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Abstrakt: Diagnostika lidských hlasivek je i v dnešní době komplikovaným 
problémem. Důvodem jsou špatný přístup k orgánu samotnému a vysoké frekvence 
vibrací hasivek. Jednou z klinicky dostupných zobrazovacích metod řešících tyto 
problémy je videokymografie – technika založená na snímání lidských hlasivek 
pomocí speciální řádkové CCD kamery. Jednotlivé řádky poskládány za sebe podle 
času pak tvoří videokymografický záznam. Videokymografické snímky jsou vhodné 
pro počítačovou extrakci základních charakteristik hlasivek napomáhající snížení 
pracovní zátěže vyšetřujícího laryngologa. Za tímto účelem jsou v oddělení 
Zpracování obrazové informace v UTIA AV ČR vyvíjeny metody automatické 
detekce charakteristik hlasivkových vibrací, jež lze extrahovat z 
videokymografického záznamu. Jednou z důležitých, ale obtížně detekovatelných 
charakteristik je průběh ventrikulární řasy. Cílem této práce je navržení metody 
automatické detekce ventrikulární řasy na videokymografickém záznamu za pomocí 
technik digitálního zpracování obrazové informace.  
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Preface / Foreword 
 

Diagnosis of human vocal cords function is very hard task by its nature. 

When dealing with frequencies as high as 80-240Hz doctors and medical 

practitioners have to face the enormous speed of the cord vibrations. One way to deal 

with the high frequencies is to record the vibration and analyse the recording 

afterwards. But this approach creates another problem: a huge amount of data per 

recording. As an example we can easily calculate, that if we want to replay a 10 

second recording of the vocal cords vibration captured by a device with the temporal 

resolution of 10.000 frames per second, we would need about 2 hours 46 minutes of 

time, provided the replay speed would be 10 frames per second. (1) This makes it 

impossible for one-session data recording to be analysed by any man and therefore 

there is an ongoing search for the ways of processing the data automatically.  

This thesis is a free follow-up of my previous work, the bachelor thesis (2) 

and the diploma thesis of David Hauzar (3). The assignment originated from the 

work of Jan G. Švec, the co-author of the vocal cords vibration capturing method 

called ‘Videokymography’ abbreviated as VKG. This method is based on recording 

of the glottal area not with a whole-frame camera, but rather with an one-line scanner. 

This type of capturing device allows achieving several orders of magnitude higher 

frequency while maintaining the cost of a standard camera. The rows captured in 

such manner are aligned together, resulting in a two-dimensional image with one 

spatial and one temporal dimension (Figure 4).  

In chapter Introduction the insight to the problem and the Videokymography 

method description can be found. Objective contains a depiction of the assignment 

goals. Problem analysis is dedicated to deeper assessment of the situation, together 

with definitions of methods used in the thesis. In Solution, thorough explanation of 

the proposed method and the algorithm description can be found. Chapter Results 

contains description of the dataset used in experiments and results of processing the 

data by the proposed method, including the result analysis. Finally, Conclusion 

contains the analysis of proposed solution and suggestions for future work.  
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1. Introduction 
 

To be able to explain the proposed method, I need to introduce the basics of 

human voice production and vocal cords anatomy. I will also explain the method of 

the vocal fold vibration acquisition to help the reader understand the problem and 

proposed solution. 

 

1.1. Human vocal cords 

 

1.1.1. Description and physiology  

It is a well-known fact that the vocal cord vibrations are responsible for the 

production of human voice. When the lungs contract, the pressure underneath the 

vocal folds builds up, and the pressure levels below and above the closed vocal folds 

become unequal. After the pressure difference rises above a certain level, the vocal 

folds could not hold the pressure, and a small amount of the air is released into the 

laryngeal cavity. This quantum of air released creates a pressure wave. The process 

repeats and the sequence of released pressure waves produces a sound. By the use of 

vocal fold muscle tension, humans are able to adjust the vibration frequency, 

therefore the pitch of the tone. Typical base frequencies of produced tone are 

approximately 70 – 500 Hz and 150 – 1000Hz for man and woman respectively. But 

the range of the frequencies can vary greatly with each individual (4). 

 

1.1.2. Glottal cycle 

One cycle of the cord vibration is called the glottal cycle and consists of 

following phases: 

• Closed glottis (Figure 1, bottom) 

• Pressure build-up underneath the cords 

• Glottis opening and release of one quantum of air 

• Closing of the glottis 
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For the purpose of this thesis we will recognise the closed glottis (approx. 

3ms), opened glottis, opening phase (approx. 2ms), closing phase and the opening 

amplitude (the state when the glottis is opened to its maximum). 

 

 

 
 

Figure 1. Human vocal cords: h-vocal folds; v-ventricular band; e-epiglottis; t-
trachea. The image was taken from (4). 

  

 

1.1.3. Ventricular band 

Ventricular bands are pair of folds of membrane stretching across the laryngeal 

cavity, also called the vestibular fold or false vocal cord. It is a soft tissue 

overhanging the vocal fold (Figure 1 and Figure 2).  In the case of healthy larynx, the 

ventricular band displays considerably less apparent vibration then the vocal folds. 

Abnormal vibration of the ventricular folds can be used as a sign of vocal cord 

disorder. It is often the case that with one vocal fold paralysed, the impaired 
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individual is able to utilise the ventricular band making it vibrate instead of the 

paralysed vocal fold.  

 

 
 

Figure 2. Human larynx. Please note the position of the ventricular bands, also 
known as vestibular folds. The image taken from (5). 

 

 

1.2. Data acquisition and processing 

 

1.2.1. Laryngoscopy 

Laryngoscopy is a method used for larynx examination. By using the optical system 

doctors are able to take a look inside the larynx and its parts including the glottis.  

 The very first known attempt to explore the human voice organ dates over 

150 years ago. In 1854 a vocal music teacher Manuel Garcia attempted to explore his 

own vocal cords using a dentist mirror and a small hand mirror. He published his 

observations in 1855 (6).  

Two years later, it was independently demonstrated by Viennese neurologist 

Truck and Prague physiologist Johann Nepomuk Czermak (amongst other things the 

inventor of medical reflector), that this technique can be successfully used in 
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medicine (6). The imaging techniques suitable for the investigation of human vocal 

organ made an enormous progress since then. 

Nowadays, the procedures used for larynx disease diagnosis in clinical 

practice are very complicated. They are usually based on the description of the 

patient's symptoms and empirical evaluations of the data obtained from instrumental 

and histological examinations. During the last two decades, many sophisticated 

imaging techniques have been developed allowing the accurate measurement of 

voice quality (7) (8). 

