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1. Introduction
Stability in probability theory refers to a property of probability distributions when a sum
of normalized, independent and identically distributed (i.i.d.) random variables has the same
distribution (up to scale and shift) no matter how many summands we consider. Random
variables with this property are called stable and they form a wide class of probability dis-
tributions. Except for one particular case, the Gaussian distribution, all stable distributions
are heavy tailed. The classical stability refers to stability under summation but the concept
can be extended onto other systems as well. Stability under maxima (or max-stability) leads
to heavy tailed distributions called generalized extreme value distributions; stability under
random summation where the number of summands is a random variable leads to heavy tailed
ν-stable distributions. Stability of discrete systems is a topic that has not been studied as
extensively as others but here also the discrete stable distributions exhibit heavy tails. It was
believed that the stability property and heavy tails are linked together. In this thesis we study
different generalizations of the concept of stability with main focus on discrete distributions
and we show that some generalized forms of stability lead to distributions with exponential
tails.

Introduced by Paul Lévy in (Lévy, 1925), stable distributions are a generalization of
Gaussian distribution in several ways. The theory of stable distributions was developed in
monographs by Lévy (1937) and Khintchine (1938), and further extended in the work by
Gnedenko and Kolmogorov (1949) and Feller (1970). There exist few equivalent definitions
of stable distributions. Paul Lévy defined stable distributions by specifying their charac-
teristic function. For that he used the Lévy-Khintchine representation of infinitely divisible
distributions. Second definition is connected to the “stability” property – a sum of stable
random variables is again a stable random variable, a well known property of Gaussian ran-
dom variables. Third is the generalized central limit theorem – stable distributions appear as
a limit of sums of independent and identically distributed random variables without the stan-
dard assumption of the central limit theorem about finite variance. This result generalizes the
central limit theorem and is due to Gnedenko and Kolmogorov (1949). Gaussian distribution
is a special (limit) case of stable distributions, the only stable law with finite variance. Recent
and extensive overview of the theory of stable random variables can be found in Zolotarev
(1986), Uchaikin and Zolotarev (1999) and Samorodnitsky and Taqqu (1994).

The problem of sums of random number of random variables and the asymptotic behaviour
of these random sums was first considered by Robbins (1948), who showed that a random sum
of independent Gaussian random variables converges to a mixture of normal laws. General
asymptotic theory of random sums of random variables was introduced in Gnedenko (1983).
The analogies of stable and infinitely divisible distributions under random summation were
first introduced by Klebanov et al. (1985). Specifically, the number of summands was assumed
to be geometrically distributed. Klebanov et al. (1987) investigated more general summation
schemes, but general theory was obtained later – Klebanov and Rachev (1996) generalized the
theory of random stability for arbitrary distribution of the number of summands ν by intro-
ducing ν-infinitely divisible and ν-stable distributions. They described all random variables ν
admitting an analogy of the Gaussian distribution under the random summation of ν random
variables. Independently, Bunge (1996) and Gnedenko and Korolev (1996) obtained almost
equivalent results by introducing random stability and random summation schemes. Finally,
Klebanov et al. (2012) considered ν-stable distributions generated by summations with ratio-



1 Introduction 2

nal generating functions and introduced a new class of distributions with generating functions
connected to Chebyshev polynomials.

The special case of geometric stable distributions has received a lot of attention thanks
to their applicability in the construction of financial models. A nice overview of the re-
sults connected to the geometric stable laws was given by Kozubowski and Rachev (1999).
Special cases of geometric stable distributions such as Linnik distribution or Mittag-Leffler
distribution have been considered separately in literature with no connection to geometric
stability. Linnik distribution was introduced by Linnik (1953). Linnik used these distribu-
tions as a tool in a study of characteristic functions. Devroye (1990) showed that Linnik
random variable is a mixture of stable and exponential random variables. Anderson (1992)
studied multivariate case of the Linnik distribution and a method of parameters estimation;
Anderson and Arnold (1993) studied discrete time stochastic processes with stationary Linnik
distribution. Kotz and Ostrovskii (1996) showed a mixture representation for the densities
of Linnik distribution. Erdoğan and Ostrovskii (1998) considered the asymmetric version of
Linnik distribution that coincides with the geometric stable distribution of Klebanov et al.
(1985). The Mittag-Leffler distribution was introduced in Pillai (1990) and studied further in
Lin (1998) where the tail behaviour and moments of the distribution were investigated.

All distributions we mentioned until now are continuous distributions. In many practical
applications continuous distributions are often preferred over discrete distributions because
they offer more flexibility. There are however cases of practical applications where one need
to describe heavy tails in discrete data. Citations of scientific papers (first observed by Price
(1965)), word frequency (Zipf (1949)) and population of cities are all well known examples of
discrete data with power tails. A simple discrete power law distribution was introduced by
Zipf (1949) and relied on the zeta function (therefore called Zipf or zeta distribution).

Another possibility is to consider discrete variants of stable and ν-stable distributions.
The notion of discrete stability for lattice random variables on non-negative integers was
introduced in Steutel and van Harn (1979). They introduced so called binomial thinning
operator ⊙ for normalization of discrete random variables. That means that instead of stan-
dard normalization aX by a constant a ∈ (0, 1), they consider a ⊙ X =

∑X
i=1 ǫi, where ǫi

are i.i.d. random variables with Bernoulli distribution with parameter a. As opposed to the
standard normalization, this thinning operation conserves the integral property of a discrete
random variable X. Together with a study of discrete self-decomposability they obtained
the form of generating function of such discrete stable distributions. By considering only
non-negative discrete random variables, they obtained a discrete version of α-stable distri-
butions that are totally skewed to the right. Moreover, the construction allows the index of
stability α only smaller or equal to one. Devroye (1993) studied three classes of discrete distri-
butions connected to stable laws, one of them being the discrete stable distribution. Devroye
(1993) derived distributional identities for these distributions offering a method for generating
random samples. Christoph and Schreiber (1998) studied discrete stable distributions more
into details, offering formulas for the probabilities as well as their asymptotic behaviour. They
showed that the discrete stable distribution belongs to the domain of normal attraction of
stable distribution totally skewed to the right with index of stability smaller than one. The
non-existence of a closed form formula of the probability mass function and non-existence of
moments implies that the classical parameter estimation procedures such as maximum likeli-
hood and method of moments cannot be applied. Marcheselli et al. (2008) and Doray et al.
(2009) suggested some methods of parameter estimation of the discrete stable family based
on the empirical characteristic function or on the empirical probability generating function.
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Discrete stable distributions in limit sense on the set of all integers were introduced in
Klebanov and Slámová (2013). Two new classes of discrete distributions were introduced,
generalizing the definition of discrete stable distribution of Steutel and van Harn (1979) on
random variables on the set of all integers. It was shown that the newly introduced sym-
metric discrete stable distribution can be considered a discrete analogy of symmetric α-stable
distribution with index of stability α ∈ (0, 2], whereas the introduced discrete stable distri-
bution for random variables on Z can be viewed as a discrete analogy of α-stable distribution
with index of stability α ∈ (0, 1) ∪ {2} and with skewness β. Slámová and Klebanov (2012)
gave two distributional identities for the symmetric discrete stable and discrete stable random
variables, allowing for simple random generator. Possible estimation procedures for the class
of discrete stable laws were also considered.

Discrete distribution connected to geometric stable distributions were also studied. For
example Pillai and Jayakumar (1995) introduced a discrete analogy of the Mittag-Leffler dis-
tribution that is also geometrically infinitely divisible. In this thesis we will show, that
similarly as Mittag-Leffler distribution is a special case of geometric stable distribution, the
discrete Mittag-Leffler distribution is a special case of the discrete analogy of ν-stable distri-
bution. Discrete Linnik distribution was introduced in Devroye (1993).

The aim of this thesis is to study different generalizations of the strict stability property
with a particular focus on discrete distributions with some form of stability property. The
starting point of the thesis are discrete stable distributions introduced in Steutel and van Harn
(1979). Their definition of discrete stability is a simple generalization of the classical stabil-
ity property where they consider only one type of thinning operator. The classical stability
property can be formulated in several equivalent ways and our aim is to study generalizations
of these equivalent definitions for the discrete case. We propose three definitions of discrete
stability for random variables on non-negative integers. The main focus is on the first defini-
tion that generalizes the definition of Steutel and van Harn (1979) by allowing the thinning
operator to be an arbitrary distribution satisfying certain condition. We introduce also the
symmetric and asymmetric variant of discrete stable distribution. The definition of discrete
stability on all integers, similarly as in Klebanov and Slámová (2013), is possible only in the
limit sense. The generalized definition of discrete stability showed applicable for continuous
random variables as well. If we replace the classical normalization in the definition of sta-
bility by a random normalization, as is done in the case of discrete stability, a generalized
definition of stability for continuous random variables is obtained. We call this generalized
stability property “casual stability”. We study this property and we show that many probabil-
ity distributions are in fact casual stable, including geometric distribution, negative binomial
distribution, gamma distribution, tempered stable distribution and Laplace distribution. This
is a surprising result as it shows that even distributions with exponential tails are in some
sense stable.
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Outline of the thesis

The thesis is divided into two parts. Part I gathers the theoretical results about different
generalizations of stability property, Part II includes some application of discrete stable dis-
tributions introduced in Part I.

Chapter 2 serves as a review of definitions and basic results about stable distributions
following Samorodnitsky and Taqqu (1994); discrete stable distributions following the pa-
pers by Steutel and van Harn (1979) and Klebanov and Slámová (2013) and ν-stable distri-
butions following Klebanov and Rachev (1996). Chapter 3 follows Slámová and Klebanov
(2014a) and focus on three discrete approximations of stable distributions. By approximat-
ing the characteristic function of stable distribution discrete distributions with the same tail
behaviour are obtained. These distributions coincide with the discrete stable distributions
introduced in Klebanov and Slámová (2013). We show that by truncating and tempering
the tails we obtain yet another discrete approximation of stable distributions with Gaussian
and exponential tails. Another discrete distribution is obtained by discretizing the Lévy
measure of stable distribution. In Chapter 4 three possible definitions of discrete stability
for non-negative integer-valued random variables are given. These definitions consider dif-
ferent approaches to introducing discrete stability, each of them being a discrete version of
a different definition of stability in the usual sense. The first definition generalizes the ap-
proach taken by Steutel and van Harn (1979) and considers a general thinning operator to
normalize the sum of discrete random variables. The second definition takes the opposite
path and uses a general so called portlying operator to normalize discrete random variables.
The last approach combines the two definitions and as it turns out includes the previous two
definitions. Examples of the thinning and portlying operators for which a positive discrete
stable random variable exists are provided. Chapter 5 is dedicated to study of analytical
properties of discrete stable distributions in the first sense. The study is focused mainly
on the class of distributions connected to modified geometric thinning operator and we give
results on characterizations, probabilities, moments, limiting distributions and asymptotic
behaviour for positive and symmetric discrete stable random variables. The last Section of
this Chapter gives also some results on properties of positive discrete stable random variables
with Chebyshev thinning operator. Casual stable distributions are studied in Chapter 6,
following Klebanov and Slámová (2014). Formal definitions are given and it is shown that
many distributions, both continuous and discrete, are casual stable. Of course positive stable
and positive discrete stable random variables are casual stable, but surprisingly also their
tempered variants that have exponential tails are casual stable as well. A limit theorem for
convergence to casual stable random variable is also given. In Chapter 7 a discrete analogy of
ν-stable distributions is introduced. The ν-discrete stable distribution is defined in a similar
way ν-stable distributions were defined in Klebanov and Rachev (1996); and a special case of
these distributions connected to geometric summation scheme is studied.

The second Part of this thesis is dedicated to applications of discrete stable distributions.
Chapter 8 focuses on rating of scientific work and a model for number of paper citations leading
to discrete stable distribution is introduced. Chapter 9 concerns a method of estimation of
parameters of the discrete stable family. Similarly as stable laws, discrete stable distributions
are defined through characteristic function and do not posses a probability mass function
in a closed form. This inhibit the use of classical estimation methods such as maximum
likelihood and other approach has to be applied. This method departs from the H-method
of maximum likelihood suggested by Kagan (1976) where the likelihood function is replaced
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by a function called informant (which is, essentially, a score function), an approximation of
the likelihood function in some Hilbert space. For this method only some functionals of the
distribution are required, such as a probability generating function or a characteristic function.
This method is adopted for the case of discrete stable distributions and in a simulation study
the performance of this method is shown. Chapter 10 is devoted to a financial application
of discrete stable distributions. A new NGARCH model with tempered discrete stable and
approximated discrete stable distributed innovations is introduced. The performance of this
new model on market data of index S&P 500 and options on this index is considered. The
Chapter is concluded by the study of option traders’ market sentiment incorporated in the
option prices. By comparing the relatively calm recent period in March 2014 with a volatile
period at the beginning of the financial crisis in September 2008, and by studying the possible
large losses expressed via Value at Risk, the data indicate that the market is still heavy-tailed
with a possibility of big losses, however this risk decreased significantly since 2008.



Part I

Generalized definitions of stability



2. Mathematical preliminaries
This Chapter serves as an introductory text to the theory of stable and discrete stable distri-
butions. We give the definitions and summarize known results from the literature.

2.1 Stable distributions

First introduced in 1920s and 1930s by Lévy and Khintchine, the theory of stable dis-
tributions is very wast and there exist many publications covering the topic. The classi-
cal references include Gnedenko and Kolmogorov (1954), Feller (1970) Zolotarev (1986) and
Samorodnitsky and Taqqu (1994). Stable distributions can be defined in several equivalent
ways. We will focus only on strictly stable distributions.

Definition 2.1. A random variable X is said to have a strictly stable distribution if for any
positive numbers a, b, there exists a positive number c such that

(2.1) aX1 + bX2
d
= cX,

where X1 and X2 are independent copies of X and where
d
= denotes equality in distribution.

A random variable X is called symmetric stable if its distribution is symmetric, i.e. X and
−X have the same distribution.

Feller (1970) showed that for a stable random variable X there exists a number α ∈ (0, 2]
such that the number c in (2.1) satisfies

cα = aα + bα.

The number α is called index of stability. Second equivalent definition relates to the so called
stability property of a stable random variable, where a normalized sum of independent copies
of X have then same distribution as X.

Definition 2.2. A random variable X is said to be strictly stable, if for any n ≥ 2 there
exists a constant an > 0 such that

(2.2) X
d
= an

n∑

i=1

Xi,

where X1, . . . , Xn are independent copies of X.

This definition can be rewritten in a slightly modified form.

Definition 2.3. A random variable X is said to be strictly stable, if for any n ≥ 2 there
exists a constant An > 0 such that

(2.3) AnX
d
=

n∑

i=1

Xi,

where X1, . . . , Xn are independent copies of X.
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The equivalence of Definition 2.3 and Definition 2.1 was shown, for example, in Feller
(1970). As Feller (1970) also showed, the index of stability α satisfies an = n−1/α and
An = n1/α.

The proof that the following definition of stable distribution is equivalent to the previous
definitions is more complicated and can be found for example in Gnedenko and Kolmogorov
(1954) or Klebanov (2003). The proof is based on the infinite divisibility of stable distribution
and the Lévy-Khintchine representation of infinitely divisible distribution.

Definition 2.4. A random variable X is said to have a stable distribution if there is a quadru-
ple of parameters (α, β, σ, µ) with α ∈ (0, 2], β ∈ [−1, 1], σ > 0 and µ ∈ R, such that the
characteristic function of X given as f(t) = EeitX has the following form:

(2.4) f(t) =





exp
{−σα|t|α (1 − iβsign(t) tan πα

2

)
+ iµt

}
, α 6= 1,

exp
{

−σα|t|
(
1 + iβ 2

π sign(t) log |t|
)

+ iµt
}
, α = 1.

X is strictly stable if (2.4) holds with µ = 0.

Since every stable distribution can be characterized by the four parameters α, β, σ, µ, we
will denote stable distribution and random variable by S(α, β, σ, µ). The parameter α is the
index of stability, β is the skewness parameter, σ is the scaling parameter and µ is the location
parameter. If β > 0 the distribution is skewed to the right, while it is skewed to the left if
β < 0 and symmetric if β = 0. If β = 1 or β = −1 we say that X is totally skewed to the
right or to the left respectively. The support of stable distribution is R, unless β = ±1 and
α < 1. In that case the support of the distribution is a half-line.

All stable distributions are absolutely continuous and have densities, however only in some
special cases the densities are known in closed form. These include the Gaussian distribution
S(2, 0, σ, µ), the Cauchy distribution S(1, 0, σ, µ) and the Lévy distribution S(1

2 , 1, σ, µ).
The last definition of stability states that stable distributions appear as the only limits of

normalized sums of independent and identically distributed (i.i.d.) random variables.

Definition 2.5. A random variable X is said to have a stable distribution if it has a domain
of attraction, i.e. if there exists a sequence of i.i.d. random variables Y1, Y2, . . . , and a sequence
of positive numbers {an} and real numbers {bn}, such that

Y1 + Y2 + · · · + Yn

an
+ bn

d−→ X.

The notation
d−→ denotes here and further in the thesis convergence in distribution. The

random variable is strictly stable if the above holds with {bn} identically equal to zero for all
n.

The proof of the equivalence relationship between this Definition 2.5 and Definition 2.2
can be found, for example, in Gnedenko and Kolmogorov (1954). One of the implications is
straighforward as it is enough to take Yis to be independent copies of X. The definition of
domain of normal attraction is of special interest.

Definition 2.6. We say the the random variables Yis belong to the domain of normal attrac-
tion of random variable X when an = n1/α.
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2.1.1 Properties

In this Section we provide some basic properties of stable laws. The proofs can be found in
Samorodnitsky and Taqqu (1994).

Property 2.7. Let X1 and X2 be independent random variables with Xi ∼ S(α, βi, σi, µi),
i = 1, 2. Then X1 +X2 ∼ S(α, β, σ, µ), with

σ = (σα
1 + σα

2 )1/α , β =
β1σ

α
1 + β2σ

α
2

σα
1 + σα

2

, µ = µ1 + µ2.

Property 2.8. Let X ∼ S(α, β, σ, µ). Let a be a real constant. Then

aX ∼ S(α, sign(a)β, |a|σ, aµ), α 6= 1,

aX ∼ S(1, sign(a)β, |a|σ, aµ− 2
πa(log |a|)σβ), α = 1.

Property 2.9. Let α ∈ (0, 2). Then X ∼ S(α, β, σ, 0) if and only if −X ∼ S(α,−β, σ, 0).

Property 2.10. Let X ∼ S(α, β, σ, µ). Then X is symmetric if and only if β = 0 and µ = 0.

Property 2.11. Let X be S(α, β, σ, 0) with α ∈ (0, 2)\{1}. Then there exist two i.i.d. random
variables Y1 and Y2 with common distribution S(α, 1, σ, 0) such that

X
d
=

(
1 + β

2

)1/α

Y1 −
(

1 − β

2

)1/α

Y2.

Property 2.12. Let X ∼ S(α, 1, σ, 0). Then the Laplace transform of X, defined as L(u) =
Ee−uX , takes the following form:

L(u) =





exp
{

− σα

cos πα
2

uα
}
, α 6= 1,

exp
{
σ 2

πu log u
}
, α = 1.

The following property describes the tail behaviour of stable distribution. The tails are
heavy with index α, meaning that they decay polynomially with rate α.

Property 2.13. Let X ∼ S(α, β, σ, µ) with 0 < α < 2. Then

lim
λ→∞

λαP(X > λ) = Cα
1 + β

2
σα,

lim
λ→∞

λαP(X < −λ) = Cα
1 − β

2
σα,

where Cα = 1−α
Γ(2−α) cos(πα/2) if α 6= 1, and Cα = 2/π if α = 1.

The heaviness of tails leads to non-existence of finite moments of order p < α.

Property 2.14. Let X ∼ S(α, β, σ, 0) with α ∈ (0, 2). Then

E|X|p < ∞, for any 0 < p < α,

E|X|p = ∞, for any p ≥ α.
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2.2 Discrete stable distributions

We can rewrite the Definition 2.1 with c = 1 as X
d
= aX1 + (1 − aα)1/αX2. To define discrete

stability, one need a different normalization as the normalization by a (where a < 1) does not
preserve integers. Steutel and van Harn (1979) thus introduced binomial thinning operator
⊙ on non-negative integer-valued random variables as

p⊙X =
X∑

i=1

εi,

where εi are i.i.d. Bernoulli random variables with P(εi = 1) = 1 − P(εi = 0) = p.

Definition 2.15 (Steutel and van Harn (1979)). A non-negative integer-valued random vari-
able X is said to be positive discrete stable with parameter γ if there exists a constant
a ∈ (0, 1) such that

(2.5) a⊙X1 + (1 − aγ)1/γ ⊙X2
d
= X,

where X1, X2 are independent copies of X.

This definition can be equivalently reformulated to obtain an analogy of the Definition 2.2,
stating that X is positive discrete stable random variable, if for all n ∈ N there is a constant
pn ∈ (0, 1) such that

(2.6) X
d
=

n∑

i=1

pn ⊙Xi,

where X1, X2, . . . are independent copies of X.

Remark 2.16. Steutel and van Harn (1979) used term discrete stable random variable in-
stead of positive discrete stable but the former term will be reserved for the general case
of random variables on Z. This terminology was used in Slámová and Klebanov (2012) and
already adopted by Barabesi and Pratelli (2014).

Steutel and van Harn (1979) showed that the probability generating function of a positive
discrete stable random variable X, defined as P(z) = EzX , takes the following form:

P(z) = exp {−λ(1 − z)γ} , γ ∈ (0, 1], λ > 0.

Poisson random variable is a special case of positive discrete stable random variable with
γ = 1. Discrete stable distribution is infinitely divisible and it is in fact compound Poisson
distribution. We can write a positive discrete stable random variable X with parameters γ
and λ as a random sum

X
d
=

N∑

i=1

Yi,

where N is a Poisson random variable with parameter λ and Y1, Y2, . . . are i.i.d. random
variables with probability generating function

PY (z) = 1 − (1 − z)γ .

Discrete distribution with this probability generating function is called Sibuya distribution.
Devroye (1993) showed a useful stochastic representation of a positive discrete stable

random variable.
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Theorem 2.17. A positive discrete stable random variable with parameters γ, λ is distributed
as a Poisson random variable with parameter λ1/γSγ, where Sγ is a positive stable random
variable with Laplace transform exp{−uγ}.

Klebanov and Slámová (2013) introduced a generalization of the definition (2.6) by con-
sidering integer-valued random variables – both symmetric and asymmetric. The symmetric
discrete stable distribution was defined as follows.

Definition 2.18. A symmetric integer-valued random variable X is said to be symmetric
discrete stable if there exists a sequence {pn} ∈ (0, 1), pn ց 0, such that

(2.7) X
d
= lim

n→∞

n∑

i=1

X̃i(pn), where X̃(p) =

|X|∑

j=1

εj ,

where εj are i.i.d. random variables with two-sided Bernoulli distribution, i.e. P(ε = ±1) = p
and P(ε = 0) = 1 − 2p, and X1, X2, . . . are independent copies of X.

We showed that this definition leads to a distribution with probability generating function

P(z) = exp

{
−λ

(
1 − 1

2

(
z +

1

z

))γ}
, γ ∈ (0, 1], λ > 0.

The characteristic function takes form f(t) = exp{−λ(1 − cos t)γ}. It was shown that sym-
metric discrete stable distribution is a discrete analogy of the symmetric α-stable distribution
with α = 2γ in the following sense: let X be a symmetric discrete stable random variable
and let a > 0. Consider a random variable Xa = aX taking values in aZ = {0,±a,±2a, . . . }
and let λ ≈ a−2γ . Then Xa d→ S(2γ, 0, τ, 0). Slámová and Klebanov (2012) gave a stochastic
representation of a symmetric discrete stable random variable X.

Theorem 2.19. A symmetric discrete stable random variable with parameters γ, λ is dis-
tributed as a compound Poisson random variable with intensity λ1/γSγ and jumps taking
values ±1 with the same probability, and where Sγ is a positive stable random variable with
Laplace transform exp{−uγ}.

The asymmetric discrete stable distribution was also defined by Klebanov and Slámová
(2013).

Definition 2.20. An integer-valued random variable X is said to be discrete stable if there

exist sequences {p(1)
n }, {p(2)

n } ∈ (0, 1), p
(1)
n ↓ 0, p

(2)
n ↓ 0, such that

(2.8) X
d
= lim

n→∞

n∑

i=1

X̄i

(
p(1)

n , p(2)
n

)
, where X̄i

(
p(1)

n , p(2)
n

)
=

X+

i∑

j=1

ε
(i)
j (p(1)

n ) −
X−

i∑

j=1

ǫ
(i)
j (p(2)

n ),

where ε
(i)
j (p), ǫ

(i)
j (p) are i.i.d. random variables with Bernoulli distribution, i.e. P(ε

(i)
j (p) =

1) = P(ǫ
(i)
j (p) = 1) = 1 − P(ε

(i)
j (p) = 0) = 1 − P(ǫ

(i)
j (p) = 0) = p, and X1, X2, . . . are

independent copies of X.

Remark 2.21. Barabesi and Pratelli (2014) used the name asymmetric discrete stable for
this distribution.
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This definition leads to a distribution with probability generating function

P(z) = exp {−λ1 (1 − z)γ − λ2 (1 − 1/z)γ} , γ ∈ (0, 1], λ1, λ2 > 0.

The case of γ = 1 corresponds to a distribution known as Skellam distribution, as it was
introduced by Skellam (1946) as a difference of two independent Poisson random variables
with parameters λ1 and λ2 respectively.

It was shown that discrete stable distribution is a discrete analogy of the α-stable distri-
bution with α = γ for γ ∈ (0, 1) and α = 2 for γ = 1. It follows directly from the probability
generating function that a discrete stable random variable can be represented as a difference
of two positive discrete stable random variables.

2.3 ν-stable distributions

The general theory of stability of sums of random number of random variables was introduced
in Klebanov and Rachev (1996). They introduced the concept of ν-infinitely divisible and ν-
stable distributions. Their approach generalized the class of geometric infinitely divisible and
geometric stable distributions that were introduced in Klebanov et al. (1985). Special cases
of geometric stable distributions are Mittag-Leffler distribution and Linnik distribution.

We review here the definitions and results obtained by Klebanov et al. (1985), followed by
Klebanov and Rachev (1996) and Klebanov et al. (2012) . Let X1, X2, . . . be a sequence of
i.i.d. random variables. Let us assume that {νp, p ∈ ∆},∆ ⊂ (0, 1), is a family of non-negative
integer-valued random variables that are independent of the sequence {Xi, i = 1, 2, . . . }. We
will further assume that Eνp exists and that Eνp = 1/p for all p ∈ ∆. We remind that
a random variable Y is called infinitely divisible if for all n ∈ N there exists a sequence of
i.i.d. random variables X1, . . . , Xn, such that

Y
d
= X1 +X2 + · · · +Xn.

The definition of ν-infinitely divisible distribution is as follows.

Definition 2.22. A random variable Y is called ν-infinitely divisible if for any p ∈ ∆ there

exists a sequence of i.i.d. random variables {X(p)
j , j = 1, 2, . . . } independent of νp such that

(2.9) Y
d
=

νp∑

j=1

X
(p)
j .

A special case of infinite divisible distribution is a Gaussian distribution, and the ν-
Gaussian analogy is of particular interest as well.

Definition 2.23. A random variable X is called strictly ν-Gaussian, if EX = 0,EX2 < ∞
and for all p ∈ ∆

X
d
= p1/2

νp∑

j=1

Xj ,

where X1, X2, . . . are independent copies of X, moreover independent of {νp, p ∈ ∆}.
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Let us denote by Pp the probability generating function of νp and by P a semigroup with
operation of superposition ◦ generated by the family {Pp, p ∈ ∆}.

Theorem 2.24. A strictly ν-Gaussian random variable X exists if and only if the semigroup
P is commutative.

Let us consider the following system of functional equations (that appears in the proof of
Theorem 2.24):

ϕ(t) = Pp
(
ϕ(t)

)
for all p ∈ ∆(2.10)

with initial conditions

ϕ(0) = 1,

ϕ′(0) = −1.

The equation (2.10) is called Poincaré equation. If the semigroup P is commutative, then
this system has a unique solution (for proof, see for example Gnedenko and Korolev (1996)).

The following theorem shows a one-on-one map relationship between infinitely divisible
distributions and ν-infinitely divisible distributions.

Theorem 2.25. A characteristic function g is ν-infinitely divisible if and only if it is repre-
sentable in the form of

(2.11) g(t) = ϕ(− log f(t)),

where f(t) is an infinitely divisible characteristic function and ϕ is a standard solution of
(2.10).

The previous theorem is a corner stone for defining strictly ν-stable distribution.

Definition 2.26. A function g(t) is called a ν-stable (strictly ν-stable) characteristic function
if it admits representation (2.11) in which ϕ is a standard solution of (2.10) and f(t) is the
characteristic function of a stable (strictly stable) distribution.

Example 2.27 (Classical summation scheme). If we consider νp to be deterministic, namely
νp = 1

p with probability 1 and p ∈ ∆ = {1/n, n ∈ N}, we obtain the classical stability. We

have Pp(z) = z1/p, and obviously P is commutative as Pp1
◦ Pp2

(z) = z1/(p1p2). The Poincaré
equation (2.10) takes form

ϕ(t) = ϕn(t/n),

which has solution ϕ(t) = exp{−t}. Therefore via the one-on-one map (2.11), for strictly
stable characteristic function f we obtain strictly ν-stable characteristic function g(t) = f(t).

Example 2.28 (Geometric summation scheme). Assume that νp is a geometric random
variable with parameter p: P(νp = k) = p(1−p)k−1, k ∈ N. We have Pp(z) = pz/(1−(1−p)z).
We can easily see that Pp1

◦ Pp2
(z) = p1p2/(1 − (1 − p1p2)z) and therefore the semigroup

generated by {Pp} is commutative. The equation (2.10) takes form

ϕ(t) =
p0ϕ(p0t)

1 − (1 − p0)ϕ(p0t)
.
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The solution of this equation is the Laplace transform of exponential distribution,

ϕ(t) =
1

1 + t
.

