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Abstrakt 

Vazba spermie na vajíčko je zprostředkována komplementárními molekulami na povrchu 

obou gamet a zahrnuje interakci proteinových receptorů spermie se sacharidovými 

strukturami zona pellucida (ZP). Ukázalo se, že do interakce spermie se ZP je zapojeno 

mnoho proteinových receptorů a potenciální primární receptory spermie pro vazbu na 

glykoproteiny ZP byly zkoumány u různých savců. Většina proteinů spermie, u kterých byla 

zjištěna vazebná aktivita se ZP, patří k proteinům plazmatické membrány. Nicméně přesné 

metody pro izolaci membránových proteinů spermie nejsou doposud standardizovány.  

Tato práce je zaměřena na využití různých izolačních protokolů, které vedou k získání 

extraktů odlišného proteinového složení. Dále jsou zahrnuty dva možné přístupy pro odhalení 

nových potenciálních vazebných receptorů spermií pro primární vazbu se ZP a jejich 

identifikace.  

Proteiny z ejakulovaných a in vitro kapacitovaných kančích spermií byly izolovány za 

použití různých extrakčních postupů: Triton X-100, Triton X-114, kyselina octová, 

dodecylsulfát sodný (SDS), N-oktyl-β-D-glukopyranosid (OBG), rehydratační pufr (RHB) a 

nakonec extrakcí pomocí zmrazení a následného tání. Tyto proteinové extrakty byly 

charakterizovány pomocí 1-D a 2-D proteinových profilů, barvením na glykoproteiny a 

substrátovými zymografickými metodami. Výsledky ukázaly kvantitativní a kvalitativní 

rozdíly v 1-D a 2-D proteinových profilech v závislosti na způsobu použitého izolačního 

postupu. Rozdíly byly také pozorovány mezi proteinovými profily ejakulovaných a 

kapacitovaných spermií. Zymogramy podpořily předpoklad, že použití různých izolačních 

protokolů bude mít za následek různé profily enzymaticky aktivních molekul. Pro identifikaci 

kandidátů pro vazebné receptory se ZP byla použita metoda Far Western blot a připraven 

panel monoklonálních protilátek. Identifikované proteiny, které vykazovaly vazebnou afinitu 

se ZP byly tyto – prekurzor akrosinu, lactadherin P47, „angiotensin-converting enzyme” 

(ACE), „polycystic kidney disease and receptor for egg jelly” (PKDREJ) a RAB-2A. Akrosin 

a P47 byly již charakterizovány jako receptory vázající ZP, zatímco ACE hraje 

zprostředkovatelskou roli při vazbě spermie na ZP. Proteiny PKDREJ a RAB-2A byly poprvé 

identifikovány na povrchu kančích spermií a navíc u RAB-2A byla zároveň poprvé 

pozorována jeho vazebná afinita k ZP. 

 

Klíčová slova: prase, povrchové proteiny spermie, receptory spermie pro vazbu se zona 

pellucida  
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Abstract 

Binding of sperm to the oocyte is mediated by complementary molecules on the surface of 

both gametes and involves the interaction of sperm protein receptors with the zona pellucida 

(ZP) saccharide structures. It has been shown that many proteins receptors are involved in the 

sperm-ZP interaction, and potential primary sperm receptors for ZP glycoproteins have been 

investigated in various mammals. The majority of proteins with identified sperm-ZP binding 

activity belong to the plasma membrane proteins. However, the exact methods for isolation of 

sperm membrane proteins are still to be standardized. 

This study is focused on investigating how employment of various isolation protocols leads 

to acquisition of various protein mixtures. Further in the work, two possible approaches 

towards identification of potential ZP-binding partners are implemented, in order to disclose 

novel primary ZP-binding receptor candidates. 

Sperm proteins of ejaculated and in vitro capacitated boar sperms were isolated by: Triton 

X-100, Triton X-114, acetic acid, sodium dodecyl sulphate (SDS), N-octyl-β-D-

glucopyranoside (OBG), rehydration buffer (RHB), and finally by freezing-thawing extraction 

and they were characterized by 1-D, 2-D protein profiles, glycoprotein staining and substrate 

zymographic methods. The results have shown quantitative and qualitative differences in 1D 

and 2D protein profiles depending on the isolation protocol. Differences were also observed 

between protein profiles of both ejaculated and capacitated sperms. Zymograms supported the 

prediction that various isolation protocols result in various profiles of enzymatically active 

molecules. For identification of ZP-binding receptor candidates, Far Western blot and a panel 

of monoclonal antibodies was used. The proteins that expressed ZP-binding affinity were 

identified to be: acrosin precursor, lactadherin P47, angiotensin converting enzyme (ACE), 

polycystic kidney disease and receptor for egg jelly (PKDREJ), and RAB-2A. Acrosin and 

P47 were already proved to be ZP-binding receptors, while ACE plays a mediatory role 

during the binding of sperm to ZP. Proteins PKDREJ and RAB-2A were for the first time 

identified on the surface of pig sperm, and additionally the binding affinity to ZP of RAB-2A 

was observed. 

 

 

 

 

Key words: boar, sperm surface proteins, sperm-zona pellucida binding receptors   
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1 INTRODUCTION 

1.1 Mammalian fertilization 

Mammalian fertilization is a complex process by which male and female gametes unite to 

produce a genetically distinct individual. Important steps in fertilization are (Fig. 1): 

 epididymal maturation of sperm 

 binding of specific adhesion proteins to the sperm surface during ejaculation 

 sperm capacitation in the female reproductive tract 

 penetration of sperm through the cumulus oophorus 

 mutual recognition of both gametes, and interaction of sperm with the oocyte envelope 

  – zona pellucida (primary binding of the sperm to zona pellucida)  

 acrosomal reaction 

 secondary binding of sperm to the zona pellucida 

 penetration of the sperm through the zona pellucida 

 fusion of gametes and events following the fusion resulting in embryonic development 

  

Fig. 1. Scheme of 

fertilization (top) and 

acrosome reaction  

(bottom) in a mouse  

model (Wassarman, 

1990). 
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1.1.1 Morphology and development of gametes 

 A gamete is a mature male or female germ cell, which usually possesses a haploid 

chromosome set and is capable of fusion with the opposite sex gamete, thus initiating 

formation of a new diploid individual. A female gamete is called ovum and in anisogamic 

organisms is always larger and non-motile compared to the male gamete – spermatozoon, 

which is much smaller and motile thanks to its flagellum. 

The spermatozoon is the end product of the process of spermatogenesis proceeding through 

successive mitotic, meiotic and postmeiotic phases within the seminiferous tubules of the 

testis (Eddy, 2006). The two main components of a spermatozoon, joined by the connecting 

piece, are the head and the flagellum (Fig. 2). The head consist of the nucleus, acrosome, 

cytoskeletal structures, and a small amount of cytoplasm. The nucleus contains highly 

condensed chromatin, which is capped anteriorly by the acrosome, a membrane-enclosed 

cytoplasmic vesicle containing hydrolytic enzymes (Eddy, 2006). From the connecting piece, 

the flagellum is separated successively by 

the middle piece (midpiece), principal 

piece and end piece regions. It contains a 

central complex of microtubules forming 

the axoneme, surrounded in turn by outer 

dense fibres extending from the neck into 

the principal piece (Eddy, 2006). The 

midpiece is covered by the mitochondrial 

sheath, a tightly wrapped helix of 

mitochondria surrounding the outer dense 

fibres and axoneme. Most of the length of 

the flagellum is made up of the principal 

piece, defined by the presence of a fibrous 

sheath surrounding the axoneme and outer 

dense fibres. The outer dense fibres and the 

fibrous sheath are cytoskeletal structures 

novel to the sperm flagellum in higher vertebrates and may have evolved with the 

development of internal fertilization (Baccetti, 1986; Eddy, 2006). The flagellum, like the 

head, is tightly enclosed by the plasma membrane and contains a sparse amount of cytoplasm. 

While most mammalian spermatozoa have these general characteristics, there are substantial 

Fig. 2. General features of a mammalian 

spermatozoon (Eddy, 2006). 
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species-specific differences in the size and shape of the head, and in the length and relative 

amount of the different components of the flagellum (Eddy, 2006). 

The process by which spermatozoa develop from undifferentiated germ cells within the 

seminiferous tubules of the testis is called spermatogenesis (Man and Lutwak-Man, 1981). It 

is characterized by three functional stages: proliferation, meiosis and metamorphosis. During 

the proliferation phase, spermatogonial germ cells undergo several mitotic divisions in order 

to renew themselves in addition to producing spermatocytes (Dym, 1994; de Rooij, 2001; 

Brinster, 2002; Oatley and Brinster, 2006; Redgrove, 2012). These cells then undergo two 

meiotic divisions to form haploid spermatids. The latter then develop into spermatozoa via an 

extremely complex process of cell differentiation and metamorphosis. This includes structural 

modifications to the shape of their nucleus, compaction of the nuclear chromatin, formation of 

an acrosomal vesicle and establishment of a flagellum allowing for the subsequent 

development of motility (Redgrove, 2012). The latter series of modifications that produce 

terminally differentiated spermatozoa from spermatids is referred to as spermiogenesis. Of 

particular importance to fertilization is formation of the acrosome during this stage. 

Acrosomal development begins with production of small proacrosome granules derived from 

the Golgi apparatus that lies adjacent to the early spermatid nucleus. These granules 

subsequently fuse together to form the acrosome, a large secretory vesicle that overlies the 

nucleus (Wassarman and Albertini, 1994; Redgrove, 2012). Once formed, the acrosome 

remains associated with the nucleus of the spermatid, and subsequently of the spermatozoa, 

for the remainder of its life and is of critical importance during fertilization owing to its 

ability to aid in penetration through the zona pellucida surrounding the ovulated oocyte. This 

function is, in turn, attributed to the hydrolytic enzymes enclosed within the acrosome. In 

addition to the formation of the acrosome during spermiogenesis, the sperm develop a 

cytoplasmic droplet and undergo plasma membrane remodelling events. The cytoplasmic 

droplet is a portion of the germ cell cytoplasm that remains attached to the neck region of 

elongating spermatids. The precise function of this residual cytoplasm remains elusive 

(Redgrove, 2012). The sperm also develop the machinery necessary for functional motility 

during spermiogenesis. As the acrosome grows at one pole of the nuclear surface of round 

spermatids, paired centrioles migrate to the opposite pole, where they initiate formation of the 

flagellum. In combination, these fundamental changes in structure and biochemistry result in 

terminally differentiated, highly polarized and morphologically mature spermatozoa 

(Redgrove, 2012). However, despite this level of specialization, the spermatozoa that leave 
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the testis are functionally incompetent, as yet unable to move forward progressively, or to 

interact with the zona pellucida and fertilize the oocyte. They must first traverse the 

epididymis, during which time they undergo further biochemical and biophysical changes 

(Redgrove, 2012). 

A mature female gamete produced 

within ovaries is an ovum. The ovum 

with roughly spherical shape is the 

largest cell in the organism. Similarly as 

the somatic cell, the ovum possesses 

organelles such as nucleus with 

nucleolus, comprising only one set of 

chromosomes; cytoplasm – called 

ooplasm, Golgi apparatus, mitochon-

drias, ribosomes, and plasmatic 

membrane – also called oolema (Fig. 3). 

Organelles found exclusively in the 

ovum are cortical granules, playing an essential role in preventing polyspermy and anchored 

in oolema from the inner side. Zona pellucida, a glycoprotein envelope covered by cumulus 

oophorus is divided from oolema by perivitelline space. 

Similarly as in the case of male gametes, the process by which ova develop from 

undifferentiated germ cells in the ovaries is called oogenesis. In case of mammals we talk of 

follicular development of ova, where cells of ovaries surround the oocyte to form a follicle, 

providing nutrition and protection to the oocyte. The follicular cells closest to the ovum are 

called cumular cells. The oocyte is separated from cumular cells by an extracellular layer 

called zona pellucida (ZP), whose components are synthesized and secreted by the growing 

oocyte (Wassarman and Albertini, 1994). During the phase of oocyte maturation, prophase I-

arrested primary oocyte resumes meiotic division and develops into secondary oocyte and 

first polar body. The secondary oocyte then enters second meiotic division and continues until 

it reaches metaphase II, where it is stopped, right before the ovulation. This is the end of the 

oocyte maturation phase. The ongoing fate of metaphase II arrested secondary oocyte can 

follow the two excluding scenarios. The metaphase II-arrested secondary oocyte is ovulated 

into ampulla and by the movement of cilia is drifted into the isthmus, where it waits for the 

signal carried by the sperm to complete maturation, or a non-fertilized metaphase II-arrested 

Fig. 3. A scheme of a mammalian ovum.
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secondary oocyte is expelled from the uterus during menstruation (Wassarman and Albertini, 

1994). 

1.1.2 Acquisition of the sperm ability for zona pellucida interactions  

Prior to interaction with the egg, the sperm cell must undergo a complex, multifaceted 

process of functional maturation. This process begins in the testes by spermatogenesis, 

discussed in the previous chapter, where spermatogonial stem cells are dramatically 

remodelled to produce spermatozoa (Redgrove, 2012). After their initial morphological 

differentiation, these cells are released from the germinal epithelium of the testes in a 

functionally immature state, incapable of movement or any of the complex array of cellular 

interactions that are required for fertilization (Hermo et al., 2010; Redgrove, 2012). In all 

mammalian species, the acquisition of functional competence occurs progressively during the 

cell descent through the epididymis. The surface and intracellular changes associated with 

epididymal maturation prepare the spermatozoa for their final phase of maturation within the 

female reproductive tract – capacitation, whereby they realize their potential to bind ZP and 

ultimately fertilize the egg (Yanagimachi, 1994a; Bailey, 2010; Fraser, 2010; Redgrove, 

2012). 

1.1.2.1 Epididymal maturation 

Upon leaving the testes, the first region of the epididymis that immature sperm encounter 

is the caput (head). Within this region, the sperm are concentrated by a mechanism of 

resorption that rapidly removes almost all the testicular fluid/proteins that enter the 

epididymis (Redgrove, 2012). As the sperm leave this environment and enter the corpus 

(body) epididymis, they begin to acquire their motility and fertilizing ability. These attributes 

continue to develop as the sperm move through the corpus, and reach an optimum level as 

they reach the cauda (tail) region, where they are stored in a quiescent state prior to 

ejaculation (Gatti et al., 2004; Cornwall, 2009; Redgrove, 2012). 

The sperm maturation within the epididymis is not under genomic control, since the cells 

entering the ductal system are in a transcriptionally inactive state with limited biosynthetic 

capacity (Eddy, 2002; Redgrove, 2012). Any subsequent molecular changes must therefore be 

driven by the dynamic intraluminal milieu in which they are bathed as they transit the length 

of the epididymal tubule (Cooper, 1995; Redgrove, 2012). This epididymal microenvironment 

is characterized by dramatic sequential changes in its composition, a reflection of segment-

specific gene expression (Jervis and Robaire, 2001; Dube et al., 2007; Jelinsky et al., 2007; 
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Johnston et al., 2007) and protein secretion (Syntin et al., 1996; Nixon et al., 2002; Dacheux 

et al., 2006; Dacheux et al., 2009; Guyonnet et al., 2011). 

The unique physiological compartments established by this activity are thought to have 

evolved not only to support the maturation of spermatozoa, but also to provide protection for 

the vulnerable cells during their transport and prolonged storage. It is well established that as 

sperm descend through the epididymis, they acquire the potential for forward motility 

(Amann et al., 1993; Cooper, 1993; Soler et al., 1994; Moore and Akhondi, 1996). This 

progressive motion not only allows the sperm to negotiate the female reproductive tract, but 

has also been suggested to play a role in penetration of the oocyte outer protective barriers, 

including the cumulus oophorus and zona pellucida (Redgrove, 2012). To date, the 

mechanisms underlying the acquisition of forward motility by cauda epididymal sperm have 

not been completely elucidated. However, a number of potential contributing factors have 

been identified. At the biochemical level, proteins from caput epididymal sperm contain a 

greater number of sulfhydryl groups than disulphide bonds (Redgrove, 2012). Importantly, 

oxidation of these sulfhydryl groups during the epididymal transit is correlated with 

stabilization of the flagella, as well as promotion of protein tyrosine phosphorylation on 

specific sperm proteins involved in the key signalling pathways (Calvin and Bedford, 1971, 

Cornwall et al., 1988; Seligman et al., 2004). 

Furthermore, changes in the luminal environment along with specific post-translational 

modification of sperm proteins have been shown to affect the motility status of these cells 

during their transit through the epididymis. In relation to the former, acidification of the 

luminal contents of the epididymis work to maintain sperm in an immotile state. Sperm start 

to move actively upon their release from cauda epididymis at the time when they are exposed 

to physiological salt solutions (Yanagimachi, 1994b). 

In addition to the maturation of the motility apparatus, the acquisition of ZP binding is also 

temporally associated with the exposure of spermatozoa to two distinct subsets of 

macromolecular structures in the epididymal lumen: the first being amorphous chaperone-

laden ‘dense bodies’ (Asquith et al., 2005) and the second being membrane-bound 

prostasome-like particles known as epididymosomes (Saez et al., 2003). It has been suggested 

that these epididymal granules facilitate transfer of proteins to the sperm surface during their 

transit through the organ (Saez et al., 2003; Asquith et al., 2005; Yano et al., 2010). A number 

of proteins have been shown to be acquired by the sperm during the epididymal transit. A 

non-exhaustive list of these proteins includes HE5/CD52 (Kirchhoff and Hale, 1996), 
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members of the ADAM family (Oh et al., 2009; Girouard et al., 2011), SPAM1 (Zhang and 

Martin-Deleon, 2003) and other mammalian hyaluronidases (Legare et al., 1999; Frenette and 

Sullivan, 2001), macrophage migration inhibitory factor (MIF) (Eickhoff et al., 2001; Frenette 

et al., 2003; Girouard et al., 2011) as well as a number of enzymes including aldose reductase 

and sorbitol dehydrogenase (Kobayashi et al., 2002; Frenette et al., 2004; Frenette et al., 

2006; Thimon et al., 2008). Another group of enzymes found in epididymal fluid are glycan-

modifying enzymes, comprising glycohydrolases as α-D-glucosidase and α-D-mannosidase as 

well as glycosyltransferases such as galactosyltransferase and fucosyltransferase (Tulsiani, 

2006; Dacheux, 2009), 

Collectively, these proteins are believed to participate in the modification of the sperm 

biochemistry and surface architecture conferring the potential to engage in oocyte 

interactions. 

1.1.2.2 Sperm capacitation 

Although spermatozoa acquire the potential to fertilize an egg within the epididymis, the 

expression of this functional competence is suppressed until their release from this 

environment at the moment of ejaculation. They must first spend a period of time within the 

female reproductive tract (Yanagimachi, 1994b), during which they undergo the final phase of 

post-testicular maturation, a process known as capacitation. Capacitation is associated with 

widespread changes in the cellular physiology and biochemistry of the sperm. These include 

alterations in: i) surface properties, such as peripheral membrane protein composition, antigen 

localization and surface charge; ii) plasma membrane properties, such as membrane potential, 

lipid composition and transmembrane phospholipid asymmetry, and lateral diffusion of lipids 

and proteins; iii) metabolism; iv) apparent intracellular pH and cytosolic activities of calcium 

and other ions; v) altered cyclic nucleotide metabolism; and vi) protein phosphorylation 

(Florman and Ducibella, 2006). These events have been correlated with a dramatic global up-

regulation of tyrosine phosphorylation across a number of key proteins. The ensuing 

activation of these target proteins has, in turn, been causally linked to the initiation of hyper-

activated motility, ability to recognize and adhere to ZP, and the ability to undergo acrosomal 

exocytosis (Nixon et al., 2007; Redgrove, 2012). 

One of the more widely accepted sequences for mammalian capacitation begins with the 

loss of surface-inhibitory factors, known as de-capacitation factors. These factors mostly 

originate in the epididymis and accessory organs and their removal from non-capacitated 

spermatozoa results in a rapid increase in their fertilizing ability (Harrison, 1996; Redgrove, 
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2012). Furthermore, as capacitation is a reversible process, addition of these de-capacitation 

factors into a population of capacitating spermatozoa potently suppresses their ability to 

recognize and fertilize an oocyte (Fraser et al., 1990). A number of candidates with potential 

de-capacitation activity have been identified, reviewed in Redgerove et al. (2012). Following 

release of these de-capacitation factors, spermatozoa experience a dramatic efflux of 

cholesterol from the plasma membrane (Martínez and Morros, 1996). This efflux appears to 

be driven by active sequestration upon exposure of the spermatozoa to an environment rich in 

appropriate cholesterol sinks (Davis et al., 1979, Langlais et al., 1988, Visconti et al., 1999), 

and accounts for a striking increase in the membrane fluidity. Bovine serum albumin is 

commonly used in in vitro capacitating media as a cholesterol acceptor, although analogous 

acceptor(s) are believed to be present within the female reproductive tract. Indeed, studies of 

human follicular fluid have identified the presence of high concentrations of albumin and 

other cholesterol sinks (Langlais et al., 1988). Cholesterol efflux from the plasma membrane 

has also been correlated with an influx of bicarbonate ions ( ) into the cell (Okamura et 

al., 1985; Garty and Salomon, 1987; Boatman and Robbins, 1991; Chen et al., 2000). In 

addition to its key role in initiation of critical signal transduction cascades,  itself has 

been shown to have a more direct role in sperm surface remodelling via stimulation of 

phospholipid scramblase activity (Gadella and Harrison, 2000; Gadella and Harrison, 2002). 

The ensuing random translocation of phospholipids between the outer and inner leaflets of the 

bilayer serves to disrupt the characteristic membrane asymmetry (Flesch et al., 2001). This 

redistribution of phospholipids has been suggested to prime the sperm plasma membrane for 

cholesterol efflux, thus rendering the cell more ‘fusogenic’ and responsive to ZP 

glycoproteins (Harrison and Gadella, 2005). 

A further consequence of capacitation-associated cholesterol efflux is formation of 

membrane rafts and/or polarized coalescence of these microdomains and their protein cargo 

into the anterior region of the sperm head, the precise location that mediates ZP binding 

(Redgrove, 2012). Membrane rafts are generally defined as small, heterogeneous domains that 

serve to compartmentalize cellular processes (Pike, 2006) and regulate distribution of the 

membrane proteins, activation of receptors and initiation of the signalling cascades (Simons 

and Ikonen, 1997; Brown and London, 1998; Brown and London, 2000; Simons and Toomre, 

2000). In sperm, membrane rafts have been identified by the presence of several somatic cell 

raft markers including GM1 gangliosides, flotillin and proteins that have raft affinity owing to 

the presence of glycosylphophatidylinositol (GPI) anchors, including CD59 and SPAM1 (van 
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Gestel et al., 2005; Sleight et al., 2005; Nixon et al., 2009). Notably, the spatial distribution of 

membrane rafts within the sperm membrane is dramatically influenced by the capacitation 

status of the cells. Recent studies have shown that isolated DRMs are capable of binding to 

ZP of homologous oocytes with a high degree of affinity and specificity (Bou Khalil et al., 

2006; Nixon et al., 2009; Nixon et al., 2011) and that these membrane fractions contain a 

number of key molecules that have been previously implicated in sperm-ZP interactions (Bou 

Khalil et al., 2006; Nixon et al., 2009; Nixon et al., 2011; Sleight et al., 2005). 

 Irrespective of the mechanisms, capacitation-associated tyrosine phosphorylation has been 

causally related to the induction of hyper-activated motility, increasing the ability of sperm to 

bind ZP, priming the cells for acrosomal exocytosis, and ultimately enhancing their capacity 

to fertilize an oocyte (Visconti et al., 1995; Leclerc et al., 1997; Sakkas et al., 2003; Urner and 

Sakkas, 2003). In mouse spermatozoa, overt capacitation-associated increases in protein 

tyrosine phosphorylation have been documented in the flagellum, with principal piece 

phosphorylation preceding that of the midpiece with several identified targets (Arcelay et al., 

2008). In human spermatozoa, however, this increase appears to be restricted to the principal 

piece, with identified targets (Ficarro et al., 2003; Sakkas et al., 2003). The tyrosine 

phosphorylation of proteins in the sperm flagellum has been causally related to the induction 

of hyper-activated motility (Mahony and Gwathmey, 1999; Nassar et al., 1999; Si and Okuno, 

1999), a vigorous pattern of motility that is required for spermatozoa to penetrate through the 

cumulus cell layer and ZP in order to reach the inner membrane of the oocyte. In addition to 

the increased phosphorylation, hyperactivation requires alkalinisation of the sperm and is also 

calcium-dependent. The calcium required for the induction of hyperactivation can be 

mobilized into the sperm from the external milieu by plasma membrane channels, and can 

also be released from intracellular stores, including the redundant nuclear envelope located at 

the base of the sperm flagellum, or the acrosome (Ho and Suarez, 2003; Herrick et al., 2005; 

Costello et al., 2009). 

1.1.3 Recognition, primary binding of the sperm to zona pellucida 

The sperm-ZP interaction encompasses a complex sequence of events that relies on each 

gamete having achieved an appropriate level of maturity (Redgrove, 2012). Spermatozoa that 

approach the oocyte have undergone a behavioural and functional reprogramming event 

within the female reproductive tract termed capacitation (discussed in the previous section), 

which ultimately endows the cells with the competence for fertilization. The sperm-ZP 

interaction involves three distinct stages: the first comprises primary binding of acrosome-
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intact spermatozoa to ZP; this is then followed by secondary binding of acrosome-reacted 

spermatozoa to ZP, and finally penetration of the acrosome-reacted sperm through ZP into the 

perivitelline space (Inoue and Wolf, 1975; Saling et al., 1979; Florman and Storey, 1982; 

Swenson and Dunbar, 1982; Bleil and Wassarman, 1983; Cher et al, 1986; Sailing, 1989; 

Yanagimachi, 1994b). 

Before reaching ZP, sperm must penetrate the cumulus oophorus. The cumulus is 

composed of several thousand ovarian granulosa cells embedded in a complex extracellular 

matrix. The major component of this matrix is hyaluronan, an unbranched (β1,4-glucuronic 

acid: β1,3-N-acetylglucosamine)n polymer in which the number of disaccharide repeat units 

may be >2,000 and relative molecular mass >1 MDa (Weigel et al. 1997; Tootle, 2004). The 

proposed functions of cumulus oophorus are: to control sperm access to ZP and to the egg by 

preventing sperm that have compromised functional ability from reaching the egg surface; the 

cumulus may provide factors that regulate sperm function and so enhance fertilization 

(Florman and Ducibella, 2006). Only capacitated spermatozoa with “intact” acrosome are 

capable of traversing the cumulus matrix through a process that depends on the hyaluronidase 

activity of PH20, a glycosyl-phosphatidylinositol-linked protein in the sperm plasma 

membrane molecule (Myles and Primakoff, 1997). It has been shown that arylsulphatase A 

can also disperse the cumulus matrix of cumulus oocyte complexes (Wu et al. 2007). 

