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Abstract

This thesis investigate empirical performance of three portfolio selection and

covariance matrix models. The goal is to find a strategy that outperform

equally weighted portfolio in the long run and survives even in times of finan-

cial distress. Two models based on Markowitz approach absolutely failed in

this context, however the last approach based on network analysis indeed out-

perform the market even after risk adjustment of returns. Moreover this model

have sparse transaction matrix throughout time, therefore exhibit excellent

properties even in the presence of transaction costs. Results for network based

portfolio were obtained from running a back test on 160 member companies of

S&P 500 index for 6’000 trading days.
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Abstrakt

Tato bakalářská práce zkoumá historické výsledky tř́ı př́ıstup̊u k výběru port-

folia a modelováńı kovariančńıch matic. Ćılem této práce je nalézt takovou

strategii pro výběr portfolia, která svými výsledky překoná rovnoměrně vážené

portfolio v dlouhém obdob́ı a vykazuje určitou stabilitu i během krize. Dva

z model̊u, které jsou založené na Markowitzově př́ıstupu k optimalizaci port-

folia nedosahuj́ı těchto vlastnost́ı a jsou silně podpr̊uměrné, zat́ımco portfo-

lio založené na network analýze překonává to rovnoměrně vážené ve smyslu

rizikově očǐstěných výnos̊u. Nav́ıc tento model je velice úsporný i z hlediska

transakčńıch náklad̊u a jeho výsledky jsou testovány na 160 akcíıch z indexu

S&P 500, pro 6’000 obchodńıch dńı.
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Chapter 1

Introduction

This bachelor thesis compare performance of three portfolio selection models,

namely Markowitz model, Markowitz model with penalization for transaction

costs and Minimum spanning tree based portfolio. Moreover all these mod-

els are calculated using three different approaches to stock returns covariance

matrix modeling. Throughout this work, performance of all models is com-

pared based on their stock picking abilities from set of 50 member companies

of S&P 500 index, where the models are reweighed daily for 2250 trading days.

Moreover the MST model is compared to performance of equally weighted port-

folio for 160 stocks and 6000 trading days with and without adjustments for

transaction costs.

The objective of this thesis is to find a portfolio selection model that out-

performs equally weighted portfolio, have limited exposure to risk of individual

stocks, is feasible with reasonably low amount of transactions and requires

holding of only small set of stocks. Method with such properties is highly rel-

evant for managers of small investment funds, or high net worth individuals,

since it is well diversified and requires only limited amount of wealth, while the

transactions does not eat up all the investments.

The thesis is structured as follows: Chapter 2 describe general covariance

matrix estimators and gives theoretical justification of their use for the pur-

pose of estimating population logarithmic stock returns covariance matrix. In

chapter 3 the construction and logic behind each portfolio selection model is

described. Chapter 4 presents the empirical findings for each model and com-

pare all the methods based on their historical performance. Finally chapter 5

summarizes our findings.



Chapter 2

Volatility and mean modeling

As Markowitz states in his paper (1) the process of selecting a portfolio can be

divided into two stages, the first starts with examination of historical behavior

of stock prices and ends with making forecasts of their future behavior based on

historical experience. The second stage starts where the first one ends taking

predictions from the first stage and ends with a choice of optimal portfolio.

This chapter is devoted to the first stage of finding feasible predictors of

relevant parameters used in the second stage of portfolio selection. Considering

relevant parameters there are two major notions in the modern concept of

portfolio optimization and these are risk and return. The concept of risk and

return modeling are topics covered in this chapter.

Last comment concerns the terms and approaches used in this chapter. The

models tend to be vague relying a lot on intuition rather than exact scientific

based approach. Unfortunately there is no way around this since prediction of

future behavior of such a complex system as stock market have to rely on as-

sumptions whose validity sometimes cannot be verified even ex-post. Therefore

the most important feature of these models will be their historical performance

in the context of realized portfolio returns behavior, rather than their theoret-

ical validity, which cannot be assessed.

2.1 Volatility prediction

Optimal risk measure in the context of portfolio optimization is the one that

most precisely capture information about interdependence between returns on

assets included in the portfolio. However optimality is rather philosophical no-
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tion and this paper is more focused on finding suboptimal, but feasible solution

with most appealing properties for the filtering procedure.

Present section is devoted to investigation of the most popular approach

to risk modeling in the form of covariance matrices and the goal is to obtain

the most precise predictor for one step ahead portfolio returns volatility fore-

cast. Three models for volatility prediction will be defined and their properties

discussed.

2.1.1 Log returns time series behavior, short comment

First of all it is important to justify use of logarithmic returns rather than

ordinary rate of return for portfolio optimization. Even though the function

to be maximized in second stage of portfolio selection process (see section 3.1)

is reasonable to use only with ordinary returns, the logarithmic returns are

preferred because of authors belief that they can be predicted with higher pre-

cision, therefore being better input into optimization model, while the objective

function is ”approximately sensible”.1 Secondly since stock markets are far too

complex, no model for logarithmic stock returns time series behavior will be

presented. The predictors of volatility and expected returns will be rather

based on combination of intuition and a ”misuse” of results from mathemati-

cal statistics.2 Some assumptions about logarithmic stock returns time series,

however, were already made with the decision to use rolling window when es-

timating moments of logarithmic stock returns vector. One assumption is that

time series are not covariance stationary,3 but their behavior is of such nature,

that they can still be predicted with sufficient precision from historical data.4

1The goal is to maximize total returns of portfolio over the whole investment horizon,
but this is not accomplished by maximizing weighted sum of logarithmic returns at each
reweighing period (The objective function would have to be adjusted), however it at should
be approximately correct for small returns. This comes from relationship between logarithmic
and ordinary returns.

2The word misuse is used here to address the issue, that the statistics which will be
used as estimators in subsequent sections are very good under assumption of stationarity,
normality and infiniteness of sample as discussed later. However in this paper none of these
assumptions are made and these statistics are used only because it is assumed that they may
be good for modeling of stock behavior

3Otherwise the longest possible history would be used to predict their future behavior
4Otherwise there would be no sense in constructing estimators of their future development
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2.1.2 Sample covariance with equal weights

Usual approach for modeling interdependence between asset returns is by sam-

ple covariance matrix. This statistic is widely used due to its appealing prop-

erties under certain assumptions. Let Y ∈ M(N × ∆t)5 denote matrix of

logarithmic returns, then statistics m ∈M(N × 1) and S ∈M(N ×N) defined

as bellow are sample mean vector and covariance matrix of logarithmic stock

returns respectively:

m =
1

∆t
Y ∗ 1′

S =
1

∆t
Y

(
I− 1

∆t
11′
)

Y′

Where I ∈ M(∆t×∆t) is na identity matrix and 1 ∈ M(∆t× 1) is a column

vector of ones.

The rank of sample covariance matrix S has one important feature that is:

Rank(S) ≤ min{N,∆t−1}.6 Simply put this property mean that when length

of rolling window (minus 1) is lower than number of assets for which covariance

matrix is estimated, the matrix will suffer from rank deficiency. As noted in

(4) intuitive interpretation of this fact is that the data does not contain enough

information to estimate covariance matrix with sufficient precision.

Unfortunately this is not the only deficiency of sample covariance matrix.

As described in (7) other inefficiencies are:

• It is not robust to outliers

• It might be spurious if logarithmic returns on assets considered are de-

pendent on common factor. This is indeed an issue when stock returns

are considered and few extreme cases are described in (10) and several

popular business articles such is (7).7

• With logarithmic returns it might happen that population variances are

undefined since the probability of company liquidation without any resid-

5Index denoting time of the last observation of rolling window is omitted since the calcu-
lation of sample covariance matrix and mean are same for each time period. The length of
rolling window ∆t will always be 251 in this paper.

6The proof is given in Appendix A Theorem 1
7All of these articles are describing spurious correlations rather than covariances, however

for the purpose of this text the term spurious covariance between two variables will describe
a situation when these variables suffer from spurious correlation, which makes the two terms
interchangeable.



2. Volatility and mean modeling 5

ual claims left to shareholders might be positive (i.e. Positive probability

of stock price 0).

• It may not be the best measure of risk for fat tailed distributions. It is

of course perfect under assumption of multivariate normal distribution

which is fully determined by its mean and covariance. However this as-

sumption, even though often present in portfolio optimization literature,

is not supported by empirical evidence that rather tends to support the

proposition of heavy tailed and skewed stock returns probability density

function as noted in (8).

• It ignores the order of observations from which it is computed giving

equal weights to each observation in the sample. This may be a problem

for such a dynamic system as stock market where covariance stationarity

can be hardly assumed and where the most relevant informations might

be contained in the most recent observations.

Some of these inefficiencies are addressed in subsequent covariance models,

nevertheless even these are still far from perfect when used for modeling of

stock return covariances.

There are however several reasons for usage of sample covariance as a mea-

sure of risk. The most obvious one is that it have few appealing properties

in the process of portfolio optimization. As will be discussed in chapter 3 the

restriction on portfolio sample variance in the form:

w′Sw ≤ σmax (2.1)

Where w ∈M(N × 1) are weights assigned to each asset in portfolio, is convex

and quadratic constraint. This is an important property, since as described in

(9) chapter 4.4, constraint on expected variance of portfolio returns together

with other linear constraints on portfolio weights and portfolio expected mean

return as an objective functions forms a second order cone program (SOCP).