Therefore the geometric stable distribution has characteristic function

g(t) =
1

1 − log f(t)
,

where f(t) is the characteristic function of stable distribution. As a special case we obtain
ν-analogy of Gaussian distribution with characteristic function 1/(1 + at2) which correspond
to the Laplace distribution.

Example 2.29 (Chebyshev summation scheme). This example was obtained by Klebanov et al.
(2012). Let us assume that the number of summands νp, p ∈ ∆, with ∆ = {1/n2, n ∈ N},
comes from a distribution with probability generating function

Pp(z) =
1

T1/
√

p(z)
, p ∈ ∆,

where Tn(x) is the Chebyshev polynomial of degree n, defined as Tn(x) = cos(n arccos(x)).
Chebyshev polynomials are commutative, as Tn ◦Tm(x) = Tm ◦Tn(x), therefore the semigroup
P is commutative as well. The Poincaré equation (2.10) has a solution

ϕ(t) =
1

cosh(
√

2t)
,

satisfying the initial conditions. The ν-Gaussian random variable has characteristic function

g(t) =
1

cosh(at)
,

corresponding to hyperbolic secant distribution.



3. Discrete approximations of
stable distributions
Stable distributions are on the rise in financial applications since Mandelbrot (1963) noted
that Gaussian distribution does not provide a good fit for financial returns that exhibit lep-
tokurtic behaviour and heavy tails. We say that a distribution has heavy tails if the variance
of the distribution is not finite. However, the infinite variance of stable distributions and
the fact that financial returns have heavier tails on a short time scale and almost Gaus-
sian on a long scale brings into question the appropriateness of the stable model of returns.
Grabchak and Samorodnitsky (2010) studied this paradox and suggested that a more ap-
propriate model for financial returns is obtained by tempering of tails of a heavy tailed
distribution to get a distribution that behaves like the original heavy tailed in the middle
but whose tails are exponential. They show, using the pre-limit theorem by Klebanov et al.
(1999), that the sum of a large number of independent and identically distributed random
variables behave as a stable random variable even though the tails of the random variables
are not heavy.

Stable distributions with exponentially tempered tails have been considered in the lit-
erature under different names – truncated Lévy flights (Koponen (1995)), CGMY model
(Carr et al. (2002)) and finally tempered stable distributions (Rosiński (2007)). Tempered
stable distributions appear by exponential tilting of the Lévy measure of stable distributions.
The resulting distributions have finite moments of any order and exponential tails. Another
variant of stable distribution with Gaussian tails was introduced in Menn and Rachev (2009).
The smoothly truncated stable density corresponds to that of a Gaussian distribution on
the tails and to that of a stable distribution in the centre, with additional conditions on the
smoothness of the distribution function.

In this Chapter, we focus on discrete approximations of stable distributions with heavy,
exponential and Gaussian tails and therefore offer an alternative to the stable, tempered sta-
ble and smoothly truncated stable distributions respectively. In the first and second Sections,
we introduce two approximations of the stable characteristic function leading to discrete dis-
tributions that were introduced in Klebanov and Slámová (2013). Also we study two different
approximations with Gaussian and exponential tails, appearing as a result of truncation and
tempering the heavy tails of the discrete stable distributions. In the third Section, we study
a discrete approximation resulting from discretizing the Lévy measure of stable distributions.
We obtain a discrete distribution that allows for the tail index to be an arbitrary positive
number (in this case it is not index of stability, because these distributions are not stable).

This Chapter contains results from Slámová and Klebanov (2014a).

3.1 First approximation

Let us first consider the case of symmetric α-stable distributions. Their characteristic func-
tions are given by the following formula

f(t) = exp {−σα|t|α} ,
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with α ∈ (0, 2] being the index of stability and σ > 0 being the scaling parameter. For
arbitrary t we write |t|α = (t2)γ , where γ = α/2. Let us use the following approximation. We
have

t2 = lim
a→0

2

a2
(1 − cos(at)),

therefore let us write t2 ≈ 2
a2 (1 − cos(at)), as a → 0. Hence the characteristic function of

symmetric α-stable distribution can be approximated as

log f(t) = −σα|t|α ≈ log g(t, a) = −σ2γ 2γ

a2γ
(1 − cos(at))γ ,

for small values of a.

Lemma 3.1. The function

g(t, a) = exp

{
−σ2γ 2γ

a2γ
(1 − cos(at))γ

}

is a characteristic function of a distribution given on the lattice aZ = {0,±a,±2a, . . . } for
any positive a.

Proof. We can rewrite g(t, a) as g(t, a) = exp{−λ(1 − h(t, a))}, where

h(t, a) = 1 − (1 − cos(at))γ =
∞∑

k=1

(
γ

k

)
(−1)k−1 cos(at)k.

The series coefficients are positive for γ ∈ (0, 1], moreover h(0, a) = 1, h(t, a) is periodic with
period 2πa, hence the function h(t, a) is a characteristic function of a random variable on
aZ. Therefore g(t, a) is a characteristic function of compound Poisson random variable with
intensity of jumps λ and jumps in aZ with characteristic function h(t, a).

It is clear that
lim
a→0

g(t, a) = f(t),

and therefore g(t, a) can be considered as a discrete approximation of f(t) for a sufficiently
small a. This distribution with a = 1 was introduced in Klebanov and Slámová (2013) by
considering a discrete analogy of the stability property X = n−1/α(X1 +X2 + · · · +Xn) and
called symmetric discrete stable (SDS) distribution.

It is obvious from the construction of γ-symmetric discrete stable distribution that it be-
longs to the domain of normal attraction of 2γ-stable distribution. From the known characteri-
zation of the domain of attraction of stable distributions (see, for example, Ibragimov and Linnik
(1971)), a SDS random variable must satisfy the following tail assumptions as x → ∞

(3.1) lim
x→∞

x2γP(|X| > x) =




λa2γ

2γ
1

Γ(1−2γ) cos(πγ) , if γ 6= 1
2 ,

λa2γ

2
2
π , if γ = 1

2 .

So far we have introduced a discrete approximation of the symmetric α-stable distribution
that has the same tail behaviour. Another approximation leading to a distribution with
Gaussian tails can be obtained in the following way. Let us consider a function

g(t, a,M) = exp

{
−λ

M∑

k=1

(−1)k

(
γ

k

)
cos(at)k + λ

M∑

k=1

(−1)k

(
γ

k

)}
.
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For sufficiently large values of M this function can be considered an approximation of the
function g(t, a), as

lim
M→∞

g(t, a,M) = g(t, a).

So it is also a discrete approximation of symmetric α-stable distribution, as

lim
a→0

lim
M→∞

g(t, a,M) = f(t).

However, we cannot exchange the order of the limits.
Both characteristic functions g(t, a) and g(t, a,M) are infinitely divisible as they corre-

spond to compound Poisson distributions. The distributions of jumps are given by h(t, a) =
1 − (1 − cos(at))γ and h(t, a,M) = 1 −∑M

k=1(−1)k
(γ

k

)
cos(at)k +

∑M
k=1(−1)k

(γ
k

)
respectively.

It can be verified that these distributions have no mass at 0 and the second distribution has
truncated jumps in absolute value larger than aM . We will call the distribution given by
characteristic function g(t, a,M) approximate symmetric discrete stable distribution.

The characteristic function is an entire function hence the tails of the approximate sym-
metric discrete stable distribution behave like o(exp(−bx)), as x → ∞, for all b > 0 by the
Raikov’s theorem (see, for example, Linnik (1964)). The approximate symmetric discrete sta-
ble distribution thus belongs to the domain of normal attraction of Gaussian distribution and
as such has finite variance. It follows from the pre-limit theorem of Klebanov et al. (1999)
that for not too large values of n the sum Sn = n−1/2γ(X1 + · · ·+Xn) behaves like symmetric
α-stable distribution with α = 2γ. This property is due to the truncation of the bigger jumps,
therefore the distribution behaves like stable distribution in the middle, and like Gaussian on
the tails.

3.2 Second approximation

In the previous Section, we introduced a discrete approximation of symmetric α-stable distri-
bution. Here we give a discrete approximation of α-stable distribution with index of stability
α ∈ (0, 1) and skewness β ∈ [−1, 1]. The characteristic function of strictly α-stable distribu-
tion with skewness parameter β and scale parameter σ > 0 is given by

f(t) = exp

{
−σα|t|α

(
1 − iβsign(t) tan

πα

2

)}
.

We can rewrite this as

log f(t) = −λ1(−it)α − λ2(it)α,

where

λ1 =
σα

cos πα
2

1 + β

2
, λ2 =

σα

cos πα
2

1 − β

2
.

We use the following approximation: it ≈ (1 − e−iat)/a as a → 0 and −it =≈ (1 − eiat)/a as
a → 0, therefore the characteristic function of α-stable distribution can be approximated by
a characteristic function of a discrete distribution as

log f(t) ≈ log g(t, a) = −λ1

aα
(1 − eiat)α − λ2

aα
(1 − e−iat)α, as a → 0.
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This distribution for a = 1 was introduced in Klebanov and Slámová (2013) as discrete stable
distribution and it was shown there that g(t, a) is a characteristic function only for α ∈ (0, 1].
From the construction of the approximation we see that

lim
a→0

g(t, a) = f(t).

Discrete stable distribution has therefore the same behaviour of tails as α-stable distribution
and it is again infinitely divisible.

We can obtain yet another discrete approximation of α-stable distribution with expo-
nential tails by tempering the tails of discrete stable distribution. Because discrete stable
distribution is a compound Poisson distribution with intensity λ1 + λ2 and distribution of
jumps with characteristic function

h(t, a) = 1 − λ1

λ1 + λ2
(1 − eiat)α − λ2

λ1 + λ2
(1 − e−iat)α,

the Lévy-Khintchine representation of discrete stable characteristic function takes the follow-
ing form

log g(t, a) =

∫ ∞

−∞

(
eiatx − 1

)
ν(dx),

where ν(dx) is the Lévy measure,

ν(dx) = (λ1 + λ2)
∞∑

k=−∞
pkδak(dx),

where

pk =





λ1

λ1+λ2
(−1)k+1

(α
k

)
, k > 0,

λ2

λ1+λ2
(−1)k+1

( α
|k|
)
, k < 0,

0, k = 0.

and δk is the Dirac measure, i.e. δx(A) = 1 if x ∈ A and 0 otherwise. The classical idea
leading to tempered infinitely divisible distribution consists of exponential tempering of the
corresponding Lévy measure (Rosiński (2007)). We will use tempering function of the form
q(x) = e−θ1x1x>0 + e−θ2|x|1x<0. The tempered infinitely divisible distribution is then ob-
tained by multiplying the Lévy measure by this tempering function. As a result we obtain
a distribution with characteristic function

log g(t, a, θ1, θ2) = −λ1

(
1 − eiate−θ1

)α
− λ2

(
1 − e−iate−θ2

)α

+ λ1

(
1 − e−θ1

)α
+ λ2

(
1 − e−θ2

)α
.

This characteristic function is an analytic function in the strip Im(t) ∈ (−θ2, θ1) and by
the Raikov’s theorem (see Linnik (1964)) the tails are O(exp(−bx)), as x → ∞, for all b > 0.
Therefore the tempered discrete stable distribution belong to the domain of normal attraction
of Gaussian distribution. By the pre-limit theorem of Klebanov et al. (1999) we can show
that for not too large values of n, the normalized sum Sn = n−1/α(X1 + · · · + Xn) behaves
like α-stable distribution.
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3.3 Third approximation

Another way to find a discrete approximation of strictly stable distributions is to discretize
its Lévy (or spectral) measure. Stable distribution is an infinitely divisible distribution and as
such has a Lévy-Khintchine representation of its characteristic function. This representation
takes the following form (see, for example, (Zolotarev, 1986, § 34) or Samorodnitsky and Taqqu
(1994))

(3.2) log f(t) = P

∫ ∞

0

(
eitx − 1 − itx1|x|≤1

) dx

x1+α
+Q

∫ 0

−∞

(
eitx − 1 − itx1|x|≤1

) dx

|x|1+α
,

where P,Q > 0, 0 < α < 2. The Lévy measure is

U(dx) =
P

x1+α
1x>0(x)dx+

Q

|x|1+α
1x<0(x)dx.

Every infinitely divisible random variable is a limit of compound Poisson random variables,
and the Lévy measure U(dx) express the intensity of jumps of size x. The term itx1|x|≤1 is
the compensation of the small jumps that ensures that the integral converges. If we discretize
the Lévy measure we obtain discrete infinitely divisible distribution. This can be achieved by
discretizing the integrals in (3.2), as follows

(3.3) log f(t) ≈ log g(t, a) = P
∞∑

k=1

(
eitak − 1

) a

(ak)1+α

+Q
−1∑

k=−∞

(
eitak − 1

) a

|ak|1+α
, as a → 0.

Here we omit the compensation of small jumps. The distribution given by characteristic
function g(t, a) is still infinitely divisible, with the Lévy measure given by

V (dx) =
∞∑

k=−∞
P

a

(ak)1+α
1k>0(k)δak(dx) +Q

a

|ak|1+α
1k<0(k)δak(dx), k ∈ Z.

As a result, we obtain a distribution with characteristic function

log g(t, a) =
1

aα

(
PLi1+α

(
eiat
)

+QLi1+α

(
e−iat

)
− (P +Q)ζ(1 + α)

)
,

where Li1+α(x) is the polylogarithm function and ζ(1+α) is the Zeta function. It is interesting
to note that g is a characteristic function for all positive values of α. We can rewrite this
with σ = (P +Q) and β = P

P +Q to obtain

g(t, a) = exp

{
σ

aα

(
βLi1+α

(
eiat
)

+ (1 − β)Li1+α

(
e−iat

)
− ζ(1 + α)

)}
.

By truncating the series in (3.3) we obtain yet another approximation of α-stable distri-
bution by an entire characteristic function.



4. On definitions of discrete
stability
In the previous Chapter we introduced a possible approach to obtain discrete analogies of
stable distributions. We obtained three discrete distributions by approximation of the char-
acteristic function of stable distribution or of its Lévy measure. These distributions are
discrete approximations of the stable distributions and it is not clear what properties they
share with the stable distributions – by the construction it is obvious they have the same tail
behaviour, but it is not clear whether they share other properties as the stability property,
self-similarity, infinite divisibility and others. In this Chapter we define three new classes of
discrete probability distributions by generalizing the stability property for discrete random
variables.

The strict stability property of continuous random variables can be defined in several ways
(see Definitions 2.1 – 2.3). We say that a random variable X is strictly stable if one of the
following holds

X
d
= an

n∑

i=1

Xi,(4.1)

AnX
d
=

n∑

i=1

Xi,(4.2)

cX
d
= aX1 + bX2,(4.3)

where X1, X2, . . . , Xn are independent copies of X and an, An, a, b and c are positive con-
stants. If we want to define a discrete analogy of stability we have to reconsider the normal-
ization by the constants an, An, and a, b and c, as the normalized random variables are not
necessarily integer-valued. We may consider the following modification. Consider for example
the first definition and let us assume that X is non-negative integer-valued random variable.
We may write

X = 1 + 1 + · · · + 1︸ ︷︷ ︸
X times

, and pX = p+ p+ · · · + p︸ ︷︷ ︸
X times

,

where we normalize X by a constant p ∈ (0, 1). Instead we can consider a thinning operator
p⊙X, where

p⊙X = ε1 + ε2 + · · · + εX︸ ︷︷ ︸
X times

,

where εi are i.i.d. Bernoulli random variables with Eεi = p, i.e.

εi =

{
1, with probability p,

0, with probability 1 − p.

In the following Sections we introduce three different definitions of discrete stability gene-
ralizing the definitions of strict stability 2.1 – 2.3 for the case of non-negative integer-valued
random variables.
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4.1 On first definition of discrete stable distributions

In this Section we give a definition of discrete stability that generalizes the first definition
of strict stability (4.1) for discrete random variables. The multiplication by a constant an

can be understood as a normalization of the sum
∑
Xi, or normalization of the individual

summands Xi. In the case of discrete random variables one can not use this normalization as
it violates the integral property of the summands. We need to find a different normalization
that maintains the integral property. One possibility is to use the binomial thinning operator

X̃(α) = α⊙X =
X∑

i=1

ǫi, where P(ǫi = 1) = 1 − P(ǫi = 0) = α,

instead of anXi. This normalization was used in Steutel and van Harn (1979) to define dis-
crete stability on N0. One can generalize this definition of discrete stability by considering
a general normalization, or “thinning” operator.

Definition 4.1. Let X,X1, X2, . . . , Xn, . . . denote a sequence of independent and identically
distributed (i.i.d.) non-negative integer-valued random variables. Assume that for every n ∈ N

there exists a constant pn ∈ (0, 1) such that

(4.4) X
d
=

n∑

i=1

X̃i(pn), where X̃i(pn) = pn ⊙Xi =
Xi∑

j=1

ε
(i)
j (pn),

and ε
(i)
j (pn) are i.i.d. non-negative integer-valued random variables. Then we say that X is

positive discrete stable random variable in the first sense.

This definition is rather general as it offers a flexibility on the choice of the “thinning”
distribution of random variables ε. This flexibility is however limited as a positive discrete
stable random variable exists only for some choice of the thinning distribution. A question
is therefore how to describe the family of thinning distributions for which a positive discrete
stable random variables exists.

Let us denote the probability generating functions of the random variables X and ε(pn)
by P(z) = E[zX ] and Qpn(z) = E[zε(pn)] respectively. There is an equivalent definition of
positive discrete stability in terms of those probability generating functions.

Proposition 4.2. A random variable X is positive discrete stable if and only if for all n ∈ N

there exists a constant pn ∈ (0, 1) such that

(4.5) P(z) = Pn(Qpn(z)).

Proof. It follows from the definition (4.4) that X is positive discrete stable if and only if

P(z) =
[PX̃(z)

]n
.

The probability generating function of X̃ can be computed in the following way.

PX̃(z) = E
[
zX̃
]

=
∞∑

k=0

P(X = k)E

[
z
∑X

j=1
εj(pn) |X = k

]

=
∞∑

k=0

P(X = k)
(
E
[
zε1(pn)

])k

= P(Qpn(z)).
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Hence X is positive discrete stable if and only if its probability generating function satisfy
the relation

P(z) = Pn(Qpn(z)
)
.

Remark 4.3. It follows from the definition that a positive discrete stable random variable
X is infinitely divisible: for every n ∈ N there exist random variables Y1, Y2, . . . , Yn such that

X
d
= Y1 + Y2 + · · · + Yn.

This obviously holds for Yi = X̃i(pn).

Further denote by Q a semigroup generated by the family of probability generating func-
tions {Q(z) = Qpn(z), n ∈ N} with operation of superposition ◦. It can be shown that
a superposition of two probability generating functions is again a probability generating func-
tion.

Lemma 4.4. If Q1(z) and Q2(z) are two probability generating functions of two random
variables with values in N0, then their superposition

Q1 ◦ Q2(z) := Q1(Q2(z))

is also a probability generating function of some random variable with values in N0.

Proof. Let N be a random variable with values in N0 with probability generating function Q1

and X1, X2, . . . i.i.d. random variables with values in N0 with probability generating function
Q2. Define a new random variable S by

S =
N∑

i=1

Xi.

Then S is a random variable with values in N0. Its probability generating function can be
computed using the fundamental formula of conditional expectation as follows

QS(z) = E
[
zS
]

= E

[
z
∑N

i=1
Xi

]
=

∞∑

n=0

P(N = n)E

[
z
∑N

i=1
Xi |N = n

]

=
∞∑

n=0

P(N = n)E
[
z
∑n

i=1
Xi

]
=

∞∑

n=0

P(N = n)
[
EzX1

]n

=
∞∑

n=0

P(N = n) [Q2(z)]n = Q1(Q2(z)).

So the superposition Q1 ◦ Q2(z) is a probability generating function of random variable S
with values in N0.

Now we show that the semigroup Q must be commutative.

Theorem 4.5. Let X be a positive discrete stable random variable. Then the semigroup Q

must be commutative.
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Proof. Let us denote G(z) = log P(z). Then (4.5) is equivalent to

(4.6) G(z) = nG(Qpn(z)), n ∈ N.

Let G(z) be a solution of (4.6). Then for all n ∈ N it must hold

Qpn(z) = G−1
(

1

n
G(z)

)
.

It follows from here that for all n1, n2 ∈ N

Qpn1

(
Qpn2

(z)
)

= G−1
(

1

n1
G

(
G−1

(
1

n2
G(z)

)))

= G−1
(

1

n1

1

n2
G(z)

)

= Qpn2

(
Qpn1

(z)
)
,

which means that Q is commutative.

Similarly as for the classical stable distribution, we can show that the constants pn have
to take form pn = n−1/γ for some γ > 0.

Theorem 4.6. Let X be a positive discrete stable random variable in the first sense. Then
there exists γ > 0 such that pn in (4.4) takes form

pn = n−1/γ .

Proof. The proof follows (Uchaikin and Zolotarev, 1999, §2.4) where a similar statement for
stable distributions is proved. From the definition it follows that for every n ≥ 2 we have

X
d
=
∑n

i=1 X̃i(pn) where X1, X2, . . . are independent copies of X. Then

X
d
= p2 ⊙X1 + p2 ⊙X2,

therefore also

X
d
= p2 ⊙ (p2 ⊙X1 + p2 ⊙X2) + p2 ⊙ (p2 ⊙X3 + p2 ⊙X4).

But the operation ⊙ is associative: p⊙(p⊙X) = p2 ⊙X. Let us denote Y = p2 ⊙X1 +p2 ⊙X2.
Then (using result from proof of Proposition 4.2)

Pp2⊙Y (z) = PY (Qp2
(z)) = P2(Qp2

(Qp2
(z))) = P2(Qp2

2
(z)),

because Q is commutative. Therefore

X
d
= p2

2 ⊙X1 + p2
2 ⊙X2 + p2

2 ⊙X3 + p2
2 ⊙X4

and similarly for every n = 2k

X
d
= pk

2 ⊙X1 + pk
2 ⊙X2 + · · · + pk

2 ⊙Xn.(4.7)
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On the other hand, we have

X
d
= pn ⊙X1 + pn ⊙X2 + · · · + pn ⊙Xn.(4.8)

Comparing (4.7) with (4.8), with n = 2k, we have pn = pk
2. Hence

log pn = k log p2 =
logn

log 2
log p2 = lognlog p2/ log 2.

So we obtain that

pn = n−1/γ2 , γ2 = − log 2/ log p2 > 0, n = 2k, k = 1, 2, . . . .

In a similar way, starting with sums with 3 terms X
d
= p3 ⊙X1 + p3 ⊙X2 + p3 ⊙X3, we get

pn = n−1/γ3 , γ3 = − log 3/ log p3 > 0, n = 3k, k = 1, 2, . . . .

And in general case,

pn = n−1/γm , γm = − logm/ log pm > 0, n = mk, k = 1, 2, . . . .

But for m = 4 we obtain both γ4 = − log 4/ log p4 and log p4 = −1/γ2 log 4. Hence γ4 = γ2.
By induction we conclude that γm = γ for all m and therefore

pn = n−1/γ , for all n ≥ 2.

The question is how to extend the definition of discrete stability to contain not only
random variables on N0, but also on the whole integers Z. It is obvious that the sum in
definition of X̃ does not make sense for random variables that can achieve negative values.
One possibility is to take the positive and negative part of X separately and consider again
the same thinning operator. We can, however, obtain a wider class of distributions if we
assume a different thinning operator than in Definition 4.1.

Definition 4.7. Let X,X1, X2, . . . , Xn, . . . denote a sequence of independent and identically
distributed (i.i.d.) integer-valued random variables. Assume that for every n ∈ N there exists
a constant pn ∈ (0, 1) such that

(4.9) X
d
= lim

n→∞

n∑

i=1

X̄i(pn), where X̄i(pn) =

X+

i∑

j=1

ε
(i)
j (pn) −

X−
i∑

j=1

ǫ
(i)
j (pn),

ε
(i)
j (pn), ǫ

(i)
j (pn) are i.i.d. integer-valued random variables, and X+ and X− are the positive

and negative part of X, respectively (i.e. X+ = X if X ≥ 0 and 0 otherwise, X− = −X if
X < 0 and 0 otherwise). Then we say that X is discrete stable random variable in the limit
sense.
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The main difference is that we do not assume the random variables ε, ǫ to be non-negative.
The definition of discrete stability is only in the limit sense, not the algebraic one where we
have equivalence in distribution in (4.9) instead of the limit.

Let us denote again the probability generating function of the random variables X and
ε(pn)) (and also ǫ(pn)) by P(z) = E[zX ] and Rpn(z) = E[zε(pn)] = E[zǫ(pn)] respectively. We
denote by P1 the generating function of the sequence {ak = P(X = k), k = 1, 2, . . . } and by
P2 the generating function of the sequence {bk = P(X = k), k = −1,−2, . . . }. We denote
P0 = P(X = 0). It is obvious that the generating function of X+ is P0 + P1(z), and the
generating function of X− is P2(z). There is an equivalent definition of discrete stability in
the limit sense in terms of those generating functions.

Proposition 4.8. A random variable X is discrete stable in the limit sense if and only if for
all n ∈ N there exists a constant pn ∈ (0, 1) such that

(4.10) P(z) = lim
n→∞ [P0 + P1(Rpn(z)) + P2 (Rpn(1/z))]n .

Proof. It follows from the definition (4.9) that X is discrete stable if and only if

P(z) = lim
n→∞ [PX̄(z)]n .

The probability generating function of X̄ can be computed in the following way.

PX̄(z) = E
[
zX̄
]

=
∞∑

k=−∞
P(X = k)E

[
z
∑X+

j=1
εj(pn)−

∑X−

j=1
ǫj(pn) |X = k

]

=
∞∑

k=0

P(X = k)
(
E
[
zε1(pn)

])k
+

−1∑

k=−∞
P(X = k)

(
E
[
z−ǫ1(pn)

])−k

= P0 + P1(Rpn(z)) + P2(Rpn(1/z)).

Hence X is discrete stable if and only if its probability generating function satisfies the relation

P(z) = lim
n→∞ [P0 + P1(Rpn(z)) + P2(Rpn(1/z))]n .

It is important to note that we do not define discrete stability property in the algebraic
sense as we defined it for the non-negative integer-valued random variables. This also leads
to the fact that we have no condition on the thinning operator R similar to Theorem 4.5.

In the following Subsections we introduce some examples of commutative semigroups Q

leading to different positive discrete stable random variables. We will also give corresponding
examples of discrete stable distributions in the limit sense. The proofs of the results will be
provided in Chapter 5.

4.1.1 Binomial thinning operator

Assume that the probability generating function Q is that of Bernoulli distribution with
parameter p ∈ (0, 1), i.e. we have Q(z) = pz + (1 − p). It is easy to verify that the semigroup
Q generated by probability generating functions of this form is commutative, as

Qp1
(Qp2

(z)) = p1p2z + (1 − p1p2).
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This operator was used in Steutel and van Harn (1979) to define discrete stable distribution
on N0 and it was showed there that it leads to a distribution with probability generating
function given by

(4.11) P(z) = exp {−λ(1 − z)γ} , γ ∈ (0, 1], λ > 0.

To obtain a generalization of this distribution on Z we can consider two-sided binomial
thinning operator defined as R(z) = (1−p)+pqz+p(1−q)z−1, where q ∈ [0, 1]. This thinning
operator leads to a distribution on Z with probability generating function given by

P(z) = exp

{
−λ

(
1 + β

2

)(
1 − qz − (1 − q)

1

z

)γ

− λ

(
1 − β

2

)(
1 − q

1

z
− (1 − q)z

)γ}
,

with λ > 0, γ ∈ (0, 1], β ∈ [−1, 1], q ∈ [0, 1]. We can see that for β = 1 and q = 1 the
distribution reduces to positive discrete stable (4.11).

4.1.2 Thinning operator of geometric type

A generalization of the previous example can be obtained if we consider Q to be the probability
generating function of modified geometric distribution with parameters p ∈ (0, 1) and κ ∈
[0, 1). Consider a function

(4.12) Q(z) =

(
(1 − p) + (p− κ)zm

(1 − pκ) − κ(1 − p)zm

) 1

m

,

{0 ≤ κ < 1, 0 < p < 1, m = 1}
or

{0 < p < κ < 1, m ∈ N, m > 1}.

Lemma 4.9. The function Q(z) is a probability generating function.

Proof. To verify that Q(z) =
∑∞

n=0 qnz
n is a probability generating function we have to show

that the generating sequence {qn, n = 0, 1, . . . } is a probability mass function, i.e.
∑

n qn = 1,
and 0 ≤ qn ≤ 1. We see that

∑
n qn = Q(1) = 1. We expand Q into a power series to obtain

the generating series {qn, n = 0, 1, . . . }. We will treat the case of m = 1 and m > 1 separately.

Let first m = 1. Then we obtain Q(z) =
∑∞

n=0 qnz
n, with

q0 =
1 − p

1 − pκ
,

qn = p κn−1 (1 − p)n−1(1 − κ)2

(1 − pκ)n+1
, n ≥ 1.

We can easily verify that for 0 < κ < 1 and 0 < p < 1, {qn} is a probability mass function
and thus Q is a probability generating function.

Let m > 1. We obtain

Q(z) =
∞∑

n=0

qnz
mn,

where the coefficients qn are given as

qn =
n∑

j=0

(
1 − p

1 − pκ

)1/m+n−j (p− κ

1 − p

)j

κn−j

(
1/m+ n− j − 1

n− j

)(
1/m

j

)
, n ∈ N0.
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This can be reduced to

qn = κn
(

1 − p

1 − pκ

)1/m+n
(

1/m+ n− 1

n

)

2F1

(
{−1/m,−n}, 1 − 1/m− n,

(κ− p)(1 − pκ)

(1 − p)2κ

)
.

It follows from the properties of the hypergeometric 2F1 function that 0 ≤ qn ≤ 1 if and only
if

0 ≤ (κ− p)(1 − pκ)

(1 − p)2κ
≤ 1.

