bounds.
Even though we consider these bounds pretty tight, we can also rely on the
mean estimators, which are usually used in the SDDP algorithms. That gives
us spread of 0.38% and 0.19%, respectively. The straightforward interpretation
of our results would then state that the results of our model can be considered
stable with respect to growing variance of the underlying random distribution
which drives the asset price evolution.
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Figure 5.2: Three-stage problem contamination bounds with transaction costs
0.3%
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Figure 5.3: Five-stage problem contamination bounds with no transaction costs
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Figure 5.4: Five-stage problem contamination bounds with transaction costs 0.3%
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6. Numerical illustrations

The purpose of this section is to provide results of the presented asset allocation
models (1.30), (1.32) and (1.34). The models are applied under different setups,
with varying number of stages, risk attitude or underlying data. The resulting
solutions are then compared and the differences discussed.

6.1 Risk aversion study

We used weekly data of the most important assets traded on the Prague Stock
Exchange, November 2007 to March 2012. The week-to-week ratios were adjust-
ed to include the stock dividends, their summary can be found in the Table 1.3.
Every computation including the sampling process was repeated 10 times, allow-
ing to compute standard deviations of the solutions and objective values. The
confidence level was always set to 5%.

We evaluated the model with two different settings of risk coefficients, λt = 1
2

and λt = t−1
T

. The first represents a stable risk-aversion, while the latter means
that we want to be sure about the final portfolio value by being more risk-averse
as the final stage approaches. Both cases, with transaction costs of 0.3% and
without transaction costs, were considered. We have computed the optimal first-
stage decisions for models with 2, 3 and 5 stages, the setup of scenario trees used
in our algorithm can be found in the Table 6.1.

stages descendants per node total scenarios
2 50, 000 50, 000
3 1, 000 1, 000, 000
5 1, 000 1012

Table 6.1: Testing problems setup for risk analysis

In all the testing cases, only three assets play a significant role in our portfolio:
ČEZ, PHILIP MORRIS ČR and TELEFÓNICA C.R.. We believe that this is
due to the good ratio of profit and variance for PHILIP MORRIS ČR and due to
the low variance of the other two assets. We will exclude all remaining assets from
our results to ease the orientation. We present the results without transaction
costs first, showing the optimal first-stage decisions for constant and growing
risk-aversion settings in Tables 6.2 and 6.3. The differences between the optimal
portfolios for 2, 3 or 5 stages are not substantial in the constant risk coefficients
setting. For variable risk aversion, we can see a slight movement to the riskier
asset in the first-stage decision, putting more weight to PHILIP MORRIS ČR.
This is expected as the risk settings target mostly the expectation part of our
recourse function in the first stage.

Next we show the optimal first-stage decisions with transaction costs of 0.3%
in the Tables 6.4 and 6.5. It should be noted that, in accordance with our
model, transaction costs have no effect in two-stage models. We observe that the
presence of the transaction costs reduces the differences found in the previous
case with varying risk coefficients. We believe that this follows from the fact
that varying risk coefficients require the investor to change the portfolio in every
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stages ČEZ PHILIP M. TELEFÓNICA
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)
3 0.0510 (0.0459) 0.3112 (0.0537) 0.6273 (0.0707)
5 0.0450 (0.0307) 0.3340 (0.0268) 0.6043 (0.0571)

Table 6.2: Optimal decisions (std. deviations) with ft = 0 and λt = 1
2

stages ČEZ PHILIP M. TELEFÓNICA
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)
3 0.0597 (0.0645) 0.3429 (0.0650) 0.5792 (0.0920)
5 0.0392 (0.0415) 0.4325 (0.0678) 0.4975 (0.0652)

Table 6.3: Optimal decisions (std. deviations) with ft = 0 and λt = t−1
T

stage significantly. However, with the transaction costs in mind, this could be
more expensive than the loss coming from holding slightly suboptimal, but stable
portfolio. The impact of the transaction costs should be weaker in cases where
stages cover longer time periods instead of just weeks.

stages ČEZ PHILIP M. TELEFÓNICA
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)
3 0.0405 (0.0279) 0.2977 (0.0322) 0.6438 (0.0409)
5 0.0643 (0.0208) 0.3115 (0.0231) 0.6149 (0.0323)

Table 6.4: Optimal decisions (std. deviations) with ft = 0.3% and λt = 1
2

stages ČEZ PHILIP M. TELEFÓNICA
2 0.0663 (0.0087) 0.3169 (0.0081) 0.6168 (0.0092)
3 0.0412 (0.0389) 0.3175 (0.0258) 0.6192 (0.0403)
5 0.0493 (0.0240) 0.3274 (0.0346) 0.6168 (0.0293)

Table 6.5: Optimal decisions (std. deviations) with ft = 0.3% and λt = t−1
T

The impact of adding more stages to the stage-wise independent model with
constant risk-aversion settings tends to be minimal. This could, however, be dif-
ferent in the fully general case. On the other hand, varying risk coefficients pro-
vide distinct solutions even with the independence assumption. In order to handle
more general models, we would need to employ complex estimation procedures
and some of the enhancements of the SDDP algorithm, such as autoregressive
process [49] or SDDP coupled with Markov chain [67].