The most important is that constraint 2.1 meets the property of convexity,

since according to (9) chapter 1 there exists efficient and reliable algorithms

that can solve even very large8 convex problem.

Additionally under certain assumptions that will be briefly discussed in

8There is however not given any threshold defining what is considered to be ”very large”
convex problem.
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section 2.1.4 it can be proven that it is an consistent estimator of population

covariance matrix.

2.1.3 Exponentially weighted covariance

One way around some problems connected to usage of sample covariance matrix

with equal weights for predicting future joint movements of logarithmic stock

returns is to find a statistic that have more appealing empirical properties.

As is discussed in (10) one such statistic is exponentially smoothed weighted

correlation.9

The argument behind this approach is that it better captures dynamics of

stock market, since it puts higher weights10 to more recent observations. This

argument seems reasonable under assumption that population covariance ma-

trix of logarithmic returns is not stable in time and it is believed that more

recent information about behavior of logarithmic returns captures more impor-

tant information about their future development than do the older somehow

obsolete observations.

There are multiple ways how to define a rule by which the logarithmic

returns can be weighted based on their order, but there exist no rule by which

optimal weights could be found. This section is describing one of approaches

that is called exponential smoothing. The weights are based on work of Pozzi,

di Matteo and Aste (10), and are assigned to each observation of logarithmic

returns from the rolling window concerned based on the rule:

vl = v0 ∗ exp
(
l −∆t

θ

)
,∀l ∈ {1, ...,∆t} (2.2)

Where ∆t is length of rolling window, and θ denote a parameter whose optimal

value will be assigned based on several measures. The weights have to satisfy

a condition from which value of v0 can be uniquely expressed as a function of

θ:

∆t∑
l=1

vl = 1⇒ v0 =

1− exp
(
−1

θ

)
1− exp

(
−1

θ
∆t

)
From this condition and equation 2.2 it is obvious that for θ →∞ the weights

9Indeed the work is dedicated to correlation matrices rather than covariance matrices,
however since correlation is just covariance of variables that are scaled by their standard
deviation the results apply also for covariance matrices.

10Therefore higher importance
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are constant and vl =
1

∆t
,∀l ∈ {1, ...,∆t}.11 This is an important observation,

because it makes equally weighted covariance a special case of exponentially

smoothed covariance.

In the text weights will be usually expressed in vector form as v ∈M(∆t×
1), where v1,1 = v∆t, ...,v∆t,1 = v1. The exponentially weighted mean mexp and

covariance matrix Sexp are then computed from the following formula:

mexp = v′Y′

Sexp = (Y′ −Y)′[(Y′ −Y) ◦W]

Where,

Y =


v′Y′

v′Y′

...

v′Y′

 and W =
(
v,v, . . . ,v

)

Y ∈M(∆t×N), W ∈M(∆t×N) are matrices and operator ” ◦ ” denote

Hadamard product. Here it is necessary to add that the most recent observa-

tions of logarithmic returns are in the first row of matrix Y′ going down to the

last row, where the oldest observations from the rolling window are.

As stated at the beginning of this section there is a theoretical justification of

this approach, but more importantly there is also a lot of supporting empirical

research described in (10) that gives evidence for its superiority over equally

weighted correlations.

Pozzi, di Matteo and Aste present several measures of correlatin matrix

stability in their work (10) to show which correlation matrix and therefore

covariance matrix have more appealing properties. It was found that for 300

NYSE highly capitalized stocks between years 2001 and 200312 for the rolling

window of length ∆t = 251 the weighted correlation have following properties:

• It suffers from rank deficiency as is the case for sample correlation matrix

with equal weights.

• The condition number is at reasonable levels for θ ∈ [251/7, inf), meaning

that for these levels of θ covariance matrix is numerically stable.

• The matrix rank is maximal for θ ∈ [251/7, inf).

11The limit can be easily computed using basic limits theorems as the limit of composite
function theorem and the arithmetic limits laws defined in (5) chapter 3

12For more information about the data see (10)
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• The average eigenvalues can be considered high for θ ∈ [251/7, inf), mean-

ing that there is little noise and less linear dependency between matrix

rows and columns (After reduction of matrix into row echelon form). The

description of principal component analysis and interpretation of eigen-

values is given in (11).

• The minimal average standard deviation of correlation coefficients taken

over 498 dynamic correlation matrices attain its minimum in interval

θ ∈ [251/3, inf). Here it is of course disputable whether such a prop-

erty is something desirable, maybe individual correlations in population

correlation matrices are more spread.

• The autocorrelation function of average correlation coefficient with lin-

ear detrending ρt
13 is damping faster with more displacements for lower

values of θ. Unfortunately Pozzi, Matteo and Aste do not investigate

behaviour of ρt any further, therefore there is no evidence on whether

ρt is autoregressive process or stochastic trend with or without a drift 14

(or possibly whether it follows any other time series generating process).

Only message they try to address is that the lower θ which means higher

weights for more recent observations the less effect of remote past over

the present. They judge that this is a required property.

• It was found that correlations ρt react faster to market outliers (i.e. get-

ting to stable pre-crisis values at faster pace) than equally weighted cor-

relations.15

Based on the observed properties of weighted covariances for different values

of parameter θ Pozzi, Matteo and Aste claims that a value of θ = 251/3 is

a reasonable choice for defining weighting vector. This value indeed seems to

belong among reasonable choices and will be used for purposes of portfolio

optimization. The caution when using word reasonable rather than optimal

is in order here indeed, since any of the measures for evaluation of properties

of weighted covariance matrix presented above can hardly be used to find an

optimal value of parameter θ. The most these measures can do is to give an

13The average correlation coefficient is calculated as ρt = 1′Sexp
t 1/N2

14This would be very important observation since it would make any further comments
invalid, because autocorrelation would be spurious and linear detrending would not be helpful
in this context. This and other issues connected to time series are described in (3) chapter
18

15This observation was made for ρ = 251/3
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intuitive background for what is still an acceptable value of this parameter.

So when the premise that ’more important informations are captured in more

recent observations’ is considered to be correct, these measures can give at

least some guide to in what interval should we seek the value of θ that allows

us to put different weights to different observations while keeping reasonable

stability of the weighted correlation matrices.

2.1.4 Covariance matrix with shrinkage

The shrinkage as described in (12) is a process of taking weighted average of

sample covariance matrix and target matrix of same dimension in order to

obtain better estimator of the true population covariance matrix.

This process among others helps to overcome the problem connected to

rank deficiency, when it is expected that true covariance is actually of full

rank. Additionally this estimator can be more robust to outlier events than

equally weighted covariance matrix.16 If static target matrix is chosen it will

also make the estimates more stable in time.17

The methodology for computation of covariance matrix with shrinkage in

this paper will follow the one proposed by Ledoit and Wolf in (13). This work is

reaction on previously written work (4) by same authors, but is computationally

simpler with better empirical performance, however with weaker theoretical

background.

Theoretical justification and computation

As stated in (4) even though that under certain assumptions (specifically mul-

tivariate normal distribution of logarithmic stock returns) sample covariance

matrix is maximum likelihood estimator, it does not necessarily make it the

best estimator for small samples even under these assumptions, since maximum

likelihood estimators exhibit desirable properties asymptotically18 as shown in

(14) chapter 12. Moreover assumption of normality is, as discussed in previous

sections not reasonable. These are, among others previously presented prop-

erties of sample covariance matrix, the reasons for introducing new hopefully

better estimator of population covariance matrix.

16This certainly depends on what target matrix and weights are chosen
17However as was already mentioned it cannot be said whether this is a good/bad feature.
18But these properties may not be met for small samples since the theory of maximum

likelihood estimators is based mainly on asymptotic analysis that is valid only for infinite
samples
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For deeper understanding of ideas behind shrinkage it is worthwhile to

briefly introduce the target covariance matrix from work (4), where Ledoit and

Wolf propose to shrink sample covariance matrix to target matrix with strong

structure.19 As a target they suggest to use Sharpe’s single index model, that

is calculated for every window as follows:

Assume that stock returns are generated by following linear process,

yi,l = αi + βixt + εi,l

where yi,l is logarithm return of i at position l of the rolling window for ∀i ∈
{1, .., N} and ∀t ∈ {1, ..,∆t}, xt are logarithmic returns of S&P500 index, that

represents overall market and εi,l residuals that are uncorrelated to one another

and to market returns with stable variance in time. This model immediately

imply covariance of stock returns:20

Φ = σ2
xββ

′ + ∆ (2.3)

Where σ2
x represents variance of S&P500 logarithmic returns, β ∈ M(N × 1)

is a vector of slope coefficients and ∆ ∈ M(N × N) is diagonal matrix with

diagonal elements δi,i = V ar(εi).

Even though this model have some value from theoretical perspective it

is unnecessarily complicated as Ledoit and Wolf describe in their more recent

work (13), where they propose to shrink sample covariance matrix towards a

”constant correlation model”. This constant correlation matrix at time t, Ct

is calculated as follows:

ρt =
1′St1− Trace(St)

N(N − 1)
(2.4)

Ct
i,j = ρt

√
si,isj,j,∀i 6= j and Ct

i,i = 1 ∗ si,i (2.5)

It is indeed very simple to compute and additionally according to (13) it have

better empirical properties than model 2.3. Therefore this target matrix will

be used in the rest of this work. Now the only question that remains to be

answered is how to find optimal value of shrinkage coefficient.