This is fulfilled if and only if 0 ≤ p ≤ κ ≤ 1. However, if k = 1 or p = k or p = 0 we obtain
a degenerate distribution. From here if follows that {qn} is a probability mass function if and
only if 0 < p < κ < 1.

The distribution given by the probability generation function Q with m = 1 is sometimes
called modified geometric distribution (Phillips (1978)) or zero-modified geometric distribu-
tion (Johnson et al. (2005)). This distribution is obtained as a mixture of a degenerate dis-
tribution and geometric distribution: let U be a degenerate random variable identically equal
to zero, and let V be a geometrically distributed random variable with parameter b ∈ (0, 1].
Let q ∈ (0, 1) and denote Z = qU + (1 − q)V . Then the probability generating function of the
mixture Z is given as

Q(z) = q + (1 − q)
bz

1 − (1 − b)z
.

We can reparametrize this distribution, by putting

q =
1 − p

1 − pκ
and b =

1 − κ

1 − pκ

with p ∈ (0, 1) and κ ∈ [0, 1). Then the probability generating function takes form (4.12)
with m = 1.

The parameter m specifies the lattice of the distribution. We will denote the distribution
with probability generating function Q by G(p, κ,m). If m = 1, we will write simply G(p, κ).

Lemma 4.10. The function Q(z) can be decomposed as

(4.13) Q(z) = S−1 ◦Bp ◦ S(z), where S(z) =
(1 − κ)zm

1 − κzm
, Bp(z) = pz + 1 − p.

Proof. The decomposition can be verified by computation, as

S−1(y) =

(
y

(1 − κ) + κy

)1/m

.

The function Bp(z) is the probability generating function of the Bernoulli distribution.
In previous Subsection we showed, that Bp generates a commutative semigroup. Using the
decomposition (4.13) it is easy to see that the semigroup Q is commutative, as

Qp1
(Qp2

(z)) = S−1 ◦Bp1
◦ S ◦ S−1 ◦Bp2

◦ S(z)

= S−1 ◦Bp1
◦Bp2

◦ S(z)
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and we already showed that Bp1
◦Bp2

(z) = Bp1p2
(z).

If we choose m = 1 and κ = 0 the modified geometric distribution reduces to the Bernoulli
distribution. We can modify the operator Q and consider two-sided thinning operator of
geometric type. This can be done by considering

R(z) = S−1 ◦Bp ◦ S(2)(z) where S(2)(z) = qS(z) + (1 − q)S(z−1) q ∈ [0, 1]

instead of Q(z). We will denote two-sided modified geometric distribution by 2G(p, κ, q,m).
We see that Q is obtained from R by considering q = 1.

We will study discrete stable distributions with G thinning operator (of geometric type)
more into details in Chapter 5. It will be shown there that this choice of thinning operator
in Definition 4.1 leads to a distribution with probability generating function given by

(4.14) P(z) = exp

{
−λ

(
1 − zm

1 − κzm

)γ}
, λ > 0, γ ∈ (0, 1], κ ∈ [0, 1), m ∈ N.

4.1.3 Thinning operator of Chebyshev type

Let us consider a function of the following form

(4.15) Q(z) =
2
(
b+ Tp

(
(1+b)z−2b
2−(1+b)z

))

(1 + b)
(
1 + Tp

(
(1+b)z−2b
2−(1+b)z

)) ,

where p ∈ (0, 1) and b ∈ (−1, 1) and Tp(x) = cos (p arccosx) .

Remark 4.11. The function Tn for n ∈ N is called Chebyshev polynomial. It belongs
to the class of orthogonal polynomials. There is an extensive literature about Chebyshev
polynomials, see for example Rivlin (1974). Chebyshev polynomials are commutative, Tn ◦
Tm(x) = Tm ◦ Tn(x); they have the nesting property, Tn ◦ Tm(x) = Tmn(x). This holds true
also for Tp(x) with p ∈ (0, 1), defined as Tp(x) = cos (p arccosx). However, in this case Tp is
not a polynomial any more.

The function Q(z) can be decomposed in the following way:

(4.16) Q(z) = R−1 ◦ Tp circR(z), where R(z) =
(1 + b)z − 2b

2 − (1 + b)z
,R−1(y) =

2(b+ y)

(1 + b)(1 + y)
.

Lemma 4.12. The function Q(z) is a probability generating function.

Proof. Let us consider only the case of b = 0 and p = 1
n , n ∈ N, n ≥ 2. Then we can rewrite

the function Q(z) in the following form

Q(z) =
2 cos

(
1
n arccos z

2−z

)

1 + cos
(

1
n arccos z

2−z

) .
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Using the exponential and logarithmic forms of cos and arccos functions cos(x) = (eix+e−ix)/2

and arccos(x) = π
2 +i log

(
ix+

√
1 − x2

)
we can rewrite cos( 1

n arccos y) into the following form

cos( 1
n arccos y) = 1

2


e

i π
2n

−log

(
iy+

√
1−y2

)1/n

+ e
−i π

2n
+log

(
iy+

√
1−y2

)1/n



= 1
2e

i π
2n

(
iy +

√
1 − y2

)−1/n

+ 1
2e

−i π
2n

(
iy +

√
1 − y2

)1/n

= 1
2

ei π
n + (iy +

√
1 − y2)2/n

ei π
2n (iy +

√
1 − y2)1/n

.

Hence Q(z) simplifies into (we use substitution y = z
2−z )

Q(z) = 2
ei π

n + (iy +
√

1 − y2)2/n

[
ei π

2n + (iy +
√

1 − y2)1/n
]2

= 2
1 + (y − i

√
1 − y2)2/n

[
1 + (y − i

√
1 − y2)1/n

]2

=
2

1 + 2

(y−i
√

1−y2)1/n+(y−i
√

1−y2)−1/n

.

So for z ∈ (0, 1] we have

Q(z) =
2

1 + 2(
z

2−z
−2i

√
1−z

2−z

)1/n

+

(
z

2−z
−2i

√
1−z

2−z

)−1/n

.

We have to show that Q(z) is a real function of z. Let x = z
2−z , y = −2

√
1−z

2−z and u = x+iy =
r(cosφ+ i sinφ). Then using Moivre’s formula

(
z

2 − z
− 2i

√
1 − z

2 − z

)1/n

+

(
z

2 − z
− 2i

√
1 − z

2 − z

)−1/n

= r1/n(cos(φ/n) + i sin(φ/n)) + r−1/n(cos(φ/n) − i sin(φ/n)).

This number is real if and only if r = 1. But

r = ||x+ iy|| =
√
x2 + y2 =

z2 + 4(1 − z)

(2 − z)2
= 1.

We conclude that for z ∈ (0, 1] the function Q(z) is real valued. Moreover Q(1) = 1. To
complete the proof we need to show that Q(z) is a power series with nonnegative coefficients
expressing probabilities.

We denote Q related to the parameter p by Qp(z). The inverse function of Qp(z) is

Q−1
p (y) =

2Tn

(
y

2−y

)

1 + Tn

(
y

2−y

) .
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This follows from the decomposition (4.16), Qp(z) = R−1 ◦ Tp ◦R(z), where R(z) = z
2−z and

from the fact that the inverse function of Tp(x) is Tn(x). This can be verified easily from the
definition Tp(x) = cos (p arccosx) . For n ∈ N is Tn the Chebyshev polynomial.

Consider first the simple case of n = 2. We know that T2(x) = 2x2 − 1 (see, for example,
Rivlin (1974)). Therefore

Q−1
p (y) = 1 +

4

y
− 4

y2
.

We may inverse this function again to obtain

Qp(z) = Q1/2(z) =
−2 + 2

√
2 − z

1 − z
,

for z < 1. The power series expansion is now easy to obtain

Q1/2(z) =
∞∑

m=0

√
2

2m+1
(−1)m

(
1
2

m+ 1

)

2F1

(
1, 1

2 +m, 2 +m, 1
2

)
zm.

It can be verified that the coefficients

pm =

√
2

2m+1
(−1)m

(
1
2

m+ 1

)

2F1

(
1, 1

2 +m, 2 +m, 1
2

)

are all positive as
( 1

2

m+1

)
is positive for m even and negative for m odd and the hypergeo-

metric function 2F1(1, 1
2 + m, 2 + m, 1

2) is always positive for m ≥ 0. Therefore Q1/2(z) is
a probability generating function.

Now we will show by induction that Qp(z) is a probability generating function for all p of
the form p = 1/2k, with k ∈ N. We already showed that it is true for p = 1

2 . Let us assume
Qp(z) is a probability generating function for p = 1

2k , k ≥ 1. Because of the nesting property
of Tp we have Tp/2 = Tp ◦ T1/2, therefore we may write

Qp/2(z) = R−1 ◦ Tp/2 ◦R(z) = R−1 ◦ Tp ◦ T1/2 ◦R(z) =

= R−1 ◦ Tp ◦R ◦R−1 ◦ T1/2 ◦R(z)

= Qp ◦ Q1/2(z)

By induction assumption Qp(z) is a probability generating function, as well as Q1/2(z).
The composition of two probability generating function is a probability generating function
itself, therefore we conclude that Qp/2(z) is probability generating function.

We denote the probability distribution given by the probability generating function (4.15)
by T (p, b).

Proposition 4.13. Let ε ∼ T (p, b). Then Eε = p2.
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Proof. We compute the expectation of ε using the property of probability generating functions
as Eε = Q′(1). By deriving Q(z) we obtain

Q′(z) =
2(1 − b) d

dzTp(u(z))

(1 + b)(1 + Tp(u(z)))2
,

where

u(z) =
(1 + b)z − 2b

2 − (1 + b)z
,

d

dz
Tp(u(z)) =

d

du
Tp(u)u′(z),

u′(z) =
2(1 + b)(1 − b)

(2 − (1 + b)z)2
.

Using the relation between Chebyshev polynomials of the first and second kind (see Erdélyi et al.
(1953a)) we obtain

d

du
Tp(u) = pUp−1(u) = p

sin(p arccosu)

sin(arccosu)
.

Putting all together and setting z = 1, u = u(1) = 1 we obtain

Q′(1) =
4(1 − b)p2 1+b

1−b

4(1 + b)
= p2.

The semigroup Q generated by probability generating functions of this form is commuta-
tive. From the decomposition (4.16) follows tat

Qp1
(Qp2

(z)) = R−1 ◦ Tp1
◦R ◦R−1 ◦ Tp2

◦R(z)

= R−1 ◦ Tp1
◦ Tp2

◦R(z).

But

Tp1
◦ Tp2

(x) = cos (p1 arccos (cos (p2 arccosx)))

= cos (p1p2 arccosx)

= Tp2
◦ Tp1

(x).

We will study discrete stable distributions with Chebyshev type (T ) thinning operator more
into details in Chapter 5. It will be shown there that this choice of thinning operator in
Definition 4.1 leads to a distribution with probability generating function given by

(4.17) P(z) = exp

{
−λ

(
arccos

(1 + b)z − 2b

2 − (1 + b)z

)γ}
, γ ∈ (0, 2], λ > 0, b ∈ (−1, 1).
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4.2 On second definition of discrete stable distributions

In this Subsection we give a definition of discrete stability that generalizes the second definition
of strict stability (4.2) for discrete random variables. The constant An in (4.2) takes form
An = n1/α for some 0 < α ≤ 2. Hence the product AnX is generally not integer-valued and
we have to find a different normalization. Compared to the normalization used in previous
Subsection we need a “portlying” normalization rather than thinning, therefore we will look
for distributions with expected value bigger than 1.

Definition 4.14. Let X,X1, X2, . . . , Xn, . . . denote a sequence of independent and identically
distributed non-negative integer-valued random variables. Assume that for every n ∈ N there
exists a constant pn > 0 such that

(4.18) X̂(pn)
d
=

n∑

i=1

Xi, where X̂(pn) =
X∑

j=1

εj(pn),

and εj(pn) are i.i.d. non-negative integer-valued random variables. Then we say that X is
positive discrete stable random variable in the second sense.

Let us denote the probability generating functions of the random variables X and ε(pn) by
P(z) = E[zX ] and Qpn(z) = E[zε(pn)] respectively. There is an equivalent definition of positive
discrete stability in the second sense in terms of those probability generating functions.

Proposition 4.15. A random variable X is positive discrete stable in the second sense if and
only if for all n ∈ N there exists a constant pn > 0 such that

(4.19) P(Qpn(z)) = Pn(z).

Proof. It follows from the definition (4.18) that X is positive discrete stable in the second
sense if and only if

PX̂(z) = Pn(z).

The probability generating function of X̂ can be computed in the same way as in Proposition
4.2. We obtain

PX̂(z) =
∞∑

k=0

P(X = k)
(
E
[
zε1(pn)

])k
= P(Qpn(z)).

Hence X is positive discrete stable in the second sense if and only if its probability generating
function satisfy the relation

(4.20) P(Qpn(z)
)

= Pn(z).

Further denote by Q a semigroup generated by the family of probability generating func-
tions {Q(z) = Qpn(z), n ∈ N} with operation of superposition. We show that the semigroup
Q must be commutative.

Theorem 4.16. Let X be positive discrete stable random variable in the second sense. Then
the semigroup Q must be commutative.
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Proof. Let us denote G(z) = log P(z). Then (4.19) is equivalent to

(4.21) nG(z) = G(Qpn(z)), n ∈ N.

Let G(z) be a solution of (4.21). Then for all n ∈ N it must hold

Qpn(z) = G−1 (nG(z)) .

It follows from here that for all n1, n2 ∈ N

Qpn1

(
Qpn2

(z)
)

= G−1
(
n1G

(
G−1 (n2G(z))

))

= G−1 (n1n2G(z))

= Qpn2

(
Qpn1

(z)
)
,

which means that Q is commutative.

In the following Subsections we introduce some examples of commutative semigroups Q

leading to several possible distributions that are discrete stable in the second sense.

4.2.1 Degenerate portlying operator

Assume that the probability generating function Q(z) = zn, i.e. the portlying distribution
is a degenerate one taking only one value n. It is obvious that the semigroup Q is then
commutative. This choice of Q leads to a distribution with probability generating function
P(z) = z, i.e. a degenerate distribution localized at point 1. We are dealing with a simple
summation n =

∑n
i=1 1.

4.2.2 Geometric portlying operator

Let us consider now geometric distribution with parameter p ∈ (0, 1) with probability gener-
ating function

Q(z) =
pz

1 − (1 − p)z
.

Such distribution generates a commutative semigroup Q, as

Qp1
(Qp2

(z)) =
p1p2z

1 − (1 − p2)z − (1 − p1)p2z
=

p1p2z

1 − z + p1p2z

= Qp2
(Qp1

(z)) .

Proposition 4.17. Let X be an integer-valued random variable with probability generating
function

P(z) = exp

{
−λ

(
1 − 1

z

)γ}
.

Then X is positive discrete stable in the second sense.

Proof. Let Q(z) = pz
1−(1−p)z and set p so that p−γ = n. Then

log P(Q(z)) = −λ
(

1 − 1 − (1 − p)z

pz

)γ

= −λ
(
pz − 1 + (1 − p)z

pz

)γ

= −λp−γ
(

1 − 1

z

)γ

= n log P(z).
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Hence by Proposition 4.15 the random variable X is positive discrete stable in the second
sense.

It is important to note that the probability generating function P(z) defines a non-positive
integer-valued random variable.

4.2.3 Portlying operator of Chebyshev type

Consider a probability generating function

(4.22) Q(z) =
1

Tn

(
1
z

) , n ∈ N,

where Tn(x) is the Chebyshev polynomial, Tn(x) = cos(n arccosx). Klebanov et al. (2012)
showed that the function Q(z) = Qn(z) is indeed a probability generating function of a ran-
dom variable with values in N. The semigroup Q generated by the family {Qn(z), n ∈ N} is
commutative. We have Q(z) = R−1 ◦ S ◦R(z), where R(z) = 1

z and S(x) = Tn(x). Hence

Qn1
(Qn2

(z)) = R−1 ◦ Tn1
◦R ◦R−1 ◦ Tn2

◦R(z) = R−1 ◦ Tn1
◦ Tn2

◦R(z)

= R−1 ◦ Tn2
◦ Tn1

◦R(z) = Qn2
(Qn1

(z)) ,

because Chebyshev polynomials are commutative.

Theorem 4.18. Consider the following function

(4.23) P(z) =

(
1 −

√
1 − z2

z

)M

, M ∈ N.

Then P is a probability generating function of a random variable on N. Moreover if X is
an integer-valued random variable with probability generating function P then X is positive
discrete stable in the second sense.

Proof. Let us show first that P(z) is a probability generating function. We will consider only

the case M = 1. For M > 1 the result will follow as P(z) = PM
1 (z), where P1(z) = 1−

√
1−z2

z ,
and integer power of a probability generating function is a probability generating function of
a sum of i.i.d. random variables. It is obvious that P(1) = 1. We can write P(z) as

P(z) =
1

z

(
1 −

√
1 − z2

)
=

1

z
−

∞∑

k=0

(−1)k

(
1
2

k

)
z2k−1

=
∞∑

k=1

(−1)k−1

(
1
2

k

)
z2k−1.

The coefficients of the series are all positive, because the binomial coefficient
( 1

2

k

)
involves

(k − 1) negative factors.
Now let us show that X is positive discrete stable in the second sense. Let Q(z) be as in

(4.22). Then

P(Q(z)) = Tn

(
1

z

)
−
√
T 2

n

(
1

z

)
− 1.
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We can use the explicit expression of Chebyshev polynomial to obtain

Tn

(
1

z

)
=

(1 +
√

1 − z2)n + (1 −
√

1 − z2)n

2zn

and

√
T 2

n

(
1

z

)
− 1 =

(1 +
√

1 − z2)n − (1 −
√

1 − z2)n

2zn
.

From here we see that
P(Q(z)) = P(z)n.

Hence by Proposition 4.15 the random variable X is positive discrete stable in the second
sense.

In the proof of the theorem we showed that

P(z) =
∞∑

k=1

(−1)k−1

(
1
2

k

)
z2k−1,

so the probabilities P(X = k) are given as (−1)k−1
( 1

2

k

)
for all odd k > 0 and 0 otherwise.

Remark 4.19. The probability distribution with generating function (4.23) for M = 1 is
known (see (Feller, 1968, §XI.3)) as a distribution of the first passage time of a random
walk through +1. Let us consider a sequence of Bernoulli trials X1, X2, . . . with probability
p = 1/2, i.e. P(Xi = 1) = 1 − P(Xi = −1) = 1/2 and denote Sn = X1 + X2 + · · · + Xn,
S0 = 0. Then the random walk Sn passes through +1 for the first time at time m if

S1 ≤ 0, . . . Sm−1 ≤ 0, Sm = 1.

The probability of this event is given by the probability generating function (4.23).
In continuous case we have a similar result. The first passage time of a Brownian motion

through a level a > 0 has Lévy distribution, a special case of stable distribution with α = 1/2.

The discrete stable distribution with probability generating function (4.23) with M = 1
can be considered a discrete analogy of Lévy distribution as is shown in the following Theorem.

Theorem 4.20. Discrete stable random distribution in the second sense with probability gen-
erating function

P(z) =
1 −

√
1 − z2

z

belongs to the domain of normal attraction of stable distribution S
(

1
2 , 1, 1, 0

)
, i.e. Lévy dis-

tribution.

Proof. Let X1, X2, . . . , Xn be i.i.d. positive discrete stable random variables in the second
sense with probability generating function P(z). The characteristic function of X1 is equal
to f(t) = P (eit

)
. Denote

Sn =
1

n2

n∑

i=1

Xi.
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Then the characteristic function of Sn is equal to

fn(t) = fn
(
t/n2

)
−→ exp

{
−

√
2(−it)1/2

}
, as n → ∞.

Moreover (−it)1/2 = 1√
2
|t|1/2 (1 − i sgn(t)) .

Consider now a slightly different setting with portlying operator with probability gener-
ating function

(4.24) Q(z) =


 1

Tn

(
1

zm

)




1/m

, n,m ∈ N.

As was noted in Klebanov et al. (2012), Q is a probability generating function of a random
variable with values in mN.

Theorem 4.21. Let X be an integer-valued random variable with probability generating func-
tion

P(z) =
1 −

√
1 − z2m

zm
, m ∈ N.

Then X is positive discrete stable in the second sense.

Proof. We have

P(Q(z)) = Tn

(
1

zm

)
−
√

Tn

(
1

zm

)2

− 1,

and using results from the proof of Theorem 4.18,

P(Q(z)) =
1 −

√
1 − z2m

zm
.

4.3 On third definition of discrete stable distributions

In this Section we give a definition of discrete stability that generalizes the third definition of
strict stability (4.3) for discrete random variables. As it turns out, this definition is a combi-
nation of the two previous definitions.

Definition 4.22. Let X,X1 and X2 be independent and identically distributed non-negative
integer-valued random variables. Assume that for any positive numbers p1 and p2 there exists
a positive number p such that

(4.25) X̃(p)
d
= X̃1(p1) + X̃2(p2), where X̃(p) =

X∑

j=1

εj(p)

and εj(p) are i.i.d. non-negative integer-valued random variables. Then we say that X is
positive discrete stable random variable in the third sense.
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Let us denote the probability generating functions of the random variables X and ε(p) by
P(z) = E[zX ] and Qp(z) = E[zε(p)] respectively. Let us again denote the semigroup generated
by {Qp, p ∈ ∆} with operation of superposition by Q. There is an equivalent definition of
positive discrete stability in the third sense in terms of those probability generating functions,
following directly from the Definition.

Proposition 4.23. A random variable X is positive discrete stable in the third sense if and
only if for any positive numbers p1 and p2 there exists a positive number p such that

(4.26) P(Qp(z)) = P(Qp1
(z))P(Qp2

(z)).

We can show that every random variable positive discrete stable in the first sense is also
positive discrete stable in the third sense.

Theorem 4.24. Let X be positive discrete stable in the first sense. Then X is positive
discrete stable in the third sense. Moreover (4.25) holds with

pγ = pγ
1 + pγ

2 .

Proof. Let X be positive discrete stable in the first sense, and let X1, X2, . . . be independent
copies of X. Then the semigroup Q is commutative, p ∈ ∆ = (0, 1) and for any n ≥ 2 there
exists a constant pn ∈ (0, 1) such that

X
d
=

n∑

i=1

pn ⊙Xi.

From Theorem 4.6 we know that pn = n−1/γ . Let p1, p2 ∈ ∆. Then for all n1, n2 ≥ 2

p1 ⊙X1 + p2 ⊙X2
d
=

n1∑

i=1

p1pn1
⊙Xi +

n1+n2∑

j=n1+1

p1pn2
⊙Xj .

If pγ
1 , p

γ
2 are rational, then we can find n1, n2, p such that

p1pn1
= ppn1+n2

,

p2pn2
= ppn1+n2

,

or equivalently

pγ
1 = pγ n1

n1 + n2
,

pγ
2 = pγ n2

n1 + n2
.

But then, with n = n1 + n2

p1 ⊙X1 + p2 ⊙X2 =
n∑

i=1

ppn ⊙Xi = p⊙X.

Moreover p1, p2, p satisfy the relationship pγ
1 + pγ

2 = pγ . By continuity argument it follows
that (4.25) hold for any choice of p1, p2 with p such that pγ

1 + pγ
2 = pγ .
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Under some additional conditions we may show that the opposite statement holds true as
well.

Theorem 4.25. Let X be positive discrete stable in the third sense and assume that the
semigroup Q is commutative, ∆ = (0, 1) and that there exists a constant γ > 0 such that

pγ = pγ
1 + pγ

2 .

Then X is positive discrete stable in the first sense.

Proof. We may show this by induction. Because X is positive discrete stable in the third
sense, we have for p1 = p2 = 2−1/γ that

X
d
= X̃1(p2) + X̃2(p2).

Let n ≥ 2 and let us assume that

X
d
=

n∑

i=1

X̃i(pn), with pn = n−1/γ .

Denote Y =
∑n

i=1 X̃i(pn) and let p =
(

n
n+1

)1/γ
. Because X is positive discrete stable in the

third sense, Y
d
= X and pγ + pγ

n+1 = 1, we have

X
d
= Ỹ (p) + X̃n+1(pn+1).

The probability generating function of the right-hand side is

PY (Qp(z))P(Qpn+1
(z)) = Pn(Qpn(Qp(z)))P(Qpn+1

(z))

= Pn(Qpnp(z))P(Qpn+1
(z))

= Pn+1(Qpn+1
(z)),

because Q is commutative and ppn = pn+1. Therefore

X
d
=

n+1∑

i=1

X̃i(pn+1).

Example 4.26 (Binomial thinning operator). Let us consider the case of the binomial thin-
ning operator with probability generating function Q(z) = (1 − p) + pz. Then a random
variable X with probability generating function P(z) = exp {−λ(1 − z)γ} is positive discrete
stable in the third sense, as (4.26) holds if

pγ = pγ
1 + pγ

2 .

Example 4.27 (Modified geometric thinning operator). We can verify that the positive
discrete stable random variable in the first sense with modified geometric thinning operator is
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also positive discrete stable in the third sense. Let X be a positive discrete random variable

in the first sense with probability generating function P(z) = exp
{

−λ
(

1−z
1−κz

)γ}
. Then

P (Qp(z)) = exp

{
−λpγ

(
1 − z

1 − κz

)γ}
.

Thus (4.26) holds if
pγ = pγ

1 + pγ
2 .

Example 4.28 (Chebyshev thinning operator). In the same manner we see that a positive
discrete stable random variable in the first sense with Chebyshev thinning operator X is
positive discrete stable in the third sense. Let P be as in (4.17) and Q as in (4.15). We have

P(Qp(z)) = [P(z)]p
γ

.

Therefore again (4.26) holds if
pγ = pγ

1 + pγ
2 .

Example 4.29 (Chebyshev portlying operator). Now let’s look at an example with Cheby-
shev portlying operator with probability generating function Qn(z) = 1/Tn(1/z). Then a ran-

dom variable X with probability generating function P(z) =
(
1 −

√
1 − z2

)
/z is positive

discrete stable in the third sense, as (4.26) holds if

n = n1 + n2.



5. Properties of discrete stable
distributions
In previous Chapter we introduced several variants of discrete stability. Distributions, that are
discrete stable in the first sense, form the widest and most interesting class of distributions,
and we will study them more into details in this Chapter. We will focus mainly on the
distributions with thinning operator of geometric type, but we will give some results on
distributions with thinning operator of Chebyshev type as well.

5.1 Positive discrete stable random variables with G thinning
operator

To remind the definition, a non-negative integer-valued random variable X is said to be
positive discrete stable in the first sense, if

(5.1) X
d
=

n∑

j=1

X̃j , where X̃j =

Xj∑

i=1

ε
(j)
i ,

where X1, X2, . . . are independent copies of X and ε
(j)
i are i.i.d. non-negative integer-valued

random variables. Throughout this Section we will assume that the random variables ε
(j)
i

come from modified geometric distribution G(p, κ,m) with probability generating function Q
of the form

(5.2) Q(z) =

(
(1 − p) + (p− κ)zm

(1 − pκ) − κ(1 − p)zm

) 1

m

,

{0 ≤ κ < 1, 0 < p < 1, m = 1}
or

{0 < p < κ < 1, m ∈ N,m > 1}.

We remind that Q(z) can be decomposed as Q(z) = S−1 ◦ Bp ◦ S(z), where Bp(z) =
pz + (1 − p) and

S(z) =
(1 − κ)zm

1 − κzm
, S−1(y) =

(
y

(1 − κ) + κy

) 1

m

.

Theorem 5.1. A non-negative integer-valued random variable X is positive discrete stable
with G thinning operator if and only if Q takes form (5.2) and the probability generating
function P(z) = EzX is given as

(5.3) P(z) = exp

{
−λ

(
1 − zm

1 − κzm

)γ}
with γ ∈ (0, 1], λ > 0, κ ∈ [0, 1), m ∈ N.

Proof. Let h(z) = log P(z). From Proposition 4.2 it follows that X is positive discrete stable
if and only if h(z) = nh(Q(z)) for all n. Set

h(z) = −λ
(

1 − zm

1 − κzm

)γ
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and select γ such that 1/pγ = n. We see that

1 − zm

1 − κzm
= 1 − (1 − κ)zm

1 − κzm
= 1 − S(z).

Therefore, using the decomposition of Q(z),

nh(Q(z)) = −λn (1 − S(Q(z)))γ = −λn (1 −Bp(S(z)))γ

= −λn (p− pS(z))γ = −λnpγ(1 − S(z))γ

= −λ
(

1 − zm

1 − κzm

)γ

= h(z).

The parameter m determines the size of the lattice of the distribution. We will denote
positive discrete stable random variable (and associated distribution) by PDSm(γ, λ, κ). In
the case when m is omitted we will understand that m = 1. If moreover κ is omitted, we will
understand that κ = 0, in which case the discrete stable distribution reduces to the discrete
stable distribution as it was introduced in Steutel and van Harn (1979). In Figure A.1 the
probabilities of PDS(γ, λ, κ) random variables are shown for different values of parameters.
The probabilities were obtained using the classical inverse Fourier transform theorem (see,
for example, Lachout (2004)) and the fast Fourier transform algorithm.

The characteristic function is given as

f(t) = exp

{
−λ

(
1 − eitm

1 − κeitm

)γ}
.

The case of γ = 1 is a special one as it leads to a distribution with finite variance and
exponential tails. As a simple corollary we obtain Poisson distribution by taking κ = 0 and
γ = 1.

5.1.1 Characterizations

In this Subsection we present several characterizations of positive discrete stable random
variables.

Theorem 5.2. Let γ ∈ (0, 1) be a given parameter. Let X,X1, X2, . . . be i.i.d. non-negative
integer-valued random variables and Y be a non-negative integer-valued random variable, in-
dependent of the sequence X1, X2, . . . . Then X is positive discrete stable PDS(γ, λ) random
variable if and only if

(5.4) X
d
=

Y∑

j=1

Y −1/γ ⊙Xj , where p⊙X =
X∑

i=1

εi(p)

and εi(p) are i.i.d. Bernoulli random variables with probability generating function Qp(z) =
1 − p+ pz.
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Proof. First let us show that if X is PDS(γ, λ) then it has the representation (5.4). Let
P(z) be the probability generating function of X. The probability generating function of the
right-hand side of (5.4) can be computed in the following way.

