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I am grateful to Marek Taševský for his support and guidance during last several
years, which were very important for the success of my PhD research.
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Introduction

In last decades, diffraction has always had an important place among physics goals
of high energy collision experiments involving hadrons. A significant progress
came with measurements by the H1 Collaboration at HERA electron-proton ac-
celerator at DESY laboratory: new results and achieved precision of diffractive
measurements were unprecedented. The success of H1 Collaboration was followed
by experiments with proton-antiproton collistions at the Tevatron accelerator at
the Fermi National Accelerator Laboratory, which pushed the boundaries of the
diffractive understanding even further. Finally, currently the largerst ever built
accelerator, called LHC, has been built at CERN and it incited the curiosity of
the diffractive community once again, as a significant part of proton-proton in-
teractions is made up by diffractive processes.

These most important milestones, along with other relevant topics, are briefly
discussed in the introductory Chapter 1. Chapter 2 provides a curious reader
with a technical overview of the LHC accelerator and the ATLAS detector, fol-
lowed by a description of a software equipment (Chapter 3) and Monte Carlo
generators (Chapter 4) used for the study presented in this thesis. Chapter 5
gives a brief but complete description of a jet-related performance work done
within the ATLAS Calorimeter Section and Chapter 6 summarizes in detail all
important studies crucial for the feasibility of the diffractive dijet analysis - a
design and validation of new trigger selection scheme, pile-up studies and jet se-
lection criteria. Chapters 7 and 8 define and validate the measurable quantities,
the rapidity gap size ∆ηF and the fractional momentum loss of the diffractive
proton, ξ̃±. This turned out to be a challenge since all detector effects and limi-
tations have to be well understood and matched to the generator level, to which
the measurement of ∆ηF and ξ̃± is corrected (details can be found in Chapter 9).
Each experimental research is influenced by a number of systematic uncertainties,
quantified in Chapter 10, and contributions from background processes (Chapter
11). Finally, fully corrected results (compared to various Monte Carlo models)
and conclusions are discussed in detail in Chapter 12 and summarized in Chapter
13.

The physics analysis presented in this document is based on the work performed
during my PhD studies. It was regularly presented and thoroughly discussed
within the ATLAS Standard Model Soft QCD and Diffractive Physics group
meetings and is currently in an advanced state of the approval process within the
ATLAS Collaboration, which will lead to the ATLAS publication.
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1. Strong interactions and
diffraction

1.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics (summarized e.g. in [1]), based on
a quantum field theory, describes the universe of elementary particles and basic
interactions acting among them. It is based on SU(3)C ⊗ SU(2)L ⊗ U(1)Y sym-
metry group, where C stands for the color charge, L for the left handed coupling
of the weak isospin doublets and Y for the weak hypercharge. According to the
Standard Model describing the electromagnetic, weak and strong interactions, the
elementary particles interact via the exchange of gauge bosons (arising from the
requirement of the local gauge invariance of corresponding Lagrangians) having
an integer spin. The field particle for electromagnetic interaction is γ (photon),
for weak interaction W± and Z0 and for strong interaction the field particles
are gluons (eight of them corresponding to eight generators of the SU(3)C color
group).

The matter fields are grouped in three generations, each of which consists of
two leptons and two quarks. Leptons are either electron e, muon µ or tauon τ
and their corresponding neutrinos νe, νµ and ντ , while quarks of flavors up (u),
down (d), charm (c), strange (s), top (t) and bottom (b) are grouped as (ud),
(cs) and (tb). Each of the fermions (particles with half-integer spin) has more-
over an antimatter counterpart of the same mass but opposite additive quantum
numbers and each of the quarks has one of the three independent color quantum
numbers. While leptons e, µ and τ have an electric charge −qe1, the quarks have
a fractional charge of 2/3 · qe (up-type) or −1/3 · qe (down-type).

Finally, the spontaneous symmetry breaking is the mechanism which gives mass-
es to the fermions and bosons. An essential feature of such a mechanism is an
appearance of a new heavy scalar particle - the Higgs boson. After the discovery
of the top quark at the Tevatron accelerator at the Fermi National Accelerator
Laboratory, the Higgs boson was the last missing piece of the SM waiting to be
discovered. That was the main challenge for the Large Hadron Collider (LHC)
and its experiments such as the ATLAS. Eventually, three years of the LHC run-
ning and systematic data analysis resulted in the Higgs boson discovery in 2012
and led to the Nobel price in Physics award for Peter Higgs and Francois Englert.

1.2 Strong interactions

The so-called Mandelstam variables are often introduced to describe the gener-
alised scattering process of the form ab→ cd, see Figure 1.1. The most commonly
used ones are s and t, the square of the centre-of-mass energy of the interaction

1The elementary electric charge qe
.
= 1.602 · 10−19 C.
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and the square of the four-momentum transfer:

s = (A+B)2 = (C +D)2 ≈ 2A ·B ≈ 2C ·D (1.1)

t = q2 = −Q2 = (A− C)2 = (B −D)2 ≈ −2A · C ≈ −2B ·D (1.2)

The A, B, C and D are four-vectors of the incoming or outgoing particles.
The commonly used approximations indicated in these equations are valid in the
high energy limit, i.e. when the particle masses can be neglected.

s

t

A

B

C

D

Figure 1.1: Generalised scattering process.

The Quantum Chromodynamics (QCD) [2] is a theory of strong interactions based
on SU(3)C color group. The QCD Lagrangian containing colored quark fields is
required to have the local gauge symmetry, which in turn leads to the massless
vector bosons - gluons - as the mediators of the strong nuclear force. The QCD
Lagrangian can be written as

LQCD = −1

4
F a
µνF

a µν +

nf∑
flavors k

Ψk(i��D −m)Ψk + Lgaugefix + Lghost (1.3)

where

Dµ = ∂µ − igAaµ
λa

2
(1.4)

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (1.5)

The Ψk are quark fields of flavor k, a = 1...8 represent eight spin-1 massless gluon
fields Aaµ mediating the strong interaction, the kinetic term −1

4
F a
µνF

a µν intro-
duces the gluon self-interactions and the fabc factors are related to the generators
of the SU(3)C color group Gell-Mann matrices λaij ([λa, λb] = iλc). Lgaugefix is the
gauge fixing term and the Lghost is there to cancel the unphysical degrees of free-
dom of the gluon field which would otherwise appear in the measurable quantities.

The generators of the QCD symmetry group, the Gell-Mann matrices, result
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in 32 − 1 = 8 colored gluons 2. The QCD potential between two quarks can be
approximated as

V (r) = kr − αS

r
, (1.6)

where k is a constant, r is a radial distance of the two quarks and αS is
the coupling of strong interactions. In this simple model, the potential energy
increases linearly with r until it is energetically more favorable to produce the
quark-antiquark pair.

The calculation of scattering amplitudes at the leading order (LO) is usally
straightforward. When going to higher orders of the perturbation theory, how-
ever, one must account for the Feynman diagrams with fermion or boson loops.
Calculations of such loops lead to the infinities due to the integrals over arbitrarily
large momenta (so-called “UV divergences”). The resulting infinite cross-sections
would thus be incapable to describe physical processes. To deal with this issue,
the so-called “renormalization” procedure has been introduced to remove the UV
divergences from the measurable quantities. The basic concept of the renormal-
ization is in redefinitions of basic “bare” quantities such as the fermion masses,
electrical charge, strong coupling constant αS etc. The renormalization procedure
introduces new quantities which are, unlike their “bare” predecessors, physically
relevant.

In case of the strong coupling constant, its renormalized counterpart depends
on the four-momentum transfer Q2 (as defined above), which is a characteris-
tic scale of the interaction. In the leading order, the αS can be schematically
expressed as

αS(Q2) ≈ 1

β0ln(Q2/Λ2
QCD)

, (1.7)

where β0 is a negative constant (reflects the number of quark flavors) and
ΛQCD ∼ 200 MeV is a scale where the coupling diverges. This perturbative result
is not valid at small scales (below Q ∼ 1 GeV) corresponding to the typical mass
of light hadrons. Given the Equation 1.7, the αS is rather than “constant” called
the “running constant”, as it depends on the Q2. At low Q2 (large distances)
the coupling is large, which results in quarks and gluons being confined withing
hadrons. In the other limit where Q2 is large (small distances), the asymptotic
freedom exists and the perturbative approach of QCD calculations can be used.
The decrease of αS with increasing Q2 was measured in several experiments and
is plotted in Figure 1.2.

1.3 The diffraction

The total cross section in hadronic scattering experiments can be classified into
three categories: the elastic, diffractive and non-diffractive (ND) component. At

2The ninth combination is a color singlet and thus must be excluded.
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Figure 1.2: The running coupling constant αS as a function of Q2 as measured in
various experiments and with the latest ATLAS results. Taken from [3].

LHC energies, the elastic part accounts for about 20 % of the total cross section
while the inelastic contribution (diffractive and non-diffractive) is the remaining
80 % (out of which ∼ 25 − 30% of the σinelastic is attributed to the diffractive
channels).

The diffraction can be defined as an interaction which is governed by the ex-
change of quantum numbers of the vacuum. This process can be described in
the QCD at the lowest order by the exchange of two gluons in the overall color
singlet state. This simple approach is not, however, able to describe the mea-
sured data. Moreover, as the diffraction processes are generally soft, i.e. governed
via exchanges with typically small momentum transfers, their description in the
realm of the QCD thus becomes complicated: the calculations at small momenta
transfers (large running coupling constant) cannot be carried out via perturbative
expansion. The diffraction is thus often described by models such as the Regge
theory [4].

1.3.1 Regge theory and the concept of the pomeron

The Regge theory [4] was introduced to study properties of the particle scattering.
It was based primarily on the analytical properties and unitarity of scattering
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amplitudes. The quantum mechanics classifies the bound states of a spherically
symmetric potential according to their angular momentum and the energy. These
bound states appear as poles of the partial wave amplitude with a given integer
angular momentum of the integer type (l). The idea introduced by the Regge
theory was to consider the l in these amplitudes as complex rather than integer.
This led to the concept of the Regge trajectory as the poles lie on a straight line
in cases of “well behaved” potentials (such as Yukawa). The Regge trajectory is
parametrized by the linear equation

α(t) = α(0) + α′(t) (1.8)

where α(0) is the so-called intercept and the α′ is the t-dependent trajectory
slope.

The hadronic interaction is modeled, within the Regge theory, in terms of ex-
changes of reggeons and pomerons, which are, rather than real single particles,
a simplistic parametrizations of complicated soft gluon exchanges lying beneath.
They are, in fact, defined by all particles located on the Regge trajectory. All
known resonances lie on reggeon trajectories with α(0) < 1, which leads to a
major consequence: the total cross section should decrease with the increasing
centre-of-mass collision energy.

The pomeron trajectory was introduced in order to explain the increase of the
total cross section with the increasing center-of-mass energy, as the reggeon ex-
change only predicts a slow decrease. The experimental fit done by Donnachie
and Landshof showed [5] that the scattering data is well described with a com-
bination of two different Regge trajectories, the reggeon (R) and the pomeron
(P). The pomeron intercept is found to be greater than one and can thus account
for the increase of the total cross section. Note that the pomeron trajectory is
there to only parametrize the partonic activity in the hadron scattering, it is not
associated with any real particle exchange.

1.3.2 Diffractive dissociation

The diffractive contribution to the inelastic cross section can be classified into
three types of processes:

• Single Diffractive dissociation (SD)

• Double Diffractive dissociation (DD)

• Central Diffraction (CD)

In terms of the final state properties, all these interactions are characterised by
a presence of so-called rapidity gaps as regions in pseudorapidity η devoid of
hadronic activity. Rapidity gaps can occur in non-diffractive events as well due
to fluctuations in hadronisation, though the rapidity gap size is exponentially
suppressed. This is in contrast with the SD, DD and CD processes where the
large rapidity gap size is one of the key characteristics.
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Figure 1.3: Schematic view of three diffractive interactions at hadron-hadron
colliders: a) Single Diffractive dissociation, b) Double Diffractive dissociation, c)
Central Diffraction.

Single Diffractive dissociation Single Diffraction, depicted in Figure 1.3a,
is the process of the form a + b → a + X. One of the interacting hadrons (a, b)
remains intact while the other one dissociates into a multi-particle final state X
with the same quantum numbers as the original particle. A rapidity gap occurs
between the system X and the scattered hadron a. In Regge theory, the cross
section is calculated in a so-called triple-Regge limit with a triple-pomeron vertex
[6]. It can be written as

d2σSD

dM2
Xdt

= fP(M2
X , t)σP(M2

X) (1.9)

where MX is the invariant mass of the dissociated system, σP(M2
X) is the cross

section of interaction between the pomeron and the particle b and fP(M2
X , t),

which is often referred to as as the pomeron flux, is given by

fP(M2
X , t) =

1

16π2s
|gP(t)|2

(
s

M2
X

)2αP(t)−1

, (1.10)

where gP(t) is a function including terms corresponding to the triple-pomeron
vertex and αP(t) is defined by Equation 1.8.

Double Diffractive dissociation These are processes of the form a + b →
X + Y , see Figure 1.3b. Both interacting particles dissociate into final systems
X and Y with the same quantum numbers as original particles a and b. The
rapidity gap is located between multi-particle states X and Y .

Central Diffraction Finally, the interactions of the form a+ b→ a+X+b (see
Figure 1.3c) where two rapidity gaps are produced between system X and either
scattered particle (a, b), are called Central Diffraction. This is achieved by radi-
ating a pomeron from each intecracting particle. CD processes are classified as
a Central Exclusive Production where both pomerons bring all of their momenta
into the hard subprocess and the Double Pomeron Exchange where only fractions
of those momenta are used (consequently, pomeron remnants are observed).

12



1.3.3 Hard diffraction

Hard diffraction is an interaction where, next to the usual diffractive rapidity gap
signature, the hard partonic scattering takes place. Just as in case of the soft
diffraction, events can have forward, central or multiple rapidity gaps. However,
unlike in soft interactions in which it is not possible to determine the underlying
dynamics and understand the pomeron structure, the hard diffractive interaction
containing jets in the final state (introduced by Ingelman and Schlein [7]) provides
a way of probing the nature of the exchanged object. In this view, the probability
that a proton emits the pomeron is also based on the Regge theory as in the soft
diffraction, however the pomeron trajectory α(t) is different. While in the soft
diffractive case the pomeron is described by the trajectory only, it is considered
a compound object with partonic structure in the hard diffractive events.

The hard diffractive interactions can be, given their nature (presence of high
mass state), calculated perturbatively. They provide a possibility to measure the
diffractive parton distribution function (DPDF) of the proton. In the Ingelman-
Schein approach, the cross section factorizes into the DPDF and the cross section
of the hard partonic sub-process, σ̂(x,Q2). The cross section can be schematically
expressed as

σ = fD(x,Q2, ξ, t)⊗ σ̂(x,Q2) , (1.11)

where the DPDF of the proton can be further decomposed into the pomeron
flux factor (fP/p) and the probability to find a parton i in the pomeron (fi/P)

fD(x,Q2, ξ, t) = fP/p(t, ξ)fi/P(Q2, x) . (1.12)

ξ is the fractional momentum loss of the scattered proton. The Feynman diagram
of the hard single diffractive event with the hard scatter is depicted in Figure 1.4.
An additional variable zP denoting the momentum fraction of the pomeron carried
by the parton entering the hard interaction is introduced. It can be expressed in
terms of the invariant mass of the diffractive final state as

zP =
Q2

Q2 +M2
X

(1.13)

and relates to the Bjorken x via the equation x = xPzP. The low invariant
mass systems denoted as XP and XP are the pomeron and proton remnants.

Diffractive Parton Distribution Functions

The first experimental observation of a hight-pT jet production in diffractive in-
teractions was done by the UA8 Collaboration in pp̄ collisions at CERN [8].
Scattered protons were detected in forward spectrometers, while the center of
the detector was occupied by jets having similar distributions as those from the
inelastic parton-parton interactions. This measurement thus suggested a parton
scattering beneath the diffractive processes which in turn allowed for the inter-
pretation of the measurement in terms of diffractive PDFs.
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Figure 1.4: Single diffractive proton-proton interaction with hard scatter.

The DPDFs have been precisely measured by the HERA experiments by per-
forming NLO QCD fits [9] of a general form for gluon and quark densities

zfP
i (z,Q2) = Aiz

Bi(1− z)Ci (1.14)

where fP
i is the DPDF, z is the longitudinal proton’s momentum fraction car-

ried by the parton entering the sub-process and Ai, Bi, Ci are the fit parameters.
These fits were performed on the diffractive deep inelastic scattering data and
are denoted as “H1 2006 DPDF Fit A” and “H1 2006 DPDF Fit B”, where in
the “Fit A” the B term for gluons was omitted while in the “Fit B” both the
B and C gluon terms were omitted. In both of these DPDFs the majority of
the pomeron momentum is carried by gluons at small zP, with a small quark
contribution. Results are presented in Figure 1.5 along with the comparison to
the Tevatron data.

The DPDF set used in the physics analysis presented in this thesis are the “H1
2006 DPDF Fits B” [9], for which both leading order and NLO PDF sets are
available, with little difference between them. The fit used to extract these
PDFs simultaneously obtained an effective pomeron trajectory with αP(0) =
1.118± 0.008 (exp.)+0.029

−0.010 (sys).

1.3.4 Diffractive variables

Among commonly used variables describing the diffractive dissociation are:

• MX(Y ) - the invariant mass of the dissociation system X (Y )

• ξ - fractional momentum loss of the scattered proton

• ∆η - a size of the rapidity gap
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Figure 1.5: Comparison of the Tevatron data (in the yellow band) to the predic-
tions based on the H1 measurement of the DPDFs, as a function of the momentum
fraction of the pomeron carried by the parton involved in the hard scatter [10].

What is worth noting is the fact that these variables are not independent. The
fractional momentum loss can be expressed in terms of the invariant mass

ξ =
pIn

Z − pOut
Z

pIn
Z

=
M2

X

s
. (1.15)

Moreover, the size of the rapidity gap is closely correlated with ξ via

∆η ∼ − log ξ , (1.16)

meaning that the smaller the ξ (MX), the bigger the rapidity gap. It is there-
fore obvious that the reagions of interest for providing an evidence of a hard
diffractive contribution into the dijet cross section are large rapidity gaps and
small ξ.

1.3.5 Factorization breaking

The QCD factorization, expressed by Equation 1.11, works well for the ep deep
inelastic collisions as confirmed by many HERA measurements and it was also
proven theoretically [11]. At proton-antiproton collisions at Tevatron, however,
the factorization was observed to be broken, as evidenced e.g. by Figure 1.5
where the measured DPDF extracted from diffractive dijet events is compared
with predictions based on HERA measurements. At the leading order, the ratio
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of the SD to ND events is equal to the ratio of the respective structure functions.
The ratio R(x, ξ) integrated over t and jet ET is

RSD/DD(x, ξ) =
nSD
jj

nND
jj

'
F SD
jj (x, ξ)

FND
jj (x)

, (1.17)

where n
SD (ND)
jj is the number of single-diffractive (non-diffractive) dijet events,

FND
jj (x) is the known ND structure function and F SD

jj (x, ξ) is the diffractive struc-
ture function, which can thus be extracted as F SD

jj (x, ξ) = RSD/DD(x, ξ)FND
jj (x).