The estimator used to estimate true covariance matrix at time l, Σl is

19Where strong structure means that the model have only a small number of free param-
eters.

20Proof is given in appendix A Theorem 2
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defined as:

Tl(αl,Y
l) = αlC

l + (1− αl)Sl

Where αl is a shrinkage constant, Yl is a matrix of logarithmic returns from

a rolling window with length ∆t and last observation at time l, Cl and Sl are

target covariance matrix and sample covariance matrix at time l respectively

and Tl : RN×∆t+1 → RN×N .

The loss function is then computed as:

L(T l,Σl) =
∥∥T l −Σl

∥∥2
(2.6)

Where ” ‖‖ ” denote a Frobenius norm. And the risk function is defined as:

RT l(Σl) = EΣl

[∥∥T l −Σl
∥∥2
]

(2.7)

From the definition of the risk function it is obvious that the goal is to find

αl such that the risk function is minimized in a given time period. Such a

goal can be easily achieved by finding first and second derivative of RT l(Σl).

In (4) it is shown that second derivative is always positive and after putting
d(RT l(Σl))

d(α)
= 0, the ”optimal value”21 of alpha α∗l can be expressed and is

equal to:

α∗l =

∑N
i=1

∑N
j=1[V ar(sli,j)− Cov(sli,j, c

l
i,j)]∑N

i=1

∑N
j=1[V ar(cli,j − sli,j) + (E(cli,j)− σli,j)2]

To avoid any confusion E(cli,j) is the expected value of i-th and j-th coordinate

of matrix Cl, the same hold for variances and covariances.22 Computational

details of first two derivatives together with sample estimate α̂∗ of α∗ are given

in (4) chapter 2.5.

The very important property of α∗ under following assumptions:

1. Stock returns are i.i.d. in time

2. Number of stocks is fixed and finite while number of observations goes to

infinity

3. Stock returns have finite fourth moments

21By optimal it is meant that it minimize chosen risk function, not the philosophical
concept of optimality

22i.e. its population value not the expected value of a constant after computation of the
matrix from the sample.
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is that as proved in (4) α∗(∆t) = o(1/∆t),∆t→∞, where o(x) denote so called

little-o function, whose properties are discussed in (5) chapter 10. However it

is necessary to take this result with reserve since the assumptions it is based

on, specifically that logarithmic stock returns are i.i.d. goes against the very

nature of using rolling window, because if the assumption was correct it would

be best to use entire history of stock returns to estimate their covariance matrix.

Additionally it goes against the assumptions made in section 2.1.3 of this paper,

where the point that newer observations contains more information was made.

Therefore this result is presented just to show that under certain assump-

tions under which sample covariance matrix is consistent and target matrix

possibly inconsistent the shrinkage constant will be 0. This imply that full

weight will be given to consistent estimator of population covariance matrix as

∆t→∞, meaning that the shrinkage estimator will be consistent under these

assumptions.

2.2 Mean prediction

Throughout this work only 2 models for expected logarithmic returns will be

used and those are sample and exponentially weighted mean as defined in sec-

tions 2.1.2 and 2.1.3 respectively. Sample mean will be used jointly with co-

variance prediction models described in sections 2.1.2 and 2.1.4. Exponentially

weighted mean will be used together with exponentially weighted covariance

matrix in the portfolio optimization model.

This distribution seems natural based on definition of covariances and ideas

behind them, however as with every statistic used for predicting future, we can

never be certain whether it is appropriate approach.



Chapter 3

Optimization process

This chapter discusses processes of optimal portfolio choice which is a final

step in the whole process of portfolio selection after forecasts of stock returns

behavior were made.1 The foundations of this stage of portfolio selection were

laid by Harry Markowitz in his work (1) that was published in 1952.

In this paper three models for optimal portfolio choice and two different

approaches for filtering information obtained in the first stage of portfolio se-

lection will be presented. The first two models are based on approach presented

by Markowitz (1), where the only difference between them is that one of them

include penalization for the existence of transaction costs inside the optimiza-

tion process. The third model is based on methods of applied filtered network

analysis described in (15), where stocks in the portfolio will be chosen based

on their position 2 in the network. This is very different approach compared to

one proposed by Markowitz and lies on the boundary between theory and pure

data mining.

Optimal portfolios will be reweighted on a daily basis as new prediction

of portfolio expected returns and covariances are made. The comparison of all

models will be based on their empirical performance with and without presence

of fixed transaction costs.

3.1 Markowitz approach

This section will discuss a very well known approach for portfolio choice that

was firstly presented by Markowitz in his work (1) with more detailed discussion

1i.e. In this case forecasts of stock returns behavior are one day ahead forecasts of expected
returns and covariance matrix

2Where position is determined by certain measures of centrality
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in (2). It is relatively simple process which falls within convex optimization

problems. The formulation of the portfolio optimization problem is defined in

the following manner:

Maximize

w′µe (3.1)

Under Constraints

w′Σew ≤ σ2
MAX (3.2)

1′w = 1 (3.3)

1′|w| ≤ 1.6 (3.4)

w ≤ 0.15 ∗ 1 (3.5)

−w ≤ 0.08 ∗ 1 (3.6)

Where w ∈ M(N × 1) is the vector of weights that is to be optimized. µe ∈
M(N × 1) and Σe ∈ M(N × N) are one step ahead forecasts of logarithmic

stock returns and their covariance respectively. Finally 1 ∈M(N ×1) is vector

of ones and σ2
MAX is upper bound on expected portfolio variance.

Very important property of this optimization problem is that, as also noted

in section 2.1.2, it can be rewritten into the form of second order cone program

that can be efficiently solved by interior point methods (9).3

The restrictions 3.3, 3.4, 3.5 and 3.6 are default for this whole paper.4 The

condition 3.3 is natural and it can be formulated in the way, that all long

positions have to be financed from own resources, or by borrowing of funds

in the form of short selling. Restriction 3.4 is essentially a limit on maximum

proportion of wealth, that can be held in short positions.5 Since the model

sometimes tends to put too much weight onto individual stocks the restrictions

3.5 and 3.6 ensures that portfolio exposure to risk of individual company is

always limited to some reasonable extent. Even though the limitations seems to

be very relaxed in this case, there is a reason for it, which is that only few stocks

are used in optimization process.6 Restriction 3.2 limits the expected portfolio

3The proof of this statement is given in appendix
4With only exception for 3.4 and 3.6, when performance of no-short selling portfolio

construction methods will be tested. The left side of restriction 3.4 is 1 and for 3.6 it is
vector of zeros.

5Alternatively it is a restriction on maximum leverage. The value 1.6 was chosen arbi-
trarily as it is perceived by the author as a ”sensible value”

6All the computations in data section are performed on a small sample of stocks, because
back testing would last far too long for higher dimension problems
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variance. The reason for not giving any specific value is that in order to make

some reasonable back testing when the restriction 3.2 is almost always active

it is necessary to make it flexible. Under the optimization algorithm 6 different

levels of volatility will be allowed, and when the lowest predicted volatility will

not be feasible in given period, the program will perform the optimization with

another level of variance constraint. Even though this measure does not seem

ideal, it is necessary, since the predicted covariance matrix is very dynamic in

time, especially during financial crisis, that totally disturbed all three models

presented in chapter 2. These facts are depicted on graph B.1, where the

variance of equally weighted portfolio is depicted.7 The variance attain its

minimum around value of 0.05×10−3 and the maximum of 1.4×10−3 and 10−3

for weighted and sample covariance respectively. The maximum is therefore 28

and 20 multiple of its minimum value, which is absolutely horrific example of

instability.

3.2 Portfolio optimization in the presence of trans-

action costs

Purpose of this section is to incorporate transaction costs into optimization

process. It address the problem with Markowitz approach where a large number

of very small transactions is realized at each reweighing period. In real world,

where each transaction have its costs that are usually not proportional to the

transaction value, but are rather fixed8 posses a huge problem.

Therefore it seems reasonable to adjust Markowitz method for this inef-

ficiency by penalizing for each transaction in such a way, that will lead to

sparse transaction vector in each time period, while preserving structure of the

Markowitz method.

3.2.1 Optimization problem

Thanks to special characteristics of the problem, namely incorporation of trans-

action cost into optimization process the problem have to be defined in a bit

different manner than Markowitz approach. The problem can be defined as

7This gives very much the same information as average covariance in a matrix, just dif-
ferently scaled.

8According to (17) this cost is $ 4.95 flat per trade, at the cheapest brokerage firm in US



3. Optimization process 16

follows:

Maximize

x′tµe (3.7)

Under Constraints

(xt + wt−1)′Σe(xt + wt−1) ≤ σ2
MAX (3.8)

1′xt + φ(xt) ≤ 0 (3.9)

1′|xt + wt−1| ≤ 1.6 (3.10)

xt + wt−1 ≤ 0.15 ∗ 1 (3.11)

−(xt + wt−1) ≤ 0.08 ∗ 1 (3.12)

|xt| ≤ 0.15 ∗ 1 (3.13)

Where xt ∈M(N × 1) is vector of trades at time t, wt−1 ∈M(N × 1) is vector

of portfolio weights from the last period, where each weight is multiplied by

return for the period, in order to obtain feasible solution.9 Symbol φ(xt) stands

for transaction costs function at time t, that will be further discussed in next

subsection.