E

[
z
∑Y

j=1
Y −1/γ⊙Xj

]
= E

[
E

[
z
∑Y

j=1
Y −1/γ⊙Xj |Y

]]
= E

[
PY

X (QY −1/γ (z))
]

= E [exp {−λY (1 − QY −1/γ (z))γ}] = E
[
exp

{
−λY Y −1 (1 − z)γ

}]

= exp {−λ (1 − z)γ} = P(z).

The proof of the inverse statement is more complicated and relies on the method if inten-
sively monotone operators. The condition (5.4) can be translated into the form of probability
generating functions as

(5.5) P(z) =
∞∑

k=0

P(Y = k)
k∏

j=1

P (Qk−1/γ (z)) .

Put G(z) = log P(z) and h(z) = G(z)/(1 − z)γ . Then we can rewrite (5.5) as

h(z) = (1 − z)−γ
∞∑

k=0

P(Y = k)
k∑

j=1

(1 − Qk−1/γ (z))γ h (Qk−1/γ (z))(5.6)

= (1 − z)−γ
∞∑

k=0

P(Y = k) (1 − z)γ h (Qk−1/γ (z))

=
∞∑

k=0

P(Y = k)h (Qk−1/γ (z)) .

Let A be an operator acting on g ∈ C[0, 1] such that

(Ag)(z) =

{ ∑∞
k=0 P(Y = k)g (Qk−1/γ (z)) , z < 1

g(0), z = 1.

We can verify that A is an intensively monotone operator (see Kakosyan et al. (1984)) and
that Ag ∈ C[0, 1]. It is clear that Aa = a for all constant functions a. It follows from
(Kakosyan et al., 1984, Theorem 1.1.2) that the only solution of (5.6) is identically equal to
a constant. Hence h(z) = −λ and

P(z) = exp {−λ(1 − z)γ} .

Theorem 5.3. Let γ, γ′ ∈ (0, 1] and assume that γ′ ≤ γ. Let Sγ be a γ-stable random variable
with Laplace transform exp{−uγ}. Then

PDS(γ′, λ, κ)
d
= PDS

(
γ′/γ, λ1/γSγ , κ

)
.
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Proof. The characteristic function of the right-hand side can be computed as

E
[
exp

{
itPDS

(
γ′/γ, λ1/γSγ , κ

)}]
= E


exp



−λ1/γSγ

(
1 − eit

1 − κeit

)γ′/γ







= exp



−λ

(
1 − eit

1 − κeit

)γ′


= E
[
exp

{
itPDS

(
γ′, λ, κ

)} ]
.

The following Corollary can be applied for simulations of positive discrete stable random
variables.

Corollary 5.4. Let Y, Y1, Y2, . . . be a sequence of i.i.d. random variables with geometric
distribution, P(Y = n) = (1 − κ)κn−1, n ≥ 1. Let N be a random variable, independent of
the sequence Y1, Y2, . . . , with Poisson distribution with random intensity λ−1/γSγ, where Sγ

is a γ-stable random variable with Laplace transform exp{−uγ}. Then

N∑

j=1

Yj

has the same distribution as a positive discrete stable random variable PDS(γ, λ, κ).

Proof. Let X =
∑N

j=1 Yj . Then X is a compound Poisson random variable with random

intensity λ1/γSγ and jumps Y1, Y2, . . . with characteristic function

g(t) =
(1 − κ)eit

1 − κeit
.

The characteristic function of a compound Poisson random variable with intensity τ and char-
acteristic function of jumps h(t) is exp{−τ(1−h(t))}. Therefore X is in fact PDS(1, λ1/γSγ , κ).
We thus obtain the result from the previous Theorem 5.3 with γ′ = γ.

5.1.2 Moments

Theorem 5.5. Let X be PDS(γ, λ, κ) random variable with γ = 1 and κ > 0. Then the n-th
factorial moment can be computed using the following formula

(5.7) E [(X)n] =
κn

(1 − κ)n
n!

n−1∑

s=0

1

(s+ 1)!

(
n− 1

s

)
λs+1

κs+1
.

Proof. Let P(z) be the probability generating function of X. The n-th factorial moment of
discrete random variable can be computed as the value of the n-th derivative of the probability
generating function at point 1, i.e.

E [(X)n] =
dn

dzn
P(z)

∣∣∣∣
z=1

.
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Since P(z) = exp{g(z)}, with

g(z) = −λ
(

1 − (1 − κ)
z

1 − κz

)
,

we compute the n-th derivative using the Bruno’s formula (Faa di Bruno (1857))

dn

dzn
P(z)

∣∣∣∣
z=1

=
n∑

k=1

P(1)Bn,k(g′(1), g′′(1), . . . , g(n−k+1)(1)),

where Bn,k(x1, . . . , xn−k+1) is the Bell’s polynomial,
(5.8)

Bn,k(x1, . . . , xn−k+1) =
∑

i1,...,in−k+1

n!

i1!i2! . . . in−k+1!

(
x1

1!

)i1
(
x2

2!

)i1

· · ·
(

xn−k+1

(n− k + 1)!

)in−k+1

,

where we sum over all possible combinations such that i1 + 2i2 · · · + (n − k + 1)in−k+1 = n
and i1 + i2 · · · + in−k+1 = k. By differentiating the function g(z) we obtain

g(i)(1) = i!λ
κi−1

(1 − κ)i
.

Plugging that into the Bell’s polynomial we obtain

Bn,k

(
g′(1), g′′(1), . . . , g(n−k+1)(1)

)
=

∑

i1,...,in−k+1

n!

i1!i2! . . . in−k+1!

n−k+1∏

j=1

(
g(j)(1)

j!

)ij

=
∑

i1,...,in−k+1

n!

i1!i2! . . . in−k+1!

n−k+1∏

j=1

(
λκj−1

(1 − κ)j

)ij

=
∑

i1,...,in−k+1

n!

i1!i2! . . . in−k+1!

λkκn

κk(1 − κ)n

=
λkκn

κk(1 − κ)n
Bn,k(1!, 2!, . . . , (n− k + 1)!)

=
λkκn

κk(1 − κ)n

(
n

k

)(
n− 1

k − 1

)
(n− k)!.

Hence the n-th factorial moment is

E [(X)n] =
n∑

k=1

λkκn

κk(1 − κ)n

(
n

k

)(
n− 1

k − 1

)
(n− k)!

=
κn

(1 − κ)n

n∑

k=1

λk

κk

n!

k!

(
n− 1

k − 1

)
.

The result follows from here by setting s = k − 1.

5.1.3 Probabilities

In the next Theorem we show connection between the probabilities of a positive discrete stable
random variable and moments of a tempered stable random variable.
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Theorem 5.6. Let X be a PDS(γ, λ) random variable with γ < 1. Let Y be a tempered stable
random variable with characteristic function fY (t) = exp{−(λ1/γ − it)γ + λ}. Then we can
write the probabilities P(X = k) as

P(X = k) = e−λλ
k/γ

k!
EY k.

Before we proceed to the proof of the Theorem, we state a simple Lemma.

Lemma 5.7. Let Sγ be γ-stable random variable with Laplace transform L(u) = Ee−uSγ =
exp{−uγ} and density function p(x). Let θ > 0. Let Y be a random variable with density
function

pY (x) = e−θxp(x)/L(θ).

Then Y is a tempered stable random variable with characteristic function

f(t) = exp{−(θ − it)γ + θγ}.

Proof. We may compute the characteristic function of Y as follows:

fY (t) = EeitY =

∫ ∞

0
eitxpY (x)dx =

∫ ∞

0
eitxe−θxp(x)/L(θ)dx

= eθγ
∫ ∞

0
exp{−(θ − it)x} p(x)dx

= eθγ
L(θ − it) = exp {−(θ − it)γ + θγ} .

Now we can prove the Theorem.

Proof of Theorem 5.6. It follows from Theorem 5.3 that a positive discrete stable random
variable PDS(γ, λ) is a Poisson random variable with random intensity λ1/γSγ , where Sγ is
a γ-stable random variable with Laplace transform L(u) = exp{−uγ} and density function
p(x). Therefore the probabilities P(X = k) can be computed as

P(X = k) =

∫ ∞

0
e−λ1/γs (λ1/γs)k

k!
p(s)ds

=
λk/γ

k!
L(λ1/γ)

∫ ∞

0
ske−λ1/γsp(s)/L(λ1/γ)ds.

But e−λ1/γsp(s)/L(λ1/γ) is a density function of a tempered stable random variable Y with
characteristic function f(t) = exp{−(λ1/γ − it)γ + λ}. Therefore

P(X = k) =
λk/γ

k!
L(λ1/γ)

∫ ∞

0
skpY (s)ds

=
λk/γ

k!
L(λ1/γ)EY k.
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Theorem 5.8. Let X be a PDS(γ, λ, κ) random variable with γ = 1 and κ > 0. Then the
probability P(X = m) for m ≥ 1 can be computed using the following formula

(5.9) P (X = m) = e−λ
m−1∑

s=0

λs+1

(s+ 1)!

(
m− 1

s

)
κm−s−1(1 − κ)s+1.

Proof. We compute the probabilities by expanding the probability generating function into
power series.

P(z) = exp

{
−λ

(
1 − (1 − κ)

z

1 − κz

)}

= e−λ + e−λ
∞∑

n=1

λn

n!
(1 − κ)n zn

(1 − κz)n

= e−λ + e−λ
∞∑

n=1

∞∑

j=0

λn

n!
(1 − κ)nκj

(
n+ j − 1

j

)
zn+j

= e−λ + e−λ
∞∑

n=1

∞∑

m=n

λn

n!
(1 − κ)nκm−n

(
m− 1

m− n

)
zm

= e−λ + e−λ
∞∑

m=1

m∑

n=1

λn

n!
(1 − κ)nκm−n

(
m− 1

n− 1

)
zm

= e−λ + e−λ
∞∑

m=1

m−1∑

s=0

λs+1

(s+ 1)!
(1 − κ)s+1κm−s−1

(
m− 1

s

)
zm.

The probabilities P(X = m) are obtained from this results as the coefficients of the probability
generating function by zm, as P(z) =

∑∞
m=0 P(X = m)zm.

Corollary 5.9. Let X be PDS(γ, λ, κ) random variable with γ = 1 and κ > 0. Then the
probability P(X = m) for m ≥ 1 can be expressed in the following ways

P (X = m) = e−λλ(1 − κ)κm−1
1F1

(
1 −m, 2,

β − 1

β
λ

)

and

P (X = m) = e−λλ(1 − κ)κm−1 1

m
L

(1)
m−1

(
β − 1

β
λ

)
,

where 1F1(a, b, z) is the Kummer confluent hypergeometric function and L
(α)
n (z) is the gener-

alized Laguerre polynomial.

Proof. The first assertion follows directly from (5.9). The second assertion follows from the
relation between Laguerre polynomial and Kummer confluent hypergeometric function (see
for example (Erdélyi et al., 1953b, pp. 268)), stating that

L(α)
n (z) =

(
n+ α

n

)

1F1(−n, α+ 1, z).
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5.1.4 Continuous analogies

Let us consider a random variable Xa = aX, with X ∼ PDS(γ, λ, κ) and a > 0. Then Xa

takes values in aN0 = {0, a, 2a, · · · }. We study the limit behaviour of Xa as a → 0 with
κ → 1.

Theorem 5.10. Let X be a positive discrete stable random variable with parameters γ, λ
and κ and let Xa = aX with a > 0. Let κ = 1 − ac. Then

fa(t) = exp

{
−λ

(
1 − eiat

1 − κeiat

)γ}
−→ ϕ(t) = exp

{
−λ

( −it

c− it

)γ}
, as a → 0.

Proof. The limit characteristic function can be computed in a straightforward way. We have

1 − eiat

1 − κeiat
=

1 − eiat

1 − eiat + aceiat
≈ −iat

−iat+ aceiat
, as a → 0.

Hence we have

ϕ(t) = lim
a→0

exp

{
−λ

( −iat

−iat+ aceiat

)γ}
= exp

{
−λ

( −it

−it+ c

)γ}
.

Next we show that discrete stable distribution on N0 can be considered a discrete analogy
of stable distribution with index of stability α = γ and skewness parameter β = 1.

Theorem 5.11. Let X be a positive discrete stable random variable with parameters γ, λ
and κ and let Xa = aX with a > 0. Let λ = b/aγ. Then

fa(t) = exp

{
−λ

(
1 − eiat

1 − κeiat

)γ}

−→ ϕ(t) = exp

{
−σ|t|γ

(
1 − i sign(t) tan

(
πγ

2

))}
, as a → 0,

where σ = b
(1−κ)γ cos

(πγ
2

)
.

Proof. We have

1 − eiat

1 − κeiat
=

1 − eiat

1 − κ+ κ (1 − eiat)
≈ −iat

(1 − κ) − κiat
as a → 0.

Hence

−λ
(

1 − eiat

1 − κeiat

)γ

≈ − b

aγ

( −iat

(1 − κ) − κiat

)γ

as a → 0

→ − b

(1 − κ)γ
(−it)γ as a → 0.

Finally we notice that

(−it)γ = |t|γ(−i sign(t))γ = |t|γ cos (πγ/2) (1 − i sign(t) tan (πγ/2)).
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5.1.5 Asymptotic behaviour

In this Subsection we show that the tails of discrete stable PDS(γ, λ, κ) distribution are heavy
with tail index γ.

Proposition 5.12. The discrete stable distribution PDS(γ, λ, κ) belongs to the domain of
normal attraction of α-stable distribution with characteristic function

g(t) = exp

{
− λ

(1 − κ)γ
cos (πγ/2) |t|γ

(
1 − i sign(t) tan

(
πγ

2

))}
.

Proof. Let X1, X2, . . . , Xn be i.i.d. PDS(γ, λ, κ) random variables with characteristic function

f(t) = exp

{
−λ

(
1 − eit

1 − κeit

)γ}
.

Let us denote Sn the normalized sum

Sn =
X1 +X2 + · · · +Xn

n1/γ
.

Then the characteristic function of Sn is given as

E
[
eitSn

]
= fn

(
t

n1/γ

)
= exp

{
−λ

(
1 − eit/n1/γ

1 − κeit/n1/γ

)γ}
.

We use the Taylor expansion of exp to obtain

log E
[
eitSn

]
= −λn

( −it

(1 − κ)n1/γ
+O(t2/n2/γ)

)γ

= − λ

(1 − κ)γ
(−it)γ(1 +O(n−2/γ))γ , as n → ∞.

Hence

g(t) = lim
n→∞ E

[
eitSn

]
= exp

{
− λ

(1 − κ)γ
(−it)γ

}
.

We can rewrite the exponent using

(−it)γ = |t|γ(−i sign(t))γ = |t|γ cos (πγ/2) (1 − i sign(t) tan (πγ/2)).

5.2 Discrete stable random variables with G thinning operator

In this Section we will study more into detail the discrete stable distribution in the limit sense
with two-sided modified geometric thinning operator, as defined in Section 4.1. To remind
the definition, an integer-valued random variable X is said to be discrete stable in the limit
sense, if

(5.10) X
d
= lim

n→∞

n∑

i=1

X̄i(pn), where X̄i(pn) =

X+

i∑

j=1

ε
(i)
j −

X−
i∑

j=1

ǫ
(i)
j ,
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where X1, X2, . . . are independent copies of X and ε
(i)
j , ǫ

(i)
j are i.i.d. integer-valued random

variables. Throughout this Section we will assume that the random variables ε
(i)
j , ǫ

(i)
j come

from two-sided modified geometric distribution 2G(p, κ,m, q) with probability generating func-
tion R. We remind that the probability generating function R is given as

(5.11) R(z) = S−1 ◦Bp ◦ S(2)(z),

where

S(z) =
(1 − κ)zm

1 − κzm
,

S−1(y) =

(
y

1 − κ(1 − y)

) 1

m

,

Bp(z) = 1 − p+ pz,

and finally

S(2)(z) = qS(z) + (1 − q)S(z−1).

Theorem 5.13. An integer-valued random variable X is discrete stable in the limit sense
with two-sided modified geometric thinning operator, if and only if R(z) takes form (5.11)
and the probability generating function P(z) = EzX =

∑∞
k=−∞ P(X = k)zk takes form

(5.12) P(z) = exp

{
−λ

(
1 + β

2

)(
1 − q

(1 − κ)zm

1 − κzm
− (1 − q)

(1 − κ)z−m

1 − κz−m

)γ

−λ
(

1 − β

2

)(
1 − (1 − q)

(1 − κ)zm

1 − κzm
− q

(1 − κ)z−m

1 − κz−m

)γ}

with γ ∈ (0, 1], λ > 0, κ ∈ [0, 1), β ∈ [−1, 1], q ∈ [0, 1].

Proof. We have shown in Proposition 4.8 that a random variable X is discrete stable in the
limit sense if and only if

P(z) = lim
n→∞ [P0 + P1(R(z)) + P2(R(1/z))] ,

where P1 is the generating function of the sequence {p1, p2, . . . } with pk = P(X = k) and P2

is the generating function of the sequence {q1, q2, . . . } with qk = P(X = −k). Let us assume
that P1 and P2 take the following form

(5.13) Pi(z) = Pi(1) − λi

(
1 − zm

1 − κzm

)γ

+ o

((
1 − zm

1 − κzm

)γ)
, i = 1, 2,

with γ ∈ (0, 1]. We notice that
1 − zm

1 − κzm
= 1 − S(z).

This simplifies the computation, as 1 − S (R(z)) = 1 −
(
1 − p+ pS(2)(z)

)
= p

(
1 − S(2)(z)

)

and similarly for 1 − S(R(1/z)).
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We can now compute the limit

P(z) = lim
n→∞ [P0 + P1 (R(z)) + P2 (R(1/z))]n .

Let p = n−1/γ . Then

P(z) = lim
n→∞ [1 − λ1 (1 − S(R(z)))γ − λ2 (1 − S(R(1/z)))γ ]n

= lim
n→∞

[
1 − λ1p

γ
(
1 − S(2)(z)

)γ
− λ2p

γ
(
1 − S(2)(1/z)

)γ]n

= exp

{
−λ1

(
1 − q

(1 − κ)zm

1 − κzm
− (1 − q)

(1 − κ)z−m

1 − κz−m

)γ

−λ2

(
1 − q

(1 − κ)z−m

1 − κz−m
− (1 − q)

(1 − κ)zm

1 − κzm

)γ}
.

By setting λ = λ1 + λ2 and β = λ1−λ2

λ1+λ2
, we obtain the desired result.

We will denote discrete stable distribution (and random variable) by DSm(γ, β, λ, q, κ).
The parameter m specifies the size of the lattice of the distribution. If we omit m then it
is understood that m = 1. If κ is omitted we will understand that κ = 0. If moreover q is
omitted we will understand that q = 1. In this case the probability generating function (5.12)
reduces to

exp

{
−λ

(
1 + β

2

)
(1 − z)γ − λ

(
1 − β

2

)
(1 − 1/z)γ

}

which corresponds to the discrete stable distribution introduced in Klebanov and Slámová
(2013). In the case of β = 1 and q = 1, the DS(γ, 1, λ, 1, κ) random variable correspond
to positive discrete stable random variable PDS(γ, λ, κ). In Figure A.2 the probabilities of
DS(γ, β, λ, 1, κ) random variables are shown for different values of parameters. The probabil-
ities were again obtained using the classical inverse Fourier transform theorem and the fast
Fourier transform algorithm.

Remark 5.14. A discrete stable random variable X ∼ DS(γ, β, λ, q, κ) is infinitely divisible,
as for all n ∈ N,

X = Y1 + Y2 + · · · + Yn, where Yi ∼ DS(γ, β, λ/n, q, κ), i = 1, . . . , n.

For the sake of simplicity we will denote

g(z) =

(
1 − q

(1 − κ)zm

1 − κzm
− (1 − q)

(1 − κ)z−m

1 − κz−m

)γ

,(5.14)

h(z) = g
(
z−1

)
=

(
1 − (1 − q)

(1 − κ)zm

1 − κzm
− q

(1 − κ)z−m

1 − κz−m

)γ

.(5.15)

Then the probability generating function of a DS(γ, β, λ, q, κ) random variable can be
written simply as

P(z) = exp

{
−λ

(
1 + β

2

)
g(z) − λ

(
1 − β

2

)
h(z)

}
.
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5.2.1 Properties

Discrete stable distribution shares many interesting properties with stable distributions. In
this Subsection we show that analogies of Properties 2.7 – 2.11 hold also for discrete stable
distributions.

Property 5.15. Let X1 and X2 be independent random variables with Xi ∼ DS(γ, βi, λi, q, κ),
i = 1, 2. Then X1 +X2 ∼ DS(γ, β, λ, q, κ), with

λ = λ1 + λ2, β =
β1λ1 + β2λ2

λ1 + λ2
.

Proof. Using the notation (5.14)–(5.15), the probability generating function of Xi, i = 1, 2, is

Pi(z) = exp

{
−λi

(
1 + βi

2

)
g(z) − λi

(
1 − βi

2

)
h(z)

}
.

The probability generating function ofX1+X2 is a product of the single probability generating
functions. Therefore

log PX1+X2
(z) = − λ1

(
1 + β1

2

)
g(z) − λ1

(
1 − β1

2

)
h(z)

− λ2

(
1 + β2

2

)
g(z) − λ2

(
1 − β2

2

)
h(z)

= − (λ1 + λ2)
1

2

(
1 +

λ1β1 + λ2β2

λ1 + λ2

)
g(z)

− (λ1 + λ2)
1

2

(
1 − λ1β1 + λ2β2

λ1 + λ2

)
h(z)

= − λ

(
1 + β

2

)
g(z) − λ

(
1 − β

2

)
h(z),

where λ = λ1 + λ2 and β = (β1λ1 + β2λ2)/(λ1 + λ2).

Analogy of the Property 2.8 holds only for positive discrete stable random variables.

Property 5.16. Let X ∼ PDS(γ, λ, κ). Let a ∈ (0, 1). Then X̃(a) ∼ PDS(γ, aγλ, κ).

Proof. The probability generating function of X̃(a) is equal to

exp {−λ (1 − S(Qa(z)))γ} = exp {−λaγ (1 − S(z))γ} .

Property 5.17. Let X ∼ DS(γ, β, λ, q, κ). Then −X ∼ DS(γ,−β, λ, q, κ).

Proof. This follows from the fact that g(z−1) = h(z), where we use the notation (5.14)–(5.15).
Then the probability generating function of −X is given as

P(z−1) = exp

{
−λ

(
1 + β

2

)
h(z) − λ

(
1 − β

2

)
g(z)

}
,

and this is the probability generating function of DS(γ,−β, λ, q, κ).
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Property 5.18. Let X ∼ DS(γ, β, λ, q, κ). Then X is symmetric if and only if q = 1/2 or
β = 0.

Proof. A discrete random variable is symmetric if and only if P(z) = P(z−1). Using the
notation (5.14)–(5.15), and the fact that g(z−1) = h(z), it follows that a discrete stable
random variable is symmetric if and only if

−λ
(

1 + β

2

)
g(z) − λ

(
1 − β

2

)
h(z) = −λ

(
1 + β

2

)
h(z) − λ

(
1 − β

2

)
g(z).

But this holds true if and only if β = 0 or g(z) = h(z). The latter condition is satisfied only
if q = 1/2.

Property 5.19. Let X be DS(γ, β, λ, q, κ). Then there exist two i.i.d. random variables Y1

and Y2 with common distribution DS(γ, 1, λ, 1, κ) such that

X
d
= Ȳ1

((
1 + β

2

)1/γ
)

− Ȳ2

((
1 − β

2

)1/γ
)
.

Proof. Let Y1, Y2 ∼ DS(γ, 1, λ, 1, κ). Their probability generating function is

P(z) = exp

{
−λ

(
1 − z

1 − κz

)γ}
.

Moreover, the probability generating function of Ȳi(p) is obtained in closed form, as Yi are in
fact positive discrete stable random variables. So we have

PȲi(p) = P(Rp(z))

Similarly as in the Proof of Theorem 5.13 we can compute that

P(Rp(z)) = exp {−λ (1 − S(Rp(z)))γ} = exp

{
−λpγ

(
1 − q

(1 − κ)z

1 − κz
− (1 − q)

(1 − κ)z−1

1 − κz−1

)γ}
.

The probability generating function of the difference Ȳ1(p1) − Ȳ2(p2) is computed as

P(Rp1
(z))P(Rp2

(1/z)).

Putting all together we obtain the desired result.

5.2.2 Continuous analogies

Let us consider a random variable Xa = aX, with X ∼ DS(γ, β, λ, q, κ) and a > 0. Then Xa

takes values in aZ = {0,±a,±2a, · · · }. We show that the limit distribution of Xa is α-stable
distribution with index of stability γ and skewness β. We study the limit behaviour of Xa as
a → 0 and q → 1/2.

Theorem 5.20. Let X be a discrete stable random variable with parameters γ, β, λ, q and
κ = 0. Let Xa = aX with a > 0 and let 2q − 1 ≈ a as a → 0. Then

fa(t) = exp

{
−λ

(
1 + β

2

)(
1 − qeiat − (1 − q)e−iat

)γ
−

− λ

(
1 − β

2

)(
1 − qe−iat − (1 − q)eiat

)γ
}

−→ ϕ(t) = exp

{
−λ cos

πγ

2
|t|γ

(
1 − iβsign(t) tan

πγ

2

)}
, as a → 0.
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Proof. We may rewrite the characteristic exponent of fa(t) as

log fa(t) ≈ −λ
(

1 + β

2

)
((2q − 1)(−iat))γ − λ

(
1 − β

2

)
((2q − 1)(iat))γ , as a → 0

and because q ≈ (1 + a)/2 we have

≈ −λ
(

1 + β

2

)
(−it)γ − λ

(
1 − β

2

)
(it)γ .

To complete the proof it is enough to notice that (−it)γ = |t|γ (cos πγ
2 − i sin πγ

2

)
and (it)γ =

|t|γ (cos πγ
2 + i sin πγ

2

)
.

Remark 5.21. It can be shown that the case of κ > 0 leads to a similar result, the limit
distribution is again α-stable with index of stability γ and skewness β.

Proof.

5.3 Symmetric discrete stable random variables with G thin-
ning operator

In the previous Section we studied the general case of discrete stable distribution in the limit
sense. The symmetric version of such distribution is special case with interesting properties
and we will therefore study it more into details in this Section. The symmetric discrete stable
distribution in the limit sense is obtained by considering the symmetric two-sided modified
geometric thinning operator 2G(a, κ, 1

2 ,m).

Theorem 5.22. A symmetric integer-valued random variable X is symmetric discrete stable
with symmetric two-sided G thinning operator if and only if the thinning operator takes form
(5.11) with q = 1/2 and the probability generating function P(z) = EzX ∑∞

k=−∞ P(X = k)zk

takes form

(5.16) P(z) = exp

{
−λ

(
1 − 1 − κ

2

(
zm

1 − κzm
+

z−m

1 − κz−m

))γ}

with parameters γ ∈ (0, 1], λ > 0, κ ∈ [0, 1) and m ∈ N.

Proof. The proof follows from the proof of Theorem 5.13. In the symmetric case we have
P1(z) = P2(z), therefore λ1 = λ2 and moreover q = 1/2. The probability generating function
(5.12) thus reduces to (5.16).

We will denote symmetric discrete stable distribution (and also random variable) by
SDSm(γ, λ, κ). In case when m is omitted we will understand that m = 1. If κ is omitted we
will understand that κ = 0, in which case the symmetric discrete stable distribution reduces
to the symmetric discrete stable distribution as it was introduced in Klebanov and Slámová
(2013). In Figure A.3 the probabilities of SDS(γ, λ, κ) random variables are shown for dif-
ferent values of parameters. The probabilities were again obtained using the classical inverse
Fourier transform theorem and the fast Fourier transform algorithm.
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The characteristic function is given as

f(t) = exp

{
−λ

(
1 − (1 − κ)

cos(tm) − κ

κ2 − 2κ cos(tm) + 1

)γ}
.

The case of γ = 1 is a special one as it leads to a distribution with finite variance and
exponential tails.

5.3.1 Characterizations

Theorem 5.23. Let γ, γ′ ∈ (0, 1] and assume that γ′ ≤ γ. Let Sγ be a γ-stable random
variable with Laplace transform exp{−uγ}. Then

SDS(γ′, λ, κ)
d
= SDS

(
γ′/γ, λ1/γSγ , κ

)
.

Proof. The proof of the Theorem is done in the same way as the proof of Theorem 5.3.

Corollary 5.24. Let Y, Y1, Y2, . . . be a sequence of i.i.d. random variables with two-sided
geometric distribution, P(Y = ±n) = 1

2(1 − κ)κn−1, n ≥ 1. Let N be a random variable, inde-

pendent of the sequence Y1, Y2, . . . , with Poisson distribution with random intensity λ−1/γSγ,
where Sγ is a γ-stable random variable with Laplace transform exp{−uγ}. A random variable
X is symmetric discrete stable SDS(γ, λ, κ) if and only if

X
d
=

N∑

j=1

Yj .

Proof. Let X =
∑N

j=1 Yj . Then X is a compound Poisson random variable with random

intensity λ1/γSγ and jumps Y1, Y2, . . . with characteristic function

g(t) =
1

2

(1 − κ)eit

1 − κeit
+

1

2

(1 − κ)e−it

1 − κe−it
.

The characteristic function of a compound Poisson random variable with intensity τ and char-
acteristic function of jumps h(t) is exp{−τ(1−h(t))}. Therefore X is in fact SDS(1, λ1/γSγ , κ).
We thus obtain the result from the previous Theorem 5.23 with γ′ = γ.

5.3.2 Probabilities

Theorem 5.25. Let X be SDS(γ, λ) random variable. Then

P(X = k) =
∞∑

i=|k|

∞∑

j=0

(−1)i+j

(
γj

i

)
λj

j!