The CDF experiment measured the diffractive dijets in proton-antiproton colli-
sions, see e.g. [10]. If the QCD factorization held, the production cross-section
could be written as a convolution

dσpp̄→p⊕jjX = fP/p(ξ, t) · fi/P(zP = x/ξ, µ) · fj/p(x2, µ)⊗ dσjjsub(zP, x2, µ) , (1.18)

where fP/p(ξ, t) is the pomeron flux, fi/P(zP, µ) is the density function of a par-
ton i carrying fraction zP of the pomeron momentum, fj/p(x2, µ) is the density
function of a parton j carrying a momentum fraction x2 of the proton, µ is the fac-
torization and renormalization scale (set to equal values) and the dσjjsub(zP, x2, µ)
is the sub-process cross-section of the inelastic hadron-hadron scattering. The
CDF measurement has proven that the universal QCD factorization in diffrac-
tion is broken.

1.3.6 Gap survival probability

It was believed that the diffractive parton distribution functions measured at
HERA in the ep collisions are universal, i.e. that they can be used to provide
predictions for other diffractive experiments, such as the structure function mea-
surement in pp̄ collisions at the Tevatron. This comparison, presented in Figure
1.5, reveals a significant disagreement. The Tevatron measurement is supressed
by an approximately constant factor 10 with respect to the HERA-based pre-
dictions, though some zP-dependence is observed. This is caused by the above
mentioned factorization breaking. While the QCD factorization works very well
in diffractive ep collisions, it is broken in hadron-hadron collisions due to addi-
tional soft partonic interactions and rescattering among spectator partons. The
soft interactions lead to the breaking of the outgoing proton and a loss of the
rapidity gap, which is filled by this additional particle production. This effect is
usually referred to as the gap survival probability, denoted as S2. The diffractive
cross section in hadron-hadron colliders can then be expressed as the cross section
of the hard scattering multiplied by the S2.

The so-called KMR model [12], implementing the QCD factorization breaking
by multi-pomeron exchanges, is successful in reproducing the Tevatron measure-
ment for the single diffraction in dijet events, where the soft survival probability
was found to be S2 ∼ 0.1. A similar prediction was made for the LHC collisions
at 7 TeV of the center-of-mass energy which is expected to be around 0.1, but
probably smaller.
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1.4 Diffractive dijets measured by the CMS Col-

laboration

The CMS Collaboration has published a measurement of the diffractive contri-
bution to the dijet production as a function of the fractional momentum loss of
the scattered proton. The overall integrated luminosity used for this analysis was
2.7 nb−1 and only runs with low instantaneous luminosity (low rate of multiple
interactions per bunch crossing) were used.

The events of interest were selected by requiring two high-pT jets (pj1, j2
T > 20

GeV) reconstructed by the anti-kT jet finding algorithm with distance parame-
ter 0.5. Moreover, the diffractive contribution was enhanced by requiring that
the most forward particle flow (PF) object (calorimeter cluster or track) has
ηmin > −3 or ηmax < 3. Since the measurement is done in the region |η| < 4.9,
these cuts are equivalent to a requirement on a rapidity gap size ∆η > 1.9 ranging
from the edge of the CMS detector. Charged PF objects in the central region
(|η| < 2.4) entering the ξ calculation were selected by pT > 200 MeV cut while
in the forward region (3 < |η| < 4.9) the energy cut E > 4 GeV was employed.

Results are presented in Figure 1.6. The data are compared to various Monte Car-
lo models, both diffractive (POMPYT SD, POMWIG SD and PYTHIA8 SD+DD
at the leading order (LO) and POWHEG at the next-to-leading order (NLO))
and non-diffractive (PYTHIA6 and PYTHIA8 at the LO). The DPDFs used in
diffractive models are from the H1 2006 fit B. The non-diffractive MC significant-
ly underestimate data in the lowest ξ bin (3 · 10−4 < ξ < 2 · 10−3), while the
SD models predict about five times more events in the same region. Therefore,
this bin can be used to obtain an upper limit on S2 by dividing the cross section
given by the POMWIG or POMPYT and the cross section seen in data (ND
contribution neglected): S2 = 0.21± 0.07. This result needs to be corrected for a
contribution from the proton dissociation of the scattered proton into a low-mass
state, which escapes undetected into the forward region. Correcting for this ef-
fect, the gap survival probability is S2 = 0.12± 0.05. Doing the same procedure
but with the NLO POWHEG generator, the survival probability is found to be
S2 = 0.08± 0.04. Given the large uncertainties of both the measurement and the
KMR prediction [12] for the LHC, these results can be considered in rather good
agreement with the theoretical prediction.
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Figure 1.6: Results of the CMS Collaboration on the single diffractive dissociation
in dijet events at

√
s = 7 TeV. The differential cross section is measured as a

function of the fractional momentum loss ξ. The S2 is extracted from the lowest-ξ
bin by comparing the data and the SD POMPYT and POMWIG. [13]
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2. The LHC accelarator and the
ATLAS detector

The European Organisation for the Nuclear Research (CERN1) is an international
organisation founded in 1954 on the Swiss-French border near Geneva. Through-
out its history it played an important role in the advancement of not only the
fundamentals of the particle physics, but of related as well as seemingly unre-
lated areas such as a significant science-to-business (and vice versa) technology
transfer or the creation of the World Wide Web. Being founded on a principle of
an open access for every scientist regardless the politics or nationality, it provides
a long-term platform not only for a free exchange of ideas, but also for bringing
together people of different political, cultural, historical and religious background
and playing thus its part in building a better comprehension in the world recov-
ering from the two worst wars in human history.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [14] is an accelarator with 27 km in circum-
ference built at CERN and designed to accelerate and collide protons, Pb ions
or proton-ions. It can thus be regarded as an multi-purpose collider providing a
basis for a variety of distinctive particle physics measurements. The main physics
program is focused on proton-proton collisions at the

√
s = 14 TeV centre-of-mass

energy (the designed value; in reality, it was 7 TeV during the first phase of the
running) with the instantaneous luminosities of L = 1034cm−2s−1. In case of
Pb-Pb collisions, the centre-of-mass energy can range up to 5.5 TeV per nucleon
pair with the instantaneous luminosity of 1027cm−2s−1.

Along the LHC ring, two general purpose detectors were built for probing pro-
ton and Pb ion collisions: the ATLAS (A Toroidal LHC ApparatuS) and CMS
(Compact Muon Solenoid). In addition to the ATLAS and CMS, three other
experiments were built: the ALICE specialized in heavy ion collision studies, the
LHCb probing the B-physics and the TOTEM measuring the total proton-proton
cross section (and sharing the interaction point with the ATLAS).

From the technological perspective, the LHC is a ring made of 1232 supercon-
ducting dipole magnets producing a magnetic field of the strength of 8.33 T.
The operating temperature is 1.9 K which is achieved by the super-fluid liquid
helium. The dipole magnets contain two beampipes (for a simultaneous clock-
wise and counter-clockwise accelaration) surrounded by magnetic coils made of
niobium-titanium cables. The accelaration process takes place in radio-frequency
cavities installed in sector 4 of the LHC. In addition to the dipole magnets, mag-
netic elements of higher orders (such as quadrupole focusing magnets) are also
installed to maintain the quality of the beam of particles and to, eventually, col-

1The acronym stems from the French Conseil Européen pour la Recherche Nucléaire.
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lide them in one of the four interaction point (IP). In total there are over 6600
superconducting magnets installed at the LHC.

The beam of particles accelarated in the LHC can be composed of up to 2808
bunches, each of them having ∼ 1011 protons. The time distance between bunch-
es can go down to 25 ns which makes about 8 m in length as the protons are
accelerated nearly to the speed of light. The typical bunch length is 7.55 cm and
their transverse dimension at the ATLAS IP is 16.7 µm.

An important characteristics of the hadron colliders is the luminosity, which re-
lates the number of interactions and the cross section of the given physics process
via formula Nint = σ ·L. As the LHC beams have a Gaussian profile, the instan-
taneous luminosity can be expressed as

L =
nbfrn1n2

2πσxσy
. (2.1)

Here the nb is the number of bunches, fr the bunch-crossing frequency, n1 and n2

the number of protons per a bunch in each beam and σx and σy are the Gaussian
profiles in each x and y axis.

2.2 Multiple proton-proton interactions (pile-up)

Due to properties of bunches at the LHC such as a beam profile, number of
protons in a bunch etc., there is a significant probability of more than just one
interaction per bunch crossing. This is known as a pile-up. It is made of soft-scale
interactions which form a background to hard-scale interactions, such as high-pT

jet production. Since pile-up arises from multiple independent interactions, the
effect of the high pile-up environment on a physics measurement can be inferred
from studies of isolated soft interactions.

Using a collision rate, a total proton-proton cross section and an instantaneous
luminosity, the mean number of interactions per bunch crossing can be calculated
as

µ =
σtot ·L

f
. (2.2)

Taking the nominal instantaneous luminosity value L = 1034cm−2s−1, the mean
collision frequency f = 31.5 MHz and assuming the total cross section σ = 100
mb = 10−25cm2, we get to approximately 32 interactions per bunch crossing.

The in-time pile-up discussed above (multiple interactions) is just one contri-
bution to overall pile-up effects. Another one is so-called out-of-time pile-up,
which is caused by superimposing signals being read-out from the detector in
the current bunch crossing with part of the signal from a previous bunch cross-
ing. This can happen when the signal response of a particular detector (such as
calorimeter) is much longer than the frequency of bunch crossings.
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2.3 The ATLAS Experiment

The ATLAS Experiment is by volume the largest detector currently installed
at the CERN complex, having approximately 44m in length, 25m in height and
weighting 7000 tonnes. Its forward-backward symmetry layout is shown in Figure
2.1. Going from the collision point outwards, it has onion-like design with con-
centric rings of detector layers covering almost the entire 4π solid angle. It was
built as a general-purpose detector capable to measure as wide range of physics
processes as possible. This section is dedicated to the more detailed description
of its individual sub-detectors in more detail [15].

It is appropriate to introduce coordinate system and nomenclature first. The
origin of the right-handed coordinate system is defined as the nominal interaction
point, while the beam direction defines the z-axis and the x−y plane is transverse
to the beam direction. The positive x-axis points from the interaction point to
the center of the LHC ring while the positive y-axis points upwards. The side-
A (side-C) of the detector is defined as that with positive (negative) z. The
azimuthal angle φ is measured around the beam axis while the polar angle θ is
that from the beam axis. The pseudorapidity is defined as η = −ln tan (θ/2),
in case of massive objects the rapidity is y = ln[(E + pZ)/(E − pZ))]/2. The
transverse quantities, such as a momentum pT or an energy ET , are defined in
the x − y plane. The distance in pseudorapidity-azimuthal space is defined as
∆R =

√
∆η2 + ∆φ2.

Figure 2.1: The ATLAS detector with its major sub-detectors [15].

2.3.1 The Inner Detector

The closest to the interaction point is the so-called Inner Detector (ID) [16] ded-
icated to the precision measurement of trajectories of charged particles. It is
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designed to provide a robust tracking in a high radiation environment produced
at the LHC luminosities. The ID consists of three different layers depicted in
Figure 2.2, all of them placed in the magnetic solenoid field of the strength of 2
T. This detector system has to provide a sufficiently high resolution to identify
secondary vertices associated with long lived states such as b-hadrons. The ID
measurement range is within |η| < 2.5 and is especially effective for 0.2 GeV
< pT < 150 GeV.

Figure 2.2: The layout of the Inner Detector with its subsystems [15].

To achieve the momentum and vertex resolution requirements, high-precision
measurements must be made with fine detector granularity. The Pixel Detector
(the closest to the beam) provides the highest granularity. The ATLAS experi-
ment contains three pixel layers, each of which has pixels of nominal size 50×400
µm with intrinsic accuracy of 10 µm in R−φ and 115 µm in z. The pixel detector
has approximately 80.4 million readout channels.

The Pixel Detector is surrounded by the Semi-Conductor Tracker (SCT) with
eight strip layers (providing four space points) crossed by each track. The mean
pitch of the strips is approximately 80 µm yielding a 17 µm hit resolution in
R − φ and 580 µm in z. The total number of readout channels in the SCT is
approximately 6.3 million.

The outer part of the Inner Detector is made of the 4 mm wide straw tubes of
the Transition Radiation Tracker (TRT). The transition radiation photons are
emitted by charged particles passing through inhomogeneous media such as a
boundary between materials with different dielectric constants. These are ab-
sorbed by the xenon-based gas mixture in the straw tubes. A large number of
hits (typically 36 per track) is provided for particles with pseudorapidity up to
|η| < 2.0, resulting in a comparable measurement precision to pixels and SCT in
spite of the smaller TRT resolution. This is due to a better magnetic separation
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at higher radii. The total number of TRT readout channels is approximately
351,000.

The precisions of the Inner Detector in the plane perpendicular to the z axis
(σR−φ) and in the longitudinal z direction (σz) are expected to be

σR−φ(µm) = 13⊕ 62

pT

√
sin θ

(2.3)

σz(µm) = 39⊕ 90

pT

√
sin θ

(2.4)

2.3.2 Calorimeter system

The ATLAS calorimeter system is presented in Figure 2.4. All calorimeters in-
stalled are of the sampling type where regions of absorber material are alternated
with active medium. This calorimeter systems covers the pseudorapidity range
up to |η| < 4.9 utilizing different technologies. In the central part where there
is an overlap with the Inner Detector, the calorimeters have high granularity to
provide for a precision measurement of electrons and photons. Starting from
the central pseudorapidities, there is an electromagnetic calorimeter covering a
range |η| < 3.2, a hadronic barrel calorimeter covering |η| < 1.7, a hadronic
end-cap calorimeter in the range of 1.5 < |η| < 3.2 and a forward calorimeter in
3.1 < |η| < 4.9. These segments are made of two different techniques satisfying
different physics requirements and varying radiation environment: a scintillating
technique in the barrel hadronic calorimeter and the liquid Argon (LAr) tech-
nique in the rest. The latter is more radiation resistent and is therefore more
suitable for segments closer to the beam pipe.

Calorimeters are required to provide a good containment of electromagnetic and
hadronic showers. Their dimensions are thus carefully chosen. For the EM
calorimeter the total thickness is approximately 22 radiation lengths (X0) in
the barrel and 24 X0 in end-caps. A good resolution of high energy jets can be
achieved by the 9.7 interaction lengths (λ) of active calorimeter in the barrel (10
λ in the end-caps). The thickness together with the large η-coverage also ensures
a good missing transverse energy measurement.

Electromagnetic calorimetry

The Electromagnetic Calorimeter (ECal) is dedicated to the measurement of the
energy of electrons and photons. It consists of barrel part (covering |η| < 1.475)
and two end-caps 1.375 < |η| < 3.2). The EM calorimeter is using a liquid Ar-
gon as an active medium and an accordion-shaped kapton electrodes and lead
absorbers for showering. The accordion symmetry provides complete φ coverage
without cracks. The lead thickness of of absorber plates has been optimized as a
function of η to provide good performance in energy resolution.

Over the high precision measurement region which overlaps with the Inner De-
tector (|η| < 2.5), the ECal is segmented in three sections of high granularity.
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Figure 2.3: The ATLAS calorimeter system [15].

For the rest of the acceptance, the calorimeter is segmented in two sections with
coarser granularity.

In the region of |η| < 1.8, a presampler precedes the ECal. It is used to correct
for the energy lost by electrons and photons before reaching the EM calorimeter.
The presampler consists of an active LAr layer of thickness 1.1 cm (0.5 cm) in
the barrel (end-cap) region.

The energy resolution of the EM calorimeter, consisting of the sampling, noise
and constant terms, was measured [17]

σ(E)

E
=

10%√
E[GeV ]

⊕ 0.39GeV

E
⊕ 0.3%. (2.5)

Hadronic calorimetry

The hadronic calorimeters form another detector-layer right outside the ECal en-
velope. Both the LAr and steel-scintillator technology are used in the ATLAS
hadronic system. It consists of the hadronic barrel (TileCal) covering |η| < 1.7,
the Hadronic End-cap extending the range to 1.5 < |η| < 3.2 and finally the
Forward Calorimeter (FCal) in 3.1 < |η| < 4.9.

Showers caused by hadrons consist typically of an electromagnetic component
and a wider hadronic shower. The nuclear interaction length λ is introduced as
a counterpart to the radiation length X0. It is a length scale required to reduce
the hadron’s energy by a factor of e. It is important in order to decide in the
matter of the calorimeter thickness which should be big enough to absorb all
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the energy of hadronic showers. Failing to do so would cause punch-throughs (a
leakage of a part of the hadronic energy out of the calorimeter) to the muon sys-
tem. Building the calorimeter with too high thickness would, on the other hand,
cause an undesirable multiple scattering of muons affecting thus negatively the
muon momentum measurement resolution. The total thickness of the hadronic
calorimeter is 11 λ at the η = 0. The amount of material in different calorimeter
segments as a function of a pseudorapidity is shown in Figure 2.4.
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Figure 2.4: The amount of material in different calorimeters in units of interaction
length λ ([15]). The material in front of the EM calorimeters is also shown, as
well as the total amount of material in front of the first active layer of the muon
spectrometer (up to |η| < 3.0).

The TileCal resolution was measured in a pion test beam [18] and found to be

σ(E)

E
=

52%√
E[GeV ]

⊕ 5%. (2.6)

2.3.3 Muon chambers

The presence of a high pT muon in the collision event is a signature of many
Standard Model as well as Beyond Standard Model interactions. Their relatively
easy measurement can be also exploited by trigger system (described later on in
this Chapter). Muons originating in the interaction point in the center of the AT-
LAS detector leave hits in the Inner Detector and deposit energy in calorimeters
before reaching the muon spectrometer located at the outer part of the ATLAS
experiment. The general idea of the muon detection method is a measurement of
a curvature of a muon track in the large superconducting air-core toroid magnets.
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In the region |η| < 1.4, the magnetic bending is provided by the barrel toroid,
while in the 1.6 < |η| < 2.7 region there are two smaller end-cap magnets. In
the 1.4 < |η| < 1.6 transition region, the magnetic deflection is provided by com-
bination of both barrel and end-cap fields. The magnetic field is designed to be
orthogonal to the most of the muon flight directions. Toroids are instrumented
with separate trigger and high-precision tracking chambers.