For example, a huge leap forward was made by the use of computed 

tomography (CT) and magnetic resonance imaging (MRI) techniques for the purpose 

of vocal cords examination. These techniques allow displaying areas of the vocal 

cords otherwise hidden from examination by a conventional endoscope, or 

visualising the depth of the potential tumour (9). Today, these methods are used 

primarily for the malignant tumour treatment and preoperative examination for an 

appropriate planning of surgery (10). 

 

1.2.2. Acquisition methods 

There are several techniques of capturing human vocal cords vibrations for 

assessment of their functionality, diseases or disorders. The most commonly used are 

the Videostroboscopy, High-speed videoendoscopy and the latest, Videokymography. 

Videostroboscopy 

Probably the most popular method for diagnosis of human vocal cords is the 

videostroboscopy. It uses endoscope connected to camera for accessing and visualise 

patient’s larynx. Videostroboscopy is a method of capturing still images in precisely 

determined moments to simulate the lower frequency video of vocal fold vibration 

(Figure 3). A high intensity xenon flash is used to substitute fast camera shutter. This 

way the videostroboscopy recording shows false slow motion video. This can be 

viewed by the doctor in real time, during the patient examination. This approach has 

some flaws coming from the method principles. The most unpleasant is the inability 

to capture any irregularities in the vibrations or vocal cords with aperiodic vibration. 

(1) 
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Figure 3. Principles of videostroboscopy: the strobe light flashes in precisely defined 
moments to capture the pseudo low frequency video. Image is taken from (1). 

 

High-speed videoendoscopy 

High-speed videoendoscopy is the ultimate method of recording the true 

whole-cycle video of human vocal cords vibrations. However, even this technique 

has its limitations and disadvantages. One of the limiting factors is the cost of the 

system and other is the amount of data it produces. The typical today’s high-speed 

camera system has up to 10,000 fps temporal resolution with spatial resolution up to 

800x600 pixels, true colour, or up to 30,000 monochromatic (1). It means that even 

very short Laryngologist session will necessarily result in tens or hundreds of 

Gigabytes of recorded data. As a result, the problems are not only the limits of 

storage capacity, but also the time for viewing and examination of the recordings. 

Although some algorithms for vibration characteristics extraction exist (11) (12), the 

doctors must always be able to confirm the algorithm findings. Because of these 

difficulties and because of the cost of the system, the high-speed videoendoscopy is 

not as widely spread. (1) 

 

1.2.3. Videokymography 

Videokymography (VKG) is the original Czech-Dutch method, developed in 

1994 in Groningen (NL) as an inexpensive alternative to high-speed video recording. 
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VKG is designed to record mechanical vibrations in visible spectrum. The method 

has been developed mainly in order to improve diagnosis of vocal cord vibration in 

Laryngology and Phoniatry (13). The system consists of specially adapted CCD 

camera, which is able to operate in two different modes - standard (50 fps - 

interlaced) or high frequency (7 812.5 lines per second). In high frequency mode, the 

system records images of a single horizontal line of the selected camera row and 

stacks them one above the other (14) (Figure 4). The method allows a quick and easy 

recording of both regular and irregular oscillations of the vocal cords. The reason 

behind this is that the frequency 7 812.5 frames / sec is sufficiently greater than the 

base frequency of vocal cords (about 70 to 1000 Hz). A variety of important 

characteristics of oscillations can be extracted from the recording, potentially 

revealing clues of physiological or pathological condition of the vocal cords. Many 

of these characteristics cannot be assessed using current widely available methods 

such as laryngoscopy or laryngostroboscopy. The camera system can also be used for 

recording and evaluation of vibration of musical instrument string or any random 

industrial equipment. Additionally, the system does not require nonstandard 

recording medium, and recording can be made for example on a commercially 

available standard VCR. This is reflected in low price of the system, which makes it 

most economical. An interesting fact is that this method was first deployed into 

clinical practice in 1996 in Prague (14).  

 

 
Figure 4. A VKG image example, displaing both the videokymographic camera 
modes of operation. The left part of the image shows the whole endoscope image 
with highlighted possition of the VKG scan line. The image on the right shows the 
actual VKG recordnig. 
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1.2.4. Digital image processing in larynges examination 

There are several digital image processing methods addressing the problem of 

vocal cords vibration characteristics extraction. Good progress has been done in 

dealing with the high-speed video recordings. The tool for visualisation of high-

speed video recordings was proposed by Deliyski (1) which helps to analyse the data. 

Another interesting method was proposed by Lohscheller (11) (12) for automatic 

high-speed video recordings evaluation by transforming the images to artificial 

coordinate system allowing better characteristics extraction.  

Some work has also been done in the field of automatic processing of VKG 

images. Method of mucosal wave quantification was proposed by Jiang (15), 

automatic vibration properties extraction method based on the image segmentation 

done by Qui (16) and similar approach was shown by Manfredi (17). But until now, 

no complex solution addressing the problem of extraction of all the most common 

vibratory features exists. This is mainly due to the fact, that automatic processing of 

videokymographic images is harder, mainly because of high level of noise, low 

contrast and poor overall quality of VKG images.   
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2. Objective 
One of the goals of laryngeal diagnostics is to find the relation between the 

healthiness of larynx, including the vocal folds, and the secondary vibrations of the 

ventricular bands, also known as the false vocal folds. For this purpose the need to 

automatically find and identify the ventricular band on a videokymographic 

recording have arisen. After the successful identification, the exact shape of the band 

needs to be determined for possible further processing and data extraction.  

In most of the cases, the VKG images are recordings of unhealthy larynx. As 

a result, the images can contain a great variety of shapes and artefacts not seen on 

any other picture. Each patient is different, so each image is an original. It is 

therefore highly desirable, that the result of any automatic extraction method is 

further assessed by professional laryngologist to confirm the finding.  

The main aim of this thesis is to propose a method of localising the 

ventricular band on the VKG recording image. The boundary of the ventricular band, 

which we are interested in, is usually recognised as a slightly darker contour adjacent 

to the middle region, where the vocal fold vibrates (Figure 5). The shape of this 

boundary can be used for further analysis of the vibratory features, such as base 

frequency, amplitude, moments, etc... 