Binding of the sperm to ZP is a several step process. The initial stages of primary binding 

involve a relatively loose, non-species-specific attachment that serves to tether spermatozoa to 

the surface of the oocyte (Schmell and Gulyas, 1980; Swenson and Dunbar, 1982, Barros et 

al, 1996; Howes and Jones, 2002). This weak binding is rapidly followed by an irreversible 

tight binding event (Hartmann et al., 1972; Bleil and Wassarman, 1983; Barros et al, 1996; 

Howes and Jones, 2002) and is commonly species-specific. In the mouse, this latter event 

appears to involve binding of the spermatozoon to ZP3 glycoprotein. 

The bioactive component of ZP3 responsible for the mediation of sperm binding was 

initially traced to specific O-linked carbohydrate moieties that decorate the protein (Florman 

and Wassarman, 1985; Litscher et al., 1995). Collective findings have led to the proposal of a 

number of alternative models of sperm-ZP adhesion (Fig. 4, page 11), including: (i) the 

original glycan model that proposes the importance of O-linked glycosylation at Ser332 and 

Ser334 (Chen et al., 1998); (ii) a supramolecular structure model in which the sperm binding 

domain is formed by the complex of the three major ZP glycoproteins and regulated by the 

cleavage status of ZP2 (Rankin et al. 2003), (iii) a hybrid model that incorporates elements of 
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both former models by proposing that sperm bind to an O-glycan that is conjugated to ZP3 at 

a site other than Ser332 or Ser334 (Visconti and Florman, 2010) and that sperm access to this 

glycan is regulated by the proteolytic cleavage state of ZP2; (iv) a domain-specific model that 

envisages a dual adhesion system in which sperm protein(s) interact with the glycans and/or 

the protein backbone of ZP3 depending on its glycosylation state (Clark, 2011), and (v) a 

novel model in which gamete recognition is able to be resolved into at least two distinct 

binding events, the first of which involves adherence to oviductal glycoproteins that are 

peripherally associated with the egg coat prior to engaging with a ZP3-dependent ligand 

(Lyng and Shur, 2009). It is becoming clearer that the initiation of gamete interaction is not 

mediated by a simple lock and key mechanism involving a single receptor-ligand interaction. 

Rather, it is likely that sperm engage in multiple binding events with a variety of ligands 

within the ZP matrix. An advantage of this complex adhesion system is that it would enhance 

the opportunities of sperm to bind to the oocyte and thus maximize the chance of fertilization. 

Regardless of the model of sperm-ZP adhesion, the result of primary binding to ZP is 

triggering the acrosome reaction. 

1.1.3.1 Glycoproteins of zona pellucida 

Although all mammalian eggs are enclosed in a ZP matrix, its thickness (~1-25 μm) and 

protein content (~1-10 ng) varies considerably for eggs derived from different species 

(Wassarman, 1988). In mice, ZP comprises three major sulphated glycoproteins designated 

ZP1 (200 kDa), ZP2 (120 kDa) and ZP3 (83 kDa). Current evidence suggests that these 

proteins assemble into a non-covalently linked structure comprising ZP2-ZP3 dimers that 

polymerize into filaments and are cross-linked by ZP1 (Greve and Wassarman, 1985; 

Fig. 4. Putative models of 

sperm-zona pellucida binding. 

(I) the glycan model, (II) the 

supramolecular structure 

model, (III) the hybrid model, 

(IV) the domain-specific model 

(Redgrove et al., 2012). 
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Wassarman and Mortillo, 1991). In addition to orthologues of the three mouse ZP proteins 

[hZP1 (100 kDa), hZP2 (75 kDa) and hZP3 (55 kDa)], the human ZP comprises a fourth 

glycoprotein, hZP4 (65kDa) (Bauskin et al., 1999; Lefievre et al., 2004), which is thought to 

be dysfunctional in the mouse (Lefievre et al., 2004). The biological significance of the 

increased complexity in the ZP of humans awaits further investigation. In the boar model two 

glycoprotein families of ZP were identified: 90 kDa (60-65 kDa and 20-25 kDa proteins) and 

55 kDa protein (pZP3), which makes 80% of total ZP glycoproteins and contains two 

different polypeptides termed pZP3α a pZP3β (Hedrick and Wardrip, 1986a; Hedrick and 

Wardrip, 1986b). With the aid of protein analysis, it was proved that pZP3β is the boar 

homolog of mouse ZP3 and pZP3α has probably the same function as ZP1 (Töpfer-Petersen et 

al., 1993). The receptor activity for the sperm is associated with oligosaccharide chains linked 

to the peptide molecule. 

1.1.3.2 Zona pellucida receptor candidates 

Consistent with the apparent complexity of ZP ligands to which spermatozoa bind, a 

myriad of candidates have been proposed to act as primary receptors capable of interacting 

with the carbohydrate moieties and/or protein present within the ZP matrix. In most species 

the list is constantly being refined as new candidates emerge and others are disproved. 

Consistent with the notion that primary sperm-ZP interaction involves engagement with 

specific carbohydrate structures on ZP3, a number of the identified sperm receptors possess 

lectin-like affinity for specific sugar residues (Wassarman, 1992; McLeskey et al., 1998; 

Töpfer-Petersen, 1999). 

In the mouse, the most widely studied model, these receptors include, but are not limited 

to: β-1,4-galatosyltransferase (GalT1) (Shur and Bennett, 1979; Shur and Hall, 1982; Lopez et 

al., 1985; Nixon et al., 2001), ZP3R (or sp56) (Cheng et al., 1994; Bookbinder et al., 1995; 

Cohen and Wassarman, 2001), α-D-mannosidase (Cornwall et al., 1991), P47 (Ensslin et al., 

1998), zonadhesin (Gao and Garbers, 1998; Topfer-Petersen et al., 1998; Tardif and Cormier, 

2011), zona receptor kinase (ZRK) (Leyton and Saling, 1989), fucosyltransferase (Ram et al., 

1989), sulfoglycolipid immobilizing protein (SLIP1) (Tanphaichitr et al., 1993; White et al., 

2000), and arylsulphatase A (Hess et al., 1996; Carmona et al., 2002; Tantibhedhyangkul et 

al., 2002; Weerachatyanukul et al., 2003). 

In a similar vein, a number of ZP binding molecules have been identified in human 

spermatozoa, including sperm autoantigenic protein 17 (SPA17) (Grizzi et al., 2003), 

fucosyltransferase 5 (FUT5) (Chiu et al., 2003; Chiu et al., 2004), mannose binding receptor 
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(Benoff et al., 1993; Rosano et al., 2007), zona receptor kinase (Burks et al., 1995), selectin-

like molecules (Dell et al., 1995), fertilizing antiagents (FA-1) (Naz et al., 1986; Zhu and Naz, 

1997) and sperm agglutination antigen-1 (Diekman et al., 1997). 

Another well-characterized animal model is boar, where numerous numbers of receptors 

have been found and described including the family of spermadhesins: AWN, AQN-1 and 

AQN-3 (Jonáková et al. 1991; Ensslin et al., 1995; Dostálová et al., 1995; Sinowatz et al., 

1995; Calvette et al., 1996; Jonáková et al. 1998; Töpfer-Petersen et al., 1998, Petrunkina et 

al., 2000), arylsulphatase A (Hess et al., 1996; Carmona et al., 2002; Tantibhedhyangkul et 

al., 2002; Weerachatyanukul et al., 2003), P47 (Petrunkina et al., 2003), sulfogalactosyl-

glycerolipid (SGG) (Bou Khalil et al., 2006), acrosin/proacrosin (Jones, 1991; Urch & Patel, 

1991; Baba et al., 1994a; Baba et al., 1994b; Moreno et al., 1998; Howes et al., 2001; Howes 

and Jones, 2002;), zonadhesin (Hardy and Grabbers, 1995), adhesion protein z, termed APz 

(Peterson and Hunt, 1989), fucose-binding protein (Töpfer-Petersen et al. 1985), sp38 (Mori 

et al., 1993; Mori et al., 1995; Yu et al., 2006). 

These are the three most studied species; however, primary ZP receptor candidates were 

also proposed in the stallion, bull, rat, hamster, guinea pig, rabbit, primates, etc. (for review 

see Tanphaichitr et al., 2007; Serres et al., 2008; Redgrove et al., 2012; Chiu et al., 2014). 

Further analyses of these receptor molecules have compromised their status as being the 

single molecule responsible for ZP interaction. In fact, prevailing evidence now strongly 

suggests that no individual receptor is exclusively responsible for regulating the gamete 

interaction. Underscoring the amazing complexity of this interaction, it has instead been 

proposed to rely on the coordinated action of several ZP receptor molecules, which may be 

assembled into a functional multimeric complex (Redgrove et al., 2012). 

1.1.4 Acrosome reaction 

Shortly after binding to ZP, sperm undergo cellular exocytosis, the acrosome reaction. The 

acrosome is a relatively large, Golgi-derived, lysosome-like organelle that overlies the 

nucleus in the apical region of the sperm head (Yanagimachi, 1994b; Eddy, 2006). Although 

the acrosome is surrounded by a continuous membrane, it is usually described as consisting of 

an ‘inner’ and ‘outer’ membrane; the former overlies the nucleus and the latter underlies the 

plasma membrane. The acrosome reaction involves multiple fusions between outer acrosomal 

membrane and plasma membrane at the anterior region of the sperm head, extensive 

formation of hybrid membrane vesicles, and exposure of inner acrosomal membrane and 

acrosomal contents (Fig. 5, page 14) (Cardullo and Florman, 1993; Wassarman 1999a; 
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Wassarman et al., 2001; Floman, 2008). 

Only sperm that have completed the 

acrosome reaction can penetrate ZP and fuse 

with the egg plasma membrane. 

 It is known that there are many different 

inducers of the acrosome reaction (e.g., 

progesterone) (Roldan et al., 1994; 

Yanagimachi, 1994b). However, it is now 

generally accepted that ZP3 is the natural 

agonist that initiates the acrosome reaction 

upon binding of acrosome-intact sperm to 

ZP (Bleil and Wassarman, 1983; Ward and 

Kopf, 1993; Darszon et al., 1996; Florman et al., 1998). One has to distinguish between the 

ZP3-induced acrosome reaction and the so-called “spontaneous” acrosome reaction (e.g., 

sensitivity to pertussis toxin). The plasma membrane overlying the sperm head is capable of 

binding to thousands of copies of ZP3 in ZP (Mortillo and Wassarman, 1991), and such 

binding is apparently sufficient to induce the acrosome reaction. A variety of evidences 

indicates that multivalent interactions between sperm and ZP3 may be required for induction 

of the acrosome reaction (McLeskey et al., 1998; Wassarman 1999b). 

ZP3 stimulation of sperm activates G proteins; the activation of Gi1 and Gi2 accounts for 

the pertussis toxin sensitivity of the acrosome reaction (Ward et al., 1994). G protein 

activation by ZP3 has been demonstrated in sperm extracts (Ward et al., 1992), and 

participation of a second G protein, Gq/11, has been suggested (Walensky and Snyder, 1995). 

However, the receptors that activate sperm G proteins have remained elusive, as have the 

second messengers that are activated by G proteins during ZP3 stimulation of sperm. ZP3 

stimulation of sperm further activates voltage-sensitive T-type Ca
2+

 channels (Arnoult et al., 

1996a, 1996b; Liévano et al., 1996). Binding of ZP3 results in depolarization of the sperm 

membrane, with values consistent with activation of T-type channels, and is required for 

intracellular Ca
2+

 elevation and the acrosome reaction. It has been proposed that ZP3-induced 

opening of T-type channels in the sperm leads to sustained release of Ca
2+

 from an internal 

store, perhaps via inositol-3,4,5-triphosphate (IP3) and IP3 receptors (Florman et al., 1998). 

As in secretion by somatic cells, intracellular Ca
2+

 is necessary and sufficient to initiate the 

acrosome reaction. An elevated intracellular Ca
2+

 concentration is seen on progressing from 

Fig. 5. Schematic diagram of some morpho-

logical features of a mammalian sperm 

undergoing and completing the acrosome 

reaction. (A) an acrosome intact sperm, (B) 

fusion of plasmatic and outer acrosomal 

membrane (C,D) acrosomally reacted sperm 

with hybrid membrane vesicles (Wassarman, 

1999). 
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resting uncapacitated sperm (50-100 nM), to capacitated sperm (125-175 nM), and to ZP3- 

(agonist-) stimulated sperm (300-500 nM) (Florman, 1994). Similarly, ZP3-stimulated sperm 

exhibit a transiently elevated pH (from approximately 6.6 to approximately 6.8-7.0) that is 

sufficient to affect IP3 concentration and binding of IP3 to its receptor, and thereby could lead 

to release of intracellular Ca
2+

 stores (Arnoult et al., 1996a; Florman et al., 1998). The pH 

increase may be regulated by an anion exchanger (e.g., a Na
+
 dependent Cl

-
/  

exchanger) and/or by an uncharacterized transport pathway. The alkalinisation of sperm in 

response to ZP3 may also activate Ca
2+

/calmodulin-dependent adenylyl cyclase, protein 

phosphatase, protein kinases (A and C), tyrosine kinase, and various phospholipases (Darszon 

et al., 1996; Florman et al., 1998). 

Over the last few decades, one of the central dogmas of the fertilization process in 

mammals has been that once capacitated, acrosome-intact sperm bind to the ZP and then 

undergo acrosomal exocytosis (Saling et al., 1979). This model was largely based upon 

laboratory experiments using in vitro fertilization of oocytes denuded of their cumulus cells. 

Recent experiments suggest that sperm binding to ZP is not sufficient to induce acrosomal 

exocytosis, and instead of ZP-triggered acrosomal exocytosis, Baibakov et al. (2007) 

proposed a mechanosensory mechanism that involved 1) the binding of acrosome-intact 

sperm to the ZP surface followed by 2) the loss of the acrosome as the sperm penetrate the 

ZP. Furthermore, Jin et al. (2011) made a ground-breaking observation that in the mouse at 

least, instead of the ZP, the cumulus appears to be the physiological inducer of the acrosome 

reaction. 

1.1.5 Secondary binding and penetration of the sperm through zona pellucida 

As discussed before, ZP3-induced acrosome reaction results in fusion between the apical 

plasma membrane and the underlying outer acrosomal membrane. The internal structure of 

the acrosome consists of a reticular matrix and soluble proteins, organized into 

morphologically or biochemically defined domains (Olson and Winfrey, 1994). During the 

final stages of the acrosome reaction this matrix disperses in an organized fashion and is 

associated with the differential, time-dependent release of acrosomal proteins (Foster et al. 

1997, Kim et al., 2001; Florman and Ducibella, 2006). Acrosin, one of the major serine 

proteases of sperm, has been assigned a role in the dispersal of the acrosomal matrix. Proteins 

within the acrosome can then bind the ZP with high affinity and may anchor sperm in place 

during the intermediate and late stages of exocytosis: candidate proteins include zonadhesin 

(Bi et al. 2003; Olson et al. 2004; Herlym and Zischler, 2008), sp38 (Mori et al. 1995), sp56 
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(Bleil and Wassarman, 1990; Foster et al., 1997), and proacrosin, the enzymatically inactive 

zymogen form of acrosin (Jones 1990, 1991; Yanagimachi, 1994b). Proacrosin may play two 

important roles in fertilization: first, in secondary binding to ZP between the exposed 

polysulphate groups on the ZP and basic residues of proacrosin/acrosin linked to the 

acrosomal carapace, via stereochemical interactions involving strong ionic bonds (Gaboriau et 

al., 2007), and second, in penetration of the ZP matrix as proacrosin is converted to acrosin, 

directly triggered by the ZP (Töpfer-Petersen and Čechová, 1990). 

After dispersal of acrosomal contents, sperm can begin penetration of ZP. In vitro evidence 

suggests that at this point, adhesion may be mediated by binding sites on the sperm inner 

acrosomal membrane that interact with ZP2 (Bleil et al., 1988; Mortillo and Wassarman, 

1991; Tsubamoto et al., 1996, 1999). In this regard, ZP filaments are believed to consist of 

repeating ZP2/ZP3 dimers, and so transition from a ZP3-dependent primary contact to ZP2-

dependent secondary interactions is plausible within these current models (Florman and 

Ducibella, 2006). 

Sperm that have completed the acrosome reaction then proceed into ZP. Three hypotheses 

have been forwarded to account for sperm penetration through this matrix. The mechanical 

hypothesis that sperm enter the ZP solely due to the thrusting force provided by flagellar 

motility has been rejected on experimental and theoretical grounds (Green and Purves, 1984; 

Green 1988). Two other models propose that ZP penetration requires the participation of 

sperm factors as well as flagellar motility. In one case, the sperm factor acts in a non-

enzymatic manner to produce a local disruption of the ZP filament structure, possibly through 

induced alterations in the conformation of ZP proteins. This type of process occurs during 

fertilization in abalone (Vacquier et al., 1990; Kresge et al., 2001) but has not been studied 

extensively in mammals. Finally, sperm proteases are suggested to assist penetration by 

proteolytic cleavage of ZP proteins. A variety of evidences suggested that acrosin might act as 

a mammalian ZP-lysin (Yanagimachi 1994b); however, results of the acrosin gene disruption 

experiment as well as other data have shown that this protease is not required for ZP 

penetration (Baba et al., 1994; Adham et al., 1997). Honda et al. (2002) have pointed out the 

presence of a wide range of acrosomal and membrane proteases in the sperm that may 

participate in ZP penetration. 

1.1.6 Sperm-oocyte fusion 

After binding to ZP, the fertilizing sperm undergoes the acrosome reaction, which exposes 

the inner acrosomal membrane on the sperm head. Following passage through ZP, it is this 
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region that becomes closely associated with the egg membrane prior to fusion (Huang and 

Yanagimachi, 1985). Subsequently, the sperm’s equatorial segment and posterior head 

regions become closely associated with the egg surface and undergo fusion with the egg 

plasma membrane (Myles et al., 1985; Yanagimachi, 1994b). Interestingly, it is these more 

posterior regions that undergo fusion and not the inner acrosomal membrane, which appears 

to be engulfed by the egg (Shalgi and Phillips, 1980; Moore and Bedford, 1983). 

Binding of sperm to the egg plasma membrane is thought to be mediated by a member of 

the ADAM (“a disintegrin and a metalloprotease”) family of transmembrane proteins on 

sperm and integrin α6β1 receptors on eggs (Snell and White, 1996; McLeskey et al., 1998; 

Wassarman 1999a). Two mouse-sperm ADAM proteins in particular, the heterodimer fertilin-

α (ADAM-1) and fertilin-β (ADAM-2), and cyritestin (ADAM-3) are thought to interact with 

integrin in the egg plasma membrane through their disintegrin domains (Blobel, 1999; 

Primakoff and Myles, 2000). Whereas fertilin-β supports binding of sperm to the egg plasma 

membrane, fertilin-α has been implicated in the subsequent step of fertilization and fusion of 

sperm and egg (Houvila et al., 1996; Bigler et al., 1997; Wassarman 1999a). However, 

findings indicate that fertilin-β, fertilin-α and cyritestin may not be essential participants in the 

gamete-fusion pathway (Frayne and Hall, 1999; Kim et al., 2006). 

 Other gamete interaction proteins made in the epididymis are members of the CRISP 

family (cysteine-rich secretory proteins). One of the CRISP-1 proteins, called DE, initially 

associates with the dorsal region of the rat sperm head, and migrates to the equatorial segment 

upon the acrosome reaction (reviewed in Ellerman et al., 2002). In other mammals, it is 

located in the posterior region of the sperm head. Although the majority of DE is lost during 

capacitation, the remaining DE is considered to be involved in the sperm-egg fusion. The 

primary effect appears to be on gamete fusion rather than adhesion (Cohen et al., 2000). A 

human orthologue has also been reported (Cohen et al., 2001). 

Two proteins most strongly implicated in the mouse sperm-egg interaction, described as 

having roles in the sperm-egg fusion, are IZUMO1 on the sperm and CD9 on the egg. 

IZUMO1, firstly reported by Inoue et al. (2005), is a member of the immunoglobulin 

superfamily (IgSF) that appears to be testis-specific (Evans, 2012). IZUMO1 is essential for 

the sperm-egg fusion, although the precise function of IZUMO1 – as a fusogen, as a regulator 

of a fusogen, and/or as an adhesion molecule – is still to be determined. The membrane 

protein CD9, required for gamete fusion in mammals, belongs to the tetraspanin family. CD9 

associate with IZUMO1, as well as with a subset of β1 integrins, including integrin α6β1 
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(Hemler, 1998; Porter and Hogg, 1998). Studies showed that eggs from mice bearing targeted 

disruption of the CD9 gene rarely fused with wild-type sperm (Miyado et al., 2000). Although 

the importance of CD9 in the mouse sperm-egg interaction is clearly established, the exact 

function(s) of CD9 in the sperm-egg interaction is not known (Evans, 2012). 

Instantly after binding of the sperm to the oocyte, depolarization of oolema occurs, 

ensuring that only one spermatozoon can fertilize the ovum – primary block to polyspermy 

(Jaffe and Gould, 1985). Many, if not most of the aspects of oocyte activation are directly or 

indirectly dependent upon a Ca
2+

-driven signalling pathway and subsequent changes in the 

activities of specific protein kinases (Florman and Ducibella, 2006). One of the results of 

Ca
2+

-driven signalling pathway is induction of exocytosis of cortical granules, which are 

lysosome-like organelles containing hydrolytic enzymes that after release cause hardening of 

the ovum coat (ZP). ZP is afterward impermeable to other sperms. This process is called the 

cortical reaction and is also the second block to polyspermy (Yanagimachi, 1994b). 

 This event ends in the activation of the egg arrested at metaphase of the second 

meiotic division resulting in haploid complement of chromosomes, which are afterwards 

transformed into the egg pronucleus. Parallel with the last stage of oogenesis, sperm 

chromosomes decondense and in both the ovum and sperm, DNA synthesis begins. After the 

full division of both pronuclei, they come into close proximity in the centre of the ovum. The 

mingling of chromosomes (syngamy) may be considered as the end of fertilization and the 

beginning of embryonic development (Yanagimachi, 1994b).  

1.2 Study of proteins with zona pellucida binding activity 

Primary binding of the sperm to ZP is one of the many steps necessary for successful 

fertilization. Sperm bind ZP by means of membrane receptors which recognize carbohydrate 

moieties on ZP glycoproteins according to a well-defined sequential process (Serres et al. 

2008). The molecules responsible for primary binding – primary-binding receptors – are 

localized throughout the acrosomal region of the sperm surface (Tanphaichtir et al., 2007). 

The greatest problem encountered by researchers is that membrane molecules often represent 

minor components in total cellular extracts; therefore, selective approaches are required for 

their isolation to ensure successful characterization. On top of that, sophisticated techniques 

for observation of the interactions between isolated proteins and ZP must be employed. 
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1.2.1 Approaches to isolation of peripheral and integral membrane proteins 

The simplest way to solubilize and isolate a membrane protein is its treatment with a 

detergent. This creates a hydrophilic envelope around the membrane protein, and rips the 

protein out of the membrane and solubilizes it. This method is easy but not too selective. 

Another approach involves selective tagging of membrane proteins, which are – after lysis of 

particular cells – isolated with affinity to this tag. It has been shown that some membrane 

proteins are concentrated within so-called detergent-resistant membranes (Nixon et al., 2009), 

which can be preferentially isolated and proteins afterwards solubilized. 

 Many approaches using various detergents were described, for example Triton X-100 

isolation according Seaton et al. (2000), in which the hyaluronidase enzyme was isolated from 

the sperm membrane. For successful isolation, it is fundamental that it proceeds at 4°C with 

the presence of protease inhibitors. Another procedure used for isolation of hyaluronidase 

from the sperm membrane of cynomolgus macaques was employment of 4% SDS extraction 

buffer (Cherr et al. 2001). 

 In order to obtain sperm surface proteins and acrosomal proteins, 2% acetic acid 

extraction buffer was utilized (Čechová et al., 1988). Ultrastructural studies done by Wolff 

and Schill (1975) confirmed that during acidic treatment of sperm, the plasma membrane and 

parts of the outer acrosomal membrane are lost, with total depletion of the acrosome content 

and disappearance of the equatorial segment. This method is recommended for acquisition of 

the acrosomal content; however, to obtain only membrane proteins, a more sophisticated 

approach must be applied. 

 Other detergents may also be employed for the isolation of membrane proteins. Ignotz, 

et al (2001) treated bull sperm with different isolation buffers including: 5% Tween 20, 1% 

SDS, and 5% Triton X-100, 1% sodium deoxycholate 80 mM CHAPS or 100 mM 

deoxyBIGCHAPS. Protein extracts were then compared by one- and two-dimensional gel 

electrophoreses showing differences in each isolation method. Rajeev and Reddy (2004) used 

different isolation buffers for the sperm membrane extractions: 0.5% Nonidet P-40 (NP-40); 8 

M urea; 0.1% Tween 20; 30 mM N-octyl-β-D-glycopyranoside; 0.5% Triton X-100; and 1% 

sodium dodecyl sulphate. 

 Sperm plasma membranes can easily be separated from the whole sperm. This 

approach was originally introduced by Canvin and Buhr (1989), and later modified by Flesch 

et al. (1998) and Bohgalhardo et al. (2002). Nitrogen cavitation followed by differential 

centrifugation was utilized for separation of apical plasma membranes of the sperm from the 
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sperm debris, acrosomal membranes, and mitochondrial membranes. Proteins can be 

afterwards solubilized from the membranes, guaranteeing the origin of proteins from the 

sperm membrane. This approach was used for extraction of the membrane proteins in 

numerous studies. 

 Not so long ago, Paladino et al. (2004) and Ermini et al. (2005) pointed out the 

existence of sphingolipid-containing membrane clusters enriched in cholesterol and 

glycosylphosphatidylinositol (GPI)-anchored proteins in the plasma membrane of 

spermatozoa. These clusters, also called detergent-resistant membranes (DRM), can easily be 

obtained by treatment with ice cold Triton X-100, after separation from the Triton X-100 

soluble fraction by sucrose gradient – DRM being in the low-density fraction (Cross, 2004; 

van Gestel et al. 2005; Girouard et al. 2008). Isolated DRMs can be characterized by 

conventional methods. 

A brilliant approach to isolation of membrane proteins lies in selective marking of these 

proteins with a special tag, covalently modifying the proteins. This allows selective removal 

of the tagged proteins from the pool of total proteins after cell lysis. Tagging membrane 

proteins with sulpho-NHS-SS-biotin [sulphosuccinimidyl-2-(biotinamido)ethyl-1,3-

dithiopropionate] followed by lysis of the cells of interest enables isolation of these proteins 

with streptavidin beads. After reduction of disulphide bonds, the proteins are obtained by 

connecting the membrane protein of interest with agarose beads via biotin (Zhao et al. 2004; 

Belleannee et al. 2011). 

1.2.2 Techniques for identification of zona pellucida receptor candidates 

The first sperm protein reported as a primary ZP-binding candidate was βl-4 

galactosyltransferase (GalTase) (Shur and Hall, 1982). The initial suggestion that GalTase 

may be involved in ZP adhesion arose from a correlation between the fertilizing ability and 

levels of GalTase activity in certain t-haplotype sperm (Shur and Bennett, 1979). 