1

2i

(
i

i+k
2

)
, k ∈ Z.

In case γ = 1 this simplifies to

P(X = k) = e−λIk(λ), k ∈ Z.

where Ik is the modified Bessel function of the first kind.
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Proof. The generating function of a discrete random variable taking values in Z is a power
series, with coefficients equal to probabilities, i.e.

PX(z) =
∞∑

k=−∞
P(X = k)zk.

(Note that this series converges only for ε < |z| ≤ 1). Thus expanding (5.16) with κ = 0 into
a power series we obtain the probabilities. We use Taylor expansion of exponential function,
binomial expansion and interchange of sums.

exp

{
−λ

[
1 − 1

2

(
z +

1

z

)]γ}
=

∞∑

j=0

∞∑

i=0

i∑

l=0

(−1)i+j

(
γj

i

)(
i

l

)
λj

j!

1

2i
z2l−i =

change of notation k = 2l − i and interchange of sums

=
∞∑

k=−∞

∞∑

i=|k|

∞∑

j=0

(−1)i+j

(
γj

i

)(
i

i+k
2

)
λj

j!

1

2i
zk.

From this the first result follows. Taking γ = 1 the first binomial coefficient
(j

i

)
turns 0 for

j < i and we have, for k ≥ 0,

P(X = k) =
∞∑

i=k

∞∑

j=i

(−1)i+j

(
j

i

)(
i

i+k
2

)
λj

j!

1

2i
=

= e−λ
∞∑

l=0

(λ/2)k+2l 1

Γ(l + 1)Γ(l + k + 1)
=

= e−λIk(λ).

5.3.3 Continuous analogies

Let us consider a case of random variable Xa = aX, with X ∼ SDS(γ, λ, κ) and a > 0. Then
Xa takes values in aZ = {0,±a,±2a, · · · }. We study the limit behaviour of Xa as a → 0 with
κ → 1.

Theorem 5.26. Let X be a symmetric discrete stable random variable with parameters γ, λ
and κ and let Xa = aX with a > 0. Let κ = 1 − ac. Then

fa(t) = exp

{
−λ

(
1 − (1 − κ)

cos(at) − κ

κ2 − 2κ cos(at) + 1

)γ}

−→ ϕ(t) = exp

{
−λ

(
t2

t2 + c2

)γ}
, as a → 0.

Proof. The limit characteristic function can be computed in a straightforward way. We have

(
1 − (1 − κ)

cos(at) − κ

κ2 − 2κ cos(at) + 1

)
=

(
1 + ac

1 − cos(at) − ac

2(1 − ac)(1 − cos(at)) + a2c2

)

≈
(

1 +
act2/2 − c2

t2 − a ct2 + c2

)
as a → 0
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Hence we have

ϕ(t) = lim
a→0

exp

{
−λ

(
1 +

act2/2 − c2

t2 − act2 + c2

)γ}
= exp

{
−λ

(
t2

t2 + c2

)γ}
.

Next we show that symmetric discrete stable is a discrete analogy of symmetric stable
distribution with index of stability α = 2γ.

Theorem 5.27. Let X be a symmetric discrete stable random variable with parameters γ, λ
and κ and let Xa = aX with a > 0. Let λ = b/a2γ. Then

fa(t) = exp

{
−λ

(
1 − (1 − κ)

cos(at) − κ

κ2 − 2κ cos(at) + 1

)γ}
−→ ϕ(t) = exp

{
−σ|t|2γ

}
, as a → 0,

where σ = b
2γ

(1+κ)γ

(1−κ)2γ .

Proof. We have

1 − (1 − κ)
cos(at) − κ

κ2 − 2κ cos(at) + 1
= (1 + κ)

1 − cos(at)

κ2 − 2κ cos(at) + 1

≈ (1 + κ)

2

a2t2

(1 − κ)2 + κa2t2
as a → 0

Hence

−λ
(

1 − (1 − κ)
cos(at) − κ

κ2 − 2κ cos(at) + 1

)γ

≈ − b

a2γ

(
(1 + κ)

2

a2t2

(1 − κ)2 + κa2t2

)γ

as a → 0

→ − b

2γ

(1 + κ)γ

(1 − κ)2γ
|t|2γ as a → 0.

5.3.4 Moments

In this Subsection we give a formula for factorial moments of SDS(1, λ, κ) distribution and
show that fractional moments of SDS(γ, λ, κ) of non-integer order up to 2γ exists.

Theorem 5.28. Let X be SDS(γ, λ, κ) random variable with γ = 1 and κ > 0. Then the
n-th factorial moment can be computed using the following formula
(5.17)

E [(X)n] =
1

(1 − κ)n

n∑

k=1

λk

2k
Bn,k

(
0, 2!(κ− 1), 3!(κ2 + 1), . . . , (n− k + 1)!(κn−k − (−1)n−k+1)

)
,

where Bn,k is the Bell’s polynomial (5.8).

Proof. The proof is analogous to the proof of Theorem 5.5 and therefore is omitted.

Theorem 5.29. Let X ∼ SDS(γ, λ, κ) with 0 < γ < 1. Then

E|X|r < ∞, for any 0 < r < 2γ,

E|X|r = ∞, for any r ≥ 2γ.
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Proof. The moments of non-integer order E|X|r for any 0 < r < 2 can be computed using
the following formula (see for example (Klebanov, 2003, Lemma 2.2)):

E|X|r = cr

∫ ∞

0
(1 − Re(f(t)))

dt

tr+1
,

with
cr = − r

Γ(1 − r) cos(πr/2)

and where f(t) is the characteristic function of the distribution ofX. Since SDS is a symmetric
distribution, the characteristic function of X is real, and equal to

f(t) = exp

{
−λ

((
1 − cos(t)

)
(1 + κ)

κ2 − 2κ cos(t) + 1

)γ}
.

We may thus compute the moments.

E|X|r = cr

∫ ∞

0

[
1 − exp

{
−λ

((
1 − cos(t)

)
(1 + κ)

κ2 − 2κ cos(t) + 1

)γ}]
dt

t1+r

= cr

∫ 1

0

[
1 − exp

{
−λ

((
1 − cos(t)

)
(1 + κ)

κ2 − 2κ cos(t) + 1

)γ}]
dt

t1+r

+ cr

∫ ∞

1

[
1 − exp

{
−λ

((
1 − cos(t)

)
(1 + κ)

κ2 − 2κ cos(t) + 1

)γ}]
dt

t1+r
.

Using the limit comparison test we see that the first integral converges for r < 2γ and diverges
for r ≥ 2γ, and the second integral converges for all r > 0.

5.3.5 Asymptotic behaviour

In this Subsection we show that the tails of symmetric discrete stable SDS(γ, λ, κ) distribution
are indeed heavy with tail index 2γ.

Proposition 5.30. The symmetric discrete stable distribution SDS(γ, λ, κ) belongs to the
domain of normal attraction of symmetric α-stable distribution with characteristic function

g(t) = exp

{
− λ

2γ

(1 + κ)γ

(1 − κ)2γ
|t|2γ

}
.

Proof. Let X1, X2, . . . , Xn be i.i.d. SDS(γ, λ, κ) random variables with characteristic function

f(t) = exp

{
−λ

((
1 − cos(t)

)
(1 + κ)

κ2 − 2κ cos(t) + 1

)γ}
.

Let us denote Sn the normalized sum

Sn =
X1 +X2 + · · · +Xn

n1/2γ
.

Then the characteristic function of Sn is given as

E
[
eitSn

]
= fn

(
t

n1/2γ

)
= exp

{
−λ

((
1 − cos(t/n1/2γ)

)
(1 + κ)

κ2 − 2κ cos(t/n1/2γ) + 1

)γ}
.
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We use the Taylor expansion of cos to obtain

log E
[
eitSn

]
= −λn

(
t2

2n1/γ

1 + κ

(1 − κ)2
+O(n−3/2γ)

)γ

= − λ

2γ

(1 + κ)γ

(1 − κ)2γ
|t|2γ(1 +O(n−3/2γ))γ , as n → ∞.

Hence

g(t) = lim
n→∞ E

[
eitSn

]
= exp

{
− λ

2γ

(1 + κ)γ

(1 − κ)2γ
|t|2γ

}
.

Theorem 5.31. Let X ∼ SDS(γ, λ, κ) with 0 < γ < 1. Then

(5.18) lim
x→∞x2γP(|X| > x) =





λ
2γ

(1+κ)γ

(1−κ)2γ
1

Γ(1−2γ) cos(πγ) , if γ 6= 1
2 ,

λ
2γ

(1+κ)γ

(1−κ)2γ
2
π , if γ = 1

2 .

Proof. We apply (Ibragimov and Linnik, 1971, Theorem 2.6.7.): SDS(γ, λ, κ) distribution
belongs to the domain of normal attraction of S(α, β, c, µ) with α = 2γ, β = 0, c = λ/2γ(1 +
κ)γ(1 − κ)−2γ and µ = 0, hence the tail functions of SDS(γ, λ, κ) are given as

F (x) = (c1 + α1(x))|x|−α, for x < 0,

1 − F (x) = (c2 + α2(x))x−α, for x > 0,

where αi(x) → 0 as |x| → ∞. The constants c1, c2 satisfy following conditions:

β = (c1 − c2)/(c1 + c2),

c =

{
Γ(1 − α)(c1 + c2) cos(πα/2), if α 6= 1,
π
2 (c1 + c2), if α = 1.

We can easily see that for α 6= 1 we have

c1 = c2 =
1

2

λ

2γ

(1 + κ)γ

(1 − κ)2γ

1

Γ(1 − 2γ) cos(πγ)
,

and for α = 1 we have

c1 = c2 =
λ

2γ

(1 + κ)γ

(1 − κ)2γ

1

π
.

Hence

lim
x→∞

x2γP(|X| > x) = lim
x→∞

x2γ(F (−x) + 1 − F (x))

= lim
x→∞

x2γ
[
(c1 + α1(−x))x−2γ + (c2 + α2(x))x−2γ

]

= 2c1.
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5.3.6 Asymptotic expansion of probabilities

In this Subsection we give an asymptotic expansion of the probabilities of the symmetric
discrete stable distribution with κ = 0. The following result is an adaptation of the approach
used in Christoph and Schreiber (1998) for positive discrete stable random variables.

Theorem 5.32. Let X ∼ SDS(γ, λ), with 0 < γ < 1. Then for any fixed integer m and
n → ∞

(5.19) P(X = n) =
2−n

π

m∑

j=1

(−1)j+1

j!
λj sin(γjπ)B(γj + 1, n− γj) +O(n−γ(m+1)−1),

where B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the Beta function. Moreover

(5.20) P(X = n) =
2−n

π

[(γ+1)/γ]∑

j=1

(−1)j+1

j!
λjΓ(γj + 1) sin(γjπ)n−γj−1 +O(n−γ−2).

Proof. Using the stochastic representation of SDS(γ, λ) random variable as a compound Pois-
son random variable with random intensity (Slámová and Klebanov (2012)) we have

P(X = n) =

∫ ∞

0
e−sIn(s)pλ

γ(s)ds,

where In(s) is the modified Bessel function of the first kind and pλ
γ(s) is the density function

of the random variable Sλ
γ with characteristic function

g(t) = exp {−λ|t|γ exp(−i sgn(t)γπ/2)} .

The density function pλ
γ(s) has the following series representation (Christoph and Wolf (1992)):

(5.21) pλ
γ(s) =

1

π

m∑

j=1

(−1)j+1

j!
λjΓ(γj + 1) sin(γjπ)s−γj−1 +Am(s),

for any m ≥ 0, where Am(s) = O(s−γ(m+1)−1) as s → ∞. We may compute the probability
as

P(X = n) =
1

π

m∑

j=1

(−1)j+1

j!
λjΓ(γj + 1) sin(γjπ)

∫ ∞

0
e−sIn(s)s−γj−1ds+

∫ ∞

0
e−sIn(s)Am(s)ds.

We approximate the modified Bessel function In(s) by the first term of its infinite series
representation Γ(n+ 1)−1(s/2)n. Then the first integral turns into

∫ ∞

0
e−sIn(s)s−γj−1ds ≈ 1

2n

Γ(n− γj)

Γ(n+ 1)
, as n → ∞.

The remainder term is obtained by computing the integral with j = m + 1 and by approxi-
mating the ratio of two Gamma functions for large n using the Stirling’s formula

(5.22)
Γ(n− γj)

Γ(n+ 1)
= n−γj

(
n−1 +O

(
n−2

))
, as n → ∞.

If we set m = [(γ + 1)/γ] and apply (5.22) on all terms in (5.19), we obtain (5.20).
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5.4 Positive discrete stable random variables with T thinning
operator

The G thinning operator (of geometric type) used to define discrete stable distributions in
the previous Sections is not the only possibility. As was showed in Chapter 4 we can consider
also a T thinning operator (of Chebyshev type) given by the following probability generating
function

(5.23) Q(z) =




2
(
b+ Tp

(
(1+b)zm−2b
2−(1+b)zm

))

(1 + b)
(
1 + Tp

(
(1+b)zm−2b
2−(1+b)zm

))




1/m

,

where p ∈ (0, 1), b ∈ (−1, 1) and m ∈ N, and Tp(x) = cos (p arccosx) .

Theorem 5.33. A non-negative integer-valued random variable X is positive discrete stable
with T thinning operator if and only if its probability generating function is given as
(5.24)

P(z) = exp

{
−λ

(
arccos

(1 + b)zm − 2b

2 − (1 + b)zm

)γ}
with γ ∈ (0, 2], λ > 0, b ∈ (−1, 1), m ∈ N.

Proof. Let h(z) = log P(z). From Proposition 4.2 it follows that X is positive discrete stable
if and only if h(z) = nh(Q(z)) for all n, where Q is as in (5.23). Set

h(z) = −λ
(

arccos
(1 + b)zm − 2b

2 − (1 + b)zm

)γ

and select γ such that 1/pγ = n. Then

nh(Q(z)) = −λn
(

arccos
(1 + b)Q(z)m − 2b

2 − (1 + b)Q(z)m

)γ

= −λn
(

arccosTp

(
(1 + b)zm − 2b

2 − (1 + b)zm

))γ

= −λn
(
p arccos

(1 + b)zm − 2b

2 − (1 + b)zm

)γ

= h(z).

We will denote the discrete stable distribution with Chebyshev thinning operator T and
with parameters γ ∈ (0, 2], λ > 0, b ∈ (−1, 1) and m ∈ N, by T PDS(γ, λ, b,m). If m is
omitted then m = 1. If moreover b is omitted we will understand that b = 0.

5.4.1 Characterizations

Theorem 5.34. Let γ′ ∈ (0, 2] and γ ∈ (0, 1] and assume that γ′ ≤ 2γ. Let Sγ be a γ-stable
random variable with Laplace transform exp{−uγ}. Then

T PDS(γ′, λ, b)
d
= T PDS

(
γ′/γ, λ1/γSγ , b

)
.
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Proof. For sake of simplicity we will do the proof only for the case b = 0. The case b 6= 0 can

be proved in the same way. The probability generating function of X ∼ T PDS
(
γ′/γ, λ1/γSγ

)

is computed as

P(z) = EzX = E exp

{
−λ1/γSγ

(
arccos

z

2 − z

)γ′/γ
}

and using the Laplace transform formula for Sγ we have

P(z) = exp

{
−λ

(
arccos

z

2 − z

)γ′}
.

This is the probability generating function of T PDS(γ′, λ).

Corollary 5.35. Let Y, Y1, Y2, . . . be a sequence of i.i.d. random variables with probability
generating function

P(z) = 1 − 1
π arccos

(1 + b)z − 2b

2 − (1 + b)z
.

Let N be a random variable, independent of the sequence Y1, Y2, . . . , with Poisson distribution
with random intensity λ1/γπSγ, where γ ∈ (0, 1] and Sγ is a γ-stable random variable with
Laplace transform exp{−uγ}. A random variable X is positive discrete stable T PDS(γ, λ, b)
if and only if

X
d
=

N∑

j=1

Yj .

Proof. Let X =
∑N

j=1 Yj . Then X is a compound Poisson random variable with random

intensity λ1/γπSγ and jumps Y1, Y2, . . . with characteristic function

g(t) = 1 − 1
π arccos

(1 + b)eit − 2b

2 − (1 + b)eit
.

The characteristic function of a compound Poisson random variable with intensity τ and char-
acteristic function of jumps h(t) is exp{−τ(1−h(t))}. ThereforeX is in fact T PDS(1, λ1/γSγ , b).
We thus obtain the result from the previous Theorem 5.34 with γ′ = γ.

5.4.2 Continuous analogies

Let us consider a T positive discrete stable random variable X ∼ T PDS(γ, λ, b). We are
interested in the limit distribution of a random variable Xa = aX, where a ↓ 0. We show
that the limit distribution is in fact α-stable with index of stability α = γ/2 and with skewness
β = 1.

Theorem 5.36. Let X be a random variable with probability generating function

P(z) = exp

{
−λ

(
arccos

(1 + b)z − 2b

2 − (1 + b)z

)γ}
, γ ∈ (0, 2], λ > 0, b ∈ (−1, 1).
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Let Xa = aX and assume that λ = σ
aγ/2 . Then the characteristic function of Xa converges

pointwise to the characteristic function of α-stable distribution,

fa(t) = exp

{
−λ

(
arccos

(1 + b)eiat − 2b

2 − (1 + b)eiat

)γ}

−→ exp

{
−σ2γ cos

πγ

4

(
1 + b

1 − b

)γ/2

|t|γ/2
(

1 − i sign(t) tan
πγ

4

)}
.

Proof. For sake of simplicity we will do the proof only for b = 0. The characteristic function
of Xa can be approximated as

log fa(t) = −λ
(

arccos
eiat

2 − eiat

)γ

≈ −λ
(

arccos
1 + iat

1 − iat

)γ

, as a → 0.

Moreover arccos(z) ≈
√

2
√

1 − z as z → 1. We have

1 − 1 + iat

1 − iat
=

−2iat

1 − iat
.

Put together we obtain

log fa(t) ≈ − σ

aγ/2

(
2

√
−iat

1 − iat

)γ

as a → 0

→ −σ2γ(−it)γ/2, as a → 0.

Moreover we have (−it)γ/2 = cos πγ
4 |t|γ/2

(
1 − i sign(t) tan πγ

4

)
. The proof is therefore com-

pleted.



6. Casual stable random variables
The difference between classical definition of stability and the definition of discrete stability in
the first sense lies in the different approach to normalization of the sum

∑n
i=1Xi. Definition

of discrete stability in the first sense assumes a specific choice of a thinning operator that is
applied on single summands. Assume a non-negative integer-valued random variable X with
cumulative distribution function (c.d.f.) F (x), with probability generating function

(6.1) P(z) = EzX =

∫ ∞

0
zxdF (x).

We normalize X by transforming this probability generating function using the thinning
operator Q(z) into

P(Q(z)) =

∫ ∞

0
[Q(z)]x dF (x).

The normalized random variable is denoted X̃ and its probability generating function is
P(Q(z)). We replaced the probability generating function z of a degenerate random variable
concentrated at point 1 into a probability generating function Q(z). A similar approach can
be considered for the case of continuous random variables using Laplace transforms instead
of the probability generating functions. We remind that a Laplace transform of a random
variable X is defined as L(s) = Ee−sX . Consider first a non-negative random variable X with
c.d.f. F (x). Its Laplace transform has the form

L(s) =

∫ ∞

0
e−sxdF (x),

or

(6.2) L(s) =

∫ ∞

0

[
e−s]x dF (x).

Similarly as in the discrete case where we apply the thinning operator Q by replacing the
probability generating function of a degenerate distribution z by a different probability gen-
erating function Q(z) in (6.1), we can replace the Laplace transform of a degenerate random
variable e−s in (6.2) by another Laplace transform of a distribution concentrated on positive
semi-axis, say g(s). This g-normalized random variable X will be denoted X̃ and its Laplace
transform Lg(s) takes form

Lg(s) =

∫ ∞

0
[g(s)]x dF (x).

It is important to note that for discrete random variables there is a one-on-one correspondence
between the probability generating function and its Laplace transform, L(s) = P(e−s) and the
two normalizations by thinning operator Q and by the Laplace transform g(s) are therefore
identical.

This Chapter contains results from Klebanov and Slámová (2014) where the casual sta-
bility was introduced and some examples of casual stable distributions were studied. Here we
review the results and provide additional examples.
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6.1 A general definition of stability

Let X,X1, X2, . . . be i.i.d. non-negative random variables with Laplace transform L(s). We
would like to define a new type of stability with this new type of g-normalization where
instead of the classical normalization in the definition of strict stability

X
d
= an

n∑

i=1

Xi

we use the random normalization with function g(s) and define casual stability as

X
d
=

n∑

i=1

X̃i,

with X̃i having Laplace transform
∫∞

0 [g(s)]xdF (x) = L(− log g(s)).

Definition 6.1. Let X be a non-negative random variable with Laplace transform L(s).
Assume that for every n ∈ N there exists a Laplace transform gn(s) such that

(6.3) Ln(− log gn(s)) = L(s).

Then we say that a random variable X is casual stable.

This definition is restrictive – the corresponding random variable has to be infinitely
divisible and the Laplace transform also cannot be arbitrary. The casual stability can be
interpreted in the following way. Let us suppose that we have a (discrete or continuous) flow of
particles passing through a filter. Each particle of the flow may generate some other particles
or just disappear, according to a probability distribution with Laplace transform gn(s). The
casual stability means that the distribution of n such flows after passing through the filter
has the same distribution as the initial flow before passing through the filter. Alternatively,
we may say that an additive system is “randomly similar” to its initial element, so the system
is “randomly self-similar”.

The contribution of this definition of casual stability is that it encompasses classical posi-
tive stable random variables, as well as positive discrete stable random variables and positive
tempered stable random variables. Other examples of casual stable distributions are gamma
distribution, geometric distribution, negative binomial distribution. In the following Subsec-
tions we show that these distributions are casual stable by deriving the form of the normalizing
function gn(s) and by showing that it is a Laplace transform.

6.1.1 Stable distribution

Let X be a positive stable random variable with Laplace transform L(s) = exp{−sα} and
α ∈ (0, 1). With the choice of gn(s) = exp{−ans}, which corresponds to a generate random
variable concentrated at point an, we have just ordinary normalization, and corresponding
casual stable distribution coincide with stable distribution totally skewed to the right (β = 1)
with index of stability α ∈ (0, 1). To show this let gn(s) = exp{−ans} with an = n−1/α. Then

Ln(− log gn(s)) = exp {−naα
ns

α} = L(s),

therefore X is casual stable.
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6.1.2 Discrete stable distribution

Let us consider the modified geometric thinning operator from Section 5.1 where

Qn(z) =

(
(1 − p) + (p− κ)zm

(1 − pκ) − κ(1 − p)zm

)1/m

,

with p = pn. The corresponding normalizing Laplace transform is obtained as gn(s) =
Qn(e−s).

As we know, this thinning operator leads to positive discrete stable random variables with
probability generating function

P(z) = exp

{
−λ

(
1 − zm

1 − κzm

)γ}
.

We can easily see that the resulting distribution is casual stable as well, as L(s) = P(e−s).
So with pn = n−1/γ

Ln(− log gn(s)) = Pn(Qn(e−s)) = P(e−s) = L(s).

In the same way we can show that discrete stable distribution with the Chebyshev thinning
operator, studied in Section 5.4, is also casual stable.

6.1.3 Tempered stable distribution

This example is most interesting as it shows that some tempered stable random variables are
also casual stable. In particular we show that Inverse Gaussian distribution is casual stable.
Let us consider a positive stable random variable with index of stability α = 1/m,m ∈ N,
with Laplace transform L(s) = exp{−sα}. We shift the Laplace transform θ units to the right
and we obtain tempered stable random variable (as in Lemma 5.7) with Laplace transform

L(s) = exp {−(s+ θ)α + θα} .
It appears that this distribution is casual stable with normalizing function gn of the form

gn(s) = exp

{
θ −

[
1

n
(s+ θ)α +

n− 1

n
θα
]1/α

}
.

Lemma 6.2. The function gn(s) is a Laplace transform of a probability distribution of a prob-
ability distribution if 1/α ∈ N.

Proof. In the case when 1/α ∈ N we can rewrite the function gn(s) as a product of 1/α
Laplace transforms, and as such it is a Laplace transform itself. Namely

gn(s) = exp



θ − θ

(
n− 1

n

)1/α 1/α∑

k=0

(
1/α

k

)
1

(n− 1)k

(
θ + s

θ

)kα




=

1/α∏

k=0

exp

{
θ1−kα

(
n− 1

n

)1/α
(

1/α

k

)
1

(n− 1)k

(
θkα − (θ + s)kα

)}

=

1/α∏

k=0

hk(s).

For every k, hk(s) is a Laplace transform of a tempered stable random variable, as 0 < kα ≤
1.
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Now we can show that tempered stable random variable with Laplace transform L is
casual stable.

Ln(− log gn(s)) = exp {− [(s+ θ)α + (n− 1)θα] + nθα}
= exp {−(s+ θ)α + θα}
= L(s).

For θ → 0 we obtain the classical case of normalization – gn is Laplace transform of a degen-
erate distribution at point an = n−1/α. As a particular case we find that Inverse Gaussian
distribution (the case α = 1/2) is casual stable.

6.1.4 Tempered discrete stable distribution

Let us consider distribution with Laplace transform

L(s) = exp
{

−λ (1 − ae−s)γ + λ(1 − a)γ
}
, a ∈ (0, 1].

This distribution is a tempered version of the discrete stable distribution with binomial thin-
ning operator. We can show that tempered positive discrete stable random variable is again
casual stable. The normalizing function gn takes form

gn(s) =
1

a

[
1 −

(
1

n

(
1 − ae−s)γ +

n− 1

n
(1 − a)γ

)1/γ
]
.

Let us assume that 1/γ ∈ N. Then we can expand the power 1/γ using binomial expansion
and after some computations we obtain that

gn(s) =

1/γ∑

k=0

(
1/γ

k

)(
n− 1

n

)1/γ 1

(n− 1)k
hk(s),

where

hk(s) =
1

a

[
1 − (1 − a)1−γk (1 − ae−s)γk

]
.

We see that gn(s) is a linear combination of functions hk(s). If those functions are Laplace
transforms of some probability distribution, so is gn(s). Let us denote Pk(z) = hk(− log z).
We have γk ≤ 1. For γk = 1 we see that Pk(z) = z and it is a probability generating function.
For γk < 1 we may expand the power γk into an infinite power series Pk(z) =

∑∞
j=0 pjz

j .
The coefficients before zj are

p0 =
1

a

(
1 − (1 − a)1−γk

)
,

pj = −(1 − a)1−γk

a

(
γk

j

)
(−1)jaj , j ≥ 1.

Because γk < 1, the binomial coefficients in pj change sign. Therefore, for a ∈ (0, 1] the co-
efficients are all positive, moreover Pk(1) = 1 and Pk(z) are therefore probability generating
functions and hk(s) are Laplace transforms.

We can obtain similar result for the tempered discrete stable distribution with modified
geometric thinning operator. The Laplace transform of such distribution takes form

L(s) = exp

{
−λ

(
1 − ae−s

1 − κe−s

)γ

+ λ

(
1 − a

1 − κ

)γ
}
, a ∈ (0, 1].
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6.1.5 Geometric distribution

We can show that geometric distribution with Laplace transform

L(s) =
1 − a

1 − ae−s
, a ∈ [0, 1)

is casual stable. We look for a normalizing function gn(s) such that Ln(− log gn(s)) = L(s)
and such that gn is a Laplace transform. By simple rearranging we deduce that function

gn(s) =
1

a

[
1 − (1 − a)1−1/n (1 − ae−s)1/n

]

satisfies the equation (6.3). Also we can verify that gn(s) is a Laplace transform. Series
expansion gives us

(
1 − ae−s)1/n

=
∞∑

k=0

(−1)k

(
1/n

k

)
ake−sk,

and hence gn(s) can be written as a sum of Laplace transforms and therefore is a Laplace
transform.

The normalizing distribution can be derived in other way as well. The probability gener-
ating function of the normalizing distribution can be rewritten as

Pn(z) =
1 − c(1 − bz)γ

1 − c(1 − b)γ
,

where γ = 1/n, b = a and c = (1 − a)1−1/n. This distribution is modified scaled Sibuya dis-
tribution. The scaled Sibuya distribution was introduced by Christoph and Schreiber (2000)
and its probability generating function takes form 1 − c(1 − z)γ with exponent γ ∈ (0, 1] and
scale parameter c ∈ (0, 1]. It appears as a mixture of the classical Sibuya distribution and
distribution concentrated at 0, with weights c and 1 − c respectively. If we denote the proba-
bilities of scaled Sibuya distribution by pk, k = 0, 1, . . . , we can create a new distribution by
multiplying the probabilities by bk and normalizing them. We therefore obtain a distribution
with probabilities

qk =
bkpk∑∞

k=0 b
kpk

=
bkpk

1 − c(1 − b)γ
.

The probability generating function of modified scaled Sibuya distribution is then

Q(z) =
∞∑

k=0

qkz
k =

∑∞
k=0 pk(bz)k

1 − c(1 − b)γ
=

1 − c(1 − bz)γ

1 − c(1 − b)γ
.

6.1.6 Negative binomial distribution

Consider now negative binomial distribution with Laplace transform

L(s) =

(
1 − a

1 − ae−s

)k

, a ∈ [0, 1), k > 0.

We see right away that the normalizing function gn(s) takes the same form as for geometric
distribution, i.e.

gn(s) =
1

a

[
1 − (1 − a)1−1/n (1 − ae−s)1/n

]
.

Therefore negative binomial distribution is also casual stable.
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6.1.7 Gamma distribution

Consider a random variable X with gamma distribution with Laplace transform

L(s) =
1

(1 + bs)γ
,

with parameters b > 0 and γ > 0. We show that the random variable X is casual stable. We
must have Ln(− log gn(s)) = L(s) for any integer n > 1. From here we find that

gn(s) = exp

{
1

b

(
1 − (1 + bs)1/n

)}
.