 

 
Figure 5. Left and right ventricular band edges as shown on the VKG images. 
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3. Problem analysis 

3.1.  Videokymographic recording 

 

3.1.1. VKG image description 

Each of the videokymographic recordings (VKG images) shows several 

openings and closings of the glottis. Typical VKG image also shows 3 distinguish 

horizontal regions. On the sides of the image, there are areas with little apparent 

vibration (in the case of non-vibrating ventricular band) which show recordings of 

ventricular bands. The area in the middle part of the image shows the vibrating vocal 

folds with dark regions representing the glottis openings. The areas of interest are the 

ventricular band edges, seen as borders between these regions. These are usually 

represented by the more or less pronounced dark contours running from the top of 

the image to the bottom with no or little vibration (Figure 5).  

We can assume that in the middle of the image, where the vocal folds vibrate, 

the most of the information is contained, i.e. the scan line intensities vary in time due 

to the vocal folds motion. On the other hand, the sides of the image, representing the 

ventricular band are changing far less. 

Unfortunately there are several randomly occurring issues with the VKG 

images. One of them is low quality of the VKG images, i.e. low resolution and 

contrast, and high level of noise. The other is the fact, that the images often contain 

many imperfections, such as the light reflections, caused by the mucosal secretions, 

or the non-uniformity of the tissue colour. The tissue itself can contain pronounced 

blood vessel, which manifest itself by the darker contour on the VKG image 

sometimes mimicking the ventricular band itself.  

 

3.1.2. VKG image quality 

Typical VKG image is a gray-scale image of poor resolution with high level 

of noise. Unfortunately there is nothing that could be done to improve the resolution 

of the image, but the same does not hold for the noise. In all of the cases the image 

contains the Gaussian additive noise caused by both the lack of proper light condition 

of the scene, and the heat of the CCD sensor. The reason for this is that powerful 
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light source would cause extensive heating of the laryngeal cavity and could 

effectively burn the patient (10). There could be solution for the heating problem of 

the sensor, but it would affect the cost of the system greatly. Instead, the de-noising 

techniques must be performed prior to further image processing to remove the 

unwanted noise. From the available de-noising techniques I chose the well-known 

convolution with Gaussian filter for noise reduction task. The experiments have 

shown that amount of blur, caused by Gaussian filter, does not affect the efficiency 

of proposed method. Furthermore, the convolution with averaging filter has been 

selected for the task of VKG image imperfection suppression. Each of the de-noising 

methods contains adjustable parameters, which must be well tuned for the particular 

purpose or situation. Specific parameter values usually depend on the resolution of 

the image, the noise amount and other factors.  

 

3.1.3. VKG image issues 

The regions of ventricular band as well as the edge of the ventricular band can show 

specular highlights caused by the endoscope point light source reflections, in most of 

the cases produced by the mucosal secretions on the tissue. These are represented on 

VKG image by small and very bright spots, often repeating itself with the vibration 

frequency.  
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Figure 6. Examples of the unwanted mucus reflections. The reflections can be seen 
as very bright artefacts. 

 

Another artefact making the finding of the ventricular band edge difficult is 

caused by the presence of distinct blood vessel on the tissue sample. Such an 

occurrence causes the dark line running along whole of the image from top to bottom 

vibrating, or not, with the tissue itself. This can mislead the algorithm or even non-

trained human in the ventricular edge identification. 
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Figure 7. The blood vessel example. The dark line on the right from the glottis 

openings is created by vibrating vocal fold, which contains pronounced blood vessel. 

 

 
 

3.2. Digital image processing techniques 

In this chapter I will describe the methods I adapted for the use in the ventricular 

band detection algorithm. 

 

3.2.1. Image pre-processing 

Image pre-processing methods commonly serve as image enhancement 

techniques. The main role of such enhancements is to prepare the image for the main 

processing by operations designed to emphasize or suppress specific image feature, 

e.g. noise, contrast, edge information, colour, etc... For the purpose of this work the 

noise reduction and contrast enhancement methods need to be mentioned. 

The noise 

The noise that has to be dealt with in the VKG images pre-processing is the 

Gaussian additive noise. Mathematical model of additive noise is that the random 

value with the particular distribution is added to each and every pixel in the image. 
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For Gaussian noise the distribution is the Gauss normal distribution. This type of 

noise is typically caused by sensor heat. Because the noise is mostly pronounced in 

high frequencies, the noise reduction techniques are designed to diminish the high 

frequency information. Thus common attitude to this problem is to blur the image by 

the convolution with a specific kernel. There are several known and often used 

kernels such as the averaging kernel, Butterworth kernel or the Gaussian kernel 

(Equation 2). Convolution can also be looked upon as on the weighted sum with the 

weights determined by the kernel. The image is the 2D discrete function and the 2D 

discrete convolution takes for each pixel position its neighbourhood of size of the 

kernel and the pixel values are multiplied by the corresponding kernel value. Sum of 

these products are the resulting pixel values (Equation 1). 

 

Equation 1. Discrete 2D convolution: g(u,v)-convolution kernel; f(x,y)-original 
image; t-size of the kernel; k(x,y)-resulting image.  

 

𝑘(𝑥,𝑦) =  � � 𝑔(𝑢, 𝑣)𝑓(𝑥 − 𝑢, 𝑦 − 𝑣)

𝑡
2

𝑣=−𝑡2

𝑡
2

𝑢=−𝑡2

 

 

 

Equation 2. Gaussian function:  𝑔:ℝ → ℝ, where σ > 0 is the scale (also standard 
deviation in statistics) determining the width of the kernel; μ is the mean value. 

 

𝑔(𝑥) =
1

√2𝜋𝜎2
𝑒−

1
2�
𝑥−𝜇
𝜎 �

2

 

 

 

Image contrast enhancement 

Because the VKG images are often of low contrast I opted to use the 

histogram equalisation technique to deal with the issue. The histogram equalisation is 

process of levelling all the intensity values in such manner, that all of the intensity 

values are evenly distributed in the image. It is a contrast adjustment technique done 

by first creating the histogram (which counts the pixels of each intensity level) and 

then transforming the image in such a way that the process makes the cumulative 
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histogram linear. I.e. darker regions of a dull image are darkened and lighter 

lightened.  

The process is derived from the theory of probability. The histogram of any 

given image can be looked upon as a probability density function (PDF), estimating 

the probability of occurrence of a pixel of particular intensity in the image. As a 

result, the cumulative distribution function (CDF) can be calculated, matching the 

cumulative histogram. The linearization of the CDF, we want to achieve, can be done 

by applying the cumulative distribution function as a transform function for each 

pixel intensity value (Figure 8). 

 

 
Figure 8. Image histogram equalisation: graphs show the histogram (blue) and the 
cumulative histogram (black) data of: left - an original VKG image; right - the same 
image after histogram equalisation. 

 
In this thesis, the aim of image pre-processing is to enhance the contrast of 

the ventricular band edge locally, so the low contrast edge can be more pronounced. 