Subsequently, it was observed that sperm-egg binding was inhibited by purified GalTase, 

GalTase inhibitors, and anti-GalTase antibodies (Shur and Neely, 1988). Use of 

galactosylated ZP proteins indicates that GalTase interacts specifically with ZP3 (Miller et al., 

1992), and sperm from mice that overexpress a surface GalTase transgene bind more ZP3 

than wild-type sperm (Youakim et al., 1994). Further work by Lu and Shur (1997) focused on 

generating a GalTase knockout mouse and analysing its phenotype. GalTase-null sperm are 

capable of fertilizing eggs in vivo, although the litters are smaller and gestation times are 

longer than those for wild-type controls, documenting the fact that GalTase is not essential for 
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fertilization, but the entire mechanism of GalTase-ZP3 binding and signalling interactions is 

used by mouse gametes to optimize the process of fertilization (McLeskey, 1998). 

Another ZP3-binding candidate, 56-kDa peripheral membrane protein sp56, was originally 

identified in mouse sperm by its ability to become covalently associated with purified mouse 

ZP3 (Bleil and Wassarman, 1990) or with 
125

I-labeled ZP3 glycopeptides (Cheng et al., 1994) 

via a photoactivatable, radiolabeled cross-linked. Analysis of the binding of monoclonal 

antibodies specific for sp56 using light and electron microscopy has localized the protein to 

the dorsal region of the mouse sperm head, appropriate for a role in primary binding. 

Furthermore, purified sp56 binds to ZP surrounding mouse eggs, but not embryos, and 

inhibits sperm-egg binding in vitro (Bookbinder et al., 1995). 

Zona receptor kinase is another ZP3-binding candidate molecule, a 95-kDa transmembrane 

receptor, which has intrinsic signalling potential. Use of monoclonal antibody mAb 97.25 has 

independently implicated a 95-kDa human sperm protein in the sperm-ZP interaction (Moore 

et al., 1987); this human sperm protein is also tyrosine-phosphorylated. Live human sperm 

probed with mAb 97.25 demonstrate that this antigen is located on the sperm surface in the 

acrosomal region, appropriate for a role in gamete interaction. Two antibodies, anti-

phosphotyrosine and mAb 97.25, were used in series to screen a human testis expression 

library, and a novel clone reactive with both probes was isolated and termed hu9 (Burks et al., 

1995). Based on intracellular subdomain structure and signature motifs, hu9 is a member of 

the axl family of receptor tyrosine kinases (RTKs). Two peptides (residues of hu9-encoded 

extracellular domain) competitively inhibit human sperm-ZP interaction, blocking binding by 

69 and 80%, respectively (Burks et al., 1995). 

Spermadhesins, other primary binding candidates studied by indirect immunofluorescence 

using anti-AWN-1 antibodies, suggest that AWN is localized in the physiologically relevant 

site for a role in primary ZP binding: on the acrosomal cap of fertile sperm attached to intact 

ZP (Dostálová et al., 1995). 

PH-20, a glycosyl phosphatidylinositol-anchored membrane was originally identified using 

a monoclonal antibody that blocks ZP binding of acrosome-reacted, but not acrosome-intact, 

guinea pig sperm (Primakoff et al., 1985; Myles et al., 1987), marking it as a candidate for 

secondary ZP binding. 

Tsubamoto et al. (1996) used a blot-overlay technique (Far Western Blot) to demonstrate 

binding between porcine ZP2 and proacrosin, supporting the involvement of ZP2 in secondary 

binding. Despite these advances, the physiological role of proacrosin has been questioned by 
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the observation that proacrosin-null mice are fertile, though the time necessary for sperm 

penetration of the ZP is increased (Baba et al., 1994a). 

Another family of sperm proteins identified by ZP-binding properties is the family of 

rabbit sperm autoantigens (RSAs) (O'Rand, 1988). The RSAs are low-molecular-weight 

proteins found on the surface of sperm and spermatogenic cells, and anti-RSA antibodies 

inhibit the sperm-egg interaction in vivo and in vitro (O'Rand, 1988). The protein was termed 

Sp17 according to its predicted molecular weight. Using a solid-phase assay, bacterially 

expressed Sp17 binds not only rabbit ZP, but also dextran and dextran sulphate (Richardson et 

al., 1994). Analysis of complexes generated by crosslinking 
125

I-Sp17 with solubilized rabbit 

ZP suggests that both rabbit ZP1 and rabbit ZP3 associate with Sp17 and that unique sets of 

Sp17 family members interact with the different ZP proteins (Yamasaki et al., 1995). 

Several other sperm proteins, also potentially important in the interaction with ZP, such as 

FA-1, which blocks the sperm-ZP interaction in competition studies, were studied (Naz and 

Ahmad, 1994: Kadam et al., 1995). 

While previous techniques were rather focused on identification of single candidate 

molecules, Van Gestel et al. (2007) came with the technique that enables identification of 

multiple candidate binding molecules at the same time. A direct primary ZP-binding assay 

involves unmodified sperm plasma membrane proteins and native ZP fragments to approach 

the biological conditions as much as possible. New to this direct approach was the isolation 

and purification of the sperm head (apical) plasma membranes (as discussed in the previous 

chapter) and the use of highly purified ZP ghosts (that retained their native quaternary ZP 

protein matrix structure). Solubilized sperm plasma membrane proteins were co-incubated 

with ZP ghosts, and the ZP fragments with bound sperm head plasma membrane proteins 

were isolated. 2-DE gel analysis and subsequent identification by mass spectrometry revealed 

24 sperm protein spots to be associated with the ZP ghosts. According to van Gestel et al. 

(2007), it was the first time that multiple ZP binding proteins have been directly identified in 

the same study. 

Pate et al. (2008) showed another technique enabling study of multiple binding candidate 

molecules on the sperm. They labelled the sperm with a fluorescent dye and used ZP-free 

oocytes for fertilization. Sperm-oocyte complexes were either lysed immediately, or 

following covalent crosslinking of proteins with dibromobimane. The crosslinking reagent 

served the critical function of covalently linking proteins together so that they will remain as a 

unit through lysis of the cells and 2-D gel analysis, and which can be subsequently identified 
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by mass spectrometry. The comparison of uncross-linked and cross-linked protein spots 

revealed protein position shifts based on binding. These spots were major candidates for 

sperm-oocyte interacting molecules. Pate et al. (2008) used this technique to identify the 

sperm protein ligands involved in sperm-oocyte interactions; however, with small alterations 

this technique can be adopted for identification of sperm-ZP binding partners. 

Another plausible approach towards the identification of ZP binding candidates was shown 

by Naz and Dhandapani (2010) using the yeast two-hybrid system. The yeast two-hybrid 

system is a genetic system used to identify proteins that interact with a target protein 

expressed in the yeast as a hybrid with a DNA-binding domain. In this study, human ZP3 

cDNA was cloned into the yeast vector and used as a bait to find reactive proteins in the 

human testis cDNA library. Six specific clones were obtained that were further confirmed for 

interaction using the mammalian two-hybrid system. These six clones showed homologies 

with several proteins in the GenBank database. Of these, the strongest ZP3-interacting 

protein, showing 97% homology with ubiquitin associated protein-2 like (UBAP2L), was 

tested in the hemizona assay, where UBAP2L antibodies significantly inhibited human sperm-

ZP binding. The yeast two-hybrid system seems to be a promising technique in studying the 

ZP-binding candidates. 

The newest techniques for identification of multiple ZP binding candidates include 

multiple approaches. For example, for identification of human sperm proteins that interact 

with ZP glycoproteins Petit et al. (2013) used a double approach: (i) Far Western Blot assay 

testing for direct interaction between sperm proteins and human recombinant ZP (hrZP) 

glycoproteins (and studies of the human sperm receptors for ZP2, ZP3, and ZP4 by direct 

interaction between rhZP2, rhZP3 or rhZP4 glycoproteins and solubilized sperm membrane 

proteins); and (ii) an indirect approach using the serum or seminal plasma anti-sperm 

antibodies (ASAs) directly eluted from spermatozoa of infertile patients with failure of 

conventional IVF. With this strategy, the probability of identifying sperm proteins actually 

involved in the gamete interaction is increased. The results obtained by the blot overlay were 

compared with those obtained when sperm proteins separated by 2D-electrophoresis were 

recognized by sperm-eluted ASAs from infertile patients. The proteins recognized by both ZP 

glycoproteins and ASAs were then identified. Petit et al. (2013) identified a set of sperm 

proteins involved in the sperm-ZP interaction.  
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2 THE AIM OF THE STUDY 

Without doubt, one of the key steps in mammalian fertilization is recognition and binding 

of spermatozoa to the zona pellucida. These interactions are mediated by complementary 

molecules that are present on the surface of both gametes. They can be classified as 

interactions of sperm protein receptors with ZP saccharide structures. Throughout the last few 

decades, great progress was made towards identification of the sperm proteins that are able to 

recognize and bind ZP receptors; however, in various mammalian species, their precise 

determination remains undisclosed. Furthermore, standardization of methods for isolation of 

the sperm membrane proteins is a question that still remains unanswered. It has been shown 

that many protein receptors are involved in the sperm-ZP interaction. Moreover, the absence 

of one specific receptor on the sperm does not necessarily result in an instant loss of ability to 

bind with the oocyte. Several potential primary sperm receptors for ZP glycoproteins have 

been investigated in various mammals. The majority of proteins with identified sperm-ZP 

binding activity belong to the plasma membrane proteins. 

 

We focused our studies on several issues: 

 preparation of in vitro capacitated spermatozoa and checking their capacitated 

state  

 isolation of the proteins from ejaculated and in vitro capacitated spermatozoa 

using various isolation approaches 

 characterization of extracted proteins using 1-DE and 2-DE, to compare their 

protein profiles and the efficiency of extraction methods 

 isolation of the membrane proteins from the sperm surface 

 study of the interaction of sperm surface proteins with biotin-labelled ZP 

glycoproteins by Far Western blot 

 preparation of a panel of monoclonal antibodies to sperm surface proteins 

 detection of the proteins recognized by the prepared antibodies in the male 

reproductive tissues and fluids 

 characterization and identification of antibody-recognized proteins coinciding in 

the ZP binding  
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3 RESULTS 

3.1 Characterization of protein profiles of ejaculated and capacitated 

sperm obtained by various isolation methods 

Zigo M, Jonáková V, Maňásková-Postlerová P (2011) Electrophoretic and 

zymographic characterization of proteins isolated by various extraction methods from 

ejaculated and capacitated boar sperms. Electrophoresis 32(11):1309-1318. 

 

The problem of finding a sophisticated method for selective isolation of membrane 

proteins, without further contamination with intracellular proteins, is still unsolved. The 

lasting question, which has not yet been answered satisfactorily, is how these techniques are 

capable of distinguishing between peripheral and integral proteins. From a biochemical point 

of view, the major impact of the isolation method lies not only in its effectiveness (in the 

sense of maximum amount of isolated proteins), but also in preservation of the biological 

activity of the isolated proteins. 

In our study, we focused on electrophoretic and zymographic characterization of boar 

sperm proteins isolated by various extraction methods and on comparison of the protein 

profiles obtained from ejaculated and in vitro capacitated spermatozoa. The following 

reagents were used for the isolation: 1% (v/v) Triton X-100, 1% (v/v) Triton X-114, 2% (v/v) 

acetic acid, 1% (m/v) sodium dodecyl sulphate (SDS), 30 mM N-octyl-β-D-glucopyranoside 

(OBG), rehydration buffer (RHB) for isoelectric focusing, and finally the freezing-thawing 

approach. 1-DE was used for comparison of the effectiveness of protein isolation for each 

isolation protocol. Employing both Triton extractions, SDS and RHB extractions yielded the 

highest amount of proteins, as it is reasonable to believe that these extracts comprised the 

whole sperm proteomes. Protein profiles obtained by the four above-mentioned approaches 

did not differ from each other significantly. A smaller amount of proteins was obtained after 

the acidic extraction and OBG. Isolation using OBG as a mild detergent most probably 

yielded membrane proteins, while with the acidic extraction, intraacrosomal proteins were 

extracted preferentially. The least amount of proteins was isolated by the freezing-thawing 

procedure, where only water-soluble proteins were most probably present in the extract. 

Glycoprotein profiles expressed the same trend of extraction effectiveness of the selected 

methods as in 1-DE protein profiles. 2-DE protein profiles revealed differences between the 

ejaculated and capacitated sperm proteins isolated by the same protocol. Numerous qualitative 
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and quantitative changes were observed between ejaculated and capacitated sperm, including 

pI and Mr shifts, changes in abundances of protein spots and the presence/absence of protein 

spots. Zymographic characterization of the extracts showed that hyaluronidase activity was 

inhibited only by the treatment with RHB, while proteolytic activity was unaltered, regardless 

of the isolation approach. 

The results suggest the possibility to apply a particular extraction method for the isolation 

of specific sperm proteins. Differences in protein profiles between ejaculated and capacitated 

sperm indicate evident changes during this reproductive event. 

3.2 Study of the proteins with zona pellucida binding activity 

Zigo M, Jonáková V, Šulc M, Maňásková-Postlerová P (2013) Characterization of 

sperm surface protein patterns of ejaculated and capacitated boar sperm, with the 

detection of ZP binding candidates. Int J Biol Macromol 61:322-328. 

Zigo M, Dorosh A, Pohlová A, Jonáková V, Maňásková-Postlerová P (2014) Panel of 

monoclonal antibodies to sperm surface proteins as tool for monitoring of sperm-zona 

pellucida receptors localization and identification. Cell Tissue Res (sent to the press) 

 

Sperm surface molecules responsible for the primary binding of the sperm to ZP is a topic 

that is studied intensively. A myriad of potential primary binding partner candidates have 

been proposed, of which many have been proved to act as binding partners triggering the 

acrosomal reaction. We were trying to propose new binding partner candidates for the sperm-

ZP interaction by two alternative approaches. The key to the success lies in the fact that 

primary binding receptors on the sperm are distributed throughout the acrosomal region of the 

sperm surface. Therefore, these molecules should be selectively isolated at first, and further 

search for the primary ZP binding candidates should be conducted only with the sperm 

surface subproteome. 

3.2.1 Isolation and characterization of proteins from the sperm surface 

To isolate the sperm surface subproteome, we used the principle of sperm tagging followed 

by selective isolation. Ejaculated or in vitro capacitated sperm were surface biotinylated by 

sulpho-NHS-SS-biotin, lysed with a mild detergent, and extracts were co-incubated with 

avidin immobilized on agarose beads. The bound proteins were released under reducing 

conditions. 
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The surface subproteome of ejaculated and in vitro capacitated sperm was characterized in 

terms of 1-DE protein and glycoprotein profile and 2-DE protein profile (Zigo et al., 2013). 

1-DE showed differences between the protein profiles of ejaculated and capacitated sperm. 

Four significant protein changes were observed at 88, 30, 20, and 18 kDa; and three 

prominent differences were found in the areas of 47, 33, and 12.5 kDa. 1-DE glycoprotein 

profiles of ejaculated and capacitated sperm confirm that proteins are extensively 

glycosylated, and glycoprotein profiles express the same trend of protein layout as in the 

1-DE protein profiles. 2-DE protein profiles showed finer differences between the ejaculated 

and capacitated sperm. In total, 23 changes were found, including pI shifts, Mr shifts, changes 

in abundances, and the presence/absence of protein spots. Of 23 alterations, 19 were of 

quantitative nature, while four were of qualitative character. 

3.2.2  Approaches towards the identification of zona pellucida receptor candidates 

Two approaches were adopted in order to propose new candidates for primary binding 

receptors. The first approach described and used in Zigo et al. (2013) involves the method 

called blot overlay or Far Western Blot (analogous to western blot, but instead of an antibody, 

a physiological binding partner is used – in this case glycoproteins of ZP (gpZP)). Sperm 

surface proteins from ejaculated and capacitated sperm were separated by 1-DE, blotted onto 

PVDF membrane and let to incubate with biotin-labelled gpZP. After following incubation 

with peroxidase conjugated to avidin, the interactions were visualised by addition of the 

appropriate substrate. 

The second approach described in Zigo et al. (2014) uses a panel of monoclonal antibodies 

raised against proteins isolated from the sperm surface. After identification of proteins 

recognized by the panel using western blot, western blots were compared with Far Western 

blots of sperm surface proteins. The proteins that were simultaneously recognized by 

monoclonal antibodies and coincided in binding with gpZP on the blot overlay were further 

studied. The panel was also used for localization of the proteins recognized by the panel in 

selected reproductive tissues and fluids. 

3.2.3 Identified primary binding partner candidates 

Proteins isolated from the sperm surface of ejaculated and capacitated sperm were screened 

for the ZP-binding affinity. Using 1-D Far Western blot, we detected 17 protein bands 

isolated from the surface of ejaculated sperm with the following molecular masses: 145, 120, 

85, 75, 72, 68, 66, 60, 55, 50, 47, 33, 27, 21, 16, 13, and 12 kDa to interact with gpZP. In the 
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case of proteins isolated from the surface of capacitated sperm, all bands were present, as in 

the case of ejaculated sperm, except for the bands with molecular masses of 72, 66, and 55 

kDa (Zigo et al, 2013). 

Protein bands with molecular masses of 120, 85, and 50 kDa, coincident with binding to 

gpZP, were identified using mass spectrometry. The 120 kDa protein band was identified to 

be polycystic kidney disease and receptor for egg jelly (PKDREJ), the 85 kDa protein was 

found to be angiotensin-converting enzyme (ACE), and the last identified protein with a 

molecular mass of 50 kDa was an acrosin precursor (Zigo et al., 2013). 

Using the panel of monoclonal antibodies, three proteins that were localized in the 

acrosomal region of the sperm head also coincided with ZP binding. Proteins detected by 

western blotting had the following molecular masses: protein recognized by 4C7 antibody – 

45 kDa; protein recognized by 5C5 antibody – 24 and 27 kDa; and protein recognized by 1H9 

antibody – 35 and 45 kDa. After immunoprecipitation, proteins were subjected to MALDI 

analysis. The protein recognized by 4C7 antibody was identified to be an acrosin precursor, 

5C5 antibody recognized RAB-2A, and finally P47 was recognized by 1H9 antibody. 

Localization of these proteins in reproductive tissues and fluids showed that proacrosin is also 

located on the surface of ejaculated and capacitated sperm, and not only in the acrosomal 

matrix and inner acrosomal membrane, from where it originates. RAB-2A is localized on the 

surface of capacitated sperm and originates from epididymal fluid, while we were able to 

detect P47 only on the surface of ejaculated and capacitated sperm (Zigo et al., 2014). 

Of the five proposed primary binding candidate partners, two – PKDREJ and RAB-2A – 

were reported on the surface of a pig spermatozoon by our group for the first time. P47 was 

proved to be involved in the primary binding; proacrosin was shown previously to be a 

secondary binding receptor; and ACE was disclosed to have a mediatory function during the 

primary binding to ZP. PKDREJ plays an essential role in primary binding of the sperm to 

egg jelly (analogue to mammalian ZP) in sea urchin, and has also been reported on the surface 

of mouse sperm. A similar function is also expected in the pig. The RAB-2A protein was 

reported to participate in gamete generation in bull sperm, but the function in the gamete 

recognition and interaction is hypothesized. 
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4 CONCLUSIONS 

We studied the surface proteins from ejaculated and capacitated sperm and their zona 

pellucida-binding activity. Proteins were isolated by various isolation methods and both 1-DE 

and 2-DE protein profiles were compared. It was found that different isolation protocols yield 

different protein profiles; this fact can be used for obtaining specific groups of sperm proteins. 

Proteolytic and hyaluronidase activities seemed to be unaltered. Comparison of 2-DE protein 

profiles of ejaculated and capacitated sperm revealed qualitative and quantitative differences 

taking place during capacitation. 

The method of surface biotinylation and selective isolation of sperm surface proteins was 

used to prevent intracellular contamination, as the molecules responsible for the primary 

binding of the sperm to zona pellucida are localized throughout the acrosomal region of the 

sperm surface. Both 1-DE protein and glycoprotein profiles and 2-DE protein profiles of the 

ejaculated and capacitated sperm surface subproteome revealed mutual differences. The 

differences in ejaculated and capacitated profiles are due to the accessibility of surface 

proteins to biotinylation, which is altered during the capacitation process. 

Two alternative approaches toward the identification of primary ZP-binding candidates 

were employed. The first included Far Western Blot assay of sperm surface proteins with 

glycoproteins of ZP; at least 17 interacting protein bands with ZP were observed; while the 

second was based on the monoclonal antibodies raised against the sperm surface proteins. 

Altogether five candidate molecules were identified, namely: PKDREJ and RAB-2A, which 

were reported for the first time on the surface of the pig sperm; however, further studies are 

required to analyse their function in ZP binding. The other candidates are: P47 lactadherin, 

ACE, and acrosin precursor. The last three mentioned proteins were reported by other groups 

to be involved in binding to ZP. 
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Research Article

Electrophoretic and zymographic
characterization of proteins isolated
by various extraction methods from
ejaculated and capacitated boar sperms

The presented work focuses on electrophoretic and zymographic characterization of boar

sperm proteins isolated by various extraction methods and on comparison of the protein

profiles obtained from ejaculated and in vitro capacitated spermatozoa. Sperm proteins of

ejaculated and in vitro capacitated boar sperms were isolated with the following agents:

1% v/v Triton X-100, 1% v/v Triton X-114, 2% v/v acetic acid, 1% m/v sodium dodecyl

sulphate (SDS), 30 mM N-octyl-b-D-glucopyranoside (OBG), rehydration buffer (RHB) for

isoelectric focusing and finally by the freezing–thawing approach. The extracts were

characterized in terms of 1-DE, 2-DE protein profiles, 1-DE glycoprotein staining and

proteinase and hyaluronidase substrate zymographic profiles. The results have shown

quantitative and qualitative differences in 1-DE protein and glycoprotein profiles with

respect to the employed isolation approach. These differences were seen even more

clearly in 2-DE protein profiles, where it was possible to distinguish the presence/

absence, changes in relative abundance and pI/Mr shifts of various protein spots.

Proteinase and hyaluronidase zymograms supported the prediction that various isolation

protocols result in various profiles of enzymatically active molecules.

Keywords:

Extraction methods / Sperm proteins / Substrate zymography
DOI 10.1002/elps.201000558

1 Introduction

The process of fertilization is one of the most studied

subjects. During sperm development and maturation, many

dynamic changes occur in the plasma membrane and inside

the spermatic cell. Extensive modifications were noticed in

the sperm proteins during the following reproduction steps:

sperm epididymal maturation, ejaculation and sperm

capacitation in the female oviduct. Recognition and binding

of spermatozoa to the zona pellucida (ZP) of the oocyte is a

crucial step in the fertilization process. The sperm-ZP

attachment is mediated by complementary molecules on the

surface of both gametes [1]. Despite long-standing research

efforts to identify the sperm proteins that recognize ZP

receptors, their precise determination still remains ques-

tionable in various mammalian species. Additionally, the

exact methods for isolation of sperm membrane proteins

have not been developed yet.

The problem of finding a sophisticated method for the

selective isolation of membrane proteins, without further

contamination with intracellular proteins, is still open. The

question is how these techniques are capable of distin-

guishing between peripheral and integral proteins. From a

biochemical point of view, the major impact of the isolation

method lies not only upon its effectiveness (in the sense of

maximum amount of isolated proteins), but also upon

preservation of the biological activity of the isolated proteins.

The most common approach to solubilization and

isolation of a membrane protein is to treat it with a deter-

gent, which creates a hydrophilic envelope around the

membrane protein, thus extracting the protein from the

membrane and solubilizing it. This method is easily feasible

but not very selective.

Another approach considers labeling these membrane

proteins with a specific tag and after the lysis of particular

cells, membrane proteins with this tag are isolated via agent

possessing affinity to this tag. It has been found that some

membrane proteins are concentrated within so-called

detergent-resistant membranes (DRM) [2], which are
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sphingolipid-containing membrane clusters enriched in

cholesterol and glycosylphosphatidylinositol (GPI)-anchored

proteins [3, 4] in the plasma membrane of spermatozoa.

These clusters, also called detergent-resistant membranes

(DRM), can be preferentially isolated and then separated

from the soluble fraction by sucrose gradient, DRM being in

the low-density fraction [5–7]. Isolated DRMs can be further

characterized by conventional methods.

For the study of sperm-ZP receptors, the method of

nitrogen cavitation has been employed by Canvin and Buhr

[8]. This method was later modified by Flesch et al. [9] and

Bohgalhardo et al. [10]. Nitrogen cavitation and differential

centrifugation were used to separate the sperm head plasma

membranes from sperm debris, acrosomal membranes and

mitochondrial membranes, and proteins could then be

extracted from the membranes, as it was used for extraction

of the membrane proteins in many studies, guaranteeing

the origin of proteins from the sperm membrane.

Throughout the last 30 years, numerous studies have

been published concerning sperm proteins, predominantly

with the objective to identify sperm proteins responsible for

the individual steps in fertilization. One of those steps is

known as capacitation, during which the sperm gains the

ability to bind to the secondary oocyte. This process includes

several steps such as removal of decapacitating factors,

which means displacement of the top layer of glycoproteins

[11], including cholesterol, from the surface of the sperm. In

parallel, lipid redistribution in the plasma membrane and

membrane destabilization result in a more fusogenic

membrane with the exposure of specific receptors [12].

The present work focuses on the isolation of boar sperm

proteins by various extraction methods and on comparison

of the protein profiles obtained from ejaculated and in vitro

capacitated spermatozoa. The following goals were defined:

(i) preparation of in vitro capacitated spermatozoa and check

of their capacitated state; (ii) isolation of proteins from

ejaculated and in vitro capacitated spermatozoa using

various isolation protocols; (iii) characterization of the

extracted proteins using SDS-PAGE and 2-DE, comparison

of their protein profiles and of the efficiency of extraction

methods; and (iv) investigation of the isolated proteins in

terms of (a) glycoprotein content, (b) proteinase activity and

(c) hyaluronidase activity.

2 Materials and methods

2.1 Chemicals

Porcine skin gelatin, dithiothreitol (DTT), iodacetamide,

anti-mouse IgG (g-chain specific) antibody conjugated with

fluorescein isothiocyanate (FITC), 3-[(3-cholamidopropyl)di-

methylammonio]-1-propanesulfonate (CHAPS), N-octyl-b-D-

glucopyranoside (OBG), Alcian Blue, glycoprotein detection

kit, Percoll, glucose and pyruvic acid were from Sigma-

Aldrich (St. Louis, MO, USA); N-(2-hydroxyethyl)piperazine-

N0-2-ethanesulfonic acid (HEPES), Triton X-100, Triton

X-114, Coomassie Brilliant Blue (CBB) and bovine serum

albumin SL 5 grade were from Serva (Heidelberg,

Germany); VectaShield-DAPI was from Vector Laboratories

(Burlingame, CA, USA). Thiourea, urea and IPG Buffer (pH

3–10) were purchased from Amersham Biosciences (Uppsa-

la, Sweden), and hyaluronic acid was from Contipro (Ústı́

nad Orlicı́, Czech Republic). Monoclonal antibody against

boar proacrosin/acrosin Acr-2 was prepared in the Labora-

tory of Diagnostics for Reproductive Medicine, Institute of

Biotechnology, Academy of Sciences of the Czech Republic

[13]. Prestained precision protein standards All Blue from

Bio-Rad (Hercules, CA, USA) were used as standards for

SDS-PAGE and 2-DE. All other chemicals were obtained

from Lachema (Brno, Czech Republic) and Penta (Chrudim,

Czech Republic).