All the conditions are very similar to those in previous section, however

two comments are in place. First of all the objective function 3.7 can be

understood as maximization of expected returns that comes from transactions

realized in a given time period, and is equivalent to maximizing (xt+wt−1)′µe.

More importantly restriction 3.9, so called self financing constraint, bounds

transaction vector and its interpretation is, that the value of stocks sold at

time t have to cover both transaction costs and value of stocks bought at

time t. This constraint therefore penalize for each transaction, since the more

transactions occurs the less wealth10 will be invested in given time period, and

therefore lower wealth is expected at the end of period.

Constraint 3.9 have one important implication for functionality of the model

which is that at each period when transaction occurs the portfolio weights are

less than one. This is a problem since constraints are defined in a manner that

is suitable for weights that sum to one at each period. There are fortunately

several ways how to overcome this specific issue, one of them is described in

(16), where authors propose to define the constraints as proportion of the end

9At the end of each period vector wt−1 is normalized to 1, just for computational comfort.
It does not affect the solution

10Where wealth in this case is understood as sum of absolute values of weights invested in
each asset
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of period wealth, for example constraint 3.11 would be formulated as:

xt + wt−1 ≤ 0.15 ∗ 1′(xt + wt−1)1

Other constraints would follow the same logic.

A bit different approach is used throughout this paper. Weights are always

normalized to one after each period. This approach however requires to make

some changes in formulation of several constraints. Constraint 3.10, 3.11 and

3.12 will be adjusted after each period, so that there is no need to, for exam-

ple sell small proportion of stock that reached upper bound in the previous

time period and is after reweighing slightly above this threshold in the next

period. Such transactions would go against the very nature of introducing fixed

transaction costs in the optimization process at the first place.

Constraints will be adjusted by following rule: After each period take the

constant used for normalization of weighing vector at the end of period i.e.:

c1 = 1 and ct = min

{
1

1′(xt + wt−1)
;

1

1−N ∗ β

}
, ∀t ∈ 2, ..., T

And return vector for the period:

Reti,t = Pi,t/Pi,t−1, ∀i ∈ {1, ..., N}

Where Pi,t is price of stock i at time t. And reformulate the problem 3.2.1

by multiplying the right side of constraints 3.11 and 3.12 at time J by the

rule: For J ∈ (j ∗ 200; (j + 1) ∗ 200], j = 0, ..., bT/200c ”Hadamard multiply”

the constraints by
∏J

i=j∗200 ◦ci ∗ Reti.
11 This solution is just very easy way

to overcome the problem and have several obvious imperfections, for example

each stock have different upper bound based on its previous performance. The

reason it is used in this work is that transaction costs will be small enough

given the back testing period to cause any major disruption of the model and

it does its job by limiting the amount of transactions to reasonably low level

while not disturbing the model ”very much”.

11Where ◦ denote a Hadamard product of vectors
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3.2.2 Transaction costs

This section is strongly inspired by work of Lobo, Fazel and Boyd (16).12 Trans-

action cost in this work will be only of fixed nature and will be equivalent for

each stock as well as for long and short positions.13 The transaction cost are

defined by following formulas:

φ(xt) =
N∑
i=1

φi(xi,t) (3.14)

Where,

φi(xi,t) =

{
0, |xi,t| = 0

β, |xi,t| 6= 0
(3.15)

Where φ(xt) are total transaction costs at time t, φi(xi,t) are transaction cost

paid at time t for stock i, and β14 denote the fixed costs that are the same

for each stock. The problem connected with this constraint is that it is not

convex and finding perfect solution would be infeasible for higher dimension

problems, since 2N optimization problems would have to be solved in order to

obtain optimal solution as discussed in (16). However Lobo, Fazel and Boyd

propose efficient heuristic which can be used to obtain approximate solution

by solving optimization problem when formulating this constraint as a convex

constraint.

The heuristic as described in (16) and as it will be used in this work can be

described by the following algorithm:

1. First of all replace constraint 3.9 with convex constraint of the form:

1′xt + φc.e.(xt) ≤ 0 (3.16)

Where,

φc.e.i (xt) =
βi
u
∗ xi,t (3.17)

The symbol u denotes upper bound on the maximal 15 value of transaction

for each asset which is strictly restricted by restriction 3.13 to be 0.2.

12The only main difference is that the optimization is done for several time periods and
certain technical problems connected to this fact occurs

13No additional costs connected to holding short position will be modeled
14Even though there is no time index for β, it will change proportionately to wealth after

each period (The reason is that when more wealth is invested the lower proportion of it are
cost of individual transactions that are fixed and flat at $ 4.)

15maximum from the perspective of absolute value maximality
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Other symbols are explained in previous sections and the dimension of

each vector is clear from context.

The function φc.e.(xt) was not chosen arbitrarily, but it is the largest

convex function that is lower or equal to φ(xt) as shown in (16).

2. For k=0 solve the optimization problem 3.2.1 where constrain 3.13 is

replaced by 3.17 and get the solution x0
t .

3. For k=k+1 take the optimal solution x∗k−1
t from previous and define new

transaction costs function:

φki (xt) =
βi

|x∗k−1
i,t |+ δ

∗ |xki,t|

Put this into constraint 3.13 as a transaction cost function and solve the

problem 3.2.1 to obtain vector x∗kt . Where δ = 10−7 is a threshold, that

helps us to decide whether or not should a given asset be traded. This is

further explained in (16).

4. If one of the following conditions:

k >= 7 ∨
∥∥x∗kt − x∗k−1

t

∥∥ <= 10−4

is met, stop the process and set x∗kt as the optimal vector of transactions

at time t. Otherwise repeat the process once again.

This algorithm gives only approximate, but based on simulations performed by

Lobo, Fazel and Boyd, quite precise solution.

Before closing this section it is worth to mention that β does not necessarily

be equal to proportion of transaction costs on total wealth, but it can be used

only in a way to penalize for each transaction. For example if transaction costs

were $ 4 flat per transaction and on average the position would be held for 10

days it would be reasonable to penalize each transaction by lower amount in the

model, obtain optimal weight for these lower costs and then redefine them in

order to obtain feasible weights. This process is however very complicated from

technical perspective and given empirical performance of this and Markowitz

model, compared to equally weighted portfolio and MST portfolio discussed in

next section, it is better to concentrate the effort for further development of

MST or generally to network based portfolio models.
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3.3 Minimum spanning tree portfolio

The last model is based both on theory and data mining. This section will

describe the theoretical background behind this model of an outstanding em-

pirical performance.

Construction of Minimum spanning tree (MST) portfolio optimization model

is very simple. The only input information for each period is predicted covari-

ance matrix while the prediction of mean will be absolutely ignored. But before

describing the model some basic notions from measure and graph theory need

to be introduced.

This section is mostly influenced by thoughts presented in (15), (19) and

(20).

3.3.1 Basic Terminology

Throughout this work the MST will be defined as a spanning tree of edge

weighted,undirected, connected graph, that have minimal distance among other

spanning trees of the particular graph. To make the definition more transparent

it is in place to define previously mentioned mathematical terms:

Definition 3.1. Let V be a finite set, and E(V ) = {{u, v}|u, v ∈ V, u 6= v}, then

a pair G = (V,E), E ⊆ E(V ) is called a graph on V . The elements of V are

called vertices and those of E are called edges of graph G.16 Additionally G is

called connected if ∀u ∈ V, ∃v ∈ V, v 6= u : {u, v} ∈ E.

Definition 3.2. The graph Gα is said to be edge weighted, when Gα is a graph

G together with a weight function α : EG → R on its edges.

Definition 3.3. Let ei = {ui, ui+1} ∈ E, then the sequence W = e1e2...ek is

called a path of length k from u1 to uk+1, if ui 6= uj, ∀i 6= j.

Finally thanks to theorem 2.4 in (18) the tree can be defined as follows:

Definition 3.4. Let T be a graph, then T is called a tree iff any two vertices

of T are connected by a unique path. Additionally let HG denote a set of all

subgraphs17 of graph G, that are trees.

The Minimum spanning tree of an edge weighted,undirected and connected

16The definition is taken from (18)
17The term subgraph is defined in (18)
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graph Gα is such T ∗ ∈ HGα
18 for which the following condition holds:∑

e∈ET∗

α(e) ≤
∑
e∈ET

α(e), ∀T ∈ HGα

I.e. the overall ”weighted length of a tree” is minimal for weighted graph Gα.

In order to find optimal portfolio one more term have to be defined and it is

the measure of centrality that will be used for picking assets to portfolio. The

very simplest centrality measure will be used throughout this work and it will

be degree of vertex:

Definition 3.5. Let G = (V,E) be a graph. For each u ∈ V define set Nu =

{v ∈ V |{u, v} ∈ E}. Then the degree of vertex u from graph G is defined as

dG(u) = |Nu|, where operator ”||” computes number of elements in a set.

3.3.2 Construction of MST portfolio

Let V Assets
t denote a set of assets at time t from which optimal portfolio is sup-

posed to be chosen.19 Then V Assets
t is a set of vertices and Et = {{u, v}|u, v ∈

V Assets
t , u 6= v} is a set of edges. Together with metric αt as defined bellow they

form a weighted,undirected, connected graph Gαt
t = (V Assets

t , Et), for which the

MST will be found.