The ATLAS muon system is outlined in Figure 2.5. Over most of the pseudo-
rapidity range, the precision tracking is provided by the Monitored Drift Tubes
(MDTs). They are aluminium tubes of 30 mm in diameter filled with the argon
gass and with a central tungsten wire. The position resolution provided is of 80
µm. At larger pseudorapidities, namely 2 < |η| < 2.7, the Cathod Strip Cham-
bers (CSCs) with larger granularity are used. CSCs are multi-wire proportional
chambers with cathodes segmented into strips. Their position resolution is 60 µm.

Figure 2.5: The ATLAS muon system [15].

The fast muon trigger system covering the |η| < 2.4 range consists of the Resis-
tive Plate Chambers (RPCs) in the barrel region and the Thin Gap Chambers
(TGCs) in the end-cap regions. The muon chambers provide, moreover, a posi-
tion measurement in the orthogonal plane determined by the precision-tracking
MDT chambers.

In overall, the required transverse momentum resolution for 1 TeV muons is

σ(pT)

pT

= 10%. (2.7)

26



2.3.4 MBTS

The Minimum Bias Trigger Scintillator (MBTS) is a detector used for triggering
on the so-called minimum bias events, that is events of any kind (soft as well as
hard scale interactions). It consists of sixteen counters positioned symmetrically
on both sides of the ATLAS detector, right on the inner face of the end-cap
calorimeter cryostat. Each scintillator is segmented in eight units of φ (azimuthal
plane) and two units of η (polar angle plane). They are located about 3.6 m from
the interaction point in the longitudinal direction. The inner radii wheels cover
2.82 < |η| < 3.84 region while the outermost wheels cover 2.09 < |η| < 2.82. The
MBTS counters can be also exploited as a veto for selecting exclusive diffractive
events with large rapidity gaps.

2.4 ATLAS forward detectors

In addition to the main ATLAS detector systems described in previous sections,
three smaller detectors were built to provide a coverage in the very forward re-
gion. They can serve the purpose of luminosity monitoring, absolute luminosity
measurements as well as other forward physics studies. Besides these three de-
tectors already installed in the LHC tunnel, others are in the approval process
within the ATLAS Collaboration aiming at enhancing the forward physics studies
possibilities. They are called ATLAS Forward Proton (AFP).

The general layout of the forward detector system is presented in Figure 2.6. The
system closest to the interaction point is the LUCID (LUminosity measurement
using Cerenkov Integrating Detector) located at a distance of 17 m from the
interaction point on each side (±z). LUCID is followed by the ZDC (Zero Degree
Calorimeter) at a distance of 140 m on each side of the IP. Finally, the most
remote forward detector currently installed is the ALFA (Absolute Luminosity
For ATLAS) at a distance of approximately ±240 m.
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TAN

beam 2

beam 1
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  boxes
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140 m

237m 4m

LUCID ZDC
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Figure 2.6: The forward detectors placement around the ATLAS interaction point
[15].
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2.4.1 LUCID

The LUCID is the only ATLAS detector primarily dedicated to the online lu-
minosity monitoring via a detection of the inelastic pp scattering in the forward
region. This detector has also a potential to be used for diffractive studies as a
veto for selecting diffractive events with large rapidity gaps.

The LUCID detector consists of 1.5 m long tubes with a diameter of 15 mm
surrounding the beam-pipe and pointing toward the interaction point. Tubes are
filled with C4F10 gas providing a Cerenkov threshold of 2.8 GeV for pions and 10
MeV for electrons. The Cerenkov light is detected by photomultipliers (PMTs) at
the end of each tube. The benefit of this design is that it is possible to determine
the number of passing-through particles by measuring the pulse height. The two
detectors are installed in each end-cap region about 17 m from the interaction
point and in the radial distance of about 10 cm from the beam-pipe. In this
set-up the detector covers a pseudorapidity range 5.4 < |η| < 6.1.

The instantaneous luminosity is measured from the detection of charged parti-
cles going into the forward direction, as well as their arrival time, in each bunch
crossing. The principle that the number of particles detected is proportional to
the number of inelastic interactions is exploited. One can thus measure not only
the luminosity, but the average number of interactions per bunch crossing as well.

2.4.2 ZDC

The Zero Degree Calorimeter’s primary purpose is to detect forward neutrons
with |η| > 8.3 in heavy-ion collisions. Besides this, it can also help with a beam
tuning, luminosity monitoring and triggering on minimum bias events. It can
also enhance, during the LHC start-up phase, the acceptance of the ATLAS ex-
periment for diffractive processes.

This detector, positioned about ±140 m from the interaction point, is a seg-
mented electromagnetic and hadronic calorimeter corresponding to about 29 X0

radiation lengths and 1.14 λ nuclear interaction length respectively. The ZDC has
tungsten plates perpendicular to the beam direction, steel plates as an absorber
and quartz strips as an active medium. The PMTs and multi-anode phototubes
collect the Cerenkov light from shower products of incident particles.

2.4.3 ALFA

The ALFA detector exploits the optical theorem connecting the elastic scattering
amplitude in the forward direction to the total cross section. Thus, the ALFA
can measure the absolute luminosity via the elastic scattering at small angles.
Special runs with high β∗ optics in combination with reduced beam emittance
are necessary and, moreover, the detector has to be placed far away from the in-
teraction point and as close to the beam as possible. The Roman pots technique
has been adopted. It consists of a movable detector volume (the pot) separated
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from the vacuum of the beam pipe by a thin window and it is able to move as
close as 1 mm to the beam. The main requirements on the detector placed in the
Roman pots are a spatial resolution (about 30 µm), no significant inactive edge
region, minimal sensitivity to the radio-frequency noise from the LHC beams and
a compatibility with the vacuum in the Roman pots. Therefore, a scintillating-
fibre tracker has been chosen.

2.5 Data acquisition and trigger system

The typical average event size when collecting information from all the ATLAS
sub-detectors is about 1.5 Mbytes. That gives, at nominal design conditions such
as bunch collisions every 25 ns with up to 30 interactions per bunch crossing,
the data rate of about 1.5 PB s−1. This amount of data flow is too large to be
processed and stored, given the current level of computing technology. Therefore,
an event selection procedure called trigger system has been developed to provide
a significant reduction of data to be processed, stored and eventually transfered
to the Grid system (see Section 3.1) for end-user analysis. The aim is to reduce
the original event rate from 40 MHz to about 200 Hz (equivalent to ∼ 300 MB/s)
which is achieved by the three level trigger system comprising Level 1 (L1), Level
2 (L2) and finally the Event Filter (EF). The L2 and EF together form the so-
called High-Level Trigger (HLT) and are software based, while the L1 trigger is
hardware-based.

The Level 1 trigger provides a fast decision based on the potential signal identi-
fication in parts of the calorimeters and muon detectors of reduced granularity.
This coarse analysis lies in searching for signatures of high-pT muons, electrons,
photons, jets and τ -leptons decaying into hadrons. Another signal candidates of
interest are events with large missing transverse energy Emiss

T . Altogether, the
L1 trigger decision has to be made within 2.5 µs from the time of the collision,
reducing the accept rate to 75 kHz. This task is far from trivial as, for example,
the muon arrival time to muon chambers is comparable with the collision rate
25 ns. Similar situation occurs with reading-out signals from the LAr calorime-
ter. For this reason of the latency in trigger decision with respect to the bunch
crossing rate, the information from all the read-out channels has to be stored in
a buffer, the so-called pipeline memory. Once the decision is reached, the event
can be thrown away or on the contrary - the front-end electronics can be signaled
to retrieve and transmit the data from the pipeline.

The Level 2 trigger is seeded by the Level 1. Around each seed, the Region-
of-Interest (RoI) window of the size depending on the type of the seed object
is constructed. The L2 then performs a refined analysis of the L1 object and,
moreover, adds an additional information not accessible in the L1 trigger decision
analysis, such as track reconstruction from the Inner Detector. The L2 decision
is reached, on average, within 40 ms and it reduces the event rate to below 3.5 kHz.

The last stage of the ATLAS trigger system, the Event Filter, performs a detailed
analysis on the L2 candidates. Unlike in the L1 and L2 case, the full information
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from all the sub-detectors is available. The EF decision has an average processing
time of the order of four seconds and it reduces the event rate down to about
200 Hz. This data can then be recorded to hard drives and made available to
end-users for physics analyses.

To refine the trigger selections, the HLT algorithms take advantage of the full
granularity of calorimeters and muon chambers, as well as the measurements
provided by the Inner Detector. Thus, the improvement of threshold cuts due to
a better energy deposition information or an enhancement of the particle iden-
tification (such as electrons vs. photons) benefiting from the precise track re-
construction in the Inner Detector can be achieved. In early stages of the LHC
running, i.e. at low instantaneous luminosities and low number of bunches in
bunch trains, the HLT triggers operated in pass-through mode allowing thus to
understand and tune the L2 and EF functionality.
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3. Software and computing

Even though the complex trigger system has been put in place in order to prese-
lect potentially interesting events only, the event rate that needs to be recorded is
about 200 Hz. Given the scale of the ATLAS experiment and an extensive amount
of active detector channels needed to be read-out, these 200 events per second
represent 300 MB/s (15 Petabytes per year) that need to be handled: stored,
calibrated, reconstructed and eventually analysed by a large scientific community
spread around the world. Therefore, a very sophisticated software framework and
hardware facilities are essential for manipulating the acquired data.

3.1 Distributed grid computing

No existing single super-computer nor any computing farm composed of chained
PCs can provide a sufficient CPU power and a storage capacity for a data taking
over many years. Therefore, the CERN and collaborating institutes have been
working on a development of a world-wide computing network connecting togeth-
er hundreds of originally isolated computing farms into a network called the LHC
Computing Grid (LCG) [19], also known simply as the Grid. This network is
large enough to provide sufficient computing power not only to the CERN com-
munity, but also to other scientific endeavours, such as bioinformatics (study of
human genome and proteome), nanotechnology (design of nano-materials), med-
ical applications (imaging, diagnosis and treatment), the SETI project (Search
for Extraterrestrial Intelligence; analysis of data from radio telescopes) or sim-
ulations of complex systems (meteorological and atmospheric modeling, earth
observation, ...).

The Grid is a complex four-level structure of so-called “Tier” centers. The Tier-0,
located at CERN, is at the very top of the system where all the data collected by
LHC experiments are stored and where a first processing of the data occurs. The
raw data as well as the pre-processed data are then distributed in several copies
to Tier-1 centers, large regional computing farms spread around the world. Tier-1
sites are connected to Tier-0 via a dedicated 10 Gb s−1 network and provide, be-
sides partial or full copies of the collected data, a significant computational power
for re-reconstruction with newer calibrations and reconstruction algorithms. The
third level are smaller Tier-2 sites, located usually at collaborating universities
and institutes. They hold fully reconstructed data in formats used by end-users
(physicists) who can connect to the Grid via small university clusters or individ-
ual computers. This is the third level called Tier-3.

3.2 ATLAS framework

Given the complexity of all sub-detectors, calibrations, reconstruction algorithms,
simulation methods etc., a unified software framework called ATHENA [20] has
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been created by the ATLAS Collaboration for its members. It is build upon an
existing framework Gaudi. The baseline programming language is the C++, in
which all individual software packages are written. The Python scripting lan-
guage acts as a key user interface allowing to control the ATHENA framework
along with all its packages.

The ATHENA provides, among others, a modeling software called full-chain.
It is an event reconstruction procedure allowing to produce fully reconstructed
files ready for a physics analysis. It can be based on both the data and the Monte
Carlo simulated events. Speaking of the MC events, generated particles are first
passed through the Geant4 [21] simulation of the ATLAS detector (modeling of
a passage through the ATLAS sub-detectors as well as a dead material, magnetic
fields etc.), simulating thus the energy deposition in active parts of sub-detectors.
These so-called “hits” are then digitalized into a byte-stream format of the same
type as the data digitization procedure provides and stored as Raw Data Objects
(RDO) files. The following steps are then the same in both the data and the MC
events: the entries in RDO files are converted into physics objects such as tracks,
jets, electron and muon candidates etc. and stored into the Event Summary Data
(ESD) files. The ESD is the most comprehensive data format which contains a
sufficiently detailed information allowing a re-reconstruction when needed. They
are not, however, used for an end-user physics analysis due to their large size.
Therefore, an Analysis Object Data (AOD) files are created by keeping only the
information relevant for end-user analyses. It is possible to further reduce the
size of datasets by keeping only the essential physical information: such format
is called Derived 3rd level Physics Data (D3PD).

3.3 D3PD production

The measurement presented in this thesis is primarily based on analysing the
D3PD files as an input to the C++ based analysis framework developed special-
ly for the sake of this measurement. Most of the computing resources used to
process the 2010 data and Monte Carlo simulations come from the computing
farm called Goliáš (located at the Institute of Physics of the Academy of Sciences
in Prague) and acting also as the Tier-2 Grid site. The direct access provided
to Czech scientists allows much more efficient and faster usage of available re-
sources than via an official Grid structure. However, the Grid resources have
been also used, especially for a dedicated Monte Carlo production (see Chapter
4) and a new production of the D3PD files. New production of the D3PD files
was essential as the rapidity gap analysis requires, as is explained in Chapter 6,
a specific variable called “cell significance” being present in the datasets, which
is not there by default. All the data used for this measurement were therefore
reproduced from the existing ESD files by running the D3PD-maker in Athena’s
release 16.0.3.6.1 using the JetMetAnalysis package.
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3.4 ROOT

The ROOT system [22] is an object-oriented framework developed by René Brun
and Fons Rademakers. It is currently the most commonly used data analysis soft-
ware in the particle physics community, specifically designed to allow an efficient
way of processing the huge amount of data coming from the LHC experiments.
Due to its liberal development style, it is possible to think of ROOT as the anal-
ysis system developed by physicists for physicists, which makes it very useful and
powerful tool for the use by scientific community members.

A significant advantage of the ROOT framework is a built-in C++ interpreter
CINT, meaning that one does not need to learn another programming language,
but rather use the interactive command line mode, scripting or macros in a way
familiar and friendly to the current physicist surrounded by the C++ based soft-
ware (such as Athena). It is also easy to include ROOT libraries into a C++
based analysis code and thus use the powerful ROOT tools (namely histogram
classes, random number generators, math functions, objects for an efficient stor-
age of data called “trees”, etc.) for a systematic structured object-oriented offline
data analysis. This is also the case of the analysis summarized in this thesis.
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4. Monte Carlo simulations

4.1 General Monte Carlo concepts

Monte Carlo simulation methods are, in general, mathematical tools explointing
numerical methods for demanding caluclations. They are used to solve problems
that are too complicated to be solved analytically, for example multidimensional
integrals over parton densities. In contrast to other simulation methods, these
ones are stochastic (nondeterministic) - their nature is in generating suitable
(pseudo-)random numbers. Monte Carlo methods are especially effective in solv-
ing problems with a large number of degrees of freedom. Their efficiency relative
to other numerical methods increases with increasing dimension of the problem.

In nuclear and particle physics (or, more accurately, in processes involving quan-
tum mechanics) a concept of randomness plays a key role in a behaviour of phys-
ical systems and Monte Carlo techniques allow us to simulate this randomness.
The essential part of event generator is thus a random number generator, in
practice substituted by a pseudo-random number generator, which is able to ap-
proximate random numbers by complex algorithms which always start from a
user-defined “seed”, i.e. the starting value.

There is a lot Monte Carlo generators available for particle scattering simula-
tions. Some of them are generators dedicated to a particular physical process
while others, such as PYTHIA8 and HERWIG++ discussed later in this chapter,
are multipurpose generators capable of modeling a large range of physical pro-
cesses.

4.2 PYTHIA8

The PYTHIA8 [23] Monte Carlo generator implements the modelling of elastic,
non-diffractive and diffractive (both the SD and the DD) processes. It also con-
tains a model of the Underlying Event (UE) using the multi-parton interactions
(MPI; multiple soft scatters in one event) as well as parton showering models.

At the end of the parton shower, quarks and gluons have to be transformed
into the observable hadrons. For such hadronisation process, PYTHIA8 uses the
phenomenological Lund string model [24]. In the Lund model, gluons are treated
as color field lines which create, in contrast to the electromagnetic field lines that
spread out over all space, a thin tubelike region of colour flux. This is happen-
ing due to the three-gluon coupling (gluon self-interaction), a process which has
no analogy in electromagnetic interactions. In case of the qq̄ pair with quarks
moving apart from each other, the tube of color flux is being stretched out like
a string (therefore the “string model”), up to a point where it breaks and a new
qq̄ pair is created from the available field energy. The original qq̄ system keeps
breaking via this process up to the point where only ordinary hadrons remain.
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The PYTHIA8 samples were generated using the “ATLAS UE Tune AU2-CT10”
tune [25]. It is based on previous “Tune 4C” [26] (reflecting CDF data), but
modified to be more suited to LHC conditions.

4.2.1 Non-diffractive modelling

The ND interactions are simulated with the leading-order perturbative 2 → 2
partonic scatters. For small transverse momenta, the cross section is divergent
and therefore a renormalization by introducing the pT,min cut is necessary. Other
processes such as colour screening or parton saturation simulation are introduced.
By default, the CTEQ10 PDFs [27] are used.

4.2.2 Diffractive modelling

In the PYTHIA8, both the soft and hard diffraction are implemented. While
the soft diffraction comes from the PYTHIA6 [28] and is based on the Schuler-
Sjöstrand [29] model (having an exponential t dependence), the hard diffraction
treatment in PYTHIA8 is significantly improved and the Ingleman-Schlein model
[30] is used. In general, PYTHIA8 is better adjusted for the LHC environment
than PYTHIA6 and is thus used as a default PYTHIA generator by the ATLAS
Collaboration.

The diffraction in PYTHIA is calculated as a combination of the pomeron flux of
the pomeron radiated from one of the interacting protons and a pomeron-proton
interaction. In the SD and DD cross section, a triple-pomeron coupling factor
and an exponential t dependence are present. By default, the H1 2006 Fit B
Leading Order DPDFs is used [9].

PYTHIA8 currently provides an implementation of five different pomeron fluxes.
The default one is the Schuler-Sjöstrand [29] flux with the pomeron intercept
αP(0) = 1. The Bruni and Ingelman flux [31] has also the pomeron intercept
of unity, but the t slope is modeled by a sum of two exponentials. The remain-
ing three fluxes use more conventional values of the pomeron intercept, that is
αP(0) > 1. The Berger and Streng parametrization [32] [33] uses as default
αP(0) = 1.085 and the pomeron trajectory slope α′ = 0.25 GeV2 with the diffrac-
tive slope exponential in t, but with an additional mass dependence. The Don-
nachie and Landshoff flux [5] uses the same mass dependence and αP(t) as the
Berger and Streng, but instead of the exponential t dependence a power law t
dependence is used. Finally, the Minimum Bias Rockefeller (MBR) parametriza-
tion [34] following a renormalized-Regge-theory model successfully tested using
CDF data is implemented with the default αP(0) = 1.104 and α′ = 0.25 GeV2

values.