2.2 Preparation of sperm

Boar ejaculates were obtained from the Insemination

Station Klimětice (Czech Republic). Ejaculates were centri-

fuged (400� g, 20 min) to separate seminal plasma and

spermatozoa. Spermatozoa were washed three times with

phosphate-buffered saline (PBS) – 20 mM phosphate,

150 mM NaCl, pH 7.2, and centrifuged for 10 min at

400� g. Washed sperm samples were used for protein

extraction and immunofluorescence.

2.3 Sperm capacitation

Fresh boar ejaculates diluted in KORINAT I (14.3 mM

sodium bicarbonate, 12.25 mM sodium citrate, 364 mM

glucose and 12.3 mM EDTA, pH 7.5) were centrifuged at

400� g. The sperm pellet was washed with Tris-buffered

solution (TBS), pH 7.4, to remove dilutor components,

layered on a 40–80% v/v discontinuous Percoll gradient and

centrifuged at 200� g for 45 min. After centrifugation, the

80% v/v layer was diluted in ten times diluted Tyrode’s

buffer medium (TBM), pH 7.7 – 20 mM Tris, 113.1 mM

NaCl, 3 mM KCl, 10 mM CaCl2, 11 mM glucose, 5 mM

pyruvic acid, 1 mg/mL streptomycin, and the cells were

washed again.

Washed spermatozoa were resuspended in Tyrode’s

buffer medium supplemented with 1 mg/mL of bovine

serum albumin SL 5 grade and capacitated (4 h, 371C, 5%

v/v CO2) [14]. Sperm samples after capacitation were used

for protein extraction and immunofluorescence.

2.4 Indirect immunofluorescence technique: Assess-

ment of non-capacitated/capacitated/acrosome-

reacted sperms

Indirect immunofluorescence was used to detect the

capacitated state of spermatozoa according to the character

of antibody staining against boar intra-acrosomal protein
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acrosin [15]. Sperm suspension was smeared onto the slide

glass, left to desiccate and then left to fix/permeabilize in

acetone for 10 min. Slides were washed in PBS for 2 min on

a rocking platform, left to dry and primary antibody Acr-2

was applied. Slides were left to incubate for 1 h at 371C in

the moist chamber. Then, after washing, incubation with

secondary antibody against mouse IgG Fc fragment

conjugated with FITC diluted 1:160 in PBS was carried

out for 1 h at 371C. Finally, after washing with PBS

and distilled water, slides were incubated for 15 min with

1.5 mg/mL of VectaShield-DAPI. Samples were viewed and

evaluated with a Nikon Eclipse E400 fluorescent microscope

with 100� Nikon Plan Fluor lense and a VDS CCD-1300

camera (VDS Vosskuhler, Osnabruck, Germany) with the

aid of LUCIA imaging software (Laboratory imaging, a.s.,

Prague, Czech Republic). In controls, incubation of sperms

with primary antibody was omitted and the procedure was

followed as described previously.

According to immunofluorescence, non-capacitated,

capacitated and acrosome-reacted sperms were counted

from the total of 200 random sperms in both ejaculated and

in vitro capacitated sperm samples.

2.5 Isolation protocols

The following isolation protocols were used: 1% v/v Triton

X-100 in TBS, 1% v/v Triton X-114 in TBS, 2% v/v acetic

acid, 30 mM OBG in TBS and rehydration buffer (RHB) for

isoelectric focusing (7 M urea, 2 M thiourea, 2% m/v

CHAPS). Briefly, sperms (50 mL of sperm suspension) were

mixed with the solutions of extraction buffer (100 mL),

vortexed and left to incubate on ice for 30 min; 2% m/v SDS

(PAGE sample buffer, 100 mL) was mixed with sperms

(50 mL of sperm suspension), vortexed and left to boil for

5 min. For multiple freezing–thawing of sperm, sperms

were repeatedly left 30 min at �201C, then 30 min in ice and

occasionally vortexed. Sperm suspensions were centrifuged

at 20 000� g for 2 min at 41C. Supernatants were stored at

�201C.

2.6 SDS-PAGE

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

(SDS-PAGE) was carried out on 15% m/v slab gel as

described by Laemmli [16] and run in a MiniProtean IV

apparatus (Bio-Rad). The concentration of bisacrylamide

was 0.4% (m/v), while the concentration of acrylamide was

14.6% (m/v) from the total of 15% (m/v). The protein

samples (protein extracts from ejaculated and capacitated

sperms) were mixed with non-reducing buffer (50 mM Tris

buffer titrated by HCl to pH 6.8, 1% v/v glycerol, 2% m/v

SDS, 0.002% m/v bromophenol blue) and boiled for 2 min.

Samples were loaded onto 1-cm-high stacking gel and left to

run at constant potential difference of 90 V (15–20 mA),

until it reached separating gel with 5 cm of height, when the

voltage was changed to the value of 145 V (30–35 mA).

Electrophoretic separation was carried out in Tris-glycine

electrophoretic buffer, pH 8.3 (25 mM Tris, 192 mM

glycine), with 0.1% m/v SDS at room temperature.

The relative molecular masses of the separated proteins

were estimated using prestained precision protein standards

All Blue.

2.7 2-DE

Protein extracts were mixed with RHB (7 M urea, 2 M

thiourea, 2% m/v CHAPS) in a 1:1 ratio, DTT was added to

the final concentration of 1% (m/v), IPG (3–10) buffer

electrolyte to the final concentration of 2% (v/v) and a trace

of bromophenol blue for better visualization. Extracts were

loaded onto 7-cm stripes, pI range 3–10, and were left to

rehydrate overnight. Proteins were focused for 5 h with

50 mA per stripe in a voltage gradient (step 150 V for 50 min,

grad 150–300 V for 1 h, grad 300–1000 V for 30 min, step

1000 V for 20 min, grad 1000–5000 V for 1 h and 20 min,

step 5000 V for 1 h) and total of 8000 Vh, at 201C in the

isoelectric focusing chamber from GE Healthcare (Uppsala,

Sweden). Before SDS-PAGE as the second dimension,

stripes were incubated in equilibration buffer (6 M urea,

75 mM Tris buffer titrated by HCl to pH 8.8), 30% v/v

glycerol, 2% m/v SDS, 0.002% m/v bromophenol blue), first

containing 5 mg/mL DTT, finally 10 mg/mL iodacetamide

for 10 min each. SDS-PAGE was done on 15% m/v gel slabs

as described by Laemmli [16] and run in a MiniProtean IV

apparatus (Bio-Rad). The concentration of bisacrylamide

was 0.4% (m/v), while the concentration of monoacrylamide

was 14.6% (m/v) from the total of 15% (m/v). Equilibrated

stripes were placed onto 1-cm-high stacking gel and left to

run at constant potential difference of 90 V (15–20 mA),

until it reached separating gel with 5 cm of height, when the

voltage was changed to the value of 145 V (30–35 mA).

Electrophoretic separation was carried out in Tris-glycine

electrophoretic buffer, pH 8.3 (25 mM Tris, 192 mM

glycine), with 0.1% m/v SDS at room temperature. The

relative molecular masses of the separated proteins were

estimated using prestained precision protein standards All

Blue run in parallel.

2.8 Protein staining

Proteins after SDS-PAGE were dyed with CBB and after

2-DE, proteins were stained by silver acidic staining as

described by Blum et al. [17].

2.9 Glycoprotein staining in the gel

For detection of glycoproteins, the Sigmas glycoprotein

detection kit was used according to the manufacturer’s

protocol. The protocol is based on the principle of the
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periodic acid-Schiff method. Briefly, after SDS-PAGE,

proteins in the gel slab were oxidized with periodic acid,

incubated with Schiff’s reagent and reduced with sodium

metabisulfite solution.

2.10 Substrate zymography: Determination of hyalur-

onidase and proteolytic activities

2.10.1 Hyaluronidase activity

Hyaluronan-substrate gel electrophoresis was performed as

described by Mio and Stern [18]. Briefly, hyaluronic acid was

added to 12% m/w SDS polyacrylamide gel at a final

concentration of 0.4 mg/mL. After electrophoresis, the gels

were rinsed with 3% v/v Triton X-100 in 50 mM HEPES, pH

7.4, for 1 h to remove SDS. The gels were then transferred to

the assay buffer (50 mM HEPES, pH 7.4, containing 0.15 M

NaCl) and incubated for 18 h at 371C. After that, they were

stained in the Alcian Blue solution (0.5% m/v Alcian Blue in

3% v/v acetic acid) for 1 h and destained in 7% v/v acetic

acid. Prestained precision protein standards All Blue were

used as Mr markers.

2.10.2 Proteolytic activity

Gelatin-substrate gel electrophoresis was performed as

described by Siegel and Polakoski [19]. Porcine skin gelatin

was added to 12% m/v SDS polyacrylamide gel to a final

concentration of 0.2% (m/v). After electrophoresis, the gels

were rinsed in 2.5% v/v Triton X-100 in 50 mM Tris buffer

titrated by HCl to pH 8.4 with 5 mM CaCl2 for 1 h to remove

SDS and then transferred to the assay buffer (50 mM Tris

buffer titrated by HCl to pH 8.4 with 5 mM CaCl2) for

determination of total proteolytic activity. Gels were

incubated at 371C overnight and then stained with CBB.

Prestained precision protein standards All Blue were used as

Mr markers.

3 Results and discussion

3.1 Isolation of sperm proteins

Proteins from ejaculated and capacitated sperms were

extracted by following reagents: 1% v/v Triton X-100 in

TBS, 1% v/v Triton X-114 in TBS, 2% v/v acetic acid, 30 mM

OBG in TBS, RHB for isoelectric focusing (7 M urea, 2 M

thiourea, 2% m/v CHAPS) and implementing the free-

zing–thawing approach. These extracts were then subjected

to SDS-PAGE, 2-DE and zymographic characterization.

Other detergents can be used as well to isolate

membrane proteins. Ignotz et al. [20] used different isola-

tion reagents including 5% v/v Tween 20, 1% m/v SDS, 5%

v/v Triton X-100, 1% m/v sodium deoxycholate 80 mM

CHAPS or 100 mM N,N-Bis(3-gluconamidopropyl)deox-

ycholamide (deoxy-BigCHAP) for the bull sperm membrane

proteins. Rajeev and Reddy [21] used for the sperm

membrane extractions 0.5% v/v Nonidet P-40 (NP-40), 8 M

urea, 0.1% v/v Tween 20, 30 mM OBG, 0.5% v/v Triton

X-100 and 1% m/v SDS.

To extract sperm surface proteins and acrosomal

proteins, acidic extraction using 2% v/v acetic acid extraction

reagent, described by Čechová et al. [22], was used. Ultra-

structural studies done by Wolff and Schill [23] show that

during acidic treatment, there is a loss of the plasma

membrane and parts of the outer acrosomal membrane,

total depletion of the acrosome content and disappearance

of the equatorial segment. This method is therefore excel-

lent for acquisition of the acrosome content, but not

adequate for the isolation of the membrane proteins only.

This method is utilized for the isolation of surface proteins

with ZP-binding activity [24].

3.2 Determination of sperm capacitated state

Porcine ejaculates were processed and in vitro capacitation

was performed. Sperm stages before and after capacitation

were studied by indirect immunofluorescence with the use

of monoclonal antibody against intraacrosomal protein

proacrosin/acrosin (Acr-2). The antibody staining makes it

possible to distinguish between non-capacitated, capacitated

and acrosome-reacted sperms. The fluorescence obtained by

Acr-2 antibody is not as intense as in the case of capacitated

sperm. In acrosome-reacted sperm, the acrosomal content is

spilled out and the fluorescence is located all around the

sperm [15]. According to immunofluorescence, non-capaci-

tated, capacitated and acrosome-reacted sperms were

counted from the total of 200 random sperms in both

ejaculated and in vitro capacitated sperm samples. In the

ejaculated boar sample (before capacitation), the count of

non-capacitated sperms was 78%, while in the sample after

capacitation, the count of capacitated sperms was 70%.

3.3 1-D protein and glycoprotein profiles

Sperm proteins were analyzed by SDS-electrophoresis in

15% m/v polyacrylamide running gel and non-reducing

conditions. Proteins were stained by CBB and their relative

molecular masses (Mr) were compared to precision protein

standards. Using this method the effectiveness of each

isolation protocol was compared with the others. Figure 1A

shows that proteins extracted by various detergents differ

from each other. Proteins extracted by Triton X-100 (lane 1),

Triton X-114 (lane 2), and RHB (lane 7) are supposed to

originate from the whole sperm cell and therefore contain

the highest protein amount of all extracts. However, no

striking differences between Triton extractions from 1-DE

protein profiles were noticed. Similar profiles were obtained

when employing OBG (Fig. 1A; lane 5). Isolation using

OBG as a mild detergent most probably yielded membrane

proteins, both peripheral and integral [25], but it is doubtful
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whether intraacrosomal proteins were present as in the case

when acidic extraction is performed (Fig. 1A; lane 3) and

sperm surface proteins bound only by weak non-covalent

interactions and intraacrosomal proteins are preferentially

extracted [22, 24]. SDS extracts (Fig. 1A; lane 4) were most

likely contaminated by cellular RNA; nevertheless, protein

bands are evident. In this extract, differences between

proteins from ejaculated (lane 4E) and in vitro capacitated

(lane 4C) sperm are obvious, particularly in Mr areas below

15 000 and around 25 000. The least amount of proteins

was naturally isolated by the freezing–thawing procedure

(Fig. 1A; lane 6); it could be predicted that only water-

soluble proteins were present in the extract, but the yield

was increased by introducing multiple freezing–thawing.

The most versatile isolation method seems to be by

employing RHB (Fig. 1A; lane 7), where high yields of

proteins were obtained and isolates could be directly

analyzed by isoelectric focusing. 1-D SDS-electrophoresis

in 15% m/v polyacrylamide running gel and non-reducing

conditions were also used for the detection of glycoproteins

isolated by exactly the same protocols as in Fig. 1A; however,

they were stained with the Sigmas glycoprotein detection

kit (Fig. 1B). Their relative molecular masses (Mr) were

compared to precision protein standards. The different

staining in Fig. 1A and B is the main reason for the

differences in low-molecular areas (except for lanes 3 and 6).

This is due to the fact that CBB binds to proteins as a whole

via electrostatic forces, whereas in small oligopeptides, a

cumulative electrostatic charge is too small for the binding.

In glycoproteins, the staining is based on a different

principle – through the saccharide part. In the low-

molecular region of gel slabs (Fig. 1), saccharide parts are

covalently bound to an oligopeptide, which cannot be

stained with CBB, but when the glycoprotein detection kit

is introduced, even low-molecular components become

visible. Glycoprotein profiles expressed the same trend of

extraction effectiveness of the selected methods as is visible

in 1-DE protein profiles (Fig. 1A).

Similar studies were performed by Ignotz et al. [20], and

Rajeev and Reddy [21], where they compared sperm

membrane proteins by SDS-PAGE. In the first mentioned

study, isolates were compared by SDS-PAGE and 2-DE

showing differences in each isolation method, while in the

latter authors reported that different sperm extraction

methods showed almost identical protein profiles, though

with some minor quantitative differences.

3.4 2-D protein profiles

Rather than effectiveness of the isolation protocols, differ-

ences between the ejaculated and capacitated sperm proteins

isolated by the same protocol were observed. The 2-DE

protein profile obtained by Triton X-100 extraction is

presented in Fig. 2A and A0. Differences between ejaculated

(Fig. 2A) and capacitated (Fig. 2A0) sperm proteins were

studied. We observed changes in pI (arrows numbered 1–3)

and also changes in relative abundance (arrows numbered

4–11). It could also be seen that in the region numbered with

extended arrow ] 12, protein spots were missing from the

ejaculated protein sample. The 2-DE protein profile extracted

by Triton X-114 is presented in Fig. 2B and B0. Differences

Figure 1. 1-DE protein profiles (A) and glyco-
protein profiles (B) of the following extracts:
1 – 1% v/v Triton X-100 extracts, 2 – 1% v/v
Triton X-114 extracts, 3 – 2% v/v acetic acid
extracts, 4 – 1% m/v SDS extracts, 5 – 30 mM
OBG extracts, 6 – freezing–thawing extracts,
7 – RHB extracts from ejaculated (subscript E)
and capacitated (subscript C) sperms.
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between ejaculated (Fig. 2B) and capacitated (Fig. 2B0) sperm

proteins were found as well and highlighted. Many

similarities with the previous profiles were observed. The

same pI shifts as in Fig. 2A and A0 marked with an arrow

(numbered 1), extended arrow (numbered 2) were present

too, but the pI shift occurred in the opposite direction, and

new pI shifts appeared (arrows ] 3, 4). Differences in the

relative abundance of protein spots were marked with arrows

] 4–10. The 2-DE protein profile acquired by acidic extraction

is presented in Fig. 2C and C0. pI shifts, indicated with

arrows (numbered 1, 2), can be observed between ejaculated

(Fig. 2C) and capacitated (Fig. 2C0) sperm profiles, and

certain protein spots also differed in relative abundance

(arrows ] 7,9,10), while other protein spots present in one

profile are missing in the second one (arrows ] 3, 4, 6, 8,

11–13). A cluster of proteins indicated with extended arrow

] 5 is present only in the capacitated protein profile. The

2-DE protein profiles extracted by OBG are presented in

Fig. 2D and D0. Unlike in previous 2-DE protein profiles, no

pI shifts were observed; however, changes in the relative

abundance of proteins were present, namely marked with

arrows numbered 2, 5, 7 and 11. Changes in the relative

abundance of protein spots were marked (arrows ] 1, 3, 6, 8,

9). A cluster of proteins indicated with extended arrow ] 4 is

present only in the capacitated (Fig. 2D0) protein profile,

probably the same as in Fig. 2C and C0. The 2-DE protein

profile obtained by freezing–thawing extraction is shown in

Fig. 2E and E0. Differences between ejaculated (Fig. 2E) and

capacitated (Fig. 2E0) sperm proteins were present and

consequently highlighted. No potential pI changes have been

found; however, changes in the relative abundance of protein

spots were observed (arrows numbered 2, 5, 6, 8–11 and 14),

and a cluster of proteins with different abundance could also

be seen (extended arrow ] 4). Similarly as in the previous

profiles, some protein spots present in the ejaculated profile

are absent from the capacitated one and vice versa. These

Figure 2. 2-DE protein profiles of ejaculated (single letter) and capacitated sperms (letter with apostrophe) isolated by 1% v/v Triton
X-100 (A), 1% v/v Triton X-114 (B), 2% v/v acetic acid (C), 30 mM OBG (D), freezing–thawing (E), RHB (F). Corresponding arrows indicate
qualitative and quantitative differences between the profiles of ejaculated and capacitated sperms obtained by the same isolation
protocol.
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differences were marked (arrows numbered 1, 3, 7, 12, 15

and 16). Multiple protein spots indicated by extended arrow

] 17 are absent in the capacitated profile. The 2-DE protein

profile extracted by the RHB is presented in Fig. 2F and F0.

Differences between ejaculated (Fig. 2F) and capacitated

(Fig. 2F0) sperm proteins are clearly distinguishable. Three

potential pI changes (arrows numbered 1–3) were observed.

Changes in the relative abundance of protein spots, marked

by arrows ] 5–8, 10, 11 and 15, are present. Protein spots

(arrows numbered 4, 9, 12 and 13) were found missing in

one protein profile, while in the other they were present.

Also, two clusters of proteins (spots ] 16, 17) were found to

differ in both ejaculated and capacitated protein profiles. All

qualitative and quantitative differences are summarized in

Table 1.

The following trend was observed in each extraction

method employing surfactants: more proteins (qualitatively)

were present in capacitated extracts than in ejaculated

extracts. This can be simply explained by the fact that the

ejaculated sperm membrane contains a higher portion of

cholesterol for ensuring higher rigidity and restraining the

extraction, whereas in capacitated sperm, the plasma

membrane is more fluid and the extraction is more feasible.

Moreover, the process of the sperm capacitation prepares

spermatozoa for their encounter with the egg. During this

event, distribution of protein domains is changed and many

bound proteins are released from the sperm surface;

receptors for ZP binding are exposed on the sperm head.

During capacitation, protein phosphorylation/depho-

sphorylation occurs in the sperm cells. Additionally, chan-

ges in the lectin-binding ability of the sperm membrane

during capacitation indicate alterations of the glycoprotein

carbohydrate moiety [1]. All protein modifications such as

phosforylation/dephosforylation, desialylation or deglycosy-

lation result in the shifts of protein pI [26].

Similar studies were done by Secciani et al. [27], who

compared protein profiles of ejaculated and 3-h capacitated

human normospermic samples. The authors reached the

analogical conclusion that several significant quantitative

and qualitative variations were found.

Figure 2. Continued
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3.5 Substrate zymographies

Protein extracts isolated from ejaculated and capacitated

spermatozoa were subjected to SDS-electrophoresis in 12%

m/v polyacrylamide running gel with co-polymerized

hyaluronic acid or gelatin for hyaluronic or proteinase

activity, respectively. Gel slabs were incubated in the

incubation buffer with respect to the type of zymography

and then they were stained either with Alcian Blue for

hyaluronidase activity or CBB for proteinase activity (Fig. 3).

For the detection of proteolytic and hyaluronidase

activities, extracts isolated by the following reagents were

used: 1% v/v Triton X-100 in TBS, 1% v/v Triton X-114 in

TBS, 2% v/v acetic acid, 1% m/v SDS in TBS, 30 mM OBG

in TBS, freezing–thawing (in TBS) and finally RHB.

3.5.1 Detection of hyaluronidase activity

Gel slabs were incubated in neutral pH, stained with Alcian

Blue and screened for hyaluronidase activity. On the mamma-

lian sperm, hyaluronidase has been defined as a glycosylpho-

sphatidylinositol-anchored protein of 55 000–65 000 with

activity at both acidic and neutral pH [28–30]. Porcine

hyaluronidase activity in neutral pH is shown in Fig. 3A. It

can be seen that in neutral pH, multiple forms of hyalur-

onidases with molecular masses 55 000, 75 000, 90 000 and

150 000 are present. Hyaluronidase activity of proteins with Mr

around 55 000 was the most abundant in all protein extracts;

other forms were not present in all extracts unless incubated

further to be visible more clearly. Cibulková et al. [31] described

the 55 000 form of boar sperm hyaluronidase, isolated by Triton

X-100, SDS and acetic acid extractions, active at both neutral

and acidic pH.

Hyaluronidase isolation was first described by Seaton

et al. [32], who isolated the hyaluronidase enzyme with

Triton X-100 from the sperm membrane. It is fundamental

that isolation proceeds at 41C with the presence of protease

inhibitors. Another procedure uses 4% m/v SDS extraction

reagent for isolation of hyaluronidase from the sperm

membrane of cynomolgus macaque [33].

Figure 3. Substrate zymograms showing
hyaluronidase activity at pH 7.4 (A) and proteo-
lytic activity (B) in protein extracts isolated
from ejaculated (subscript E) and capacitated
(subscript C) sperms by the following extrac-
tion reagents: 1 – 1% v/v Triton X-100, 2 – 1%
v/v Triton X-114, 3 – 2% v/v acetic acid, 4 – 1%
m/v SDS, 5 – 30 mM OBG, 6 – freezing–thawing,
7 – RHB.

Table 1. Qualitative and quantitative changes observed in 2-DE protein profiles of ejaculated and capacitated sperms

Isolation protocol employed (Figure) Qualitative changes Quantitative changes

pI shifts

(Spot ])

Mr shifts

(Spot ])

Changes in intensities

(Spot ])

Present/Absent

(Spot ])

1% v/v Triton X-100 in TBS (Fig. 2A and A0) 1, 2, 3 1 4, 5, 7, 11 6, 8–10, 12

1% v/v Triton X-114 in TBS (Fig. 2B and B0) 1, 2, 3, 4 1 5, 6, 10 7–9

2% v/v acetic acid (Fig. 2C and C0) 1, 2 7, 9, 10 3, 4–6, 8, 11–13

30 mM N-octyl-b-D-glucopyranoside (OBG) in TBS (Fig. 2D and D0) 2, 5, 7, 11 1, 3, 4, 6, 8–10

Freezing–thawing procedure (Fig. 2E and E0) 2, 5, 6, 8–11, 14 1, 3, 4, 7, 12, 15–17

Rehydration buffer (RHB) for isoelectric focusing (Fig. 2F and F0) 1, 2, 3 2, 3 5–8, 10, 11, 15–17 4, 9, 12, 13
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3.5.2 Detection of proteolytic activity

Gel slabs were incubated in incubation buffer (pH 8.4)

without proteinase inhibitors for total proteinase activity

(Fig. 3B). Gels were stained with CBB and screened for

proteolytic activity. The most abundant proteolytic enzyme

in the acrosome is acrosin, with its zymogenic form

proacrosin. Proacrosin is an inactive precursor with a Mr of

53 000–55 000, while its active forms are a-acrosin with Mr of

50 000–55 000 and b-acrosin with Mr 35 000–38 000 [5].

Figure 3B shows that in each extract prominent bands are

present at 50 000 together with multiple bands ranging from

28 000 to 35 000. Besides proacrosin/acrosin, other proteoly-

tic enzymes have been described in the sperm acrosomal

content [1]. Acrosomal hydrolases, activated by the interaction

of sperm with ZP and released during the acrosomal

reaction, help the sperm to penetrate through the glycopro-

tein network of the ovum [1]. Surprisingly, in strong

denaturing isolation conditions such as treatment with SDS

and boiling (lanes 4), and using RHB (7 M urea, 2 M

thiourea, 2% m/v CHAPS) (lanes 7), the proteolytic enzymes

were still active. Various isolation protocols gave different

profiles of proteolytic active molecules.

4 Concluding remarks

Sperm proteins of ejaculated and in vitro capacitated boar

sperms were isolated by various extraction protocols.

Isolated sperm proteins were characterized by SDS-PAGE,

2-DE and substrate zymography for enzymatic activities.

Protein extracts showed qualitative and quantitative differ-

ences in sperm protein components, depending on the

isolation protocol. Differences were found not only between

protein profiles obtained by various extraction techniques

but also between proteins isolated from spermatozoa before

and after in vitro capacitation. This preliminary study

indicates that use of various isolation methods gives

different protein profiles. Our results suggest the possibility

to apply a particular extraction method for the isolation of

specific sperm proteins. Differences in protein profiles of

capacitated versus ejaculated spermatozoa indicate evident

changes during this reproductive event leading to the

sperm–oocyte recognition and successful fertilization.

Nevertheless, further work is still required to elucidate the

sperm protein origin and identification. An additional

important question is their potential involvement in the

gamete interaction.
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Folia. Biol. (Praha) 1986, 32, 282–285.