For every n > 1 the function gn(s) is a Laplace transform of tempered stable distribution:
with α = 1/n and θ = 1/b, we may rewrite gn as

gn(s) = exp
{

−bα−1 [(θ + s)α − θα]
}
.

Therefore, X is a casual stable random variable.

6.2 Casual stability of random variables of arbitrary sign

Let X be a random variable taking values on the whole real line, with c.d.f. F (x). The
characteristic function f(t) of X may be written as

f(t) =

∫ ∞

−∞
eitxdF (x) =

∫ ∞

0
(e−it)|x|d(1 − F (−x)) +

∫ ∞

0
(eit)xdF (x).

The “random normalization” in the case of random variables on the whole real line is done
in the following way. We replace eit in the second integral by a characteristic function g(t)
but in the first integral we replace e−it by g(−t). We obtain the characteristic function of
g-normalized random variable fg(t) in the form

fg(t) =

∫ ∞

0
(g(−t))|x|d(1 − F (−x)) +

∫ ∞

0
(g(t))xdF (x).

The definition of casual stability in this case is obvious now.

Definition 6.3. Let X be a random variable with characteristic function f(t). Assume that
for every n ∈ N there exists a characteristic function gn(s) such that

(6.4) [fgn(t)]n = f(t).

Then we say that a random variable X is casual stable. If a random variable X is discrete
and moreover it is casual stable then we say it is discrete stable in algebraic sense.

The verification of the fact that a random variable with values on the whole real line
is casual stable is generally more difficult than for the case of positive random variables.
However, we can prove, for example, that the Laplace distribution is casual stable. The same
fact holds for Linnik distribution as well.
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6.2.1 Laplace distribution

Consider Laplace distribution with c.d.f. F (x) and characteristic function

f(t) =
1

1 + a2t2
,

where a > 0. We can rewrite f(t) as

f(t) =
1

2

1

1 − iat
+

1

2

1

1 + iat
=

∫ ∞

0
[eit]xdF (x) +

∫ ∞

0
[e−it]|x|d(1 − F (−x)).

If we replace eit by gn(t) and e−it by gn(−t) and if we moreover assume that gn is symmetric,
i.e. gn(t) = gn(−t), we obtain gn-normalized characteristic function

fgn(t) =
1

1 − a log gn(t)
.

If the function gn(t) satisfying [fgn(t)]n = f(t) is a characteristic function, then Laplace
distribution is casual stable. By simple computation we obtain

gn(t) = exp

{
1

a

[
1 −

(
1 + a2t2

)1/n
]}

.

To show that gn(t) is a characteristic function it suffices to consider only the case of a = 1 as
the general case is obtained by rescaling and taking a positive power. We thus have to show
that exp

{
1 − (1 + t2)α

}
is a characteristic function for α ∈ (0, 1). We may rewrite gn(t) in

the following way

gn(t) = exp

{
1 − cα

∫ ∞

0

(
1 − e−x(1+t2)

) dx

x1+α

}
,

where

cα = 1/

∫ ∞

0

(
1 − e−x) dx

x1+α
= −1/Γ(−α) > 0 for α ∈ (0, 1).

We may approximate the integral by integral sums. Let T ∈ R+ and m ∈ N be fixed and
denote xk = Tk/m for k = 1, . . . ,m. Then we may approximate gn(t) as

gn(t) ≈ exp

{
1 − cα lim

T →∞
lim

m→∞

m∑

k=1

(
1 − e−xk(1+t2)

) T/m
x1+α

k

}

= e× lim
T →∞

lim
n→∞

m∏

k=1

exp

{
cα
T

m
(e−xk(1+t2) − 1)x1+α

k )

}
.

De Finetti’s theorem (see (Lukacs, 1970, § 5.4)) states that a characteristic function f(t)
is infinitely divisible if and only if it can be written as

f(t) = lim
m→∞

exp {am(hm(t) − 1)} ,

where am are positive constants and hm(t) are characteristic functions. We see that gn(t)
takes a form of a product of functions of this kind and hm(t) are characteristic functions of
Gaussian distribution. We conclude that gn(t) is a characteristic function.
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6.2.2 Linnik distribution

Linnik distribution is a special case of geometric stable distribution (belonging to the class of
ν-stable distributions). Its characteristic function is given as

f(t) =
1

1 + aα|t|α , α ∈ (0, 2].

It is a symmetric distribution and Laplace distribution is a special case with α = 2. In a
similar, but technically more demanding way, we can show that Linnik distribution is also
casual stable.

6.2.3 Symmetric geometric distribution

We can introduce a discrete analogy of Laplace distribution if we consider a discrete proba-
bility distribution derived from geometric distribution with characteristic function

f(t) =
1

2

1 − a

1 − aeit
+

1

2

1 − a

1 − ae−it
= (1 − a)

1 − a cos(t)

1 − 2a cos(t) + a2
.

We can show that this distribution is casual stable and therefore symmetric discrete stable in
algebraic sense. To show that discrete Laplace distribution is casual stable we need to find
the normalizing function gn(t). We will assume once again that gn is symmetric, i.e. gn(t) =
gn(−t). We replace both eit and e−it by gn(t). Then the gn-normalized characteristic function
is fgn(t) = (1 − a)/(1 − agn(t)) and we must have

(1 − a)n

(1 − agn(t))n
= (1 − a)

1 − a cos(t)

1 − 2a cos(t) + a2
.

From here we get the normalizing function gn(t) as

gn(t) =
1

a


1 −

(
(1 − a)n−1 1 − 2a cos(t) + a2

1 − a cos(t)

)1/n

 .

We can show that gn is a characteristic function. We start by rewriting gn(t) as

gn(t) =
1

a

[
1 − (1 − hn(t))1/n

]
,

where

hn(t) = 1−(1−a)n−1 1 − 2a cos(t) + a2

1 − a cos(t)
=

1 − (1 − a)n−1(1 + a2) + a (2(1 − a)n−1 − 1) cos(t)

1 − a cos(t)
.

To prove that gn(t) is a characteristic function it is sufficient to show that hn(t) is a char-
acteristic function. Then, by expanding the 1/n power into power series, we see that gn is
a sum of characteristic functions . Using power expansion of 1/(1 − a cos(t)) through powers
of cos(t) we find that the coefficient before cosk(t) for k = 0 is 1 − (1 − a)n−1(1 + a2) > 0 (for
sufficiently large n and a ∈ (0, 1)) and for k ≥ 1 is

ak(1 − a)n−1(1 − a2) > 0.

We see that the function hn is a convex combination of characteristic functions cosk(t) for
k = 0, 1, 2, . . . . Therefore gn is a characteristic function.

We conclude that the symmetric geometric distribution is casual stable, and therefore it is
symmetric discrete stable in the algebraic sense. The tails of this distribution are exponential,
and the limit distribution (when the size of the lattice goes to zero) is Laplace distribution.
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6.2.4 Symmetric negative binomial distribution

In a similar way as we introduced symmetric geometric distribution we can introduce sym-
metric negative binomial distribution with characteristic function

f(t) =

(
1

2

1 − a

1 − aeit
+

1

2

1 − a

1 − ae−it

)k

=

(
(1 − a)

1 − a cos(t)

1 − 2a cos(t) + a2

)k

, k > 0.

As it turns out, the normalizing characteristic function takes the same form as in the case of
the symmetric geometric distribution, i.e.

gn(t) =
1

a


1 −

(
(1 − a)n−1 1 − 2a cos(t) + a2

1 − a cos(t)

)1/n

 .

The symmetric negative binomial distribution is therefore casual stable and discrete stable in
the algebraic sense as well.

6.3 Convergence to casual stable distribution

In this Section we give a limit theorem for convergence to casual stable distribution in the
case of non-negative random variables. The general case can be considered as well but the
formulations appear to be more complicated.

A simple example of this theorem is the convergence to Poisson distribution. LetX1, X2, . . .
be i.i.d. random variables with probability generating function P(z). Let us assume that X1

has finite first moment and the probability generating function takes form

P(z) = 1 − c(1 − z) + o((1 − z)).

Let us now consider gn-normalized random variables X̃i, where gn(s) is the Laplace transform
of binomial thinning operator with probability generating function Q(z) = 1 − p + pz, i.e.
gn(s) = Q(e−s) = 1 − p + pe−s, with p = 1/n. Then the probability generating function of
the gn-normalized random variables X̃i takes form

P(Q(z)) = 1 − cp(1 − z) + o((1 − z)).

Let us denote Sn =
∑n

i=1 X̃i. Then the probability generating function of the sum Sn con-
verges to the probability generating function of the Poisson distribution:

PSn(z) = Pn(Q(z)) =

(
1 − c

1

n
(1 − z) + o((1 − z))

)n

−→ exp {−c(1 − z)} as n → ∞.

This convergence result can be generalized as in the following theorem. Let L(s) be
a Laplace transform of a non-negative random variable, which is casual stable with Laplace
transform gn(s), so

L(s) = Ln(− log gn(s)), ∀n ∈ N.
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Theorem 6.4. Suppose that h(s) is a Laplace transform such that sups>0 |h(s)−L(s)|/sa < ∞
for some positive a. Suppose also that

sup
s>0

nsa

|g−1
n (exp(−s))|a → 0, as n → ∞.

Let X1, X2, . . . be a sequence of i.i.d. random variables with Laplace transform h(s). Then

n∑

i=1

X̃i
d→ Y,

where X̃i is a gn-normalized random variable, and Y is a random variable with Laplace trans-
form L(s).

Proof. Let us introduce the following distance between two probability distributions:

λa(U, V ) = sup
s>0

|LU (s) − LV (s)|
sa

,

where U and V are random variables with Laplace transforms LU and LV respectively. The
convergence in the distance λa means weak convergence of distributions. We can show the
convergence of Sn =

∑n
i=1 X̃i to Y in the following way. We remind that Y is casual stable

with the normalizing function gn, i.e. L(s) = Ln(− log gn(s)).

λa(Sn, Y ) = sup
s>0

|hn(− log gn(s)) − L(s)|
sa

= sup
s>0

|hn(− log gn(s)) − Ln(− log gn(s))|
sa

≤ sup
s>0

n|h(− log gn(s)) − L(− log gn(s))|
sa

= sup
y>0

n|h(y) − L(y)|
|g−1

n (exp(−y))|a

= sup
y>0

nya

|g−1
n (exp(−y))|a

|h(y) − L(y)|
ya

→ 0 as n → ∞.

This result is a particular case of a result on convergence to infinitely divisible distribution
in scheme of series (see, for example, Petrov (1975) or Lukacs (1970)).

For discrete distributions it might be more convenient to work with probability generating
functions instead of the Laplace transforms. A probability generating function P(z) of a
distribution with Laplace transform L(s) is given as P(z) = L(− log z). Let P(z) be a
probability generating function of a casual stable distribution with normalizing probability
generating function (or thinning operator) Qn(z). The previous Theorem can be reformulated
using the probability generating functions in the following way.

Corollary 6.5. Suppose that R(z) is a probability generating function such that supz∈(0,1) |R(s)−
P(z)|/(1 − z)a < ∞ for some positive a. Suppose also that

sup
z∈(0,1)

n(1 − z)a

|1 − Q−1
n (z)|a → 0, as n → ∞.

Let X1, X2, . . . be a sequence of i.i.d. random variables with probability generating function
R(z). Then

n∑

i=1

X̃i
d→ Y,
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where X̃i is a normalized random variable Xi by the thinning operator Qn, and Y is a random
variable with probability generating function P(z).

Let us give some examples of application of this Theorem.

6.3.1 Convergence to gamma distribution

Consider a random variable Y with gamma distribution with Laplace transform

L(s) =
1

(1 + bs)γ
,

with parameters b > 0 and γ > 0. We showed that the random variable Y is casual stable
with normalizing function

gn(s) = exp

{
1

b

(
1 − (1 + bs)1/n

)}
.

Suppose now that h(s) is a Laplace transform of a random variable X1 such that

sup
s>0

|h(s) − L(s)|
sa

< ∞

for some a > 1. We have

sup
s>0

nsa

|g−1
n (exp(−s))|a = sup

s>0

nsaba

((1 + bs)n − 1)a =

= sup
s>0

(
n1/a

∑n
k=1

(n
k

)
bk−1sk−1

)a

≤ 1

na−1
→ 0 as n → ∞.

All conditions of Theorem 6.4 are met. So we may say that

n∑

i=1

X̃i(n)
d→ Y,

where X̃i(n) are i.i.d. random variables with Laplace transform h(− log gn(s)).

6.3.2 Convergence to negative binomial distribution

Consider geometric distribution with Laplace transform

L(s) =
1 − a

1 − ae−s
,

with parameter a > 0. We showed that geometric distribution is casual stable with normal-
izing function

gn(s) =
1

a

[
1 − (1 − a)1−1/n (1 − ae−s)1/n

]
.

Let us assume that X1, X2, . . . are Poisson random variables with Laplace transform

h(s) = exp
{−λ(1 − e−s)

}
.
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Then the sum of gn-normalized random variables has Laplace transform hn(− log gn(s)). But

hn(− log gn(s)) = exp

{
−λn

(
1 − 1 − (1 − a)1−1/n (1 − ae−s)

1/n

a

)}

= exp

{
−λna− 1

a

[
1 − exp

(
1

n
log

1 − ae−s

1 − a

)]}

≈ exp

{
λ
a− 1

a
log

1 − ae−s

1 − a

}
as n → ∞

=

(
1 − a

1 − ae−s

)λ

(
1
a −1

)

.

So the gn-normalized Poisson distribution converges to negative binomial distribution.

6.3.3 Convergence to discrete stable distribution

Let Y be a positive discrete stable random variable with probability generating function

P(z) = exp

{
−
(

1 − z

1 − κz

)γ}
.

We showed that discrete stable distribution is casual stable with the G thinning operator with
probability generating function

Qn(z) =
(1 − p) + (p− κ)z

(1 − pκ) − κ(1 − p)z
, p = n−1/γ .

Let X1, X2, . . . be i.i.d. random variables with probability generating function R(z) and
assume that R is such that

sup
z∈(0,1)

|R(z) − P(z)|
(1 − z)a

for some a > γ. Furthermore we have

sup
z∈(0,1)

n(1 − z)a

|1 − Q−1
n (z)|a = sup

z∈(0,1)
n(1 − z)a |1 − κ(p(1 − z) − z)|a

pa(1 − κ)a(1 − z)a

= sup
z∈(0,1)

n1−a/γ

∣∣∣1 − κ(n−1/γ(1 − z) − z)
∣∣∣
a

(1 − κ)a

≤ n1−a/γ

(
1 − κn−1/γ

1 − κ

)a

→ 0 as n → ∞

for a > γ. So, based on the convergence Theorem 6.4 and its Corollary 6.5, we may say that

Sn =
n∑

i=1

X̃i
d→ Y.



7. ν-discrete stable distributions
In Chapters 4 and 5 we considered discrete stability – stability in sense of summation of a
deterministic number of discrete random variables. We have shown that discrete stable distri-
butions are discrete analogies of classical stable distributions. In this Chapter we will study
generalization of this concept when instead of the sum of a deterministic number of discrete
random variables we consider a random number of summands. The concept of stability under
random summation was introduced independently in Klebanov and Rachev (1996) (under the
name of ν-stability) and Bunge (1996).

Let X1, X2, . . . denote a sequence of i.i.d. discrete random variables. Let {νp, p ∈ ∆} be
a family of discrete random variable with values in N, independent of {Xj , j ∈ N}. Further we
will assume that Eνp exists and Eνp = 1/p, for all p ∈ ∆. Let us denote by Pp the probability
generating function of νp and by P the semigroup with operation of superposition generated
by the family {Pp(z), p ∈ ∆}.

Our aim is to obtain some form of stability property for the random sum

νp∑

j=1

Xj .

We start by reminding that there is a one-on-one mapping between infinitely divisible
distributions and ν-infinitely divisible distributions (Theorem 2.25). As discrete stable distri-
butions in the first sense are all infinitely divisible distributions, we define ν-discrete stable
distribution in a similar way as the ν-stable distributions (Definition 2.26).

Definition 7.1. A function g(t) is called a ν-discrete stable characteristic function if it admits
representation

g(t) = ϕ(− log f(t)),(7.1)

in which ϕ is a standard solution of the system of equations

ϕ(t) = Pp
(
ϕ(pt)

)
,(7.2)

ϕ(0) = 1, ϕ′(0) = −1,

and f(t) is the characteristic function of a discrete stable distribution in the first sense.

Distribution or random variable with ν-discrete stable characteristic function will be called
ν-discrete stable distribution and ν-discrete stable random variable respectively.

It was shown in Gnedenko and Korolev (1996) that the Poincaré equation (7.2) has
a unique solution if and only if the semigroup P is commutative. We give here two ex-
amples of commutative summation schemes, already introduced in Chapter 2, for which (7.2)
has a unique solution.

Geometric summation scheme A typical example of a commutative semigroup P is
a semigroup generated by geometric distribution leading to a geometric summation scheme.
Let νp be a geometric random variable with parameter p, that means

P(νp = k) = p(1 − p)k−1, k ≥ 1.
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Probability generating function of a geometric random variable is given by the following
formula

Pp(z) =
pz

1 − (1 − p)z
.

We can easily see that the semigroup generated by {Pp, p ∈ ∆} is commutative, as

Pp1
◦ Pp2

(z) =
p1p2z

1 − (1 − p1p2)z
= Pp2

◦ Pp1
(z).

The Poincaré equation (7.2) takes the following form

ϕ(x) =
pϕ(px)

1 − (1 − p)ϕ(px)
, p ∈ ∆,

and it has a unique standard solution in the form

(7.3) ϕ(x) =
1

1 + x
.

Chebyshev summation scheme Another example of a commutative semigroup P is
a semigroup generated by distributions with probability generating functions of the form

Pp(z) =
1

T1/
√

p

(
1
z

) ,

for p ∈ ∆ = {1/n2, n ∈ N}, where Tn(z) = cos(n arccos z) is the Chebyshev polynomial.
Klebanov et al. (2012) showed that Pp(z) is truly a probability generating function. We can
easily verify, that {Pp, p ∈ ∆} generates a commutative semigroup, as

Pp1
◦ Pp2

(z) =
1

Tn1

(
Tn2

(
1
z

)) =
1

Tn1n2

(
1
z

) .

The Poincaré equation (7.2) takes the following form

ϕ(x) =
1

T1/
√

p

(
1

ϕ(px)

) , p ∈ ∆.

The following function satisfies this equation

(7.4) ϕ(x) =
1

cosh
(√

2x
) .

7.1 ν-positive discrete stable random variables

In this Section we will study ν-positive discrete stable random variables. By Definition 7.1,
a random variable is ν-positive discrete stable, if its characteristic function g(t) takes form

g(t) = ϕ(− log f(t)),
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where f is the characteristic function of discrete stable distribution,

f(t) = exp

{
−λ

(
1 − eit

1 − κeit

)γ}
.

We can show that for ν-positive discrete stable random variables an analogy of the stability
property for sums of random number of random variables holds.

Theorem 7.2. Let X be ν-positive discrete stable random variable with probability generating
function

P(z) = ϕ

[
λ

(
1 − z

1 − κz

)γ]
.

Then

(7.5) X1
d
=

νp∑

i=1

X̃i

(
p1/γ

)
, where X̃i

(
p1/γ

)
=

Xi∑

j=1

ε
(i)
j

(
p1/γ

)
,

a ε
(i)
j (a) are i.i.d. G(a, κ) random variables with probability generating function

Q(z) =
(1 − a) + (a− κ)

(1 − κa) − κ(1 − a)z
, a = p1/γ ,

{Xj , j ∈ N} is a sequence of i.i.d. copies of X1, independent of {νp, p ∈ ∆}.

Proof. Let us compute the probability generating function of Y =
∑νp

i=1 X̃i

(
p1/γ

)
denoted

by PY (z). We have PY (z) = Pp(P(Q(z))). But

P(Q(z)) = ϕ

[
λ

(
1 − Q(z)

1 − κQ(z)

)γ]

= ϕ

[
λ

(
p1/γ 1 − z

1 − κz

)γ]

= ϕ

[
pλ

(
1 − z

1 − κz

)γ]
.

Moreover ϕ is a solution of (7.2), therefore

Pp (P(Q(z))) = Pp

(
ϕ

[
pλ

(
1 − z

1 − κz

)γ])

= ϕ

[
λ

(
1 − z

1 − κz

)γ]
.

So we have shown that PY (z) = P(z), therefore X1 has the same distribution as Y .

Example 7.3 (Geometric positive discrete stable random variables). Let us consider the
geometric summation scheme. Then the standard solution of Poincaré equation takes form

ϕ(x) =
1

1 + x
.

The geometric positive discrete stable characteristic function thus takes form

g(t) =
1

1 + λ
(

1−eit

1−κeit

)γ .
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Example 7.4 (Chebyshev positive discrete stable random variables). Let us consider the
Chebyshev summation scheme. Then the standard solution of Poincaré equation takes form

ϕ(x) =
1

cosh
(√

2x
) .

The Chebyshev positive discrete stable characteristic function thus takes form

g(t) =
1

cosh

(√
2λ
(

1−eit

1−κeit

)γ
) .

7.2 Properties of geometric positive discrete stable random
variables

In this Section we will study more into details a special case of ν-positive discrete stable
random variables, where νp is geometrically distributed, i.e.

P(νp = k) = p(1 − p)k−1, kgeq1.

7.2.1 Geometric Poisson random variables

The probability generating function of geometric PDS(1,λ, κ) distribution is

P(z) =
1

1 + λ 1−z
1−κz

.

The distribution with κ = 0 is called geometric Poisson as PDS(γ, λ, κ) distribution with
γ = 1 and κ = 0 is Poisson distribution. The geometric Poisson distribution coincides with
geometric distribution with parameter 1/(1 + λ). Therefore, if X is a geometric Poisson

random variable with probability generating function P(z) =
(
1 + λ(1 − z)

)−1
we have

P(X = k) =

(
λ

1 + λ

)k 1

1 + λ
.

For κ > 0 the probabilities P(X = k) are also in closed form.

Proposition 7.5. Let X be a geometric PDS(1,λ, κ) random variable with probability gener-

ating function P(z) =
(
1 + λ 1−z

1−κz

)−1
. Then

P(X = k) = (1 − κ)λ
(κ+ λ)k−1

(1 + λ)k+1
.

In the next Theorem we study the limit distribution of random variables Xa = aX, with X
being geometric Poisson random variable, a > 0 and a → 0. In this case the random variable
Xa takes values in aN = {0, a, 2a, . . . } and the limit distribution will be therefore a contin-
uous analogy of the geometric Poisson distribution. We show that the limit distribution of
geometric Poisson random variable with κ = 0 is exponential distribution.
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Theorem 7.6. Let X be a geometric Poisson random variable with characteristic function

f(t) =
1

1 + λ(1 − eit)
.

Let us consider a random variable Xa = aX, with a > 0 and characteristic function denoted
by fa(t). Let λ = σ

a . Then

fa(t) =
1

1 + λ(1 − eia t)
−→ ϕ(t) =

1

1 − σi t
, as a → 0.

Proof. The limit of the characteristic function fa(t) can be computed in a straightforward
way. We make an approximation 1 − eiat ≈ −iat, as a → 0. Then

ϕ(t) = lim
a→0

(
1 + λ(1 − eiat)

)−1
=
(
1 − σi t

)−1
.

7.2.2 Geometric positive discrete stable random variables

A geometric positive discrete stable random variable X has probability generating function
taking the following form

PX(z) =
1

1 + λ
(

1−z
1−κz

)γ , γ ∈ (0, 1], λ > 0, κ ∈ [0, 1).

We will denote positive geometric discrete stable distribution and random variable with
parameters γ, λ and κ by geo-PDS(γ, λ, κ). In the case when κ is omitted we will understand
κ = 0.

This distribution with κ = 0 (corresponding to the binomial thinning operator) was intro-
duced in Pillai and Jayakumar (1995) as discrete Mittag-Leffler distribution and generalized
in Devroye (1993) as discrete Linnik distribution. Pillai and Jayakumar (1995) and Devroye
(1993) showed several interesting properties of the distribution, namely:

• geo-PDS(γ, λ) distributions is geometrically infinitely divisible and therefore infinitiely
divisible.

• geo-PDS(γ, λ) distribution belongs to the domain of normal attraction of γ-stable dis-
tribution.

• Let X ∼ geo-PDS(γ, λ). The limit distribution of a random variable Xa = aX, with
a = 1

n , n ∈ N and a → 0, is Mittag-Leffler distribution.

• geo-PDS(γ, 1) distribution satisfies the following distributional identity:

geo-PDS(γ, 1)
d
= Poisson(V 1/γSγ),

where V is an exponential random variable with mean 1 and Sγ is γ-stable random
variable with Laplace transform exp{−uγ}.

We can obtain similar results for the generalized geometric positive discrete stable distri-
bution geo-PDS(γ, λ, κ) with κ > 0.
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Limit distribution In the following theorem we show that the limit distribution of geo-
PDS distribution is geometric stable distribution.

Theorem 7.7. Let X be geometric positive discrete stable random variable with characteristic
function

f(t) =

(
1 + λ

(
1 − eit

1 − κeit

)γ)−1

.

Let us consider a random variable Xa = aX, with a > 0 and characteristic function denoted
by fa(t). Let λ = σ

aγ . Then

fa(t) =

(
1 + λ

(
1 − eiat

1 − κeiat

)γ)−1

−→ ϕ(t) =

(
1 +

σ

(1 − κ)γ
cos(πγ/2)|t|γ (1 − i sign(t) tan(πγ/2))

)−1

, as a → 0.

Proof. The proof is almost identical to the proof of Theorem 5.11.

Characterizations We show that geo-PDS random variable has the same distribution as
PDS random variable with random intensity.

Theorem 7.8. Let V be an exponential random variable with mean 1 and let Sγ be γ-stable
random variable with Laplace transform exp{−uγ}. Then

geo-PDS(γ, λ, κ)
d
= PDS(1, λ1/γV 1/γSγ , κ).

Proof. The probability generating function of X ∼ PDS(1, λ, κ) is equal to

EzX = exp

{
−λ

(
1 − z

1 − κz

)}
.

Therefore we compute the probability generating function of X ∼ PDS(1, λ1/γV 1/γSγ , κ) as

EzX = E exp

{
−λ1/γV 1/γSγ

(
1 − z

1 − κz

)}

= E exp

{
−λV

(
1 − z

1 − κz

)γ}
.

The Laplace transform Ee−uV of exponential random variable V with mean 1 is (1 + u)−1.
Hence

EzX =

(
1 + λ

(
1 − z

1 − κz

)γ)−1

,

and this is the probability generating function of geo-PDS(γ, λ, κ) random variable.
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7.3 ν-symmetric discrete stable distribution

By Definition 7.1, a random variable is ν-symmetric discrete stable, if its characteristic func-
tion g(t) takes form

g(t) = ϕ(− log f(t)),

where f is the characteristic function of symmetric discrete stable distribution,

f(t) = exp

{
−λ

(
1 − (1 − κ)

cos t− κ

κ2 − 2κ cos t+ 1

)γ}
.



Part II

Applications of discrete stable
distributions



8. Rating of scientific work
It is very often to base the rating of scientific work on the number of citations of corresponding
paper, author or journal, in which the paper was published (so-called impact factor). The
problem of rating scientific work based on the number of citations is very actual as it seems
that the number of citations does not fully mimic the qualities of the paper and therefore
citation index is not a good method for ranking of scientists. Price (1965) noted that the
number of citations has power tails based on a large dataset of papers and their citations.
Several models that capture the power tails and try to explain them have been proposed in the
literature. Simkin and Roychowdhury (2007) argue that the process of citing is very random
and authors “pick” several papers and cite them in their work or they copy citations from
previous publications in their field. This leads to an apparent disproportion in the citations,
where recent papers get more citations and the number of citations decreases with age of
the paper. This does not hold true for so called “sleeping beauties in science” – old works
that are not cited for a long time and later one author cites them and create a subsequent
increase of citations. Peterson et al. (2010) proposed a model where papers are either cited
directly or indirectly through a list of references in a newer paper. They show that the indirect
mechanism of citing leads to power tails. It is apparent that the works that get the most
citations (“sleeping beauties” or the indirectly cited works) are the essential publications in
the field.

In this Chapter we describe a model, in which the number of citations in one field of
science follows discrete stable distribution with the modified geometric thinning operator.
The first approach was proposed in Klebanov and Slámová (2014) and assumes randomness
in the publishing and citation processes. We will consider also a limit approach to this model
that is based on Theorem 6.4 about convergence to a casual stable distribution.

8.1 The model

At first let us consider the simplest model of paper publication with one author. We consider
only the case when there is at least one publication at the beginning (in opposite case there
will be no citations at all). Let us denote by q the probability that a paper and all following
papers of the author will be rejected. Then the probability to have exactly k published papers
is given as the probability of k− 1 acceptances, given as (1 − q)k−1 (we assume one paper was
already published) and one rejection, with probability q. Hence the probability is q(1−q)k−1.
In other words, the number of published papers has geometric distribution with probability
generating function

qz

1 − (1 − q)z
.

Suppose now that every published paper generates some citations. The probability of the
paper to be cited depends on the number of its previous citations (Price (1976) called this
cumulative advantage process). Consider a paper having k−1 citations and let the probability
that this paper will not be cited again be p/k, where p is the probability is the probability
that the paper will not be cited at all. Therefore the probability that the paper will be cited
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exactly k times is

p

k

k−1∏

j=1

(
1 − p

j

)
= p(1 − p)k−1/k!,

where (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol. Therefore, the probability
generating function of the distribution of citations of one paper is

∞∑

k=1

p(1 − p)k−1

k!
zk = 1 − (1 − z)p.

This is well-known Sibuya distribution with parameter p. So the number of citations of one
publication has Sibuya distribution with parameter p. The probability generating function of
the distribution of the number of citations of all papers coming from one author is obtained
as a superposition of the probability generating functions of the Sibuya distribution of the
number of citations and of the geometric distribution of the number of published papers; that
is

(8.1) 1 −
(

1 − qz

1 − (1 − q)z

)p

,

with parameters q ∈ (0, 1] and p ∈ (0, 1]. It is easy to see that the corresponding distribution
has a heavy tail (its limit behaviour is of order 1/kp, as k → ∞).

