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Nerovnovážná supravodivost

(Nonequilibrium superconductivity)

Institute of Physics of Charles University

Supervisor of the master thesis: doc. Pavel Lipavský CSc.
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na nerovnovážné systémy pomoćı zobeněného Kadanoffova-Baymova formalizmu.
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Introduction

Superconductivity presents a very complex phenomena. It was discovered by
Heike Kamerlingh Onnes on April 8, 1911 in Leiden. Many interesting features
like the Meisner effect or the zero resistance (therefore the name superconduc-
tors) could not be explained by contemporary theories and in the beginnings the
superconductors were described only by phenomenological theories.

It took almost a half of century before a successful microscopic theory has
occurred. In 1957 the complete microscopic theory of superconductivity was
finally proposed by Bardeen, Cooper and Schrieffer. This BCS theory explained
the superconducting current as a superfluid of Cooper pairs, which are pairs of
electrons interacting through the exchange of phonons. For this work, the authors
were awarded the Nobel Prize in 1972.

More than 50 years after its discovery, the BCS theory still remains the most
successful theory. Its modification for realistic retarded interaction put forward
by Eliashberg works excellent in conventional superconductors but it works also in
areas where it is not expected. In contrast, intensive studies of high-temperature
superconductors discovered in 1986 made it obvious that the BCS theory is not a
complete theory. Although some properties of high-temperature superconductors
were predictable by BCS theory, many were missing.

The high-temperature superconductors represent a challenge for theoretical
physicist. It turns out that the properties of the normal state determine how the
condensate will look like. The theoretical framework of the BCS theory is not
suitable since it describes only the condensate. Any future theory successful in
explaining the complex behavior of high-temperature superconductors thus has
to cover both the normal and the superconducting states.

One of many attempts to crack this problem is theory suggested by supervisor
of author of this thesis. The theory attacks the problem from the second side using
the T-matrix approximation, which was originally proposed for the normal state.
It was known that the Galitskii-Feynman T-matrix approximation cannot be used
for the superconducting state. It turned out that with a slightly corrected schema
of the T-matrix approximation based on Soven’s idea of the effective medium,
this theory describes the superconducting state as well as it does the normal one.
The idea of corrections originates from the multiple scattering theory in nuclear
reactions, where the problem of repeated collisions was noticed first by Watson.
Perhaps the best known implementation of this idea are Fadeev equations, which
are suited for a small number of particles, however, and thus inapplicable to the
condensed matter.

The problem of repeated collisions in condensed matter appeared in the the-
ory of alloys. Selfconsistent expansion of Green’s function brings terms which
remind a scattering of electron on the impurity which it just leaves after colli-
sion. An elegant solution of this problem was suggested by Soven. He interprets
the selfenergy as a priorly unknown coherent potential which one can imagine as
an effective medium. Removing this effective potential from the scattering site,
where we evaluate the actual collision process, the nonphysical repeated collisions
are healed.

The Soven idea was reformulated for the scattering of the pair of electrons
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within T-matrix approximation by supervisor of the author of this thesis. This
resulting T-matrix approximation with multiple scattering corrections is a desired
unified theory of the superconducting and the normal state. Candidate systems
where one needs to cover both phases are underdoped high-temperature super-
conductors with the pseudogap phase in the normal state, ultracold Fermi gases
and nanoparticles. Here we focus on metallic nanospheres.

The first theoretical prediction for small particles appeared in 1959 due to
Anderson [1]. He claimed that the superconductivity should disappear when the
particle has less than 104 particles. Below this threshold the superconductivity
should disappear and the pairing correlations persist only as weak fluctuations.
The superconductivity in small metallic grains attracted more researches since
middle of 1990’s, when the first tunneling experiment with metallic single electron
transistor has been performed. Many theoretical approaches were used to study
the transition from the bulk system to the fluctuation-dominated regime, the
most of them are nonperturbative approaches. The application of the T-matrix
approximation to small metallic grains is one of the goals in the thesis.

0.1 Plan of the thesis

0.1.1 Review of used methods

The plan of the thesis is following. In the first chapter we introduce Green’s
functions and the Kadanoff-Baym technique of analytic continuation. The second
chapter is a brief review of the BCS theory in the Nambu-Gorkov formalism. In
the third chapter we explain the shortcomings of Galitskii-Feynman T-matrix
approximation and the Kadanoff-Martin theory. The Multiple scattering theory
is introduced. We show a limit of the Multiple scattering theory and the Kadanoff-
Martin theory, by which the Nambu-Gorkov selfenergy is recovered.

0.1.2 Novel results

The fourth chapter is the original contribution of the author. The Kadanoff-Baym
formalism is applied to the Multiple scattering theory and the nonequilibrium
version of the theory is derived in the full version.

In the fifth chapter we present the single electron transistor for measuring
electron states in ultrasmall metallic grains. We suggest how to modify this
experiment so that parasitic influences are suppressed and one can measure the
properties discussed in this thesis.

The Multiple scattering theory is adapted to ultrasmall metallic grains in the
sixth chapter. The nonequilibrium version is also derived. We arrive at a set of
equations for nonequilibrium Green functions, that in principle can be directly
solved, at least in the steady state, with the help of the fast Fourier transforma-
tion. Such solution is highly nontrivial, however, and it was not attempted in
this thesis.

In the last chapter we assume nonsymmetric leads for which a strong coupling
to one of leads keeps the nanosphere close to the local equilibrium. The local
equilibrium simplifies the set of equations which can be then easily solved in part
analytically and in part by simple numerical tools. We derive the lowest order
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approximation of differences between the BCS theory and the Multiple scattering
theory and discuss its expected effects on the superconducting gap and the critical
temperature.

In Appendix A we express Soven’s idea in the form applicable to the two-
particle scattering. Appendix B includes a subsidiary algebra needed to evaluate
the two-particle propagator in the lowest order approximation.
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1. Green’s functions technique

1.1 Introduction

There is lot of different many-particle theories like a microscopic mean-field theo-
ries (Kohn-Sham and Hartree-Fock), many-body perturbation theory, large-scale
diagonalization methods, coupled-cluster theory. These are used in such diverse
areas like atomic, molecular, solid-state and nuclear physics, chemistry and ma-
terial science.

One of fundamental methods is the Green function approach widely used
in relativistic physics. It is the cornerstone of quantum electrodynamics and
quantum chromodynamics. This technique of a quantized field is also used in
solid state physics. In particular, the theory of Fermi liquids and systems of
interacting bosons as well as the theory of superconductivity are based on the
Green functions technique.

The perturbation theory based on Green’s functions applied to solid states
physics is well provided in monograph Methods of Quantum Field Theory in
Statistical Physics by Abrikosov et al [2]. Authors start with a ground state
of manybody system where the expectation values are computed within a Fer-
mi vacuum. They introduce the Feynman diagrams technique, Dyson equation
and renormalization technique. Analytic properties of Green’s function are also
shown. After introduction of the Green function technique at zero temperature
the theory is extended to a finite temperature. In finite temperature the per-
turbation theory is developed within a complex segment, where the real time is
replaced by an imaginary one. Formally the same rules apply for the Matsubara’s
function as for the zero temperature Green function. The only difference appears
in the evaluation of final diagrams. Despite the success of Matsubara’s technique
in the thermodynamics, there is no systematic construction of time dependent
Green’s functions (retarded and advanced) which are suitable for a description of
transport properties. The analytic continuation of Green’s functions to real time
axis is not fully systematic in this approach.

The theory of nonequilibrium quantum phenomena beyond the linear response
described in Matsubara’s formalism was a difficult task. There are two ways how
to make an equation for nonequilibrium Green’s function. The first is called
Keldysh technique and the second is the generalized Kadanoff-Baym technique.
Both techniques are equivalent as they transform the expressions of scattering
theory to a set of equations for nonequilibrium Green’s functions. We use gener-
alized Kadanoff-Baym technique of analytic continuation. It has an advantage of
simpler rules, by which one automatically transforms approximations for Matsub-
ara’s function to the approximations for nonequilibrium Green’s functions. In the
next sections we first introduce basic facts about the Green function technique.
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1.2 Zero Temperature Green functions

The central target in the zero temperature Green function formalism is to com-
pute an expression called Green function

G(1, 2) = −i〈0|TSψ
†
1ψ2|0〉

〈0|TS|0〉 , (1.1)

where numbers 1 ≡ (x1, α) and 2 ≡ (x2, β) are cumulative indices for both
space-time x ≡ (r, t) coordinates and spin index, ψ†

1 and ψ2 are creation resp.
annihilation operator in Dirac’s picture, T means Dyson’s time ordering, the
scattering matrix S describes evolution. The Green function is the mean value
of fields in distinct points in space and time.

The ground state of interacting particles is computed as the time evolution of
initial noninteracting particles to the interacting ones. The interaction is switched
on adiabatically from the infinite past to the zero time where reaches its true value
and than adiabatically switched off to the noninteracting state in the infinite
future. The full Green function (1.1) can be computed by an expansion in the
products of noninteracting Green’s functions using Wick’s theorem and one can
derive famous Feynman diagrammatic rules. The ground state is trivial since we
start with the ground state of noninteracting particles and end up with the same.

The question is how to compute properties of interacting system if the tem-
perature is finite. There is no specific quantum state of the system in its initial
or final state, but one must average over all the set of possible states weighted
with Boltzmann factors. We will discuss this problem in the next section.

1.3 Equilibrium Matsubara’s functions

The next step in building the perturbation theory of Green’s function in inter-
acting systems is the extension of formalism to finite temperatures. Matsubara’s
formalism is commonly applied to different physical systems and there is a lot of
appropriate, well established approximations. The equilibrium state is a starting
point towards nonequilibrium systems, therefore we want to remind here some
basic ideas of Matsubara’s function technique. In the next section we extend the
theory to a nonequilibrium system.

Formalism for finite temperatures utilize a similarity of grandcanonical and
evolution operators. With a help of Wick’s rotation of time axis we built the per-
turbation theory on imaginary segment. Instead of Green’s function, the central
quantity is called Matsubara’s function. Again it can be computed as a series of
terms, which consist of noninteracting Matsubara’s function. This can be reached
with help of so-called generalized Wick’s theorem, which can be found in [2].

The particle correlation function is defined by:

G<(1, 2) = G<
αβ(x1, x2) = Tr(ρ̂ψ̃β

†
(x2)ψ̃α(x1)), (1.2)

where Greek indices denote spin variables and variables in brackets are spacetime
coordinates. Here

ρ̂ =
1

Z
e−β(Ĥ−µN̂ ) (1.3)
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is the grandcanonical operator normalized to unity by Z = Tre−β(Ĥ−µN̂ ), Ĥ is the
Hamiltonian, N̂ is the particle number operator, µ is the chemical potential and
β is the inverse temperature.

In the equilibrium the time dependence of the correlation function follows
from the time dependence of creation and annihilation operators

G<(1,2)=
1

Z
Tr(e−β(Ĥ−µN̂ )ei(Ĥ−µN̂ )t2ψ†

β(r2)e
−i(Ĥ−µN̂ )t2ei(Ĥ−µN̂ )t1ψα(r1)e

−i(Ĥ−µN̂ )t1).

(1.4)
For convenience, also for the time evolution the Hamiltonian Ĥ is defined relative
to a chemical potential µN̂ .

We should mention a convention mostly used in the Matsubara approach,
although we do not follow this formulation. To formally unify the grandcanonical
and evolution operators, we extend t to a pure imaginary time and denote it = τ
so that the correlation function has a form

G<(1,2)=
1

Z
Tr(e−β(Ĥ−µN̂ )e(Ĥ−µN̂ )τ2ψ†

β(r2)e
−(Ĥ−µN̂ )τ2e(Ĥ−µN̂ )τ1ψα(r1)e

−(Ĥ−µN̂ )τ1),

(1.5)
where 1 ≡ (r1, τ1, σ). A definition for the hole correlation function has a similar
form

G<(1,2)=
1

Z
Tr(e−β(Ĥ−µN̂ )e(Ĥ−µN̂ )τ1ψα(r1)e

−(Ĥ−µN̂ )τ1e(Ĥ−µN̂ )τ2ψ†
β(r2)e

−(Ĥ−µN̂ )τ2).

(1.6)
We use convention which uses the time t.

In the equilibrium, the correlation functions depend only on the difference of
times t1− t2. Particle correlation function G<(1, 2) is defined for β ≥ τ2− τ1 ≥ 0
and hole correlation function G>(1, 2) is defined for β ≥ τ1−τ2 ≥ 0. For complex
times t1 and t2 these conditions read β ≥ Im(t1 − t2) ≥ 0 for G<(1, 2) and
β ≥ Im(t2− t1) ≥ 0 for G>(1, 2). Both functions are simultaneously defined only
for Im(t1 − t2) = 0. Correlation functions are coupled via the relation

G<(t1, t2) = G>(t1, t2 + iβ), (1.7)

where the times argument t1, t2 are complex times discussed above. This relation
is the boundary condition for the equilibrium Green functions.

Sometimes it is more convenient to switch from the time representation to the
frequency representation. For general case t1 = t+ 1

2
τ and t2 = t− 1

2
τ

G<(ω, t) =

∫ ∞

−∞

dτeiωτG<

(

t+
1

2
τ, t− 1

2
τ

)

. (1.8)

In equilibrium, G< is only the function of time difference and consequently the
transformation is function of only ω and there is no time dependence on t

G<(ω) =

∫ ∞

−∞

dτeiωτG<

(

t+
1

2
τ − (t− 1

2
τ)

)

=

∫ ∞

−∞

dτeiωτG<(τ). (1.9)

The boundary condition in the frequency representation became

G<(ω) = e−βωG>(ω). (1.10)
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This condition with a definition of spectral function A = G> + G< allows us to
express correlation functions in terms of the spectral function

G<(ω) = fFD(ω)A(ω) =
1

1 + eβω
A(ω), (1.11)

G>(ω) = (1− fFD(ω))A(ω) =

(

1− 1

1 + eβω

)

A(ω). (1.12)

The decomposition of the correlation function into Fermi-Dirac statistics fFD =
1/(1 + eβω) and the spectrum A applies for any interaction.

Matsubara’s function is defined via correlations functions. The convergence of
the correlation functions is satisfied only for Imt1 = Imt2. The natural definition
suggested by Matsubara reads

G(1, 2) = −iθ(−Im(t1 − t2))G>(1, 2) + iθ(−Im(t2 − t1))G<(1, 2). (1.13)

The complex times are arranged by ordering in a complex segment C = (0,−iβ),
while an older time is more close to zero. A step function within the complex
segment takes a form

θC(t1 − t2) = −iθ(−Im(t1 − t2)), (1.14)

θC(t2 − t1) = −iθ(−Im(t2 − t1)). (1.15)

The Wick’s time ordering operator arranges the creation and annihilation oper-
ators

Tβψ1ψ
†
2 =

ψ1ψ
†
2 . . . Imt1 < Imt2 . . . t1 >C t2

−ψ†
2ψ1 . . . Imt1 > Imt2 . . . t1 <C t2

(1.16)

The Matsubara’s function can be written in a compact form

G(1, 2) = −i
Tr

(

Tβe
−i

∫

C
dτ(Ĥ−µN̂ )ψ1ψ

†
2

)

Tr

(

Tβe
−i

∫

C
dτ(Ĥ−µN̂ )

) = −i
Tr

(

e−β(Ĥ0−µN̂ )TβS(0,−iβ)ψ1ψ
†
2

)

Tr

(

e−β(Ĥ0−µN̂ )TβS(0,−iβ)
)

(1.17)
and has exactly the same structure as the full Green function in zero tempera-
ture (1.1). The only difference is the appearance of a trace instead of the mean
value of ground state. Wick’s ordering operator and integrations act along the
complex time segment. This formal similarity helps us with expansion of full
Matsubara’s function.

Before we start with the next section, we need to discuss the Wick’s theorem
in finite temperatures. The problem is that unlike before we have no concept of a
normal product, contractions and vacuum. Thus the use of Wick’s theorem is not
justified. The problem of computing the full Matsubara’s function is in the use
of a theorem, which in literature is called Wick’s theorem for finite temperature.
We recall the discussion in the section 12.2 of [2]. Wick’s theorem for normal
state applies at finite temperature in a sense that the full Matsubara’s function
can be expanded to the noninteracting Matsubara’s functions.

In spite of fundamental character of Wick’s theorem, there are some excep-
tions in its application for systems, which show complex behavior. For example
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Bose systems below the transition temperature and superconductors in the su-
perconducting state. For those systems Wick’s theorem does not apply. This case
is very important in the derivation of Nambu-Gorkov equations for BCS model,
where we must incorporate an anomalous function and use decoupling technique
instead of expansion. We will see this in the next chapter. For more details about
the perturbation Green functions technique in finite temperature, see [2].

1.4 Nonequilibrium Green’s function

Beside finite temperature and interaction we can also include external fields.
After application of external fields the system will be disturbed from equilibrium.
If we turn off the external field, the system will relax back to the equilibrium. In
this section we explain, how to describe system in nonequilibrium, starting from
an initial equilibrium system.

1.4.1 History of Green’s function approach

After brief review we will describe nonequilibrium systems. The first question
one can ask is what actually means nonequilibrium? The natural definition of a
nonequilibrium is the opposite of equilibrium system.

The equilibrium state is usually defined by two criteria. The first criterion
says that an equilibrium system is characterized by a unique set of extensive
and intensive variables, which do not change in time. The second criterion says
that after isolation of the system from its environment, all the variables remain
unchanged. The latter condition is necessary to distinguish equilibrium from
stationary nonequilibrium states [3]. How can one incorporate quantum nonequi-
librium phenomena in pertubative theory formalism, which would allow us to
study any nonequilibrium system? We can answer this question with the term
Nonequilibrium Green function.

The foundations of Green’s function theory (Kubo) in nonequilibrium trans-
port phenomena first appeared in 1957 as an alternative approach to quan-
tum generalization of Boltzmann equation (Kohn, Luttinger). At the beginning
Green’s function technique was used only in linear regime in terms of the Kubo
formula. The development of the theory of Nonequilibrium Green’s function was
due to Bogoliubov and Swinger. Bogoljubov and his successors used a full set
of nonequilibrium functions, but this approach was nonsystematic in scheme of
approximative selfenergies. Systematic way, how to built selfenergy, was devel-
oped by Keldysh. Keldysh theory works with so-called Swinger-Keldysh contour,
which is in principle the two-times account of the real axis.

Swinger’s original idea was developed by his students Kadanoff and Baym [4].
The idea of their theory was formal link with equilibrium state in some initial
time t0. From knowledge of Matsubara’s functions theory in equilibrium, one
can derived a continuation of Green’s functions along a general contour. So-
called Kadanoff-Baym contour is composed of two-times real segment and an
imaginary segment. Further progress in the theory was merit from Langreth
and Wilkins. They generalized Kadanoff-Baym formalism adding retarded and
advanced Green’s functions and formulated simple rules how to prepare equa-
tions for real time Green’s functions. This makes the generalized Kadanoff-Baym
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theory an easy-to-apply formalism [5].

1.4.2 Kadanoff-Baym theory

Let us explain Kadanoff-Baym contour approach. We suppose that at some initial
time there is a system, which is in thermal equilibrium. The system is described
by Hamiltonian Ĥ, which includes free-particle part Ĥ0 and interaction Ĥ′. We
assume the density matrix ρ̂(t0) = e−β(Ĥ−µN̂ )/Z at time t0. In connection with
last chapter we can rewrite this into the form:

e−β(Ĥ0−µN̂ )Tβe
−i

∫

C
dτĤ′

Tr

(

e−β(Ĥ0−µN̂ )Tβe
−i

∫

C
dτhatH′

) =
e−β(Ĥ0−µN̂ )TβS(t0, t0 − iβ)

Tr

(

e−β(Ĥ0−µN̂ )TβS(t0, t0 − iβ)
). (1.18)

Now how can one incorporate external fields? Suppose that the imaginary
segment at time t0 was deformed in the way depicted in figure 1.1. Within
the imaginary segment Hamiltonian Ĥ contains only noninteracting part Ĥ0 and
interacting part Ĥ′. External forces Ĥ′′(t) can be accounted in the part of the
complex trajectory, which was created by the deformation of the two-times count-
ing of real axis. Within the top real time axis we switch on external forces Ĥ′′(t)
and reach the time of measurements t1 and t2. After the top horizontal segment
we account bottom horizontal segment which is also a real time axis. We turn
off the external forces and end up in time t0 with the imaginary segment, where
Hamiltonian contains only Ĥ0 and interacting part Ĥ′. The imaginary segment
is accounted by Matsubara’s formalism.

Figure 1.1: The Kadanoff-Baym contour: In the time tinter. we can adiabatically
switch on an interaction. This step is not necessary, because the interaction
can be included within the imaginary segment at the begging, in time t0. In time
texter., we switch on external fields and the system is driven out of the equilibrium.
Times of interest t1 and t2 can be infinitely far away from times tinter. and texter.