4.3 Herwig++

The Herwig++ [35] is, such as PYTHIA, a multi-purpose MC generator dealing
with hard lepton-lepton, lepton-hadron, and hadron-hadron collisions and aiming
to provide similar or improved simulation compared to PYTHIA, such as using
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the angular ordered (in η and E) parton shower evolution or the cluster hadro-
nisation model. It also contains, similarly to PYTHIA, an UE model in which
multiple scatters are treated as independent of each other.

In Herwig++, a so-called cluster hadronisation model is implemented. Partons
from parton showering are combined to form color singlet quark-antiquark pairs
- called clusters - with the momentum given as a sum of momenta of the con-
stituent partons. Such clusters have mostly low masses and can be regarded as
excited hadronic resonances, which can decay into observable hadrons. Some
clusters are, however, too heavy for this direct approach and must be first split
to lighter clusters before final hadrons can be produced. As an addition to this
basic model, the Colour Reconnection (CR) mechanism has been introduced to
improve modelling of charged particle multiplicities in pp collisions via reconnect-
ing partons between cluster pairs.

The hard diffraction is modeled using the Ingleman-Schlein parametrization with
default values of the pomeron intercept αP(0) = 1.104 and the trajectory slope
α′ = 0.06 GeV2. These parameters can be, just as in PYTHIA, adjusted by the
user. The implemented DPDFs are based on H1 2006 A, 2006 B and 2007 Jets
fits.

4.4 POMWIG

The POMWIG generator [36] v2.0 beta is actually a HERWIG [37] (the older
Fortran version) modified in such a way that diffractive interactions can be simu-
lated. All standard Herwig hard subprocesses are available for pomeron-proton,
photon-pomeron and pomeron-pomeron collisions, reggeons were also made avail-
able.

The idea behind POMWIG is based on a simple observation: interactions with
an exchange of the pomeron in hadron-hadron collisons are similar to the photo-
production in lepton-hadron events, which are modeled by radiating a quasi-real
photon (according to the photon flux formula) by the incoming electron.The
emitted photon is then treated as an object with structure function entering the
collision with the incoming hadron. Therefore, all that is needed to be done to
produce a diffractive event in pp collision is to substitute the photon flux with
the pomeron flux and the photon structure function by the pomeron structure
function. All that remains to do is to run the Herwig in ep mode, where the
electron can be thought of as the diffractive proton remaining intact after the
diffractive scattering.

The diffractive PDFs and the pomeron flux implemented in POMWIG are based
on the result of the NLO H1 2006 fit B [9].
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4.5 POWHEG

The POWHEG [38] (Positive Weight Hardest Emission Generator) is a frame-
work implementing the next-to-leading order calculations of the dijet production
in hadron collisions. It is based on generating the hardest radiation first and
then providing the result to other shower generators for subsequent softer radia-
tion modelling, such as PYTHIA6, PYTHIA8, Herwig++ or HERWIG+Jimmy
[39].

This NLO MC generator was used in the physics analysis presented in this thesis
to provide additional ND predictions to the existing LO PYTHIA8.

4.6 Monte Carlo event generation of diffractive

dijet events

Since diffractive processes are not well understood yet, there is a wide range
of models with different implementations, parameters, hadronisation models etc.
giving rather different predictions, as shall be discussed later on. For this reason,
having several MC models for comparisons with data is very advisable. However,
the Monte Carlo dijet samples generated by the ATLAS Collaboration for proton-
proton collisions at

√
s = 7 TeV turned out insufficient with respect to the model

variety and statistics in our regions of interest (large rapidity gaps, small ξ).
Therefore, a new production was necessary, both the full chain ATLAS detector
simulation as described in Section 3.2 and private hadron level MCs for final
comparisons to fully corrected data.

4.6.1 ATLAS Monte Carlo request

One of the ways how to get new Monte Carlo samples is to submit an official re-
quest to the ATLAS production team, while having an approval of such a request
by a particular physics group related to the topic of the analysis. The advantage
of this approach is that the full chain detector simulation, which is very complex
(many parameters, software versions, detector geometries, etc.), is done by AT-
LAS experts and thus trusted by the whole Collaboration.

Such request was submitted to provide us with PYTHIA8 ND, SD and DD and
Herwig++ ND and SD dijet samples at

√
s = 7 TeV. The ATLAS detector geome-

try was chosen such that it corresponds to 2010 layout. All samples are generated
with one pp interaction per event only, that is without pile-up (not more than
one pp interaction per bunch crossing). The diffractive samples were generated
using diffractive parton distribution functions based on HERA measurement (see
Section 1.3.3) and the Schuler-Sjöstrand pomeron flux parametrization was used
for PYTHIA8 generation.
To achieve a sufficiently high statistics of events with large gaps (small ξ), a ra-
pidity gap filter has been implemented. It is designed to filter events generated
by PYTHIA8 (Herwig++ respectively) so that only a subset of events is stored
into the output files. The subset is chosen in such a way that the generated ra-
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pidity gap spectrum is flat (instead of exponentially falling) for smaller gap sizes
(0 < ∆ηF < ∆ηFThr, where “Thr” stands for “Threshold”). The particle level
rapidity gap algorithm is similar to the one discussed in Chapter 7, except that it
takes into consideration all final state particles (full sensitivity to the real rapidity
gap in the event) within the ATLAS acceptance (|η| < 4.9). For events in the
region where the filtering is applied, a specific weight that needs to be applied to
get a correct cross section is stored as well.

Since this is a dijet measurement, a standard ATLAS procedure is followed re-
garding requirements on hard scale. In case of PYTHIA8 ND samples, that
means generating events in five different ranges of transverse momentum of the
outgoing partons from the hard interaction (p̂T). This cannot be done for SD and
DD samples due to the way PYTHIA8 generates them (it uses models of both
soft and hard interactions, which cannot be separated so inclusive samples are
produced). The way around is using jet filter which which reconstructs particle
level anti-kT R = 0.4 jets and allows thus to put requirements on jet transverse
momenta (three different ranges with pT > 12 GeV were generated). The normal-
ization to cross section is then done by multiplying the generated cross section
of the process the mean generator filter efficiency. Details of the generated and
reconstructed samples are listed in Tables 4.1-4.3.

p̂T Jet Run ∆ηFThr Events Events Cross Mean Gen.
(GeV) ID Number generated recon. section [nb] Filter Eff.

8-17 J0 147251 3.0 200000 199848 6.803× 106 2.286× 10−6

17-35 J1 147252 4.0 600000 600000 5.210× 105 2.217× 10−4

35-70 J2 147253 4.0 200000 198948 3.392× 104 2.364× 10−4

70-140 J3 147254 4.0 100000 100000 1.923× 103 1.694× 10−4

140-280 J4 147255 4.0 100000 99949 8.136× 101 1.849× 10−4

Table 4.1: Details for PYTHIA8 non-diffractive samples generated with the for-
ward gap filter.

pjet
T Jet Run ∆ηFThr Events Events Cross Mean Gen.

(GeV) ID Number generated recon. section [nb] Filter Eff.

12-20 J0 147256 5.0 300000 293950 1.238× 107 4.980× 10−6

20-30 J1 147257 4.5 500000 400599 1.238× 107 3.112× 10−6

30+ J2 147258 3.5 299300 179250 1.238× 107 2.348× 10−6

Table 4.2: Details for PYTHIA8 single diffractive samples generated with the
forward gap filter and jet filter.

4.6.2 Private MC production

A much simpler MC production than the full chain simulation is a private particle
level generation. Such production is useful for creating MC predictions of high
statistics for comparionsons with fully corrected data. Generators of interest for
the diffractive dijet analysis are PYTHIA8 SD and DD for different pomeron
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pjet
T Jet Run ∆ηFThr Events Events Cross Mean Gen.

(GeV) ID Number generated recon. section [nb] Filter Eff.

12-20 J0 147259 4.5 300000 269947 8.105× 106 1.044× 10−5

20-30 J1 147260 4.5 408600 339647 8.105× 106 4.026× 10−6

30+ J2 147261 3.5 300000 196950 8.105× 106 2.343× 10−6

Table 4.3: Details for PYTHIA8 double diffractive samples generated with the
forward gap filter and jet filter.

fluxes and αP, POMWIG (providing additional SD model) and POWHEG (ND
NLO samples).
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5. Testing the Jet Energy Scale
using dijet events

An important part of the PhD research summarized in this thesis consisted of
a performance work within the Jet Eta-intercalibration subgroup of the ATLAS
Jet and Missing ET Group. It was focused on testing the quality of energy cali-
bration of jets in 2010 and early 2011 data and as such, it provided the author of
these lines a valuable insight into details of the jet reconstruction by the ATLAS
calorimeter system, which was eventually exploited later on for the rapidity gap
analysis in dijet events.

The results presented in this chapter contributed to two ATLAS internal notes,
[40] and [41]. They were also presented at the 2011 ATLAS Hadronic Calibration
Workshop held in SLAC National Accelerator Laboratory and as such they were
valued by the ATLAS Collaboration.

5.1 Introduction to the in-situ pseudorapidity

intercalibration method

The ATLAS calorimeter system, described in detail in Section 2.3.2, is represented
by several layers with different technology and varying amount of dead material in
front of them. Therefore, the response to jets is dependent on the jet direction and
a calibration is needed to ensure uniform calorimeter response. This is achieved by
applying correction factors (so-called Jet Energy Scale, denoted as JES) derived
from Monte Carlo simulations. One of the validation methods of the JES is
the in-situ pseudorapidity intercalibration method [42], to which this Chapter
is dedicated. It is based on the transverse momentum conservation assumption
in the head-on high-energy proton-proton collisions at

√
s = 7 TeV, which is

exploited by studying dijet events, in which the transverse momenta of the two
jets are expected to be balanced.

5.1.1 Standard method

The standard approach is to define the reference jet (required to be in the central
region, |η| < 0.8) and the probe jet (jets from other regions) and calculate the
transverse momentum asymmetry A as

A =
pprobe

T − pref
T

pavg
T

, (5.1)

where pavg
T = (pprobe

T + pref
T )/2. In case of both jets being in the central region,

each jet is used, in turn, to probe the other. The average asymmetry in the ref-
erence region is, therefore, zero by construction.
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The probe jet response relative to the reference jet, 1/c, is then defined as

pprobe
T

pref
T

=
2 + A

2− A
=

1

c
. (5.2)

The standard analysis is then done in several jet η and pavg
T bins, resulting in an

asymmetry distribution Aik (i represents probe jet η-bin and k corresponds to
pavg

T -bin). Following Equation 5.2, the intercalibration factors are calculated as

cik =
2− 〈Aik〉
2 + 〈Aik〉

, (5.3)

where the mean value of the asymmetry in each η − pavg
T bin is denoted as

〈Aik〉. The uncertainty of such mean value is calculated as the RMS/
√
N , with

N being the number of events in the bin.

5.1.2 Matrix method

The above discussed method has a significant disadvantage: a significant loss of
statistics due to the requirement that the reference jet is in the central region.
This affects especially the forward region as it requires a large rapidity interval
between jets, which has significantly lower cross section than dijets with small
rapidity difference. To better use the available statistics, reference and probe
jet definitions are replaced by “left” and “right” based on their pseudorapidities,
ηleft < ηright. The asymmetry is then defined as

A =
pleft

T − p
right
T

pavg
T

(5.4)

and the relative response R is calculated as

R =
pleft

T

pright
T

=
cright

cleft
=

2 + A

2− A
, (5.5)

where cleft (cright) are the η-intercalibration factors for the left (right) jets.

This approach to the intercalibration leads to a response ratio distribution, Rijk,
which has an average value 〈Rijk〉 evaluated for each bin i (η of the left jet), j
(η of the right jet) and k (pavg

T ). The relative correction factors cik for a fixed
pavg

T -bin are obtained by minimizing a set of linear equations

S(c1k, ..., cNk) =
N∑
j=1

j−1∑
i=1

(
1

∆〈Rijk〉
(cik〈Rijk〉 − cjk)

)2

+X(cik) , (5.6)

where N is the number of η-bins, ∆〈R〉 is the statistical uncertainty of the 〈R〉
and the function X(cik) = K(N−1

∑N
i=1 cik − 1)2 (the value of constant K does

not influence the solution if it is sufficiently large, K ≈ 106) is used to prevent the
minimization from choosing the trivial solution (all cik equal to zero). The mini-
mization is done for each pavg

T -bin (k) by running 50 pseudo-experiments (to limit
statistical fluctuations due to the Gaussian smearing used in the procedure). The
final factors ci (per η-bin i) are scaled in such a way that the average calibration
factor in the reference region 0.1 < |η| < 0.8 equals unity.
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5.2 Event selection

Jets are reconstructed using the anti-kT algorithm [43] with the distance pa-
rameter R = 0.6. The default calibration is EM+JES (though others such as
GCW+JES and LC+JES were evaluated as well, see the Section 5.4), which us-
es the energy and η dependent factors derived from fully simulated PYTHIA6
events by matching particle level jets (reconstructed from the information in the
MC event record) with calorimeter jets at the EM-scale1; the correction factors
are calculated as a ratio of true particle jet energy and the EM-scale jet energy.

Events are required to pass the standard ATLAS data-quality assessment pro-
cedure and only those with one good primary vertex (i.e. vertex having at least
five associated tracks with pT > 500 MeV) are allowed to enter the analysis. A
presence of at least two jets above the jet reconstruction threshold of pT > 7
GeV is requested, both of which have to pass the standard jet cleaning criteria,
which are designed to identify fake jets due to the noise or out-of-time energy
deposition2. Finally, the trigger selection detailed in Table 5.1 is tuned in such a
way that the trigger efficiency for a specific pT region is greater than 99%. That
is achieved by using the Minimum Bias Trigger Scintillators (MBTS) for low-pT

jets and jet triggers (central and forward ones) for higher-pT jets.

pT(GeV) Period A Periods B-D Periods E5-F Periods G-I
20 - 45 L1 MBTS 1 L1 MBTS 1 L1 MBTS 1 EF mbMbts 1 eff
45 - 60 L1 MBTS 1 L1 J5 or L1 FJ5 L1 MBTS 1 EF mbMbts 1 eff
60 - 80 L1 MBTS 1 L1 10 or L1 FJ10 L1 J10 or L1 FJ10 EF J35 jetNoEF or EF FJ30 jetNoEF
> 80 L1 MBTS 1 L1 J15 or L1 FJ15 L1 J30 or L1 FJ30 EF J35 jetNoEF or EF FJ50 jetNoEF

Table 5.1: Trigger selection used for the η-intercalibration dijet analysis.

There are three additional criteria whose purpose is to ensure the 2 → 2 event
topology:

• pT > 20 GeV

• ∆φ(j1, j2) > 2.6 rad (azimuthal angle between the two highest-pT jets j1, j2)

• pT(j3) < max(0.15pavg
T , 7GeV) (j3 is the third highest-pT jet)

The lowest pavg
T bins are influenced by biases. One of the sources is the inefficiency

of the selection cut on the third jet (used to suppress the unbalancing effects of
soft-radiation) due to the jet reconstruction being limited to the region of pavg

T > 7
GeV. Another effect is the jet reconstruction efficiency, which deteriorates with
decreasing jet transverse momentum. The third source of bias for low pT jets is
the inaccuracy of the Jet Energy Scale for pT < 10 GeV jets.

5.3 Monte Carlo simulations

Results from the analysis of the data are compared to various MC models, namely
PYTHIA6, HERWIG++ and ALPGEN. This allows to compare the measurement

1The electromagnetic scale (EM) gives the correct energy response from electromagnetic
showers, but does not correct for lower hadron response.

2More on out-of-time pile-up in Chapter 11
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with different approaches to parton showering, hadronisation etc. PYTHIA6 im-
plements leading-order matrix elements from perturbative QCD for 2 → 2 pro-
cesses, parton showers in leading-logarithm approximation and uses the Lund
string model for hadronisation. Two sets of PYTHIA6 samples are available: the
ATLAS MC10 and the Perugia2010 tune. HERWIG++ has similar 2 → 2 ma-
trix element, but uses angular-ordered parton shower and a cluster hadronisation
model. ALPGEN uses the same parton showering and hadronisation as HER-
WIG++. All these MC events, generated at the center-of-mass energy

√
s = 7

TeV, were fully reconstructed using the same procedure as for the reconstruction
of the data.

5.4 Results

5.4.1 Dijets in 2010 data

This η-intercalibration analysis started with two goals: to finalize studies based
on 2010 data that were performed within the Eta-intercalibration subgroup and
to apply the acquired know-how on latest 2011 data. Studies of 2010 data were
so far focused on EM+JES calibration and anti-kT jet reconstruction algorithm
with distance parameter R = 0.6. The main contribution was thus to expand the
studies to other available calibrations (GCW+JES, LC+JES) and to the R = 0.4.
An example of such extension is presented in Figure 5.1 for the lowest and high-
est examined pavg

T range and for all three calibrations. The general observation
based on already existing studies of EM+JES calibration was confirmed for other
calibrations and jets reconstructed by the anti-kT algorithm with R = 0.4 as well:
the response in data is reasonably well described by all MC simulations in the
central region (within ∼ 2% for |η| < 2.8) and still rather well in forward region
(within ∼ 5% for |η| > 2.8) in higher pavg

T ranges. At lower pavg
T in the forward

region, however, the discrepancies between data and MC samples are around
10% up (HERWIG++ and ALPGEN) as well as down (PYTHIA6 and Perugia).
These model differences are caused by different parton shower and hadronisation
models between PYTHIA6/Perugia and HERWIG++/ALPGEN and are rather
consistent in all jet calibrations studied in this analysis.

Since the MC predictions for relative jet response are systematically shifted away
from data and the data lies right between these different predictions, an uncer-
tainty on the relative jet response must be introduced. It is calculated as the
RMS deviation of the MC models from the data and presented in Figure 5.2
for the central and the most forward η regions and both R = 0.6 and R = 0.4
anti-kT jet reconstruction algorithms. The low pavg

T and large η region gives the
largest uncertainties (up to about 12%), which are dominated by physics mod-
elling uncertainty, while the high pavg

T region (spread of MC predictions small) is
characterized by the true difference between the response in the data and MC.

5.4.2 Dijets in 2011 data

Data taking in 2011 was done at the same center-of-mass energy
√
s = 7 TeV, but

with much larger instantaneous luminosities. The consequence is that such col-
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lisions are characterized by larger pile-up3, which requires certain caution when
drawing conclusions. The additional energy added to reconstructed jets from
overlays of the main hard scale jet event with multiple pile-up interactions is
by default subtracted. What however turned out to be a challenge from the η-
intercalibration perspective were the event selection criteria, namely the cut on
the third highest pT jet.

Third jet cut optimization

The standard event selection introduced in Section 5.2 turned out to be insuffi-
cient for high pile-up events in 2011 data. The essential requirement on 2 → 2
dijet topology could no longer be ensured by the standard third jet cut, i.e.
pT(j3) < max(0.15pavg

T , 7GeV). This is demonstrated in Figure 5.3. Figure 5.3(a)
showing a distribution of the Jet Origin4 for the third jet demonstrates that about
20-30% of third jets are associated to other than the primary vertex (correspond-
ing to the Jet Origin = 0), i.e. they come from pile-up interactions. Figure 5.3(b)
shows the third jet pT relative to pavg

T and demonstrates that events with low pT

jets (i.e. collected especially by triggers EF j10 a4 EFFS and EF j15 a4 EFFS)
contain third jets with significant relative transverse momentum.