The weighting function αt : V Assets
t ×V Assets

t → [0,
√

2] is defined as in (19):

∀u, v ∈ V Assets
t : αt(u, v) =

√
2 ∗ (1− ρtu,v)

Where ρtu,v is one step ahead forecast of correlation coefficient between assets

u and v at time t calculated from any model presented in chapter 2.20

The weighing matrix αt ∈ M(N ×N), that assign weights to each edge is

defined as:

αtu,v = αt(u, v)

The intuitive interpretation behind this distance function is that it clusters

closely related assets21 since the lower distance is assigned to pairs of stocks

with higher correlations. The rule for picking stocks will be such that peripheral

18Where HG is clearly nonempty, since G is connected
19In this work it will hold that V Assets

j = V Assets
i , ∀i, j ∈ {1, ..., T} (i.e. The set of assets

is the same for each time period)
20More about derivation of weighting matrix and computation of correlations is given in

appendix A.3
21Closely relate means assets with high joint correlation coefficient
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stock (i.e. those with low centrality measure) will be chosen to take part

in portfolio, since I believe that such stocks will have higher diversification

potential as they stands out of clusters. As shown in (18) weighting function αt

have also an appealing mathematical property, since it is a metric on V Assets
t .22

Furthermore as will be shown in empirical section the MST constructed from

this measure tends to be quite stable in peripheries, which have the advantage,

that there are very low transaction cost related to this method of portfolio

selection.

After defining the weights over all edges, the MST can be easily found by

following algorithm:

• Find the [N+2*(N-1)]-th lowest value of matrix αt,then put all higher

elements equal to zero and denote the new instrumental matrix as J t.

• The pairs of assets with positive inputs in J t forms all the edges of min-

imum spanning tree. I.e. the MST of graph Gαt
t , is T ∗t defined as:

T ∗t = (V Assets
t , E∗t )

Where,

E∗t = {{u, v} ∈ Et|J tu,v > 0}

Finally the last step of portfolio selection is to pick the stocks to invest in. The

rule used in this work is following:

1. Put all positive elements of J t equal to one and denote the new matrix

as Dt.

2. For each stock compute its degree in MST as: dT ∗
t
(u) =

∑N
j=1D

t
u,j, and

construct a vector dT
∗
t
u = dT ∗

t
(u), where degree of each stock is on a given

coordinate in each time period (i.e. the order of stocks in this vector does

matter).23

3. Find the bN/cc-th lowest value of vector dT
∗
t and denote it as λ, where

c ∈ [1, N ] is a constant that specify how much stocks will be included in

portfolio.

22Which means that ordered pair (V Assets
t , αt) forms a metric space in each time period t,

at least for equally weighted sample correlation
23This will be important in following part, because the rule is constructed in such a way

that minimizes amount of transactions
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4. Invest certain proportion of total wealth to stocks that satisfies following

properties: u ∈ Vt ∧ dT ∗
t
(u) ≤ λ.

There are three comments in order here, first of all the constant c is very

important and have to be chosen wisely since it affects the amount of stocks

included in a portfolio and its ”peripherality”. Secondly it would be worth to

investigate behavior of different networks than MST, for example PMFG as

described in (11) since MST have way too much stocks with degree of 1.

The third comment is to item 4, which is not specifically saying what the

weights should be. It is on purpose, since the rule will strongly influence the

amount of transactions in each period. If it is chosen, for example to put equal

weights to each stock that satisfy property in item 4,24 then the amount of

transaction would be huge since proportion of wealth invested in each stock

changes after every period as returns have to be taken into consideration. Ad-

ditionally the amount of stocks that satisfies property 4 is not stable in time.

Therefore it is reasonable to find algorithms that overcome these problems and

lead to feasible solution with sparse transaction matrix. These algorithms are

not discussed in this paper, however when comparing the results in data section,

certain methods that limit transactions will be used. Additionally it would be

sensible to test whether certain penalization for lower ”peripherality of stocks”

should be used, since the previously discussed method assume that stocks with

degree less than λ are equivalently attractive for portfolio optimization.25

At last it is worth to mention that,as further discussed in next section, this

model have an outstanding empirical performance, with possibly sparse trans-

action vector and low amount of stocks held at each period, making it an very

good market beating portfolio construction method even for small investors.

Additionally the computational requirements are very low, the problem can be

solved even for large number of assets26 and the solution can be found even

in basic programs such as MS Excel. Furthermore even though the last two

pages were a bit technical,27 the method is very simple and intuitive, only re-

quirements being basic knowledge of correlation matrices and few notions from

graph theory.

24Of course with the rule that weights sum to one.
25This would be probably more an issue for different networks as PMFG, or measures of

centrality, since most of the stocks in MST have degree equal to 1
26It took around 27 seconds to find portfolio for 471 stocks in MATLAB on basic notebook.

For the Markowitz portfolio as defined in 3.1 it would take much longer, certainly more than
30 minutes.

27It was only so because of the academic nature of the text



Chapter 4

Data analysis

This chapter compares empirical results of portfolio selection methods de-

scribed in chapter 3 against each other and against equally weighted portfolio.

Additionally the results for different predictors of mean and covariance are

compared.

4.1 Data

The data that are used for testing the models are historical daily close stock

prices of S&P 500 member firms with 10 years long history, that are adjusted

for stock dilution and dividend payment.1 These data were downloaded from

Yahoo Finance.

From the data at disposal it is clear, that the reweighing of portfolio will

be done at the end of each trading day, when the close price enters the port-

folio optimization model and new optimal weights for next day are calculated.

After this happens it is expected that all transactions necessary for portfolio

reweighing will be executed at the very same close price.

Unfortunately there is one bigger issue connected to the data. It is that

these data capture historical price development only for stocks that survived

in the market and are members of prestigious index (i.e. for past winners).

This may be a problem since strategy that performs better in picking among

winners does not necessarily perform better when choosing from all assets ex

ante, when the winners are not known.

1More about the computation of adjusted close stock prices is given in (21)
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4.2 All models

In this section all the portfolio selection models described in chapter 3, with

input of one step ahead covariance predictors from chapter 2 will be presented.

Results are presented in table 4.1, however beforehand some comments are

in order here especially to methodology of Markowitz portfolio back testing,

where several problems occurred. The biggest issue connected to this model

was, that the covariance matrices are very dynamic in time as illustrated in

graph B.1, where development of equally weighted portfolio variance in time

is presented. It is therefore not reasonable to set unique value of acceptable

variance for the whole period, since sometimes there would be no solution

feasible and other times the weights would be given only to stocks with best past

performance. Simplistic solution was adopted to overcome this problem and it

was to set several levels of variance and when the lowest level is not feasible,

then the optimization will be done with higher level of variance constraint.2

Another a bit less urgent problem was that variance constraint is defined in a

bit different manner for Transaction penalizing Markowitz approach, therefore

the results in table 4.1 for this type of portfolio are based on slightly different

variances , furthermore are calculated with different algorithm.3 Last comment

concerning the data is that performance of all the models have to be taken with

reserve, since it is based only on 50 stocks, that are listed in appendix A.4, and

2250 trading days.

Table 4.1 contain information on performance of daily reweighed portfolios

for period 21.4.2006-27.3.2015 that included 2’250 trading days. The informa-

tion on cumulative returns over whole period and four sub periods is given,

together with ”information ratio”.4

As is clear from the table 4.1 performance of Markowitz portfolios is rather

poor for the whole period compared to equally weighted portfolio and MST

based portfolio. The cumulative returns being between 111.1%-166%, while the

equally weighted portfolio achieved 242% and even better the MST portfolio

with 264%. The same story it is with information ratios, where the maximum

2These levels were set at 0.0003, 0.0004, 0.000065, 0.0009, 0.00022 and 0.003, only when
short selling is allowed, then they are set at higher levels. Moreover, unfortunately these
variances were set at different level for Markowitz portfolio based on exponentially weighted
covariance matrix, however, information ratios should still provide valuable information.

3’sqp’ MATLAB is used for ordinary Markowitz portfolio optimization and ’fmincon’ for
the one that penalize for transaction costs.

4Technical details for their computation is given in appendix A.4.
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from Markowitz based portfolios is 0.56, while it is 0.62 and 0.67 for equally

weighted an MST portfolios respectively.

Both Markowitz portfolio approaches are strongly underperforming during

financial crisis5 On the other hand they perform exceptionally well for third

period 4/2011-4/2013. This type of behavior is characteristic for Markowitz

approach, going from one extreme to another.

When it is allowed for short selling the performance is even worse as de-

scribed in the last column.6 The development of returns is much more appeal-

ing for network based portfolios that outperform the equally weighted portfolio

during crisis, and even during last two periods, at least when it comes to cu-

mulative returns. Also their performance over whole testing period is better

from both the cumulative returns and information ratio perspective.

The last comment is that even though the very complicated procedure de-

scribed in section 3.2, led to severe decrease in amount of transactions7 to

around 1/5 the amount of ordinary Markowitz portfolio model it did not en-

hance the performance at all, actually quite the opposite. Moreover the amount

of transactions is still not low enough given the performance as will be presented

in next section. Therefore subsequent research effort will be put on deeper anal-

ysis of MST portfolio properties, that is much less technically demanding and

offer superior performance.

5Only except for Markowitz portfolio based on weighted covariance matrix.
6Data for Markowitz portfolio with transaction adjustment are not present when short

selling is allowed since it take far too long to compute them and since it is expected that
their performance would hardly outperform the equally weighted portfolio.