Let us define time ordering within Kadanoff-Baym contour. An earlier event
is defined as an event, which we meet earlier than some another event during
a way from t0 to t0 − iβ on the complex contour . With this definition of time
ordering TC on the complex contour we can introduce the contour Green function

G(1, 2) = −i
Tr

(

TCe
−i

∫

C
dτ(Ĥ−µN̂ )ψ1ψ

†
2

)

Tr

(

TCe
−i

∫

C
dτ(Ĥ−µN̂ )

) . (1.19)
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The contour Green’s function is similar to Matsubara’s function. We can
apply the same diagrammatic rules as before with the only difference that we
operate on the complex contour. This difference appears only in the end of
the formal calculation. We can also rearrange the perturbative expansion into
Dyson’s equation, but now within a complex trajectory. We will see in the next
subsection how to prepare equations for functions, which depend only on real
times, from equations for general trajectory.

For further discussion it is convenient to rewrite the above definition of contour
Green’s function

G(1, 2) = −i
Tr

(

e−β(Ĥ0−µN̂ )TCS(t0, t0 − iβ)S(t0, t0)ψ1ψ
†
2

)

Tr

(

e−β(Ĥ0−µN̂ )TCS(t0, t0 − iβ)S(t0, t0)
) . (1.20)

There are two types of S-matrix. S(t0, t0− iβ) describes interactions and S(t0, t0)
describes external fields. The evaluation of the trace with given weight e−β(Ĥ0−µN̂ )

allows Wick’s theorem.
The Kadanoff-Baym formalism is adequate for studies of initial correlations

for times t > t0, without the assumption t≫ t0. The price to pay for this general
formalism is that the Green’s function is defined on a three-branch contour and
has a complicated expression in terms of the simultaneous perturbation expansion
of two S-matrices. For many practical purposes this is an overkill.

In many cases we can assume that correlations decay in time, so that if we
take the limit t0 → −∞, at any finite time t ≫ t0, there is no signature of
eventual correlations in the initial density matrix ρ(t0). This is the Bogoliubov
principle of weakening of correlations, a general principle in nonequilibrium sta-
tistical mechanics. It is however advised to keep in mind that in some cases
initial correlations can persist at long times for example due to the presence of
metastable states [6].

If we take a limit t0 → −∞ and neglect initial correlations, which is the same
as neglecting the imaginary segment, we end up with expression

G(1, 2) = −i
Tr

(

e−β(H0−µN )TCS(−∞,−∞)S(−∞,−∞)ψ1ψ
†
2

)

Tr

(

e−β(H0−µN )

) . (1.21)

In the next section we will derive Kadanoff-Baym rules using the same limit.

1.4.3 Langreth-Wilkins rules

In this subsection we derive Langreth-Wilkins rules used below to prepare equa-
tions for real time Green’s functions. In the previous subsection we have intro-
duced the contour Green function. The same diagrammatic expansion holds for
the contour Green function as for the zero temperature or Matsubara’s function.

The particle correlation functions is defined as

G<(1, 2) = Tr

(

TC ρ̂ψ1ψ
†
2

)

t1<Ct2

= −iG(1, 2)|t1<Ct2 (1.22)
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and the hole function reads

G>(1, 2) = Tr

(

TC ρ̂ψ
†
2ψ1

)

t1>Ct2

= iG(1, 2)|t1>Ct2 . (1.23)

Actually the definition above does not restrict times t1 and t2 in relation to
real axis. We can choose both t1 > t2 and t1 < t2 and definition above is still
valid. One particle Green’s function is a fermionic operator. The definitions of
the correlation functions are the definitions for fermionic operators. For bosonic
function one should slightly change the definition, we will do it later.

Let us suppose that we have some operator A, which is a product of two
operators B and C, on a complex segment

A(1, 2) = B(1, 3̄)C(3̄, 2),

A = B × C, (1.24)

where × denotes integration along the complex path. The second equation is a
short notation of the first one. We want to know the correlation functions of A,

A<(1, 2) =− iA(1, 2)|t1<Ct2 =

=− i
∫

C

dt3B(1, 3)C(3, 2)|t1<Ct2

=− i
∫ t1

t0

dt3B(1, 3)C(3, 2)− i
∫ t0

t1

dt3B(1, 3)C(3, 2)

− i
∫ t2

t0

dt3B(1, 3)C(3, 2)− i
∫ t0

t2

dt3B(1, 3)C(3, 2)

− i
∫ t0−iβ

t0

dt3B(1, 3)C(3, 2).

(1.25)

The first term is integral from time t0 to time t1, the second part from t1 to
t2 is contained in the second and third integral. The forth integral relates to
part between times t2 and time t0. The fifth integral is part from imaginary
segment. We are interested in the limit t0 → −∞. If we apply the Bogoliubov
principle of weakening correlations, the last integral diminished because the times
of measurements are infinitely far away from the initial time,

A<(1, 2) =− i
∫ t1

−∞

dt3B
>(1, 3)C<(3, 2) + i

∫ −∞

t1

dt3B
<(1, 3)C<(3, 2)

+ i

∫ t2

−∞

dt3B
<(1, 3)C<(3, 2)− i

∫ −∞

t2

dt3B
<(1, 3)C>(3, 2),

(1.26)

where we used definitions of correlations functions. We reverse integration in the
second and fourth term and group terms together

A<(1, 2) =

∫ t1

−∞

dt3(−i)(B>(1, 3) + B<(1, 3))C<(3, 2)

+

∫ t2

−∞

dt3B
<(1, 3)i(C<(3, 2) + C>(3, 2))

=

∫ ∞

−∞

dt3(−i)θ(t1 − t3)(B>(1, 3) + B<(1, 3))C<(3, 2)

+

∫ ∞

−∞

dt3B
<(1, 3)iθ(t3 − t2)(C<(3, 2) + C>(3, 2)).

(1.27)
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With definitions of retarded and advanced Green’s function

BR(1, 2) =− iθ(t1 − t2)(B>(1, 2) + B<(1, 2))

BA(1, 2) = iθ(t2 − t1)(B>(1, 2) + B<(1, 2))
(1.28)

we can rewrite these equations to

A<(1, 2) =

∫ ∞

−∞

dt3(B
R(1, 3)C<(3, 2) + B<(1, 3)CA(3, 2)). (1.29)

We have obtained the Langreth-Wilkins rule, which in the short notation reads

A< = BR · C< + B< · CA, (1.30)

where · denotes the time integration along the real time axis. In a very similar
manner one finds

A> = BR · C> + B> · CA. (1.31)

Since the formalism has particle-hole symmetry, so that all relations hold after
interchange >←→<, we take these two relation as a single rule.

We can employ spectral identity to derive a rule for retarded and advanced
functions,

i(AR − AA) =A> + A<

=BR · (C< + C>) + (B< +B>) · CA

=BRi · (CR − CA) + i(BR −BA) · CA

=i(BR · CR − BA · CA).

(1.32)

Integration in term BR(1, 3)CR(3, 2) is restricted to time domain t1 > t3 > t2 and
for t1 < t2 the term BR(1, 3)CR(3, 2) is zero. Similarly the term BA(1, 3)CA(3, 2)
is restricted to time domain t1 > t2. The last line can be decomposed to retarded
and advanced part

AA =BA · CA,

AR =BR · CR.
(1.33)

This is the second Langreth-Wilkins rule. These rules are equivalent to Keldysh
technique except they are easier to learn and more convenient to apply [7, 8].

We will often need a correlation function of the general expression

C =
A

(1 + A×B)
. (1.34)

Applying the analytical continuation for expression

A< = (C + C × B × A)<, (1.35)

and the Langreth-Wilkins rules we get

A< = C< + CR ·BR · A< + CR ·B< · AA + C< · BA · AA. (1.36)

15



Our aim is to evaluate the correlation function C<,

C< = (1− CR ·BR) · A< · 1

(1 + BA · AA)
− CR ·B< · AA

(1 + BA · AA)
. (1.37)

By rearrangement

C< =

(

1− AR

(1 + AR ·BR)
·BR

)

·A< · 1

(1 + BA · AA)
− CR ·B< · CA (1.38)

the final equation is

C< =
1

(1 + AR ·BR)
· A< · 1

(1 + BA · AA)
− CR ·B< · CA. (1.39)

Beside time integrals we will also need analytical continuation of direct prod-
ucts. This component we will discuss directly on physical quantities.
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2. Nambu-Gorkov equations

2.1 BCS Hamiltonian

The first microscopic theory of superconductivity is the theory of Bardeen, Cooper
and Schrieffer (1957) – the BCS theory. We start from the BCS Hamiltonian,
which includes an attractive interaction between two electrons. This attraction
is needed for electrons to form Cooper pairs. The Cooper pairs than condense
into a superconducting state.

The BCS interaction is separable, therefore the interaction among electrons
with parallel spins drops out by antisymmetry with respect to exchange of two
operators. This restricts applicability of this model to a spin-singlet supercon-
ducting states. However, all real superconductors belong to this type. So far, the
only triplet pairing was found in He-III. The Fermi statistic of electrons requires
a spin-singlet state to have an even parity with respect to the transposition of the
particle coordinates or with respect to inversion of the relative momentum of the
particles. This means that the superconducting state should have either s-wave
or d-wave symmetry. We start our consideration with s-wave superconducting
state.

There are various physical mechanisms of attraction between electrons. In
phonon model, for example, the attraction is mediated by an exchange of phonons.
The pairing interaction usually works in a restricted energy range and vanishes
for energy transfer larger than some cut-off value ΩBCS. For phonons this cut-off
is crudely the Debye frequency ΩD. If the interaction is relatively weak, the char-
acteristic energies of the particles participating in superconducting phenomena
are much smaller than Fermi energy and the cut-off energy also. For these cases
we approximate interaction by a point-like interaction

U(r1 − r2) =
g

2
δ(r1 − r2) (2.1)

with the option that cut-offs will be included into certain momentum integrals.
The potential is attractive for g < 0. The limit of small interaction corresponds
to |gν| ≪ 1 where ν is the density of states at the Fermi level in a normal state.
It is called weak-coupling approximation [9].

Now we will derive equations for Green’s function for BCS model following
monographes [2] and [9]. We start with the BCS Hamiltonian

ĤBCS =
∑

α=↑↓

∫ [

−ψ†
α

∇2

2m
ψα +

g

2
ψ†
ᾱψ

†
αψαψᾱ

]

d3r, (2.2)

where ᾱ is flipped spin α. The particle number operator has a form

N̂ =
∑

α=↑↓

∫

ψ†
αψαd

3r. (2.3)

We want to apply the Heisenberg picture in the complex time representation,
where the field operators depend on the imaginary time

ψ̃α(r, τ) = e(Ĥ−µN̂ )τψα(r)e
−(Ĥ−µN̂ )τ ,

ψ̃†
α(r, τ) = e(Ĥ−µN̂ )τψ†

α(r)e
−(Ĥ−µN̂ )τ .

(2.4)
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The Heisenberg operators satisfy the Heisenberg-like equations

∂ψ̃α

∂τ
=

(

Ĥ − µN̂
)

ψ̃α + ψ̃α

(

Ĥ − µN̂
)

,

∂ψ̃†
α

∂τ
=

(

Ĥ − µN̂
)

ψ̃†
α + ψ̃†

α

(

Ĥ − µN̂
)

.

(2.5)

Using these equations we can calculate the time derivative of the Heisenberg
operators ψ̃

∂ψ̃α

∂τ
=

(∇2

2m
+ µ

)

ψ̃α(x)− gψ̃†
γ(x)ψ̃γ(x)ψ̃α(x),

∂ψ̃†
α

∂τ
= −

(∇2

2m
+ µ

)

ψ̃†
α(x) + gψ̃†

α(x)ψ̃
†
γ(x)ψ̃γ(x),

(2.6)

where x = (τ, r). We remind that time τ is real and is defined via complex time
τ = it.

2.2 Nambu-Gorkov equations

Our aim is to derive equations for Matsubara’s functions. To this end we take
the derivative of Matsubara’s function,

∂Gαβ(x1, x2)

∂τ1
=

∂

∂τ1
[δαβδ(r1 − r2)θ(τ1 − τ2)

+

〈

Tβ

(∇2

2m
+ µ

)

ψ̃α(x1)ψ̃
†
β(x2)− gψ̃†

γ(x1)ψ̃γ(x1)ψ̃α(x1)ψ̃
†
β(x2)

〉

= δαβδ(r1 − r2)δ(τ1 − τ2) +
(∇2

2m
+ µ

)

Gαβ(x1, x2)

− g
〈

Tβψ̃
†
γ(x1)ψ̃γ(x1)ψ̃α(x1)ψ̃

†
β(x2)

〉

.

(2.7)
We have used equations (2.5) and (2.6) and denoted the trace by angular brackets,
Tr(. . . ) = 〈. . . 〉. This is the exact equation of motion for Matsubara’s function.

Let us focus on the last term. According to Wick’s theorem

〈

Tβψ̃
†
γ(x1)ψ̃γ(x1)ψ̃α(x1)ψ̃

†
β(x2)

〉

≈ −
〈

Tβψ̃γ(x1)ψ̃
†
γ(x1)

〉〈

Tβψ̃α(x1)ψ̃
†
β(x2)

〉

+
〈

Tβψ̃α(x1)ψ̃
†
γ(x1)

〉〈

Tβψ̃γ(x1)ψ̃
†
β(x2)

〉

.

(2.8)
The Wick’s theorem applies for noninteracting particles, here we are using the
same relation for the interacting system. This schema is not the traditional finite
temperature perturbation theory and Wick’s theorem. This schema is called
decoupling.

According to Wick’s theorem, the two-particle Green function decouples to
the products of two one-particle Green’s functions. In the theory of supercon-

18



ductivity, however, we need to introduce an additional term
〈

Tβψ̃
†
γ(x1)ψ̃γ(x1)ψ̃α(x1)ψ̃

†
β(x2)

〉

= −
〈

Tβψ̃γ(x1)ψ̃
†
γ(x1)

〉〈

Tβψ̃α(x1)ψ̃
†
β(x2)

〉

+
〈

Tβψ̃α(x1)ψ̃
†
γ(x1)

〉〈

Tβψ̃γ(x1)ψ̃
†
β(x2)

〉

−
〈

Tβψ̃α(x1)ψ̃γ(x1)
〉〈

Tβψ̃
†
γ(x1)ψ̃

†
β(x2)

〉

.

(2.9)
It turned out that traditional perturbative expansions failed for superconduc-

tivity. Bardeed, Cooper and Schrieffer have introduced a wave function, which is
not sharp in the number of particles. Such wave function is not an eigen-state of
the particle number operator, which commutes with the Hamiltonian. Therefore
its use is in conflict with the particle conservation law. Nevertheless, this varia-
tional wave function gave a very low ground state energy and helped to explain
many features of superconductors. Provided that the system is described by such
function, the last term results non-zero. This term is called anomalous Green’s
function.

We can write
〈

Tβψ̃
†
γ(x1)ψ̃γ(x1)ψ̃α(x1)ψ̃

†
β(x2)

〉

= −Σγγ(x1)Gαβ(x1, x2) + Σαγ(x1)Gγβ(x1, x2)−
∆αγ(x1)

|g| F †
γβ(x1, x2),

(2.10)

where we used some of following definitions

Gαβ(x1, x2) =
〈

Tβψ̃α(x1)ψ̃
†
β(x2)

〉

,

Ḡαβ(x1, x2) = −
〈

Tβψ̃
†
α(x1)ψ̃β(x2)

〉

,

F †
γβ(x1, x2) =

〈

Tβψ̃
†
γ(x1)ψ̃

†
β(x2)

〉

,

Fγβ(x1, x2) =
〈

Tγψ̃γ(x1)ψ̃β(x2)
〉

.

(2.11)

And defined selfenergy in terms of the Matsubara’s function

Σγβ(x1) = |g|
〈

Tβψ̃γ(x1)ψ̃
†
β(x1)

〉

,

∆αβ(x) = |g|Fαβ(x, x),

∆∗
αβ(x) = |g|F †

αβ(x, x).

(2.12)

The function ∆ is the superconducting gap. As one can see, it relates to the
anomalous function. Since the anomalous functions are non-zero only for an
attractive interaction, we assume g < 0.

The selfenergy Σγγ̄ is zero for our model, because there is no spin-flipping term
in the Hamiltonian. The selfenergy Σγγ is nonzero, but it is usually neglected,
because in the BCS model the selfenergies leads only to renormalization of the
chemical potential.

The equation of motion for Matsubara’s function
(

∂

∂τ1
− ∇

2
1

2m
− µ

)

Gαβ(x1, x2) + |g|
〈

Tβψ̃α(x1)ψ̃γ(x1)
〉〈

Tβψ̃
†
γ(x1)ψ̃

†
β(x2)

〉

= δαβδ(x1 − x2)
(2.13)
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can be written as
(

∂

∂τ1
− ∇

2
1

2m
− µ

)

Gαβ(x1, x2) + ∆αγ(x1)F
†
γβ(x1, x2) = δαβδ(x1 − x2). (2.14)

The function F †
γβ(x1, x2) is odd in transposition of the particle coordinates and

spin indices because of the statistics of electrons. For a pairing interaction which
has an even parity in the orbital space such as s-wave or d-wave interaction, the
Cooper pairing can occur between the electrons with opposite spin projections
into a singlet state. Therefore the pair wave function is antisymmetric in spin
indices ∆αγ(x) = −∆γα(x). With this we can write

∆αγ(x) = iσ
(2)
αβ∆(x)

∆†
αγ(x) = iσ

(2)
αβ∆

∗(x)
, (2.15)

where

σ(2) =

(

0 −i
i 0

)

(2.16)

is the Pauli matrix. We also denote

F †
αβ(x1, x2) = −iσ

(2)
αβF

†(x1, x2)

Fαβ(x1, x2) = −iσ(2)
αβF (x1, x2)

Gαβ(x1, x2) = δαβG(x1, x2)

. (2.17)

The Matsubara’s function is proportional to the unit matrix, because the
interaction does not depend on spin. In this notation we can simplify the equation
of motion for the Matsubara’s function as

(

∂

∂τ1
− ∇

2
1

2m
− µ

)

G(x1, x2) + ∆(x1)F
†(x1, x2) = δ(x1 − x2). (2.18)

This equation contains unknown functions F †(x1, x2) and ∆(x1), which can be
written in terms of function F (x1, x2). To find these functions we need additional
equations. We can derive them from Heisenberg equations in a similar way. We
have three new equations

(

∂

∂τ1
+
∇2

1

2m
+ µ

)

F †(x1, x2) + ∆∗(x1)G(x1, x2) = 0, (2.19)

−
(

∂

∂τ1
+
∇2

1

2m
+ µ

)

Ḡ(x1, x2) + ∆∗(x1)F
†(x1, x2) = δ(x1 − x2), (2.20)

(

− ∂

∂τ1
+
∇2

1

2m
+ µ

)

F (x1, x2) + ∆(x1)Ḡ(x1, x2) = 0. (2.21)

Equations (2.18)-(2.21) together with relation ∆(x) = |g|F (x, x) and its conju-
gate form are the closed set of equations.

We can easily write down the above set of equations in the matrix form








∂

∂τ1
− ∇

2
1

2m
− µ −∆(x1)

∆∗(x1) − ∂

∂τ1
− ∇

2
1

2m
− µ









(

G(x1, x2) F (x1, x2)
−F †(x1, x2) Ḡ(x1, x2)

)

=

(

δ(x1 − x2) 0
0 δ(x1 − x2)

)

(2.22)
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with a symbolic notation

(G−1
0 +Σ)(x1)G(x1, x2) = 1δ(x1 − x2). (2.23)

This is the Nambu-Gorkov equation in the differential form. The integral form is
obtained by multiplying it with G0

G(x3, x2) = G0(x3, x2) +G0(x3, x̄1)Σ(x̄1)G(x̄1, x2). (2.24)

The internal variable is integrated over as denoted by bars.

2.3 Dyson equation

The Dyson equation expresses the full Matsubara’s function in terms of the bare
function and selfenergy

G(x1, x2) = G0(x1, x2)−G0(x1, x̄3)Σ(x̄3, x̄4)G(x̄4, x2). (2.25)

It is possible to rearrange the Nambu-Gorkov equation into the Dyson equation.
Let us write the integral Nambu-Gorkov equation (2.24) in explicit form

(

G(x1, x2) F (x1, x2)
−F †(x1, x2) Ḡ(x1, x2)

)

=

(

G0(x1, x2) 0
0 Ḡ0(x1, x2)

)

+

(

G0(x1, x̄3) 0
0 Ḡ0(x1, x̄3)

)(

0 −∆(x̄3)
∆∗(x̄3) 0

)(

G(x̄3, x2) F (x̄3, x2)
−F †(x̄3, x2) Ḡ(x̄3, x2)

)

.