[14] Berger, T., Horton,M. B., Gamete Res. 1988, 19, 101–
111.
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a  b  s  t  r  a  c  t

Complementary  molecules  on  the  surface  of  both  gametes  are  responsible  for the  interaction  of sperm
protein  receptors  with  zona  pellucida (ZP)  saccharide  structures,  and  many  primary  sperm  receptors  for
ZP  glycoproteins  have  been  disclosed  in  various  mammals.  For  our  study,  proteins  were  obtained  from
the  surface  of  ejaculated  and  in  vitro  capacitated  boar  sperm.  The  isolated  proteins  were  characterized  by
1D-  and  2D-electrophoretic  protein  profiles,  and  by glycoprotein  staining.  Our results  show  quantitative
and  qualitative  differences  in  protein  and glycoprotein  patterns  between  ejaculated  and  capacitated
perm surface proteins
ona  pellucida-binding receptors
KDREJ protein

sperm.  Far-western  blotting  with  ZP glycoproteins  identified  17 interactions  in the  subproteome  of  the
ejaculated  sperm  and  14 interactions  in  the  subproteome  of the  capacitated  sperm.  High-molecular-
mass  proteins,  coincident  with binding  to ZP,  were  sequence-identified.  Angiotensin-converting  enzyme
(ACE),  polycystic  kidney  disease  receptor  and  egg  jelly  receptor  (PKDREJ),  and  acrosin  precursor  were
successfully  identified.  This  is  the  first time  PKDREJ  has  been  identified  on  the  surface  of  boar  spermatozoa.
. Introduction

The sperm surface contains a number of proteins with various
unctions that play a key role in sequential interactions in the pro-
ess of reproduction. Following ejaculation, the sperm, passing via
he female reproductive tract, interact with the oviductal epithe-
ium [1,2]. Interaction of the sperm with the oocyte proceeds in the
ollowing steps: (i) with the cumular matrix of the oocyte, (ii) with
he zona pellucida, and (iii) with the ooplasma [3]. Identification
nd characterization of the proteins responsible for these pro-
esses is therefore, a crucial step in understanding the complexity
f the early stages of fertilization. The greatest problem encoun-
ered by researchers is that membrane molecules often represent

inor components in total cellular extracts; therefore, selective
pproaches are required for their isolation to ensure successful
haracterization. As a response to this problem, new techniques

ave been recently introduced, allowing the selective isolation only
hose proteins that are located on the sperm surface.

∗ Corresponding author at: Laboratory of Reproductive Biology, Institute of
iotechnology,  The Academy of Sciences of the Czech Republic, v.v.i., Videňská 1083,
42 20, Prague 4, Czech Republic. Tel.: +420 296443530; fax: +420 244471707.
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A possible approach introduced by Canvin and Buhr, Flesch
et al. and Bongalhardo et al. [4–6] employs nitrogen cavitation
of the sperm, followed by differential centrifugation. This method
makes it possible to separate the apical plasma membranes of
the sperm from sperm debris, acrosomal membranes, and mito-
chondrial membranes. Proteins can be afterwards easily extracted
from the apical membranes, guaranteeing the origin of the pro-
teins as from the sperm surface. However, when sperm membrane
purification is performed using this technique, part of the plasma
membrane remains attached to the cytoskeleton; and some mem-
brane proteins are lost, such as the post-acrosomal proteins which
are essential for gamete recognition.

Recent studies have identified the existence of sphingolipid-
containing membrane clusters in the sperm membrane. These
clusters, also called detergent-resistant membranes (DRM) are
enriched in cholesterol and glycosylphosphatidylinositol (GPI)-
anchored proteins [7,8]. DRM can be isolated with ice-cold Triton
X-100, and then separated from the Triton X-100 soluble fraction
with a sucrose gradient; DRM being in the low-density fraction
[9–11]. The isolated DRM can be further characterized by conven-
tional methods. Yet, not all of the surface proteins are associated

with DRM, and thus an extract obtained using this technique lacks
non-DRM associated molecules.

Another  approach to isolation of surface proteins (both periph-
eral and integral) seems to be based on selective marking of

dx.doi.org/10.1016/j.ijbiomac.2013.07.014
http://www.sciencedirect.com/science/journal/01418130
http://www.elsevier.com/locate/ijbiomac
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he above-mentioned proteins with a special tag. This tag cova-
ently modifies surface proteins, allowing it to be selectively
emoved from the pool of proteins after cell lysis. Tagging mem-
rane proteins with sulfo-NHS-SS-Biotin [sulfosuccinimidyl-2-
biotinamido)ethyl-1,3-dithiopropionate] allows surface proteins,
o be isolated with streptavidin beads, after biotinylation and the
ubsequent lysis of interested cells. After the reduction of the disul-
hide bridges connecting the membrane protein of interest and
iotin, proteins are then obtained. This method was  first introduced
y Zhao et al. [12], and to this day proves very convenient, as
he technique is preferred by many scientific groups working with
perm surface proteins.

To  date, quite a few primary ZP receptors have been identified
n pigs. The AQN and AWN  family of spermadhesins belongs to
he most important ZP-binding molecules [13–18]. AQN spermad-
esins were isolated from the acidic extract of boar spermatozoa
y reverse-phase FPLC and HPLC [13]. These proteins can also be
btained from seminal plasma as a heparin-binding fraction [18].
ther proteins with ZP-binding activity include the following: A
50-kDa protein called Zonadhesin, is purified by batch wise bind-

ng to native, particulated zona pellucida [19]; the adhesion protein
 termed APz, obtained by purification steps involving lectin affin-
ty chromatography, and preparative PAGE, has also been found
o be involved in ZP binding [20]. Fucose-binding protein, isolated
ith SDS detergent, also plays an important role in ZP binding, and
as described previously [21]. We  must not omit a 38 kDa protein
ith ZP-binding properties termed sp38 purified from the deter-

ent extract of porcine epididymal sperm [22–24]. A 47 kDa protein
eferred to as P47, also takes part in ZP adhesion; it is a peripheral
rotein, isolated by affinity chromatography in the fraction of solu-
ilized plasma membrane proteins bound to immobilized porcine
ona pellucida glycoproteins, responsible for the primary binding
o porcine ZP [25,26]. Arylsulfatase A (P68), originating from the
xtract of peripheral sperm plasma membrane proteins, also bound
P3 glycoprotein, designating it a primary ZP binding receptor [27].

The purpose of this study is to selectively isolate boar sperm
roteins from the surface of ejaculated and in vitro capacitated
permatozoa, to compare these protein patterns, and screen for ZP
inding candidates. The following goals were defined: (i) prepa-
ation of in vitro capacitated spermatozoa and control of their
apacitated state; (ii) selective isolation of proteins from the surface
f ejaculated and in vitro capacitated spermatozoa; (iii) charac-
erization of extracted proteins using SDS-PAGE and 2-DE, and
omparison of their protein and glycoprotein profiles; and (iv)
inding assays of proteins isolated from the sperm surface to zona
ellucida, and sequence characterization of the selected proteins,
oincident with binding to the zona pellucida.

. Materials and methods

.1.  Preparation of solubilized zona pellucida

Porcine ovaries were obtained from slaughtered adult sows
rom the slaughterhouse in Český  Brod (Czech Republic). Oocytes
ere released from frozen porcine ovaries in a meat grinder with

ce-cold saline (0.15 M NaCl); and the homogenate was  sieved
hrough nylon screens as described by Hedrick and Wardrip [28].
he oocytes were purified by centrifugation in a discontinuous Per-
oll gradient (Sigma–Aldrich, St. Louis, MO,  USA) [29], collected
rom the 0–10% interface, washed in distilled water, and gently

omogenized using a small glass homogenizer. Zona pellucida par-
icles were collected on a 40 �m screen and repeatedly washed
ith saline. Isolated zonae pellucidae were heat solubilized in 0.2 M
aHCO3, pH 9 at 73 ◦C for 30 min, and centrifuged at 350 × g for
0 min. The supernatant was used for biotinylation.
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2.2. Biotinylation of zona pellucida glycoproteins

Solubilized zona pellucida was incubated with 0.4% N-
hydroxysuccinimidobiotin (Sigma) in dimethylformamide (Sigma)
for 30 min  at room temperature [18]. Zona pellucida glycoproteins
were dialyzed in a Spectra/Por MWCO  6/8000 membrane (Spec-
trum Medical, Laguna Hills, CA, USA) against phosphate-buffered
saline (PBS; 20 mM phosphate, 150 mM NaCl, pH 7.2) overnight and
stored at −20 ◦C.

2.3.  Preparation of sperm

Boar  ejaculates from twelve adults animals were obtained
from the breeding station PROAGRO Nymburk (Nymburk, Czech
Republic). Ejaculates were centrifuged (400 × g, 20 min) to sepa-
rate seminal plasma from spermatozoa. Spermatozoa were washed
three times with PBS and centrifuged for 10 min  at 400 × g. Washed
sperm samples were used for protein extraction and immunofluo-
rescence.

2.4. Sperm capacitation

Fresh  boar ejaculates diluted in KORINAT I (14.3 mM  sodium
bicarbonate, 12.25 mM sodium citrate, 364 mM glucose, and
12.3 mM EDTA; pH 7.5) were centrifuged at 400 × g. The sperm pel-
let was  washed with Tris-buffered solution (TBS) (pH 7.4) to remove
dilutor components, layered on a 40–80% (v/v) discontinuous Per-
coll gradient (Sigma) and centrifuged at 200 × g for 45 min. After
centrifugation, the 80% (v/v) layer was diluted in ten times diluted
Tyrode’s buffer medium (TBM) (pH 7.7; 20 mM Tris, 113.1 mM NaCl,
3 mM KCl, 10 mM CaCl2, 11 mM glucose) (Sigma), 5 mM pyruvic
acid (Sigma), 1 ampoule of gentamycin (80 mg/2 mL)  (Lek Pharma-
ceuticals, Ljubljana, Slovenia); and the cells were washed again.
The washed spermatozoa were resuspended in TBM, supplemented
with 1 mg/mL  of bovine serum albumin SL 5 grade (Serva, Hei-
delberg, Germany), and capacitated (4 h, 37 ◦C, 5% (v/v) CO2) [30].
Sperm samples after capacitation were used for protein extraction
and immunofluorescence.

2.5.  Indirect immunofluorescence technique – assessment of
non-capacitated/capacitated/acrosome-reacted sperm

Indirect immunofluorescence was  used to detect the capaci-
tated state of spermatozoa according to the character of antibody
staining against boar intra-acrosomal protein acrosin [31]. Sperm
suspensions were smeared onto a slide glass, left to desiccate, and
then left to fix/permeabilize in acetone for 10 min. Slides were
washed in PBS for 2 min  on a rocking platform, left to dry, and
primary antibody Acr-2 was applied. Slides were left to incubate
for 1 h at 37 ◦C in a moist chamber. Then after washing, incu-
bation was  carried out with a secondary antibody against the
mouse IgG Fc fragment, conjugated with fluorescein isothiocya-
nate (FITC; Sigma) diluted 1:160 in PBS, for 1 h at 37 ◦C. Finally,
after washing with PBS and distilled water, slides were incubated
for 12 min  with 1.5 �g/mL of VectaShield-DAPI (Vector Laborato-
ries, Burlingame, CA, USA). Samples were viewed and evaluated
with a Nikon Eclipse E400 fluorescent microscope with a 100×
Nikon Plan Fluor lens and a VDS CCD-1300 camera (VDS Vosskuh-
ler, Osnabruck, Germany) with the aid of LUCIA imaging software
(Laboratory Imaging, Prague, Czech Republic). In the controls,
the incubation of sperm with the primary antibody was omit-
ted, and the procedure was  followed as previously described.

According to immunofluorescence, non-capacitated, capacitated,
and acrosome-reacted sperm were counted from the total of 200
random sperm in both ejaculated and in vitro capacitated sperm
samples.
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.6. Isolation of the proteins from the sperm surface

To isolate proteins from the sperm surface, a Thermo Scientific
ierce Cell Surface Protein Isolation kit (Rockford, IL, USA) was used
ccording to the manufacturer’s protocol. In this method, mam-
alian cells were first labeled with EZ-Link Sulfo-NHS-SS-Biotin,

 thiol-cleavable amine-reactive biotinylation reagent. Cells were
ubsequently lysed with a mild detergent, and labeled proteins
ere then isolated with Immobilized NeutrAvidin Gel (agarose

eads). The bound proteins were released either by incubation
ith a SDS-PAGE sample buffer (50 mM Tris buffer titrated by
Cl to pH 6.8, 1% (v/v) glycerol, 2% (w/v) SDS (Sigma), 0.002%

w/v) bromophenol blue) containing 50 mM DTT (Sigma) or with a
ehydration buffer for two-dimensional electrophoresis (7 M urea
Amersham Biosciences), 2 M thiourea (Amersham Biosciences),
% (w/v) CHAPS (Sigma), 1% (w/v) DTT (Sigma)). The release of
ound proteins was completed with the identical buffer (either the
DS-PAGE sample buffer or rehydration buffer) on multiple Neu-
rAvidine Gel columns, so that the protein yields were satisfactory
this is an extension of the manufacturer’s protocol). Samples were
tored at −25 ◦C prior to use.

.7.  1-DE, 2-DE, and protein staining

Protein extracts obtained in the rehydration buffer, as described
n the previous section, were supplemented with an IPG (3–10)
uffer electrolyte (Amersham Biosciences) to a final concentra-
ion of 2% (v/v), and used for 2-DE. Protein extracts obtained
n the SDS sample buffer were used directly for 1-DE. For iso-
lectric focusing, the extracts were loaded onto 7 cm strips, pI
ange of 3–10 (GE Healthcare Bio-Sciences, Uppsala, Sweden) and
arried out according to supplier’s instructions (GE Healthcare).
efore SDS-PAGE as the second dimension, strips were incubated

n an equilibration buffer according to their supplier’s instruc-
ions (GE Healthcare). SDS-PAGE was carried out as previously
escribed by Laemmli [32]. A 7–21% (w/v) gradient gel slab was
sed, and run in a MiniProtean IV apparatus (Bio-Rad, Hercules,
A, USA). The concentration of bisacrylamide was 0.19–0.56%
w/v), while the concentration of acrylamide was 6.81–20.44%
w/v) from a total of 7–21% (w/v). Proteins after 1-DE were
yed with Coomassie Brilliant Blue (CBB; Serva); and after 2-
E, proteins were stained by acidic silver staining described by
lum et al. [33]. The 2-DE electropherograms were analyzed pri-

arily by the naked eye, and the differences were confirmed
ith Progenesis PG200 software (Nonlinear Dynamics, Newcastle
pon Tyne, UK). For the detection of glycoproteins, a glycoprotein
etection kit (Sigma) was used according to the manufacturer’s

ig. 1. SDS-PAGE followed by Western blot detection of acrosin (A), protein profiles (B), a
 sperm proteins which have not bound to the avidin column during affinity purification
ubscript C) sperm, 4 – acrosin (positive control).
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protocol. For 1-DE, 15 �g of total protein was  loaded per well,
while for 2-DE 0.1 mg of total protein was loaded on each
strip.

2.8. Western blotting

A  Tris-glycine buffer (pH 9.6) with 20% (v/v) methanol was
used for the transfer of proteins separated by SDS-PAGE onto a
PVDF Immobilon Transfer Membrane (Millipore, Bedford, MA,  USA)
for immunodetection. Electroblotting was  carried out for 1.5 h at
500 mA,  according to the method described by Towbin et al. [34].

2.9. Detection of acrosin by protein immunodetection

The PVDF membrane (Millipore) with the transferred proteins
was deactivated with 1.5% (w/v) teleostean fish gelatin (Sigma)
in PBS for 3 h. After washing with 0.05% (v/v) Tween 20 (Serva)
in PBS, the membrane was incubated with an Acr-2 antibody
(diluted 1:5000 in PBS, prepared in the Laboratory of Reproduc-
tive Biology, Institute of Biotechnology, Academy of Sciences of
the Czech Republic [35]) at 4 ◦C overnight. Following a wash-
ing step, incubation was performed for 1 h at 37 ◦C with goat
anti-mouse immunoglobulins coupled to horseradish peroxidase
(Sigma) diluted 1:3000 in PBS. After washing, the membrane was
developed in the dark with 0.05% (w/v) 4-chloro-1-naphtol (Serva),
0.001% (w/v) CoCl2, and 0.09% (v/v) hydrogen peroxide in 0.01 M
of Tris–HCl (pH 7.4). The reaction was  stopped after 10 min  by
washing the membrane with distilled water. Where not mentioned,
procedures were carried out at room temperature. As a positive
control, purified acrosin was  used isolated by acidic extraction [36]
(10 �g/mL).

2.10.  Far-Western blot with biotinylated zona pellucida
glycoproteins

The PVDF (Millipore) membrane with the transferred proteins
was deactivated with 1% (w/v) teleostean fish gelatin (Sigma)
in PBS for 4 h at room temperature. After washing with 0.02%
(v/v) Tween 20, 1 mM CaCl2 in PBS (pH 7.2), the membrane
was incubated with biotin-labeled glycoproteins of porcine zona
pellucida (gpZP) (100 �g/mL in PBS) at 4 ◦C overnight. Follow-
ing washing, incubation was performed for 0.5 h at 37 ◦C with

0.1 �g/mL of avidin–peroxidase solution (Sigma) in PBS. After
washing, a chemiluminescent substrate, SuperSignal (Thermo Sci-
entific), was applied to visualize the corresponding interaction
bands.

nd glycoprotein profiles (C). Lanes: 1 – proteins isolated from the sperm surface, 2
, 3 – SDS sperm extracts from ejaculated (with subscript E) and capacitated (with
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ig. 2. 2-DE protein profiles of ejaculated (A) and capacitated sperm (B) isolated from
etween the profiles of ejaculated and capacitated sperm.

.11. Proteolytic digestion, sample preparation, and mass
pectrometric analysis

Excised  Coomassie Brilliant Blue R250 stained protein spots
rom the 1-D gel were chopped into small cubes (approx. 1 mm3)
nd destained with 0.1 M 4-ethylmorpholine acetate (pH 8.1) in
0% acetonitrile. After complete destaining in a sonication bath,

 reduction of cysteine residues by TCEP, and their modification
y iodoacetamide, was performed. After modification, the gel was
ashed with water, shrunk by dehydration with acetonitrile, and

e-swollen again in water. Next, the gel was partly dried using
 SpeedVac concentrator, and then reconstituted with a cleav-
ge buffer containing 0.05 M 4-ethylmorpholine acetate, 10% (v/v)
cetonitrile and sequencing grade Lys-C endoprotease (Promega,
0 ng/�L). Digestion was carried out overnight at 37 ◦C [37]. The
esulting peptides were extracted with 40% (v/v) acetonitrile/0.4%
v/v) acetic acid. After extraction, the peptides were directly diluted
n 0.1% (v/v) trifluoroacetic acid (TFA) and subjected to a R3 micro-
olumn (Applied Bioscience, Foster City, CA, USA) pre-equilibrated
ith 0.1% (v/v) TFA. After desalting with the same TFA solution, the
eptides were directly eluted with a 5 mg/ml  solution of �-cyano-
-hydroxy-cinnamic acid in 50% (v/v) acetonitrile/0.1% (v/v) TFA
rom the R3 microcolumn on the MALDI target; and the droplets
ere allowed to dry at ambient temperature.

Mass spectra were measured in an ultraFLEX III matrix-assisted
aser desorption/ionization reflectron time-of-flight (MALDI-
OF/TOF) mass spectrometer (Bruker Daltonics, Bremen, Germany)
quipped with a nitrogen laser (337 nm). Spectra were calibrated
xternally using the monoisotopic [M+H]+ ion of peptide stan-
ards PepMix I (Bruker). The positive MALDI-TOF spectra and
S/MS  LIFT spectra of the selected m/z signals were collected

n reflectron mode to identify the proteins. MALDI-TOF MS  and
S/MS  spectra were interpreted using the MASCOT software

ngine (http://www.matrixscience.com/).

.  Results

.1. Isolation of proteins from the surface of ejaculated and
n  vitro capacitated sperm

Porcine  ejaculates were processed as described previously, and
n vitro capacitation was performed. Sperm stages, before and after
apacitation, were studied by indirect immunofluorescence with
he use of monoclonal antibody against intra-acrosomal protein
roacrosin/acrosin (Acr-2), as described previously [31]. In the ejac-

lated boar samples (before capacitation), the average count of
on-capacitated sperm was 78%; while in the samples after capac-

tation, the average count of capacitated sperm was 70%, which
orresponded to the previous results [31].

60
erm surface. Corresponding arrows indicate qualitative and quantitative differences

Proteins  from the sperm surface were isolated from both the
ejaculated and in vitro capacitated spermatozoa with a Thermo
Scientific Pierce Cell Surface Protein Isolation kit according to man-
ufacturer’s direction; with a small modification to the protein
elution to ensure better surface protein yields.

The purity of the isolated sperm surface proteins was screened
with the monoclonal antibody Acr-2 (Fig. 1A) against the intra-
acrosomal protein acrosin, which is present in the acrosomal matrix
[38]; and its presence would indicate that the extracts are contam-
inated with intra-acrosomal content.

Fig. 1A, lanes 1, clearly shows that the extracts from the sperm
surface were not contaminated with acrosin (at this limit of detec-
tion), which is present in the flow-through fractions (lanes 2). As
a positive control, SDS extracts (lanes 3) and acrosin (lane 4) were
used.

3.2. 1-D protein and glycoprotein profiles

Sperm proteins isolated from the surface were analyzed by SDS-
electrophoresis on a 7–21% gradient polyacrylamide gel. The gel
was stained with CBB for protein characterization (Fig. 1B) and with
the Sigma glycoprotein detection kit for glycoprotein detection
(Fig. 1C). Using these methods, differences between the ejaculated
and capacitated sperm proteins were observed. Fig. 1B shows that
proteins extracted from ejaculated sperm differ from those of the
capacitated ones. Four significant and three prominent differences
were found between the ejaculated and capacitated profiles. Sig-
nificant protein changes were observed at 88, 30, 20, and 18 kDa;
the 88 kDa protein was  present in the ejaculated sperm only, while
the rest were observed only in the capacitated sample. Prominent
protein changes were observed in the areas of 47, 33, and 12.5 kDa,
of which all were present in the capacitated sperm samples. Fig. 1C
confirms that proteins were extensively glycosylated, and glyco-
protein profiles expressed the same trend of protein layout as in
the 1-DE protein profiles (Fig. 1B).

3.3. 2-D protein profiles

With  the help of 2-DE, differences between the ejaculated and
capacitated sperm proteins isolated from the sperm surface were
even clearer in comparison with SDS-PAGE. In total, 23 changes
were found, both quantitative and qualitative (Fig. 2). Protein spots
# 1, 2, and 13 were present in ejaculated sperm (Fig. 2A) and absent
in capacitated sperm (Fig. 2B). On the other hand, protein spots #
8, 10, 11, 16, and 17 were present in the capacitated sperm and
absent in the ejaculated sperm. Furthermore, protein clusters # 3,

7, 18, 22, and 23 were present in the ejaculated sperm sample, while
being absent in the capacitated one. Again on the other hand, pro-
tein clusters # 4, 5, 9, 14, and 20 were visible in the capacitated
sperm sample rather than in the ejaculated one. Two  pI shifts were

http://www.matrixscience.com/
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Fig. 3. 1-DE protein profiles after the Far-Western blot test (A); and the Far-Western
blot  test with biotinylated zona pellucida glycoproteins (B) of proteins isolated from
the sperm surface (lanes 1), and whole sperm SDS lysate (lanes 2) of ejaculated (with
subscript E) and capacitated (with subscript C) sperm. Small (red) arrows indicate
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he observed interactions between proteins and ZP glycoproteins in both ejaculated
nd  capacitated sperm. Arrows with a star indicate interactions observed only in
he ejaculated sperm.

bserved, in proteins # 15 and 21; in both cases the shift was toward
ower pH values, from basic to less basic. Finally, two  molecular

ass shifts were found: two protein spots for # 6, which displayed
igher molecular masses in the ejaculated sperm than in the capac-

tated ones; and two protein spots for # 12, with molecular masses
igher in the capacitated sperm sample.

.4. Study of sperm–zona pellucida interactions

Proteins isolated from the sperm surface of ejaculated and
apacitated spermatozoa, after SDS-electrophoresis and transfer-
nce to the PVDF membrane, were tested with biotin-labeled
lycoproteins of the zona pellucida. For comparison, SDS extracts
rom ejaculated and capacitated spermatozoa were run in parallel
ith proteins isolated from the sperm surface (Fig. 3A). Seven-

een protein bands isolated from the surface of ejaculated sperm
nteracted with zona pellucida glycoproteins, with the following

olecular masses: 145, 120, 85, 75, 72, 68, 66, 60, 55, 50, 47, 33, 27,
1, 16, 13, and 12 kDa (Fig. 3B, lanes 1E, 1C). In the case of proteins

solated from the surface of capacitated sperm, 14 bands, identical
s in ejaculated sperm, interacted with zona pellucida glycoproteins.
owever, the bands of 72, 66, and 55 kDa were missing in the capac-

tated sperm. Proteins isolated by SDS from both ejaculated and
apacitated sperm interacted with the zona pellucida more exten-
ively than proteins isolated from the sperm surface. Especially in
he molecular mass area between 47 and 120 kDa, SDS-extracted
roteins interacted abundantly; and no discrete band was  observ-
ble (Fig. 3B, lanes 2E,2C).

.5. Mass spectrometry analysis of selected proteins with
P-binding ability

Protein  bands with molecular masses of 120, 85, and 50 kDa,
oincident with binding to the zona pellucida, were subjected to
ALDI analysis. The 120 kDa protein band was identified using

he Mascot MS/MS  Ion Search tool to be polycystic kidney disease
nd receptor for egg jelly (PKDREJ), (gi|350,583,692 from Sus scrofa,
ith MW 248 kDa, pI 4.99, significant probability Mowse score 125

or m/z  2014.090 or 87 for m/z  2109.0, respectively). Using Mas-
ot Peptide Mass Fingerprinting, the 85 kDa protein was found to

e an angiotensin-converting enzyme (ACE) (gi|77539420 from S.
crofa, with MW 85 kDa, pI 6.31, significant probability Mowse score
08, and sequence coverage 21%). The last analyzed protein with a
olecular mass of 50 kDa, was identified using the Mascot MS/MS
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Ion  Search as an acrosin precursor (EC 3.4.21.10) (gi|164703 from
S. scrofa, with MW 46 kDa, pI 9.66, significant probability Mowse
score 163 for m/z 2578.390 or 136 for m/z 695.326, respectively).

4.  Discussion

Proteins on the sperm surface are primary candidate partners for
interaction with the zona pellucida (ZP). In many studies, it has been
shown that both ejaculated and capacitated sperm are able to bind
to the ZP, but only a capacitated spermatozoon is able to fertilize
an ovum. More importantly, the greatest challenge for scientific
groups is that membrane molecules are often minor components
in total cellular extracts, and specialized methods are required for
their isolation and characterization. Therefore, experimenting with
the whole sperm lysate may  yield rather misleading results.