7By transaction it is understood change in weight higher than 0.0005, caused by either
different returns of stock in given period as is the case of equally weighted portfolio and
very often even for networks, but also for regularly reweighing of portfolios caused by other
constraints.
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Table 4.1: Comparison of all models

Leverage 1.6

Date 4/2006 - 4/2009 4/2009 - 4/2011 4/2011 - 4/2013 4/2013 - 3/2015 4/2006 - 3/2015 Transactions 4/2006 - 3/2015

Cumulative ret. -14,3% 113,8% 25,9% 48,3% 242,0% 16253

Mean/stdev ann. -0,16 2,23 0,60 1,76 0,62

Markowitz Cumulative ret. -36,3% 86,9% 71,3% 28,0% 161,0% 50486 29,4%

Mean/stdev ann. -0,52 1,92 1,58 0,94 0,53 0,14

Cumulative ret. -38,6% 75,2% 61,1% 21,9% 111,1% 10438

Mean/stdev ann. -0,58 1,81 1,46 0,77 0,45

Network Cumulative ret. -9,0% 106,1% 31,0% 48,5% 264,0% 19204

Mean/stdev ann. -0,10 2,42 0,71 1,68 0,67

Markowitz Cumulative ret. -34,0% 67,8% 77,1% 26,4% 147,9% 52331 25,0%

Mean/stdev ann. -0,49 1,58 1,72 0,90 0,51 0,12

Network Cumulative ret. -9,0% 106,1% 31,0% 48,5% 264,0% 19204

Mean/stdev ann. -0,10 2,42 0,71 1,68 0,67

Markowitz Cumulative ret. -16,4% 65,2% 42,8% 34,9% 166,0% 51854 26,3%

Mean/stdev ann. -0,22 1,44 1,08 1,17 0,56 0,13

Cumulative ret. -25,8% 54,3% 49,1% 24,6% 112,7% 10662

Mean/stdev ann. -0,39 0,96 1,43 0,83 0,47

Network Cumulative ret. -12,3% 107,7% 26,6% 52,7% 251,9% 23482

Mean/stdev ann. -0,13 2,53 0,62 1,84 0,63

Transaction cost

portfolio

Covariance 

with 

Shrinkage

No short selling

Equally weighted

portfolio

Sample 

Covariance

Transaction cost

portfolio

Weighted 

Covariance
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4.3 MST portfolio vs. Equally weighted portfolio

This section is dedicated to more detailed examination of Network based port-

folios and comparison of its performance to equally weighted portfolio. The

technical details to this section are included in A.4.

One of the biggest issue with previous analysis is that the models were tested

on only 50 stocks, which enabled us to compare methods all together, however

the amount of stocks was too low for construction of networks with meaningful

properties. Reason for including such a limited number of stocks in previous

analysis was that the Markowitz approach is computationally very complicated

and it took around 18 hours to perform backtesting for the portfolio with

penalization for transaction costs. This illustrate another advantage of Network

analysis over Markowitz optimization, which is very fast computation even with

large number of stocks.

This analysis will be performed for 160 stocks from S&P 500 index with at

least 25 years of quotation history. The stock prices are taken for 6’000 trading

days in period 11.7.1991-1.5.2015.8

Results for networks composed based on two different models of volatility

and one extra model based on network analysis not described in the theoret-

ical section will be presented here. Both results with and without including

transaction cost will be presented.

4.3.1 No transaction costs

Results for portfolios without the presence of transaction cost are presented

in table 4.2 on page 30. Most important results are shown in last column

that is summarizing performance of models over the whole 25 year long period

and from which it is obvious that network based models strongly outperform

the equally weighted portfolio. Not only that cumulative returns are higher for

these methods reaching as high as 98 multiple9 of initially invested wealth,10 but

also the information ratios are higher. This means that on average peripheral

stocks exhibit better properties than ”ordinary stock”. For method described

in section 3.3 the cumulative returns are around 1.5 times higher than for

Equally weighted portfolio and information ratio is 1.22 times higher, while the

8The dates are in format d.m.yyyy
9These are results of the model that is not specifically described in this work, however is

based on network analysis and serves as illustrative example of network analysis potential.
10The cumulative returns seem to be very high for all models, however this is caused by

already mentioned fact, that all the models are tested on ”past winners” only.
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”Network method” offers more than twice as good returns as Equally weighted

portfolio. Development and comparison of cumulative portfolio returns for each

method are plotted on graph 4.1, page 31.

Another observation from table 4.2 is that sample covariance model 2.1.2

seems better for constructing networks than the weighted covariance matrix

from section 2.1.3. This statement however have to be taken with reserve, since

it is not further supported in table 4.3 after transaction costs are introduced.

The other 6 columns in table 4.2 shows performance of these models in 1’000

trading days long sub periods. From the development of these quantities it is

clear that all the models are closely connected to the market performance.11

This claim is however more obvious from scatter plots B.4 presented in appendix

B, that captures the relationship between models by plotting their joint daily

returns. The correlation among these models is very strong and positive, which

is in accordance with their construction. Portfolios are constructed so that

equal weights are given to each peripheral stocks, which mean that such a

portfolio is obviously predisposed to react on general stock market fluctuations.

Back to table 4.2 the network methods clearly outperform equally weighted

portfolio in each sub period achieving better results both in good times, but also

in times of financial distress (In periods 1999-2003 when the so called Internet

bubble burst it achieved 1.4 higher cumulative returns and in 2007-2011, when

the recent financial crisis started, it achieved almost double the cumulative

returns). This is very appealing property, since the portfolio managers are

very concerned about huge drawdown their strategy might bring in bad times.

Other models also perform very good, always, except during period 1995-1999,

outperforming the equally weighted portfolio and even during 95-99 period they

are very close to equally weighted portfolio in performance.

Another excellent property of network based portfolios is that they achieve

such results with only very limited amount of stocks. After certain simplistic

measures that adjust model presented in section 3.3 the amount of stock to

invest in was arbitrarily set to 40, and for Network Method to 32. This is very

good since it shows that ”market” can be beaten with only limited amount of

assets that is feasible even for high net worth individuals, or small funds.

Additionally the maximum exposure to each stock is limited to 2.5% and

3.125%, which makes the portfolio robust to failure of individual companies.

11Where market is represented by equally weighted portfolio.
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Table 4.2: Cumulative returns and information ratios for Network mod-
els, no transaction costs.

Date 7/1991 - 6/1995 6/1995 - 6/1999 6/1999 - 6/2003 6/2003 - 5/2007 5/2007 - 5/2011 5/2011 - 5/2015 7/1991 - 5/2015

Cumulative returns 132% 175% 44% 117% 31% 76% 4544%

Mean ann. return 23,67% 28,87% 9,65% 21,51% 7,01% 15,37% 17,42%

Mean/stdev ratio ann. 2,35 1,97 0,47 1,90 0,24 0,92 0,9539

Cumulative returns 180% 172% 45% 133% 33% 103% 6885%

Mean ann. return 29,52% 28,60% 9,80% 23,68% 7,56% 19,00% 19,45%

Mean/stdev ratio ann. 2,74 1,97 0,49 2,13 0,31 1,28 1,1633

Cumulative returns 172% 164% 45% 129% 36% 101% 6467%

Mean ann. return 28,67% 27,57% 9,82% 23,09% 8,20% 19,13% 19,14%

Mean/stdev ratio ann. 2,71 1,90 0,49 2,10 0,33 1,28 1,14

Cumulative returns 169% 198% 62% 128% 59% 109% 9719%

Mean ann. return 28,20% 31,49% 12,93% 22,94% 12,36% 20,32% 21,16%

Mean/stdev ratio ann. 2,69 2,18 0,65 2,07 0,51 1,39 1,28

Equally 

weighted 

portfolio

Sample 

Covariance 

Network

Weighted 

Covariance 

Network

Network 

Method

Table 4.3: Cumulative returns and information ratios for Network mod-
els in presence of transaction costs.

Flat cost per trade $4,00

Initial wealth invested 1 000 000,00$    100 000,00$    50 000,00$     20 000,00$   10 000,00$    No Cost Transactions Stocks Held Max. Weight

Cumulative returns 3864% 3651% 3412% 2698% 1508% 3889% 6692 160 0,63%

Mean annualized return 16,52% 16,25% 15,92% 14,79% 12,02% 16,55%

Information ratio ann. 0,91 0,90 0,88 0,82 0,66 0,92

Cumulative returns 5216% 4594% 3903% 1829% 0% 5286% 8177 40 2,90%

Mean annualized return 18,00% 17,37% 16,57% 12,93% 0,00% 18,06%

Information ratio ann. 1,10 1,06 1,01 0,79 0,00 1,10

Cumulative returns 5270% 4632% 3923% 1797% 0% 5341% 12934 40 2,90%

Mean annualized return 18,05% 17,41% 16,60% 12,85% 0,00% 18,11%

Information ratio ann. 1,10 1,06 1,01 0,78 0,00 1,10

Cumulative returns 7501% 6817% 6056% 3774% 0% 7577% 10597 32 3,70%

Mean annualized return 19,80% 19,32% 18,74% 16,41% 0,00% 19,85%

Information ratio ann. 1,23 1,20 1,16 1,02 0,00 1,23

11.7.1991 - 1.5.2015

Equal initial investment 

with reweighing

Sample Covariance 

Network

Weighted Covariance 

Network

Network 

Method
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Figure 4.1: Cumulative returns over 6000 trading days for three net-
work models compared to equally weighted portfolio without
transaction costs.
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4.3.2 Network based portfolio performance in the presence

of transaction costs

Problem connected to Markowitz portfolio selection was not only its inferior

performance in context of poor returns, however the model was also very waste-

ful when it came to transactions, where as much as 112’070 transactions oc-

curred during 2’250 days making average of 49.8 transactions a day, with only

50 stocks. This is an awful average that reflects the fact that no penalization

for transactions was made. And even after penalizing for transaction cost in

the model, transactions remained at quite high levels.