Components in the first column satisfy

G(x1, x2) = G0(x1, x2) +G0(x1, x̄3)∆(x̄3)F
†(x̄3, x2), (2.26)

−F †(x3, x2) = Ḡ0(x3, x̄4)∆
∗(x̄4)G(x̄4, x2). (2.27)

Eliminating F † we arrive at equation for the full Green’s function

G(x1, x2) = G0(x1, x2)−G0(x1, x̄3)∆(x̄3)Ḡ0(x̄3, x̄4)∆
∗(x̄4)G(x̄4, x2). (2.28)

Comparing this equation with the Dyson equation we can identify the selfenergy
corresponding to the Nambu-Gorkov theory

Σ(x3, x4) = ∆(x3)Ḡ0(x3, x4)∆
∗(x4). (2.29)

Note that the matrix selfenergyΣ has only a single space-time argument, while
the selfenergy Σ of the Dyson equation is a double-time function of two space
arguments. The locality in time and space makes Nambu-Gorkov formulation
very convenient, but one should keep in mind that this property is restricted
to given model and approximation. For the d-wave pairing the double-space
structure appears also for ∆. For the retarded interaction mediated by phonons,
∆ has double-time structure. Going beyond the lowest order approximation used
above, the matrix selfenergy depends on two space-time arguments always.
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3. Unified theory of normal and
superconducting state

3.1 Introduction

In the last chapter we have introduced Nambu-Gorkov equations. This technique
was developed only for description of a condensate, whereas a normal state is
covered by standard perturbative methods and the Dyson equation. But a gen-
eral theory should cover both states. This is needed in systems, where strong
fluctuations influence transition from normal to superconducting state.

We saw in the previous chapter that Green’s function technique in theory
of superconductivity was based on a decoupling schema and anomalous Green’s
functions. This gave us relation between the gap parameter and the selfenergy in
the Dyson equation. The Nambu-Gorkov selfenergy was constructed with a bare
Green function and therefore nonselfconsistently Σ[G0]. It turns out generally
that this nonselfconsistency is the necessary for the gap to develop.

On the normal side of the superconducting phase transition, the classical
perturbation theory based on Wick’s theorem works. One of its formulations is
Schwinger-Dyson schema, which conjugates one-particle Dyson equation and-two-
particle Bethe-Salpeter equation. The two-particle propagation carried by Bethe-
Salpeter equation seemed to be suitable for description of two-particle correlations
in the superconductor.

There are plenty of approximations of two-particle propagators. Among these
approximation there is a T -matrix in the ladder approximation. It usually ap-
pears in description of normal state of metals and nuclear matter with strong
interaction potential. Attempts to apply this Galitskii-Feynman schema for at-
tractive interaction and eventually describe by it the superconducting state were
not successful. The theory gives an instability of the normal state at the critical
temperature but it fails to give the gap at lower temperatures.

The problem was hidden in the selfconsistent construction of the Galitskii-
Feynman T -matrix. This problem disappears when one replaces the selfconsistent
schema with a nonselfconsistent one. This is done by a replacement the full Green
function by a bare Green function. This schema was followed in Kadanoff-Martin
theory. Unfortunately, this schema cannot describe the normal state, which is
consequence of the nonselfconsistency.

On one hand, we have selfconsistent Galitskii-Feynman theory, which is appli-
cable to the normal state, on the other hand we have nonselfconstistent Kadanoff-
Martin theory which, gives the gap and the superconducting state. Each theory
fails down in the domain of the second one. Therefore there is a question. ”How
the worse approximation can better describe superconducting phenomena?” This
problem is called Prange paradox [10].

The problem of selfconsistent treatment is hidden in the two-particle propa-
gation. As any other approximative selfconsistent schema the Galitskii-Feynman
approximation has an overcounting of some terms in expansion because of the
use of full Green’s function to build the selfenergy. This overcounting is minor in
the normal state. Below transition temperature the condensate will enhance this
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overcounting, however.
If the overcounting is excluded, there is no enhancement. Such a schema was

proposed by supervisor of author [10]. The overcounting in physical terms of re-
peated collisions was forbidden by Soven schema, which was originally developed
for multiple scattering of electrons in substitutional alloys [11]. The Galitskii-
Feynman T -matrix with multiple scattering corrections can describe both states
of matter. One can recover Nambu-Gorkov selfenergy (2.29) in appropriate limit
also.

In the next sections we will introduce Galitskii-Feynman and Kadanoff-Martin
theory, followed by multiple scattering corrections to T -matrix based on Galitskii-
Feynman. We will also formulate alternative theory with corrections to Kadanoff-
Martin theory. Finally we will discuss the Nambu-Gorkov limit.

In this chapter we will use equilibrium Green’s function technique. In the
next chapter the nonequilibrium version of the theory will be obtained by using
the Langreth-Wilkins rules.

3.2 Galitskii-Feynman T -matrix approximation

First we introduce the Galitskii-Feynman approximation, which is commonly used
in the normal state of metal. Because we are in equilibrium, it is more convenient
to switch by the Fourier transformation to k-space and to frequencies.

We treat the system of electrons with the Hamiltonian

Ĥ =
∑

k

ǫ(k)(a†↑ka↑k + a†↓ka↓k) +
1

Ω

∑

kpq

Vq(p,k)a
†
↓q−ka

†
↑ka↑pa↓q−p. (3.1)

This Hamiltonian omits interaction between equal spin (triplet interaction) we
focus only on singlet interaction. The kinetic energy has zero at the Fermi energy
ǫ(k) = k2/2m − EF . Variables p and k are relative momenta before and after
interaction. The total momentum of the interacting pairs of particles is denoted
as q. The creation a†↑k and the annihilation operators are normalized to a sample

(or quantization) volume Ω, e.g. ψ†(r) = (1/
√
Ω)
∑

k a
†
↑ke

−ik·r.
The standard Dyson equation has a form

G↑(ω,k) = G0
↑(ω,k) +G0

↑(ω,k)Σ↑(ω,k)G↑(ω,k), (3.2)

where G↑(ω,k) is the full Matsubara’s function and the bare function reads

G0
↑(ω,k) =

1

iω − ǫ(k). (3.3)

The Dyson equation resp. selfenergy Σ describes averaged effects of all elec-
trons on the motion of a selected electron with momentum k spin ↑ and Mat-
subara’s frequency ω. The Galitskii-Feynman selfenergy is constructed from the
two-particle T matrix

ΣGF
↑ (ω;k) =

kBT

Ω

∑

zq

TGF
q↑ (z;k,k) ·G↓(z − ω;q− k). (3.4)
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This still does not say anything about approximation which we use. The specifi-
cation of approximation is within the T -matrix.

The Galitskii-Feynman selfenergy uses the ladder approximation of T -matrix

TGF
q↑ (z,p,k) = Vq↑(p,k) +

1

Ω

∑

zk′

Vq↑(p,k
′)GGF

q↑ (z,k′)TGF
q↑ (z,k′,k), (3.5)

where
GGF
q↑ (z,p) = kBT

∑

ω

G↑(ω,p)G↓(z − ω,q− p) (3.6)

describes the propagation of two particles or two holes during the collision. We
use the convention of signs from [2]. One can note that we have no equations for
Matsubara’s function of electrons with opposite spins. This complementary equa-
tion is recovered by simple replacement of spins by opposite one in all expressions.
The set of equations is closed.

Of course like others perturbative approaches the Galitskii-Feynman schema
has also some shortcomings. Because of summation of only specific class of di-
agrams the Galitskii-Feynman approximation contains non-physical processes.
Repeated scattering out and scattering in processes are hidden in the schema.

The repeated scattering out processes appear due to products of the selfenergy
in the Dyson equation. We can expand the Dyson equation:

G↑(ω,k) = G0
↑(ω,k)+· · ·+G0

↑(ω,k)Σ↑(ω,k)G
0
↑(ω,k)Σ↑(ω,k).G

0
↑(ω,k)+. . . (3.7)

In the second order we have two sums

G0
↑Σ↑G

0
↑Σ↑G

0
↑ =

k2BT
2

Ω2
G0

↑

∑

zq

(TqG↑)G
0
↑

∑

z′q′

(TqG↑)G
0
↑. (3.8)

The non-physical repeated scattering out collisions q = q′ should be excluded.
Repeated scattering in processes are hidden in the selfconsistent construction

of the selfenergy. The selfenergy is a functional of the dressed Matsubara’s func-
tions ΣGF

↑ [G↓, G↑]. In this way the collision processes described by selfenergy
ΣGF

↑ [G↓, G↑] also contributes to its internal Matsubara’s function G↓. Therefore
these processes supply particles into its own initial state.

ΣGF
↑ [G↓, G↑] =

kBT

Ω

∑

z,q

(

Tq

[

G0
↑ +G0

↑

kBT

Ω

∑

z′,q′

(Tq′G↓)G
0
↑ + . . . , G↓

]

G↓

)

. (3.9)

Again we have a double sum in the selfenergy q = q′ which should be excluded.
It should be noted that in normal metal every channel q in the summation

(3.4) has the weight of an inverse of the volume and vanishes in the thermody-
namical limit. Therefore the error due to repeated collisions is negligible. It is the
reason why the Galitskii-Feynman approximation widely used in normal phase
is successful. In a superconductor, however, the repeated collisions in the pair-
ing channel are enhanced due to macroscopic occupation of the pairing channel.
These repeated collisions block the formation of the gap.
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3.3 Kadanoff-Martin T -matrix approximation

One possibility how to eliminate the repeated collisions is to prohibit a whole
class of diagrams in schema of Galitskii and Feynman. This is equivalent to the
use of bare Matsubara’s function instead the full one in two-particle propagation.

We will thus modify the equations (3.4) for construction of selfenergy

ΣKM
↑ (ω;k) =

kBT

Ω

∑

zq

TKM
q↑ (z;k,k) ·G0

↓(z − ω;q− k). (3.10)

We are closing T -matrix by bare Matsubara’s function here.
The second equation which has to be changed is equation for T -matrix (3.5)

in way

TKM
q↑ (z,p,k) = Vq↑(p,k) +

1

Ω

∑

zk′

Vq↑(p,k
′)GKM

q↑ (z,k′)TGF
q↑ (z,k′,k), (3.11)

where two-particle propagator (3.6) is constructed from one bare Matsubara’s
function, which closed the loop in (3.12)

GKM
q↑ (z,p) = kBT

∑

ω

G↑(ω,p)G
0
↓(z − ω,q− p). (3.12)

This modification leads to an approximation, which covers gap in supercon-
ducting state. One can recover Nambu-Gorkov selfenergy from equation (3.10).
We suppose that pairing occurs in states not only with different spin, but also
with different momenta, which is in our notation channel q = 0 and zero energy.
Others channels create surroundings and we neglect them for the moment. We
have

ΣNG
↑ (ω;k) =

kBT

Ω
TKM
0↑ (0;k,k) ·G0

↓(0− ω;−k). (3.13)

Important assumption is supposed, T -matrix is separable in pairing channel

kBT

Ω
TKM
0↑ (0;k,k) = ∆(k)∆∗(k). (3.14)

The weight of T -matrix in pairing channel is proportional to the volume, so the
gap parameter is order of unity in the volume.

Substituted to equation (3.13) one finds

ΣNG
↑ (ω;k) = ∆(k)G0

↓(−ω;−k)∆∗(k), (3.15)

which resembles Nambu-Gorkov selfenergy (2.29). Nambu-Gorkov selfenergy can
describe the gap parameter. From construction above it is obvious that Nambu-
Gorkov selfenergy can not be obtained from Galitskii-Feynman schema.

3.4 Multiple scattering corrections to

the Galitskii-Feynman approximation

In this section we introduce multiple scattering correction to the Galitskii-Feynman
approximation. This correction repairs the Galitskii-Feynman schema in the man-
ner, which allows the equations to describe the gap.
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Standard Dyson equation remains unchanged

G↑(ω,k) = G0
↑(ω,k) +G0

↑(ω,k)Σ↑(ω,k)G↑(ω,k). (3.16)

Dyson equation is an equation for full Matsubara’s function G[Σ], provided one
has an equation for selfenergy Σ[G]. The set of equations Σ[G] from the Galitskii-
Feynman schema has to be modified. The Soven idea how to remove the repeated
collisions can be adopted to Galitskii-Feynman approximation as following.

Separable potential Vq from (3.1) is split into channels belonging to the total
momentum of particles q. In the same manner one can split the total selfenergy

Σ↑(ω,k) =
∑

q

Σq↑(ω,k). (3.17)

This splitting was used, implicitly, also in equations (3.4), (3.10).
We define a subsidiary Matsubara’s function, in which the q channel is not

included
Gq↑(ω,k) = G↑(ω,k)−G↑(ω,k)Σq↑(ω,k)Gq↑(ω,k). (3.18)

In terms of the bare Matsubara function the reduced Matsubara function reads
Gq↑ = G0

↑ +G0
↑(Σ↑−Σq ↑)Gq↑. From this relation one sees the reduced function

as almost full Matsubara’s function.
From q-reduced Matsubara’s function we will construct two-particle q-reduced

propagator

Gq↑(z,p) = kBT
∑

ω

Gq↑(ω,p)G↓(z − ω,q− p). (3.19)

Note that the Matsubara’s function for the spin ↓ is not reduced, because we
have excluded only the spin ↑ part of selfenergy. The reduced spin component is
specified in the subscript of two-particle function.

We can see the difference in the construction of two-particle propagator in
Galitskii-Feynman, Kadanoff-Martin and Multiple scattering theory. In the first
theory we use two full Matsubara’s function, in the second we use bare and full
Matsubara’s function and in the last case we used q-reduced and full functions.

Two-particle propagator is an intermediate component of two interacting par-
ticles in ladder approximation of T -matrix

Tq↑(z,p,k) = Vq↑(p,k) +
1

Ω

∑

k′

Vq↑(p,k
′)Gq↑(z,k′)Tq↑(z,k

′,k). (3.20)

Using the q-reduced Matsubara function in internal two-particle propagator we
have eliminated the repeated scattering in processes.

The T -matrix covers all orders of the binary interaction. The dressed Mat-
subara’s function reads

G↑(ω,k) = Gq↑(ω,k) +Gq↑(ω,k)Sq↑(ω,k)Gq↑(ω,k), (3.21)

where

Sq↑(ω;k) =
kBT

Ω

∑

z

Tq↑(z;k,k)G↓(z − ω;q− k), (3.22)

is the reducible selfenergy for the internal channel q. The reducible selfenergy S
has to be distinguished from the irreducible selfenergy Σ. This construction is
free of successive scattering out collisions.
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The relation between reducible selfenergy S and irreducible selfenergy Σ fol-
lows from relations (3.19) and (3.30)

Σq↑(ω;k) =
Sq↑(ω;k)

1 +Gq↑(ω;k)Sq↑(ω;k)
. (3.23)

The above set of equations eliminates the repeated collisions, which appear
in the original Galitskii-Feynman schema. We can see that this method is fully
selfconsistent. This means that selfenergy is a functional of full Matsubara’s
function Σ[G,Gq[G]]. Together with the Dyson equation G[Σ] the selfenergy
Σ[G,Gq[G]] constitute the closed set of equation.

Historically, the Soven idea of effective medium was developed for one-particle
scattering on impurities. The reformulation of the original Soven condition is
made in the appendix A. This allow us to bring this idea from alloys, where
scattering is between electron and impurity, to a the problem of scattering of two
electrons. We derive the set of equations (A.24)-(A.29), which parallel (3.17)-
(3.30). There are two differences. Instead of channel, which relate to impurity
side in alloys, the channel q means the total momentum of a electron pair. The
second difference is the use of two-particle T -matrix instead of one-particle T -
matrix, suitable for scattering on impurity. For more details see appendix A.

3.5 Limit of Nambu-Gorkov selfenergy

One can recover Nambu-Gorkov selfenergy from multiple scattering theory in the
limit of one pairing channel Σ↑0. In this limit we neglect all other channels setting
Σ↑q 6=0 = 0, therefore

Σ↑(ω,k) = Σ0↑(ω,k), (3.24)

and the reduced Matsubara function is the same as the bare Matsubara function

G0↑(ω,k) = G↑(ω,k)−G↑(ω,k)Σ0↑(ω,k)G0↑(ω,k),

= G↑(ω,k)−G↑(ω,k)Σ↑(ω,k)G0↑(ω,k),

= G0
↑(ω,k).

(3.25)

Equation (3.23) can be written in form

Σ0↑(ω;k) + Σ0↑(ω;k)G0↑(ω;k)S0↑(ω;k) = S0↑(ω;k), (3.26)

or using (3.25) as

Σ↑(ω;k) + Σ↑(ω;k)G
0
↑(ω;k)S↑(ω;k) = S↑(ω;k). (3.27)

The resulting reducible selfenergy can be put in (3.21)

G↑(ω,k) = G0↑(ω,k) +G0↑(ω,k)S0↑(ω,k)G0↑(ω,k),

= G0
↑(ω,k) +G0

↑(ω,k)S↑(ω,k)G
0
↑(ω,k),

= G0
↑(ω,k) +G0

↑(ω,k)Σ↑(ω;k)G
0
↑(ω,k)

+G0
↑(ω,k)Σ↑(ω;k)G

0
↑(ω;k)S↑(ω;k)G

0
↑(ω,k).

(3.28)
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We can group the last two terms

G↑(ω,k) = G0
↑(ω,k)

+G0
↑(ω,k)Σ↑(ω;k)(G

0
↑(ω,k) +G0

↑(ω;k)S↑(ω;k)G
0
↑(ω,k)).

(3.29)

Let us use equation for T -matrix (3.30), where, in condensate, the dominant
term is T0↑(0;k,k)≫ T0↑(z 6=;k,k),

S↑(ω;k) =
kBT

Ω
T0↑(0;k,k)G↓(−ω;−k),

= ∆(k)G↓(−ω;−k)∆∗(k),
(3.30)

In the second line we have used the separability of T -matrix. Substituting into
(3.31) we obtain

G↑(ω,k) =G
0
↑(ω,k) +G0

↑(ω,k)Σ↑(ω;k)

(G0
↑(ω,k) +G0

↑(ω;k)∆(k)G↓(−ω;−k)∆∗(k)G0
↑(ω,k)).

(3.31)

Let us do a nontrivial step with the help of the statement in form of equation
(13) in [12]. According to this statement we can write a part of the last term in
(3.31) in formation

∆(k)G↓(−ω;−k)∆∗(k)G0
↑(ω,k) = ∆(k)G0

↓(−ω;−k)∆∗(k)G↑(ω,k). (3.32)

We put this expression back to equation (3.31)

G↑(ω,k) =G
0
↑(ω,k) +G0

↑(ω,k)Σ↑(ω;k)

(G0
↑(ω,k) +G0

↑(ω;k)∆(k)G0
↓(−ω;−k)∆∗(k)G↑(ω,k)).

(3.33)

According to the Dyson equation the term in bracket is the full Matsubara func-
tion

G↑(ω,k) =G
0
↑(ω,k) +G0

↑(ω;k)∆(k)G0
↓(−ω;−k)∆∗(k)G↑(ω,k). (3.34)

We can identify that the selfenergy in the one pairing channel limit is the
same as in equation (3.15)

Σ↑(ω;k) = ΣNG
↑ (ω;k) = ∆(k)G0

↓(−ω;−k)∆∗(k), (3.35)

Briefly, the Nambu-Gorkov equation is recovered as a single-channel approxima-
tion of the Multiple scattering theory.

3.6 Corrections to Kadanoff-Martin approxima-

tion

In this section we repair Kadanoff-Martin theory in the manner similar to multiple
scattering corrections in Galitskii-Feynman approximation.

The Dyson equation and selfenergy are unchanged

G↑(ω,k) = G0
↑(ω,k) +G0

↑(ω,k)Σ↑(ω,k)G↑(ω,k), (3.36)
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Σ↑(ω,k) =
∑

q

Σq↑(ω,k). (3.37)

The equation, which relates reduced and full Matsubara’s functions is also un-
changed

Gq↑(ω,k) = G↑(ω,k)−G↑(ω,k)Σq↑(ω,k)Gq↑(ω,k). (3.38)

The differences are in the construction of two-particle propagator. We mutu-
ally exchange positions of both Matsubara’s function in (3.19)

Gq↑(z,p) = kBT
∑

ω

G↑(ω,p)Gq↓(z − ω,q− p), (3.39)

and put the propagator into the T -matrix equation in the ladder approximation

Tq↑(z,p,k) = Vq↑(p,k) +
1

Ω

∑

k′

Vq↑(p,k
′)Gq↑(z,k′)Tq↑(z,k

′,k). (3.40)

From the construction of the T -matrix follows that we need to close the equation
with reduced Matsubara’s function

Σq↑(ω;k) =
kBT

Ω

∑

z

Tq↑(z;k,k) ·Gq↓(z − ω;q− k), (3.41)

because all Matsubara’s function in the loop or open line should be in the same
approximation.

The selfenergy remains irreducible as in Kadanoff-Martin theory. There is an
essential difference, however. We use the reduced function to close the loop in
the Schwinger-Dyson equation (3.41), whereas we have used the full Matsubara
function above in equation (3.30).

As in previous subsection, one can recover the Nambu-Gorkov selfenergy in
the one pairing channel limit with the help of separability of the T -matrix. Within
this limit the Multiple scattering theory and also the corrected Kadanoff-Martin
theory reduce to Nambu-Gorkov theory and become equivalent. The normal state
properties are hidden in channels q 6= 0, which are outside of condensate.

3.7 Selfconsistent T -matrix theory of supercon-

ductivity

In all methods, discussed above, we had some particular level of selfconsistency.
The problem of selfconsistency in the theory of superconductivity was revised
in [13]. In this article a restricted selfconsistent theory, based on a method from
section 3.6, is developed for general retarded interaction. There is also a statement
that this theory is equivalent to the theory based on theory from section 3.4. Both
theories can be brought to the form of the second one, if individual channels
are identified via four-momentum, i.e., the momentum and the frequency. Such
labeling is necessary for a general retarded interaction mediated by phonons.