6.2 Models comparison

The purpose of this section is to compare two different models, both based on
CVaR risk measure, and analyze their outputs under the changes of the proba-
bility distribution by contaminating the original one.

We used monthly price data of the most important assets traded on the Prague
Stock Exchange, January 2009 to February 2012 in the models (1.32) and (1.34).
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The data summary can be found in the Table 1.2. We have evaluated both models,
nested and multi-period, under two different distributions. First distribution, P,
is based on the input data. Second distribution, Q, is constructed from P by
increasing the variance by 20% to test the stability of our solutions. All other
technical details of our computations remain the same, we have repeated the
process 10 times and provide the mean of the obtained solutions as well as their
standard deviations. The CVaR levels αt were always set to 5%.

We evaluated the models with three different settings of the risk coefficients
λt = 0.1, λt = 0.2 and λt = t−1

T
, and under assumption of no transaction costs,

ft = 0%. We have considered three-stage model with 1, 000 descendants per node,
with a total of 1, 000, 000 scenarios.

The first stage decisions found for all considered setups of three-stage models
are listed in the Table 6.6. Most of the optimal portfolios contain only the best
performing assets - AAA, PEGAS and PHILIP MORRIS, some of them also con-
tain low variance assets of TELEFÓNICA and UNIPETROL. By comparing the
results, we think that both models are relatively stable with respect to variance
of the underlying distribution. Direct comparison of standard deviations shows
that the nested model provides more stable solutions and, moreover, the diversi-
fication of the portfolio seems to be better in the nested model. When increasing
the risk aversion coefficient λt, solutions become more stable in both nested and
multiperiod models. Therefore, a conclusion based on these illustrative results
would state that the nested model provides better diversification of assets in our
portfolios and better stability of the solutions with respect to the sample from
the true underlying distribution.
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Conclusion

We have presented three different multi-stage stochastic models based on multi-
period CVaR risk measures. Their basic properties and differences have been
discussed, with special attention to the time consistency property. Under the
assumption of stage-wise independence stochastic dual dynamic programming
algorithm is applied to models with a nested CVaR risk measure and multi-
period CVaR risk measure, and illustrative comparison of the first stage solutions
is given.

We have explained why the standard estimators for a policy value perform
poorly in the nested CVaR model and presented a new approach to compute
statistically valid upper bound, which is based on importance sampling. Under
relatively mild conditions our most widely applicable estimator provides much
better results than an existing estimator from the literature, in terms of reduced
bias, smaller variance, and viability in problems with more than a few stages.
We believe this type of estimator could be used to form better stopping rules for
SDDP-style algorithms and possibly other algorithms, too. Such stopping rules
allow for quantification of the quality of a solution coming from the algorithm,
which we see as important in practice.

We have further elaborated importance sampling scheme which can be used to
approximate functionals that incorporate risk via CVaR. Our sampling scheme
does not apply only to SDDP, but it can be used to tweak existing procedures
which rely on sampling in estimation of mean-CVaR objectives. With relatively
mild effort our approach provides significantly lower variance than a standard
Monte Carlo estimator.

In addition, our results are proven useful in the extension of contamination
technique to cover the large-scale cases where we are not able to solve the prob-
lem precisely, but we can obtain approximate solutions through SDDP. Since
the extension is based on lower and upper bounds from the SDDP algorithm,
it is essential to have tight upper bound estimators in order to get reasonable
contamination bounds. Numerical results with the asset allocation problem pro-
vide sufficiently tight bounds that can be used in practical applications to test
stability.

We have considered a simple stock asset allocation model for the multi-stage
setting and successfully employed the SDDP algorithm to solve it. We provide
results based on assets from US stock market and Prague Stock Exchange for var-
ious setups. Our results show that the nested model with constant risk-aversion
coefficients provides similar results in both two-stage and multi-stage settings. On
the other hand, it provides distinct behavior in the case when the risk coefficients
vary throughout the stages in order to represent more complicated investment
strategies. We have also evaluated the effect of transaction costs in our mod-
el and pointed out that their presence could draw the dynamic model behavior
closer to the static one. Comparison of the first stage decisions of nested and
multi-period CVaR models indicates that the nested model provides more stable
decisions with respect to the sample of the true underlying distribution.