The global histogram equalisation does not perform well on VKG image, because the 

image often contains very dark regions of glottal openings and very bright regions of 

the light source reflections at the same time. To achieve local contrast enhancement, 

Contrast Limited Adaptive Histogram Equalisation (CLAHE) is utilised.  

The adaptive histogram equalisation is similar to the regular histogram 

equalisation, but instead of histogram being computed globally for the whole image, 

it is calculated locally (Figure 9). For each pixel position histogram of pixel 

neighbourhood of given size is calculated and equalised. Every pixel is then 

transformed by the cumulative histogram computed from its neighbourhood. 

Adaptive histogram equalisation often leads to noise amplification. This can happen 

in the constant intensity regions with noise. In such a case, the noise contrast is 
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enhanced over the neighbourhood, resulting in the noise amplification. Contrast 

Limited Adaptive Histogram Equalisation (CLAHE) overcomes this by thresholding 

the histogram peaks, therefore limiting the local high contrast noise (18).  

 

 
Figure 9. Histogram Equalisation vs. Adaptive Histogram Equalisation comparison: 
left-original image; middle-result of the histogram equalisation; right: result of the 
adaptive histogram equalisation. O the right image the local details are more 
pronounced. 

   

 

3.2.2. Fourier transform 

The Fourier transform is a process used to extract the frequency and phase 

spectra from any integrable function. Generally, the argument of the Fourier 

transform is a complex-valued function, but typically, in most of the cases, a real-

valued function is used. The result of the transform is a complex-valued function, 

where a complex number describes the amplitude and phase of the corresponding 

frequency component (Equation 3). 
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Equation 3. Fourier transform in its 1D continuous form: For every real number k, 
and  𝑓:ℝ → ℂ  integrable function, the Fourier transform 𝐹:ℝ → ℂ  is defined as: 

 
 

𝐹(𝑘) = � 𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝑘𝑑𝑥
∞

−∞

 

 

 

Equation 4. Discrete 2D Fourier transform used in image processing: For resulting 
pixel coordinates k,l and f[m,n] being the original image of size M x N, the transform 
F is defined as: 
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In digital image processing, the original transform is adapted into a two-

dimensional discrete version (Equation 4). Data contained in the Fourier frequency 

spectrum can be used to identify not only the frequency amplitudes of the two-

dimensional signal, but also the direction of edges in the image. Because the image is 

in fact two-dimensional signal, the bases used in 2D Fourier transform correspond to 

2D complex sinusoidal functions. The tilt angle of the particular basis corresponds to 

the tilt angle of the same basis response in the frequency domain. In that sense, the 

response in the Fourier frequency domain is orthogonal to the corresponding edge in 

the spatial domain (Figure 10). 
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Figure 10. Fourier frequency spectrum: left image shows the original image; right 
image shows the Fourier frequency domain with centre of coordinate system in the 
middle. Note that the frequency response is orthogonal to the edges in the picture. 

 
 

3.2.3. Graph shortest path algorithm 

For the ventricular band shape determination I needed to find an algorithm, 

which would best find the contour with certain properties on given image. The 

properties of ventricular band edge are: the contour is slightly darker than its local 

surrounding; its intensity does not vary greatly along its path (in most of the cases); 

the knowledge of the approximate position can be extracted; the prevailing direction 

of the edge is horizontal; and the contour is an image long edge running from the top 

to the bottom of the image. After the extensive search, I decided to adapt the shortest 

path algorithm for this task. 

Finding the shortest path in a graph is a problem belonging to the energy 

minimisation problems family (20). There are many algorithms used to find the 

optimal solution. The most popular algorithm is probably the Dijkstra’s algorithm. 

Dijkstra’s algorithm is based on the breadth-first search and is able to find the 

shortest path between the source and target for the given weighted graph in 

polynomial time.  

In the image processing, Christina Gunkel et al. had shown the usefulness of 

this approach (21). In the publication they proposed a method of detection of micro 

cracks on a microscope image. First, they identify the crack clusters, and next, they 

extract the shapes of the cracks by computing the shortest path in the clusters by 

Dijkstra’s algorithm.  
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4. Solution 

4.1. Methods development 

In order to find the solution to the problem, a set of methods was selected on 

the basis of extensive literature search and many experiments. I would like to 

mention few otherwise useful methods, which have proven to be non-effective for 

this kind of application.  

 

4.1.1. Image pre-processing 

Commonly used de-noising filter is the Gaussian filter. After some 

experiments I decided not to use it for the ventricular band position extraction. 

Instead, I recognised the averaging filter to be more suitable for this task. The reason 

was that the averaging filter has better results in reduction of small unwanted image 

features. I still use the Gaussian filter for noise reduction in the image designated for 

the computation of graph weights for shortest path search. 

I have also considered altering the pixel intensity distribution prior to the 

processing by applying the logarithm or exponential operator. Those transformations 

have not shown any improvement in the later ventricular band detection.  

 

4.1.2. The edge detectors 

In my thesis I have tried several edge detecting techniques for the purpose of 

the ventricular band position extraction. I will mention the Canny edge detector, 

horizontal Sobel edge detector, convolution with Laplacian of Gaussian kernel (22) 

or the Active model contours algorithm (23). The main reason the edge detecting 

methods have failed lies in the diversity of the VKG recordings. Many of the images 

contain great number of false edges, caused by the non-uniformity of tissue colour, 

or reflections of endoscope light. Other reason is that many of the actual ventricular 

bands do not create good edges, or the edges they create are much less pronounced 

then other edges in the image (Figure 11). 
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Figure 11. Result of Canny edge detector. The ventricular band is much less 

pronounced edge than the edges created by glottal waves and glottal openings. 

 

4.1.3. Central region information assessment 

 In order to determine the position and size of the middle region of the VKG 

image with the vocal folds vibrations, I have tested several methods designed to 

estimate the amount of information in picture column.  

First, I have tried the statistical approach in form of column variance. The 

values of resulting variances create the 1D function which domain is the spatial 

dimension (x-axis) of the VKG image. Such a function has the desired properties, i.e. 

in the region of vocal fold vibrations has usually its maximum, and in most of the 

cases, the variance values outside the vocal fold central region are below the function 

mean value. Unfortunately this approach has proven to be sensitive to noise and 

VKG image artefacts, such as reflections or tissue impurities. It is also sensitive to 

occurrence of columns with very low variance in region of the vibrating vocal fold 

(Figure 12). This can be partially solved by calculating variance of several columns 

together. But this approach fails to accurately differentiate the middle region from 

the rest of the image. The ventricular band is often represented by an edge, which 

cannot be distinguished from other edges in the image by using variance information 
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only. The reason is because the variance approach does not contain the information 

about the edges’ directions.     