Selective elimination of individual Fourier components violates the double-
time structure of the T -matrix making a general four-time function out of it. This
does not harm for the retarded interaction, where the T -matrix is the four-time
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function anyway. For the instantaneous interaction assumed here, we want to
keep the double-time structure which has much simpler correlation functions. To
this end we ban small corrections eliminating all Fourier components in the same
time, as it is outlined above. The Multiple scattering theory and the improved
Kadanoff-Martin theories are not strictly identical in this case, but differ only by
minor contributions.

Why we are not interested in the general retarded interaction? In the next
chapter we develop a nonequilibrium version of the theory in section 3.4 by ap-
plication of Langreth-Wilkins rules. For retarded potential this causes problems,
because we bring a new frequency variable, which should be included. The an-
alytic continuation would give us six analytic parts since we have three time
functions on general contour. This makes the putative nonequilibrium version
prohibitively complicated.
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4. Theory of nonequilibrium
superconductivity

4.1 Introduction

The unified theory of superconducting and normal state developed in the last
chapter is needed in systems with strong fluctuations close to transitions be-
tween normal and superconducting state. A family of such systems includes high
temperature superconductors with their pseudogap phase, ultracold Fermi gases
near the BEC-BCS crossover, and also low dimensional systems, such as nano-
superconductors.

The last example is a well known system, where many features were observed
by spectroscopic measurements [14]. In the tunneling spectroscopy the measured
system is generally out of equilibrium. For this reason the general nonequilibrium
theory should be applied.

There are classical textbooks about nonequilibrium in superconductors. These
theories are based on Nambu-Gorkov equations so they are able to include only
properties of the condensate. Analytic continuation of Nambu-Gorkov equations
is done by Keldysh or Kadanoff-Baym formalism. The effects of retarded inter-
action on the condensate can be also studied. By a quasiclassical approximation
one can derive time dependent Ginzburg-Landau theory and thereby explain phe-
nomena like motion of Abrikosov vortices.

We are interested in regimes not studied till recent development in ultracold
gases – in regimes, where the normal and superconducting phase compete. To
allow a fair competition, a physical theory has to treat both phases on the same
level. In this chapter we develop nonequilibrium version of the theory introduced
in section 3.4.

4.2 Imaginary time formalism

The theory of superconductivity with multiple scattering corrections was formu-
lated for equilibrium in section 3.4. We want to extend the theory to nonequi-
librium systems by using the Langreth-Wilkins rules (1.30)-(1.33). To this end
the set of equations (3.16)-(3.30) has to be brought to the time domain by the
Fourier transformation on imaginary segment. The Dyson equation reads

G↑(t1, t2,k) = G0
↑(t1, t2,k) +G0

↑(t1, t̄3,k)Σ↑(t̄3, t̄4,k)G↑(t̄4, t2), (4.1)

where selfenergy is a sum over channels

Σ↑(t1, t2,k) =
∑

q

Σq↑(t1, t2,k). (4.2)

The bar denotes integration over imaginary segment (or Kadanoff-Baym complex
time path).

The reduced Green function depends on the full Green function as

Gq↑(t1, t2,k) = G↑(t1, t2,k)−G↑(t1, t̄3,k)Σq↑(t̄3, t̄4,k)Gq↑(t̄4, t2,k). (4.3)
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Alternatively one can use the averaged T -matrix form

G↑(t1, t2,k) = Gq↑(t1, t2,k) +Gq↑(t1, t̄3,k)Sq↑(t̄3, t̄4,k)Gq↑(t̄4, t2,k). (4.4)

The two-particle propagator does not contains any integration

Gq↑(t1, t2;k) = iGq↑(t1, t2;k)G↓(t1, t2;q− k). (4.5)

Note the complex unit which appears since we have turned the time to the real
axis, τ → it. The two-particle propagator enters the T -matrix ladder

Tq↑(t1, t2,p,k) = Vq↑(p,k)δ(t1−t2)+
1

Ω

∑

k′

Vq↑(p,k
′)Gq↑(t1, t̄4,k′)Tq↑(t̄4, t2,k

′,k).

(4.6)
The Dirac delta function represents ‘time’ dependence of instantaneous interac-
tion.

The last equation is the averaged T -matrix

Sq↑(t1, t2;k) =
−i
Ω
Tq↑(t1, t2;k,k)G↓(t2, t1;q− k), (4.7)

where Green’s function in a loop has opposite order of times. We recall alternative
expressions for selfenergy, which can be derived from the equations above

Σq↑(t1, t2,k) = Sq↑(t1, t2,k)− Σq↑(t1, t̄3,k)Gq↑(t̄3, t̄4,k)Sq↑(t̄4, t2,k), (4.8)

Sq↑(t1, t2,k) = Σq↑(t1, t2,k) + Σq↑(t1, t̄3,k)G↑(t̄3, t̄4,k)Σq↑(t̄4, t2,k). (4.9)

We will use expression (4.9) instead of (4.4).

4.3 Nonequilibrium Green functions

Now we employ the machinery of nonequilibrium Green’s functions to convert the
above set to equations on the real time axis valid under nonequilibrium conditions.

4.3.1 GKB equation

The Dyson equation (4.1) has a short notation G = G0+G0×Σ×G. According
to the Langreth-Wilkins rule (1.33), The equation for the retarded Green function
thus is

GR = G0R +G0R · ΣR ·GR. (4.10)

Equation for the advanced Green function one obtains by a simple interchange
of retarded and advanced functions.

The analytic continuation of G is thus given by relation (1.39). Therefore for
correlation function we use the relation (1.39) which yields

G< = GR · Σ< ·GA + (1 +GR · ΣR) ·G0< · (1 + ΣA ·GA). (4.11)

It has two terms. The first term simulates particles outgoing from scattering. It
should be mentioned that it also describes non-dissipative response of particles
to the background motion.
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The second term includes G0< which is related either to the initial or boundary
condition. It can be neglected if all particles in the system have undergone many
collisions in the past. The generalized Kadanoff-Baym equation then simplifies
as

G< = GR · Σ< ·GA. (4.12)

Starting from the Dyson equation in imaginary time domain we derived a set
of equations for retarded, advanced, particle and hole correlations functions:

GR = G0R +GR · ΣR ·G0R

GA = G0A +GA · ΣA ·G0A

G< = GR · Σ< ·GA

G> = GR · Σ> ·GA

. (4.13)

Here dots denote integrations on the real time axis. Note that we have obtained
four times more functions and four times more equations of motions as compared
to the equilibrium theory. Our set of equations in equilibrium has 7 equations
for spin ↓ and 7 equations for spin ↑, therefore in the nonequilibrium theory we
will have 28 equations for spin ↓ and 28 equations for spin ↑. The number of
equations can be reduced by symmetry in special cases.

4.4 Reduced Green’s function

The equation for reduced Green’s function Gq = G − G × Σq × Gq has the
structure similar to the Dyson equation. Its analytical continuation thus reads

GR
q = GR −GR · ΣR

q ·GR
q

GA
q = GA −GA · ΣA

q ·GA
q

G<
q = (1−GR

q · ΣR
q ) ·G< · (1− ΣA

q ·GA
q )−GR

q · Σ<
q ·GA

q

G>
q = (1−GR

q · ΣR
q ) ·G> · (1− ΣA

q ·GA
q )−GR

q · Σ>
q ·GA

q

. (4.14)

Now both terms of the correlation function has to be kept. The first term
is the dominant giving G<

q [G
<]. The approximation G<

q ≈ G< simplifies the
Multiple scattering theory to the Galitskii-Feynman approximation. It can be
used in the normal state, but not in the superconducting state.

The second term is a correction which subtracts particles emitted by the
channel q. This subtraction is necessary when the correlation function G<

q is
used to describe particles entering the channel q. Briefly, particles leaving the
scattering process q cannot be used as initial states of the same process.

4.4.1 Selfenergy

The q channel of the selfenergy relates to the reducible selfenergy (4.4) as Σq =
Sq−Sq×Gq×Σq. Again we need the analytic continuation of the fraction which
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reads

ΣR
q = SR

q − SR
q ·GR

q · ΣR
q

ΣA
q = SA

q − SA
q ·GA

q · ΣA
q

Σ<
q =

1

(1 + SR
q ·GR

q )
· S<

q ·
1

(1 +GA
q · SA

q )
− ΣR

q ·G<
q · ΣA

q

Σ>
q =

1

(1 + SR
q ·GR

q )
· S>

q ·
1

(1 +GA
q · SA

q )
− ΣR

q ·G>
q · ΣA

q

. (4.15)

Analytic continuation of decomposition of the selfenergy into channels is
straightforward because expression (4.2) does not contain any time integral

Σ< =
∑

q

Σ<
q

Σ> =
∑

q

Σ>
q

ΣR =
∑

q

ΣR
q

ΣA =
∑

q

ΣA
q

. (4.16)

4.5 Two-particle propagator

Two-particle propagator is a bosonic function. Bosonic function has the definition
of correlation function with opposite sign due to the bosonic statistic

G<q↑(t1, t2) = iGq↑(t1, t2)|t1<Ct2 , (4.17)

and
G>q↑(t1, t2) = iGq↑(t1, t2)|t1<Ct2 . (4.18)

Let us apply the definition

G<q↑(t1, t2) = iGq↑(t1, t2)|t1<Ct2

= (−iGq↑(t1, t2)|t1<Ct2)(−iG↓(t1, t2)|t1<Ct2).
(4.19)

In the first line we used the equation (4.5) and in second line we prepared the
expression for definition of the fermionic correlation function (1.22)

G<q (t1, t2) = G<
q (t1, t2)G

<(t1, t2). (4.20)

Similarly, we can derive hole function

G>q (t1, t2) = G>
q (t1, t2)G

>(t1, t2). (4.21)

Bosonic retarded and advanced functions are defined as

GRq (t1, t2) = −iθ(t1 − t2)(G>q (t1, t2)− G<q (t1, t2)),
GAq (t1, t2) = +iθ(t2 − t1)(G>q (t1, t2)− G<q (t1, t2)),

(4.22)
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with the minus sign between correlation function. With the help of the identity

CR(t1, t2) = −iθ(t1 − t2) (A>B> − A<B<)

= −iθ(t1 − t2) ((A> + A<)B> − A<(B> + B<))

= AR(t1, t2)B
>(t1, t2)− A<(t1, t2)B

R(t1, t2),

(4.23)

we can write (4.20) and (4.21) in short notation

GRq = GR
qG

> −G<
qG

R

GAq = GA
qG

> −G<
qG

A
. (4.24)

There is no time integration in the two-particle propagator.

4.5.1 T-matrix

With the bosonic two-particle propagator derived in previous section one can
built the T -matrix. The T -matrix has two time structure and satisfies the ladder
equation Tq = Vq +

1
Ω

∑

k′ Vq × Gq × Tq.
The Langreth-Wilkins rules for bosonic functions are formally identical to

those we have derived for fermionic functions. The analytic continuation of the
ladder equation thus is

TR
q = V R

q + V R
q · GR · TR

q

TA
q = V A

q + V A
q · GA · TA

q

T<
q = TR

q · G< · TA
q

T>
q = TR

q · G> · TA
q

. (4.25)

Note that there is no term of type (1 + GRTR
q ) · (Vqδ(t1 − t2))< · (1 + TA

q GA),
because correlation function of nonretarded potential (Vqδ(t1 − t2))< is zero au-
tomatically due to delta function in time.

4.5.2 Averaged T-matrix

Finally we construct the reducible selfenergy as an averaged T -matrix. In this
relation there is no genuine time integral, therefore we can immediately write in
short notation

S<
q =

1

Ω
T<
q G

>

S>
q =

1

Ω
T>
q G

<

. (4.26)

The T -matrix has identical order of time arguments as the reducible selfenergy,
while the Green function has the opposite one. It is reflected by the structure of
sign > or <.

The retarded function is constructed by definition

SR
q (t1, t2) = −iθ(t1 − t2)(S>

q (t1, t2) + S<
q (t1, t2))

= −iθ(t1 − t2)
1

Ω
(T>

q (t1, t2)G
<(t2, t1) + T<

q (t1, t2)G
>(t2, t1)).

(4.27)
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Adding and subtracting the term T>
q (t1, t2)G

>(t2, t1) we obtain

SR
q (t1, t2) = −iθ(t1 − t2)

1

Ω
(T>

q (t1, t2)G
<(t2, t1) + T>

q (t1, t2)G
>(t2, t1)

− T>
q (t1, t2)G

>(t2, t1) + T<
q (t1, t2)G

>(t2, t1)).
(4.28)

Finally, using the definitions iθ(t1 − t2)(G>(t2, t1)) + G<(t2, t1)) = GA(t2, t1) for
fermionic function and −iθ(t1−t2)(T>

q (t2, t1)−T<
q (t2, t1)) = TA

q (t2, t1) for bosonic
function we end up with

SR
q (t1, t2) =

1

Ω
(TR

q (t1, t2)G
<(t2, t1)− T<

q (t1, t2)G
A(t2, t1)). (4.29)

In short notation

SR
q =

1

Ω
(TR

q G
< − T<

q G
A)

SA
q =

1

Ω
(TA

q G
< − T<

q G
R)

. (4.30)

The relation for the advanced function can be obtained in analogous way.
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5. Spectroscopy of ultrasmall
metallic grains

5.1 Introduction

One of the possible systems, where the present unified theory of superconductivity
could be verified are ultrasmall metallic grains. It is measured by tunneling
spectroscopy, which drives the system out of the equilibrium. To describe this
experiment under general conditions, we derive the appropriate nonequilibrium
version of the unified theory presented in chapter 4.

Our aim is to identify how the unified theory differs from the BCS theory.
The BCS theory works with an effective Hamiltonian which does not conserve
the number of particles in the system. Whereas the unified theory is build from
the particle conserving Hamiltonian. The differences might be substantial in
nano-particles and we want to discuss under what conditions they should be
visible.

By decreasing the size of the grain from bulk limit to ultrasmall grain limit
the system became influenced by strong fluctuations. The ultrasmall metallic
grain represents a system with strong size effects as even-odd effect. In general,
ultrasmall metallic grains require a theory based on canonical system, but such
approach is extremely complicated. Most of the studies are thus done with the
help of the BCS theory in spite of its grandcanonical origin. For very small
model systems there are studies with the BCS wave function projected to the
fixed number of particles. Such theory is desirable for grains where fluctuations
in the number of particles are strongly suppressed by high electrostatic charging
energies, the so-called Coulomb blockade.

The unified theory is based on the grandcanonical system. It seems to be
impossible to measure predictions of such theory because of Coulomb blockade,
which is the standard part of spectroscopic measurements. In order to observe the
differences between the BCS theory and the unified theory, the Coulomb blockade
should be suppressed.

We will explain the Coulomb blockade and a possible way to minimalize it.
This will allow us to neglect a charging energy contribution in a Hamiltonian and
to simplify our model. The model will thus cover only interactions which do not
relate to electrostatics.

5.2 History of spectroscopy of discrete energy

levels

A quantum mechanical picture of particles confined in a small region is well
known. Such a system shows discrete or quantized energy with increasing spacing
between energy levels by decreasing volume of the system.

Spectroscopic measurement were earlier developed in areas as nuclear or atom-
ic physics, where the discrete structure is natural. This measurement brought a
lot of informations about the correlations between particles in atoms and nuclei.
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Spectroscopy of single electron levels in metals or semiconductors was unable
due to volume size, until the mesoscopic or nanoscopic samples were manufac-
tured. The problem was hidden in resolution of a discrete structure, because
energetic scales in systems were small against thermal energies.

The first devices, quantum dots, were fabricated in the early 1990s. Semicon-
ductor dots are small regions (radius of order tens of nm) where the electrons
are trapped in three dimensions by potential walls. In that small region one can
resolve the spectrum at dilution refrigerator in the 10-100 mK range.

The measurement method was called single-electron-tunneling spectroscopy.
The experiment resembles a transistor. The central island – the dot in this case
– is connected to the leads. Means for connections are electrostatically defined
tunnel barriers. The whole set is called single-electron-transistor, shortly SET.
This devices started a new regime of probing of the condensed matter.

It is beneficial to study SET systems. Under certain conditions one can ob-
serve in a current-voltage characteristic a step structure. Therefore the conduc-
tance shows well-defined resonances. The resonances can be associated with a
tunneling through discrete channels of the dot. It turns out that quantum dots
exhibited similar behavior as atoms. For example we can apply the Hund’s rule
as in atoms or there are some stable configurations with magic numbers.

The idea of SET measurement was also brought to the area of metals. The
first measurement was done by Ralph, Black and Tinkham (RBT) in the middle
of 1990s. The central island in the single-electron-transistor was made from an
ultrasmall metallic grain. The radius was about r=5 nm and mean level distance
d=90 meV. The grain was jointed to the leads via oxide tunnel barriers.

The nanoscale oped up a new limit in the study of electron correlations because
it allows us to resolve the single electron spectrum in the ultrasmall grain, more-
over with high precision. During the last several years, single-electron-tunneling
spectroscopy of ultrasmall metallic grains was used to probe superconducting
pairing correlations, nonequilibrium excitations, spin-orbit interactions in nor-
mal grains, and also ferromagnetic correlations.

There are many differences between quantum dots and ultrasmall metallic
grains. Metals have much higher densities of states and samples thus need to
be much smaller. In result, the metallic dots have larger charging energies and
thereby fluctuations of an average number of particles are suppressed. Moreover,
the variability of metallic materials allow us to study such effects as superconduc-
tivity and ferromagnetism. In metallic grains the tunnel barriers are less affected
by applied bias, therefore nonequilibrium effects can be more easily studied. By
applying a magnetic field one can also probe the spin and spin-orbit effects [14].

5.3 SET experiment

We will describe the SET experiment with the help of figure 5.1 taken over from
[14] with modified notation of voltages to match our presentation. A metallic
grain placed as a central island is connected via high resistance tunnel junctions,
with the capacitances CR and CL. The grain is also coupled capacitively to a
gate, with the capacitance Cg. When we apply a bias voltage between the leads
a tunnel current I flows between the leads through the grain. The current is
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caused by incoherent sequential tunneling through the tunnel junctions and can
be varied by the gate voltage Vg.

Figure 5.1: Schematic cross section of the ultrasmall SETs studied by RBT

Figure 5.2: Measurement of excitation grain spectra, process which serves as
bottleneck is represented by arrows. This process corresponds to one of shadow
regions in figure 5.5. A chemical potential in equilibrium is depicted as a long
horizontal line.

Figure 5.3: Measurement of spectrum of filled states on the grain, process which
serves as bottleneck is represented by arrows. This process corresponds to one of
the shadow regions in figure 5.5. A chemical potential in equilibrium is depicted
as a long horizontal line.

The leads are connected by highly non-symmetric barriers with the thicker one
serving as bottleneck. The state of grain can be assumed as nearly equilibrium
with temperature and chemical potential of the lead connected by the thinner
barrier. The physical processes which determine the current are depicted in

39



figures 5.2 and 5.3. As one can see, flipping the sign of the bias voltage, one
measures either the empty electronic states in the grain shown in figure 5.2 or
the occupied states shown in figure 5.3.

5.4 Coulomb blockade

The important feature of the nanoscopic grains size is that the grain charging
energy EC = e2

2C
(where C = CL+CR+Cg) is much larger than for the mesoscopic

size of semiconductor dots. The scale of EC determines the energy cost of charging
the N -electrons grain by one electron. For ultrasmall grains such energy exceeds
other energies related to the tunneling. Fluctuations in the number of electrons
are suppressed.

There are typically two scales in the SET experiments characterized by the
scale of energy. The first scale is when V is varied on a large scale about tens
of mV. The I − V curve has a typical shape. In a low voltage |V | there is a
zero current (Coulomb blockade regime) or a flat step. Once some threshold is
reached, the current will increase with a finite slope.

Figure 5.4: Two scales of SET experiment. The flat step corresponds to the
Coulomb blockade regime, on which end there is a step like structure on smaller
scales.

The value of the Coulomb blockade regime depends on the gate voltage. The
maximal value of the flat step is EC , the minimal is zero. The minima occur in
so-called degeneracy points, where energies of the states with average number of
particles differing by one become equal. As Vg is increased, the wide flat steps
and also degeneracy points periodically repeat with a period e/Cg see figure 5.5.
The Coulomb blockade thus serves as a tool for varying the average number of
particles.

Our aim is the opposite situation and we want to study systems in an equilib-
rium. This is reached by tunning the gate voltage to a vicinity of the degeneracy
points which are depicted as shadow regions in figure 5.5. If one wants to study
the nonequilibrium effects, one tunes the Vg to the maximal flat step.

The second smaller scales are located near the threshold of the Coulomb
blockade regime (the edge of flat step). The variation of the voltage is typically
in the order of mV . In this area the I − V curve has a step like substructure.
Such small steps in the I −V curve are expected to appear whenever the voltage
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Figure 5.5: Regions of SET measurements in V − Vg plain where an almost
isolated dot is measured (shadow regions), the degeneracy points (black circles)
repeat with a period e/Cg. Numbers have the meaning of the average number of
electrons on the dot.

drop across one of the tunnel junctions equals to the threshold energy. The rate
for tunneling across that junction into or out of one of the grain’s discrete energy
eigenstates becomes nonzero. This opens up another channel for the current
across that junction and the current thus increases.