Suppose now that we are interested in the distribution of the number of citations in some
field of science. It is natural to assume that the number of scientists having publications in
this field has Poisson distribution with parameter λ. Then the probability generating function
of the number of all publications in the field is a superposition of the Poissonian probability
generating function with probability generating function (8.1); that is

exp

{
−λ

(
1 − z

1 − (1 − q)z

)p}
.

This is the probability generating function of discrete stable distribution in the first sense
with the modified geometric thinning operator with parameters γ = p ∈ (0, 1], λ > 0 and
κ = 1 − q.

We can easily see that the distribution does not have finite first moment for p < 1.
It has mode at zero and finite median. So, from any empirical data we will see that the
empirical mean is much larger than the empirical median. Also, many citations will belong
to a (relatively) small number of publications, while the main part of publications will have
small number of citations. This big difference between scientist is explained in our model
just by random nature of the publication and citation processes. Therefore, the ranking of
scientist, scientific institutions or journals may not be based on the citation number. Such
ranking will often produce principal misunderstandings of what is essential in science and
lead also to random mistakes.

8.2 Limit approach

We can consider a limit approach based on the convergence Theorem 6.4. Let X denote the
number of published papers of an author (it is obvious that X takes non-negative integer
values) and let us denote by R the probability generating function of X. Let us assume
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that each paper is not cited at all with some positive probability q ∈ (0, 1) (we exclude
the degenerate case when the probability of not being cited is equal to 1) or it has a random
number of citations with geometric distribution with parameter b ∈ (0, 1]. Thus the number of
citations is a mixture of degenerate and geometric distributions, and its probability generating
function thus takes form

Q(z) = q + (1 − q)
bz

1 − (1 − b)z
.

We can reparametrize this distribution, by putting

q =
1 − p

1 − pκ
and b =

1 − κ

1 − pκ

with p ∈ (0, 1) and κ ∈ [0, 1). Then the probability generating function takes form

Q(z) =
(1 − p) + (p− κ)z

(1 − κp) − κ(1 − p)z
.

This is the probability generating function of the modified geometric thinning operator from
Subsection 4.1.2. The number of citations of all papers coming from one author is thus a
random variable given as

X̃ =
X∑

i=1

ǫi,

where ǫi is the number of citations of the i-th paper. Its probability generating function takes
form R(Q(z)).

Let us now assume that we have n authors with n → ∞ and let p = n−1/γ . We showed in
Section 6.3, using the Theorem 6.4 about convergence to causal stable distribution, that the
number of citations coming from n authors,

Sn =
n∑

i=1

X̃i,

converges in distribution to a random variable with discrete stable distribution with proba-
bility generating function

P(z) = exp

{
−λ

(
1 − z

1 − κz

)γ}
.

This result coincides with the model from previous Section.



9. Statistical inference for discrete
stable distributions
Discrete stable distributions studied in Chapter 5 form a discrete generalization of stable
distributions and as such have similar properties as their continuous counterparts. They are
expressed through a probability generating function and the probability mass function does
not generally have a closed form formula and no moments exist. This fact inhibits the use of
classical statistical methods of estimation such as maximum likelihood or method of moments.

Kagan (1976) introduced an analogue of the maximum likelihood method by studying an
“approximation” of the likelihood function on a finite-dimensional Hilbert space H. Instead of
the likelihood function a function called “informant” as an operator in the Hilbert space H is
introduced. Kagan (1976) showed that the behaviour of the resulting estimator is analogous
to that of classical maximum likelihood estimator and many properties such as consistency
and asymptotic normality are conserved.

In this Chapter we adapt and optimize this method for the case of discrete stable distri-
butions. We compare the results of this method with the k−L procedure that was introduced
by Feuerverger and McDunnough (1981) that uses k fixed points to fit the empirical charac-
teristic function with the theoretical one.

The approximated maximum likelihood (AML further on) method is described in Section
1, where we also summarize the known results about the properties of the estimator. In
Section 2 we adapt the AML method to the case of discrete stable distributions with binomial
thinning operator and in Section 3 we give an overview of the results of a simulation study
and show the quality of the AML estimator.

This Chapter contains results from Slámová and Klebanov (2014b).

9.1 Approximated maximum likelihood method

In this Section we describe a method of estimation that was introduced by Kagan (1976),
and further extended in (Gerlein and Kagan, 1979). The proposed method is a very general
approach that can be used in cases when the distribution is not defined through density func-
tion or the probability mass function and instead only some functionals of the distribution are
given as functions of parameters (eg. characteristic function, probability generating function
etc.).

Let {Pθ, θ ∈ Θ} be a family of probability distributions on a measurable space (X ,M),
where the parametric space Θ ⊂ Rd, and X ∼ Pθ. In the maximum likelihood estimation one
assumes the existence of a density function p(x, θ) and of a function

J(x, θ) =




∂p
∂θi

(x, θ)

p(x, θ)




i=1,...,d

.

The maximum likelihood estimator θ∗ of the parameter θ, given a set of n observations
x1, . . . , xn, is a solution of

∑n
j=1 J(xj , θ) = 0. The Fisher information matrix is given as

I(θ) = Eθ(J(X, θ)J(X, θ)T ).
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However, if the density does not exist or it is not known in a closed form, this method cannot
be used.

Consider a linear space Lk generated by a set of complex valued functions {ϕ0(x), . . . , ϕk(x)},
ϕ0 ≡ 1 on space X with inner product denoted by (·, ·)θ and defined by

(
ϕ(X), ψ(X)

)
θ

=

Eθ

[
ϕ(X)ψ(X)

]
, where ψ denotes complex conjugate of ψ. The functions ϕi, i = 1, . . . , k are

such that Eθϕi(X)ϕi(X) < ∞, θ ∈ Θ, i = 1, . . . , k. We assume we know functionals of our
distribution, namely, for i, j = 0, . . . , k

πi(θ) =
(
1, ϕi(X)

)
θ

= Eθϕi(X),

πij(θ) =
(
ϕi(X), ϕj(X)

)
θ

= Eθϕi(X)ϕj(X),

are known as functions of the parameter θ. Further, we will use the following notation:
ϕ(x) = (ϕi(x), i = 0, . . . , k), π(θ) = (πi(θ), i = 0, . . . , k) and Π(θ) = (πij(θ), i, j = 0, . . . , k) .

The method is an analogue of the maximum likelihood method in the sense that it
approximates the undefined function J(x, θ) by its projection onto the linear space Lk.
Gerlein and Kagan (1979) call this method H-method of maximum likelihood, where H is
the Hilbert space Lk.

The projection of J(x, θ) will be denoted Ĵ(x, θ) and as part of the linear space Lk takes
the following form

Ĵ(x, θ) = cT (θ)ϕ(x),

where c(θ) = (cij(θ), i = 0, . . . , k; j = 1, . . . , d).
We compute the approximation of the Fisher information matrix as

Î(θ) = ||Ĵ(X, θ)||2 =
(
Ĵ(X, θ), Ĵ(X, θ)

)
θ

= Eθ

[
Ĵ(X, θ)Ĵ∗(X, θ)

]

= cT (θ)Eθ [ϕ(X)ϕ∗(X)] c(θ) = cT (θ)Π(θ)c(θ).(9.1)

Since Ĵ is a projection of J onto Lk, the following orthogonality condition has to hold for
all i = 1, . . . , d and j = 0, . . . , k:

(9.2)
(
Ji(X, θ) − Ĵi(X, θ), ϕj(X)

)
θ

= Eθ

[(
Ji(X, θ) − Ĵi(X, θ)

)
ϕj(X)

]
= 0.

From this set of equalities the form of the unknown matrix c(θ) retrieves, as is shown in the
following lemma.

Lemma 9.1. If an inverse of the matrix Π(θ) exists then c(θ) = Π−1(θ)∇π(θ).

Proof. It follows from the orthogonality condition that for all i = 1, . . . , d and j = 0, . . . , k

Eθ [Ji(X, θ)ϕj(X)] = Eθ

[
Ĵi(X, θ)ϕj(X)

]
.

The left-hand side equals

Eθ [Ji(X, θ)ϕj(X)] =

∫ ∂p(x,θ)
∂θi

p(x, θ)
ϕj(x)p(x, θ)dx =

∂

∂θi

∫
ϕj(x)p(x, θ)dx =

∂πj(θ)

∂θi
.

The right hand side can be rewritten as

Eθ

[
Ĵi(X, θ)ϕj(X)

]
= Eθ

[
cT

·i (θ)ϕ(X)ϕj(X)
]

=
k∑

m=0

cmi(θ)πmj(θ).



9 Statistical inference for discrete stable distributions 88

Put together, we obtain

∂πj(θ)

∂θi
=

k∑

m=0

cmi(θ)πmj(θ), i = 1, . . . , d; j = 0, . . . , k.

If we use a matrix notation, ∇π(θ) = Π(θ)c(θ). Hence if the inverse of Π(θ) exists, then the
matrix c(θ) = Π−1(θ)∇π(θ).

The maximum likelihood estimator θ∗ of the parameter θ is obtained as the solution of∑
m J(xm, θ) = 0. The AML estimator θ̂∗ of the parameter θ is obtained in a very similar

way; instead of J we consider its approximation Ĵ. Hence we are trying to find a solution of
the set of equations

(9.3)
n∑

m=1

Ĵ(xm, θ) = 0,

or equivalently
n∑

m=1

k∑

i=0

cij(θ)ϕi(xm) = 0, j = 1, . . . , d.

The following properties of the AML estimator were shown in (Kagan, 1976).

Theorem 9.2. The AML estimator θ̂∗, that is a solution of (9.3), is consistent and asymp-
totically normal √

n
(
θ̂∗ − θ

)
→ N (0, Î−1(θ)).

Remark 9.3. We can see that the AML estimator is not asymptotically efficient in the
classical sense. However, the approximated Fisher information matrix converges to the the-
oretical Fisher information matrix as k goes to infinity: limk→∞ Î(θ) = I(θ). This follows
from the monotonicity property of the approximated Fisher information that was shown in
Kagan (1976). The Theorem 9.2 shows that with k going to infinity, we can achieve very high
asymptotic efficiency but for the price of computation speed as the computational complexity
grows with higher values of k.

9.2 Estimating parameters of discrete stable distributions

The method described in previous Section is very general and can be used for many distri-
butions where classical approaches fail due to the lack of a closed form of density function or
probability mass function. The AML method is applicable if we know only some functionals
of the distribution such as characteristic function or probability generating function, which
is the case of stable distributions or discrete stable distributions. In this Section we apply
this method to the case of discrete stable distributions with binomial thinning operator and
describe the algorithm of estimation. We will consider the positive discrete stable distribution
with probability generating function

P(z) = exp {−λ(1 − z)γ}

and symmetric discrete stable distribution with probability generating function

P(z) = exp

{
−λ

(
1 − 1

2

(
z +

1

z

))γ}
.
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In both cases the parametric space is Θ = (0, 1] × (0,∞).
The first step is to choose the functionals πi(θ) and πi,j(θ) and therefore the set of functions

Lk. For discrete stable distributions a natural choice is the probability generating function
P(z). We define ϕi(x) = zx

i with zi ∈ C, for i = 1, . . . , k, and z0 = 1. Then πi(θ) = Eθ(zi
X) =

P(zi). The choice of zis can be done in an optimal way by maximizing the determinant of
the approximated Fisher information matrix and thus obtaining optimal estimate in sense of
efficiency. We thus need to solve the following optimization problem

max
z∈A

|Î(θ)|,(9.4)

where z = (z1, . . . , zk)T . The set A is the domain of definition of the approximated Fisher
information matrix Î(θ). The approximated Fisher information matrix reduces from (9.1) to
(9.5) thanks to Lemma 9.1:

Î(θ) = ∇π(θ)T Π(θ)−1 ∇π(θ)(9.5)

The probability generating function of PDS distribution is defined for |z| ≤ 1. The set
A is therefore given by A = {z ∈ Ck : |zi| ≤ 1, i = 1, . . . , k}. It turns out that the optimal
solution z of (9.4) is such that Re(zi) ∈ (0, 1] and Im(zi) = 0 for all i = 1, . . . , k.

The probability generating function of SDS distribution is defined for
∣∣∣z + 1

z

∣∣∣ ≤ 2. There-

fore

A ={z ∈ Ck :

∣∣∣∣zi +
1

zi

∣∣∣∣ ≤ 2,

∣∣∣∣∣ziz̄j +
1

ziz̄j

∣∣∣∣∣ ≤ 2, i, j = 1, . . . , k}

={z ∈ Ck : |zi| = 1, i = 1, . . . , k}.

The case of DS distribution leads also to A = {z ∈ Ck : |zi| = 1, i = 1, . . . , k}.

Speed of convergence of Î(θ) The goal is to have a quick estimation method with high
asymptotic efficiency; however, these two properties are as usually in contradiction. With
the optimal choice of the linear space Lk = {1, zx

1 , . . . , z
x
k } we can achieve, given a fixed

size of the linear space k, the highest possible efficiency. The speed of convergence of the
optimal approximated Fisher information matrix for different values of the parameter γ for
PDS distribution is displayed in Figure 9.1 and for SDS distribution in Figure 9.2. We can
see that for PDS distribution the size k = 5 is enough, for SDS distribution depending on
the unknown value of γ the size k to achieve high asymptotic efficiency might be significantly
higher.

For the solution of the optimization problem (9.4) one need to know the unknown param-
eter θ. The AML estimation is thus done sequentially in four steps as described in Algorithm
9.4.

Algorithm 9.4.

Step 1: Choose k ∈ N and z = (z1, . . . , zk)T with zi uniformly and independently distributed
over the set A.

Step 2: Find initial estimate θ̂∗(0) by solving (9.3) with randomly chosen z from Step 1.
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Step 3: Use the initial estimate θ̂∗(0) to find the optimal value of the vector z by maximizing∣∣∣Î
(
θ̂∗(0)

)∣∣∣.

Step 4: Find final AML estimate θ̂∗ by solving (9.3) with optimally chosen z from Step 3.

This algorithm where the values of z are chosen optimally instead of randomly have a
significant effect on the quality of the estimator in terms of the efficiency. We will show on
a simulation study how the random and optimal choice affect the resulting estimator in the
next Section.

9.3 Simulation study

In the current Section we do two simulation studies. First we show the asymptotic be-
haviour of the AML estimator on simulated samples from SDS distribution and prove that
the optimal choice of z significantly improves the results of the estimation. Secondly we will
compare the results of the AML estimation with the results of the k−L method described in
(Feuerverger and McDunnough, 1981) on simulated samples of PDS and SDS distributions.
The simulation algorithms can be derived from the stochastic representations of discrete stable
distributions given in Part I of the thesis (Corollary 5.4 and Corollary 5.24).

9.3.1 Asymptotic behaviour of the AML estimate of SDS distribution

Here we look at the asymptotic behaviour of the AML estimator as a function of k. We
repeatedly (1000 times) simulate a sample of size 1000 from SDS(0.8, 1) distribution and
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Figure 9.1: Speed of convergence of |Î(θ)| for PDS(γ, 1) with γ = 0.4 (left), γ = 0.6 (middle)
and γ = 0.8 (right).
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and γ = 0.9 (right).



9 Statistical inference for discrete stable distributions 91

for every k ∈ {3, . . . , 25} we estimate the parameters using the Algorithm 9.4. The mean
square errors of the estimators of γ and λ are displayed in Figure 9.3. The behaviour of the
determinant of the approximated Fisher information matrix is displayed in Figure 9.4. The
optimal choice of z leads to best possible estimates as the determinant of the approximated
Fisher information matrix approaches very closely the theoretical value (computed with the
real values of parameters and optimally chosen vector z). The random choice of z cannot
compete with the optimal one in sense of efficiency. In Figure 9.5 we see the asymptotic
behaviour of the estimates of γ and λ respectively as a function of k.

Remark 9.5. The algorithm from the previous Section is slightly modified in the simulation
study. To achieve more precise estimates we added one step at the end of the algorithm.
In this additional step we estimate parameter θ1 in the presence of a nuisance parameter
(θ2, . . . , θd). This method was proposed by Klebanov and Melamed (1978) and the idea is in
modifying the likelihood function (in our case the informant Ĵ(x, θ)) as

J̃1(x, θ) = Ĵ1 − Êθ[Ĵ1|Ĵ2, . . . , Ĵd],

where Êθ is the mathematical expectation in the wide sense, i.e. we solve linear regression
problem of Ĵ1 on Ĵ2, . . . , Ĵd. We first estimate all parameters together using the algorithm
and then we estimate parameter λ with a nuisance parameter γ. Using this method the MSE
of the estimate of parameter λ significantly decreased.
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Figure 9.3: Mean square error of AML estimator of γ (left) and λ (right) as a function of
k. Parameters estimated from simulated sample of size 1000 from SDS(0.8, 1), with 1000
repetitions. The dashed line correspond to the initial estimate θ̂∗(0) and the solid line to the
optimal estimate θ̂∗.

9.3.2 Comparison of results of the AML method with the k − L method

The k−L procedure introduced by Feuerverger and McDunnough (1981) uses the asymptotic
distribution of the empirical characteristic function at k fixed points t1, . . . , tk ∈ R. Let us
denote fn the empirical characteristic function, i.e.

fn(t) =
1

n

n∑

j=1

eitxj ,
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where x1, . . . , xn is the observed sample. The characteristic function can be obtained from
probability generating function as fθ(t) = P(eit). We use the following notation

Vn = (Re(fn(t1)), . . . ,Re(fn(tk)), Im(fn(t1)), . . . , Im(fn(tk)))T ,

Vθ = (Re(fθ(t1)), . . . ,Re(fθ(tk)), Im(fθ(t1)), . . . , Im(fθ(tk)))T ,

and Σ = cov(Vn). The ECF estimate is given as the solution of the minimization problem

min
θ∈Θ

(Vn − Vθ)T Σ−1(Vn − Vθ).

Feuerverger and McDunnough (1981) show that this estimator is asymptotically normal and
asymptotically efficient.

In our simulation study we compare results of the AML method and the k − L method.
We simulate samples of size 2000 from SDS(0.8, 1) and PDS(0.5, 4). We simulate 100 samples
and we compare the mean square errors of the AML and k−L estimates. We use k = 10 for
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Figure 9.4: Asymptotic behaviour of |Î(θ)| as a function of k. Parameters estimated from sim-
ulated sample of size 1000 from SDS(0.8, 1), with 100 repetitions. The dashed line correspond
to the initial estimate θ̂∗(0) and the solid line to the optimal estimate θ̂∗.
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Figure 9.5: Asymptotic behaviour of AML estimators of γ (left) and λ (right) as a function
of k. Parameters estimated from simulated sample of size 1000 from SDS(0.8, 1), with 1000
repetitions. The dashed line correspond to the initial estimate θ̂∗(0) and the solid line to the
optimal estimate θ̂∗.
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the AML method in case of SDS distribution and k = 5 for PDS distribution. We use k = 10
points in the k − L method. The results are given in Table 9.1.

γ λ

AML
0.801 0.999

(0.018) (0.036)

k − L
0.806 1.001

(0.033) (0.038)

γ λ

AML
0.500 4.002

(0.006) (0.080)

k − L
0.496 3.978

(0.028) (0.212)

Table 9.1: Estimated parameters of SDS(0.8, 1) (left) and PDS(0.5, 4) (right) distributions
from simulated samples of size 2000 with 100 repetitions. The mean square errors of the
estimators are given in parentheses.



10. Discrete stable GARCH models
and application to option pricing
Majority of financial models is based on the assumption that asset prices are continuous ran-
dom variables. These models include both continuous and discrete time models. The contin-
uous time modelling approach started with geometric Brownian motion by Black and Scholes
(1973) and Merton (1973), followed by stochastic volatility models of Hull and White (1987)
and Heston (1993), where both the asset price and volatility are stochastic processes. Models
including jump part were introduced first by Merton (1976) who considered jump diffusion
process governing the asset price. His work was followed by many others and an exten-
sive overview of jump diffusion models can be found in Cont and Tankov (2004). Finally
Eberlein and Jacod (1997) proposed pure jump processes as a model of asset prices. There
is an apparent trend in loosening the assumption of continuity of asset prices toward their
discreteness. Discrete time sampling of asset prices lead to consideration of discrete time
models instead of continuous time; Duan (1995) introduced a discrete time model of asset
prices, where the continuously compounded returns follow the generalized ARCH (GARCH)
process of Bollerslev (1986). Similar model was studied by Heston and Nandi (2000).

The aim of many new models is the ability to describe the behaviour of financial mar-
kets more accurately. Asset price behaviour can be summarized into several stylized facts:
stochastic volatility, volatility clustering, appearance of heavy tails and leverage effect where
the negative returns have bigger effect on the volatility than the positive returns. In financial
literature, heavy tails usually denote “tails heavier than Gaussian”. The discreteness is an-
other property of asset prices that should not be ignored – stock and futures prices are quoted
on exchanges in discrete manner, the smallest possible price change being called a tick; foreign
exchange (FX) rates are also discrete with the smallest price change called a pip; interest rates
are usually rounded from three to five decimal places. Already in the 80’s several authors
noted that ignoring the discrete character of prices leads to biased moment estimators and
suggested new estimators for variance and higher moments. Gottlieb and Kalay (1985) con-
sidered geometric Brownian model of asset prices and introduced an approximate correction
factor for variance and market beta computed from the discrete observed prices; Ball (1988)
assumed that the true asset price follow Brownian motion and suggested estimators based
on Sheppard’s corrections (see (Craig, 1936)) of the discrete observed prices; Cho and Frees
(1988) introduced yet another unbiased estimator of variance based on stopping times of ge-
ometric Brownian motion leading the asset prices. Since then many authors considered the
discreteness as microstructure noise to otherwise continuous price process (Aït-Sahalia (2002),
Aït-Sahalia et al. (2005), Andersen et al. (2011) among others). The microstructure noise is
very strongly observed on low frequencies where the continuity assumption collide with the
discreteness of prices that is very apparent on the short time scale. To summarize we may
consider price discreteness as another stylized fact of the financial markets and study models
where the discrete character of the market would not be ignored. Amilon (2003) considered
discrete prices and introduced a GARCH model with hidden fair price that is estimated from
the discrete market prices. Barndorff-Nielsen et al. (2012) introduced an integer-valued Lévy
process for modelling low latency market data.

The aim of this paper is to introduce a new GARCH model taking into account the discrete
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character of the market by modelling the innovations by a discrete distribution. The GARCH
model of asset prices introduced by Duan (1995) has as key assumption the normality of
innovations, or conditional normality of asset returns. It was noted already by Mandelbrot
(1963) that the asset returns exhibit leptokurtic behaviour and tails heavier than Gaussian
and thus the Gaussian distribution does not provide a very good model. Stable distributions
(or Paretian distributions) provide a modelling tool to describe the heavy tails in market data,
however, the infinite variance of stable distributions and the fact that financial returns have
heavier tails on a short time scale and almost Gaussian on a long scale brings into question the
appropriateness of the stable model of returns. Grabchak and Samorodnitsky (2010) studied
the paradox and showed, using the pre-limit theorem by Klebanov et al. (1999), that the sum
of a large number of independent and identically distributed random variables behave as a
stable random variable even though the tails of the random variables are not heavy. This mo-
tivated the introduction of other models that depart from the stable distribution but whose
tails are not heavy. There are several ways how to obtain a distribution with exponential
tails and stable behaviour in the “centre” of the distribution. Menn and Rachev (2005) used
α-stable innovations with truncated tails. Menn and Rachev (2009) applied smooth trunca-
tion of tails of stable distribution, where the centre of the distribution correspond to stable
distribution and the tails follow Gaussian distribution. Another way to come from heavy
tails to a model with similar body and non-heavy tails is by tempering. In this approach the
polynomially decaying tails are tempered with exponential rate. Stable distributions with
exponentially tempered tails have been considered in the literature under different names –
truncated Lévy flights (Koponen (1995)), CGMY model (Carr et al. (2002)) and finally tem-
pered stable distributions (Rosiński (2007)). Tempered stable innovations and other general-
izations are broadly used in GARCH option pricing framework, see, for example, Kim et al.
(2009), Kim et al. (2010), Rachev et al. (2011), Mercuri (2008). To include the leverage
effect, Menn and Rachev (2009) considered the nonlinear asymmetric GARCH (or shortly
NGARCH) model, introduced by Engle and Ng (1993). This approach allows for asymmetric
volatility smile in option prices and therefore is a better tool for modelling stock prices, that
exhibit leverage effect.

The contribution of this paper is twofold. We introduce a new NGARCH model with dis-
crete distribution of innovations, that takes into account the stylized facts of the market such
as stochastic volatility, volatility clustering, leverage effect and discrete character of market
prices. On the other hand we consider discrete distribution of innovations allowing for heav-
ier tails by introducing two new discrete probability distributions – tempered discrete stable
distribution and approximated discrete stable distribution, both approaches were considered
already in Chapter 3. By tempering the tails of the distribution or by truncating large jumps
of discrete stable distribution, we obtain distributions that behave as discrete stable in the
middle but have exponential or Gaussian tails. We study the quality of the models on empir-
ical data of the S&P 500 index compared to the normal and classical tempered stable (CTS)
NGARCH models studied by Rachev et al. (2011). We study the option-pricing performance
of our models compared to the normal NGARCH model and the CTS-NGARCH model. The
Chapter is concluded by the study of option traders’ market sentiment incorporated in the
option prices. We analyse the market sentiment by computing the so called information ra-
tio that measures the relative change from a benchmark market (Black-Scholes or Gaussian
NGARCH) towards a heavier tailed market. By comparing the relatively calm recent period
in March 2014 with a volatile period at the beginning of the financial crisis in September
2008, we show that the market is still relatively heavy-tailed (in the sense that the tails of
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the returns distribution are heavier than Gaussian) with a possibility of big losses; however,
this risk decreased significantly since 2008.

This Chapter contains results from Slámová et al. (2014).

10.1 The model

In this Section we introduce the discrete stable NGARCH model. We will consider the
discrete stable distribution in the limit sense with binomial thinning and modified geometric
thinning operators that was introduced and studied in Part I of the thesis. The characteristic
functions of the corresponding distributions f1(t) and f2(t) respectively are given by the
following formulas:

(10.1) f1(u) = exp
{

−λ1(1 − eiu)α − λ2(1 − e−iu)α
}
, α ∈ (0, 1], λ1, λ2 > 0,

(10.2) f2(u) = exp

{
−λ1

(
1 − eiu

1 − κeiu

)α

− λ2

(
1 − e−iu

1 − κe−iu

)α}
,

α ∈ (0, 1], λ1, λ2 > 0,

κ ∈ [0, 1).

We can directly see that f2(u) reduces to f1(u) with κ = 0. Discrete stable distribution
can be seen as compound Poisson distribution with intensity of jumps λ1 +λ2 and distribution
of jumps given by the following characteristic functions:

h1(u) = 1 − λ1

λ1 + λ2
(1 − eiu)α − λ2

λ1 + λ2
(1 − e−iu)α,

h1(u) = 1 − λ1

λ1 + λ2

(
1 − eiu

1 − κeiu

)α

− λ2

λ1 + λ2

(
1 − e−iu

1 − κe−iu

)α

.

10.1.1 Tempered discrete stable distributions

The tempered discrete stable distribution is constructed by exponential tempering of the tails
of discrete stable distribution (10.1). This was done already in Chapter 3, here we provide
more details on how the tempered discrete stable distributions are obtained.

Discrete stable distribution is a compound Poisson distribution with Lévy-Khintchine
representation

log f1(u) =

∫ ∞

−∞

(
eiux − 1

)
ν(dx),

where the Lévy measure ν takes the following form

ν(dx) = (λ1 + λ2)
∞∑

k=−∞
pkδk(dx),

where

pk =





λ1

λ1+λ2
(−1)k+1

(α
k

)
, k > 0,

λ2

λ1+λ2
(−1)k+1

( α
|k|
)
, k < 0,

0, k = 0,
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and δk is the Dirac measure, i.e. δx(A) = 1 if x ∈ A and 0 otherwise.
We temper the heavy tails of the discrete stable distribution using the tempering function

q(x) = e−θ1x1x>0 + e−θ2|x|1x<0, θ1, θ2 > 0.

The tempered discrete stable distribution is then obtained by multiplying the corresponding
Lévy measure by this tempering function. The parameters θ1 and θ2 give the tail decay rates.

Definition 10.1. Let α ∈ (0, 1], λ1, λ2, θ1, θ2 > 0. An infinitely divisible distribution is
called tempered discrete stable (denoted TDS) with parameters α, λ1, λ2, θ1, θ2, if its Lévy
triplet (σ2, ν, γ) is given by γ = 0, σ = 0 and

ν(dx) = (λ1 + λ2)
∞∑

k=−∞
pkδk(dx),

where

pk =





λ1

λ1+λ2
e−θ1k(−1)k+1

(α
k

)
, k > 0,

λ2

λ1+λ2
e−θ2|k|(−1)k+1

( α
|k|
)
, k < 0,

0, k = 0.

The characteristic function of X ∼ TDS(α, λ1, λ2, θ1, θ2) is given by

f(u) = exp
{

−λ1

(
1 − eiue−θ1

)α
− λ2

(
1 − e−iue−θ2

)α
+ λ1

(
1 − e−θ1

)α
+ λ2

(
1 − e−θ2

)α}
.

This function can be extended via analytical continuation into the strip −θ2 < Im(z) < θ1.
All moments of TDS distribution exists. The first two central moments are given by the
following formulas:

m1 = EX = α

[
λ1e

−θ1

(
1 − e−θ1

)α−1
− λ2e

−θ2

(
1 − e−θ2

)α−1
]
,

m2 = EX2 = α

[
λ1e

−θ1

(
1 − e−θ1

)α−1
+ λ2e

−θ2

(
1 − e−θ2

)α−1
]

− α(α− 1)

[
λ1e

−2θ1

(
1 − e−θ1

)α−2
+ λ2e

−2θ2

(
1 − e−θ2

)α−2
]
.