I have also attempted to use the described variance as a weighted addition to 

the column sums or to the Fourier energy estimation method. Those procedures have 

shown partial improvements in most of the cases, but consequently caused 

unpredictable results in other.  

Additionally I have considered using the column entropy calculation in 

similar manner as in case of the variance. This method showed the same issues as the 

variance extraction approach. 

Finally the Fourier amplitude energy summation has been established as the 

most robust method. This technique does not operate with columns separately, but 

rather takes small region into consideration. Therefore it is not sensitive to local 

features mentioned above. As a result, the Fourier energy estimation has been used in 

the proposed method.  

 
Figure 12. Image segment and corresponding graph of column variations. Note, the 

local minima in the region with vocal fold vibrations. 

 

4.1.4. Global minimum 

Another two approaches, which has been tested and failed, work with column 

sums of the image. Column sums form a function of overall column intensity (Figure 

13). The tested methods for the column sums function were finding the global 
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minimum or the first minimum for the relevant part of the image, starting from the 

position of maximum glottal opening outwards. This approach has been surprisingly 

successful in most of the cases, but was not robust enough for the obvious reasons, 

i.e. mainly because the assumption of the searched edge being the darkest or first 

respectively, did not have to be true for all the images.   

 
Figure 13. Column summation forms a graph, which is used to assess the overall 

column intensity. 
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4.2. Actual method description 

4.2.1. Assumptions 

For successful ventricular band position detection several assumptions must 

be made in order to create the unified problem model. Without the assumptions, the 

task itself would be a task of image understanding and interpretation belonging to the 

field of image semantics, rather than a field of digital image processing. The 

assumptions were stated on the basis of VKG image examinations as well as 

consultations with the experts. See Figure 5 for the ventricular band edge position 

examples. 

First of the assumptions made is that the vocal folds vibrate, and are situated 

in the middle part of the VKG image. This part of the image lies in between the two 

ventricular bands, which are to be identified. 

Second assumption is that the ventricular band is a tissue with much less 

apparent vibrations on the outer parts of the image.  

Third, the ventricular band border, which is to be detected, is at least slightly 

darker edge, situated in between the vocal fold and the ventricular band. 

For illustration please see Figure 14. 

  

 
Figure 14. Problem assumptions: e-darker ventricular band edge; c-vibrating vocal 

folds in the middle; v-ventricular band with very little vibrations. 

e 

v 

c 
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4.2.2. Phases 

Based upon the assumptions stated above the proposed method can find the 

position of the ventricular band by identifying the borders of middle region with the 

vibration vocal folds. This is achieved by extracting the amount of edge information 

from each part of the image and estimating where it changes to the region with 

considerably less edge information. Then, the darker edge in vicinity is found, and 

finally the exact shape of the edge is extracted. 

 

The method can be divided into following phases: 

1. Divide the VKG image into parts, each approximately one glottal cycle 

long. Every part is processed separately, and the resulting position of the 

ventricular band is determined as a median value of the results.  

2. Image part enhancement – de-noising and adaptive histogram 

equalisation. 

3. For each of the VKG image part compute the most probable position of 

the ventricular band.  

4. Use the modified shortest path algorithm to assess the shape of the whole 

ventricular band edge.  

 

4.3. Image divisions 

First, the image is automatically divided into several parts, each roughly one 

glottal period long. The reason for ventricular band per image part computation is 

that the image can be slightly tilted due to the endoscope movement. In smaller parts 

is the endoscope shift negligible. The parts should not be too small, so the edge 

information is preserved. For these reasons, the ideal size of one part has been 

determined as one glottal cycle long. 

The size is calculated from the segmented image of glottal openings. First, the 

segmentation is inverted, so the zero values signify the glottal opening, and 

afterwards the row sums are calculated. In this way, the 1D graph of the opening row 

width is calculated. Next, the smoothing of the resulting curve is performed and the 
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minima of the graph are found by the use of the first and the second derivative of the 

glottal openings width graph. Some of these minima are then used as the starting 

points of each image part. In cases of some vocal disorders, more than one local 

opening minimum per cycle can be found. Therefore the suggested divisions are 

selected in such a way, that resulting image part height lies within pre-determined 

minimum and maximum values. But in general case the divisions correspond to the 

glottal cycle length (Figure 15).  

 
Figure 15. Example of image divisions for the processing (right) extracted from the 

row sums (middle) of the segmentation image (left). 

 

4.4. Image pre-processing 

To each part of the VKG image the adaptive histogram equalisation 

(CLAHE) is applied to enhance the local contrast of the ventricular band boundary 

(Figure 16). Next, the two-dimensional convolution with averaging filter kernel is 

performed. This makes the following computation techniques less prone to local 

imperfections and the image noise. After these transformations, the image is prepared 

for the ventricular band position extraction.  
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Figure 16.Adaptive histogram equalisation. On the left: original image; on the right: 

the enhanced image. 

 
 

4.5. Ventricular band position determination 

Based upon the assumptions, the pre-processed image is enhanced in such a 

way, that the distinctive middle region with the vibrating vocal folds should be 

enclosed between two moderately pronounced darker borders. These borders indicate 

the position of the ventricular band. It is not always so, but in most of the cases the 

assumption described above stands true. The middle region contains the information 

about the vocal fold vibration, within which majority of non-vertical edges can be 

found. The edges in this image region are in most of the cases related to the opening 

or closing of the vocal folds, e.g. the glottal wave, vocal folds, etc... To extract the 

non-vertical edge information from the image, the two-dimensional discrete Fourier 

transform is used. Furthermore, the areas of each the left and the right part of the 

image designated for the use by shortest path algorithm are established. Those are 

specified by inner and outer borders and serve as bases for the graphs creation.  

Both the ventricular band position and the shortest path algorithm boundaries 

are found in following steps: 
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1) Fourier energy distribution is calculated for the given part of the image 

and the middle region containing vocal folds vibration is estimated. 

2) Next, the position of the ventricular bands is determined. 

3) The boundaries of the left and right image regions are established, to be 

used later in the shortest path algorithm.     