There is a useful variable called Jet Vertex Fraction (JVF), which can be exploited
to solve this issue. The JVF is calculated based on matching reconstructed tracks
with reconstructed jets and it gives a percentage of the sum of transverse momenta
of tracks that point back to the primary vertex (PV0) with respect to

∑
pT of all

tracks associated with the given jet. It is therefore a measure of how significant
part of the jet can be directly attributed to the primary vertex: JVF is equal to
1 when all tracks come from the PV0, JVF=0 when none track can be matched
to the PV0 (pile-up jets) and JVF=-1 for forward jets (tracking is limited to
|η| < 2.5 region). Figure 5.4(a) presents a distribution of JVF for third jets and
Figure 5.4(b) shows distribution of transverse momenta of third jets relative to
pavg

T . There is a clear separation between the inclusive spectrum and spectra with
jet origin identified to be PV0 (JVF > 0.6 cut used) or jets from the forward
region (JVF=-1). Therefore, the idea is to define a new third jet cut that is
applied to the correct jet, i.e. a jet coming from the hard interaction, not a pile-
up event. Two additional “third jet” definitions are therefore introduced: the
third highest pT jet selected only from jets that pass the JVF > 0.6 cut (denoted
as “VtxConfJ3”, i.e. Vertex Confirmed third jet) and the third highest pT jet
selected only from jets that have JVF=-1 (denoted as “FwdJ3”, i.e. forward jets
from the region |η| > 2.5). The new third jet cut has then two levels:

• VtxConfJ3 jet is required to have pT(j3) < max(0.25pavg
T , 12GeV)

• FwdJ3 jet is required to have pT(j3) < max(0.20pavg
T , 9GeV)

3Multiple proton-proton interactions within the same bunch crossing.
4Jet Origin is an integer number giving the position of the vertex in the vertex list from

which a given jet originates. This is decided based on origin of tracks associated to the jet.
Primary vertex has value 0, pile-up vertices have jet origin ≥ 1 and jets outside the Inner
Detector acceptance (|η| > 2.5 have a value -1.
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The effect of new third jet cut is demonstrated in Figure 5.5. There is a clear
improvement in absolute value of relative jet response in the forward regions,
especially for PYTHIA6 predictions. More importantly, the MC to data compar-
isons are notably improved. The new third jet cut is therefore a success and has
been used as the default for processing 2011 data.

Relative jet response

As in case of 2010 data, the η-intercalibration studies were performed for both
R = 0.6 and R = 0.4 distance parameters of the anti-kT jet reconstruction
algorithm and for EM+JES and LC+JES calibrations. Comparisons of data to
MC models (HERWIG++ and PYTHIA6) reveal similar behaviour as was already
discussed for 2010 data. Jet responses between both jet algorithms are stable.
Similar observation can be drawn for the difference between jet calibrations. An
example of relative jet responses in 2011 data is presented in Figure 5.6 for three
pavg

T ranges. The response in data is well described by both MC models in the
central region (∼ 2% in |η| < 2.8 range) and still reasonably well in the forward
region (∼ 5% in |η| > 2.8 range) for higher values of pavg

T . In the forward region
and lower pavg

T ranges, the MC to data ratios are found to be within∼ 10%. Again,
as in the 2010 data studies, we can observe the model differences due to different
parton showers and hadronisation models, resulting in systematic overestimates
of the data by HERWIG++ and underestimates by PYTHIA6.

5.4.3 Conclusions

The analysis work on testing the Jet Energy Scale by balancing jet momenta in
dijet events represented an important contribution to the ATLAS Collaboration.
A new third jet cut, crucial for selecting a clean sample of dijet events usable
for this analysis, had to be developed and it ensures that the cutting is done on
real third jet (third highest pT jet coming from the hard interaction) and not
on the jet coming from a pile-up interaction. The η-intercalibration studies were
performed on 2010 and 2011 data for two distance parameters of the anti-kT jet
reconstruction algorithm (R = 0.6 and R = 0.4) and for various jet energy cali-
bration methods. These outputs provide a useful insight used in ATLAS analyses
dealing with jets in 2010 and 2011 data.
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(a) EM+JES (b) GCW+JES

(c) LC+JES (d) EM+JES

(e) GCW+JES (f) LC+JES

Figure 5.1: Relative jet response as a function of the pseudorapidity of the probe
jet in two different pavg

T regions for EM+JES, GCW+JES and LC+JES jet cali-
brations. 2010 data (periods A to I) compared to various Monte Carlo models.
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(a) anti-kTR = 0.6 (b) anti-kTR = 0.4

(c) anti-kTR = 0.6 (d) anti-kTR = 0.4

Figure 5.2: Uncertainty in the jet response as a function of the pavg
T in two different

pseudorapidity regions for all studied jet calibrations: EM+JES, GCW+JES and
LC+JES. Jets reconstructed by the anti-kT algorithm with radii R = 0.6 and
R = 0.4.

(a) (b)

Figure 5.3: Event distributions (no scaling applied, 2011 data) for jet vertex frac-
tion of the third jet (left) and the third jet transverse momentum relative to pavg

T .
Events are separated based on the trigger that fired in the given event. Standard
selection cuts applied (pavg

T > 20 GeV, ∆φ(j1, j2) > 2.6). Jets reconstructed by
the anti-kT algorithm with radius R = 0.6.
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(a) (b)

Figure 5.4: Distributions of Jet Vertex Fraction of third jets for events (2011 data)
collected by various jet triggers (left) and of the transverse momentum of third
jets relative to pavg

T for EF j30 a4 EFFS jet trigger (right). In Figure b), different
third jet cuts are examined (“old” refers to the pj3

T < 0.15pavg
T cut). Distributions

are normalized to unity. Jets reconstructed by the anti-kT algorithm with radius
R = 0.6.

(a) No third jet cut (b) With new third jet cut

Figure 5.5: Relative jet response as a function of the pseudorapidity in period D
of 2011 data without using third jet cut (left) and with new third jet cut (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Relative jet response as a function of the pseudorapidity of the probe
jet in three different pavg

T regions for EM+JES and LC+JES jet calibrations. 2011
data (periods D to I) compared to HERWIG++ and PYTHIA6 models.
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6. The event selection

The ATLAS Collaboration has already published two measurements which are
relevant to the diffractive dijet analysis presented in this thesis:

• 2010 inclusive dijet measurement [44]

• Soft rapidity gaps analysis [45]

Both of these works will be referred to throughout this and next chapters. Though
they provide a solid basis to start from, they are in their basic state for many
reasons insufficient and need to be significantly adapted.

6.1 Data samples

The organization of the data acquired by the ATLAS experiment can be thought
of as a structure of several levels. First, the data is classified according to the
year it was taken in. Each year is divided into several so-called “Periods”, each
of them gathering data with similar LHC beam conditions and physics goals. A
period further comprises of so-called “Runs” characterised by a six-digit number,
which are finally divided into “lumi-blocks” (LB) - short data taking time stamps
of a duration in the order of tens of seconds to minutes.

In order to observe a hard diffractive dijet event with a large rapidity gap, a
non pile-up environment (i.e. not more than one interaction per bunch crossing)
is crucial. If the hard SD event is overlayed with another interaction, mostly a
minimum-bias pp collision, the rapidity gap is partly or completely filled with
particles from this additional inclusive interaction. Since only early LHC running
conditions (with some rare exceptions) were favorable to this fundamental re-
quirement specific for our diffractve analysis, the data sample selection is limited
to early 2010 data at

√
s = 7 TeV, particularly periods A and B.

The Period A 2010, in which the LHC was being filled with unsqueezed bunches
(a typical beam spot width of 50-60 µm in x and y), could have a large diffrac-
tive potential as the pile-up was negligible. However, given the low integrated
luminosity collected in that period, the number of events with a hard scatter
producing two high pT jets and having large rapidity gap is small. Period B, by
contrast, is more promising. Beams circulating the LHC were squeezed (a typical
beam spot width of 30-40 µm), but the pile-up was still low enough, as can be
read from Table 6.1 from the column denoted as “Peak 〈µ〉” (µ is an average
number of interactions per bunch crossing).

Data selected by trigger menus are sorted out into several different streams. The
physics streams are L1Calo (events selected mostly by jet, e/γ, τ and sum ET

triggers) and MinBias (triggered mostly by MBTS counters and forward detec-
tors). Overlays of events between these two streams are possible and have to be
removed from the analysis.
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A basic selection of runs usable for a physics analysis is done via so-called Good
Runs List (GRL). To each run, a list of LBs which can be safely used (all impor-
tant sub-detectors on high performance) is provided. In this analysis, the same
GRL as in the 2010 dijet measurement was used. It is based on recommenda-
tions of the Jet/ET performance group, requiring green Data Quality flags for
all important sub-systems, such as calorimeters and tracking detectors. After
this selection, five runs of period B are available for this analysis. Their basic
characteristics are summarized in table 6.1.

Run Num. Peak 〈µ〉 Nbunch ∆tbunch (ns) Lstable (µb−1) Lafter GRL (µb−1)

153565 0.044 2 44625 754.7 715.2
155073 0.108 2 66825 1195 1120.7
155112 0.144 3 5000 3691 3279.6
155116 0.114 3 5000 564.5 453.6
155160 0.123 3 5000 1361 1263.3

Table 6.1: Run conditions for the selected runs (those used for the analysis) in
2010 Period B. Number of bunches per train (Nbunch), time distance between two
neighbouring bunches (∆tbunch), integrated luminosity of stable beams (Lstable)
and after Good Runs List selection (Lafter GRL) are presented.

6.2 Trigger selection

Since the analysis presented in this document starts from a basic inclusive dijet
sample of events, jet trigger selection is naturally assumed to be the most appro-
priate choice. Even though other possibilities were also explored, the jet triggers
eventually turned out to be the best available option.

Before settling down with the option that is eventually used for this analysis,
a number of approaches have been investigated. The author does not feel it nec-
essary to go into details of all these (semi-) dead ends, but a few notes (spread
throughout this section) demonstrating some of the difficulties of the diffractive
dijet analysis are in order.

6.2.1 Jet and minimum bias triggers

The most commonly used triggers in analyses dealing with jets are so-called jet
triggers (central and forward) and a Minimum Bias Trigger Scintillator (MBTS).
The MBTS trigger called L1 MBTS 1 requires at least one hit in minimum bias
scintillators (see Section 2.3.4) covering 2.09 < |η| < 3.84. It is the primary trigger
used to select inclusive minimum-bias events and is found to have a negligible
inefficiency for events with jets with a transverse momentum between 20-60 GeV
[44]. Jet triggers, both central and forward ones, select collision events based on
a presence of a jet with sufficient ET at the electromagnetic (EM) scale1. Level-1

1The electromagnetic scale is the basic calorimeter signal scale for the ATLAS calorimeters.
It is based on test-beam measurements of a response for the energy deposited in electromagnetic
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thresholds for central triggers such as L1 J5, L1 J10, L1 J15 are 5, 10 and 15
GeV, respectively, and for forward triggers such as L1 FJ10, L1 FJ30, etc. are
10 and 30 GeV, respectively.

6.2.2 Trigger prescales

The ATLAS triggers represent a key tool for deciding whether a particular event
will be recorded or not (see Section 2.5). To enhance (suppress) certain types of
collision events, trigger prescales (PS) have been introduced. If the prescale is
set to PSt = n, it means that only in every n-th event a decision of the trigger t
is considered for final yes or no. It is therefore obvious that the PS can be one
of the key parameters to consider when preparing a trigger-selection strategy for
a physics analysis.

Figures 6.1 and 6.2 present an overview of prescales of Level-1 triggers (EF re-
spectively) across 2010 pp-collision periods. Up to the period F, Level-1 triggers
were used to collect data. Since period G, HLT triggers were fully commissioned.
Some of the HLT triggers were on before period G already, but they were in the
so-called “pass-through” mode (they were not used for collecting data).

Given the pile-up conditions in later periods, this analysis is built upon early
2010 data. That also simplifies the trigger selection as in period A and B, no jet
trigger was prescaled. In period C, a small average prescale PS ∼ 1.1 is there
for the lowest-pT threshold jet trigger L1 J5. In period D and above, prescales
of events with low-pT jets are growing significantly. The L1 MBTS 1 trigger is
not prescaled in period A, has an average PS ∼ 50 in B and grows to around 500
in C. Since then, the prescale is so high that only negligible amount of the data
collected is due to this trigger.
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Figure 6.1: Prescales of central (left) and forward (right) Level-1 triggers in 2010
periods of the ATLAS data-taking. Prescales are calculated as weighted average
(according to the luminosity) accross LBs in a given period.

showers by electrons and muons with known energy (from the so-called “test-beam”). No
correction for hadron response is applied.
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Figure 6.2: Prescales of central (left) and forward (right) EF-level triggers in 2010
periods of the ATLAS data-taking. Prescales are calculated as weighted average
(according to the luminosity) accross LBs in a given period.

6.2.3 Luminosity and cross section

The ATLAS luminosity calculation tool (iLumiCalc) provides a way to access de-
tailed information on triggers (such as trigger prescales) and luminosities in given
runs. To get the information relevant for the particular analysis, the GRL is sup-
plied as an input along with a luminosity tag specifying the actual database with
records of collected luminosities (OflLumi-7TeV-004 ). The “L1-live fraction trig-
ger” (L1 MBTS 2) also needs to be specified as it is used to determine a fraction
of luminosity that ATLAS could record (after correcting for effects as dead-time
etc.).

The usual way of calculating the total integrated luminosity of a given data
period is by summing over LBs passing a particular GRL in all involved runs.
Such luminosity can then be used to get the measured cross section according to
the usual formula

σ =
Nevents

L
, (6.1)

where L is the integrated luminosity of a given dataset and N is the number
of events collected.

The effective luminosity in case of events collected by a trigger with prescale,
which can vary significantly throughout the run, can be calculated as

LJ =
∑
LB

LLB

P J
LB

, (6.2)

where LLB is the luminosity of the given LB and P J
LB is the prescale of trigger

J in the given LB. This equation yields, in case of period B, LL1 J5 = 6.753 nb−1

and LL1 MBTS 1 = 0.303 nb−1. As the prescale of L1 J5 is 1, the LL1 J5 is equal to
the total luminosity of period B.

It is not unusual, as we shall see later on, that a trigger strategy is more com-
plicated than requiring just a single trigger. It can be convenient to combine,
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for example, central and forward jet triggers into a logical OR. In this case, the
luminosity can be calculated, as shown in [44], as

LA OR B =
∑
LB

LLB

PA
LBP

B
LB/(P

A
LB + PB

LB − 1)
(6.3)

This equation comes from a simple consideration of two overlaying sets, A and
B. The probability of their logical OR is P (A||B) = P (A) + P (B) − P (A ∩ B),
where the last item being subtracted from the rest is due to removing events
that are double-counted due to the overlay of the two sets. In terms of trigger
luminosities, this can be rewritten as L(A||B) = L

PA
+ L

PB
− L

PAPB
. The equation

6.3 can be retrieved by a simple mathematical modification.

For triggers A = L1 J5 and B = L1 MBTS 1, the effective luminosity is found to
be LA OR B = 0.303 nb−1.

The final cross section can be calculated as

σ =
NJ5

LJ5

+
NMBTS

LMBTS

+
NJ5 OR MBTS

LJ5 OR MBTS

(6.4)

which makes sure that events are properly treated by separating them to
three separate categories. Here NL1 J5, NL1 MBTS 1 and NL1 J5ORL1 MBTS 1 denote
the number of events for which the central, MBTS and both triggers are required
(based on pT and η of both leading and sub-leading jets).

6.2.4 Inclusive 2010 dijet analysis

The measurement of the dijet invariant mass m12 [44] performed on full 2010
data sample became eventually a baseline for the diffractive dijet analysis pre-
sented in this thesis. The basic selection is done by requiring a presence of two
hight-pT jets (the two jets with the highest transverse momentum are required

to have p
jet 1 (jet 2)
T > 30 (20) GeV) well contained within the calorimeter sys-

tem (|ηjet 1(jet 2)| < 4.4) present in a collision event with good primary vertex
(having at least five associated tracks). The trigger strategy was designed in
such a way that it optimizes the usage of the available (and limited) statistics
for low invariant masses by creating a per-jet trigger scheme. In this approach,
two triggers are attributed to each event based on the pT and η range of the
two highest-pT jets (so-called “leading” and “sub-leading” jet) with a require-
ment that triggers are used in the region where they are at least 99% efficient
(so-called “trigger plateau”). Events collected by different trigger combinations
must be stored to separate histograms which are, before final merging, normalized
to the cross section based on trigger luminosities as calculated by equations 6.2
and 6.3. This approach, though more complicated, allows to exploit the available
statistics in a better way than the standard inclusive “per-event” strategy (see
[44]) as it optimizes the use of less prescaled higher pT-threshold jet triggers at
lower pT (while still being on trigger plateau). There is also a number of trigger
inefficiency corrections (such as for the “crack” region 1.3 < |η| < 1.6, dead FCal
towers in certain η-regions, etc.) that need to be applied as a weight to the whole
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collision event.

The goal of the 2010 dijet analysis was to measure the dijet invariant mass spec-
trum in the widest possible range, that is with a focus on low masses as well.
It was done in several y? bins, where y? = |y1 − y2|/2 (y1, 2 is a rapidity of the
leading or sub-leading jet) with the selection cuts and trigger scheme briefly out-
lined above. As an important cross-check, this whole complex measurement was
reproduced with hopes that it will become a cornerstone of the diffractive dijet
analysis where large rapidity gaps (small invariant masses, see equations 1.16 and
1.15) are in the center of our interest. Therefore, the dijet analysis was run across
full ATLAS 2010 data sample (periods A to I) and the detector level invariant
mass spectrum was then compared to the one provided to us by the original
ATLAS inclusive dijet group2. This comparison is presented in Figure 6.3 (a per-
period cut-flow table is included in Appendix A) and clearly demonstrates that
the official dijet trigger strategy was understood and implemented well.

Figure 6.3: Detector level dijet invariant mass cross section in several different
y? = |y1 − y2|/2 ranges as measured by the inclusive dijet group (red) and as
reproduced (black).

6.2.5 Trigger scheme optimization

Unfortunately, the performance of per-jet triggers (as developed by the inclusive
dijet group) at large rapidity gaps is not high enough to allow for a statistically
significant measurement, as can be deduced from the cut-flow table in Appendix
A (while keeping in mind that only early 2010 data periods can be used due to
significant pile-up later on). That does not mean, however, that the events are
not present in the data sample being examined, as can be seen from the Figure
6.4 (period B) where the no-trigger-selection option is also explored. The quan-
titative summary of these findings is in the Table 6.2. The trigger strategy has
to be, therefore, modified to be able to select a diffractive enhanced event sample
with low pT jets.