In  our study, we  have focused on the characterization of the
proteins isolated from the surface of ejaculated and capacitated
sperm and, on their interaction with ZP glycoproteins. A key step
in this study was to selectively isolate proteins from the surface of
sperm. To enrich the relatively low abundance sperm membrane
proteins, the Thermo Scientific Pierce Cell Surface Protein Isolation
kit was used. This technique, described by Zhao et al. [12], is based
on surface-labeling biotinylation to access the surface membrane
protein subproteome. Prior to isolation, the states of ejaculated and
capacitated sperm were assessed by indirect immunofluorescence,
and their percentages were counted based on 200 random sperm
from both ejaculated and capacitated sperm samples. In the ejac-
ulated sperm sample, 78% of the sperm were in a non-capacitated
state, while 70% of sperm were in capacitated state in the capac-
itated sperm sample. These results were considered satisfactory,
and the samples were surface-labeled with biotin for affinity purifi-
cation of the surface protein subproteome.

According to Belleannee et al. [39], this protocol makes it pos-
sible to purify surface proteins, containing most of the surface
proteins without contamination by the non-biotinylated proteins
present in the preparation, such as cytosolic or skeletal proteins.
To further confirm this, Western blot detection of intra-acrosomal
proteinase acrosin was performed; and within the limit of detection
of this protocol, acrosin was detected only in the non-biotinylated
fraction.

The differences between ejaculated and capacitated protein pro-
files obtained by ionic and detergent extract reported by our group
earlier [40] were again found in the purified samples. Further-
more, in purified samples, the differences between ejaculated and
capacitated surface subproteome profiles were observable in 1-DE;
whereas the differences between ejaculated and capacitated pro-
tein profiles obtained by ionic and detergent extraction became
clear only after 2-DE [40]. The reason why the protein profiles of
ejaculated and capacitated sperm differ is that during the process
of capacitation many surface-bound proteins are released in order
to expose ZP-binding receptors [38]. Before actual quantification
of the differences between the ejaculated and capacitated sperm,
a decision must be taken whether the protein profiles will be con-
sidered to originate from the equal sperm count (observation of
absolute changes) or equal protein load (observation of relative
changes). We decided for the relative interpretation of changes and
observed seven changes in 1-DE protein profiles; of which three
protein bands with molecular masses of 47, 33, and 12.5 kDa were
highly enriched in the capacitated protein profile. One could spec-
ulate about their participation in the process of reproduction, as
bands with molecular masses coincident with those of all three

of these proteins were found to bind to the zona pellucida. 2-
DE protein profiles revealed finer differences, comprising changes
where a protein(s) present in ejaculated sperm was  partially or
completely released from the sperm surface during capacitation;
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e found eight of these differences, which represented either
ndividual protein spots or whole clusters of proteins. After capac-
tation, the released coating proteins make the sperm surface
roteins accessible for biotinylation, thus making them observ-
ble in the capacitated protein profile. We  observed ten of these
hanges where individual proteins or protein clusters in the capac-
tated protein profile were partially or completely missing from the
jaculated protein profiles. We  believe that these proteins are pri-
ary candidates for the ZP receptors. In addition, two pI shifts and

wo molecular-mass shifts were observed.
To determine which proteins may  be the primary ZP-binding

eceptors, we  performed Far-Western blot tests with the biotiny-
ated ZP glycoproteins. At this point, we consider it appropriate to

ention that a Far-Western blot with zona pellucida glycoproteins
s a very delicate and challenging method, and despite our immense
fforts, we were unable to obtain satisfactory 2-DE protein pro-
les. We  therefore studied the 1-DE interactions of proteins isolated

rom: (i) the surface of ejaculated and capacitated sperm, and (ii)
he whole ejaculated and capacitated sperm using SDS. The reason
or this was not only to find new potential candidates for primary
P-binding receptors, but also to emphasize how using the whole
perm lysate interacted non-specifically, mainly in the areas with
olecular mass between 47 and 120 kDa, and completely obscured

pecificity. The isolation approach toward the potential primary
P receptors suggested by our team also overcame the difficulty
ncountered in the method suggested by van Gestel et al. [41], in
hich the isolation of primary ZP receptors involved their binding

o ZP glycoproteins, followed by solubilization of the whole inter-
cting complex. The 2-DE protein profile was then concealed by the
resent ZP glycoproteins, most probably hiding some of the ZP pri-
ary binding partners, and thus only enabling elucidation of the

nteraction partners in areas with lower molecular masses. Here
e consider it appropriate to also mention the limitation of our
ethod, originating mainly from the fact that we  used solubilized

P, which leads to the loss of the quaternary structure of the poly-
erized ZP matrix, with a potential risk of loss of bioactivity of ZP

roteins [42]. Another limitation lies in the fact that biotinylation
ay introduce alterations in the ZP affinity of proteins, as the addi-

ion of biotin groups could take place on the ZP binding domains.
Despite  the limitations of our method, by using the sperm

urface subproteome we were able to observe that 17 protein
ands from the ejaculated protein profile interacted with ZP gly-
oproteins, of which 14 interacted with ZP glycoprotein also in
he case of the capacitated protein profiles. We  were able to iden-
ify AQN-1 spermadhesin by using polyclonal antibodies (results
ot shown) prepared in our laboratory [18]. The AQN-1 spermad-
esin originates from seminal vesicles and binds the sperm plasma
embrane during ejaculation [43]. AQN-1 is a ZP-binding protein

nd is required for the primary binding of the sperm to the oocyte
17,43,44]. The activity and turnover of AQN-1, and thus the effi-
iency of the sperm–ovum recognition process, can be controlled by
he ubiquitin–proteasome pathway [45,46]. In the study of primary
ona-binding proteins, three isoforms of AQN-3 spermadhesins
ere identified, isolated from the apical plasma membrane of the

perm head [41].
We  have further focused on studying high-molecular-mass,

rimary  ZP receptor candidates. Using mass spectrometric analysis
e identified polycystic kidney disease receptor and egg jelly

eceptor (PKDREJ), a protein with a molecular mass of 120 kDa,
hich belongs to the mammalian polycystic kidney disease (PKD)

ene family. Two of the founding members of the PKD family, PKD1
nd PKD2, are responsible for the majority of cases of autosomal

ominant polycystic kidney disease. The PKDREJ protein was
ound to play an important role in sea urchin fertilization, where
his critical sperm surface receptor for egg jelly ligands induces
n acrosome reaction [47]. Extensive homology of the sea urchin
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sperm receptor for egg jelly (SpREJ) with the PKD protein 1 was
found, and to date ten SpREJs have been described in sea urchins
[48]. PKDREJ was  also found and characterized on the plasma
membrane in the acrosomal region and on the inner aspect of
the falciform-shaped mouse sperm head, where it can function
as both a receptor and/or an ion channel supporting the process
of fertilization [49]. The existence of a PKDREJ protein homologue
in the pig organism was predicted on the basis of the pig genome
sequencing (XP 003126012.3) in November 2011. The predicted
molecular weight of PKDREJ is 247 kDa; however, we detected it at
molecular mass of 120 kDa. This can be explained by the fact that
the PKDREJ family is extensive and may contain representatives
with different molecular masses, as is the case in the sea urchin
or human [48]. To our knowledge, we were able to detect, for the
first time, its presence in the pig organism on the surface of boar
spermatozoa, in the fraction of proteins isolated from the surface
of the sperm. Furthermore, we  suppose that the function of this
protein is analogous to that in the sea urchin.

Another identified protein was  angiotensin-converting enzyme
(ACE), known for its role in the regulation of blood pressure and
water and salt metabolism. Two  forms of ACE have been identi-
fied – somatic [50,51] and germinal, which is expressed only in
the testis and is uniquely present in developing spermatids and in
mature sperm [52]. ACE is believed to play a role in the release of
GPI-anchored proteins such as TESP5 and PH-20, and without this
release fertilization does not occur [53]. ACE has been characterized
in many animals including mice [54], rats [55], dogs [56] bulls, rams,
stallions [57], pigs [58], and humans [59]. However, the ability of
ACE to bind to the ZP during fertilization remains questionable and
requires further study.

The  last protein with a molecular mass of 50 kDa was identified
to be an acrosin precursor. This is a major component of acroso-
mal content, localized both in the inner acrosomal membrane and
acrosomal matrix, and playing a role in reproduction as a secondary
binding receptor to the ZP [60–63]. The presence of trace amounts
of acrosin, which were not detected by Western blotting, was iden-
tified by the MALDI-TOF mass spectrometer. This can be explained
by the fact that in both ejaculated and capacitated sperm sam-
ples, acrosomally-reacted sperm were also present; and acrosin
remained adherent to the sperm surface regardless of washing [64],
and therefore became biotin-labeled as well.

Our study has not yet been fully completed and further exper-
imentation need to be conducted to clarify that the identified
candidates are really ZP primary receptors, as well as for their
further proteomic and physiological identification. Another ques-
tion that remains open is optimization of an isolation protocol for
surface proteins from the apical region of the sperm head.
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40]  M.  Zigo, V. Jonáková, P. Maňásková-Postlerová, Electrophoresis 32 (2011)

1309–1318.
41] R.A. van Gestel, I.A. Brewis, P.R. Ashton, J.F. Brouwers, B.M. Gadella, Mol. Hum.

Reprod. 13 (2007) 445–454.
42] E.C. Yurewicz, A.G. Sacco, S.K. Gupta, N. Xu, D.A. Gage, J. Biol. Chem. 273 (1998)

7488–7494.
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 18 

Abstract 19 

Primary binding of the sperm to zona pellucida (ZP) is one of the many steps necessary for 20 

successful fertilization. Sperm bind ZP by means of membrane receptors which recognize 21 

carbohydrate moieties on ZP glycoproteins according to a well-defined sequential process. 22 

Primary binding receptors, many of which have been disclosed in various mammals, are 23 

localized throughout the acrosomal region of the sperm surface. A panel of monoclonal 24 

antibodies against proteins from the sperm surface was prepared. Antibodies were screened by 25 



65 

 

immunofluorescence for protein localization and Western blotting. Proteins localized on the 1 

sperm head and simultaneously detected by Western blot were further studied in terms of 2 

immunolocalization in reproductive tissues and fluids, binding to ZP, immunoprecipitation 3 

and sequencing. Out of 17 prepared antibodies, eight recognized proteins localized on the 4 

sperm head and also detected proteins of interest by Western blotting. Only three other 5 

antibodies recognized proteins that also coincided in binding to ZP. These three antibodies 6 

were used for immunoprecipitation, and further protein sequencing of immunoprecipitates 7 

revealed that these antibodies distinguished acrosin precursor, RAB-2A protein, and 8 

lactadherin P47. This is not the first time we detected acrosin on the surface of ejaculated and 9 

capacitated sperm. To our knowledge, this is the first time RAB-2A has been detected on the 10 

sperm surface. Lactadherin P47 has already been characterized and its physiological function 11 

in reproduction has been proposed. 12 

 13 

Keywords: sperm surface proteins; monoclonal antibodies against sperm surface proteins; 14 

zona pellucida-binding receptors; RAB-2A, lactadherin P47 15 

 16 

1. Introduction 17 

Pig is one of the most studied animal models in pursuit of elucidation of the processes taking 18 

place during mammalian fertilization. The fundamental mechanism of gamete recognition 19 

seems to be conserved throughout evolution from marine vertebrates to eutherian mammals in 20 

the way that the sperm surface molecules interact with the oligosaccharide ligands of the 21 

envelope glycoproteins (Töpfer-Petersen et al., 2008). Porcine egg coat – zona pellucida (ZP) 22 

is composed of three glycoprotein families, ZP1 (ZPA; 92 kDa), ZP3α (ZPB; 55 kDa) and 23 

ZP3β (ZPC; 55 kDa) named by a nomenclature based on apparent molecular weight (Hedrick 24 

& Wardrip, 1986; 1987). ZP1 is split into two smaller molecules, ZP2 (69 kDa) and ZP4 (23 25 
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kDa), under reducing conditions (Hasegawa et al., 1994). Sperm bind ZP by means of 1 

membrane receptors which recognize carbohydrate moieties on ZP glycoproteins according to 2 

a well-defined sequential process, one of which is the primary binding (Serres et al., 2008). 3 

The sperm-binding activity in pigs has been mapped to the neutral tri and tetra-antennary 4 

complex N-glycans of ZPB expressing nonreducing terminal β-galactosyl residues (Kudo et 5 

al., 1998; Yonezawa et al., 2005).  6 

Upon ejaculation, sperm cell surface is coated with extracellular glycoproteins that form a 7 

protective layer and stabilize the sperm cell. Sperm surface coating factors are believed to 8 

mask underlying proteins involved in (i) sperm-ZP binding and (ii) especially in pigs, docking 9 

of the acrosome required for the initiation of the acrosome reaction (Gadella, 2013). This step 10 

has a vital purpose in pigs and some other mammals as reviewed in Suarez (2008). To be able 11 

to selectively recognize ZP, the sperm must undergo the capacitation process, during which, 12 

sperm ZP-binding proteins are ordered in functional protein complexes that only emerge at 13 

the apical tip of the sperm head plasma membrane; the exclusive area involved in primary ZP 14 

binding (Boerke et al., 2008). Capacitated porcine spermatozoa exhibit stable docking of the 15 

acrosome to the plasma membrane, preparing the sperm for the acrosome reaction (Tsai et al., 16 

2010). The physiological execution of the acrosome reaction is a later event, and just recently, 17 

it has become less clear where this event is initiated. 18 

Characterization of the molecules that mediate primary recognition and adhesion to ZP still 19 

remains a difficult task. Several putative ZP receptors have been identified in pig, including 20 

spermadhesins AWN and AQN-3 as well as P47 (lactadherin) and the short Fn-2 type protein 21 

pB1 (also pAIF) and carbonyl reductase (Ensslin et al., 1995; van Gestel et al., 2007). These 22 

data support the current concept of a multiple receptor involved in primary binding, thereby 23 

the contributing proteins may act sequentially or synergistically. 24 
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Over the last few decades, one of the central dogmas of the fertilization process in mammals 1 

has been that one capacitated, acrosome-intact sperm bind to the ZP and then undergo 2 

acrosomal exocytosis (Saling et al., 1979). Recent experiments suggest that sperm binding to 3 

ZP is not sufficient to induce acrosomal exocytosis, and instead of ZP-triggered acrosomal 4 

exocytosis, Baibakov et al. (2007) proposed a mechanosensory mechanism that involved i) 5 

the binding of acrosome-intact sperm to the ZP surface, followed by ii) the loss of the 6 

acrosome as the sperm penetrate the ZP. Furthermore, Jin et al. (2011) made a 7 

groundbreaking observation that in the mouse at least, instead of the ZP, the cumulus appears 8 

to be the physiological inducer of the acrosome reaction. This was also observed earlier in 9 

pigs (Mattioli et al., 1998).  Other inducers of acrosome reaction are progesterone (Melendrez 10 

et al., 1994) as well as estrogens (Děd et al., 2010).,  11 

Acrosomal exocytosis ensures the exposure and release of soluble and acrosomal matrix 12 

proteins. Still actual model of the penetration process includes alternating cycles of i) binding 13 

of the acrosome-reacted sperm to the ZP (secondary binding), ii) limited proteolysis of the 14 

matrix and iii) release of the sperm and penetration ensued by the sperm forward motility 15 

(O´Rand et al., 1986). Acrosin was believed to be the main participant of this model, 16 

however, skepticism came from the observation that mice sperm null for proacrosin were able 17 

to penetrate ZP and to fertilize the egg (reviewed by Honda et al., 2002). 18 

Membrane molecules, which are main ZP-binding candidates, often represent minor 19 

components in total cellular extracts, therefore sophisticated isolation approaches must be 20 

used. Approaches for selective isolation of the surface subproteome must have therefore been 21 

developed- including nitrogen cavitation (Canvin and Buhr, 1989; Flesch et al., 1998; 22 

Bongalhardo et al., 2002), isolation of proteins associated with detergent-resistant membranes 23 

(DRM) (Cross, 2004; van Gestel et al., 2005 and Girouard et al., 2008), or affinity isolation of 24 

tagged proteins. A promising technique involving tagging the surface molecules with sulfo-25 
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NHS-SS-Biotin [Sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate] was 1 

introduced by Zhao et al. (2004). This approach was successfully implemented for 2 

identification of new potential ZP-binding candidates (Belleane et al., 2011; Zigo et al., 3 

2013). Numerous studies have characterized sperm membrane receptors responsible for the 4 

binding to ZP in various animals, reviewed in Tanphaichtir et al., (2007). 5 

The purpose of this study was to develop an alternative tool for monitoring and identification 6 

of ZP-“binding” receptors. This tool comprises a panel of monoclonal antibodies raised 7 

against proteins from the sperm surface. The following goals were defined: (i) preparation of 8 

the panel of monoclonal antibodies and their testing on epididymal, ejaculated and capacitated 9 

sperm for the protein localization; (ii) localization of the proteins recognized by the panel in 10 

selected reproductive tissues and fluids; (iii) screening for co-incidence in binding of the 11 

proteins recognized by the panel with ZP glycoproteins; (iv) use of the panel for 12 

immunoprecipitation of selected proteins that coincide in ZP binding; (v) sequencing of the 13 

precipitated proteins. 14 

 15 

2. Materials and Methods 16 

 17 

Collection of biological fluids, spermatozoa and tissues from boar reproductive organs 18 

Boar ejaculates from 12 adult animals were obtained from the breeding station PROAGRO 19 

Nymburk (Nymburk, Czech Republic) and pooled together to obtain representative “sample”. 20 

Ejaculates were centrifuged (400g, 20 min) to separate seminal plasma from spermatozoa. 21 

Spermatozoa were washed three times with phosphate-buffered saline (PBS) and centrifuged 22 

for 10 min at 400g. Washed sperm samples were used for protein extraction and 23 

immunofluorescence.  24 
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For the experiments, reproductive fluids and reproductive and non-reproductive organ tissues 1 

from five adult fertile boars were collected immediately post-mortem from the Breeding 2 

Institute of Animal Physiology and Genetics Liběchov, Academy of Sciences of the Czech 3 

Republic, v.v.i., Czech Republic. Boar epididymal fluid together with epididymal 4 

spermatozoa were obtained from the epididymal duct by injection and extrusion of the fluid. 5 

Epididymal fluid with spermatozoa was centrifuged for 20 min at 600g. Spermatozoa were 6 

washed four times with PBS and then centrifuged for 15 min at 400g. 7 

Boar seminal vesicle fluid was obtained by the following procedure. The seminal vesicles, 8 

separated from connective tissue, were cut away from the urethra and the secretions were 9 

collected by applying pressure. After centrifugation (3,500g, 15 min, 4°C), the supernatant 10 

was frozen and stored at -25°C. 11 

Tissues of boar urogenital tract (from the testes and prostate) and tissue obtained from non-12 

reproductive organ (kidneys) were homogenized in Tris-buffered solution (pH 7.8, 30 mM 13 

Tris, 50 mM KCl, 1% (v/v) Triton X-100) by homogenizer Precellys 24 (Bertin Technologies, 14 

Montigny-le-Bretonneux, France) according to the manufacturer’s protocol. Homogenates 15 

were centrifuged (20,000g, 4°C) and supernatants were stored at -25°C. 16 

 17 

Sperm capacitation 18 

Sperm capacitation was done as described in Zigo et al. (2011); briefly, fresh boar ejaculates 19 

diluted in KORINAT I (14.3 mM sodium bicarbonate, 12.25 mM sodium citrate, 364 mM 20 

glucose, and 12.3 mM EDTA; pH 7.5) were centrifuged at 400g. The sperm pellet was 21 

washed with Tris-buffered saline (TBS; 50 mM Tris, 150 mM NaCl, pH 7.4) to remove 22 

dilutor components, layered on a 40-80% (v/v) discontinuous Percoll gradient (Sigma-23 

Aldrich, St. Louis, MO, USA) and centrifuged at 200g for 45 min. After centrifugation, the 24 

80% (v/v) layer was diluted in ten times diluted Tyrode’s buffer medium (TBM) (pH 7.7; 25 
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20 mM Tris, 113.1 mM NaCl, 3 mM KCl, 10 mM CaCl2, 11 mM glucose) (Sigma), 5 mM 1 

pyruvic acid (Sigma), 1 ampoule of gentamycin (80 mg/2 ml) (Lek Pharmaceuticals, 2 

Ljubljana, Slovenia), and the cells were washed again. The washed spermatozoa were 3 

resuspended in TBM, supplemented with 1 mg/ml of bovine serum albumin SL 5 grade 4 

(Serva, Heidelberg, Germany), and capacitated (4 h, 37°C, 5% (v/v) CO2) (Berger and Horton 5 

1988). Sperm samples after capacitation were used for protein extraction and 6 

immunofluorescence. 7 

Sperm stages, before and after capacitation, were studied by indirect immunofluorescence 8 

with the use of monoclonal antibody against intra-acrosomal protein proacrosin/acrosin (Acr-9 

2), as described previously by Děd et al. (2010). Non-capacitated, capacitated, and acrosome-10 

reacted sperm were counted from the total of 200 random sperm in both ejaculated and in 11 

vitro capacitated sperm samples. In the ejaculated boar samples (before capacitation), the 12 

average count of non-capacitated sperm was 78%; while in the samples after capacitation, the 13 

average count of capacitated sperm was 70% (Fig. S1), which corresponded to the previous 14 

results Děd et al. (2010).  15 

 16 

Preparation of solubilized zona pellucida 17 

Solubilized ZP was prepared as described in Zigo et al. (2013); briefly, porcine ovaries were 18 

obtained from slaughtered adult sows from the slaughterhouse in Český Brod (Czech 19 

Republic). Oocytes were released from frozen porcine ovaries in a meat grinder with ice-cold 20 

saline (0.15 M NaCl) and the homogenate was sieved through nylon screens as described by 21 

Hedrick and Wardrip (1986). The oocytes were purified by centrifugation in a discontinuous 22 

Percoll gradient (Sigma) (Hokke et al. 1994), collected from the 0-10% (v/v) interface, 23 

washed in distilled water, and gently homogenized using a small glass homogenizer. Zona 24 

pellucida particles were collected on a 40 µm screen and repeatedly washed with saline. 25 
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Isolated zonae pellucidae were heat solubilized in 0.2 M NaHCO3, pH 9 at 73°C for 30 min, 1 

and centrifuged at 350g for 10 min. The supernatant was used for biotinylation. 2 

 3 

Biotinylation of zona pellucida glycoproteins 4 

ZP glycoproteins were biotinylated as described in Zigo et al. (2013); briefly, solubilized zona 5 

pellucida was incubated with 0.4% (w/v) N-hydroxysuccinimidobiotin (Sigma) in 6 

dimethylformamide (Sigma) for 30 min at room temperature (Jonáková et al. 1998). Zona 7 

pellucida glycoproteins were dialyzed in a Spectra/Por MWCO 6/8000 membrane (Spectrum 8 

Medical, Laguna Hills, CA, USA) against phosphate-buffered saline (PBS; 20 mM phosphate, 9 

150 mM NaCl, pH 7.2) overnight and stored at -25°C. 10 

 11 

Isolation of proteins from the sperm, preparation of protein extracts from tissues and 12 

fluids 13 

The isolation of proteins from the sperm surface was done as described in Zigo et al. (2013); 14 

briefly, a Thermo Scientific Pierce Cell Surface Protein Isolation kit (Rockford, IL, USA) was 15 

used according to the manufacturer’s protocol. In this method, mammalian cells were first 16 

labeled with EZ-Link Sulfo-NHS-SS-Biotin, a thiol-cleavable amine-reactive biotinylation 17 

reagent. Cells were subsequently lysed with a mild detergent, and labeled proteins were then 18 

isolated with Immobilized NeutrAvidin Gel (agarose beads). The bound proteins were 19 

released by incubation with a SDS-PAGE sample buffer (50 mM Tris buffer titrated by HCl 20 

to pH 6.8, 1% (v/v) glycerol, 2% (w/v) SDS (Sigma), 0.002% (w/v) bromophenol blue) 21 

containing 50 mM DTT (Sigma). The release of the bound proteins was completed on a 22 

multiple NeutrAvidin Gel column to achieve satisfactory protein yields (this is an extension of 23 

the manufacturer’s protocol). Samples were stored at -25°C prior to use. 24 
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The whole sperm extracts from the ejaculated and capacitated sperm (50 μl of sperm 1 

suspensions) were mixed with a SDS-PAGE sample buffer containing 50 mM DTT (Sigma), 2 

vortexed and left to boil for 5 min. Sperm suspensions were centrifuged at 20,000g for 2 min 3 

at 4°C. Supernatants were stored at -25°C. 4 

Prior to use, protein extracts from the sperm surface, whole sperm extracts, extracts from 5 

reproductive and non-reproductive tissues and collected fluids (epididymal, seminal vesicle 6 

and seminal plasma) were refined with 2-D Clean-Up Kit (GE Healthcare, Piscataway, NJ, 7 

USA) and all refined proteins were resuspended in SDS-PAGE sample buffer containing 8 

50 mM DTT (Sigma). 9 

 10 

Preparation of the panel of monoclonal antibodies against proteins from the sperm 11 

surface 12 

Prior to immunization, boar sperm surface protein extract was clarified by using Zeba 13 

desalting spin columns (Thermo Scientific) to remove excessive detergent and DTT, and used 14 

for immunization of BALB/c mice (AnLab, Prague, Czech Republic). Three females were 15 

immunized subcutaneously with 50 g of sperm surface protein extract each in complete 16 

Freund`s adjuvant (Sigma) followed by three additional immunizations with antigen in 17 

incomplete Freund`s adjuvant in two-week intervals. After three weeks, the final boost 18 

injection was performed intraperitoneally with no adjuvant followed by myeloma Sp2/0 and 19 

spleen cell fusion three days later according to the basic procedure (Harlow and Lane, 1988). 20 

Positive clones were selected by indirect immunofluorescence on boar sperm cells. 21 

Hybridoma cells producing antibodies recognizing the apical part of the sperm head were 22 

subcloned and frozen for further use. 23 

 24 

Sodium dodecyl polyacrylamide electrophoresis (SDS-PAGE), Western blotting 25 
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Protein extracts from the sperm, reproductive and non-reproductive tissues and collected 1 

fluids (epididymal, seminal vesicle and seminal plasma) obtained in the SDS sample buffer 2 

were used for one dimensional electrophoresis (1-DE), which is a method for separation and 3 

analysis of macromolecules, based on their size and charge. SDS-PAGE was carried out as 4 

previously described by Laemmli (1970). A 7-21% (w/v) gradient gel slab was used and run 5 

in a MiniProtean IV apparatus (Bio-Rad, Hercules, CA, USA). The concentration of 6 

bisacrylamide was 0.19-0.56% (w/v), while the concentration of acrylamide was 6.81-20.44% 7 

(w/v) from a total of 7-21% (w/v). 15 μg of total protein was loaded per well. The molecular 8 

masses of the separated proteins were estimated by using prestained Precision Plus Protein 9 

Standards All Blue from Bio-Rad (Hercules, Calif., USA) run in parallel. 10 

Tris-glycine buffer (pH 9.6) with 20% (v/v) methanol was used for the transfer of proteins 11 

separated by SDS-PAGE onto a PVDF Immobilon Transfer Membrane (Millipore, Bedford, 12 