 

4.5.1. Fourier transform 

For each starting position of the whole width of the image part, 2D Fourier 

transform of the window of pre-determined size was calculated. So the Fourier 

frequency domain contains the information about the edges in given window, 

together with the information about the directions of the edges. The assumption is, 

that in the image region corresponding to the vocal fold vibrations, many non-

vertical and non-horizontal edges can be found. This very information is contained in 

the Fourier frequency spectrum and can be extracted. From the Fourier frequency 

domain the particular regions indicating the non-vertical and non-horizontal edges 

are taken into consideration, and the energies in these parts are summed. The vertical 

and horizontal responses are caused by discontinuities in the image borders, and 

therefore are omitted. Please see the illustration in Figure 18.  

Next, the array consisting of the resulting sums of energies for each VKG 

spatial position (x-axis) is created. This array can be considered a function of lateral 

position, returning the value proportional to the amount of oblique edges contained in 

the image region corresponding to the neighbourhood of given position (Figure 17). 

 

 
Figure 17. Fourier transform of the given image portion. 
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Figure 18. Illustration of the Fourier spectrum energy considered in energy 

summation. 

 

4.5.2. Inner boundaries 

After the successful Fourier energy sums computation, the rest of the 

extraction process occurs only for the relevant left or right side of the image segment. 

The left and right part’s inner boundaries are defined by the corresponding glottal 

opening maxima.  

To accomplish that, the space coordinate (x-coordinate) of the opening 

maximum, relevant for the particular part of the image, is extracted from the images 

with segmented glottal openings mentioned earlier. This is achieved by the column 

sum of the segmentation image part and searching for the first and last non-zero 

value. The extracted opening extremes are then used as the starting points for the 

ventricular band search, forming the inner boundaries of the left and the right part of 

the image at the same time.  

4.5.3. Ventricular edge 

Next, the mean values of the Fourier diagonal energies sums are calculated 

for each left and right parts of the image segment. For the given side, the first energy 

value, lower than the mean, is found. This value represents the loss of the Fourier 

diagonal energy in the particular part of the image, therefore the absence of oblique 

edges. It basically stands for the border of the region with pronounced vibration, in 
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this case the vocal fold vibration. Such a boundary is a potential candidate for the 

ventricular band edge.  

Because in most of the cases (as assumed) the ventricular band edge is a bit 

darker than its surroundings, the search of the nearest minimum follows. First, the 

pixel intensities are summed along the spatial axis, forming one dimensional graph 

(Figure 13). The search for the local minimum is performed by the use of the first 

derivative of the graph. Next, the zero value of the first derivative is found and the 

second derivative of the same graph is used for the minimum determination. Such an 

established minimum of the column sums is used as the ventricular band 

approximate position. The position must be further refined by the use of the shortest 

path algorithm described below. 

4.5.4. Outer boundaries 

Further, the next local maximum of the column sum is calculated, starting 

from the ventricular band position outwards, to determine the outer border of the 

image crop, which will be used in the shortest path algorithm later. Finding this 

border in such a way is a result of the observation that the ventricular band tissue is 

generally of a round shape, forming a ‘hill’ brighter atop, due to the nature of the 

ventricular band illumination properties. The necessity of setting the image crop 

region for the further processing derives from the fact, that some of the images have 

dark edges, which could trick the shortest path algorithm. 

 

4.6. Graph shortest path algorithm modification  

In the previous section I described the algorithm for the ventricular edge 

position estimation for every segment of the image. Now, the exact shape of the 

ventricular band edge needs to be established. According to the assumption, the 

ventricular band edge is present in a form of darker edge along the whole picture. 

The problem of following the darker edge along the image running from the top row 

to the bottom is converted to the optimisation problem of finding the shortest path in 

the graph. The edge lengths or weights correspond to the pixel intensities and 

represent the energy to be minimised.  

The graph is constructed as an 8-connected neighbourhood for every pixel 

position. The weights of the graph edges are derived from the corresponding pixel 
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intensity value. These weights are adjusted in such a way, that the prevailing 

direction of the path should be vertical, then diagonal and the least probable direction 

is horizontal.  

The algorithm used for the path computation is the Dijkstra’s shortest path 

algorithm. Prior to the processing, the pixel intensities are normalised. Next, the 

sparse 8 neighbourhood adjacency matrix is constructed using the established edge 

values. The size of the image used as a graph base is determined by the borders 

calculated in previous phase. The source and target for the shortest path is the top 

and bottom point of the image part respectively, where the space coordinate is 

calculated from all of the ventricular band positions extracted in the previous step of 

the process. To dismiss the outliers, the median of these positions is used (Figure 19).  

The resulting vertices form a line, which corresponds to the connection of the 

source and target points having the minimum energy. For the path to best fit the 

shape of the ventricular band, the algorithm is executed two times. For the second 

time, the starting and ending point spatial coordinate is set as the mean value of 

coordinates of all the first computation resulting line pixels. This forces the path to 

settle best to the intensity ‘valley’ (Figure 19). 
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Figure 19. Results of ventricular band position estimation per image segment (yellow 
lines) together with the resulting ventricular band shape as calculated by the shortest 
path algorithm (blue lines). 

  
 

4.7. Output 

The data returned from the algorithm described above are the resulting 

ventricular band lines, both left and right, in the form of the line pixel coordinates. 

Such a representation is suitable for easy line visualisation by any common 

programming interface or language to create a visual result to be evaluated by an 

expert (Figure 20). The resulting data can also be easily used for further calculations 

and characteristics extraction. 
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Figure 20. Example of the resulting ventricular band shapes (yellow lines). 
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5. Results 
In this section the resulting performance of the algorithm can be found. The 

method was tested on a dataset, which has been also evaluated by an expert for 

comparison. 

 

5.1. Data 

The method performance was evaluated on set of 100 ventricular band 

instances contained in 50 original images of diseased vocal cords, together with the 

glottal openings segmentations of these images. The output of the method - the 

detected ventricular band – was outlined by yellow colour in the images for the 

visual evaluation of the algorithm performance. The localized ventricular band 

positions were compared to the manual detection done by an expert and the success 

rate of the method was established. 

 

5.1.1. VKG images 

The original VKG dataset has been provided by Jan G. Švec. It contains a set 

of 50 images of unhealthy vocal cord vibrations representing various vocal cord 

diseases.  

 

5.1.2. Pre-segmented dataset 

The dataset of VKG images has been segmented by means of the algorithm described 

in Sedlář’s doctoral thesis (24), which is based on the Hauzar’s algorithm for VKG 

segmentation (3). The program used for the images segmentation was implemented 

by Adam Novozamský (25). As a result of the segmentation algorithm black and 

white images were obtained, with intensity values of 0 for the glottis opening and 

255 for the rest of the image (Figure 21). These images are used as a base for the 

glottal cycle lengths and amplitudes computation. The segmentation method is based 

on sophisticated thresholding by the use of modified graph-cut algorithm. The 

method itself is not a part of this thesis and therefore it will not be described in detail. 
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Figure 21. Segmented glottal openings example. 