As a starting point, even before implementing the inclusive dijet trigger scheme,
the trigger strategy used for the dijet performance work (see Chapter 5) was

2Many thanks to Christopher Meyer.
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Figure 6.4: Rapidity gap spectrum for different trigger strategies for period B.
Event selection cuts: p

jet 1 (jet 2)
T > 30 (20) GeV, nvertices(2trk) = 1.

examined in its original as well as modified form. The modification lies in a re-
alization that it should not be necessary to keep insisting on collecting events on
the trigger efficiency plateau only - if appropriate correction factors in the form
of event weights are applied. This option was explored by lowering the mini-
mal pavg

T cut for L1 J5 trigger from 45 GeV to 30 GeV, bypassing thus the highly
prescaled MBTS trigger for events with jet transverse momenta in the range 30-45
GeV. Though it led to a significant increase of statistics compared to the original
pT ranges, this trigger selection was, after a number of validation efforts (trigger
inefficiencies were taken into account by measuring the trigger efficiency curves
as a function of pavg

T and fitting their turn-on parts), abandoned as unsuitable
for a physics analysis. This conclusion was mainly based on validation attempts
against the official inclusive dijet strategy for m12, pjet

T and ηjet spectra.

The same outcome eventually came from attempts to investigate a possibility
of using non-jet triggers, as studies with going significantly below jet trigger
efficiency plateaux showed that there is still very large amount of events fired
by “something else”. Figure 6.5 summarizes the event yields of the most im-
portant triggers gathering events with rapidity gaps bigger than three units of
pseudorapidity. Significant number of events are gathered by tau-jet (TAU), elec-
tromagnetic (EM) or missing ET triggers, none of which are appropriate for the
diffractive dijet analysis, as more detailed studies showed.
It was eventually decided, after these trigger studies (plus some other simpler
checks like logical OR of all jet triggers), to use the inclusive dijet trigger strategy
with a modification allowing to use jet triggers below the efficiency plateaux.

6.2.6 Trigger efficiency measurement

The usability of a trigger selecting events in the region where it is not at least
99% efficient relies on an assumption that the inefficiency can be well described.
The jet-trigger performance depends not only on the transverse momentum of
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Figure 6.5: Overview of the most important triggers (in period F) that fired events
with rapidity gaps of the size ∆ηF > 3. “EM” stands for triggers based on energy
deposition in electromagnetic calorimeter, “TAU” are based on identification of
tau-jets, “TE” evaluate total transverse energy and “XE” are triggers based upon
missing energy.

Trigger scheme Events with ∆ηF > 3
No triggers 272

Official 2010 dijet triggers 36
Below-pleateau triggers 138

Table 6.2: Event yields (period B) after applying different trigger strategies for
the standard cuts of the inclusive 2010 dijet analysis (with the pile-up suppression
cut). Jets were reconstructed by the anti-kT R = 0.6 algorithm.

the jet in question, but also on its η. If we are interested in measuring the trigger
efficiency as a function of a transverse momentum, it is advisable to separate
this measurement into several η-ranges and vice versa. The default η-ranges
used in inclusive dijet analysis are |η| < 0.3, 0.3 < |η| < 1.2, 1.2 < |η| < 2.1,
2.1 < |η| < 2.8, 2.8 < |η| < 3.6 and 3.6 < |η| < 4.4.

The measurement of trigger efficiencies was done by a so-called “bootstrap”
method. The basic event sample is selected with a trigger which is fully effi-
cient in the full pT-η region of the trigger under investigation, so for example
the L1 MBTS 1 trigger in the MinBias stream. From this selection, a sub-set of
events in which the tested trigger fired is chosen. For being able to distinguish
which jet actually fired the given trigger, a cut ∆R =

√
∆η2 + ∆φ2 < 0.5 be-

tween the physical jet and the jet RoI (Region of Interest; a jet candidate that
fired the given trigger, reconstructed on-line by a simplified procedure during the
trigger evaluation time - not to be mismatched with fully reconstructed jets used
in a physics analysis) is required.

The trigger efficiency curves (as a function of pT) have two distinctive regions:
the turn-on part (steeply falling with decreasing jet pT) and the plateau (region
with no pTdependence). The turn-on parts can be fitted with a function
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εtrig(pT) = a0 · fErr

(
pT − a1

a2

+ 1

)
(6.5)

where ai are the fit parameters, fErr is the error function and pT is the trans-
verse momentum of the jet that fired given trigger.

An example of such trigger efficiency measurement is presented in Figure 6.6,
where the comparison among periods B, D and F is plotted for a selected central
and forward jet trigger. The forward jet comparison reveals a significant shift of
period B trigger efficiency curve versus period D or F respectively. This can be
also a manifestation of the fact that in early 2010 periods (A to D), the forward
jet triggers were not fully commissioned yet and therefore should not be used for
physics analysis.
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Figure 6.6: Comparisons of trigger efficiency curves between 2010 data periods.
The central L1 J5 trigger (left) measured in the eta region |η| < 2.8, the forward
L1 FJ10 trigger in 3.3 < |η| < 4.4.

6.2.7 New trigger selection in period F

The period F was chosen as a starting point of attempts to optimize the trigger
strategy due to its highest statistics in the region of interest (rapidity gaps of the
size larger than three units of pseudorapidity, see table A.1) and still relatively
simple trigger selection based on Level-1 triggers only (L2 chains were used from
period G onwards).

The inclusive dijet analysis used a combination of four central jet triggers (L1 J5,
L1 J15, L1 J30, L1 J55) within |η| < 3.1, two forward jet triggers (L1 FJ10,
L1 FJ30) within 3.1 < |η| < 4.4 and L1 MBTS 1 trigger for lowest pT jets in full
|η| < 4.4 range. As discussed above, a possible way how to boost statistics of
events with low-pT jets is to use higher-pT threshold triggers (which are signifi-
cantly less prescaled, see Figures 6.1 and 6.1) at lower pT ranges. The question is
how much below the trigger efficiency plateau is it possible to go. Several practi-
cal experiments with different thresholds (ε > 85%, ε > 70%, ε > 60%, ε > 50%)
led to the conclusion that 70% is a reasonable compromise between getting the
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highest possible event statistics and staying in the “safe” region (where the effi-
ciency measurement is not significantly biased by trigger uncertainties and other
technical aspects of trigger implementation in the ATLAS Data Aquisition sys-
tem).

The 70% efficiency threshold was found out in such a way that in no η-region
studied, the efficiency gets below 70%. Efficiencies were measured and fitted by
the function 6.5 in four η-ranges (|η| < 0.3, 0.3 < |η| < 1.2, 1.2 < |η| < 2.1,
2.1 < |η| < 2.8) for all five central triggers and in two forward η-ranges (2.8 <
|η| < 3.6 and 3.6 < |η| < 4.4) for both FJ triggers. Each of these 24 fits were
incorporated into the analysis to provide per-event scaling factors to correct for
the trigger inefficiencies. In case that both jets fired their jet trigger and are
located in the region below the trigger efficiency plateau, the scaling factor is
calculated as 1/ε1 + 1/ε2− 1/(ε1ε2) (it comes from consideration that two partly-
overlaying sets are merged as logical OR, hence the subtraction of the factor
1/(ε1ε2): A ∪ B = A + B − A ∩ B). An example of the trigger efficiency depen-
dence in different η-regions is demonstrated in Figure 6.7.
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Figure 6.7: Trigger efficiency curves of the central L1 J30 (left) and the forward
L1 FJ30 trigger in different η-ranges in 2010 data period F.

The optimized (below-plateau) trigger strategy used for period F data is sum-
marized in tables 6.3 and 6.4. The central (forward) region is defined as area of
the ATLAS calorimeter where the central (forward) jet triggers are fully efficient.
The HEC-FCal transition region (2.9 < |η| < 3.3) is specific for any jet analysis
as the trigger efficiency of the central jet triggers is steeply falling as a function
of η, while forward triggers are not fully efficient yet. It was however shown [44]
(and confirmed by our efficiency measurements) that efficiencies of logical OR of
central and forward triggers (e.g. L1 J10 OR L1 FJ10) are 100% efficient even in
this region. Therefore, when a jet is within 2.9 < |η| < 3.3, a logical OR between
triggers from table 6.3 and 6.4 is done. To decide which trigger was actually fired
by this particular jet, ∆R =

√
∆η2 + ∆φ2 between the reconstructed jet and L1

jet RoI (of given central and forward trigger) is calculated and required to be
within ∆R < 0.5 (to avoid fake matches).
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Jet pT (GeV) |ηjet| < 2.9
20 – 34 L1 MBTS 1
34 – 42 L1 J5
42 – 50 L1 J10
50 – 78 L1 J15
78 – 122 L1 J30
> 122 L1 J55

Table 6.3: The trigger selection in the central region developed for diffractive
dijet analysis with 2010 period F data sample.

Jet pT (GeV) 3.3 < |ηjet| < 4.4
20 – 26.5 L1 MBTS 1
26.5 – 48 L1 FJ10
48 – 100 L1 FJ30
> 100 L1 FJ55

Table 6.4: The trigger selection in the forward region developed for diffractive
dijet analysis with 2010 period F data sample.
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Figure 6.8: Detector level pT (left) and η (right) comparisons between the official
inclusive 2010 dijet trigger strategy (black) and the new below-plateaux triggers
(red) for period F.

As shown above for invariant mass comparisons, an implementation of the official
2010 dijet trigger scheme was successful. Another reference distributions, such as
jet pT and η, can thus be prepared. From now on, new trigger strategies can be
validated not only to the m12 spectra, but to pT and η as well. Such validation
plots are shown in Figure 6.8. It is clear that a very good agreement was achieved,
mostly within 5% (with the exception of two η bins where it goes up to 8%). Giv-
en the very steep turn-on parts of trigger efficiency curves, this is an excellent
result. Moreover, using jet triggers down to 70% of their efficiencies gained us
about three times more events with large gaps above three units of rapidity in size.

Though the period F is promising with respect to the available statistics, there
are two set-backs. First one is going to be discussed in Chapter 7 as it relates to
the noise removal for the rapidity gap definition - there is a need for new D3PD
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production (making available an additional cluster moment called “significance”),
but since this is the old data, the ESD files (necessary for new D3PD production)
are no longer available on the Grid. Second, there is a worry of a significant
pile-up contribution (< µ >= 2), namely the in-time and out-of-time pile-up, as
will be discussed in Chapter 11. It was therefore decided to base the diffractive
dijet analysis on the period B only.

6.2.8 New trigger selection in period B

As mentioned in the previous paragraph, the period B is the default data sample
used for this physics analysis. The trigger selection was tuned in a similar way as
for period F, but this time it is much simpler: no jet trigger is prescaled (we can
thus use the L1 J5 for full pT range) and the forward jet triggers were not com-
missioned yet. Therefore, for the low-pT and forward jets, L1 MBTS 1 trigger is
used (in accordance with the inclusive dijet trigger selection).

In addition to selecting events by triggers with efficiency below 100%, the η-ranges
were adapted based on Figure 6.9(a), where the L1 J5 trigger efficiency measure-
ment as a function of ηjet in the region of interest (below plateau) is demonstrated.
The measurement of central jets is split into five different sub-regions (|η| < 0.8,
0.8 < |η| < 1.3, 1.3 < |η| < 1.7, 1.7 < |η| < 2.4, 2.4 < |η| < 2.9; for efficiencies,
see Figure 6.9(b)), each of which is fitted by the error function presented in equa-
tion 6.5 (for results, see Figure 6.10). The thresholds for using L1 J5 trigger were
set to pT = 34 GeV (anti-kT R = 0.6 jets) and pT = 29 GeV (anti-kT R = 0.4
jets). This corresponds to efficiencies > 60% in the 1.3 < |η| < 1.7 region and
> 75% in other regions.

Figure 6.9(a) also reveals a problematic “crack” region 1.3 < |η| < 1.6 (transition
between calorimeter barrel and end-caps), where the jet triggers never become
fully efficient due to inhomogeneities. This effect is corrected for in the analysis
by constant scaling factor 0.89 for pT < 78 GeV and 1.0 for larger pT(based on
[44], confirmed by our efficiency measurement).
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Figure 6.9: Trigger efficiencies as a function of (a) η and (b) pT for anti-kT R =
0.6 jets.
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Figure 6.10: L1 J5 efficiencies in data as a function of the jet pT for anti-kT jets
with R = 0.4 and R = 0.6 for different η-regions.

The practical implementation is the same as for period F or the inclusive dijet
selection: for a particular event, a logical OR of two triggers (one corresponding
to the leading and the latter one to the sub-leading jet) is requested. The event
can thus be classified into three distinctive categories depending on the required
combination of triggers: L1 J5 only (events normalized by LL1 J5 = 6.753 nb−1),
L1 MBTS 1 only (events normalized by LL1 MBTS 1 = 0.303 nb−1) and logical OR
of both (LOR = 0.303 nb−1, see equation 6.3).

Just as in case of the period F, the adapted inclusive dijet trigger strategy is
a success, as was shown already in Figure 6.4 and table 6.2. The increase of
statistics in the region of interest (large rapidity gaps) is almost by factor four.
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The new trigger scheme summary is presented in Table 6.5

Jet algorithm pT (GeV) |ηjets| < 2.9 |ηjets| > 2.9

Anti-kT R = 0.6
20 < pT < 34 L1 MBTS 1 L1 MBTS 1
pT > 34 L1 J5 L1 MBTS 1

Anti-kT R = 0.4
20 < pT < 29 L1 MBTS 1 L1 MBTS 1
pT > 29 L1 J5 L1 MBTS 1

Table 6.5: The new below-plateau dijet trigger scheme for 2010 period B.

6.2.9 Validation of the new trigger scheme

Since the ATLAS 2010 dijet measurement was successfully reproduced by imple-
menting the official dijet trigger strategy, as demonstrated in Figure 6.11, it can
be used to produce the pT and η spectra. These, along with the uncorrected
m12 distributions that we received from the inclusive dijet group, can be used to
validate the newly proposed trigger strategy against. These validation plots are
shown in Figures 6.12 and 6.13. The invariant mass spectra are obviously repro-
duced with an excellent precision of ∼ 1% with the exception of the lowest m12

bin, where the agreement is within 2%. This is consistent with the distributions
in Figure 6.13, where the pT and η spectra collected by the new below-plateau
triggers are compared to those acquired by implementing the official inclusive
dijet trigger strategy.
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Figure 6.11: Detector level dijet invariant mass in two different y∗ bins. Com-
parison between the 2010 inclusive dijet analysis (full 2010 data sample) and our
reproduction of these results (period B) by implementing the inclusive cuts and
trigger scheme. Jets were reconstructed by the anti-kT R = 0.6 algorithm.

6.2.10 Trigger closure test

The trigger closure test is designed to test the influence of the trigger efficiency
weighting on the shape of the ∆ηF (see Chapter 7) and ξ̃± (see Chapter 8)
spectra. A bias could arise from the possible trigger efficiency dependence on
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the ∆ηF and ξ̃± variables. To test this effect, the Monte Carlo samples well
populated up to the largest gaps (smallest ξ) can be exploited. As the goal is to
test the L1 J5 trigger efficiency weighting (this trigger is used starting from the
pjet

T > 34 GeV), the PYTHIA8 Monte Carlo sample can be restricted to events
with the leading-jet pT > 34 GeV. The trigger performance is then simulated by a
random removal of events given by the trigger efficiency fits as retrieved from the
data. The remaining events collected in the jet pT region corresponding to the
trigger efficiency below plateau are then normalized by the same scaling factors
as are used in the data analysis. The result of this trigger closure test shown in
Figure 6.14 for both the ∆ηF and ξ̃± variables clearly indicates stability of both
distributions against the trigger efficiency weighting within 2%. Distributions
without the weighting (but with trigger simulation) are also drawn.

6.3 Event selection cuts

The basic dijet selection cuts are based on the inclusive dijet analysis [44]. The
first level of the event selection is done via the Good Runs List, already mentioned
in Section 6.1. Other steps include requirements on reconstructed vertices, the
already discussed trigger selection and a dijet acceptance definition based on cut
on jet pT and η.

6.3.1 Vertex requirements

There are three layers of the ATLAS tracking system which are dedicated to a
precision measurement of trajectories of charged particles produced in the center
of the detector. These tracks can be used to reconstruct vertices, i.e. points in
the x, y, z coordinates3 where two or more tracks (after meeting certain quality
criteria) originate from. Distributions of all reconstructed vertices with at least
two associated tracks is shown in Figure 6.15.

Generally, the vertex reconstruction algorithm provides basic information about
so-called primary vertex (PV0), i.e. the most probable candidate on the pp colli-
sion point of the hard-scale interaction, and “pile-up” vertices (additional vertices
having two or more associated tracks) made-up by secondary minimum bias pp
interaction. In case of diffractive events, it is possible that there is no PV0 as the
diffractive system can be boosted into the forward direction, outside the accep-
tance of the Inner Detector. The selection of events for a usual jet-related analysis
contains a requirement on the presence of PV0 with at least five associated tracks,
which is designed to reject events due to cosmic ray muons and beam-induced
background. This cut was also used in our analysis with a requirement that there
are at least two associated tracks to the PV04.

3ATLAS uses the right-handed coordinate system with the z axis pointing in the direction
of the beam, x axis to the geometrical center of the LHC and y axis perpendicular to both x
and z.

4Requiring five tracks would pose an additional requirement on larger particle activity in the
central region, which is unnecessary limitation for the rapidity gap measurement; two associated
tracks is sufficient for removing cosmics and beam-induced background
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Since the instantaneous luminosity in examined data runs is such that there
is a potential for multiple collisions in the same bunch crossing, additional vertex
requirement was employed to reject such events: besides the primary vertex with
at least two associated tracks, there should not be any additional pile-up vertex
(having two or more associated tracks).

The probability that there are zero (P (0)), one (P (1)) or more (P (≥ 2)) in-
teractions in the same bunch crossing can be calculated using Poisson statistics.
After asking that a primary vertex is reconstructed, and taking the mean number
of interactions per bunch crossing to be 0.144, corresponding to the peak 〈µ〉
value in run 155112 (Table 6.1), the multiplier factor f by which the data with
pile-up suppression cut must be corrected, is

f = 1 +
P (≥ 2)

P (≥ 1)
= 1 +

1− P (0)− P (1)

1− P (0)
. (6.6)

Using the Poisson statistics to evaluate P (0) and P (1), the result is fTheor. = 1.07.