Our models consider the case of convex combination of mean and CVaR,
but CVaR can be used as a building block for more complicated risk measures.
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Based on the nature of our procedures, we think that most of our results could be
extended in a straightforward manner to cover spectral risk measures based on
finite combination of CVaR. Some interesting examples could come from convex
combination of CVaR risk measures with different tail levels, such as 5% combined
with 1%. Another convex combination, which is called average absolute deviation
from median, can be found in Denneberg [24].

Future research could include further characterization of the statistical prop-
erties of the proposed upper bound estimators or could focus on the type of
approximation functions useful for the importance sampling schemes. Further
future work could include application of the upper bound estimator in other prob-
lem settings in which multi-stage stochastic programs see pervasive use, such as
hydroelectric scheduling under inflow uncertainty. We believe that other risk mea-
sures will lend themselves to our ideas, and developing and analyzing analogous
estimators is another topic for further research.

Our numerical experiments could be also enhanced to provide extensive com-
parison of all three presented models. With the assumption of stage-wise indepen-
dence, scenario reduction techniques should be studied in order to solve problems
with very large number of stages. More general structures without the stage-wise
independence assumption would provide another topic for further application of
our ideas. In such case, traditional SDDP algorithm does not apply and the pro-
cedures presented in this thesis should be further analyzed and possibly extended
to handle the general case.
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[43] HEITSCH, H. RÖMISCH, W. Scenario tree reduction for multistage stochas-
tic programs. Computational Management Science. 2009, vol. 6, pp. 117–133.

[44] HESTERBERG, T. C. Weighted average importance sampling and defensive
mixture distributions. Technometrics. 1995, vol. 37, pp. 185–194.

[45] HIGLE, J. L. and SEN, S.: Stochastic Decomposition: An Algorithm for
Two-Stage Linear Programs with Recourse. Mathematics of Operations Re-
search. 1991, vol. 16, pp. 650–669.

[46] HIGLE, J. L., RAYCO B. and SEN, S.. Stochastic scenario decomposition for
multistage stochastic programs. IMA Journal of Management Mathematics.
2010, vol. 21, pp. 39–66.

[47] HOMEM-DE-MELLO, T., DE MATOS, V. L. and FINARDI, E. C.: Sam-
pling strategies and stopping criteria for stochastic dual dynamic program-
ming: a case study in long-term hydrothermal scheduling. Energy Systems.
2011, vol. 2, pp. 1-31.

[48] IBM. IBM ILOG CPLEX Optimization Studio [software]. [cit. 2014-
04-14] Available at: http://www.ibm.com/software/integration/

optimization/cplex-optimization-studio/.

[49] INFANGER, G. and MORTON, D. P. Cut sharing for multistage stochas-
tic linear programs with interstage dependency. Mathematical Programming.
1996, vol. 75, pp. 241–256.

[50] KLEYWEGT, A. J., SHAPIRO, A. and HOMEM-DE-MELLO, T. The sam-
ple average approximation method for stochastic discrete optimization. SIAM
Journal on Optimization. 2001, vol. 12, pp. 479–502.

[51] KNOPP, R. Remark on algorithm 334 [G5]: normal random deviates. Com-
munications of the ACM. 1966, vol. 12, pp. 281.

[52] KOVACEVIC, R. and PFLUG, G.CH. Time consistency and information
monotonicity of multiperiod acceptability functionals. In: ALBRECHER, H.,
RUNGGALDIER,W. J. and SCHACHERMAYER, W., eds. Radon Series
on Computational and Applied Mathematics. 2009, pp. 1–23.

[53] KROKHMAL, P., ZABARANKIN, M. and URYASEV, S. Modeling and Op-
timization of Risk. Surveys in Operations Research and Management Science.
2011, vol. 16, pp. 49–66.

[54] KUPPER, M. and SCHACHERMAYER, W. Representation results for law
invariant time consistent functions. Mathematics and Financial Economics.
2009, vol. 2, pp. 189–210.

74

http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview
http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/


[55] L’ECUYER, P. L’Ecuyer random streams generator [software]. [cit. 2014-
04-14] Available at: http://www.iro.umontreal.ca/~lecuyer/myftp/

streams00/.

[56] LINOWSKY, K. and PHILPOTT, A. B. On the convergence of sampling-
based decomposition algorithms for multi-stage stochastic programs. Journal
of Optimization Theory and Applications. 2005, vol. 125, pp. 349–366.

[57] MARKOWITZ, H. M. Portfolio Selection. The Journal of Finance. 1952, vol.
7, pp. 77–91.

[58] MARKOWITZ, H. M. Portfolio Selection: Efficient Diversification of In-
vestments. New York: John Wiley & Sons, 1959.

[59] VON NEUMANN, J. and MORGENSTERN, O. Theory of Games and Eco-
nomic Behavior. Princeton: Princeton University Press, 1944.

[60] NICTA. Armadillo C++ linear algebra library [software]. [cit. 2014-04-14]
Available at: http://arma.sourceforge.net/.
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