 

5.2. Outcome 

In many of the cases the exact shape of the ventricular band cannot be 

determined with the pixel precision, even by experts. This prevents the accurate 

measurement of the detected shape variation. For this reason I decided to create six 

categories of the resulting algorithm performance and divide the results to those, with 

the help of an expert opinion. Christian T. Herbst, Austrian vocal scientist, Head of 

the Laboratory of Bioacoustics, has been very helpful in examining the same set of 

50 images and determining the position of the ventricular band manually.  

Table 1 shows the summary of the comparison of his results with the results 

of the proposed method.  

• ‘Precise results’ are the algorithm results, which cannot be distinguished 

from expert assessment.  

• ‘Slightly off’ are the results, where the ventricular band position was 

successfully determined in most of the cases, though the exact shape contains 

some errors. These are often caused by the fact, that the input image does not 

hold to one of the assumptions, e.g. the ventricular band is not darker than 

surroundings, or does not form an edge, etc...  
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• ‘Algorithm failed’ category contains the cases, in which the algorithm was 

unable to determine the position of the ventricular band.  

• ‘Fundamentally hard’ category contains the cases, in which the ventricular 

band cannot be successfully recognised, even by an expert.  

• ‘Ventricular band missing’ counts the cases in which the ventricular band is 

not present on the image.  

• ‘Uncertain’ category contains the cases in which the expert is unable to 

pinpoint the position of the ventricular band. 

 

Table 1. The results table contains number of images for each of the category of 
algorithm performance. 

Category Counts of cases 

Precise results 81 

Slightly off 12 

Algorithm failed 1 

Fundamentally hard 2 

Ventricular band missing 3 

Uncertain 1 

 

This results show, that from all of the images, even the worst ones, the 

algorithm was not able to successfully determine the position of ventricular band in 

3% of the cases and in 12% of the cases the exact shape of the ventricular band 

extraction failed. On the other hand the algorithm performed well on 81% of the 

cases and in 4% of the cases the positions of ventricular bands are undeterminable or 

not present in the image.  
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5.3. Result examples 

In this section a few result examples are shown to illustrate the functionality 

and weak spots of the proposed method.  

 

 
Figure 22. Examples of good results (yellow): Images on the left are the original 

VKG images. Right images show results of the proposed method. 
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Figure 22 shows examples of good results with both ventricular bands correctly 

detected, in conformity with the expert’s findings. These are the images, which hold 

the assumptions, so the ventricular band position can be easily extracted and the 

shortest path algorithm has no problem following the ventricular band darker edge. 

The available dataset, used for testing, constituted of more than 80% of such 

ventricular band instances. 

Another example (Figure 23) shows the case of one ventricular band 

completely missing from the image. The left side ventricular band was recognised 

successfully, but the algorithm was confused by the right side missing ventricular 

band. 

 

 
 

Figure 23. An example of image with missing ventricular band (on the right side of 
the image): The left image is original image; the right shows the results (yellow).  
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Next example (Figure 24) shows the case, in which the algorithm was mislead 

by complicated image. In this instance the left side ventricular band is vibrating in 

such a way, that it creates waves manifesting itself on a VKG image by pattern very 

similar to the vocal fold glottal wave. This led to false determination of the vocal 

fold region and caused the calculated position to be shifted outwards (right image). 

The correct location of the left side ventricular band is possible by good image 

understanding and interpretation. Consequently, it is a hard task for the digital image 

processing techniques.  

 

 

 
 

Figure 24. An example of image containing ventricular band, which position is 
difficult to determine (left). The method is tricked by edges on the ventricular band 

(left). The correct position is denoted by arrows. Image on the left is an original 
image, algorithm results (yellow) are illustrated on the right. 
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In the example, depicted by the Figure 25, the case of imprecise position of 

ventricular band is shown. In such a case the general position of the ventricular band 

is correctly calculated, but the shortest path algorithm failed to determine the shape 

of the band edge, because its exact location is unclear. 

 

 
 
Figure 25. An example of ventricular band with imprecise position: left image shows 

original image; right show the result of the method (yellow).  
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 The last example (Figure 26) illustrates the cases, in which the position of the 

ventricular band proximity is correctly determined, but the shortest path algorithm 

failed to ‘settle’ into the ventricular band edge. The problems here are caused by the 

endoscope light reflections, which makes the lowest energy solution, the ‘darkest 

path’, to be slightly off the correct position. 

  
 

 
 

Figure 26. A typical case of ventricular band (left side) position being correctly 
estimated by Fourier energy computation (magenta), but the shortest path algorithm 

(yellow) being confused by the endoscope light reflections: left - original image; 
right - the result illustration 
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6. Conclusion and future development 
 

The main goal of this thesis was to lessen the burden of the time-consuming 

image examination on the laryngologists by the task automation and the searched 

result suggestions. This goal was achieved by the presented method, which is able to 

determine the position and shape of the ventricular band on most of the 

videokymographic images. Although, by its nature, the algorithm cannot cope with 

the images fundamentally hard, because they do not meet the assumptions described 

above, such images are rare. They are often the recordings of very unhealthy vocal 

cords, where even manual recognition attempted by an expert is very difficult, 

confusing and sometimes nearly impossible. The task has proven to be on the edge of 

automatic image processing and it often crosses the border of image understanding 

and interpretation. 

This method will become a part of an automatic VKG image processing 

algorithms family, which are now being developed in the Institute of Information 

Theory and Automation of the Academy of Sciences of the Czech Republic. 

Together, they will form a standalone application, which is aimed to be deployed to 

the clinical practice in the near future. 

As a next step in the development the extracted data can be further processed, 

e.g. for the ventricular band characteristics extraction. This could include the band 

oscillation amplitude, frequency, phase, if present. Furthermore, additional 

information can be added to the method by extracting information about the vocal 

folds structure from the whole endoscope image, as seen in Figure 4. 

 

Summary: 

- I have developed the first method addressing the problem of locating the 

ventricular band on the VKG image. 