The primary vertex (with 2 or more associated tracks) requirement removes ap-
proximately 0.4% of events passing the GRL in the L1Calo and 19.1% in the
MinBias data stream. From a sample with at least one primary vertex, the
fraction of events with more than one interaction in the same bunch crossing
is measured to be approximately 9.3% in L1Calo and 3.3% in MinBias stream.
Once the event is triggered and the dijet selection criteria is met, the requirement
on a presence of the primary vertex removes 0.3% of events in L1Calo and 0.2%
in MinBias stream, while the actual fraction of events rejected by the pile-up
suppression cut is 9.4% in L1Calo and 6.5% in MinBias stream. We therefore get
fL1Calo = 1.094 and fMinBias = 1.065. These values are used to scale the measured
cross section to account for the loss of events due to the pile-up suppression cut
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(not more than one reconstructed vertex with two or more associated tracks per
event).

6.3.2 Jet kinematic selection

Jets in data are reconstructed from topological clusters (TopoClusters or sim-
ply clusters)5 [46] at the EM+JES scale, that is with calibration based on the
electromagnetic scale (EM) with jet energy scale factors (JES)6 [47] based on a
jet energy and rapidity (known as EM+JES). The anti-kT algorithm of two jet
resolution parameters, R = 0.4 and R = 0.6 [43], was used. The corresponding
particle level definition is based on all stable final state particles, using also the
anti-kT algorithm of the same resolution parameters.

The dijet selection adopted in this analysis requires leading and sub-leading jets
(ordered according to their pT) with transverse momenta pT > 20 GeV and with
jet barycenters within |η| < 4.4. The η cut ensures that jets are well contained
within the ATLAS calorimeter acceptance range so that no significant jet energy
escapes undetected.

The transverse momentum cut pT > 20 was chosen with respect to the attempt
to boost statistics at large rapidity gaps (small ξ) and to the limitation of the jet
energy scale (not well understood for pT < 20 GeV). The same pT and η cuts are
used for particle level Monte Carlo studies. Data to MC comparisons are shown
in Figure 6.16, which suggests that the PYTHIA8 systematically overestimates
inclusive dijet production cross section by factor ∼ 1.4.
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Figure 6.16: Detector level pT and η distributions of the leading jet in comparison
with the PYTHIA8 Monte Carlo events.

5TopoCluster is reconstructed from a seed calorimeter cell with |Ecell| > 4σ, where σ is
the RMS of the noise of the cell. Neighbouring cells are iteratively added in case they have
|Ecell| > 2σ.

6Energy calibration factors that must be applied to reconstructed jets to account for a limited
calorimeter response to the deposited energy.
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6.3.3 Jet cleaning

Both the leading and the sub-leading jet are required to pass ATLAS medium-
type quality cleaning cuts7 and not to be “ugly”8 (for jet cleaning details, see
[44]). The effect of the jet cleaning differs based on the jet pT and η range and
must be corrected for in the physics analysis by introducing appropriate event
weights. These correction factors are depicted in Figure 6.17.
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Figure 6.17: Jet cleaning efficiency correction factors for EM+JES calibrated jets.
Values used in this plot taken from [44].

7Removes contribution from cosmic muons, detector noise, beam-background, crack region,
etc.

8“Ugly” jets have most of their energy deposition in problematic calorimeter regions, where
the energy measurement is not sufficiently accurate.
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7. Rapidity gap measurement

Rapidity gaps, i.e. large pseudorapidity regions with no particle activity, rep-
resent a key diffractive signature. The interpretation of such events is straight-
forward: since large rapidity gaps are rare in non-diffractive interactions (fluc-
tuations in hadronisation process causing rapidity gaps are exponentially sup-
pressed), a simple cut on the size of the rapidity gap can be used to significantly
enhance the diffractive contribution in the studied data sample. The measured
rapidity gap distribution can be directly compared to various diffractive models,
providing thus a useful feedback for theorists about their predictions.

In this chapter, various rapidity gap definitions, influence of the detector noise
and detector level (uncorrected) data distributions (in comparison with MC mod-
els) are presented. The fully corrected distributions are shown and discussed in
Chapter 12.

Throughout this chapter, all ratio plots are calculated as a colored histogram
divided by a black histogram, with error bars representing the overall statistical
uncertainty of the ratio.

7.1 The Forward Rapidity Gap

The Forward Rapidity Gap, denoted throughout this thesis as ∆ηF , is specific
for single diffractive events in which the rapidity gap is measured between the
scattered proton (its typical ξ is so small that it remains in the beam pipe) and
first stable (proper lifetime τc > 10 ps) final state particle (hereafter reffered to
as “truth” particles or the “particle level”1) produced by the dissociation process
of the other interacting proton.

The detector level definition of ∆ηF (detector level variables are also called “re-
co”) is based on the soft rapidity gap analysis [45] and takes advantage of the
acceptance of the ATLAS calorimeter system (|η| < 4.9) and the Inner Detector
(|η| < 2.5). The Forward Rapidity Gap is the largest empty area in the ATLAS
detector ranging from the edge of the calorimeter system (η = −4.9 or η = 4.9)
up to the first detector object (TopoCluster or track).

7.2 Noise removal

The rapidity gap measurement is very sensitive to the electronic noise of the
calorimeter system and to fakes in charged-particles candidates (tracks). For this
reason, sophisticated noise removal and cleaning cuts had to be adopted. They
are based on the soft rapidity gap analysis [45].

1In some plots, the term “hadron level” is also used.
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7.2.1 Track cleaning

Good tracks are required to have pT > 200 MeV and |η| < 2.5 (standard ATLAS
selection). Additional quality selection criteria (ensuring, among others, that
tracks originating from the hard primary interaction are used) are as follows:

• At least one hit in the Pixel layer

• At least one hit in the B-layer

• pT-dependent number of hits in the SCT layer: npT≥100MeV ≥ 2, npT≥200MeV ≥
4, npT≥300MeV ≥ 6

• |d0| < 1.5 mm with respect to the primary vertex

• |z0 sin θ| < 1.5 mm with respect to the primary vertex

The variable d0 is the transverse component of the impact parameter (a dis-
placement to the primary vertex) and z0 sin θ represents the longitudinal compo-
nent of the impact parameter. If no primary vertex is reconstructed, the d0 and
z0 selection cuts are calculated with respect to the beam spot.

7.2.2 Cluster noise

The electronic noise of ATLAS calorimeters presents the main challenge for the
measurement of ∆ηF . The calorimeter objects used for the gap finding algorithm
are TopoClusters, for which a variable called significance can be defined as

S =
Ecell

σnoise

(7.1)

where Ecell is the energy of the most significant cell with S > 4 (the seed cell,
see Section 6.3.2) in the cluster.

The variable S can be tuned to provide a very good noise suppression in the
rapidity gap finding algorithm. This was studied into detail in the ATLAS soft
rapidity gap analysis [45] and it is threfore adopted here as well. The summary
of this approach is in next three paragraphs.

Shapes of the cell noise distributions were measured to be Gaussian with the
standard deviation σnoise. The only exception is the Tile calorimeter which has
non-Gaussian tails [48] and was therefore not considered for the gap finding algo-
rithm. For the Gaussian-shaped noise distribution, the probability of the energy
of the noise exceeding significance S is given by

Pnoise(S) =

√
1

2π

∫ ∞
S

e−S
2/2dS . (7.2)

The default S > 4 cut used by the cluster reconstruction algorithm is too low
for the rapidity gap analysis: on average, six clusters per an empty event are
reconstructed due to noise fluctuations. That is enough to significantly influence
the reconstructed ∆ηF distribution. For this reason, an additional noise sup-
pression cut based on the η-dependent cell significance threshold (applied to the
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most significant cell in the TopoCluster) was developed. The original gap recon-
struction algorithm in the soft gap analysis used so-called “rings”, i.e. slices in
pseudorapidity of the size 0.1. The probability Pnoise was chosen to be 1.4× 10−4

following the minimization of the resolution of reconstructed rapidity gap sizes
with respect to gaps at the particle level in MC (this choice benefits from stability
for small Sth changes in either direction, up or down). This implies an overall
per-event noise fluctuation probability 1.4% (as there are 98 clusters η-rings). As
the number of cells in η-rings varies from about 4000 in the central region to 10
in the very forward region, the thresholds Sth vary between 5.8 (central) and 4.8
(forward), see Figure 7.1.
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Figure 7.1: η-dependent cell significance thresholds for the noise removal for the
∆ηF reconstruction (left) and the number of cells in given η-ring (right).

The above discussed algorithm obviously relies on good modeling of the cell noise
in the MC. The description was studied in detail for rapidity gap cross section
measurement in minimum bias events, see Section 2.3 in [45]. As an example,
Figure 7.2 displays the cell significance E/σ for EM and FCal calorimeters. Very
good description was observed for E/σ going beyond the typical cut (E/σ ∼ 5.5),
giving us a confidence that the effect of the cut is the same in both data and MC.
For the dijet analysis, the cell information is not stored in our ntuples. But since
data and MC is used in the same configuration as for the minimum bias gap
analysis, a good detector modeling of noise is assumed.

7.3 TopoClusters

Another ATLAS measurement useful for the analysis presented in this thesis is
the measurement of the pseudorapidity dependence of the total transverse energy
[49] (henceforth referred to as the “ET-flow” analysis). It provides a useful insight
into the energy distributions as measured by the ATLAS calorimeter system and
comparisons between data and Monte Carlos.

7.3.1 Cluster energy correction in MC

The ET-flow analysis includes a study of the π0 → γγ decays. The comparisons
between the MC and data of the reconstructed π0 mass peak showed that the
EM scale cluster energy response is not correctly simulated in the MC samples
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Figure 7.2: Cell significance E/σ for EM calorimeters (left) and FCal (right)
obtained from MC, data and empty random events in data. Taken from Section
2.3 in [45].

and that scaling factors have to be applied (in MC only) to get a response to
low-energy particles in accordance with the one observed in the data. The shifts,
1 + α, are listed in Table 7.1 along with their uncertainties. The uncertainties
are presented separately for EM particles and hadrons, but combined uncertain-
ty based on an assumption that around 27% of particles are EM. These energy
corrections, ranging from about 1% to almost 11%, have impact on the ξ measure-
ment only (see Chapter 8 as the ∆ηF definition does not use any energy-related
cluster cut.

Cluster η α σ (EM-particles) σ (Hadrons) σ (Combined)
−4.8 < η < −4.2 0.04 -0.023, +0.023 -0.023, +0.093 -0.023, +0.074
−4.2 < η < −3.5 -0.017 -0.032, +0.034 -0.032, +0.096 -0.032, +0.079
−3.5 < η < −3.2 0.01 -0.098, +0.11 -0.098, +0.14 -0.098, +0.13
−3.2 < η < −2.8 -0.027 -0.023, +0.025 -0.023, +0.06 -0.023, +0.051
−2.8 < η < −2.37 -0.089 -0.025, +0.029 -0.025, +0.062 -0.025, +0.053
−2.37 < η < −1.52 -0.022 -0.021, +0.02 -0.05, +0.05 -0.042, +0.042
−1.52 < η < −1.37 -0.073 -0.17, +0.18 -0.05, +0.05 -0.084, +0.085
−1.37 < η < −0.8 -0.017 -0.031, +0.025 -0.05, +0.05 -0.045, +0.043
−0.8 < η < 0.0 -0.017 -0.031, +0.025 -0.035, +0.035 -0.034, +0.032
0.0 < η < 0.8 -0.013 -0.031, +0.025 -0.035, +0.035 -0.034, +0.032
0.8 < η < 1.37 -0.013 -0.031, +0.025 -0.05, +0.05 -0.045, +0.043
1.37 < η < 1.52 -0.013 -0.17, +0.18 -0.05, +0.05 -0.084, +0.085
1.52 < η < 2.37 -0.031 -0.021, +0.02 -0.05, +0.05 -0.042, +0.042
2.37 < η < 2.8 -0.107 -0.025, +0.029 -0.025, +0.062 -0.025, +0.053
2.8 < η < 3.2 -0.054 -0.023, +0.024 -0.023, +0.06 -0.023, +0.051
3.2 < η < 3.5 0.04 -0.092, +0.1 -0.092, +0.14 -0.092, +0.13
3.5 < η < 4.2 -0.042 -0.032, +0.034 -0.032, +0.096 -0.032, +0.079
4.2 < η < 4.8 0.01 -0.023, +0.023 -0.023, +0.093 -0.023, +0.074

Table 7.1: Cluster energy correction factors and their systematic uncertainties in
η bins for EM and hadronic particles (applicable in MC only). The combined
uncertainty assumes 27% of particles are EM with the remainder being hadronic.
Taken from [49].
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Figure 7.3: Basic cluster distributions at the EM-scale as seen in the data and
compared to PYTHIA8 ND+SD+DD. Standard dijet selection cuts and cell sig-
nificance cuts applied. PYTHIA8 ND is scaled to match the data in the first ∆ηF

bin (see later on in this chapter). The error bars represent statistical uncertain-
ties.

7.3.2 Basic kinematic properties

TopoClusters as basic calorimeter objects available by default for physics analysis
were already briefly discussed in Section 6.3.2. Since they are the cornerstone
of the rapidity gap analysis as well as the ξ measurement (see Chapter 8), it is
appropriate to introduce their properties. Data to MC comparisons after standard
dijet selection and cluster noise-removing cuts are presented in Figure 7.3 for three
different distributions (E, pT and sum pT) and two different pseudorapidity ranges
(central and forward clusters). Though not perfect, the description of the data
by PYTHIA8 samples is reasonably good in the central as well as forward region.
What is especially important for the sake of the diffractive dijet analysis presented
in this thesis is the fact that shapes of distributions studied are approximately
the same in the data and the MC, taking into account statistical uncertainties,
so the simulation of the calorimeter response in MC can be trusted and used for
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∆ηF and ξ definitions.

7.4 Rapidity gap definition in the soft gap anal-

ysis (“pT-method”)

The ATLAS soft gap analysis defined the “empty detector” based on a presence
of tracks passing cleaning cuts (see Section 7.2.1) and TopoClusters with the most
significant cell above the significance thresholds (see Section 7.2.2). The forward
rapidity gap was then defined as the larger pseudorapidity difference between one
of the edges of the calorimeter (η = ±4.9) and the first good track or TopoCluster.
An additional transverse momentum cut pT > 200 MeV was applied to clusters
(and matches the one used for good tracks selection). The particle level rapidity
gap definition is based on all final state particles having pT > 200 MeV and the
same acceptance region as in the detector level definition (|η| < 4.9). This rapid-
ity gap definition is henceforth denoted as the “pT-method”.

The pT-method was examined in the diffractive dijet analysis. The detector level
(uncorrected) distributions are presented in Figure 7.4, where the data is com-
pared to PYTHIA8 and Herwig++ predictions. Comparisons between PYTHIA8
and the data show that the events with small ∆ηF are significantly dominated
by the ND contribution. In the very first bin, ∆ηF = 0 − 0.5, the SD and DD
components are negligible and it can therefore be used to scale the PYTHIA8 ND
∆ηF cross section prediction by a constant factor 1/1.4 to match the data. With
the increasing gap size, the ND dominance significantly decreases while the im-
portance of diffractive components (SD and DD) steadily increase. Unlike in the
soft diffraction, there is no diffractive plateau (∆ηF cross section constant) ob-
served due to requiring a presence of two relatively high-pT jets. That is roughly
equivalent to high particle multiplicities (or high invariant masses of the diffrac-
tive system).
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7.4.1 Herwig++ issues

Figure 7.4 reveals significant issues in the Herwig++ prediction of the shape of
the ∆ηF spectrum. The lowest ∆ηF bin in the data is described very well without
any additional scaling factor, contrary to the PYTHIA8 case. But the shape of
the ND component is not falling away exponentially as expected (and observed
in PYTHIA8 prediction). As a result, Herwig++ completely fails to describe the
shape of the rapidity gap distribution.

The same effect was observed in the ATLAS soft gap analysis. As a conse-
quence of unexpectedly large rapidity gaps being produced by Herwig++ model,
the soft diffractive plateau was observed even in the non-diffractive Herwig++
events. The main difference between Herwig++ and PYTHIA8 lies in the hadro-
nisation model: Herwig++ uses the cluster-based hadronisation (see Section 4.3).
This model fails in the splitting procedure of the high-mass clusters, resulting in
creation of large pseudorapidity regions without any particle activity. This has
a significant impact on the rapidity gap spectrum, as can be seen from Figure 7.4.

The effect of these hadronisation fluctuations can be also assessed in the SD
events by a comparison between the usual gap finding procedure (i.e. based on
particles with pT > 200 MeV within |η| < 4.9) and the position of the scattering
proton. The real rapidity gap should be located between the scattered proton
and the first particle from the dissociating proton. Table 7.2 presents percentages
of events that have the particle level rapidity gap located at the same side of the
ATLAS detector as the scattered proton. In PYTHIA8 there are 35% of events
with mismatched gap start, an effect which is expected at such small rapidity
gaps due to hadronisation fluctuations. At larger rapidity gaps, mismatches are
almost non-existent. In contrast, the Herwig++ SD model produces around 40–
45% of events with rapidity gaps on the opposite side than the scattered proton
across full ∆ηF range.

∆ηF : 0–0.5 0.5–1 1–2 2–3 3–4 4–5 5–6 6–7
PYTHIA8 SD 65% 85% 93% 97% 98% 98% 99% 99%
Herwig++ SD 53% 56% 55% 53% 51% 51% 54% 57%

Table 7.2: Percentage of SD events with the particle level ∆ηF starting at the
same side of the ATLAS detector as the true gap (based on the pZ sign of the
scattered proton).

Originally, Herwig++ along with PYTHIA8 were supposed to be our default
independent MC generators providing a possibility to asses model dependence
influencing our measurement via the unfolding procedure (see Chapter 9). Due to
these issues that couldn’t be sorted out, Herwig++ MC production is considered
unsuitable for the rapidity gap analysis.
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7.5 Optimization of the Forward Rapidity Gap

definition (“hybrid method”)

The correlation matrices between the particle level and detector level definitions
for the pT-method are shown in Figure 7.5. Rather weak correlations are ob-
served at small gaps and hence suggest that the common pT cut on clusters as
well as particles is resulting in arbitrarily large detector level rapidity gaps. As we
shall see, this has been also confirmed by qualitative studies of bin-by-bin purities.
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Figure 7.5: Left: Smearing matrix of the ∆ηF variable for the pT-method, i.e.
pparticles

T > 200 MeV, ptracks
T > 200 MeV, pclusters

T > 200 MeV, Ecell/σnoise > Sth.
Right: The same but columns normalized to unity. Pythia8 ND+SD+DD.

The obvious solution to this issue could be easing the pcluster
T cut. Though this

possibility has been also studied, as is shown in Figure 7.6, a different approach
has been eventually chosen. The pclusters,particles

T requirement at |η| < 4.9 corre-
sponds to a cluster or truth particle with E > 13.4 GeV 2, meaning that clusters
and stable final state particles at the edge of the detector acceptance are required
to be much more energetic than those in the barrel. The cluster rejection power
of this selection significantly exceeds, in the forward region, the one coming from
Sth cut. For this analysis, the cluster and truth particle selection were adapted
to combine the method from the ATLAS soft rapidity gap analysis and the selec-
tion from the ET-flow analysis [49] (so-called “ET-flow method”), to better reflect
which particles can actually reach the active layers in the calorimeter, hereafter
referred to as the “hybrid” selection or “hybrid method”.