The situation is much better for network based models, after certain ac-

tions for selecting between the most peripheral stocks are taken. Specifically

the stocks are ordered and according to whether they are peripheral and what is

their order, they get the weights assigned.12 Additionally some adjustments are

taken to account for changes of weights caused by different returns of individual

stocks with positive weights in a given period. It is so because different returns

of stocks results in that the weights of individual stocks in portfolio deviate

from their equal state, which is equally weighted peripheral stocks portfolio.

The deviation is of such a form that past winners are given higher weights,

which negatively affects the cumulative returns of portfolio.13 Last comment

concerning adjustments is that transaction cost were incorporated in optimiza-

tion process, however only for portfolio with initial investment of $ 1’000’000,

therefore it is expected that for portfolios with different initial investment they

are covered from external sources.

After applying these measures the MST portfolios need only as little as

8’177 and 12’934 transactions for sample and weighted covariance models re-

spectively, which is shown in table 4.3. This is an excellent result for 6500

trading days with 160 stocks when the average is 1.26 and 1.99 transactions

per trading day. Unfortunately measures applied to limit for transactions that

are described in appendix A.4 are very costly when it comes to reduction of

cumulative returns. Therefore it strongly depends on portfolio size how much

to limit for transactions, and since the larger portfolios realize economies of

scale when it comes to transaction costs as they are usually set at fixed level

per trade, it might be reasonable to perform reweighing more frequently for

these portfolios.

12More about this in appendix A.4
13Data supporting this claim are not presented here, but it is based on authors observations.
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The adjustment were made not only for network based portfolios but even

for equally weighted portfolio.14 They were done following the same logic of

adjusting network portfolios to make the comparison as realistic as possible,

the basic logic being that when weight of particular stock reaches certain pre-

determined value the weight will be lowered on account of stocks with lowest

weights. This portfolio is denoted in the table 4.3 as ”Equal Initial investment

with reweighing” and will be referred to as market representing portfolio in the

rest of this section.

Table 4.3 present results for these adjusted models where transaction costs

are already incorporated in returns, where the costs for each transaction are

measured as percentage of total wealth and are deducted from returns in period

when they occur. To be as realistic as possible these cost are taken from large

brokerage firm with lowest transaction costs in 2015 according to (17)15 and

are set at $ 4 flat per trade.16 The results are then computed over the whole

period for different scales of portfolios. First of all it is worth to notice column

”No cost” in table 4.3, which shows the results of adjusted models with $ 0

transaction costs and compare it to table 4.2 overall returns. It shows how

costly it is to bound the amount of transactions to low levels, as annualized

returns dropped by 1-1.5% for all the models, when compared to unadjusted

portfolios from table 4.2.

The last three column mainly shows the stability of each portfolio. Trans-

actions are very low for all the models as discussed above and the maximum

exposure to risk is limited at reasonably save levels in range of 0.63-3.7% with

the possibility for further reduction by including more stocks into decision pro-

cess or allowing for lower portfolio peripherality. Other extremely important

property is that network based portfolios tend to outperform the market rep-

resenting portfolio with only 0.25 and 0.2 multiple of its stocks, being very

parsimonious to wealth requirements. Last comment concerning stability of

MST portfolio, that is not presented in the table, is that around 80% of wealth

is invested into 40 particular stocks throughout time.

14Such a portfolio is extremely costly, since reweighing would have to be made after every
period, when daily returns are incorporated in the portfolio. For this particular example as
much as 959’680 transaction would have to be realized in order to keep such a portfolio (i.e.
159.947 transactions a day).

15Clearly the transaction costs were decaying in last decades with the development of infor-
mation technologies, so the results are not historically feasible, however since it is reasonable
to expect that transaction costs will be declining even further in future, this might not be a
problem for validity of results presented in this work.

16No other trading costs, as for example bid-ask spread or capital gain taxes are controlled
for.
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The other columns show the performance measures for different levels of

initially invested wealth. It is apparent that costs have little effect on portfolio

performance when large initial wealth was invested17 differences being expressed

in fractions of annualized return percentages. However as the amount of initial

investment decreases to the wealth levels approachable by small individual in-

vestors, the transaction costs start to reduce annualized returns significantly, to

the extreme of $ 10’000 portfolio that would end up in loss of all money invested

for all network portfolios. The effect of initial wealth on cumulative returns of

portfolio is depicted on graph B.3, where the case of sample covariance based

MST portfolio is modeled.

To finalize this section, it is apparent that network based portfolios outper-

form the market representing portfolio for levels of wealth above $ 50’000. For

lower levels of wealth the advantage of less transactions is huge, and lead to un-

derperformance of network portfolios. However it is important to say that for

such low levels of wealth the rebalancing rule would be readjusted to minimize

transactions as much as possible. The performance comparison of all models is

depicted on graph B.2, where annual returns for years 1991-2015 are presented.

From the graph it is clear that all models are strongly correlated and that the

reaction of network based portfolios to crises are very similar to market ones,

with the exception of Network method, that have absolutely astonishing prop-

erties, since its annual returns were, except for 2002, always positive during

concerned period.

4.3.3 Possible shortcomings of Network based portfolios

The one possible problem is that the selection method does not explicitly con-

trol over portfolio variance and it accepts the weighted covariance of peripheral

stocks, whatever its value is. One possibility is to introduce riskless asset,

however even if such asset exists it would have extremely low return and ad-

ditionally it would strongly increase transaction costs, since the wealth would

have to be moved in every period, therefore this approach is avoided in this

work. Moreover it seems rather idealistic goal to control for variance even in

Markowitz portfolio since, as implied from figure B.1 covariance matrices are

extremely unstable in time, therefore either new and better measures of risk

have to be presented, or the Markowitz optimization will not be reliable in

controlling of risk as well.

17The term large investment is used for $ 1’000’000 and more.
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For the above presented reasons it is taken as much higher benefit that

maximal exposure to risk of individual assets is constrained at very low lev-

els that could be arbitrarily changed by including more stocks. Additionally

the stability of portfolio composition is very valuable, not only that it limits

transactions, but stable portfolios seem to strongly outperform the ones that

changes according to short term noise as is the case in Markowitz portfolio

that tends, by construction, change according to what stocks performed better

recently.

4.4 Main imperfections of presented data

There are several issues connected to analysis performed above. First of all

as already mentioned for section 4.2/4.3 analysis is performed on only 50/160

stocks that survived at least 10/25 years and made it to S&P 500 index, which

is definitely not a representative sample of overall stock market. Additionally

taxes were not incorporated into calculation of cumulative returns, which cer-

tainly poses certain problem since long term investment gains are usually taxed

at preferential rate.



Chapter 5

Conclusion

The goal of this thesis was to find a portfolio selection method that outperform

equally weighted portfolio while being reasonably stable in time. Three meth-

ods were tested, namely Markowitz model, Markowitz model with penalization

for transaction costs and Minimum spanning tree based portfolio. It was found

that both Markowitz approaches underperformed the equally weighted portfo-

lio even without the presence of transaction costs. Moreover very often these

portfolios were exposed largely to risk of individual companies, usually holding

few stocks with large weights. The MST based portfolio described in section 3.3

on the other hand outperformed the equally weighted one reaching to 19.45%

of annualized returns in period 11.7.1991 - 1.5.2015, when the equally weighted

portfolio reached only 17.42%. Furthermore it was found that the set of pe-

ripheral stocks is very stable in time, giving the possibility to make transaction

vector sparse for each time period. Other outstanding property of MST method

is that it outperforms the equally weighted portfolio holding only fraction of its

stocks.1 Therefore the network analysis is ideal candidate for further research

in context of portfolio optimization.

It was also found that the covariance models presented in chapter 2 slightly

affect the portfolio performance even in the long run, however the materiality

was quite low. The biggest difference was observed for MST portfolio, which,

when it was constructed from the sample covariance matrix returned 19.45%

annually while for weighted covariance matrix it was only 19.14%.

The main takeaway from this thesis is that it is better to invest in periph-

eral stocks, rather than holding market portfolio and that further research in

1This fraction was set to 0.25 in our analysis.
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network analysis constructed portfolios is meaningful.2

2Where peripheral stocks in this context are stock with lowest degree in MST, for more
see section 3.3.2.
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Appendix A

Technical comments and proofs

A.1 Covariance and mean modeling

Theorem 1. Let S denote sample covariance matrix, then rank r(S) ≤ min{N,∆t−
1}.

Proof. From (6) chapter 1.7 it follows that for any two matrices C ∈M(m×n)

and D ∈M(n× p) it holds that r(CD) ≤ min{r(C), r(D)}. Therefore for,

S =
1

∆t
Y

(
I− 1

∆t
11’

)
Y’

it must hold that r(S) ≤ min

{
r(Y), r

(
I− 1

∆t
11’

)}
.