- This method has been chosen on the basis of extensive literature search and 

many experiments with other approaches, for example variance, global 

minima and several edge detecting techniques. As a result of this research I 

have decided to use the Fourier energy extraction for image middle region 

localisation, leading to the ventricular band position estimation, and the 

shortest path algorithm for its shape extraction. 
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- The applicability of the proposed method has been verified on 100 

ventricular band images of unhealthy human vocal folds with variety of 

diseases. Given set of images was independently examined by an expert for 

comparison and algorithm performance assessment. As a result, more than 

90% of the ventricular band instances were successfully localised and in 

more than 80% its shape was precisely extracted.  
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Epilogue 
 

It is my utmost believe that my work will lead to better understanding of the 

human vocal cord problematic and diagnosis, mainly because this organ, along many 

others in the human body, is susceptible to malignant tumours, where the early 

diagnostic is crucial for successful treatment.  
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List of Tables 
Table 1. The results table contains number of images for each of the category of 
algorithm performance. 
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List of Abbreviations  
 
CCD Charged Coupled Device is electronic component for capturing image.  

CDF Cumulative Distribution Function is a statistical function, which 

describes the probability, that the random variable will be found at a 

value less than input value. 

CLAHE The Contrast Limited Adaptive Histogram Equalisation is a modified 

adaptive histogram equalisation technique designed for local contras 

enhancement of images with the noise. (18) 

CT Computed Tomography is a radiological method which is using x-rays 

for visualisation of inner parts of human body.  

MRI Magnetic resonance imaging is a method that uses strong magnetic fields 

and electromagnetic waves with high frequency to examine the internal 

organs of human body. 

VCR Videocassette Recorder is a device for capturing the video and audio 

signals to an analogue tape. 

VKG Videokymogram/videokymographic – the method of capturing vocal fold 

vibrations by CCD camera converted to a line scanner. 
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Attachment 1 

CD content 

The CD attached to the thesis contains the following files and folders: 

 

- Documentation/Master Thesis.pdf ... computer version of this document 

- Program/ .    ... the method implementation in Matlab 

- Input/Images/    ... the source images dataset 

- Input/Masks/    ... the pre-segmented set of glottal masks 

- Results     ... resulting set of images  
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Attachment 2 

Program documentation 

 

Program distribution 

 
The program is distributed in form of source code files, a set of input images 

and a set of pre-segmented images of glottal openings of corresponding input image. 

These data are necessary for the program execution. 

 

System requirements 

The program is running under Matlab r2009b (26) environment, with the 

Image Processing toolbox. 

 

Installation 

The program can be installed by copying the source folders to any chosen 

folder on the target machine. The folders necessary for the program execution are: 

Program folder containing the source code; Input folder containing the input data 

sets. 

 

 

Program execution 

 
To execute the program successfully, Matlab environment must be running and 

the working directory must be set to the target folder containing the source files 

(Program/). The program can be executed from Matlab prompt by one of the 

following commands: 

- Extract()...executes the processing of single VKG image 

- RunAll()...executes the processing of all the VKG images in the Input folder 
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Syntax: 

$result = Extract([image_name]) 

$result = Extract([image_name], dir) 

$result = Extract([image_name], dir, debug) 

 

$RunAll() 

$RunAll(x) 

$RunAll(x, dir) 

$RunAll(x, dir, debug) 

 

Where :  

- result is a 4 vector consisting of 4 numbers : [ yr, xr, yl, xl ]. Those 

are coordinates of pixels representing the ventricular band. 

o yr, xr: y-coordinates of right ventricular band, x-coordinates 

respectively and  

o yl, xl: y-coordinates of left ventricular band, x-coordinates 

respectively 

- image_name is a name of image to be processed, without extension (.jpg 

assumed); example: VKG-005 

- dir is a optional subfolder, where the results will be stored 

- debug is an optional logical variable, which, if set to true, forces the program to 

run in debug mode 

- x is an optional sequence number of the 1st picture to be processed by 

RunAll(), example : RunAll(4) will process images in the Input folder, 

starting from the 4th file in alphabetical order onwards 
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Attachment 3 

Program architecture 

 
 

The program consists of several Matlab function files. All of the files are 

contained in Program folder. In Program/shortestpath folder the fast implementation 

of Dijkstra’s shortest path by David Gleich (27) is included. 

 

• DisplayGraph.m  - Utility for displaying graph data – used in debug mode 

• Extract.m  - Divides the image to parts, on each part runs ExtractPart 

• ExtractPart.m  - Extracts the ventricular band position from image part 

• FindLocalMax.m  - Finds the local maximum of 1D function 

• FindLocalMin.m  - Finds the local minimum of 1D function 

• GetFEnergyDist.m  - Computes the distribution of Fourier energy of 

oblique edges 

• GetOpenings.m  - Computes the glottal opening left and right maxima 

• GetStarts.m  - Computes the image parts starting coordinates 

• GetVentricularBand.m  - Ventricular band shape approximation using 

Dijkstra’s shortest path algorithm 

• Preprocess.m  - Image preprocessing: denoising and contrast enhancement 

• RunAll.m  - Runs all the images in Input folder 

• ShowPos.m  - Utility for debug displaying given values in graph 
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Program dataflow 

 
 

 


	Preface / Foreword
	1. Introduction
	1.1. Human vocal cords
	1.1.1. Description and physiology 
	1.1.2. Glottal cycle
	1.1.3. Ventricular band

	1.2. Data acquisition and processing
	1.2.1. Laryngoscopy
	1.2.2. Acquisition methods
	Videostroboscopy
	High-speed videoendoscopy

	1.2.3. Videokymography
	Digital image processing in larynges examination


	2. Objective
	3. Problem analysis
	3.1.  Videokymographic recording
	3.1.1. VKG image description
	3.1.2. VKG image quality
	3.1.3. VKG image issues

	3.2. Digital image processing techniques
	3.2.1. Image pre-processing
	The noise
	Image contrast enhancement

	3.2.2. Fourier transform
	3.2.3. Graph shortest path algorithm


	4. Solution
	4.1. Methods development
	4.1.1. Image pre-processing
	4.1.2. The edge detectors
	4.1.3. Central region information assessment
	4.1.4. Global minimum

	4.2. Actual method description
	4.2.1. Assumptions
	4.2.2. Phases

	4.3. Image divisions
	4.4. Image pre-processing
	4.5. Ventricular band position determination
	4.5.1. Fourier transform
	4.5.2. Inner boundaries
	4.5.3. Ventricular edge
	4.5.4. Outer boundaries

	4.6. Graph shortest path algorithm modification 
	4.7. Output
	////

	5. Results
	5.1. Data
	5.1.1. VKG images
	5.1.2. Pre-segmented dataset

	5.2. Outcome
	5.3. Result examples
	//
	//

	6. Conclusion and future development
	Epilogue
	Bibliography
	Attachment 1
	CD content

	Attachment 2
	Program documentation
	Program distribution
	System requirements
	Installation

	Program execution


	Attachment 3
	Program architecture
	Program dataflow