The differential conductance (dI/dV ) will contain a series of fine resonances.
Discrete eigenstates of the conduction electron energy spectrum became resolv-
able due to the mean distance between eigenlevels d. The scale d is usually at
least one order lower than the scale EC . We assume also T ≪ d because of the
suppression of thermal fluctuations. Under conditions, shadow regions in figure
5.5, the distance between these peaks directly reflects the energy differences be-
tween the eigenenergies of the N -electron grain. Such conductance curves thus
directly yield the grain fixed-N excitation spectrum.

In spite of its importance we are not interested in the Coulomb blockade in
our model. Although we are led to this neglect by a request of simplicity, the
model with the neglected Coulomb blockade is not necessarily non-realistic.

To suppress the Coulomb blockade in experiments one can increase the value
of Cg by using a suitable ferroelectric dielectrics between the dot and the gate.
For example materials like SrRuO3/SrTiO3 have a relative permitivity 3700 [15]
which allows us to reduce the Coulomb blockade e/Cg nearly thousand times.
The necessary consequence will be an uncertainty in the average of the number
of particles. Because we will use the Green function technique which is related
to the grand canonical system this property is desirable.

The gate is also used for tunning an electrostatic potential on the grain and
its average number of electrons N . The gate voltage enters our formulation
exclusively via values the single electronic levels. Accordingly, we will not discuss
the gate any more.
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6. Superconductivity in metallic
grains

6.1 Hamiltonian

In this chapter we present the unified theory, developed in chapters 3 and 4, for
the description of ultrasmall metallic grains introduced in chapter 5. We need
to modify the identification of the channel by the total momentum of the pair q
because in nanoscale the momentum of particle is not a good quantum number.

The main feature of the nanoscale is the discrete energy spectrum. A spacing
between levels increases when the volume of the system is decreasing. The discrete
energy spectrum is natural in atoms and in nuclei. The ultrasmall metallic grains
also show these features.

Moreover, there are systems, where the symmetry of the system leads to a
degeneracy of energy levels. Good quantum numbers for electronic states in
ultrasmall spheres are similar to the numbers of naturally spheric atoms. We
will use the orbital number, the angular momentum number (called the magnetic
number) and the spin number for denotation of the electronics state.

The analogy between the momentum in bulk system and the angular mo-
mentum in ultrasmall grains will be our starting point. Instead of the total
momentum of a pair of electron q, here the identification of the channel is via
the total angular momentum of the pair M.

Since we want to describe the system within the SET experiment we need to
develop a general theory of the whole system. The Hamiltonian has five parts.
An isolated grain is described by Ĥg, and isolated left and right leads by Ĥl and

Ĥr, respectively. The leads are connected to the grain by tunneling Hamiltonians
Ûl and Ûr. In this chapter we will call the ultrasmall metallic grain shortly a
grain.

6.1.1 Non-interacting electrons in the grain

We assume that the grain is an ideal sphere, therefore the orbital momentum
L commutes with the grain Hamiltonian, L̂Ĥ − ĤL̂ = 0. Each one-particle
eigenstate-states thus has the orbital number of

l = 0, 1, 2, . . . (6.1)

with orbital number Ll and the magnetic number

m = −Ll,−Ll + 1, . . .− 2,−1, 0, 1, 2, . . . Ll − 1, Ll. (6.2)

The eigenstate-energy is independent of the magnetic number and (Pauli) spin

ǫl,m,σ = ǫl. (6.3)

The energy ǫl is related to the chemical potential µ.
It is possible to split the levels by a magnetic field B so that ǫl,m,σ = ǫl +

Bmµl + BσµB, where µB is the Bohr magneton and µl is the magnetic moment
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of the p-state (m = 1). We will not assume the magnetic field, however. The
Hamiltonian of non-interacting electrons in the grain thus reads

Ĥ0 =
∑

l,m,σ

ǫla
†
σ,l,maσ,l,m. (6.4)

We will assume only few levels near the Fermi energy. This restriction will serve
as a cutoff.

6.1.2 Pairing interaction

The pairing interaction is restricted to the grain. It was described on two levels:
the BCS model and the Richardson (or also reduced) model. We will develop our
theory for a model which includes more interaction elements than the model of
Richardson but less than the BCS model. In numerical implementations, however,
we will restrict our discussion to the Richardson model.

The BCS model includes interaction of any two electrons with opposite spin

V̂ BCS =
˜∑

l,m,k,n,l′,m′,k′,n′

λa†↓,k,na
†
↑,l,ma↑,l′,m′a↓,k′,n′ . (6.5)

The tilde reminds that the sum has to respect conservation of sum angular mo-
mentum of the interacting pair, i.e., m+ n = m′ + n′.

The model of Richardson restricts interaction exclusively between two elec-
trons linked by the time-reversal symmetry

V̂ Rich =
∑

l,m,l′,m′

λa†↓,l,−ma
†
↑,l,ma↑,l′,m′a↓,l′,−m′ . (6.6)

Since the time reversed states form the condensate of the Cooper pairs, this model
is sufficient to describe the condensation. In the same time it has no interaction
among electrons out of the condensate.

Our model
V̂ = V̂ Rich + V̂ ext (6.7)

extends the Richardson model assuming additional interactions between two elec-
trons from the same shell

V̂ ext =
∑

l,m,l′,m′,M 6=0

λ′a†↑,l,M−ma
†
↓,l,ma↓,l′,m′a↑,l′,M−m′ . (6.8)

Setting λ′ = 0 our model reduces to the Richardson model. In practical applica-
tions the sum over the pair magnetic number M can be catted at small values.
The Richardson model cuts interaction at M = 0. The simplest form of our
extended model cuts the interaction on the level M = ±1.

The Hamiltonian of non-interacting electrons in the grain together with the
interaction constitutes the grain Hamiltonian

Ĥg = Ĥ0 + V̂ . (6.9)

Comparing the interaction Hamiltonian (6.5) with the Hamiltonian (3.1) from
the section 3.4 we see that the interaction constant λM is related to the BCS
interaction and the volume of sample, λM = VM

ΩV ol
. We should stress also that in

bulk system the energy is a function of the momentum ǫ(k). In ultrasmall grains,
however, for the same angular momentum m the energy can have several values
because the energy depends only on the orbital number l.
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6.1.3 Leads

The left and right leads have Hamiltonians

Ĥl =
∑

α,σ

ǫlαa
†
σ,αaσ,α

Ĥr =
∑

β,σ

ǫrβa
†
σ,βaσ,β

. (6.10)

Values of ǫl,rα include eventual bias voltage on the structure.
The connecting terms read

Ûl =
∑

α,l,m,σ

ulαa
†
σ,αaσ,l,m (6.11)

ˆ̄Ul =
∑

α,l,m,σ

ūlαa
†
σ,l,maσα, (6.12)

Ûr =
∑

β,l,m,σ

urβa
†
σ,βaσ,l,m . (6.13)

ˆ̄Ur =
∑

β,l,m,σ

ūrβa
†
σ,l,maσβ. (6.14)

In implementations it is sufficient to assume only real elements ul,rα . We keep the
bare over the conjugated terms as an eyeguige which helps to trace the origin of
hopping terms in the equation of motion.

6.2 Elimination of leads

In this section we will show how to eliminate leads and project to subspace of the
grain. The current is a one-particle observable, therefore we need the one-particle
Green function

G(1, 2) = −i
〈

TCa1a
†
2

〉

, (6.15)

where the numbers are cumulative indices which cover the time on the complex
path and the necessary state indices. In the left lead 1 ≡ (t1, α1, σ1), in the right
lead 1 ≡ (t1, β1, σ1) and in the grain 1 ≡ (t1, l1,m1, σ1).

Taking the time derivative of the one-particle Green’s function (6.15) one finds

i∂t1G = 1̂− i
〈

TC

[

a1, Ĥ
]

a†2

〉

, (6.16)

where the first term is a product of delta functions, which is non-zero only if both
space indices are identical, e.g. 1̂ = δ(t1− t2)δl1l2δm1m2δσ1σ2 for both indices from
the grain. It results from the time-step due to the time ordering operator, and
the second term results from the Heisenberg equation.

Let us assume that both arguments of the Green’s function are from the
grain. We denote this restriction by indices G = Gdd for 1 ≡ (t1, l1,m1, σ1) and
2 ≡ (t2, l2,m2, σ2). Similarly, G = Gdr for 1 ≡ (t1, l1,m1, σ1) and 2 ≡ (t2, β2, σ2)
and so on.
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The commutators with one-particle parts of the Hamiltonian are readily eval-
uated giving

(i∂t − ǫl1)Gdd = 1̂+ ūlGld + ūrGrd − i
〈

TC

[

a1, V̂
]

a†2

〉

. (6.17)

Elements Gld and Grd connecting the grain with leads are easily evaluated from
equation (6.16),

(

i∂t − ǫlα1

)

Gld = ulGdd. (6.18)

We define the Green’s function of the (disconnected) left lead
(

i∂t − ǫlα1

)

G0
ll = 1̂ (6.19)

which formally solves equations (6.18) as

Gld(t1, t2) =

∫

G0
ll(t1, t̄)u

lGdd(t̄, t2)dt̄. (6.20)

In the next we do not write the time integrals explicitly so that equation (6.20)
reads

Gld = G0
llu

lGdd. (6.21)

Similarly we arrive at
Grd = G0

rru
rGdd. (6.22)

Substituting equations (6.21, 6.22) into equation (6.17), we obtain

(

i∂t−ǫl1−ūlG0
llu

l−ūrG0
rru

r
)

Gdd = 1̂− i
〈

TC

[

a1, V̂
]

a†2

〉

. (6.23)

Finally we introduce the Green’s function of non-interacting electrons on a
connected grain

(

i∂t−ǫl1−ūlG0
llu

l−ūrG0
rru

r
)

Gfree
dd = 1̂ (6.24)

in terms of which equation (6.23) reads

Gdd = Gfree
dd − iGfree

dd

〈

TC

[

a1, V̂
]

a†2

〉

. (6.25)

From now on all algebra will be on the subspace of the grain. For simplicity
we will not write subscripts dd. To have the standard notation for the expansion
in the interaction, the free function will be renamed as

G0 ≡ Gfree
dd . (6.26)

In applications we will assume that G0 is diagonal in the orbital and magnetic
number and in the spin. For simplicity we will approximate the lead functions
by time-dependent functions

(

ūlG0
llu

l
)

(1, 2) ≈ 1̂ hl(t1, t2), (6.27)
(

ūrG0
rru

r
)

(1, 2) ≈ 1̂ hr(t1, t2). (6.28)

It is not true in general. The leads cannot have a full spheric symmetry so
that the lead functions ūlG0

llu
l and ūrG0

rru
r have in general off-diagonal elements.

This corresponds to processes in which an electron of given orbital and magnetic
number tunnels out and coherently returns with a different momentum.
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6.3 Perturbative expansion

The interaction term in equation (6.23) we express in terms of the selfenergy

− i
〈

TC [a1, V ] a†2

〉

= Σ(1, 3̄)G(3̄, 2). (6.29)

The electron Green’s function thus satisfies the Dyson equation

G = G0 +G0 × Σ×G. (6.30)

The Green function and all functions entering it are diagonal in the spin index.
We will use convention that G↑ ≡ G and G↓ ≡ G̃. Similarly, Σ↑ ≡ Σ and Σ↓ ≡ Σ̃.

For the present model and approximations the Green’s function is diagonal in
orbital and magnetic number

Gl,l′(t1, t2;m,m
′) = Gl(t1, t2;m)δmm′δll′ . (6.31)

The same is true for the selfenergy. The Dyson equation thus simplifies as

Gl = G0
l +G0

l × Σl ×Gl. (6.32)

6.4 Selfenergy

The selfenergy is a sum over the total magnetic numbers of interacting pair

Σ =
∑

M

ΣM . (6.33)

For the Richardson model it has only a single element, Σ = ΣM=0, but for our
model there are additional contributions.

6.4.1 Multiple scattering theory

Let us evaluate the part of selfenergy ΣM . When we evaluate process giving
ΣM (briefly process ΣM), this contribution is explicit and cannot be included in
the averaged effective medium, because the process cannot selfconsistently affect
itself. As an effective medium for the process ΣM we thus introduce the reduced
Green function, which does not include the selected part of the selfenergy

GM = G0 +G0 ×
(

∑

N 6=M

ΣN

)

×GM . (6.34)

This can be also expressed as

GM = G−G× ΣM ×GM . (6.35)

Interaction inside the grain will be approximated with the T -matrix in the lad-
der approximation. This is given by the following set of equations. The T -matrix
TM describes an interaction of a pair of electrons with the orbital momentum M .

TM(t1, t2) = λMδ(t1 − t2) + λMGM(t1, t̄3)TM(t̄3, t2), (6.36)
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where the bar denotes integration. In this case the integration runs along the
complex time path.

Since we evaluate the ΣM process, we construct the T -matrix from the reduced
Green function

GM(t, t′) = i
∑

lm

G̃l(t1, t2;M −m)GM,l(t1, t2;m). (6.37)

The T -matrix represents interaction of the selected pair to the infinite order.
The full Green function thus reads

Gl = GM,l +GM,l × SM,l ×GM,l, (6.38)

where
SM,l(t1, t2;m) = −iTM(t1, t2)G̃l(t2, t1;M −m) (6.39)

is the T -matrix averaged over the distribution of interaction partner.
Comparing equations (6.35, 6.38) we find ΣM

ΣM,l =
SM,l

1 +GM,l × SM,l

. (6.40)

Equations are closed. Assume some starting set of the selfenergy parts ΣM

and Σ̃M . From equation (6.33) we get Σ and Σ̃. From the Dyson equation (6.32)
we obtain Green’s functions G and G̃. Now we select M . From equation (6.35)
we evaluate GM . From equation (6.37) we obtain GM and from equation (6.36)
the T -matrix TM . Using equation (6.39) we construct SM from which we obtain
via (6.40) the new value of the selfenergy part ΣM . Values of ΣM should be
upgraded for both spins and all orbital and magnetic numbers.

6.4.2 Galitskii-Feynman theory

It could be interesting to compare the multiple scattering T -matrix with the
corresponding T -matrix approximation derived within Feynman expansion by
Galitskii. One can convert the above theory into Galitskii theory neglecting a
difference between the full and reduced propagator,

GM ≈ G (6.41)

and neglecting a difference between the averaged T -matrix and the selfenergy

ΣM,l ≈ SM,l. (6.42)

For an infinite system the Galitskii theory is know to fail to describe the super-
conducting gap in the energy spectrum. It would be interesting to see how this
theory behaves for the metallic nano-sphere.

6.4.3 Kadanoff-Martin theory

The theory used to study the superconductivity has been derived by Kadanoff
and Martin using the variational method. Its resulting formulas can be obtained
from the above set approximating the reduced Green’s function by the bare one

GM ≈ G0. (6.43)
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With this strong neglect one can ignore minor corrections and to replace the
multiple scattering definition of the selfenergy using simply

ΣM,l = SM,l. (6.44)

As it was shown by Morawetz [12], the dominant pairing channel is not affected
by this approximation.

6.5 Various approximations

Solving the multiple scattering theory by numerical tools is a hard problem.
Clearly, one has to approach the solution by iterations. It is important to start
the iteration from a good starting point. To this end we write down a series
of three increasingly more complex approximations. The simpler one provides a
starting point for the more complex.

6.5.1 BCS approximation

The simplest approximation is the BCS theory. Let us approximate the T -matrix
by a constant in the pairing orbital momentum,

T0 = i∆̄∆,

TM = 0 for M 6= 0.
(6.45)

In this approximation the averaged T -matrix equation (6.39) reads

S0,l(t1, t2;m) = ∆̄G̃l(t2, t1;−m)∆. (6.46)

Since T±1 = 0 we find S±1 = 0 and also Σ±1 = 0. Therefore from equation (6.34)
follows

G0 = G0 +G0 ×
(

∑

N 6=0

ΣN

)

×G0 = G0. (6.47)

Briefly, in this approximation the reduced Green function equals to the free Green
function.

Now we substitute relations (6.46) and (6.47) into the full Green function
(6.38)

Gl = G0,l +G0,l × S0,l ×G0,l

= G0
l +G0

l × S0,l ×G0
l

= G0
l +G0

l × ∆̄× G̃l ×∆×G0
l .

(6.48)

The Green function for the reversed spin satisfies an analogous equation

G̃l = G̃0
l + G̃0

l ×∆×Gl × ∆̄× G̃0
l . (6.49)

By substitution of equation (6.49) into (6.48) one finds

Gl = G0
l +G0

l × ∆̄×
(

G̃0
l + G̃0

l ×∆Gl × ∆̄× G̃0
l

)

×∆×G0
l (6.50)

= G0
l +G0

l × ∆̄× G̃0
l ×∆×

(

G0
l +Gl × ∆̄× G̃0

l ×∆×G0
l

)

. (6.51)
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Expressing the Dyson equation (6.32) in equivalent form

Gl = G0
l +Gl × Σl ×G0

l (6.52)

and substituting Gl from (6.52) into equation (6.32) we obtain the same structure

Gl = G0
l +G0

l × Σl ×
(

G0
l +Gl × Σl ×G0

l

)

. (6.53)

Comparing (6.53) with (6.51) one finds that

Σl = ∆̄× G̃0
l ×∆. (6.54)

Since Σl = Σ0,l, one can check that the selfenergy (6.54) also satisfies relation
to the averaged T -matrix (6.40)

Σ0,l + Σ0,l ×Gl × Σ0,l = ∆̄× G̃0,l ×∆+ ∆̄× G̃0,l ×∆×Gl × ∆̄× G̃0,l∆

= ∆̄
(

G̃0,l + G̃0,l ×∆×Gl × ∆̄× G̃0,l

)

×∆

= ∆̄× G̃l ×∆

= S0,l.

(6.55)

In the rearrangement we have used equations (6.49) and (6.46).
The Dyson equation (6.32) with the selfenergy (6.54)

Gl = G0
l +G0

l × ∆̄× G̃0
l ×∆×Gl. (6.56)

is identical to the Nambu-Gorkov equation. The approximation of the T -matrix
(6.45) is thus identical to the BCS approximation.

To establish the value of ∆, we use equation (6.36) for T0 = i∆̄∆ at t1 6= t2,

i∆̄∆ = λG0(t, t̄)i∆̄∆. (6.57)

Using equation (6.47) in (6.37) one finds that

G0(t1, t2) = i
∑

lm

G̃l(t1, t2)G
0
l (t1, t2), (6.58)

therefore the gap equation (6.57) includes a convolution of the full and bare Green
function, as it is found in the Nambu-Gorkov theory.

Note that the selfenergy is independent of the magnetic number m and there-
fore the Green’s function is independent of m. This is a consequence of the fact
that the BCS approximation neglects any effect of the interaction potential V ext,
because it does not contribute to the pairing. Briefly, the BCS approximation
does not distinguish the Richardson model from the BCS model and our inter-
mediate model.

6.5.2 Equations for Richardson model

For the Richardson model one can write down an approximation which should be
still easily solvable and keeps more features than the BCS approximation.
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The energy ǫσ,l,m = ǫσ,l does not depend on the magnetic number m. Accord-
ing to our approximation, lead functions also do not depend on m. Now we show
that for the Richardson model, i.e. with λ′ = 0 in our model, the selfenergy also
does not depend on m.

Since the free Green function does not depend on m, i.e., G0
l (m) ≡ G0

l , we can
start from assumption that the full G is independent of m. We can then evaluate
the sums over m in equation (6.37)

G0(t1, t2) = i
∑

l

(2Ll + 1)G̃l(t1, t2)G0,l(t1, t2). (6.59)

For the Richardson model the only non-zero T -matrix is

T0 = λ0 + λ0G0T0. (6.60)

We have suppressed the time arguments which are identical to equation (6.36).
The corresponding averaged T -matrix reads

S0,l(t1, t2;m) = −iT0(t1, t2)G̃l(t2, t1;−m). (6.61)

The Green function is independent of m, therefore the right hand side is inde-
pendent of m. The averaged T -matrix is then the same function for all magnetic
numbers

S0,l(t1, t2) = −iT0(t1, t2)G̃l(t2, t1). (6.62)

Since the Green function is independent of m, from equation (6.40) we find
that the selfenergy is also independent ofm. It does depend on the orbital number
l, however, as given by

Σ0,l =
S0,l

1 +G0,l × S0,l

. (6.63)

For the Richardson model the set of equations is particularly simple. For N
values of l it includes N -times Σ0,l, Gl and S0,l, and one G0 and T0. These are
3N+2 functions, but this number will grow out of the equilibrium. Since Σ = Σ0,
the reduced Green function G0 equals to the known free Green function G0, which
is expressed by relation G0 = G0. Unlike in the BCS approximation, the T -
matrix is a function of two times, i.e., of the time difference in the equilibrium or
under a steady current. This time difference will result into energy dependence
of the T -matrix. Likely the solution has a dominant constant part like the BCS
approximation and some correction due to the energy dependence.