Clearly since Y ∈M(N ×∆t) it holds that r(Y) ≤ min{N,∆t}. Addition-

ally since I− 1

∆t
11’ is an idempotent matrix and from (5) chapter 9 theorem

57 the rank of idempotent matrix equals to its trace which is equal to:

tr(I− 1

∆t
11’) = tr(I)− 1

∆t
tr(11’) = ∆t− 1

∆t
∆t = ∆t− 1

Then

min

{
r(Y), r

(
I− 1

∆t
11’

)}
= min{N,∆t− 1}

Theorem 2. Let logarithmic stock returns be generated by time series generating

process

yi,l = αi + βixt + εi,l (A.1)



A. Technical comments and proofs II

With properties as described in section 2.1.4. Then covariance matrix can be

expressed by following formula:

Φ = σ2
xββ

′ + ∆

Where definitions of individual matrices is defined in 2.1.4.

Proof. Let φi,j denote i-th row and j-th column of matrix Φ. It is necessary

to show that φi,j = Cov(yi, yj).

Cov(yi, yj) = E[(yi − E(yi))(yj − E(yj))] = E[(βi(x− E(x)) + εi)(βj(x− E(x)) + εj)]

=∗ βiβjE[(x− E(x))2] + E[εiεj] = σ2
xβiβj + E[εiεj]

Where E[εiεj] = 0,∀i 6= j and E[εiεj] = V ar(εi) = δi,i,∀i = j . This and third

equality =∗ holds from properties of residuals (They are uncorrelated to each

other, to market returns and have stable variance). Now it is clear that Φ is a

covariance matrix implied by model A.1.

A.2 Optimization process

The purpose of this section is to show that Markowitz portfolio optimization

problem:

Maximize

w′µe (A.2)

Under Constraints

w′Σew ≤ σ2
MAX (A.3)

1′w = 1 (A.4)

1′|w| ≤ 1.6 (A.5)

w ≤ 0.2 ∗ 1 (A.6)

−w ≤ 0.1 ∗ 1 (A.7)

Can be rewritten into SOCP problem. Constraints A.4,A.6 and A.7 are already

in the form of SOC constraint. However it is necessary to show that constraint

A.5 can be rewritten as a set of linear constraints. This is done by introducing

auxiliary variable and the process is described in (16) section 1.2. Additionally
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constraint A.3 is not in the SOC form, but it can be replaced by the following

equivalent condition, that is in SOC form.

Theorem 3. Condition,

w′Σew ≤ σ2
MAX

is equivalent to ∥∥∥Σ1/2
e w

∥∥∥ ≤ σMAX

Where Σ1/2
e Σ1/2

e = Σe

Proof. Fist of all it have to be shown that Σ1/2
e exist.

To prove this it is necessary to show that Σe is positive semidefinite matrix.

For model of Σe presented in section 2.1.2 the proof is straightforward because

according to this model

Σe =
1

∆t
Y

(
I− 1

∆t
11′
)

Y′

=
1

∆t
Y

(
I− 1

∆t
11′
)(

I− 1

∆t
11′
)

Y′

Which clearly must be positive semi-definite. For model presented in section

2.1.3 the proof is given in (10). And for the last one 2.1.4 the positive semi-

definiteness comes from the fact that model 2.1.2 is positive semi-definite.

From the positive semi-definiteness property, theorem about spectral de-

composition of symmetric matrix (Theorem 51) and from Theorem 52 in (5)

chapter 9, it is clear that all eigenvalues of Σe are nonnegative (Theorem 52)

and thereforeΣ1/2
e exist and is also symmetric (Immediate consequence of The-

orem 51).

Now it is straightforward that:

√
w′Σew =

√
w′Σ1/2

e Σ1/2
e w =

√
(Σ1/2

e w)′(Σ1/2
e w)

=
∥∥∥Σ1/2

e w
∥∥∥
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A.3 MST weighing matrix

The weighting matrix that is used to construct MST portfolio is defined for

each time period by following formula:

αt = SQ(2 ∗ (11′ − ρt)) (A.8)

Where function SQ : M(N ×N)→M(N ×N) is defined as:

SQ(A)i,j =
√
Ai,j,∀i, j ∈ {1, .., N} (A.9)

And,

ρt = [Diag(Σt)]
1/2Σt[Diag(Σt)]

1/2 (A.10)

Where Σt is the one step ahead forecast of covariance matrix at time t derived

from any model presented in chapter 2 and function Diag : M(N × N) →
M(N ×N) is defined as:

Diag(A)i,j =

{
Ai,j, ∀i = j

0, else
(A.11)

A.4 Data analysis, technical details

In this section it is discussed how the cumulative returns, annualized returns

and information ratios were calculated. Moreover the algorithm to minimize

number of transactions for MST portfolios is described.

Let wt denote a column vector of optimal weights at time t obtained from

any portfolio selection model. Let Rett+1 denote a column vector of ordinary

returns at time t+1, where its components are calculated according to formula

rett+1
i = P t+1

i /P t
i , where P t+1

i denote price of stock i at time t + 1. Then the

cumulative returns Cret are calculated according to formula:

pt = w′t ∗Rett+1 (A.12)

Cret =
T−1∏
t=1

pt − 1 (A.13)

Where (pt − 1) ∗ 100% is daily portfolio return.

Annualized returns rann and information ratios IRann are calculated as fol-
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lows:

rann = (Cret + 1)251/(T−1) (A.14)

σann = stdev(pt)
√

251 (A.15)

IRann =
rann
σann

(A.16)

Where stdev(pt) denote sample standard deviation of daily portfolio returns.

The constant 251 is used to annualize the data since it is assumed that on

average 1 year have 251 trading days.

Algorithm applied to limit amount of transactions for all periods is such that

all stocks are ordered and when the centrality measure of a given stock is less

than certain quantity that is specified in subsection 3.3.2, where the constant

c from this section is set at c = 4, and it is also less then bN/cc-th stock with

such property, then it is assigned with positive weight. Initially all weights are

set to be equal, however returns of individual stocks tend to differ, which lead

to deviation from the state of equal weights, that is required,1 moreover there

is no limit on risk exposure to individual stock.

For above mentioned reasons the maximal weights are limited to 2.9% and

when this treshold is exceeded, the weight is adjusted to 2.5%, while the wealth

is distributed to 4 stocks with lowest weights and to cover for transaction costs.

This approach is very simplistic, and have very poor performance as apparent

from comparison of tables 4.2 and 4.3. It is used here only to show that

even after controlling for amount of transaction, this approach can surpase the

market.

Finally tickers of stocks used for back testing purposes are for section 4.2:

’MMM,ALXN,ALTR,ADI,ADM,AIZ,T,BBT,BMY,CPB,HSIC,CBG,XEC,CT

XS,CME,COH,CMA,CMI,DTV,DD,ETFC,ETR,BEN,GT,GWW,TEG,KSU,

GMCR,LLL,LEG,MKC,MDT,MSI,NTAP,JWN,ORLY,ORCL,PAYX,POM,P

FE,PBI,PFG,PGR,REGN,SRE,SNA,SO,UNP,VNO,WYNN’

And for section 4.3:

’MMM,ABT,ADBE,AET,AFL,GAS,APD,ARG,AA,ALTR,MO,AEP,AXP,AI

G,AME,AMGN,APC,ADI,AON,APA,AAPL,AMAT,ADM,T,ADSK,ADP,AV

Y,BHI,BLL,BAC,BK,BCR,BAX,BBT,BDX,BBY,HRB,BA,BMY,CA,COG,C

PB,CAH,CCL,CAT,CELG,CNP,CTL,CERN,SCHW,CVX,CB,CI,CINF,CTA

S,CSCO,C,CLX,CMS,KO,CCE,CL,CMCSA,CMA,CSC,CAG,COP,ED,GLW,

1It was observed by the author, that the more equal weights are the better performance
is achieved.
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COST,CSX,CMI,CVS,DHR,DE,D,DOV,DOW,DTE,DD,DUK,DNB,ETN,EC

L,EIX,EA,EMC,EMR,ETR,EOG,EQT,EFX,ES,EXC,EXPD,XOM,FDO,FAS

T,FDX,FITB,FISV,FLS,FMC,F,BEN,FTR,GCI,GPS,GD,GE,GIS,GPC,GT,

GWW,HAL,HOG,HAR,HRS,HAS,HCP,HP,HES,HPQ,HD,HON,HRL,HST,H

UM,HBAN,ITW,IR,TEG,INTC,IBM,IP,IPG,IFF,JEC,JNJ,JCI,JPM,KSU,K,

KEY,KMB,KLAC,KR,LB,LH,LRCX,LM,LEG,LEN,LUK,LLY,LNC,LLTC,L

MT,L,LOW’



Appendix B

Graphs

This section is used for the purpose of displaying important graphs that did

not fit into the body of text.
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Figure B.1: Development of one step ahead variance forecast for equally
weighted portfolio during period 21.4.2006 - 27.3.2015, in-
cluding 2250 trading days for two models of covariance. Ap-
parently the weighted covariance model reacts much faster
on market fluctuations as it puts higher weights on recent
observations.
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are depicted for each portfolio selection methods with $ 4
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others there is obvious correlation between these models.
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Figure B.4: Scatterplots of daily returns from portfolio selection models
described in section 4.3. (Name of model is given at each
axis)
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