If we substitute

λ2 = λ1

e−θ1

(
1 − e−θ1

)α−1

e−θ2 (1 − e−θ2)
α−1 ,

λ1 =

{
αe−θ1

(
1 − e−θ1

)α−1
[
2 − (α− 1)

(
1

eθ1 − 1
+

1

eθ2 − 1

)]}−1

,

we obtain a tempered discrete stable distribution with zero mean and variance equal to 1. Such
distribution will be called standard tempered discrete stable distribution with parameters
α, θ1, θ2 and denoted stdTDS(α, θ1, θ2). The log-Laplace transform of the random variable
X ∼ TDS(α, λ1, λ2, θ1, θ2), is defined for u ∈ [−θ2, θ1] and is given as

L(u) = log E[euX ] = −λ1

(
1 − eue−θ1

)α
−λ2

(
1 − e−ue−θ2

)α
+λ1

(
1 − e−θ1

)α
+λ2

(
1 − e−θ2

)α
.
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10.1.2 Approximate discrete stable distributions

Another approach to obtain a distribution with finite variance is truncating its tails. In
Chapter 3 we introduced approximate symmetric discrete stable distribution. Here we use a
similar approach and we truncate the large jumps of the jump distribution of discrete stable
distribution (10.2). Let m1,m2 ∈ N. Define the following characteristic function

(10.3) f(u) = exp

{
−λ1

m1∑

n=0

(−1)n

(
α

n

)
(1 − κ)n eiun

(1 − κeiu)n

−λ2

m2∑

n=0

(−1)n

(
α

n

)
(1 − κ)n e−iun

(1 − κe−iu)n

+λ1

m1∑

n=0

(−1)n

(
α

n

)
+ λ2

m2∑

n=0

(−1)n

(
α

n

)}
.

It is obvious that (10.3) converges pointwise with m1,m2 → ∞ to the characteristic function
(10.2) of discrete stable distribution.

Definition 10.2. Let α ∈ (0, 1], κ ∈ [0, 1) andm1,m2 ∈ N. An infinitely divisible distribution
is called approximate discrete stable (denoted ADS) with parameters α, λ1, λ2, κ,m1,m2, if
its characteristic function is given by (10.3).

The characteristic function f is analytic and the log-Laplace transform L(u) = log E[euX ]
exists for all u ∈ R \ {log(κ), log(1/κ)} and is given as

L(u) = −λ1

m1∑

n=1

(−1)n

(
α

n

)
(1 − κ)n eun

(1 − κeu)n
− λ2

m2∑

n=1

(−1)n

(
α

n

)
(1 − κ)n e−un

(1 − κe−u)n

+ λ1

m1∑

n=1

(−1)n

(
α

n

)
+ λ2

m2∑

n=1

(−1)n

(
α

n

)
.

All moments of ADS distribution exists. The first two central moments are given by the
following formulas:

m1 = EX = − λ1

1 − κ

m1∑

n=1

(−1)n

(
α

n

)
n+

λ2

1 − κ

m2∑

n=1

(−1)n

(
α

n

)
n,

m2 = EX2 = m2
1 +

λ1

(1 − κ)2

m1∑

n=1

(−1)n

(
α

n

)
n(n+ κ) +

λ2

(1 − κ)2

m2∑

n=1

(−1)n

(
α

n

)
n(n+ κ).

We can choose λ1 and λ2 in such a way that m1 = 0 and m2 = 1. We then obtain approx-
imate discrete stable distribution with zero mean and variance equal to 1. Such distribution
will be called standard approximate discrete stable distribution with parameters α, κ,m1,m2

and denoted stdADS(α, κ,m1,m2).

10.1.3 Discrete stable NGARCH option pricing model

In this Subsection we introduce a new NGARCH model with discrete stable innovations. In
particular we will study two models with stdTDS and stdADS distributed innovations. We
will denote these models TDS-NGARCH and ADS-NGARCH model respectively and together
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they will be called discrete stable NGARCH models, or DS-NGARCH. Let us assume that
the asset price process (St, t ∈ N) is governed by the following dynamic under the real-world
probability measure P:

log

(
St

St−1

)
= rt + λσt − L(σt) + σtεt, t ∈ N,(10.4)

where St is the asset price at time t, rt is the time-t risk-free interest rate for the period [t−1, t],
λ is the market price of risk. The processes rt is assumed to be predictable. The innovations
εt are independent and identically distributed random variables coming from distribution F ,
L(u) is the log-Laplace transform of the innovations εt, i.e. L(u) = log E[exp{uX}] with
X ∼ F . L is defined either on a closed interval [−a, b] with a, b > 0 or on the whole real line
R. The conditional variance σ2

t follows a NGARCH(1,1) process defined as

(10.5) σ2
t = (α0 + α1σ

2
t−1(εt−1 − γ)2 + β1σ

2
t−1) ∧ ρ, t ∈ N,

with ε0 = 0, α0 > 0, α1, β1 ≥ 0 and α1(1 + γ2) + β1 < 1 in order to guarantee the existence
of a strong stationary solution with finite unconditional mean, and where 0 < ρ ≤ b2 if L is
not defined on the whole real line and ρ = ∞ otherwise.

The model reduces to classical GARCH model of Duan (1995) when γ = 0 and the
distribution of innovations is Gaussian. The parameter γ allows for asymmetry in the volatil-
ity when negative returns have higher impact on the volatility than positive returns. The
model moreover reduces to discrete-time Black-Scholes model when the volatility is constant,
i.e. when α1 = β1 = 0.

The innovations (εt, t ∈ N) are assumed to be i.i.d. random variables with one of the
following distribution

• εt ∼ stdTDS(α, θ1, θ2) in case of the TDS-NGARCH model,

• εt ∼ stdADS(α, κ,m1,m2) in case of the ADS-NGARCH model.

For comparative purposes we will also consider Gaussian and classical tempered stable (CTS)
distribution of innovations.

• εt ∼ Normal(0, 1) in case of the Normal-NGARCH model,

• εt ∼ stdCTS(α, θ1, θ2) in case of the CTS-NGARCH model.

The model is then a generalized version of models considered in Duan (1995) and Kim et al.
(2010) respectively (with γ = 0).

In case of most securities the smallest price change is 0.01 or 0.001, i.e. the tick size is
0.01 or 0.001. We will therefore assume that the innovations take discrete values on a lattice
with size ∆ = 0.001. It is easy to modify the definitions of TDS and ADS distributions to
this case by considering characteristic functions of the form f(∆u).

For pricing of derivatives we need the price process (10.4), (10.5) under a risk-neutral
measure Q. As explained in Rachev et al. (2011) the market given by (10.4) is incomplete
and therefore there exist more than one equivalent martingale measure. We can however
impose an especially simple form of the risk-neutral measure Q (as was done in Duan (1995))
under which the price process has the following dynamics
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log

(
St

St−1

)
= rt − L(σt) + σtεt, t ∈ N,(10.6)

where εt have the same distribution under the market measure and risk-neutral measure
and where

(10.7) σ2
t = (α0 + α1σ

2
t−1(εt−1 − λ− γ)2 + β1σ

2
t−1) ∧ ρ, t ∈ N.

10.2 Empirical analysis

In this Section, we study the performance of our discrete stable NGARCH models on the real
data compared to the normal NGARCH and classical tempered stable NGARCH models.

As it is not possible to obtain closed form formula for the option prices

C(T,K) = e−rT EQ

[
(ST −K)+

]

based on the model (10.6), (10.7), we will use the Monte Carlo simulation approach, i.e. we

simulate M sample paths of the price process St, (S
(j)
t , 1 ≤ t ≤ T ) for j = 1, . . . ,M . The

option price is then estimated by

C̃(T,K) = e−rT 1

M

M∑

j=1

(S
(j)
T −K)+.

In the first part we describe the data used for our analysis. In the second Subsection, we
investigate the statistical properties of our models under the objective probability measure
P. We will study the goodness of fit of the discrete stable NGARCH models on historical
data, using two-step maximum likelihood method. We do a backtest to see the predictive
power of the models under consideration. In the third Subsection we price the options under
the risk-neutral measure Q using NGARCH parameters and parameters of the innovations
distribution estimated by the maximum likelihood method. We will use the option prices
to estimate the market price of risk and the spot volatility as these values are time-varying.
In the last Subsection, we calibrate the risk-neutral parameters of the considered NGARCH
models using market prices of options. This is done by minimizing the square error between
the market and model prices. In this procedure one does not consider the market measure
P but only the risk neutral measure Q. Model estimated in this way can be then used for
pricing more complicated options.

10.2.1 Data description

In our empirical analysis we will consider the S&P 500 index and call options on this index.
We use adjusted closing prices of the S&P 500 index from March 25, 2004 to March 25, 2014,
obtained from Bloomberg. We use IRX index for our daily interest rate rt. IRX is an index
created by Chicago Board Options Exchange and is computed from actual prices of 13-week
Treasury Bills.

As for the options prices we will consider prices of liquid call options. We use two sets of
data to study performance under different market conditions. The first set is from volatile
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period shortly before the outburst of the 2008 financial crisis – September 10, 2008. Second
set is from much calmer recent period of March 25, 2014. All data were obtained from
Bloomberg. The options have maturities ranging from 6 days to 200 days, with moneyness
(ratio of the strike price and the current asset price) between 0.9 and 1.1; in total of 69 option
prices for the 2008 data set and 69 option prices for the 2014 data set.

10.2.2 Market parameters estimation

In this Subsection we review results of market estimation – we estimate parameters of different
NGARCH models from the historical market prices. We will use quasi maximum likelihood
estimation where we approximate the non-normal NGARCH model by normal NGARCH.
The reason for this approximation is the appearance of the log-Laplace transform L of the
innovations distribution in (10.4). This inhibit the direct use of the maximum likelihood esti-
mation, where the likelihood function depends on the unknown parameters of the innovations
distribution. This problem is overcome once we use the Gaussian distribution of innovations:
the log-Laplace transform L then reduces to −1/2x2. So in order to estimate the NGARCH
parameters (α0, α1, β1, λ, γ) we use normal approximation – that is we assume that the inno-
vations have Gaussian distribution. In this setting the NGARCH parameters can be easily
estimated using the MLE method. The innovations estimated from the Normal NGARCH
model are then used to estimate the parameters of the innovations distribution. We use the
empirical characteristic function method (or k − L method) to estimate the distribution of
innovations.

The estimated parameters for the index S&P 500 are in Table 10.1, the goodness of fit
statistics are in Table 10.2, the QQ-plots are in Figure 10.1. To assess the goodness of fit we
use Kolmogorov-Smirnov (KS) statistic,

KS = sup
x

|Fn(x) − F (x)|,

and Anderson-Darling (AD) statistic,

AD =

∫ ∞

−∞

(Fn(x) − F (x))2

F (x)(1 − F (x))
dF (x),

where Fn is the empirical cumulative distribution function of the innovations. The AD statistic
focus on the tails of the distribution whereas the KS statistics more on its middle. We also give
the p-values of the Kolmogorov-Smirnov and Anderson-Darling tests. It is well known that the
p-values of the KS and AD tests are exact only if the distribution is continuous. In the case of
discrete distributions we therefore use a randomized tests of Lemeshko et al. (2007). To com-
pute the distribution of the AD test statistics we use the procedure of Marsaglia and Marsaglia
(2004).

The CTS, TDS and ADS distributions offer all very good fit for the innovations distribu-
tion compared to the normal distribution. The best fit on the tails and in the middle of the
distribution is achieved with the ADS distribution.

Backtest of models. To further assess the quality of our models, we perform a backtest,
a procedure that assess the predictive power of the model. We base the backtest on the
paper of Campbell (2005). We divide our sample into 2 parts, the first part serves for market
estimation, the second part, of length N , serves for backtesting. For every data point in the
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Table 10.1: SPX Market Parameters estimated on the time series from March 25, 2004 to
March 25, 2014.

Model Parameters

α0 α1 β1 λ γ

NGARCH 1.00e-10 0.0990 0.8645 0.6802 0.0064

α θ+ θ−
stdCTS -0.5313 2.6662 2.2678

α θ1 θ2

stdTDS -0.6526 0.0035 0.0022

α κ m1 m2

stdADS 0.4311 0.9519 55 87

Table 10.2: Goodness of fit statistics for different distributional assumptions on the innova-
tions of SPX returns.

Model KS (p-value) AD (p-value)

stdNormal 0.0541 7.84e-7 11.0625 4.54e-6

stdCTS 0.0117 0.8757 0.6597 0.5934

stdTDS 0.0097 0.9673 0.2086 0.9879

stdADS 0.0078 0.9966 0.1019 1.0000

second part of the data we compute Value at Risk at level α based on our model. We then
compare this value with the return on the next day. We compute the number of exceedances
in our given sample, i.e. we count the number of days when the loss is bigger than the Value
at Risk from previous day. If our model is good, the number of exceedances should be equal
to α. Campbell (2005) suggests a method where the number of exceedances on different levels
is computed. We divide the interval [0,1] into several subintervals I1, I2, . . . , Ik, i.e. [0,0.005),
[0.005,0.01), [0.01, 0.05), [0.05,0.1) and [0.1, 1]. Under the null hypothesis that our model
is correct, the number of exceedances falling into one of the intervals Ii, denoted Ni, should
be equal to N(ui − li), where li and ui are the lower and upper bounds of the interval Ii,
respectively. We then perform the Pearson’s chi-squared test, i.e. we compute a test statistic

Q =
k∑

i=1

(Ni −N(ui − li))
2

N(ui − li)
.

Under the null hypothesis the statistics Q should have chi-squared distribution with k − 1
degrees of freedom.

We perform the backtest on our 10 year data, we use first 8 years for market estimation
and the last 2 years for backtesting, i.e. N = 500. The results of the backtest are summarized
in the Table 10.3. We see that the discrete stable NGARCH models perform very well in the
backtest, and are slightly more successful in predicting large losses than the tempered stable
NGARCH model. The predictive power of the normal NGARCH model is bad as can be
expected, as it fails to predict the heavier tails of returns.
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Table 10.3: Results of the backtest on the time series from March 25, 2012 to March 25, 2014,
with model estimated on time series from March 25, 2004 to March 24, 2012.

Number of exceedances at level α Pearson’s Chi-squared test

Model 0.005 0.01 0.05 0.1 Q p-value

Normal-NGARCH 13 18 34 51 49.9606 3.6e-10

CTS-NGARCH 3 10 31 54 8.4441 0.0766

TDS-NGARCH 3 7 30 52 1.8190 0.7690

ADS-NGARCH 3 7 28 48 2.0590 0.7249

Theoretical 2.5 5 25 50

Upper bound 0 1 16 37

Lower bound 5 9 34 63
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Figure 10.1: QQ-Plots for S&P 500 innovations

10.2.3 Risk-neutral option pricing

To price the options we need a risk-neutral probability measure Q. As was already men-
tioned, we can choose a simple form of the measure Q under which the NGARCH asset price
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model takes form (10.6), (10.7). We therefore use the market parameters estimated from the
historical prices under the measure P and use them in the risk-neutral model (10.6), (10.7).
To price the options we use the Monte Carlo simulation approach. The problem that appears
when using Monte Carlo simulations is that the generated sample path of the discounted price
process is not a martingale any more. We thus use the empirical martingale simulation of
Duan and Simonato (1998) to overcome this problem. In this procedure the simulated asset
price is corrected in every step to impose the martingale property and to reduce the variance
of the simulated sample.

We simulate the price process under the measure Q with parameters α0, α1, β1, γ of the
NGARCH process and parameters of the innovations distributions. The market price of risk λ
and the spot variance σ2

0 are estimated from the market prices of options by fitting the model
prices of options to the market prices. This procedure was considered in Menn and Rachev
(2009) as MLE/fitted approach. The reason for this method is that the parameters of the
NGARCH process and of the innovations distribution are considered stable over time, however
the market price of risk is time varying and very difficult to estimate from historical data.
The spot variance influences the option prices to a big extent, and it is reasonable to assume
that the current level of volatility is better contained in the current prices of options than in
the 10 years history of index values.

Denote by N the number of options and Ci(Ti,Ki), i = 1, . . . , N the price of an option with
maturity Ti and strike Ki observed on the market. We estimate the parameter θ = (λ, σ2

0) by
calibrating the model under the measure Q to the market prices of options. We calibrate the
model in the following way. Let us denote C̃θ

i (Ti,Ki) the model price of the i-th option. We
estimate the parameter θ by fitting the model prices to the observed market prices by solving
the following problem

min
θ

N∑

i=1

(Ci(Ti,Ki) − C̃θ
i (Ti,Ki))

2.

We compare the option pricing performance of our discrete stable NGARCH models to-
gether with the CTS-NGARCH model and the Normal-NGARCH model. For comparative
purposes we include also results of the corresponding GARCH models and the classical Black-
Scholes model. To compare the models we use the error estimators defined in Schoutens
(2003), namely absolute percentage error (APE), average absolute error (AAE), root mean
square error (RMSE) and average relative percentage error (ARPE). Their definitions are as
follows (we denote C̄ the average market option price):

APE =
1

C̄

N∑

i=1

|Ci − C̃i|
N

AAE =
N∑

i=1

|Ci − C̃i|
N

RMSE =

√√√√
N∑

i=1

(Ci − C̃i)2

N
ARPE =

1

N

N∑

i=1

|Ci − C̃i|
Ci

The results of risk-neutral pricing of European call options on S&P 500 from September
10, 2008, and for the March 25, 2014 data set are presented in Table 10.4. As expected, we can
see that the performance of the Black-Scholes model with constant volatility is significantly
worse then any other model that captures the volatility clustering using the GARCH model
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Table 10.4: Risk-neutral in-sample pricing (MLE/fitted) of S&P 500 European Call Options
on September 10, 2008 (left) and on March 25, 2014 (right).

Model APE AAE RMSE ARPE

Black-Scholes 0.6539 19.927 23.838 0.808

Normal-GARCH 0.0797 2.4301 3.0370 0.1462

CTS-GARCH 0.0697 2.1253 2.6541 0.1326

TDS-GARCH 0.0688 2.0956 2.6170 0.1303

ADS-GARCH 0.0603 1.8362 2.2969 0.1153

Normal-NGARCH 0.0487 1.4837 1.8355 0.1008

CTS-NGARCH 0.0375 1.1440 1.4323 0.0820

TDS-NGARCH 0.0369 1.1232 1.4049 0.0803

ADS-NGARCH 0.0313 0.9538 1.1858 0.0686

Model APE AAE RMSE ARPE

Black-Scholes 0.1500 11.297 14.668 0.315

Normal-GARCH 0.0763 5.7487 8.6069 0.2986

CTS-GARCH 0.0705 5.3119 7.8806 0.2760

TDS-GARCH 0.0689 5.1888 7.6646 0.2633

ADS-GARCH 0.0683 5.1453 7.5834 0.2580

Normal-NGARCH 0.0217 1.6345 2.3147 0.0335

CTS-NGARCH 0.0272 2.0468 2.8188 0.0434

TDS-NGARCH 0.0310 2.3311 3.1747 0.0522

ADS-NGARCH 0.0306 2.3051 3.1454 0.0521

for volatility. The incorporation of the leverage effect in the NGARCH model improves the
results of the GARCH model. The non-Gaussian NGARCH models overperform the Normal-
NGARCH model in the volatile period in 2008, however in 2014, the Normal-NGARCH
model performs the best. The GARCH effect itself already captures the heavier tails in the
unconditional distribution of the asset prices, and by adding non-Gaussian distribution of
innovations we are able to capture the non-Gaussian tails into further extent. The period of
September 2008, shortly before the outburst of the financial crisis, was very volatile and the
returns exhibited heavier tails than in the relatively calm period of March 2014. Therefore in
2008 the GARCH model itself was not enough and by adding non-Gaussian innovations we
improved the model. In 2014 it appears that the tail behaviour is captured by the GARCH
effect of volatility and therefore non-Gaussian NGARCH models do not improve the results.

10.2.4 Market calibration

In this Subsection we calibrate our model using the market option prices. Our goal is to
obtain risk-neutral parameters of our model by extracting the available information from the
current option prices.

We estimate the risk-neutral parameters of the model (10.6), (10.7) by calibrating the
model to the market prices of options that reflect the risk-neutral probability space. We
estimate the set of parameters θ of the innovations distribution and we use the parameters of
the NGARCH model estimated from the historical times series from this Section. The set of
parameters θ is estimated by fitting the model prices to the observed market prices, i.e. we
solve the following problem

min
θ

N∑

i=1

(Ci(Ti,Ki) − C̃θ
i (Ti,Ki))

2.

Once we estimate the parameter θ of the innovations distribution, we use the Monte Carlo
simulations to price the options as in previous Subsection.

The results of the market calibration in terms of pricing errors are given in Table 10.5 for
the data from September 2008 and March 2014. We see that in both cases the non-Gaussian
GARCH and NGARCH models perform better than the corresponding Normal-GARCH and
NGARCH models.
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Table 10.5: Market calibration of S&P 500 European Call Option Prices on September 10,
2008 (left) and on March 25, 2014 (right).

Model APE AAE RMSE ARPE

Normal-GARCH 0.1283 3.9094 4.7835 0.2109

CTS-GARCH 0.1108 3.3771 4.1085 0.1481

TDS-GARCH 0.1125 3.4285 4.1717 0.1508

ADS-GARCH 0.1138 3.4679 4.2041 0.1601

Normal-NGARCH 0.0142 0.4334 0.7114 0.0218

CTS-NGARCH 0.015 0.4559 0.6571 0.0288

TDS-NGARCH 0.0152 0.464 0.6664 0.0289

ADS-NGARCH 0.0144 0.4394 0.6691 0.0251

Model APE AAE RMSE ARPE

Normal-GARCH 0.0397 2.9878 3.8099 0.1340

CTS-GARCH 0.0334 2.5160 3.3420 0.0855

TDS-GARCH 0.0323 2.4334 3.2843 0.0773

ADS-GARCH 0.0353 2.6605 3.4399 0.1033

Normal-NGARCH 0.0257 1.9330 2.6512 0.0519

CTS-NGARCH 0.0202 1.5222 2.1576 0.0455

TDS-NGARCH 0.0208 1.5695 2.2187 0.0399

ADS-NGARCH 0.0225 1.6961 2.4410 0.0406

10.3 Comparison of options markets sentiment in 2008 and
2014

Options markets can serve as an interesting indicator of the market sentiment – the prices
are formed by traders who translate into the prices their prediction of market behaviour. If
traders see the market as very volatile with a possibility of big losses, the option prices will
react accordingly. The question is how to quantify this sentiment and how to extract it from
the current market option prices.

In this Section we introduce the Information ratio, giving an information of how much
the market diverges from a benchmark market. The benchmark can be the classical Black-
Scholes market with constant volatility where the asset prices follow geometric Brownian
motion; or a Gaussian market with volatility clustering ruled by Normal-NGARCH model.
The information ratio can be then used as an indicator of future big losses on the options
market – if the ratio is close to zero or negative, the traders sentiment is such that the
markets behave as the benchmark market. If on the other hand the ratio is large, it can
serve as an indicator of a strongly non-Gaussian market where the risk of big losses is higher
than in the benchmark market. To measure the “heavy-tails” of the market we use Value at
Risk, a measure that indicates the largest possible loss in a specified time frame at a given
confidence level. A 99% Value at Risk is a value of a loss that will not be exceeded with a
99 % probability. This value, as it measures a tail event, is able to capture to what extent is
the market heavy-tailed: a big Value at Risk signalizes a significant probability of large loss,
or that the tails of the returns distribution are fat (not necessarily heavy-tailed with infinite
variance).

We will use the calibrated models from previous Section because they contain the infor-
mation about current option prices and therefore the option traders’ market sentiment. We
will compute 10 day Value at Risk from options at 99% confidence level. We do this in the
following way. For every model we simulate M = 1000 sample paths of the asset price St for
10 days. For every sample path, i = 1, . . . ,M , we compute the price of every option using
the Monte Carlo simulation of the previous Section, conditioned that S0 is the last value of
every simulated sample path. We use N options (N = 69 options for the 2008 data set and
N = 69 for the 2014 data set) with maturities ranging from T = 6 to T = 200 days. We

then compute the returns of the options, by computing log(C
(i)
10 /C0), i = 1, . . . ,M , where

C
(i)
10 is the future price of the option given that the new S0 corresponds to the i-th simulated

sample path and C0 is the current market option price. We compute the Value at Risk of
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Table 10.6: Information ratios and information spread with respect to the Black-Scholes
benchmark.

Model IR IS

2008 2014

Normal-GARCH 1.4774 1.4768 −0.04%

CTS-GARCH 1.4374 1.4456 0.57%

TDS-GARCH 1.4386 1.4392 0.04%

ADS-GARCH 1.4424 1.4910 3.37%

Normal-NGARCH 1.5544 1.4719 −5.31%

CTS-NGARCH 1.5561 1.4736 −5.30%

TDS-NGARCH 1.5585 1.4771 −5.22%

ADS-NGARCH 1.5922 1.5302 −3.89%

every option j = 1, . . . , N based on these returns, for every model. For every option in our
data set we compute the spread between the Value at Risk of the option in our model and a
benchmark model,

Smodel
j = VaRmodel

j (99%) − VaRbenchmark
j (99%), j = 1, . . . , N.

This spread express the change from the benchmark market to the model market. We define
information ratio as normalized version of S over all options, i.e.

IRmodel =

√
N
∑N

j=1 Smodel
j√

∑N
j=1

(
Smodel

j − Smodel
)2
.

We can measure the change of the market by measuring the relative change of the information
ratios between two periods of time T1 and T2, we will call such measure information spread,

ISmodel =
IRmodel(T2) − IRmodel(T1)

IRmodel(T1)
.

The information ratios for the benchmark Black-Scholes market are reported in Table
10.6. The information ratios for the benchmark Black-Scholes market are positive for all
models and both time periods under consideration, signalizing that the market sentiment is
towards non-Gaussian models with volatility clustering. The information spread is rather
insignificant, however we can see a slight decrease for all the NGARCH models, meaning the
market in 2014 is closer to Black-Scholes market than in 2008.

The results with respect to the Normal-NGARCH benchmark are presented in Table 10.7.
Here the results are more interesting. We can see that the information ratios are positive for
all models and for both periods, however the ratios take larger values for the 2008 period,
the information ratio decreased by around 40-50 % between the 2008 and 2014 periods. This
signalizes that the market in 2008 was more heavy-tailed than in 2014. The market in 2014
still presents heavier tails than the Normal-NGARCH model where heavy tails originate only
from volatility clustering.
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Table 10.7: Information ratios and information spread with respect to the Normal-NGARCH
benchmark.

Model IR IS

2008 2014

CTS-NGARCH 3.1925 1.3046 −59.14%

TDS-NGARCH 4.2306 2.0814 −50.80%

ADS-NGARCH 4.5323 2.6660 −41.18%

10.4 Conclusion

In this Chapter we introduced a new discrete stable NGARCH option pricing model, which
captures the market stylized facts as volatility clustering, heavy tails and leverage effect. We
made an attempt to include the discreteness of market prices as another stylized fact by
considering the innovations of the NGARCH model to be discretely distributed. This model
is not ideal as it does not preserve the discreteness in asset prices. Even despite this drawback
we showed that the two discrete stable NGARCH models have a very good modelling and
predictive performance even compared to the classical tempered stable NGARCH model –
the fit of the innovations distribution with historical prices and the predictive power of the
models in terms of the number of exceedances of Value at Risk are better for the discrete
stable NGARCH models than for the CTS-NGARCH model. Finally we applied our models on
option pricing. We showed that the pricing performance of non-Gaussian NGARCH models is
better than the Gaussian NGARCH model. Finally we have showed that the option traders’
market sentiment changed significantly since the 2008 financial crisis. Whereas the 2008
option markets were very volatile with a possibility of big losses, the analysis of the market
sentiment showed that the risk of big losses decreased, as the market in 2014 approached the
Gaussian NGARCH market quite significantly.



11. Conclusion
In this thesis we dealt with generalizations of the strict stability property and we focused our
interest mainly on ways, how to define stability for discrete random variables. By introducing
discrete stable distributions with different types of thinning operators, we provided tools for
both researches and practitioners that deal with discrete distributions both with heavy and
exponential tails. The discrete stable distributions studied in Chapter 5 can be considered
as discrete analogies of classical stable distributions – they share many properties with them
and with the lattice of the distribution going to zero, they converge to stable distributions.
The discrete stability on the set of all integers is however defined only in the limit sense as
the definition in the algebraic sense turned out to be infeasible.

When we generalized the random normalization procedure on continuous random variables
and introduced casual stable distribution, we found out that many probability distributions,
both with heavy and exponential tails, are in fact stable in this new sense. It also turned out
that it is possible to find discrete distributions on Z that are discrete stable in the algebraic
sense. The newly introduced symmetric geometric distribution (a discrete analogy of Laplace
distribution) and symmetric negative binomial distribution are casual stable and thus discrete
stable in the algebraic sense. It is essential to note, that there are many examples of casual
(and discrete) stable distributions with exponentially decreasing tails, which contradicts to
the popular opinion that stability (or self-similarity) property is connected to heavy tails. My
studies of application of discrete stable distributions to option pricing show that the presence
of exponential tails and central body similar to that of discrete stable distribution is essential
for such kind of applications too.
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A. Probabilities of discrete stable
distributions
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Figure A.1: Probabilities of positive discrete stable PDS(γ, λ, κ) random variables for different
values of parameters.
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Figure A.2: Probabilities of discrete stable DS(γ, β, λ, 1, κ) random variables for different
values of parameters.



A Probabilities of discrete stable distributions 118

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
SDS(0.8,2,0)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
SDS(0.8,2,0.5)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
SDS(0.2,2,0)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
SDS(0.2,2,0.5)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
SDS(0.8,5,0)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
SDS(0.5,5,0)

Figure A.3: Probabilities of symmetric discrete stable SDS(γ, λ, κ) random variables for dif-
ferent values of parameters.
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