6.5.3 Approximation of our model

With M 6= 0 parts of the selfenergy, the Green function depends on the magnetic
number m. Let us inspect why.

The averaged T -matrix is given by equation (6.39). Let us assume that
G̃l′(M −m) = G̃l′ . We show that it cannot be satisfied. Indeed, for |M −m| ≤ l
the selfenergy is independent from m, but for |M − m| > l it is zero. With
M = ±1 one thus always finds that S1,l(−l) = 0 and S−1,l(l) = 0. From it follows
that Gl(∓l) 6= Gl(0). From equation (6.39) thus follows that S1,l(1− l) 6= S1,l(0)
and S−1,l(1− l) 6= S−1,l(0). Recursively one finds all Gl(m)’s are different.
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Perhaps, it is possible to use (and eventually test) the approximation in which
the difference at extreme magnetic numbers is neglected, S±1,l(m) ≈ S±1,l, with

S±1,l(t1, t2) = −iT±1(t1, t2)G̃l(t2, t1). (6.64)

In this approximation the selfenergy is again independent of m and thus G’s are
independent of m.

It should be noticed that in this approximation G depends on the pair magnetic
number M

GM(t1, t2) = i
∑

l

(2Ll + 1− 2|M |)G̃l(t1, t2)GM,l(t1, t2). (6.65)

In general M reaches values from −2Ll to 2Ll, therefore each orbital number
has different maximal |M |. In result, for largest M only highest energy levels
contribute. Since we assume only the lowest values of M , this limitation is not
important.

Since T−1 = T1 and thus S−1 = S1, and G̃ = G, we are left with following
independent functions. N -times G0,l, G1,l, Gl, S0,l, S1,l, Σ0,l and Σ1,l, and one-
times G0, G1, T0 and T1. These are 7N + 4 functions. Again, this number will
grow up out of the equilibrium.

6.6 Nonequilibrium Green’s functions

Now we convert equations on the complex time path to equations on the real time
axis. All functions in the previous sections are causal on the path. All equations
from now on will be on the real time axis.

6.6.1 Two parallel lines

Using results from chapter 4 we can directly express the averaged T -matrix (6.39)

S<
M,l(t1, t2;m) = T<

M(t1, t2)G̃
>
l (t2, t1;M −m) (6.66)

and G from equation (6.37)

GM<(t1, t2) =
∑

lm

G̃<
l (t1, t2;M −m)G<

M,l(t1, t2;m). (6.67)

6.6.2 Selfenergy

Analytic continuation of the selfenergy gives

Σ< =
∑

M

Σ<
M , (6.68)

and
ΣR =

∑

M

ΣR
M . (6.69)

We do not write elements Σ>, which are easily obtained by the interchange
>←→<. It is also trivial to rewrite the retarded function into the advanced
one.
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6.6.3 Matrix products

Applying the Langreth-Wilkins rules we get from equation (6.24) with Gfree
dd ≡ G0

(

i∂t − ǫl − hRl − hRr
)

G0<
l − (h<l + h<r )G

0A
l = 0, (6.70)

therefore
G0<

l = G0R
l · (h<l + h<r ) ·G0A

l . (6.71)

Here the retarded function satisfies
(

i∂t − ǫl − hRl − hRr
)

G0R
l = 1̂ (6.72)

and the equation for the advanced function is similar.
From the Dyson equation we obtain the generalized Kadanoff-Baym equation

G< = GR · Σ< ·GA +
(

1 +GR · ΣR
)

G0<
(

1 + ΣA ·GA
)

. (6.73)

Substituting from equation (6.72) and using the retarded (and advanced) Dyson
equation

GR = G0R +G0R · ΣR ·GR (6.74)

one finds
G< = GR · (Σ< + h<l + h<r ) ·GA. (6.75)

Functions h<l , h
<
r are boundary conditions.

For the reduced Green function (6.35) we find

GR
M = GR −GR · ΣR

M ·GR
M (6.76)

and

G<
M =

(

1 +GR
M · ΣR

M

)

·G< ·
(

1 + ΣA
M ·GA

M

)

−GR
M · Σ<

M ·GA
M . (6.77)

The relation between averaged T -matrix and the selfenergy (6.40) gives

ΣR
M,l(m) =

SR
M,l(m)

1 +GR
M,l(m) · SR

M,l(m)
(6.78)

and

Σ<
M,l(m) =

1

1 + SR
M,l(m) ·GR

M,l(m)
· S<

M,l(m) · 1

1 +GA
M,l(m) · SA

M,l(m)

+ ΣR
M,l(m) ·G<

M,l(m) · ΣA
M,l(m).

(6.79)

The T -matrix (6.36) yields

TR
M = λM + λMGRM · TR

M (6.80)

and
T<
M = TR

M · G<M · TA
M . (6.81)

It remains to derive retarded functions of G and S. Relation

GRM(t1, t2) = −iθ(t1 − t2)
∑

lm

(

G̃>
l (M −m)G>

M,l(m)− G̃<
l (M −m)G<

M,l(m)
)

.

(6.82)
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we rearrange as

GRM(t1, t2)=
∑

lm

(

G̃R
l (t1, t2;M−m)G>

M,l(t1, t2,m)−G̃<
l (t1, t2;M−m)GR

M,l(t1, t2;m)
)

.

(6.83)
Similarly we express S as

SR
M,l(t1, t2;m) = TR

M(t1, t2)G̃
<
l (t1, t2;M −m)−T<

M(t, t′)G̃A
l (t1, t2;M −m). (6.84)

The set of equations is complete.

6.7 Stationary regime

In the stationary regime all double-time functions depend only on the time dif-
ference, A(t1, t2) = A(t1 − t2). It is thus advantageous to transform them into
frequency representation

A(ω) =

∫

d(t1 − t2) eiω(t1−t2)A(t1 − t2) (6.85)

in which majority of equations become trivial algebraic relations.
Without solving any equations we can evaluate the free Green function (6.72)

G0R
l (ω) =

1

ω − ǫl − hRl (ω)− hRr (ω)
. (6.86)

Contact functions hRl (ω) and h
R
r (ω) can be modeled by simple analytic func-

tions. The simplest choice is a broad Lorentzian function

hRl,r(ω) =
βl,r

ω − ǫl,r + iγl,r
(6.87)

with real parameters β and γ such that contact functions are smaller than distance
between energy levels, |hRl,r(ω)| ≪ ǫl+1− ǫl. A reasonable energy spectrum of h is
broader than the interval of energies in the grain, which will be achieved by large
γs.

The correlation functions of contact functions have local equilibrium values,
h< = fFD(−2)ImhR, therefore

h<l,r(ω) =
1

e
ω−µl,r
Tl,r + 1

2βl,rγl,r
(ω − ǫl,r)2 + γ2l,r

. (6.88)

Chemical potentials µl,r and temperatures Tl,r are in general different. One can
use identical temperatures but chemical potentials differ by a bias voltage U ,
µl − µr = U . For µl = µr and Tl = Tr the system is at equilibrium.

6.8 Iteration loop

We will write down all equations in the order they appear in the iteration. Let us
assume that we know some starting value of the selfenergy, i.e., we know the set
of functions ΣR

M,l(ω;m) and Σ<
M,l(ω;m). Trivially they yield the total selfenergy

ΣR
l (ω;m) =

∑

M

ΣR
M,l(ω;m), (6.89)
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and
Σ<

l (ω;m) =
∑

M

Σ<
M,l(ω;m). (6.90)

6.8.1 Electronic functions in energy domain

From ΣR we evaluate the full Green function

GR
l (ω;m) =

1

ω − ǫl − hRl (ω)− hRr (ω)− ΣR
l (ω;m)

. (6.91)

We have used the free function (6.86) in the Dyson equation (6.74). The reduced
Green function reads

GR
M,l(ω;m) =

1

ω−ǫl−hRl (ω)−hRr (ω)−ΣR
l (ω)+ΣR

M,l(ω;m)
. (6.92)

We have used the full function (6.91) in equation (6.76). From Σ< we evaluate
the full correlation function (6.75)

G<
l (ω;m) =

∣

∣GR
l (ω;m)

∣

∣

2
(Σ<

l (ω;m) + h<l (ω) + h<r (ω)) . (6.93)

We have used that GA
l (ω;m) is complex conjugate to GR

l (ω;m). The reduced
correlation function (6.77) reads

G<
M,l(ω;m) =

∣

∣1 +GR
M,l(ω;m)ΣR

M,l(ω;m)
∣

∣

2
G<

l (ω;m)

−
∣

∣GR
M,l(ω;m)

∣

∣

2
Σ<

l (ω;m). (6.94)

If the leads are strongly non-symmetric, say the left one serves as a bottleneck,
the lead functions are unequal, |hRl (ω)| ≪ |hRr (ω)|. In the region of occupied
states one also finds h<l (ω) ≪ h<r (ω), therefore from equation (6.93) one finds
that the distribution in the grain will be very close to equilibrium in the right
lead. In the implementation we will use this locally equilibrium limit. Equation
(6.93) can be used to evaluate eventual nonequilibrium corrections.

6.8.2 Electronic functions in time domain

The most efficient method to evaluate G from relation (6.67) is the fast Fourier
transformation. To this end we convert Gl and GM,l into time representation

G<
l (t;m) =

∫

dω

2π
e−iωtG<

l (ω;m), (6.95)

GR
l (t;m) =

∫

dω

2π
e−iωtGR

l (ω;m), (6.96)

G<
M,l(t;m) =

∫

dω

2π
e−iωtG<

M,l(ω;m), (6.97)

GR
M,l(t;m) =

∫

dω

2π
e−iωtGR

M,l(ω;m). (6.98)

Four additional functions do not need any numerical effort but it is advanta-
geous to save the advanced functions in separate fields, because reading of vectors
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in the reversed order makes vector products and thus the Fourier transformation
very slow. The advanced Green’s function in time representation is

GA
l (t1 − t2;m) = GA

l (t1, t2;m) = ḠR
l (t1, t2;m) = ḠR

l (t1 − t2;m), (6.99)

where the bar denotes the complex conjugation. To derive this expression we
have used that GA

l (ω;m) = ḠR
l (ω;m) so that ḠA

l (−t;m) =
∫

dω
2π
e−iωtGR

l (ω;m) =
GR

l (t;m). Similarly

GA
M,l(t1 − t2;m) = GA

M,l(t1, t2;m) = ḠR
l (t1, t2;m) = ḠR

M,l(t1 − t2;m). (6.100)

The hole functions are

G>
l (t;m) = iGR

l (t;m)−G<
l (t;m) for t ≥ 0, (6.101)

G>
l (t;m) = −iGA

l (t;m)−G<
l (t;m) for t < 0, (6.102)

G>
M,l(t;m) = iGR

M,l(t;m)−G<
M,l(t;m) for t ≥ 0, (6.103)

G>
M,l(t;m) = −iGA

M,l(t;m)−G<
M,l(t;m) for t < 0. (6.104)

Now Green’s functions are ready and we can proceed to bosonic functions.

6.8.3 Bosonic functions

First we have to construct the function G. From equation (6.67) we get G< in
time representation

G<M(t;m) =
∑

lm

G<
l (t;M −m)G<

M,l(t;m). (6.105)

We have used that both spin components have the same values of functions,
G̃<

l (t;M −m) = G<
l (t;M −m).

Similarly, from equation (6.83) we find the retarded G

GRM(t) =
∑

lm

(

GR
l (t;M −m)G>

M,l(t;m)−G<
l (t;M −m)GR

M,l(t;m)
)

. (6.106)

Using Fourier transformations these functions are converted to the frequency
representation

G<M(ω) =

∫

dt eiωtG<M(t), (6.107)

GRM(ω) =

∫

dt eiωtGRM(t). (6.108)

From G we evaluate the retarded T -matrix (6.80)

TR
M(ω) =

λM
1− λMGRM(ω)

(6.109)

and the correlation part of the T -matrix

T<
M(ω) =

∣

∣TR
M(ω)

∣

∣

2 G<M(ω). (6.110)

The bosonic functions are complete and we can proceed to the selfenergy.
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6.8.4 Selfenergy

The major step to obtain a new selfenergy is to evaluate the averaged T -matrix

S<
M,l(t;m) = T<

M(t;m)G>
l (−t;M −m) (6.111)

and

SR
M,l(t;m) = TR

M(t;m)G<
l (−t;M −m)− T<(t;m)GA

l (−t;M −m). (6.112)

These functions are transformed to the energy representation

S<
M,l(ω;m) =

∞
∫

−∞

dt eiωtS<
M,l(t;m), (6.113)

SR
M,l(ω;m) =

∞
∫

0

dt eiωtSR
M,l(t;m). (6.114)

Finally, from equation (6.78) we obtain the retarded selfenergy

ΣR
M,l(ω;m) =

SR
M,l(ω;m)

1 +GR
M,l(ω;m)SR

M,l(ω;m)
(6.115)

and from equation (6.79) results the correlation part

Σ<
M,l(ω;m) =

∣

∣

∣

∣

∣

1

1 + SR
M,l(ω;m)GR

M,l(ω;m)

∣

∣

∣

∣

∣

2

S<
M,l(ω;m)

+
∣

∣ΣR
M,l(ω;m)

∣

∣

2
G<

M,l(ω;m). (6.116)

Now one loop of the iteration procedure is closed and one can return to equation
(6.89) and start the next loop.

6.9 Simplified set

Before the iteration of the full set of equations, it is advantageous to solve a
simplified set so that the iteration will start from some reasonable value of the
selfenergy.

The subsidiary functions (6.86), (6.87) and (6.88) are the same as in the full
solution.

In the simplified model none of quantities depends on the magnetic number
m. The total selfenergy thus is

ΣR
l (ω) =

∑

M

ΣR
M,l(ω) (6.117)

and
Σ<

l (ω) =
∑

M

Σ<
M,l(ω). (6.118)
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This allows us to evaluate sums over m in the two-particle propagators

G<M(t) =
∑

l

(2Ll + 1− 2|M |)G<
l (t)G

<
M,l(t) (6.119)

and

GRM(t) =
∑

l

(2Ll + 1− 2|M |)
(

GR
l (t)G

>
M,l(t)−G<

l (t)G
R
M,l(t)

)

. (6.120)

Other equations are the same as above.

6.10 Richardson model

The pairing happens in M = 0 pair momentum. It is reasonable to evaluate this
interaction within the Richardson model. The subsidiary functions (6.86), (6.87)
and (6.88) are the same as in the full solution.

In the Richardson model only M = 0 interacts. The total selfenergy thus is

ΣR
l (ω) = ΣR

0,l(ω) (6.121)

and
Σ<

l (ω) = Σ<
0,l(ω). (6.122)

As we have already shown, for this model the reduced Green function is identical
to the free function. This is true for all its analytical parts, e.g. G>

0,l = G0>
l .

In the two-particle propagator we need only the M = 0 channel,

G<0 (t) =
∑

l

(2Ll + 1)G<
l (t)G

0<
l (t) (6.123)

and
GR0 (t) =

∑

l

(2Ll + 1)
(

GR
l (t)G

0>
l (t)−G<

l (t)G
0R
l (t)

)

. (6.124)

The averaged T -matrix has a single contribution

S<
0,l(t) = T<

0 (t)G>
l (−t) (6.125)

and
SR
0,l(t) = TR

0 (t)G<
l (−t)− T<

0 (t)GA
l (−t) (6.126)

from which we evaluate the selfenergy.

6.11 BCS approximation

The BCS approximation is even simpler than the Multiple scattering approxima-
tion of the Richardson model. The subsidiary functions (6.86), (6.87) and (6.88)
are the same as in the full solution.

The BCS selfenergy (6.54) in the frequency representation reads

ΣR
l (ω) = −∆2G0A

l (−ω). (6.127)
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We assume ∆ real. The correlation function is

Σ<
l (ω) = −∆2G0>

l (−ω). (6.128)

The gap is related to the T -matrix, however, its value is obtained from a
simplified BCS condition in which the interaction potential is neglected against
the T -matrix.

It should be noted that in all cases it is necessary to evaluate the chemical
potential so that the expected number of particles is the same in all approxima-
tions.
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7. Numerics of magic cluster
model

7.1 Introduction

In this section we demonstrate the use of nonequilibrium Green functions to
compute equilibrium properties of the isolated grain. It is illustrative to do it as
alternative approach to the Matsubara formalism which can be also applied in
the equilibrium.

First, we introduce the equilibrium relations and the limit of weakly coupled
grain. In this approximation we compute the BCS theory and the first order of the
Multiple scattering theory and the Kadanoff-Martin theory. This is very BCS-
friendly comparison, because all theories are tested on the Richardson model
which does not include non-pairing interactions neglected in the BCS theory.
Nevertheless, we still observe the differences.

The simple model for numerics has only two energy levels, which are degener-
ated. We will separate the dominant contribution of the T-matrix, therefore we
can conveniently identify the gap.

7.2 Isolated grain in equilibrium

Let us assume that the grain is only weakly coupled to leads. This means that
we make contacts infinitesimally small

hR(ω) = −iη with η → 0. (7.1)

We will denote this limit as hR(ω) = −i0. This will simplify the set of equations
and we can easily do numerics.

We also assume an equilibrium system. For the equilibrium we have following
relations

fFD(ω) =
1

e
ω

kBT + 1

fFD(−ω) = 1− fFD(ω)

G<(ω) = −2ImGR(ω)fFD(ω)

G>(ω) = −2ImGR(ω) (1− fFD(ω))

. (7.2)

We remind that energy is related to the chemical potential ǫl−µ. In other words,
the origin of energies is set at the chemical potential.

7.3 Bardeen formula for current - measurement

of equilibrium grain spectra

For almost isolated grain, which is in the local equilibrium with the right lead
the current can be approximated within the second order of bottleneck hopping
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constant ul by Bardeen’s formula [17]

J = |ul|2
∫

(fFD(ω − µ− V )− fFD(ω − µ)) (−2)ImGR
gg(ω)(−2)ImGR

ll (ω − V )
dω

2π
.

(7.3)

The Bardeen formula equals to a convolution of the grain density of states
(−2ImGgg(ω)) with the density of states within the left lead (−2ImGR

ll (ω)). The
weight of the convolution is proportional to a difference fFD(ω−µ−V )−fFD(ω−
µ).

The Bardeen formula assumes the weak coupling to the leads. Moreover, the
left barrier serve as bottleneck for the tunneling process (ur ≫ ul) allowing to
thermalize the grain with the right lead. The chemical potential is thus the same
in the grain as in the right lead µr = µ. The left lead chemical potential equals
to µ+ V .

The Bardeen formula reduces for a constant density of states −2ImGR
rr = C

and for small temperature T to

J = C|ul|2
∫ µ+V

µ

(−2)ImGR
gg(ω)

dω

2π
. (7.4)

According to this relation one can directly observe the spectrum in the grain by
derivative of the current with respect to voltage

∂J

∂V
=
C|ul|2
2π

(−2)ImGR
gg(µ+ V ). (7.5)

All information about the spectrum is hidden in the retarded Green function and
thus GR

gg(ω) it will be the target of the next sections.
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7.4 Two-particle propagator

In the appendix we derived the reduced two-particle propagator. The algebra is
very simple, but too long. We thus write here the result

GR0 (Ω) =
∑

l

(2Ll + 1)

{

− 1

Ω− Ω0 −
(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

+ i0
(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD

((

ǫl −
Ω0

2

)

+
Ω0

2

)

− fFD



+

√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









+
1

Ω− Ω0 −
(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

+ i0
(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD

((

ǫl −
Ω0

2

)

+
Ω0

2

)

− fFD



−
√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









}

.

(7.6)

derived form the BSC approximation of the selfenergy ΣR
l (ω) = −∆2G0A

l (Ω0−ω)
with the general position of the dominant pole.

7.5 BCS theory

The BCS selfenergy (6.54) in the frequency representation reads

ΣR
l (ω) = −∆2GA

0,l(−ω). (7.7)

The BCS condition for gap in isolated grain at equilibrium reads

1 = λ0GR0 (0) (7.8)

or explicitly

1 = λ0
∑

l

2Ll + 1

2
√

ǫ2l +∆2
tanh

(

√

ǫ2l +∆2

2kBT

)

, (7.9)

where (2Ll+1) is a degeneration of the energy shell with the energy ǫl = El−µ re-
lated to the chemical potential. This is an equation for the gap. It should be easy
to solve for ∆ assuming only few selected levels l, because function (1/x) tanh x
is simple and monotonic.
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The second unknown quantity is the chemical potential, therefore we need an
additional equation which specifies it. For this purposes we adopt an equation
for the number of particles familiar from the BCS approach [16]

N =
∑

l

2(2Ll + 1)

2

[(

1− ǫl
√

ǫ2l +∆2

)

fFD

(

−
√

ǫ2l +∆2
)

+
(

1 +
ǫl

√

ǫ2l +∆2

)

fFD

(
√

ǫ2l +∆2
)]

.

(7.10)

We have thus closed the set of equations to determine the parameters µ and ∆.
The equations can be solved with standard numerical methods like the Broyden
algorithm taken over from [18].