MA, USA) for immunodetection. Electroblotting was carried out for 1.5 h at 500 mA, 13 

according to the method described by Towbin et al. (1979). 14 

 15 

Protein immunodetection 16 

The PVDF membrane (Millipore) with the transferred proteins was blocked with 1.5% (w/v) 17 

teleostean fish gelatin (Sigma) in PBS for 3 h. After washing with 0.05% (v/v) Tween 20 18 

(Serva) in PBS, the membrane was incubated with primary antibodies from the panel of 19 

monoclonal antibodies against sperm surface proteins (diluted 1:50 – 1:200 in PBS) at 4°C 20 

overnight. Following a washing step, incubation was performed for 1 h at 37°C with goat 21 

anti-mouse immunoglobulins coupled to horseradish peroxidase (Sigma) diluted 1:12,000 in 22 

PBS. After washing, a chemiluminescent substrate, SuperSignal (Thermo Scientific), was 23 

applied and the blot was screened with ImageQuant LAS4000 (GE Healthcare) to visualize 24 
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the corresponding interaction bands. Where not mentioned, procedures were carried out at 1 

room temperature. Blots were afterwards stained with Comassie Brilliant Blue (CBB; Serva). 2 

 3 

Far-Western blot with biotinylated zona pellucida glycoproteins 4 

Far-Western blot is derived from the standard Western blot method to detect protein-protein 5 

interactions in vitro. Far-Western blot with biotinylated ZP glycoproteins was done as 6 

described in Zigo et al. (2013); briefly, the PVDF (Millipore) membrane with the transferred 7 

proteins was deactivated with 1% (w/v) teleostean fish gelatin (Sigma) in PBS for 4 h at room 8 

temperature. After washing with 0.02% (v/v) Tween 20, 1 mM CaCl2 in PBS (pH 7.2), the 9 

membrane was incubated with biotin-labeled glycoproteins of porcine zona pellucida (gpZP) 10 

(100 μg/ml in PBS) at 4°C overnight. Following washing, incubation was performed for 0.5 h 11 

at 37°C with 0.1 μg/ml of avidin-peroxidase solution (Sigma) in PBS. After washing, a 12 

chemiluminescent substrate, SuperSignal (Thermo Scientific), was applied and the blot was 13 

screened with ImageQuant LAS4000 (GE Healthcare) to visualize the corresponding 14 

interaction bands. Blots were afterwards stained with CBB (Serva). 15 

The origin of the sperm surface subproteome was checked with the Western blot detection of 16 

acrosin and within the limit of detection of this method, acrosin was present only in the 17 

avidine non-bound fraction after incubation of biotinylated sperm extract with avidine agarose 18 

beads. These results were previously published in Zigo et al. (2013). 19 

 20 

Immunoprecipitation  21 

Protein extract (500 μg), dissolved in modified RIPA buffer (pH 7.2, 10 mM sodium 22 

phosphate, 150 mM NaCl, 1% (v/v) Triton X-100, 1% (w/v) sodium deoxycholate, 0.1% 23 

(w/v) SDS, 1 mM DTT) (Sigma) with proteinase inhibitor cocktail Complete Mini (Roche, 24 

Mannheim, Germany), from capacitated boar sperm was incubated with monoclonal 25 
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antibodies against sperm surface proteins (from the panel) in RPMI-1640 medium (Sigma) in 1 

a 7:4 volume ratio (700 μl to 400 μl) overnight at 4°C. Then, 50 μl of Protein G-Sepharose 2 

beads (GE Healthcare) was added and incubated for 4 h at 4°C. After centrifugation at 1,000g 3 

for 1 min, protein G beads were washed six times with 200 μl PBS with 0.05% (v/v) Tween 4 

20 (Serva) and centrifuged at 1,000g for 1 min. SDS-PAGE sample buffer containing 50 mM 5 

DTT (Sigma) was then added and the beads were boiled for 5 min and then centrifuged at 6 

5,000g for 10 min. 7 

Supernatants were subjected to SDS-electrophoresis and the corresponding protein bands 8 

were detected with specific antibody on PVDF membranes. Immunoprecipitated proteins 9 

were subjected to  mass spectrometric analysis. 10 

 11 

Proteolytic digestion, sample preparation, and mass spectrometric analysis 12 

The protein spots destaining, cysteine residue modification, proteolytic digestion, peptide 13 

extraction and sample preparation for mass spectrometry was performed as described 14 

previously (Sulc et al. 2009). The protein digestion was carried out in a cleavage buffer 15 

containing 0.05 M 4-ethylmorpholine acetate, 10% (v/v) acetonitrile and sequencing grade 16 

trypsine endoprotease (Promega, 50 ng/µl) overnight at 37°C. The resulting peptides were 17 

extracted with 40% (v/v) acetonitrile/0.1% (v/v) trifluoroacetic acid (TFA). After extraction, 18 

the peptides were directly diluted in 0.1% (v/v) TFA and subjected to a R3 microcolumn 19 

(Applied Bioscience, Foster City, CA, USA) pre-equilibrated with 0.1% (v/v) TFA. After 20 

desalting with the 0.1% (v/v) TFA solution, the peptides were directly eluted with a 5 mg/ml 21 

solution of α-cyano-4-hydroxy-cinnamic acid in 50% (v/v) acetonitrile/0.1% (v/v) TFA from 22 

the R3 microcolumn on the MALDI target; and the droplets were allowed to dry at ambient 23 

temperature. 24 
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Mass spectra were measured in an ultraFLEX III matrix-assisted laser desorption/ionization 1 

reflectron time-of-flight (MALDI-TOF/TOF) mass spectrometer (BrukerDaltonics, Bremen, 2 

Germany) equipped with a nitrogen laser (337 nm). Spectra were calibrated externally using 3 

the monoisotopic [M+H]
+
 ion of peptide standards PepMix I (Bruker). The positive MALDI-4 

TOF spectra and MS/MS LIFT spectra of the selected m/z signals were collected in reflectron 5 

mode to identify the proteins. MALDI-TOF MS and MS/MS spectra were interpreted using 6 

the MASCOT software engine (http://www.matrixscience.com/). 7 

 8 

Indirect immunofluorescence technique – localization of the proteins on the surface of 9 

epididymal, ejaculated and capacitated sperm 10 

Indirect immunofluorescence for localization of proteins of interest recognized with the panel 11 

of monoclonal antibodies on the surface (non-permeabilized membrane) of epididymal, 12 

ejaculated and capacitated sperm was used to assess the presence/absence and potential 13 

redistribution of these proteins during their individual states. Sperm suspensions were 14 

smeared onto glass slides and left to desiccate at ambient temperature. Primary antibodies 15 

from the panel were applied. Slides were left to incubate for 1 h at 37°C in a moist chamber. 16 

After washing, incubation was carried out with a secondary antibody against the mouse IgG 17 

Fc fragment, conjugated with fluorescein isothiocyanate (FITC; Sigma) diluted 1:160 in PBS, 18 

for 1 h at 37°C. Finally, after washing with PBS and distilled water, slides were incubated for 19 

12 min with 1.5 μg/ml of VectaShield-DAPI (Vector Laboratories, Burlingame, CA, USA). 20 

Samples were viewed and evaluated with a Nikon Eclipse E400 fluorescent microscope with a 21 

100x Nikon Plan Fluor lens and a VDS CCD-1300 camera (VDS Vosskuhler, Osnabruck, 22 

Germany) with the aid of LUCIA imaging software (Laboratory Imaging, Prague, Czech 23 

Republic). In the controls, a non-sense primary antibody with the matched immunoglobulin 24 

http://www.matrixscience.com/


77 

 

subclass at the same concentration as the test antibody was used, and the procedure was 1 

followed as previously described; no reactions were observed (data not shown). 2 

Additionally a control to validate surface labeling by the antibodies to a known internal 3 

antigen – β tubulin, and phosphotyrosine, was performed to exclude the possibility that air-4 

dried sperm smears could have cracked or perfarated membranes so that antibodies could gain 5 

access to internal proteins. This control study is included in the electronic supplementary 6 

material.  7 

 8 

3. Results and Discussion 9 

 10 

Panel of monoclonal antibodies against proteins from the sperm surface 11 

A panel of monoclonal antibodies against sperm surface proteins was prepared. The reason 12 

why we decided to operate with the surface subproteome and not the whole sperm proteome 13 

was to increase our chances in obtaining antibodies against surface proteins, as these proteins 14 

often represent minor components in total cellular extracts. The panel comprised 17 15 

antibodies listed in Table 1, which also summarizes the performed experiments. Using the 16 

indirect immunofluorescence technique, of the total number of 17 antibodies two did not 17 

recognize and four recognized parts of the sperm tail, and the rest of the antibodies stained the 18 

apical region of the sperm head (Table 1), where the primary receptors for ZP binding are 19 

located (Boerke et al., 2008). Therefore, the six above-mentioned antibodies were excluded 20 

from the panel. The next question was whether the remaining 11 antibodies were robust 21 

enough to detect the protein of interest also by Western blotting. Table 1 shows clearly that 22 

out of 11 antibodies recognizing the acrosomal part of the sperm head by indirect 23 

immunofluorescence, eight also detected the protein of interest by Western blot detection 24 

(corresponding molecular masses of proteins recognized by the remaining eight antibodies are 25 
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listed in Table 1). These eight monoclonal antibodies recognizing the acrosomal part of the 1 

sperm head and detecting the proteins of interest by Western blot were further studied and 2 

they are discussed in the following text and electronic supplementary material. 3 

Recently the model of primary binding ensued by the induction of acrosome reaction has 4 

become disputant, as it was found in mice that majority of the sperm reaching ZP are already 5 

acrosomally reacted, and the acrosomal exocytosis is probably induced by cumulus (Jin et al., 6 

2011). However, without knowing the exact locations where acrosomal exocytosis occurs 7 

during the course of normal fertilization, a role of the ZP in stimulating or inducing this sperm 8 

secretory event cannot be excluded. It may be likely that during the biogenesis of the ZP 9 

within the ovarian follicle, ZP proteins diffuse into the extracellular of the cumulus cells 10 

surrounding the oocyte, either by not being incorporated into the particulate zona during 11 

assembly or by the slight degradation of ZP proteins after insertion into the zona. Further 12 

studies are required to investigate this possibility. 13 

 14 

Antibody recognizing the protein of 45 kDa – 4C7 15 

The monoclonal antibody from the panel termed 4C7, recognizing the protein of molecular 16 

mass ~45 kDa, was further studied. Using indirect immunofluorescence, the protein 17 

recognized by 4C7 antibody was localized on the surface of non-permeabilized sperm. This 18 

protein was present both on ejaculated (Fig, 1a, ii) and capacitated sperm (Fig, 1a, iii), but not 19 

on the surface of epididymal sperm (Fig. 1a, i). The signal was relatively strong on both 20 

ejaculated and capacitated sperm. Additionally, we searched for the origin of this protein in 21 

reproductive tissues and fluids. The result is depicted in Fig. 1b, clearly showing that the 22 

protein recognized by 4C7 antibody was present solely on the surface of both ejaculated and 23 

capacitated sperm (Fig. 1b – lanes 1), but in no other location. The whole sperm proteome 24 

extracts (Fig. 1b – lanes 2) and extract from the kidney (Fig. 1b – lane 8) served as positive 25 
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and negative controls, respectively. The molecular mass shifts of the proteins isolated from 1 

the sperm surface towards higher masses with respect to proteins isolated from the whole 2 

sperms are due to biotinylation. Next, we studied whether the protein recognized by 4C7 3 

antibody could bind ZP glycoproteins. We employed Far-Western blot assay of proteins 4 

isolated from the sperm surface with ZP glycoproteins and the interactions were compared 5 

with Western blot detections. Depicted results in Fig. 1c show clearly that the protein 6 

recognized by 4C7 antibody coincides in binding to the zona pellucida at the molecular mass 7 

of 49 kDa. The interaction was more apparent with capacitated sperm (Fig. 1c – lane C) than 8 

with ejaculated sperm (Fig. 1c – lane E), which can be attributed to greater abundance of the 9 

protein in the capacitated fraction. Prior to mass spectrometry analysis, the protein was 10 

immunoprecipitated for higher purity and concentration and the immunoprecipitate was tested 11 

by Western blot (Fig. 1d). After SDS-PAGE, the protein band was located just under the 12 

heavy chain (50 kDa) of the 4C7 antibody, which was further confirmed by Western blotting 13 

(Fig. 1d), and the third signal belonged to the light chain (25 kDa) of the 4C7 antibody. 14 

Protein of interest was identified after in-gel proteolysis and following MS and MS/MS 15 

analysis of formed peptides using the Mascot Peptide Mass Fingerprint tool to be an acrosin 16 

precursor (EC 3.4.21.10) (gi|164703 from Sus scrofa, with MW 46 kDa, pI 9.66), significant 17 

probability Mowse score 164 (protein scores greater than 72 are significant (p<0.05), 18 

sequence coverage 34%, matched 10 from 13 searched m/z values). The acrosin precursor 19 

identification was confirmed using MS/MS Ion Search of acquired MS/MS spectra at m/z 20 

2578.389 (probability Mowse score 96, scores greater than 34 are significant (p<0.05), mass 21 

error 7.0 ppm, identified sequence R.LIFGANEVVWGSNKPVKPPLQER.F) and m/z 22 

2139.089 (probability Mowse score 98, scores greater than 40 are significant (p<0.05), mass 23 

error 3.5 ppm, identified sequence K.RPGVYTSTWPYLNWIASK.I), respectively). 24 
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The identified protein is a major component of the acrosomal content, localized both in the 1 

inner acrosomal membrane and acrosomal matrix, and playing a role in reproduction as a 2 

secondary binding receptor to the ZP (Tesařík et al., 1988; Jones and Williams, 1990; Töpfer-3 

Petersen and Calvete, 1995; 1996). It has been shown in mice that knockout of the acrosin 4 

gene does not affect fertility (Baba et al., 1994), although it may provide a competitive 5 

advantage to wild-type relative to acrosin-null mouse sperm by promoting dispersion of the 6 

acrosomal matrix (Adham et al., 1997; Yamagata., 1998). In domestic animals such as the 7 

pig, having oocytes surrounded by a thick ZP (16-20 μm), acrosin seems to essentially 8 

contribute to the secondary binding interaction and sperm penetration through the ZP (Töpfer-9 

Perersen et al., 2008).This is not the first time we detected acrosin on the surface of ejaculated 10 

and capacitated sperm (Zigo et al., 2013). The explanation may be that in both ejaculated and 11 

capacitated sperm samples, acrosomally reacted sperm were also present (unpublished results) 12 

and the released acrosin remained adherent to the sperm surface regardless of washing (Straus 13 

et al., 1981; Straus and Polakoski, 1982). At this point we believe that the presence of 14 

proacrosin/acrosin on the surface of the sperm, preferentially capacitated (Fig. 1b), is not 15 

coincidental, and the spontaneous (false) acrosome reaction also has its meaning in the 16 

process of fertilization. We suggest that a portion of sperm, which undergo spontaneous 17 

acrosome reaction has also its physiological function that may allow the released 18 

proacrosin/acrosin adhere to other acrosomaly non-reacted sperm. The ability of acrosin to 19 

bind ZP is not a new attribute. Acrosin was shown to participate in the secondary binding of 20 

the sperm to oocyte in multiple animal models (with acrosin localization on the inner 21 

acrosomal membrane). This is why it is at least very interesting why acrosin is present also on 22 

the surface of sperm. Acrosin will certainly bind ZP also on the sperm surface, but the 23 

purpose of this will be different from the secondary binding of the sperm to oocyte. In this 24 

case, we presume that acrosin would most probably participate as a mediating molecule or 25 
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even as a primary binding molecule. However, further experiments are required to confirm 1 

this hypothesis. 2 

 3 

 Antibody recognizing the protein of 24 and 27 kDa – 5C5  4 

The monoclonal antibody termed 5C5 from the panel recognizing the protein of molecular 5 

masses ~24 kDa and 27 kDa was further studied. Using immunofluorescence, the protein 6 

recognized by 5C5 antibody was localized on the surface of non-permeabilized sperm. The 7 

protein was present on the surface of all – epididymal, ejaculated, and capacitated sperm. The 8 

detected signal was strong in case of capacitated sperm (Fig. 2a, iii), while in epididymal (Fig. 9 

2a, i) and ejaculated sperm (Fig. 2a, ii) was of medium strength. Additionally, we searched for 10 

the origin of this protein in reproductive tissues and fluids. The result is depicted in Fig. 2b, 11 

showing clearly that the protein is present only on capacitated sperm, with only the 24 kDa 12 

form present, with no signal on ejaculated sperm (Fig. 2b – lanes 1). The protein originates 13 

from epididymal fluid, where both 24 and 27 kDa forms are present (Fig. 2b – lane 4). The 14 

whole sperm proteome extracts (Fig. 2b – lanes 2) and extract from the kidney (Fig. 2b – lane 15 

8) served as positive and negative controls, respectively. Extraction of proteins from 16 

ejaculated and capacitated sperm with SDS yielded both 24 and 27 kDa forms of the protein 17 

(Fig. 2b – lanes 2). The extraction conditions during isolation from the sperm surface allowed 18 

us to obtain only the 24 kDa form from the surface of capacitated sperm only (Fig. 2b – lanes 19 

1). Overall, this suggests that during the passage via epididymis the protein recognized by the 20 

5C5 antibody is integrated from the epididymal fluid into the surface of the sperm. Further, 21 

we were unable to detect the protein by Western blot during ejaculation, when the proteins 22 

from seminal plasma are bound to the sperm surface and make the protein of interest 23 

inaccessible to biotinylation. During capacitation, when the bound proteins are released from 24 

the sperm surface, the protein was biotinylated and observed. However, the fact that only the 25 
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24 kDa form was obtained by the method for isolating proteins from the sperm surface 1 

indicates that the 27 kDa form is firmly anchored in the sperm plasma membrane.  2 

We next investigated whether the protein recognized by 5C5 antibody could bind ZP 3 

glycoproteins. As previously, we also used the Far-Western blot with ZP glycoproteins, but 4 

with the whole sperm proteome because the protein was more abundant in these extracts, as 5 

evidenced by Fig. 2b. The interactions were compared with Western blot detections. The 6 

results are depicted in Fig. 2c, showing that the protein recognized by 5C5 antibody coincides 7 

in binding to zona pellucida of capacitated sperm (lane C) at the molecular mass of 24 kDa. 8 

The interaction is more apparent with capacitated sperm (Fig. 2c – lane C) than with 9 

ejaculated sperm (Fig. 2c – lane E), which again can be attributed to greater abundance of the 10 

protein in the capacitated fraction (Fig. 2b). We assume that the 27 kDa form also coincides in 11 

binding to zona pellucida, but the direct statement based on Fig 2c is rather speculative. We 12 

were not able to clarify this even after multiple Far-Western blot assays, and we therefore 13 

concentrated only on the 24 kDa form. Prior to mass spectrometry analysis, the protein was 14 

immunoprecipitated for higher purity and concentration and the immunoprecipitate was tested 15 

by Western blot (Fig. 2d). After SDS PAGE, the protein band was located under the light 16 

chain of the 5C5 antibody, which was further confirmed by Western blotting (Fig. 2d), and 17 

the third signal of 50 kDa belonged to the heavy chain of the 5C5 antibody. Protein of interest 18 

was identified after in-gel proteolysis and following MS and MS/MS analysis of formed 19 

mixture of peptides using the Mascot Peptide Mass Fingerprint tool to be a ras related protein 20 

RAB-2A (gi|311253799 from Sus scrofa, with MW 24 kDa, pI 6.08), significant probability 21 

Mowse score 91 (protein scores greater than 76 are significant (p<0.05), sequence coverage 22 

31%, matched 5 from 7 searched m/z values). The protein identification was confirmed using 23 

MS/MS Ion Search of acquired MS/MS spectra at m/z 1550.739 (probability Mowse score 24 

103, scores greater than 45 are significant (p<0.05), mass error 12.8 ppm, identified sequence 25 



83 

 

K.LQIWDTAGQESFR.S) and m/z 1785.894 (probability Mowse score 118, scores greater 1 

than 45 are significant (p<0.05), mass error 3.52 ppm, identified sequence 2 

R.FQPVHDLTIGVEFGAR.M), respectively). 3 

RAB proteins belong to a subgroup of the Ras superfamily, whose four members were first 4 

identified in the brain (Touchot et al., 1987). Presently, the RAB family includes over 60 5 

members in the human genome (Bock et al., 2001), thus becoming the largest branch of the 6 

Ras-related family of low-molecular-weight GTP-binding proteins. RAB proteins have been 7 

shown to play an essential role as regulators of vesicular transport pathways (Pereira-Leal and 8 

Seabra, 2000; 2001). They are involved in many stages of vesicular transport including 9 

vesicle formation, actin- and tubulin-dependent vesicle movement, and targeting to and fusion 10 

with membranes (Stenmark and Olkkonen, 2001), enabling them to accomplish a diverse set 11 

of functions by interacting with a multitude of effectors. When RABs are first produced, they 12 

are prenylated by the addition of one or two 20-carbon geranylgeranyl moieties to the 13 

protein’s carboxyl terminus (Stenmark and Olkkonen, 2001), which are used to anchor the 14 

RABs into membranes. Multiple targeting determining regions and factors contribute to the 15 

specificity and regulation of RAB recruitment and localization (Ali and Seabra, 2005). RAB2 16 

proteins are typically found between the cis-Golgi saccule and the endoplasmic reticulum 17 

(Stenmark and Olkkonen, 2001). In this cytosolic location, they are normally involved in 18 

orchestrating both anterograde and retrograde transport between these two membrane 19 

compartments (Short et al., 2001; Cheung et al., 2002). However, recently it was found that 20 

RAB-2A may also participate in events localized within the germ cell. Mountjoy et al. (2008) 21 

demonstrated that RAB-2A protein is involved in acrosomal biogenesis, where it regulates the 22 

transport and fusion of small secretory vesicles to the growing proacrosomic and acrosomic 23 

vesicles and ensures their fusion. After completion of acrosomal biogenesis, RAB-2A serves 24 

as a part of the perinuclear theca protein complex that binds the acrosome firmly to the 25 
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nucleus, thus stabilizing the acrosome. Additionally, Mountjoy et al. (2008) also showed the 1 

difference in orientation or cellular polarity of the Golgi apparatus in the spermatid versus the 2 

somatic cell.  3 

We found the RAB-2A protein on the surface of boar sperm. To our knowledge, we were the 4 

first to detect its presence in the pig germ cell. In contrast to Mountjoy et al. (2008), we 5 

detected the RAB-2A protein on the surface of the sperm plasma membrane. 6 

Immunofluorescent microscopy study revealed that RAB-2A was localized on the surface of 7 

all epididymal, ejaculated and capacitated sperm. Extraction of the whole sperm proteome 8 

showed that two forms of RAB-2A are present in the pig sperm – of 24 and 27 kDa. The 9 

presence of more than one RAB-2A form may be explained by hypervariability of the C-10 

terminal domain, as shown in Chavrier et al. (1991). However, only the 24 kDa form was 11 

obtained from the surface subproteome, and from capacitated sperm only. We believe that the 12 

27 kDa form, in contrast to 24 kDa form, possesses additional geranylgeranyl moieties, as 13 

previously shown in RAB proteins (Stenmark and Olkkonen, 2001), and therefore is more 14 

resistant to the isolation under mild conditions. As previously described, RAB-2A originates 15 

from the epididymal fluid. Considering that RAB proteins are commonly prenylated to be 16 

anchored in the membranes, the most probable way how RAB-2A is secreted into the 17 

epididymal lumen is through the membranous secretory vesicles – exosomes called 18 

epididymosomes, reviewed in Simpson et al. (2008). Epididymosomes are small membranous 19 

vesicles secreted in an apocrine manner in the intraluminal compartment of the epididymis 20 

and play a major role in the acquisition of new proteins by the maturing spermatozoa 21 

(Sullivan et al. 2007). Despite that the association of RAB-2A protein with epididymosomes 22 

has not yet been proved, Girouad et al. (2011) found other RAB family proteins to be 23 

associated with this membranous vesicles in bull. Furthermore, Utleg et al. (2003) have 24 

shown that RAB-2 proteins in humans are associated with exosomes originating from the 25 
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prostate, so-called prostasomes. The function of RAB-2A on the sperm surface still remains 1 

unsolved. According to Integrative Multi-species Prediction (Wong et al., 2012), there is 35% 2 

probability that RAB-2A has a role in reproduction, as it was predicted that RAB-2A 3 

participates in gamete generation (Mountjoy et al., 2008) with the same probability. We have 4 

shown that RAB-2A, at least its 24 kDa form, coincides in binding to ZP. However, if RAB-5 

2A can bind the ZP, it should be further clarified whether it binds as a primary ZP receptor or 6 

a primary binding-mediating molecule. 7 

  8 

Antibody recognizing the protein of 35 and 45 kDa – 1H9 9 

The monoclonal antibody termed 1H9 from the panel recognizing the protein of molecular 10 

mass ~35 and 45 kDa was further studied. Using indirect immunofluorescence, the protein 11 

recognized by 1H9 antibody was localized on the surface of non-permeabilized sperm. The 12 

protein was present both on ejaculated (Fig. 3a, ii) and capacitated sperm (Fig. 3a, iii), but the 13 

signal on the surface of epididymal sperm was absent (Fig. 3a, i). The signal was relatively 14 

strong both on ejaculated and capacitated sperm, and was shifted from the apical region of the 15 

ejaculated sperm to the postacrosomal region. We also searched for the origin of the protein 16 

recognized by 1H9 antibody in the reproductive tissues and fluids. The result is depicted in 17 

Fig. 3b, which clearly shows that the protein is present on the surface of capacitated sperm 18 

(Fig. 3b – lanes 1), and its faint signal was detected on the surface on ejaculated sperm and 19 

also in the kidney. The whole sperm proteome extracts (Fig. 3b – lanes 2) and extract from the 20 

kidney (Fig. 3b – lane 8) served as positive and negative controls, respectively.  21 

We next investigated whether the protein could bind ZP glycoproteins. Similarly as in case of 22 

4C7 and 5C5 antibodies, we employed Far-Western blot assay of proteins isolated from the 23 

sperm surface with ZP glycoproteins, and the interactions were compared with Western blot 24 

detections. The results are depicted in Fig. 3c, which clearly shows that the protein recognized 25 
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by 1H9 antibody coincides in binding to zona pellucida at the molecular masses of both 35 1 

and 45 kDa. The interaction is more apparent with capacitated sperm (Fig. 3c – lane C) rather 2 

than with ejaculated sperm (Fig. 3c – lane E), probably due to greater abundance of the 3 

protein isolated in the capacitated fraction. Prior to mass spectrometry analysis, the protein 4 

was immunoprecipitated for higher purity and concentration and the immunoprecipitate was 5 

tested by Western blot (Fig. 3d). After SDS-PAGE, the protein band was located between the 6 

heavy and light chains of the 1H9 antibody, which was further confirmed by Western blotting 7 