7.6 Characterization of the model for numerics

For numerical studies we choose the model of a magic cluster. Magic clusters
are ultrasmall metallic grains, where the atoms constitute a cluster with ideal
spherical symmetry, where the last energy level is fully filled. We are inspired
by the model introduced by Ovchinnikov and Kresin in the series of articles
[16],[19],[20] and [21].

Using a simple model of the magic cluster with two levels near Fermi surface,
HOS (highest occupied state) with momentum 7 and LUS (lowest unoccupied
state) with momentum 4. In the HOS we have Nl1 = 30 electron states and in
the LUS layer is Nl2 = 18 electron states.

We assume that the gate voltage is tuned to maintain in average 30 electrons
in the grain. We will use the set of parameters E ′

1 = 8000meV and E ′
2 = 8065meV

related to the Fermi energy EF = 8000meV. So the energies are E1 = 0meV and
E2 = 65meV.

7.7 Two-particle propagator with BCS solution

In the BCS theory we derived the set of equations for the parameters µ and ∆.
The BCS condition has the form

1 = λ0
∑

l

2Ll + 1

2
√

ǫ2l +∆2
tanh

(

√

ǫ2l +∆2

2kBT

)

. (7.11)

or shortly
1 = λ0GR0 (0). (7.12)

This condition implies that T-matrix TR
0 (Ω) is divergent in the zero frequency

channel

TR
0 (0) =

λ0
1− λ0GR0 (0)

=∞. (7.13)

For other frequencies the T-matrix has values

TR
0 (Ω) =

λ0
1− λ0GR0 (Ω)

. (7.14)
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In the denominator we will use the two-particle propagator GR0

GR0 (Ω) =
∑

l

(2Ll + 1)

{

−
(

1

Ω− (ǫl +
√

ǫ2l +∆2) + i0

)

ǫl +
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(
√

ǫ2l +∆2)

)

+

(

1

Ω− (ǫl −
√

ǫ2l +∆2) + i0

)

ǫl −
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(−
√

ǫ2l +∆2)

)

}

.

(7.15)

This analytic form of the two-particle propagator can be used to compute
TR
0 (Ω) (for the parameters µ and ∆ from the solution of the BCS set). Generally,

for our model of two levels the imaginary part of T-matrix has four poles, so can
write

TR
0 (Ω) =

A

Ω− Ωa

+
B

Ω− Ωb

+
C

Ω− Ωc

+
D

Ω− Ωd

+ E, (7.16)

where A,B,C,D,E are general coefficients and Ωa,Ωb,Ωc,Ωd are positions of
poles. In one of the poles Ωa = Ω0 = 0 the Bose-Einstein distribution diverges
making this pole the dominant one.

7.8 Change of origin of energies

In finite systems the pole Ω0 is not in the same position as the chemical potential.
They are very close, however. We then choose the origin of the energies in Ω0,
not in µ. The reason for this choice becomes clear from the following equations.

Let us assume first that the energy origin is fixed at the chemical potential
µ so that Ω0 is non-zero. For our clean system, the Nambu-Gorkov theory is
equivalent to the Bogoliubov-de Gennes theory represented by coupled equations

(

ǫl +
Ω0

2
∆e2iχ

∆∗e−2iχ −(ǫl + Ω0

2
)

)(

a1
a2

)

= −i∂t
(

a1
a2

)

, (7.17)

which can be expressed as

−e−iχ(i∂ta1) = (ǫl +
Ω0

2
)a1e

−iχ +∆a2e
iχ

−eiχ(i∂ta2) = −(ǫl +
Ω0

2
)a2e

iχ +∆∗a1e
−iχ.

(7.18)

This set can be simplified by substitution ã1 = a1e
−iχ and ã2 = a2e

iχ as

(i∂tã1) = (ǫl +
Ω0

2
− ∂tχ)ã1 +∆ã2

(i∂tã2) = −(ǫl +
Ω0

2
− ∂tχ)ã2 +∆ã1.

(7.19)
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After the transformation we want to have only energies ǫl. We than choose the
potential χ as

χ =
Ω0

2
t. (7.20)

Substituting this result to the Nambu-Gorkov selfenergy in time domain

ΣR
l (ω) = −∆∗(t1)G

0A
l (t2 − t1)∆(t2). (7.21)

and transforming from the time domain

ΣR
l (ω) = −∆∗e−iΩ0t1G0A

l (t2 − t1)eiΩ0t2∆. (7.22)

to frequencies we obtain exactly the same selfenergy (B.4)

ΣR
l (ω) = −∆2G0A

l (Ω0 − ω). (7.23)

The gap parameter should be stationary. This condition can be met by setting
the origin of energies at Ω0. The chemical potential is shifted from the origin and
we need to change all energies to ǫl = El − µ + δµ. The term 2δµ is a distance
between chemical potential and the pole Ω0. Thus the relations for distributions

fFD(ω) =
1

e
(ω−δµ)
kBT + 1

,

fBE(Ω) =
1

e
(Ω−2δµ)

kBT − 1
. (7.24)

has to be also changed.

7.9 The single channel approximation

Now let us return to the beginning and derive corrections to the BCS approxima-
tion. This corrections origin from the different position of the chemical potential
µ and the position of the dominant pole Ω0. The retarded selfenergy in the
Multiple scattering theory is constructed as

ΣR
l (ω) =

∫ ∞

−∞

(

−T<
0 (Ω)GA

0,l(Ω− ω) + TR
0 (Ω)G<

0,l(Ω− ω)
) dΩ

2π
, (7.25)

and in the Kadanoff-Martin theory

ΣR
l (ω) =

∫ ∞

−∞

(

−T<
0 (Ω)G0A

l (Ω− ω) + TR
0 (Ω)G0<

l (Ω− ω)
) dΩ

2π
. (7.26)

In the single channel approximation they are identical because becauseG0<
l = G<

0,l

in this case
The dominant Bose-Einstein contribution is expected in the pole with zero

frequency. The divergence of Bose-Einstein type is hidden in quantity T<
0 (Ω) since

in equilibrium holds T<
0 (Ω) = −2ImTR

0 (Ω)fBE(Ω). The dominant contribution is
thus

∫ ∞

−∞

(

2ImTR
0 (Ω)fBE(Ω)G

0A
l (Ω− ω) + . . .

) dΩ

2π
(7.27)
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Now we substitute only contribution from pole Ωa = Ω0 = 0

∫ ∞

−∞

(

−Aδ(0)G0A
l (Ω− ω) 1

e
Ω−2δµ
kBT − 1

+ . . .

)

dΩ. (7.28)

After the integration we have explicit form of the Bose-Einstein distribution near
the condensation pole

= −AG0A
l (0− ω) 1

e
0−2δµ
kBT − 1

+ . . . (7.29)

We can expand to the first order and we get a final expression

ΣR
l (ω) = −A

kBT

−2δµG
0A
l (−ω). (7.30)

The coefficient A is related to the derivative of GR0 (Ω) evaluated in pole Ω0 = 0

TR
0 (Ω) =

λ0

1− λ0(GR0 (0) + ∂GR
0 (0)

∂Ω
(Ω− 0))

=
−1

∂GR
0 (0)

∂Ω

1

Ω
. (7.31)

Now we are ready to write down the final expression for the dominant part of the
selfenergy

ΣR
l (ω) =

−1
∂GR

0 (0)

∂Ω

kBT

2δµ
G0A

l (−ω). (7.32)

Comparing it with the Nambu-Gorkov selfenergy ΣR
l (ω) = −∆2G0A

l (−ω) we find
the gap in terms of the two-particle propagator

∆2 =
1

∂GR
0 (0)

∂Ω

kBT

2δµ
. (7.33)

Let us return to the equation for the T-matrix

TR
0 (Ω) =

1

1− λ0GR0 (Ω)
. (7.34)

This equation requires TR
0 as a function of Ω. In the vicinity of pole Ω0 we can

use the general formula

TR
0 (Ω) =

∫ ∞

−∞

(

2ImTR
0 (Ω′)

Ω′ − Ω

)

dΩ′

2π

=

∫ ∞

−∞







−1
∂GR

0 (0)

∂Ω

δ(0)

Ω′ − Ω






dΩ′ =

−1
∂GR

0 (0)

∂Ω

Ω
.

(7.35)

Substituting from (7.33) we get

TR
0 (Ω) =

−1
∂GR

0 (0)

∂Ω

Ω
=

∆2

kBT

− 2δµ

Ω
. (7.36)
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We use this result in the equation for the T-matrix

TR
0 (−2δµ) = λ0 + λ0GR0 (−2δµ)TR

0 (−2δµ) (7.37)

and rearrange the terms in the equation to

1

λ0
=
kBT

∆2
+ GR0 (−2δµ). (7.38)

Finally we substitute for the shift of the chemical potential from the energy origin

1

λ0
=
kBT

∆2
+ GR0

(

−
kBT
∆2

∂GR
0 (0)

∂Ω

)

(7.39)

and expand in energy argument

1

λ0
=
kBT

∆2
+ GR0 (0) +

(

−
kBT
∆2

∂GR
0 (0)

∂Ω

)

∂GR0 (0)
∂Ω

. (7.40)

The last two terms cancel and we arrive at the standard BCS condition

1

λ0
= GR0 (0). (7.41)

We have thus shown that the BCS condition itself is robust with respect to
corrections due to the shift of the chemical potential.

There are, however, indirect effects due to shifts of energy levels. Because we
do not relate the energy to chemical potential µ but to the zero frequency Ω0 = 0
the chemical potential is thus µ− Ω0

2
= δµ < 0. So we will relate the energies to

ǫl = El − µ+ δµ. We have thus the following set of equations

2δµ− 1
∂GR

0 (0)

∂Ω

kBT

∆2
= 0 (7.42)

1

λ0
= GR0 (0) (7.43)

N =
∑

l

2(2Ll + 1)

2

[(

1− ǫl
√

ǫ2l +∆2

)

fFD

(

−
√

ǫ2l +∆2
)

+
(

1 +
ǫl

√

ǫ2l +∆2

)

fFD

(
√

ǫ2l +∆2
)]

.

(7.44)

In the limit of Ω0 = 0 the two-particle propagator reduces to

GR0 (Ω) =
∑

l

(2Ll + 1)

{

−
(

1

Ω− (ǫl +
√

ǫ2l +∆2) + i0

)

ǫl +
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(
√

ǫ2l +∆2)

)

+

(

1

Ω− (ǫl −
√

ǫ2l +∆2) + i0

)

ǫl −
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(−
√

ǫ2l +∆2)

)

}

.

(7.45)
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The difference between the BCS approximation and the present set of equa-
tions is in the fact that in the BCS we had a Hamiltonian related to ǫl = El − µ
while with corrections we have ǫl = El − µ+ δµ.

7.10 Remark of the neglecting of corrections

If one neglects the correction to the chemical potential δµ in the two-particle
propagator, which is the same as using the zero-order two-particle propagator,
the equation (7.39) simplifies to

1

λ0
=
kBT

∆2
+ GR0 (0). (7.46)

This is exactly the equation (A19) for the bulk system derived in [10] which in
the present notation reads

1

V0
=

1

λ0ΩVol.

=
kBT

ΩVol.∆2
+

1

ΩVol.

GR0 (0) (7.47)

with ΩV ol. being the volume of the sample. This is logical because in the bulk
system δµ ∝ 1

Ωvol.
→ 0.

7.11 BCS approximation – numerics
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Figure 7.1: The BCS gap ∆ as a function of temperature T for different pairing
parameters λ.
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To obtain the values of the chemical potential µ and the gap ∆ we solve to-
gether the BCS condition (7.9) and the N particle condition (7.10). The resulting
temperature dependence of the BCS gap is shown in Fig. 7.1. We can see that for
large λ, the temperature dependence is of the BCS-type with the maximal gap at
the zero temperature and monotonous decrease towards the critical temperature.
The ratio between ∆ and the transition temperature Tc approaches in the limit
of hight λ the value for the bulk system ∆

Tc
=1.76, see [9].

While in bulk systems any weak interaction is capable to create a Cooper
pair and turn the system superconducting at sufficiently low temperature, in
nanograins the coupling parameters has to be larger than λ ∼ 2.72 for super-
conductivity to appear. In the same time, unequal degeneracy of two energy
levels near the Fermi energy makes it possible that a small thermal population
of electrons favors superconductivity leading to the increase of the gap at low
temperatures and for very weak coupling interaction can even lead to supercon-
ductivity at finite temperatures while the ground state is normal.

7.12 The single channel approximation

– numerics
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Figure 7.2: The BCS gap ∆ and its corrections as a function of temperature T for
different parameters λ. The corrections decrease with the increasing interaction
constant λ.

The corrected set of equations (7.42), (7.43), (7.44) which we derived above
can be solved with the same tools as the BCS set. The results are in figures 7.2
and 7.3. The basic feature is very similar. The corrections are very small showing
that the BCS theory is an excellent approximation for the Richardson model. As
one can see, there are some minor differences in the critical temperatures. The
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Figure 7.3: The BCS gap ∆ and its corrections as a function of temperature T
for λ=2.73. The difference between critical temperatures is almost 4K.

shape of the functions are, however, the same as in the BCS theory. The similarity
with the BCS theory is a consequence of the one pole-contribution. If we take
the contributions from other poles we will obtain a frequency dependent gap
parameter and the spectrum will contain new features.

7.13 Renormalization of the gap

In this section we discuss possible corrections to the spectrum of energies−2ImGR
l

in the grain. They came from iterations of the Kadanoff-Martin or the Multiple
scattering theory and should be compared with the single channel approximation.

In the BCS theory the selfenergy is constructed

ΣR
l (ω) = −∆2G0A

l (−ω) (7.48)

and the chemical potential µ equals zero. In the single channel approximation of
the Kadanoff-Martin theory the selfenergy is unchanged

ΣR
l (ω) = −∆2G0A

l (−ω) (7.49)

but the chemical potential is shifted to the value δµ.
The single channel contribution above is the crudest approximation. We can

include other poles of the Kadanoff-Martin T-matrix to the selfenergy

ΣR
l (ω) =

∫ ∞

−∞

(

−T<
0 (Ω)G0A

l (Ω− ω) + TR
0 (Ω)G0<

l (Ω− ω)
) dΩ

2π
, (7.50)
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using the equilibrium relations G0<
l = −2ImG0R

l fFD and T<
0 = −2ImTR

0 fBE. The
selfenergy contains five terms

ΣR
l (ω) = −∆2G0A

l (−ω) +
3
∑

A=1

(

sgn(ΩA)
∂GR

0 (ΩA)

∂Ω

fBE(ΩA)G
0A
l (ΩA − ω)

)

+ TR
0 (ω + ǫl)fFD(ǫl),

(7.51)

The non-dominant terms can be grouped to the reduced selfenergy Σ′R
l

= −∆2G0A
l (−ω) + Σ′R

l (ω), (7.52)

This is the first iteration of the Kadanoff-Martin theory. Note that the bare
Green function is used to average the T-matrix.

In the T-matrix theory, introduced in the section 3.6 and which is similar to
the Multiple scattering theory, we can include the contributions from the other
poles also. Now, however, we build the dominant contribution −∆2GA

0,l using the
reduced Green function already in the first iteration

GA
0,l(−ω) =

1

−ω − ǫl − Σ′A
l (−ω)

. (7.53)

This modification results in

ΣR
l (ω) = −∆2GA

0,l(−ω) +
3
∑

A=1

(

sgn(ΩA)
∂GR

0 (ΩA)

∂Ω

fBE(ΩA)G
0A
l (ΩA − ω)

)

+ TR
0 (ω + ǫl)fFD(ǫl)

= −∆2GA
0,l(−ω) + Σ′R

l (ω),

(7.54)

which parallels equation (7.52). Note the bare Green function G0A
l used for

construction of the reduced selfenergy Σ′R
l as before.

The spectrum of energies is a solution of the equation

ω − ǫl = −∆2GA
0,l(−ω) + Σ′R

l (ω), (7.55)

or could be extract from the full retarded Green function

GR
l (−ω) =

1

ω − ǫl − ΣR
l (ω)

, (7.56)

as its imaginary part.
The differences of the full Green functions constructed from the selfenergies

(7.49), (7.52) and (7.54) are shown in the figures 7.4 and 7.5. The Green function
within the single channel approximation has only two poles. The non-dominant
contributions to the selfenergies create new poles of the full Green function.

The most interesting are poles located in the gap. They are proportional
to thermal factors and vanish at the zero temperature. Apparently, they corre-
spond to non-BCS mechanisms in the grain since this news poles originate from
non-dominant poles of the T-matrix. This poles have smaller weight than the
dominant pole from the zero channel and reduce the value of the gap. Weights
of few selected poles are in the table:
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ω[meV] 34.00 27.83 26.07 19.29
α 0.8 0.067 7 10−3 5 10−7

source main BCS pole T<(Ω2) Fermi stat. T<(Ω3)

We can see in the figure 7.4 and 7.5 that the Kadanoff-Martin and the Multiple
scattering theory contain this interesting poles. In the Multiple scattering theory
this new poles are located in symmetric position while in the Kadanoff-Martin
theory there is always only one of them. This follows from the fact that in the
Multiple scattering theory the renormalization via Σ′ enters both lines while in
the KM theory one of the lines remains bare.

The weight of the additional poles is important for their eventual observation
in experiment. As mentioned, it decreases with the decreasing temperature. This
is perhaps why there in no evidence of such poles in the measurements of Ralph,
Braun and Tinkham performed deep below the critical temperature. There is
still hope, however, that in higher temperatures or near the critical temperature
this additional poles might be observable.

Even more exciting possibility is to add a lead designed to inject a pair of
electrons into a selected excited state of the T-matrix. This can make its occu-
pation relatively large without essential increase of the thermal energy of other
particles. Such process results in a nonequilibrium distribution of bounded pairs
and its description requires treatment by the complete nonequilibrium theory
developed above in this thesis.
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Figure 7.4: Inner structure of the main gap of the single channel approxima-
tion and the Kadanoff-Martin theory shown via poles in ReGR

2 , where index 2
stands for the upper energy level E2=65 meV. Set of parameters: λ=3 meV,
T=75 K, ∆=13.2073 meV, µ=36.4128 meV, δµ=-0.179262 meV, Ω1=-21.12625
meV, Ω2=1.16465 meV, Ω3=47.6987 meV. The position of the dominant pole in
the Kadanoff-Martin (≈ 33.5 meV) theory is shifted from the position of the pole
of the single channel approximation (31.6534 meV). Whereas the single channel
approximation decreases slightly the value of the gap (∆=13.2073 meV) against
the BCS theory (∆=13.2174 meV) the Kadanoff-Martin theory increases this
value again. The more important feature is the structure of the poles inside the
main gap. The pole in the nearest position to zero (≈19.27 meV) originates from
the highest T-matrix pole Ω3 and has the small Bose-Einstein factor. The most
noticeable pole (≈-27.5 meV) within the main gap is related with the T-matrix
pole Ω2 and has the high Bose-Einstein factor. The last pole in the gap (≈-26.08
meV) relates to the terms with Fermi-Dirac statistics.
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Figure 7.5: Inner structure of the main gap of the single channel approximation
and the Multiple scattering theory shown via ReGR

2 . All parameters are identical
to Fig. 7.4. The position of the dominant pole in the Multiple scattering theory
(≈ 34 meV) are shifted from the position of the pole of the single channel ap-
proximation (31.6534 meV). As in the KM approximation, the pole in the nearest
position to zero (≈ ±19.29 meV) originates from the highest T-matrix pole Ω3

and has the small Bose-Einstein factor, the most noticeable pole (≈ ±27.83 meV)
in the gap is related to the T-matrix pole Ω2 and has high Bose-Einstein factor,
and the pole at ≈ ± 26.07 meV relates to the terms with the Fermi-Dirac statis-
tics. There are two new features. First, as already written, each pole from the
KM approximation has its mirror value, note ±. Second, there is a new pole (≈
± 28.42 meV) which relates to the terms with the Fermi-Dirac statistics. The
Multiple scattering theory results in a richer structure giving eight poles in the
gap as compared to three of the Kadanoff-Martin theory.
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Conclusion

We have discussed the possibility to observe the corrections beyond the BCS
theory in the tunneling spectroscopy of metallic nanospheres. To this end we have
employed the machinery of Green functions in which one can express the BCS
theory via the Nambu-Gorkov formalism as well as discussed alternative non-BCS
theories based on the ladder approximation of the two-particle T-matrix. Our
major focus was the T-matrix expansion with multiple scattering corrections.

In the tunneling spectroscopy the system represented by the nanosphere is
driven out of the equilibrium and the problem deserves a treatment by nonequi-
librium Green functions. The set of nonequilibrium Green functions for the T-
matrix with multiple scattering corrections presented in Chap. 4 has not been
published before and represents the major achievement of this thesis.

In the discussion of an eventual experimental search for features beyond the
BCS theory, we have assumed three BCS friendly simplifications. First, we have
shown that using ferroelectric dielectrics for the gate electrode, the Coulomb
blockade can be suppressed below observable values. By this we hope to sup-
press the well known non-BCS features caused by the strict charge conservation
enforced by a strong Coulomb blockade. Second, we have assumed highly non-
symmetric tunneling contacts which allow us to approximate the state of the
nanosphere by the local equilibrium with the chemical potential and the tem-
perature of the strongly connected lead. In this regime, fluctuations of bounded
electron pairs which are not assumed in the BCS theory, have a thermal distri-
bution which avoids their large populations eventually created by a tunneling
processes. Third, we work with the Richardson Hamiltonian which includes only
the pairing interaction. Since the BCS theory neglects all non-pairing interac-
tions, this assumption is likely responsible for remarkably good agreement of the
BCS theory and more sophisticated approaches.