(Fig. 3d). Both bands of interested protein were identified after in-gel trypsinization and 8 

following MS and MS/MS analysis of formed peptides using the Mascot Peptide Mass 9 

Fingerprint tool to be a Sperm surface protein SP47 (gi|2851513 from Sus scrofa, with MW 10 

46 kDa, pI 6.15). The protein band at the molecular weight 45 kDa revealed significant 11 

probability Mowse score 235 (protein scores greater than 76 are significant (p<0.05), 12 

sequence coverage 41%, matched 14 from 16 searched m/z values). The protein identification 13 

was confirmed in this protein band using MS/MS Ion Search of acquired MS/MS spectra at 14 

m/z 1704.922 (probability Mowse score 119, scores greater than 45 are significant (p<0.05), 15 

mass error 7.0 ppm, identified sequence K.VNLFEVPLEVQYVR.L) and m/z 1851.868 16 

(probability Mowse score 101, scores greater than 43 are significant (p<0.05), mass error 8.3 17 

ppm, identified sequence R.TWGLSAFSWYPFYAR.L), respectively). Similarly, the 18 

significant probability Mowse score 224 (protein scores greater than 76 are significant 19 

(p<0.05), sequence coverage 34 %, matched 12 from 12 searched m/z values) was obtained 20 

for the protein band at the molecular weight 35 kDa and for the verification of protein 21 

identification the MS/MS Ion Search of acquired MS/MS spectra was performed. The MS/MS 22 

signal at m/z 1537.728 revealed probability Mowse score 83 (scores greater than 44 are 23 

significant (p<0.05), mass error 6.0 ppm, identified sequence R.AGIVNAWTASNYDR.N) 24 

and m/z 1704.92 the corresponding probability Mowse score 100, scores greater than 45 are 25 
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significant (p<0.05), mass error 7.0 ppm, identified sequence K.VNLFEVPLEVQYVR.L), 1 

respectively. 2 

The identified protein was previously described by Ensslin et al. (1998) as a novel 3 

peripherally associated 47 kDa protein of pig spermatozoa, P47, isolated by affinity 4 

chromatography from solubilized sperm plasma membrane proteins bound to immobilized 5 

zona pellucida glycoproteins. The pig sperm protein is homologous to lactadherins, major 6 

components of the milk fat globule membrane of the mammary gland (formerly known as 7 

bovine PAS 6/7 or MGP 53/57 and mouse MFG-E8; Larocca et al., 1991; Aoki et al., 1995; 8 

for review and recommended nomenclature, see Mather, 2000). We were able to detect the 9 

P47/SP47 protein by immunofluorescence microscopy on the apical ridge of ejaculated 10 

sperm, which is in consent with the results of Ensslin et al. (1998) and Petrunkina et al. 11 

(2003). Further, Petrunkina et al. (2003) showed that after capacitation, the P47 signal shifted 12 

to the entire acrosomal distribution. Although in capacitated sperm we detected a small 13 

subpopulation of sperm having P47/SP47 unmasked, with resulting acrosomal appearance of 14 

the protein, the majority of the sperm displayed the fluorescence signal shifted to the 15 

postacrosomal region. In contrast to Ensslin et al. (1998), we were unable to obtain adequate 16 

fluorescent signal from epididymal sperm, most probably due to the inaccessibility of the 17 

epitope as sperm were neither fixed nor permeabilized. We attempted to locate P47/SP47 in 18 

the reproductive organs and fluids, but due to relatively weak binding of the prepared 19 

antibody to the epitope, we were able to obtain a clear signal only with capacitated sperm 20 

surface subproteome, as the isolation protocol for sperm surface proteins was modified to 21 

obtain enriched yields. In the ejaculated surface subproteome, only a faint signal was 22 

observed, which corroborates with the results from immunofluorescence showing that only 23 

the protein located in the apical ridge was accessible for biotinylation. We also localized the 24 

presence of P47/SP47 in the kidney, in accordance with Ensslin et al. (1998), who observed 25 
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that the protein is also expressed in non-reproductive organs such as muscle, heart, kidney, 1 

etc. Moreover, Ensslin et al. (1998) also showed that P47/SP47 is expressed in the following 2 

reproductive organs: uterus; cauda, corpus, caput epididymis, and testes. Further, we detected 3 

two forms of P47/SP47: higher molecular mass form of 46 kDa (according to MASCOT 4 

software engine) and lower molar mass form of 35 kDa, not reported previously. Both forms 5 

were detected in ejaculated and capacitated sperm extracts. We believe that the 35 kDa form 6 

is either a truncated version of P47/SP47 or a processing product.  7 

The function of lactadherin in association with spermatozoa still remains unclear. The 8 

possible function of boar membrane P47 as an integrin RGD-dependent ligand was suggested 9 

by Ensslin et al. (1998), previously indirectly supported by the studies of Andersen et al. 10 

(1997). Moreover, these investigators have recently shown that lactadherin can act as a link 11 

between two surfaces by binding to integrin receptors through its N-terminal RGD-binding 12 

sites in the second EGF-like domain and to phospholipids through its C-terminal C1/C2-like 13 

domains (Andersen et al. 2000). Taylor et al. (2000) demonstrated that human lactadherin 14 

(formerly BA46) expressed in human milk and breast carcinomas promotes RGD-dependent 15 

cell adhesion via integrins. Petrunkina et al. (2003) suggested that lactadherin is involved in 16 

other aspects of sperm physiology such as capacitation and acrosome reaction. However, 17 

further study is required to determine whether lactadherin epitopes are triggered or integrated 18 

in a further signal cascade priming the acrosome reaction and preparation of the sperm-egg 19 

fusion. 20 

Fertilization in mammals is far from being completely understood, and recently new results 21 

showed that one of the central dogmas of the fertilization process in mammals has become 22 

questioned. That is why it is necessary to continue with unrelenting efforts in order to move 23 

forward on the path of knowledge. This study dealt with an employment of monoclonal 24 

antibodies raised against the sperm surface proteins, localized on the apical tip of the sperm 25 
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head plasma membrane, where the molecules for the ZP interaction are localized. We 1 

identified three proteins coincident with ZP binding – acrosin, RAB-2A and P47/SP47 2 

lactadherin. Physiological function of P47 was proposed earlier. Due to the fact that acrosin 3 

stays adherent on the sperm plasma membrane, we propose an additional function, which is 4 

different from the secondary binding of sperm to oocyte.  This is the first time to our 5 

knowledge RAB-2A has been reported on the sperm surface, and the function of this remains 6 

undisclosed. The additional function of acrosin and the function of RAB-2A on the sperm 7 

surface are subjects for further studies. 8 
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Caption legends 1 

 2 

Figure 1  3 

Characterization of antibody termed 4C7 by (a) immunofluorescence of epididymal (a-i), 4 

ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization by Western blotting (b-5 

i) in the sperm surface subproteome (lanes 1) from ejaculated (with subscript E) and 6 

capacitated (with subscript C) sperm, SDS extract (lanes 2) from ejaculated (with subscript E) 7 

and capacitated (with subscript C) sperm, extract from the testis (lane 3), epididymal fluid 8 

(lane 4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), seminal plasma (lane 9 

7), and extract from the kidney (lane 8) followed by CBB staining (b-ii); (c) comparison of 10 

Western blot detection (c-i) with the Far-Western blot using biotinylated zona pellucida 11 

glycoproteins (c-ii) of the sperm surface subproteome from ejaculated (lane E) and 12 

capacitated (lane C) sperm, respectively, followed by CBB staining (c-iii); and (d) 13 

immunoprecipitation from capacitated sperm extract (d-i) confirmed by the Western blot (d-14 

ii). All corresponding bands are indicated by red rectangles. The first lane in b (i, ii), c (i, ii, 15 

iii) and d (i, ii) panels represents molecular mass standards. Bar in immunofluorescence 16 

represents 10 µm. 17 

 18 

Figure 2 19 

Characterization of antibody termed 5C5 by (a) immunofluorescence of epididymal (a-i), 20 

ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization by Western blotting (b-21 

i) in the sperm surface subproteome (lanes 1) from ejaculated (with subscript E) and 22 

capacitated (with subscript C) sperm, SDS extract from ejaculated (with subscript E) and 23 

capacitated (with subscript C) sperm, extract from the testis (lane 3), epididymal fluid (lane 24 

4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), seminal plasma (lane 7), 25 
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and extract from the kidney (lane 8) followed by CBB staining (b-ii); (c) comparison of 1 

Western blot detection (c-i) with Far-Western blot using biotinylated zona pellucida 2 

glycoproteins (c-ii) of the sperm proteome from ejaculated (lane E) and capacitated (lane C) 3 

sperm, respectively, followed by CBB staining (c-iii); and (d) immunoprecipitation from 4 

capacitated sperm extract (d-i) confirmed by the Western blot (d-ii). All corresponding bands 5 

are indicated by red rectangles. The first lane in b (i, ii), c (i, ii, iii) and d (i, ii) panels 6 

represents molecular mass standards. Bar in immunofluorescence represents 10 µm.  7 

 8 

Figure 3 9 

Characterization of antibody termed 1H9 by (a) immunofluorescence of epididymal (a-i), 10 

ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization by Western blotting (b-11 

i) in the sperm surface subproteome (lanes 1) from ejaculated (with subscript E) and 12 

capacitated (with subscript C) sperm, SDS extract (lanes 2) from ejaculated (with subscript E) 13 

and capacitated (with subscript C) sperm, extract from the testis (lane 3), epididymal fluid 14 

(lane 4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), seminal plasma (lane 15 

7), and extract from the kidney (lane 8) followed by CBB staining (b-ii); (c) comparison of 16 

Western blot detection (c-i) with Far-Western blot using biotinylated zona pellucida 17 

glycoproteins (c-ii) of the sperm surface subproteome from ejaculated (lane E) and 18 

capacitated (lane C) sperm, respectively, followed by CBB staining (c-iii); and (d) 19 

immunoprecipitation from capacitated sperm extract (d-i) confirmed by the Western blot (d-20 

ii). All corresponding bands are indicated by red rectangles. The first lane in b (i, ii), c (i, ii, 21 

iii) and d (i, ii) panels represents molecular mass standards. Bar in immunofluorescence 22 

represents 10 µm. 23 
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SUPPLEMENTAL DATA – remaining antibodies, control study  

 

Antibody recognizing the protein of 45 kDa – 4C11 

 

The monoclonal antibody termed 4C11 from the panel recognizing the protein of molecular 

mass ~ 45 kDa was also further studied. Using indirect immunofluorescence, the protein 

recognized by 4C11 antibody was localized on the surface of non-permeabilized sperm. The 

protein was present both on ejaculated (Fig. S2a, ii) and capacitated sperm (Fig. S2a, iii), but 

not on the surface of epididymal sperm (Fig. S2a, i). In both cases the signal was relatively 

strong. We also searched for the origin of the protein in reproductive tissues and fluids. The 

result is depicted in Fig. S2b which clearly shows that the protein recognized by 4C11 

antibody is present only on the surface of both ejaculated and capacitated sperm (Fig. S2b – 

lanes 1), but in no other location. The whole sperm proteome extracts (Fig. S2b – lanes 2) and 

the extract from the kidney (Fig. S2b – lane 8) served as positive and negative controls, 

respectively. The molecular mass shifts of the proteins isolated from the sperm surface 

towards higher masses with respect to proteins isolated from the whole sperms are due to 

biotinylation. We also investigated whether the protein could bind ZP glycoproteins. We 

employed Far-Western blot of proteins isolated from the sperm surface with ZP glycoproteins 

and the interactions were compared with Western blot detections. The results are depicted in 

Fig. S2c which clearly shows that the protein recognized by 4C11 antibody coincides in 

binding to zona pellucida at the molecular mass of 49 kDa. The interaction was more apparent 

with capacitated sperm (Fig. S2c – lane C) than with ejaculated sperm (Fig. S2c – lane E), 

probably due to greater abundance of the protein in the capacitated fraction.  

Since antibody 4C11 has a similar pattern of immunofluorescence staining of the sperm, the 

same immunolocalization in reproductive tissues and fluids, and coincides in binding to zona 

pellucida in the same area as 4C7 antibody, we decided not to further characterize this 

antibody, as it is highly probable that it recognizes the acrosin precursor similarly as 4C7 

antibody. 

 

Antibody recognizing the protein of 51 kDa – 1D1 

 

The monoclonal antibody termed 1D1 from the panel recognizing the protein of molecular 

mass ~ 51 kDa was also further studied. Using indirect immunofluorescence, the protein 

recognized by 1D1 antibody was localized on the surface of non-permeabilized sperm. The 

protein was present both on ejaculated (Fig. S3a, ii) and capacitated sperm (Fig. S3a, iii), but 

not on the surface of epididymal sperm (Fig. S3a, i). The signal was relatively strong in 

capacitated sperm, but weak in ejaculated sperm. We also searched for the origin of the 

protein in reproductive tissues and fluids. The result is depicted in Fig. S3b, which clearly 

shows that the protein recognized by 1D1 antibody is present only on the surface of both 

ejaculated and capacitated sperm (Fig. S3b – lanes 1), but in no other location. The whole 

sperm proteome extracts (Fig. S3b – lanes 2) and extract from the kidney (Fig. S3b – lane 8) 

served as positive and negative controls, respectively. We also investigated whether the 
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protein could bind ZP glycoproteins. We employed Far-Western blot of proteins isolated from 

the sperm surface with ZP glycoproteins and the interactions were compared with Western 

blot detections. The results are depicted in Fig. S3c, which clearly shows that the protein 

coincides in binding to the zona pellucida at the molecular mass of 51 kDa. The interaction 

was apparent only in the case of capacitated sperm (Fig. S3c – lane C), probably due to 

greater abundance of the protein in the capacitated fraction. 

We were unable to obtain an immunoprecipitate of the 1D1 antibody even after several trials 

under various conditions. We could have sequenced the protein from the sperm surface 

subproteome separated by 1-DE, but it would be rather inaccurate as more than one protein 

could be present in the band of 51 kDa. We have also attempted to detect the protein in the 2-

DE protein profile of the sperm surface subproteome (results not shown), but were 

unsuccessful in detecting the signal in the area of 51 kDa. The 1D1 antibody still remains 

under study and the results will be reported as soon as they are obtained. 

 

Antibody recognizing the protein of 200 kDa – 2D10 

 

The monoclonal antibody termed 2D10 from the panel recognizing the protein of molecular 

mass ~ 200 kDa was also further studied. Using indirect immunofluorescence the protein 

recognized by 2D10 antibody was localized on the surface of non-permeabilized sperm. The 

protein was present both on ejaculated (Fig. S4a, ii) and capacitated sperm (Fig. S4a, iii), but 

not on the surface of epididymal sperm (Fig. S4a, i). The signal was relatively stronger in 

capacitated sperm than in ejaculated sperm. We also searched for the origin of the protein 

reproductive tissues and fluids. The result is depicted in Fig. S4b, which clearly shows that 

the protein is present only on the surface of capacitated sperm (Fig. S4b – lanes 1), but in no 

other location. The whole sperm proteome extracts (Fig. S4b – lanes 2) and extract from the 

kidney (Fig. S4b – lane 8) served as positive and negative controls, respectively. The reasons 

why the protein was not detected in the ejaculated sperm surface subproteome might be the 

same as for 5C5 antibody, i.e. either the extraction conditions made it possible to obtain the 

protein only from the surface of capacitated sperm, or it was inaccessible to biotinylation, as it 

was overlaid by the bound seminal plasma proteins. We also investigated whether the protein 

recognized by 2D10 antibody could bind ZP glycoproteins. We employed Far-Western blot of 

proteins isolated from the sperm surface with ZP glycoproteins and the interactions were 

compared with Western blot detections. The results are depicted in Fig. S4c. No interaction 

with the ZP glycoproteins was observed in the area of 200 kDa, probably due to very low 

amount of the protein in both sperm surface subproteome and sperm proteome. Without a 

sophisticated method to enrich this protein in isolated fractions further studies are unfeasible. 

 

Antibody recognizing the protein of 32, 35, and 38 kDa – 1E3 

 

The monoclonal antibody termed 1E3 from the panel recognizing the protein of molecular 

masses ~ 32, 35 and 38 kDa was also further studied. Using indirect immunofluorescence the 

protein recognized by 1E3 antibody was localized on the surface of non-permeabilized sperm. 

The protein was present both on ejaculated (Fig. S5a, ii) and capacitated sperm (Fig. S5a, iii), 
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but not on the surface of epididymal sperm (Fig. S5a, i). The signal was relatively strong in 

both ejaculated and capacitated sperm. We also searched for the origin of the protein in 

reproductive tissues and fluids. The result is depicted in Fig. S5b, which clearly shows that in 

the ejaculated sperm subproteome, the 1E3 antibody recognizes, proteins with molecular 

masses of 35 and 38 kDa, while in the capacitated sperm subproteome those with masses of 

32, 35 and 38 kDa. It seems that in the capacitated sperm subproteome, 1E3 antibody also 

recognizes a protein band below 32 kDa. In the whole proteome of both ejaculated and 

capacitated sperm, the 1E3 antibody recognizes all three bands (32, 35, 38 kDa). These data 

suggest that the protein has multiple forms, most obviously visible in the capacitated sperm 

subproteome, where the protein is the best accessible to biotinylation and can easily be 

removed from the fluid membrane of capacitated sperm. The protein recognized by 1E3 

antibody was detected in epididymal fluid, with molecular mass of 70 kDa, and also in the 

prostate – in two forms of 60 and 38 kDa. Epididymal and prostate forms were most likely 

unprocessed proteins. The whole sperm proteome extracts (Fig. S5b – lanes 2) and extract 

from the kidney (Fig. S5b – lane 8) served as positive and negative controls, respectively. We 

also investigated whether the protein could bind ZP glycoproteins. We employed Far-Western 

blot of proteins isolated from the sperm surface with ZP glycoproteins and the interactions 

were compared with Western blot detections. The results are depicted in Fig. S5c. No 

interaction with ZP glycoproteins was observed in the corresponding areas. The proteins 

either do not bind zona pellucida, or their abundance is insufficient to reach the detection 

limit. In conclusion, we considered that this protein was not involved in ZP binding. 

 

Antibody recognizing the protein of 200 kDa – 2E1 

 

The monoclonal antibody termed 2E1 from the panel recognizing the protein of molecular 

mass ~ 200 kDa was also further studied. Using indirect immunofluorescence the protein 

recognized by 2E1 antibody was localized on the surface of non-permeabilized sperm. The 

protein was present on epididymal (Fig. S6a, i), ejaculated (Fig. S6a, ii), and capacitated 

sperm (Fig. S6a, iii). The strongest signal was obtained in capacitated sperm, but relatively 

strong signal was also observed in both epididymal and ejaculated sperm. We also searched 

for the origin of the protein in reproductive tissues and fluids. The result is depicted in Fig. 

S6b, which clearly shows that the protein is present only on the surface of both ejaculated and 

capacitated sperm (Fig. S6b – lanes 1), but in no other location. The whole sperm proteome 

extracts (Fig. S6b – lanes 2) and extract from the kidney (Fig. S6b – lane 8) served as positive 

and negative controls, respectively. We also investigated whether the protein could bind ZP 

glycoproteins. We employed Far-Western blot of proteins isolated from the sperm surface 

with ZP glycoproteins and the interactions were compared with Western blot detections. The 

results are depicted in Fig. S6c. No interaction with the ZP glycoproteins was observed in the 

area of 200 kDa. Similarly as with 2D10 antibody, this is probably due to very low abundance 

of the protein in both sperm surface subproteome and sperm proteome. A similar conclusion 

can be drawn as in the case of 2D10 antibody. We may speculate that 2D10 and 2E1 might 

recognize the same protein, because both antibodies detect the protein of approximately 200 

kDa, both proteins have low abundance in the surface/whole sperm fraction and both are not 
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easily obtainable from the surface of ejaculated sperm. The argument against is that in 

contrast to 2E1, 2D10 antibody does not stain epididymal sperm. This could mean that both 

antibodies recognize different epitopes, so that in epididymal sperm the 2D10 epitope is 

inaccessible, while the 2E1 epitope is freely accessible for the antibody. We believe that 2E1 

and 2D10 antibodies recognize the same protein, but through different epitopes. We came to 

the conclusion that further studies are unfeasible, unless we are able to obtain the protein in 

relatively high quantities. 

 

A control study to validate surface labeling by the antibodies 

 

A control study to validate sperm surface labeling by the panel of monoclonal antibodies was 

performed. Non-fixed/non-permeabilized and fixed/permeabilized ejaculated and capacitated 

sperm were incubated in parallel with antibodies against β-tubulin - an internal protein of cell 

cytoskeleton; and phosphotyrosine – amino acid of the proteins involved in signal cascade 

within the cell. Using indirect immunofluorescence, sperm were screened and the results are 

depicted on Fig. S7 and Fig. S8. It can be clearly seen that in the case of anti β-tubulin signal 

is observed only on the permeabilized, both ejaculated (Fig. S7a, ii), and capacitated sperm 

(Fig. S7b, ii); while signal was missing in the non-permeabilized, both ejaculated (Fig. S7a, i), 

and capacitated sperm (Fig. S7b, i). The same pattern was observed in case of antibody 

against phosphotyrosine, when signal was present only in permeabilized ejaculated and 

capacitated sperm (Fig. S8a, b; ii), while completely missing in non-permeabilized ejaculated 

and capacitated sperm (Fig. S8a, b; i). 
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Supplemental Figure 1. Sperm population representation in ejaculated and in vitro 

capacitated sperm samples. 

 
Supplemental Figure 2. Characterization of antibody termed 4C11 by (a) immunofluorescen-

ce of epididymal (a-i), ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization 

by Western blotting (b-i) in sperm surface subproteome (lanes 1) from ejaculated (with 

subscript E) and capacitated (with subscript C) sperm, SDS extract (lanes 2) from ejaculated 

(with subscript E) and capacitated (with subscript C) sperm, extract from the testis (lane 3), 

epididymal fluid (lane 4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), 

seminal plasma (lane 7), and extract from the kidney (lane 8) followed by CBB staining (b-ii); 

(c) comparison of Western blot detection (c-i) with Far-Western blot using biotinylated zona 

pellucida glycoproteins (c-ii) of sperm surface subproteome from ejaculated (lane E) and 

capacitated sperm (lane C), respectively. All corresponding bands are indicated by red 

rectangles. The first lane in b (i, ii) and c (i, ii) panels represents molecular mass standards. 

Bar in immunofluorescence represents 10 µm. 
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Supplemental Figure 3. Characterization of antibody termed 1D1 by (a) immunofluorescence 

of epididymal (a-i), ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization by 

Western blotting (b-i) in sperm surface subproteome (lanes 1) from ejaculated (with subscript 

E) and capacitated (with subscript C) sperm, SDS extract (lanes 2) from ejaculated (with 

subscript E) and capacitated (with subscript C) sperm, extract from the testis (lane 3), 

epididymal fluid (lane 4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), 

seminal plasma (lane 7), and extract from the kidney (lane 8) followed by CBB staining (b-ii); 

(c) comparison of Western blot detection (c-i) with the Far-Western blot using biotinylated 

zona pellucida glycoproteins (c-ii) of sperm surface subproteome from ejaculated (lane E) and 

capacitated (lane C) sperm, respectively. All corresponding bands are indicated by red 

rectangles. The first lane in b (i, ii) and c (i, ii) panels represents molecular mass standards. 

Bar in immunofluorescence represents 10 µm. 

  



109 

 

 

 
Supplemental Figure 4. Characterization of antibody termed 2D10 by (a) 

immunofluorescence of epididymal (a-i), ejaculated (a-ii) and capacitated (a-iii) sperm; (b) 

immunolocalization by Western blotting (b-i) in sperm surface subproteome (lanes 1) from 

ejaculated (with subscript E) and capacitated (with subscript C) sperm, SDS extract (lanes 2) 

from ejaculated (with subscript E) and capacitated (with subscript C) sperm, extract from the 

testis (lane 3), epididymal fluid (lane 4), seminal vesicle fluid (lane 5), extract from the 

prostate (lane 6), seminal plasma (lane 7), and extract from the kidney (lane 8) followed by 

CBB staining (b-ii); (c) comparison of Western blot detection (c-i) with Far-Western blot test 

with biotinylated zona pellucida glycoproteins (c-ii) of sperm surface subproteome from 

ejaculated (lane E) and (lane C) capacitated sperm, respectively. All corresponding bands are 

indicated by red rectangles. The first lane in b (i, ii) and c (i, ii) panels represents molecular 

mass standards. Bar in immunofluorescence represents 10 µm. 
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Supplemental Figure 5. Characterization of antibody termed 1E3 by (a) immunofluorescence 

of epididymal (a-i), ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization by 

Western blotting (b-i) in sperm surface subproteome (lanes 1) from ejaculated (with subscript 

E) and capacitated (with subscript C) sperm, SDS extract (lanes 2) from ejaculated (with 

subscript E) and capacitated (with subscript C) sperm, extract from the testis (lane 3), 

epididymal fluid (lane 4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), 

seminal plasma (lane 7), and extract from the kidney (lane 8) followed by CBB staining (b-ii); 

(c) comparison of Western blot detection (c-i) with Far-Western blot test with biotinylated 

zona pellucida glycoproteins (c-ii) of sperm surface subproteome from ejaculated (lane E) and 

capacitated sperm (lane C), respectively. All corresponding bands are indicated by red 

rectangles. The first lane in b (i, ii) and c (i, ii) panels represents molecular mass standards. 

Bar in immunofluorescence represents 10 µm. 
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Supplemental Figure 6. Characterization of antibody termed 2E1 by (a) immunofluorescence 

of epididymal (a-i), ejaculated (a-ii) and capacitated (a-iii) sperm; (b) immunolocalization by 

Western blotting (b-i) in sperm surface subproteome (lanes 1) from ejaculated (with subscript 

E) and capacitated (with subscript C) sperm, SDS extract (lanes 2) from ejaculated (with 

subscript E) and capacitated (with subscript C) sperm, extract from the testis (lane 3), 

epididymal fluid (lane 4), seminal vesicle fluid (lane 5), extract from the prostate (lane 6), 

seminal plasma (lane 7), and extract from the kidney (lane 8) followed by CBB staining (b-ii); 

(c) comparison of Western blot detection (c-i) with Far-Western blot test with biotinylated 

zona pellucida glycoproteins (c-ii) of sperm surface subproteome from ejaculated (lane E) and 

capacitated sperm (lane C), respectively. All corresponding bands are indicated by red 

rectangles. The first lane in b (i, ii) and c (i, ii) panels represents molecular mass 

standards.Bar in immunofluorescence represents 10 µm. 
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Supplemental Figure 7. Immunofluorescence of ejaculated (a) and capacitated sperm (b) on 

non-fixed/non-permeabilized sperm (i) and fixed/permeabilized sperm with known internal 

antigen (β-tubulin). Bar in immunofluorescence represents 10 µm. 

 

 
Supplemental Figure 8. Immunofluorescence of ejaculated (a) and capacitated sperm (b) on 

non-fixed/non-permeabilized sperm (i) and fixed/permeabilized sperm with known internal 

antigen (phosphotyrosine). Bar in immunofluorescence represents 10 µm. 
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