The implementation of the developed theory to the tunneling through nanospheres
is in Chap. 6. It starts from the formulation of the tunneling Hamiltonian made
of the sphere with pairing interaction and two ideal leads. On the level of Green
functions we eliminate the leads and formulate all discussed approximations on
the subspace of the sphere. To this end it was necessary to modify the multi-
ple scattering corrections proposed originally for the infinite volume to natural
eigenstates of the spherical symmetry. Approximations by which the T-matrix
approach simplifies to the BCS theory, are introduced step by step. This forms
a starting point for their comparison.

A systematic comparison of all successive approximations linking the T-matrix
with the BCS theory goes beyond the scope of this thesis. Using the BCS theory
as the starting approximation in Chap. 7 we show that the lowest order corrections
beyond the BCS theory decreases the critical temperature of the superconducting
approximation and the value of gap. This is particularly visible for dots with the
weakest interaction strength, where the BCS gas is small and fluctuations are
essential. In this regime the achieved corrections are about 10% and might be
observable. On the other hand, our results show that the BCS theory is an
excellent approximation at least for the Richardson model.

The T-matrix approach also results in small contributions to the density of
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states inside the energy gap. Although the weight of the in-gap poles is very
small, there is a hope that they might be observable since they appear at the zero
background. If observed, this feature signals a clear non-BCS mechanism in the
dot. We argue that these non-BCS features can be enhanced in nonequilibrium
regime.
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[13] B. Šoṕık, P. Lipavský, M. Mannel, K. Morawetz, P. Matlock, Phys. Rev. 84,
094529 (2011).

[14] J. von Delft, D.C. Ralph, Physics Reports 345, 61-173 (2001).

[15] Yu. A. Boikov, E. Olsson, T. Claeson, Phys. Rev. 74, 024114 (2006)

[16] Y.N. Ovchinnikov, V.Z. Kresin, Uspekhi Fiyicheskikh Nauk 178, 449-458
(2008).

[17] J. Bardeen, Phys. Rev. Lett. 6, 57 (1998).

[18] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical
Recipes The Art of Sfientific Computing, Cambridge University Press, 2007.

[19] Y.N. Ovchinnikov, V.Z. Kresin, Eur. Phys. J. B 45, 5-7 (2005).

[20] Y.N. Ovchinnikov, V.Z. Kresin, Eur. Phys. J. B 47, 333-336 (2005).

[21] Y.N. Ovchinnikov, V.Z. Kresin, Phys. Rev. B 74, 024514 (2006).
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A. Soven schema

The aim of this Appendix is to reformulate Soven’s method so that it can be
adopted to the scattering of two particles.

A.1 Coherent potential model of substitutional

disordered alloys

The idea of effective medium in condensed matter was first introduced by Soven
[11], who resolved the single-electron electron Green function in a binary alloy.
The earlier theory called averaged T-matrix approximation (ATA) was modifies to
a theory using the coherent potential approximation. We will follow this original
paper.

In the scattering theory of binary alloys the T-matrix of scattering on a single
impurity atom is

t = v + vG0t, (A.1)

where v is the impurity potential and G0 is the free-electron Green function. The
full Green function G is given by expansion

G = G0 +
∑

α

G0tαG0 +
∑

α,β 6=α

G0tαG0tβG0 + · · · , (A.2)

where α denotes both a side index and the type of atom at the particular side.
The density of states and others observables equal to an enable average of the

full Green function

〈G〉 = G0 +
∑

α

〈G0tαG0〉+
∑

α,β 6=α

〈G0tαG0tβG0〉+ · · · , (A.3)

where the angular brackets denote the ensemble average.
The ATA is the replacement of the average of T-matrix products by the prod-

ucts of the average T-matrix

〈G〉 ∼= G0 +
∑

α

G0〈tα〉G0 +
∑

α,β 6=α

G0〈tα〉G0〈tβ〉G0 + · · · . (A.4)

This approximation is very successful for low concentrations of impurities, but it
fails for high concentrations being completely inadequate for binary allows with
comparable content of both components.

The idea of coherent potential, suitable for general binary alloys, is following.
We place an unknown potential v0(x−l) at every site l and than derive a condition
for such potential. The true potential at every site l is either v1(x − l) if it is
occupied by atom of type 1 or v2(x− l) if by atom of type 2.

Let Ḡ0 be the formal Green function for lattice of potentials v0

Ḡ0 = G0 +G0

∑

l

v0(x− l)Ḡ0. (A.5)
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We want to build a the similar scattering theory as before. Now the atomic
T-matrix contains Green function Ḡ0 and a potential related to the unknown
potential

t̄i = (vi − v0) + (vi − v0)Ḡ0t̄i, (A.6)

where i = 1, 2. Parallel to equation A.2

G = Ḡ0 +
∑

α

Ḡ0t̄αḠ0 +
∑

α,β 6=α

Ḡ0t̄αḠ0t̄βḠ0 + · · · (A.7)

The effective potential is arbitrary by definition and our choice of potential
was not done so far. The Soven original condition is a requirement that on average
there be no further scattering from the perturbing potentials. Soven required

〈t̄i〉 = c1t̄1 + c2t̄2 = 0, (A.8)

for each site l. c1 and c2 are concentrations of constituents.
The ensemble average of the full Green function given by such potential is

then
〈G〉 = Ḡ0 +

∑

α

∑

β 6=α

∑

γ 6=β

∑

δ 6=γ

〈Ḡ0t̄αḠ0t̄βḠ0t̄γḠ0t̄δ〉+ · · · . (A.9)

The first correction is of the fourth order in the T-matrices. All formulas above
are exact so far. The original Soven approximation is

〈G〉 ∼= Ḡ0. (A.10)

This approximation should be valid for sufficiently long mean free paths and was
tested in the original paper. The coherent potential thus improved the description
of substitutional disordered alloys [11].

A.2 Renotation of Soven’s condition

We bring the Soven condition to a different notation. The Soven condition for
every side l has an explicit form

c1
v1(x− l)− v0(x− l)

1− (v1(x− l)− v0(x− l))Ḡ0

+ c2
v2(x− l)− v0(x− l)

1− (v2(x− l)− v0(x− l))Ḡ0

= 0. (A.11)

We denote concentrations
c1 = 1− c, (A.12)

c2 = c, (A.13)

since they allways satisfy c1 + c2 = 1.
The site index l is changed to q. Further we choose potentials as

v1(x− q) = 0, (A.14)

v2(x− q) = Vq, (A.15)

where the difference between values of potentials is Vq.
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The coherent potential is denoted as selfenergy

v0(x− q) = Σq. (A.16)

In Soven’s notation 〈G〉 ∼= Ḡ0 which we denote as G = Ḡ0. The Soven condition
thus takes a form

(1− c) 0− Σq

1− (0− Σq)G
+ c

Vq − Σq

1− (Vq − Σq)G
= 0, (A.17)

and similarly equation (A.5)

G = G0 +G0
∑

q

ΣqG. (A.18)

which is a standard Dyson equation

G = G0 +G0ΣG, (A.19)

with the selfenergy

Σ =
∑

q

Σq, (A.20)

The above set of equations (A.17)-(A.20) contains a condition that statical
T-matrix is equal to zero in average 〈T [Σq, G]〉 = 0 for each site q. In the main
text we reformulate this condition for dynamical systems.

The Soven condition can be also derived in terms of multiple-scattering theory
and single-site approximation. This was done in paper by [22]. This idea of single
site approximation is based on averaged medium surrounding each site. In this
sense the single site approximation is the same as Soven’s original approach and
they meet each other in equation (A.17).

A.3 Reformulation of Soven condition

In this section we reformulate the Soven condition in the form of equations, which
are suitable for generalization.

Let us start with a statement that the set of equations from last section:

G = G0 +G0ΣG, (A.21)

Σ =
∑

q

Σq, (A.22)

〈T [Σq]〉 = (1− c) 0− Σq

1− (0− Σq)G
+ c

Vq − Σq

1− (Vq − Σq)G
= 0, (A.23)

is equivalent to the following set of equations:

G = G0 +G0ΣG, (A.24)

Σ =
∑

q

Σq, (A.25)
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Gq = G−GΣqGq, (A.26)

G = Gq +GqSqGq, (A.27)

Tq =
Vq

1− VqGq

, (A.28)

Sq = cTq. (A.29)

From equations (A.24)-(A.29) we can obtain alternative relations

Sq = Σq + SqGqΣq, (A.30)

G = G0 +G0(Σ− Σq)G, (A.31)

Sq = Σq + ΣqGΣq. (A.32)

Let us prove that equations above (A.21)-(A.23) are equivalent to equations
(A.24)-(A.29). The first two equations are identical in both cases, so for our
purpose, it is sufficient to prove only equivalence of (A.23) to (A.26)-(A.29)

Starting with the Soven condition

(1− c) Σq

1 + ΣqG
= c

Vq − Σq

1 + (Σq − Vq)G
, (A.33)

by multiplication

(1− c) [Σq + (Σq − Vq)GΣq] = c [(Vq − Σq) + ΣqG(Vq − Σq)] , (A.34)

and rearrangement

(1− c) [Σq − VqGΣq + ΣqGΣq] = c [Vq − Σq + ΣqGVq − ΣqGΣq] , (A.35)

we group the terms with the concentration c

Σq − VqGΣq + ΣqGΣq = c [Vq + ΣqGVq − VqGΣq] . (A.36)

Following rearrangement is more tricky

[1 + (Σq − Vq)G] Σq + cVqGΣq = c(1 + ΣqG)Vq, (A.37)

(1 + ΣqG)Σq + (c− 1)VqGΣq = (1 + ΣqG)cVq, (A.38)

(c− 1)VqGΣq = (1 + ΣqG)(cVq − Σq), (A.39)

(c− 1)
VqG

1 + ΣqG
Σq = cVq − Σq, (A.40)

where all equations are equivalent and contain indivual step of algebraic rear-
rangement. We end up with a form prepared for substitution into some of the
equations (A.24)-(A.29)

Σq + (c− 1)
VqG

1 + ΣqG
Σq = cVq. (A.41)

By applying the definition (A.26) for the reduced function Gq

Σq + (c− 1)VqGqΣq = cVq, (A.42)
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we are able to manipulate equation

(1− VqGq)Σq + cVqGqΣq = cVq (A.43)

to a form suitable for definition of the reduced T-matrix (A.28)

Σq + c
Vq

1− VqGq

GqΣq = c
Vq

1− VqGq

. (A.44)

With the help of equation (A.28)

Σq + cTqGqΣq = cTq. (A.45)

The final step is using the equation (A.29) to obtain the equation (A.30)

Σq + SqGqΣq = Sq. (A.46)

Briefly, we have proved that the set of equations (A.26)-(A.29) is equivalent
to the Soven condition for the coherent potential (A.23).

A.4 Soven schema in superconductivity

Let us discuss the properties of equations (A.26)-(A.29). For every site q we have
a different reduced Green function Gq. Notice also that Tq[Gq] is constructed
from Gq, whereas 〈T [Σq, G]〉 is functional of the full Green function T [G].

By comparison of equations (A.24)-(A.29) with equations (3.16)-(3.30) we will
find the same structure. In both cases they contain irreducible selfenergy S and
the construction of reduced T-matrix from reduced Green function Tq[Gq]. In
this sense equations (3.16)-(3.30) for two particle scattering are a generalization
of equations (A.24)-(A.29) for one particle impurity scattering.
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B. Two-particle propagator

In this section we will compute the retarded two-particle propagator in the first
iteration of the Kadanoff-Martin theory. We can construct the retarded T-matrix
from this propagator. The two-particle propagator is defined as

GR0 (t) =
∑

l

(2Ll + 1)
(

GR
l (t)G

>
0,l(t)−G<

l (t)G
R
0,l(t)

)

. (B.1)

This is exactly the two particle propagator from the Kadanoff-Martin theory. We
assume in the first iteration the selfenergy in the Nambu-Gorkov form

ΣR
l (ω) = −∆2GA

0,l(−ω). (B.2)

From this selfenergy we will construct the full Green function.
Let us to be more general and suppose the selfenergy in the form, where we

have nonzero bosonic frequency Ω0 6= 0

ΣR
l (ω) = −∆2GA

0,l(Ω0 − ω). (B.3)

We can always reduce final expression by setting Ω0 = 0. By knowing the form
of the Green functions in the energetic representation we transform them to the
time representation and than use it in the equation (B.1). We start with the
retarded Green function in the frequency representation

GR
l (ω) =

1

ω − ǫl − ηl − ΣR
l

=
1

ω − ǫl + i0− −∆2

Ω0−ω−ǫl−i0

, (B.4)

switch into the time representation by Fourier transformation

GR
l (t) =

∫

d(ω)

2π

1

ω − ǫl + i0− −∆2

Ω0−ω−ǫl−i0

e−iωt, (B.5)

and use the substitution

GR
l (t) =

∫

d(ω′ + Ω0

2
)

2π

1

ω′ − (ǫl − Ω0

2
) + i0 + ∆2

−ω′−(ǫl−
Ω0
2
)−i0

e−iω′te−i
Ω0
2
t. (B.6)

The substitution is useful for the rearrangement of the expression

GR
l (t) =e

−i
Ω0
2
t

∫

d(ω′)

2π

(−ω′ − (ǫl − Ω0

2
) + i0) e−iω′t

(ω′ − (ǫl − Ω0

2
) + i0)(−ω′ − (ǫl − Ω0

2
)− i0) + ∆2

, (B.7)

to the form which allows the decomposition into the partial fractions

GR
l (t) =e

−i
Ω0
2
t

∫

d(ω′)

2π

(ω′ + (ǫl − Ω0

2
))

(ω′ + i0)2 −∆2 − (ǫl − Ω0

2
)2
e−iω′t. (B.8)

Applying the decomposition

GR
l (t) =e

−i
Ω0
2
t

∫

d(ω′)

2π

(ω′ + (ǫl − Ω0

2
))

2
√

∆2 + (ǫl − Ω0

2
)2

(

1

ω′ + i0−
√

∆2 + (ǫl − Ω0

2
)2

− 1

ω′ + i0 +
√

∆2 + (ǫl − Ω0

2
)2

)

e−iω′t,

(B.9)
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we can evaluate the integral by the residue theorem

GR
l (t) = −iθ(t)e−i

Ω0
2
t

(

e−i

√

∆2+(ǫl−
Ω0
2
)2t

(
√

∆2 + (ǫl − Ω0

2
)2 + (ǫl − Ω0

2
)
)

2
√

∆2 + (ǫl − Ω0

2
)2

−ei
√

∆2+(ǫl−
Ω0
2
)2t

(

−
√

∆2 + (ǫl − Ω0

2
)2 + (ǫl − Ω0

2
)
)

2
√

∆2 + (ǫl − Ω0

2
)2

)

.

(B.10)

The correlation function in the equilibrium G<
l (ω) = −2Im(GR

l (ω))fFD(ω)
after Fourier transformation reads

G<
l (t) =

∫

d(ω)

2π
− 2Im

(

1

ω − ǫl + i0− −∆2

Ω0−ω−ǫl−i0

e−iωt

)

fFD(ω)e
−iωt. (B.11)

Using exactly the same substitution ω′ = ω+ Ω0

2
as before we can directly obtain

G<
l (t) = e−i

Ω0
2
t

∫

d(ω′)

2π

(ω′ + (ǫl − Ω0

2
))

√

∆2 + (ǫl − Ω0

2
)2
fFD

(

ω′ +
Ω0

2

)

e−iω′t

− 2Im

(

1

ω′ + i0−
√

∆2 + (ǫl − Ω0

2
)2
− 1

ω′ + i0 +
√

∆2 + (ǫl − Ω0

2
)2

)

,

(B.12)

and we end up with the expression

G<
l (t) =e

−i
Ω0
2
t

(

e−i

√

∆2+(ǫl−
Ω0
2
)2t

(
√

∆2 + (ǫl − Ω0

2
)2 + (ǫl − Ω0

2
)
)

2
√

∆2 + (ǫl − Ω0

2
)2

fFD

(
√

∆2 + (ǫl −
Ω0

2
)2 +

Ω0

2

)

−

ei
√

∆2+(ǫl−
Ω0
2
)2t

(

−
√

∆2 + (ǫl − Ω0

2
)2 + (ǫl − Ω0

2
)
)

2
√

∆2 + (ǫl − Ω0

2
)2

fFD

(

−
√

∆2 + (ǫl −
Ω0

2
)2 +

Ω0

2

))

.

(B.13)

Let us derive also the bare correlation Green function in the equilibrium.
Switching to the time domain

G0>
l (t) =

∫

d(ω)

2π
− 2Im

(

1

ω − ǫl + i0

)

(

1− fFD(ω)

)

e−iωt, (B.14)
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and using the residue theorem

G0>
l (t) = e−iǫlt(1− fFD(ǫl)). (B.15)

Finally, the bare retarded Green function in the time representation

G0R
l (t) = −iθ(t)e−iǫlt. (B.16)

We have just derived the all necessary functions for the construction of the
two-particle propagator. We can thus put all these functions (B.6), (B.13), (B.15),
(B.16) in (B.1) resulting to

GR0 (t) =
∑

l

−iθ(t)(2Ll + 1)e−i(ǫl+
Ω0
2
)t

{

−
[

e−i

√

∆2+(ǫl−
Ω0
2
)2t

(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD(ǫl)− fFD



+

√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









]

+

[

e+i

√

∆2+(ǫl−
Ω0
2
)2t

(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD(ǫl)− fFD



−
√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









]}

,

(B.17)

We used the advantage of the multiplication in the time domain, the transforma-
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tion forward and back thus do the convolution. This results to

GR0 (Ω) =
∑

l

(2Ll + 1)

{

− 1

Ω−
(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl +
Ω0

2

)

)

(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD(ǫl)− fFD



+

√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









+
1

Ω−
(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl +
Ω0

2

)

)

(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD(ǫl)− fFD



−
√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









}

.

(B.18)
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We can bring this propagator to the form where all fermionic energies are
related to Ω0

2
and bosonic frequency Ω is related to Ω0

GR0 (Ω) =
∑

l

(2Ll + 1)

{

− 1

Ω− Ω0 −
(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

+ i0
(
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD

((

ǫl −
Ω0

2

)

+
Ω0

2

)

− fFD



+

√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









+
1

Ω− Ω0 −
(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

+ i0
(

−
√

∆2 + (ǫl − Ω0

2
)2 +

(

ǫl − Ω0

2

)

)

2
√

∆2 + (ǫl − Ω0

2
)2



−1 + fFD

((

ǫl −
Ω0

2

)

+
Ω0

2

)

− fFD



−
√

∆2 +

(

ǫl −
Ω0

2

)2

+
Ω0

2









}

.

(B.19)

In the limit of Ω0 = 0 the two-particle propagator should reduce the two-
particle propagator known form the BCS condition. Substituting Ω0 = 0

GR0 (Ω) =
∑

l

(2Ll + 1)

{

−
(

1

Ω− (ǫl +
√

ǫ2l +∆2) + i0

)

ǫl +
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(
√

ǫ2l +∆2)

)

+

(

1

Ω− (ǫl −
√

ǫ2l +∆2) + i0

)

ǫl −
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(−
√

ǫ2l +∆2)

)

}

.

(B.20)
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and putting inside the zero frequency Ω = 0

GR0 (0) =
∑

l

(2Ll + 1)

{

−
(

1

−(ǫl +
√

ǫ2l +∆2) + i0

)

ǫl +
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(
√

ǫ2l +∆2)

)

+

(

1

−(ǫl −
√

ǫ2l +∆2) + i0

)

ǫl −
√

ǫ2l +∆2

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(−
√

ǫ2l +∆2)

)

}

.

(B.21)

can be the two-particle propagator simplifies to

GR0 (0) =
∑

l

(2Ll + 1)

{

1

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(
√

ǫ2l +∆2)

)

− 1

2
√

ǫ2l +∆2

(

(−1 + fFD(ǫl))− fFD(−
√

ǫ2l +∆2)

)

}

.

(B.22)

The zero frequency propagator known from the BCS condition

GR0 (0) =
∑

l

(2Ll + 1)
− 1

2
√

ǫ2l +∆2

{

(

(1− fFD(ǫl)) + fFD(
√

ǫ2l +∆2)

)

+

(

(−1 + fFD(ǫl))− fFD(−
√

ǫ2l +∆2)

)

}

,

(B.23)

is thus recovered

GR0 (0) =
∑

l

(2Ll + 1)
− 1

2
√

ǫ2l +∆2

(

fFD

(

√

ǫ2l +∆2

)

− fFD

(

−
√

ǫ2l +∆2

))

=
∑

l

(2Ll + 1)

2
√

ǫ2l +∆2
tanh

(

√

ǫ2l +∆2

2kBT

)

.

(B.24)
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