The track selection cuts remain unchanged (ET-flow analysis focused on study-
ing the calorimeter response), but the cluster pT requirement is removed and the
calorimeter acceptance cut is changed to |η| < 4.8, as very few clusters are well
reconstructed too close to the edge of the detector acceptance.

At the particle level, instead of the pT > 200 MeV selection for final state par-
ticles up to |η| < 4.9, the selection is changed to pn > 200 MeV for neutral
particles. For charged particles, the choice is to have either pch > 500 MeV or

2The relation between η, pT and p is given by |p| = pT cosh η.
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Figure 7.6: Gap-size distributions for different definitions at the particle level
(left) and the detector level (right). The error bars represent statistical uncer-
tainties. PYTHIA8 ND+SD+DD.

pT,ch > 200 MeV, up to |η| < 4.8. For this choice, the value of |η| = 1.57 is impor-
tant as p > 500 MeV is equivalent to pT > 200 MeV and thus keeping the pT cut
(in logical OR with pch > 500 MeV) helps to exploit the sensitivity of the tracker.
The difference in momentum cuts for neutral and charged particles matches the
range over which the ET-flow analysis indicates that the particles are likely to
reach the tracker and calorimeters, accounting for the solenoidal magnetic field
surrounding the Inner Detector.

Comparisons of the different gap definition methods are presented in Figure 7.6
and Table 7.3. Ratios with respect to the hybrid method are plotted as well. It is
clear from the particle level figure that the original symmetrical (cluster-particle)
pT cuts cause significant event migrations from small gaps to larger ∆ηF compared
to both the hybrid and ET-flow method (particle cuts pch(n) > 500 (200) MeV
and |η| < 4.8 only). The same conclusion can be drawn from the detector level
plot. It is therefore obvious that the hybrid gap definition is more successful in
exploiting the ATLAS detector sensitivity to low−pT particles.

∆ηF method Particle level definition Detector level definition

2010 minimum p
particles
T > 200 MeV Clusters: pT> 200 MeV, |η| < 4.9 and

bias definition |η| < 4.9 |Ecell/σnoise| > Sthr.(η)
Tracks: pT> 200 MeV, |η| < 2.5

Neutral particles: p> 200 MeV, |η| < 4.9 Clusters: |Ecell/σnoise| > Sthr.(η), |η| < 4.9
ET flow

Charged particles: p> 500 MeV, |η| < 4.9 Tracks: pT> 200 MeV, |η| < 2.5
Neutral particles: p> 200 MeV Clusters: |Ecell/σnoise| > Sthr.(η), |η| < 4.8

Charged part.: p> 500 MeV or pT> 200 MeV Tracks: pT> 200 MeV, |η| < 2.5Hybrid method
|η| < 4.8

Table 7.3: Summary of the rapidity gap definition methods studied in this paper.

Finally, very illustrative method comparisons are presented in Figure 7.7. Cor-
relation matrices clearly indicate that the pT-method tends to create, especially
in the forward region (small rapidity gaps), a large portion of fakes (i.e. events
with artificially increased gap size due to too strict gap defining cuts) while the
hybrid vs. ET-flow is rather a fine-tuning resulting in a slightly better truth-reco
correspondence (as already discussed in the paragraph where the hybrid method
was introduced).
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(a) ET-flow vs. pT method
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(b) ET-flow vs. hybrid method

Figure 7.7: Correlation plots among different gap definition methods. (a) ET-flow
(y-axis) vs. pT method (x-axis), (b) ET-flow (y-axis) vs. hybrid method (x-axis).
Columns normalized to unity. PYTHIA8 ND+SD+DD.

To get a qualitative picture of the different methods, it is advisable to study
purities (how many of the detector level events in a chosen bin are in the same
particle level bin) and resolutions (differences between particle and detector lev-
el values). The effect of purities is reflected in 2D correlation histograms, such
as those in Figure 7.8, but can be also evaluated numerically. Results of such
calculations are presented in Table 7.4. Our earlier observation of the arbitrarily
large number of fakes in smearing matrices in Figure 7.5 is reflected in purities,
which are around (or even below) 30%. Lowering of the clusters pT cut results in
significant purity increase - an effect which is seen for hybrid method as well.
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Figure 7.8: Smearing matrix of the ∆ηF variable for the hybrid method normal-
ized to the cross section (left) and the same with columns normalized to unity
(right). PYTHIA8 ND+SD+DD.

The resolutions plots in steps of one unit of ∆ηF are shown in Figure 7.9. They
reveal an exponential-like decrease with respect to the maximum (being close to
zero) as well as a second distribution - though significantly suppressed - with
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Reco ∆ηF 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6

p
clust(part)
T > 200 (200) MeV 99.7% 34% 23% 28% 33% 30%

p
clust(part)
T > 100 (200) MeV 99% 58% 46% 56% 54% 46%

no clusters p, pT cut
ppart

ch(n)> 500 (200) MeV
99.8% 49% 38% 48% 49% 58%

Hybrid method 99.8% 49% 38% 50% 52% 56%

Table 7.4: Purities for different ∆ηF definitions. Pythia 8 ND+SD+DD

detector level gaps significantly larger than particle level gaps. The latter effect
can be understood by studying the Figure 7.8, which shows a distinctive region
of small detector level gaps but large particle level gaps. This atypical behaviour
can be explained as a consequence of a limited ATLAS calorimeter acceptance
(|η| < 4.8) and a presence of material even outside this acceptance region. This
in turn means that a particle moving just outside the |η| < 4.8 region can cause
a shower which can partly hit the edge of the calorimeter. This is confirmed
by Figure 7.10, where the reco-truth correlation matrix is shown with the con-
dition that the particle level gaps are required to range from the position of the
diffractive proton instead of the calorimeter edge (in case of ND or DD events,
the particle level gap edge is defined as |η| = 7).

Finally, the qualitative view at the resolutions is summarized in Table 7.5. Each
bin is characterized by three numbers: the mean value (calculated across the
whole range), root-mean-squared (RMS) of the part of the resolution plot that
is to the left from the mean value and RMS to the right-side of the mean. This
calculation method is not optimal (the shape of resolutions does not allow to
perform a good Gaussian fit) but it gives a clearer insight into the resolution per-
formance of different gap definition methods. One should bear in mind, however,
that the RMS to the right side of the mean is compromised by the presence of
the second distribution due to the calorimeter-edge effect described above.

Truth ∆ηF 0 – 1 1 – 2 2 – 3 3 – 4 4 – 5 5 – 6
pclustersT > 200 MeV -0.13 -0.28 -0.18 -0.11 -0.09 0.07

pparticlesT > 200 MeV 0.51; 0.15 0.77; 0.51 0.70; 0.59 0.63; 0.54 0.55; 0.69 0.33; 1.20
pclustersT > 100 MeV -0.05 0.15 0.19 0.15 0.05 0.25

pparticlesT > 200 MeV 0.20; 0.21 0.58; 0.72 0.52; 1.34 0.47; 1.82 0.47; 1.84 0.37; 2.12
no clusters p, pT cut -0.07 -0.002 0.05 0.10 0.28 0.60

ppartch(n)> 500 (200) MeV 0.14; 0.22 0.71; 0.77 0.64; 1.19 0.53; 1.72 0.48; 2.14 0.61; 2.30

Hybrid method -0.07 -0.002 0.05 0.10 0.20 0.43
pcentralT,part> 200 MeV 0.14; 0.22 0.71; 0.77 0.64; 1.19 0.63; 1.56 0.44; 2.54 0.51; 3.00

Table 7.5: Resolutions: mean values and the RMS calculated to the left and
right side from the mean. In each cell, the mean value is located at the top, the
“left RMS” at the bottom left and “right RMS” at the bottom right. PYTHIA8
ND+SD+DD
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Figure 7.9: Resolutions of ∆ηF for different gap definition methods. The error
bars represent statistical uncertainties. PYTHIA 8 ND+SD+DD.

7.6 Rapidity gap acceptance

By definition, the rapidity gaps sizes can be observed in the range 0 < ∆ηF < 9.6
(TopoClusters up to |η| < 4.8 are used). There are, however, certain limitations
that decrease this default range. One of them was already discussed in Section
7.4: the requirement on a presence of two high-pT jets. A very similar effect on
the gap size distribution has the primary vertex cut, as can be seen from Figure
7.11. The detector level comparison among two different PV0 cuts (with five and
two associated tracks) and no explicit PV0 cut is shown. The PV0 cut is so effec-
tive in rejecting events with very large ∆ηF since it requires several sufficiently
energetic charged particles seen in the Inner Detector.

A comparison of the detector level ∆ηF to the particle level distribution, where
no PV0 quantity is defined, reveals an actual acceptance range in the ATLAS
detector, see Figure 7.11 (standard dijet selection cuts applied). A comparison to
the particle level with a requirement simulating the effect of the PV0 cut (requir-
ing a presence of two charged particles with pT > 150 MeV and |η| < 2.5) is also
shown. There should be a reasonable correspondence between the particle level
and the detector level distributions to avoid too large corrections that would have
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Figure 7.10: Smearing matrix of the ∆ηF variable for the hybrid method with the
particle level gap definition starting at the η of the diffractive proton (SD events)
or at the η = ±7 (ND and DD events). The smearing matrix is normalized to
the cross section (left) or has columns normalized to unity (right). PYTHIA8
ND+SD+DD.

to be done by the unfolding procedure (corrections of the measured distribution
for detector effects, see Chapter 9). These truth-reco discrepancies are caused
either by “fake events” (detector level selection is passed but the particle level
is not) or “missing events” (particle level selection passed but detector level is
not). Fake and missing events can be caused by the jet energy resolution (truth
jet pT below 20 GeV but reconstructed as pT > 20 GeV or vice versa) or the
non-perfect understanding of the detector sensitivity to low-energy particles (gap
definition using too low-pT particles or too strict noise-removal cuts on clusters
and tracks). From the ratio plot it is obvious that the appropriate measurement
range is 0 < ∆ηF < 6.5 as beyond that, the gap reconstruction efficiency is
suppressed by a factor more than two.
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Figure 7.11: Influence of the different versions of the primary vertex cut at the
detector level rapidity gap distribution (left) and reco-truth comparisons for the
primary vertex cut with at least two associated (denoted as PV0(2 trk)) tracks
requirement (right). The particle level approximation of the PV0(2 trk) cut (“2
cent. part.”) was done by requiring a presence of at least two charged particles
with |η| < 2.5 and pT > 150 MeV. PYTHIA8 ND+SD+DD. Standard dijet
selection cuts.
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7.7 Irregularities in the rapidity gap spectrum

Figure 7.11 reveals certain detector-related irregularities in the ∆ηF spectrum.
They are located around ∆ηF ∼ 1.5 and ∆ηF ∼ 3.4.

Noisy FCal Rapidity gap size 1.5 corresponds to the |ηcluster| = 3.3, that is at
the start of the Forward Calorimeter. The TopoCluster noise in this region is
larger than in surrounding parts of the calorimeter system and it takes therefore
a larger energy deposition to pass the implicit noise suppression cut (|Sth| > 4).
As a consequence, the original particle needs larger energy to be reconstructed
and events thus migrate from smaller to larger ∆ηF .

Barel-endcap “crack” region Between the calorimeter barrel and end-cap
there is a “crack” region (1.3 ≤ |η| ≤ 1.6) where the jet triggers never become
fully efficient due to calorimeter inhomogeneities. This crack region also manifests
itself in the rapidity gap spectrum and corresponds to the small effect observed
at ∆ηF ∼ 3.4.

Since both of these effects are correctly simulated in our Monte Carlo PYTHIA8
sample, they will be successfully corrected for by the unfolding procedure is dis-
cussed in Chapter 9.

7.8 Influence of the Inner Detector

The ID acceptance (|η| < 2.5) in terms of rapidity gap size is 2.3 < ∆ηF <
7.3. While the hybrid rapidity gap definition method utilizes TopoClusters above
η-dependent significance threshold, tracks are required to comply with specific
cleaning cuts and, moreover, by the pT > 200 MeV cut. As already discussed,
the ET-flow study suggests that only those charged particles that have p > 500
MeV can reach the calorimeters and be detected. The point where pT > 200
MeV and p > 500 MeV become equivalent is |η| < 1.57. The largest ID influence
on the rapidity gap definition is thus expected around ∆ηF ∼ 3.2 − 6.4. This is
confirmed not only by Figure 7.7(b), but also by Table 7.6 where percentages of
events with rapidity gap edge defined by track are shown.

Reco ∆ηF 0 - 1 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7
PYTHIA8 0% 0% 5% 42% 50% 45% 23%

Data (period B) 0% 0% 5% 40% 50% 44% –

Table 7.6: The influence of the Inner Detector on the rapidity gap definition
evaluated by checking whether it was the TopoCluster or the track that defined
the gap-edge.

7.9 The detector level data to MC comparisons

Comparisons between the uncorrected dijet differential cross section as a function
of ∆ηF (hybrid method) to the PYTHIA8 MC is shown in Figure 7.12. Small
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rapidity gaps are obviously dominated by the ND component, but somewhere
around ∆ηF ∼ 2− 3 the diffractive cross section component (SD+DD) becomes
the major contribution. The same conclusion can be reached from fully corrected
distributions (particle level) in Chapter 12. It is therefore obvious that in order
to select a diffractive enhanced event sample, a new cut ∆ηF > 2 − 3 can be
introduced (will be useful for the ξ distribution, for example; see Chapter 8).

The combination of all processes with the ND scaled to match the data in the first
bin and SD and DD left unchanged does not provide a sufficient description of
the data. The cross sections of these components (ND, SD, DD) can be, however,
rescaled to achieve a better description, as will be discussed in Chapter 9.

For the final goal of this analysis, that is the gap survival probability measure-
ment, a Region of Interest (RoI) can be selected by requiring a strong ND suppres-
sion (such that the ND is negligible, ideally). Taking into account the detector
acceptance for the ∆ηF measurement (discussed above), the RoI is defined as
3 < ∆ηF < 6.5.
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Figure 7.12: Detector level data to PYTHIA8 comparisons for jets reconstructed
by the anti-kT R = 0.6 (left) and R = 0.4 (right) algorithm. PYTHIA8 ND is
scaled to match the data in the first ∆ηF bin. The error bars represent statistical
uncertainties.
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8. Measurement of ξ

The fractional momentum loss of the scattered proton, denoted generally as ξ
(see Equation 1.15), is another variable characteristic for single diffractive events.
Though it is not directly observable by the ATLAS experiment as there are no
forward detectors with active layers as close to the beam as the typical η of the
outgoing proton is, there are ways to approximate it with sufficient precision by
detecting particles in the available ATLAS acceptance range. The rapidity gap
size and ξ are correlated, as proposed by Equation 1.16 and demonstrated by
Figure 8.1, in such a way that large rapidity gaps correspond typically to small ξ
values. To enhance the diffractive contribution in the fractional momentum loss
spectrum, it is useful to introduce ∆ηF cut, as discussed in Section 7.9. Such ξ
measurement is then compared to various SD, DD and ND Monte Carlo models
and an attempt to extract S2 is made (see Chapter 12).

In this chapter, two possible ξ definitions, an effect of the detector noise and
detector level data to MC comparisons are presented. Just as in case of ∆ηF

measurement, fully corrected differential cross sections are thoroughly discussed
in Chapter 12.

Throughout this chapter, all ratio plots are calculated as a colored histogram
divided by a black histogram, with error bars representing the overall statistical
uncertainty of the ratio.
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Figure 8.1: Correlation of the ξ value as calculated from momentum of the
scattered proton with particle level ∆ηF for PYTHIA8 single diffractive events.
Columns normalized to unity.

87



8.1 Approximation of ξ

While the ATLAS detector system has a very good acceptance in the pseudora-
pidity region |η| < 4.8, the very forward region essential for the diffractive events
is covered poorly. Not only that the current ATLAS set-up does not allow the
direct measurement of scattered diffractive protons, but it can also happen that
a significant portion of particles from system X of the pp→ Xp process escapes
detection completely. A direct credible reconstruction of the invariant mass MX

useful for the ξ measurement (ξ = M2
X/s) is thus not possible.

A possible way around this problem with limited detector acceptance is by using
an alternative approach for the usual MX calculation. Such method is not valid in
full ξ range, but suppresses the importance of very forward particles for the calcu-
lation. Assuming the low Q2 and t limit and that the emitted pomeron has negli-
gible transverse momentum relative to its longitudinal momentum (travels down
the beam pipe), the invariant mass can be approximated as M2

X ' 2Ep ·
∑
E±pZ,

where Ep is the energy of the original interacting proton. The sum runs over all
final state particles with energy E and longitudinal momentum pZ. Taking the
2Ep to be equal to

√
s, we get

ξ̃± =
M2

X

s
'
∑
E ± pZ√
s

, (8.1)

where ξ̃+ is used for final state particles with −∞ < η < 4.8 and ξ̃− for
final state particles with −4.8 < η < ∞. If the forward rapidity gap starts at
η = −4.8, the ξ̃− is taken as the best approximation of the real ξ while in case of
the gap start at η = +4.8, the ξ̃+ is used. With this set-up, contributions to ξ̃±

from very forward particles (i.e. pZ carries larger portion of the overall particle
energy than pT) is suppressed. The final ξ̃± value is thus preferentially influenced
by centrally located particles rather than the forward ones.
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Figure 8.2: Validation of the ξ̃± calculation method (input: all final state par-
ticles) against ξproton (fractional momentum loss of the scattering proton) for
PYTHIA8 SD. (a) ξ̃± from all particles vs. (b) particles in the calorimeter ac-
ceptance vs. ξ as extracted from diffractive proton).
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Figure 8.3: Smearing matrix of the ξ̃± variable constructed at reco (truth) level
from all clusters (particles) in the calorimeter acceptance region |η| < 4.8. The
right-hand side plot has columns normalized to unity. PYTHIA8 ND+SD+DD.

In the region of low ξ, the ξ̃± variable defined by Equation 8.1 is a good ap-
proximation of the actual ξ for SD events, as demonstrated in Figure 8.2(a), for
log10ξ < −1.5 (ξ < 0.032). As there is a non-perfect detector acceptance, we can
actually define detector level ξ̃± only for TopoClusters in the region |η| < 4.8.
The matching particle level definition, i.e. all final state particles with |η| < 4.8,
is validated in Figure 8.2(b). Even with this limitation given by the detector
acceptance, the particle level ξ̃± is within 2% from the actual ξ, confirming thus
that very forward particles do not play a significant role for the low-ξ region ap-
proximation by Equation 8.1.

The correlation plot (smearing matrix) between the detector and particle level
ξ̃± is presented in Figure 8.3, in which the reco ξ̃± is calculated from all recon-
structed TopoClusters within |η| < 4.8 with the assumption that every negative
energy noise cluster used in the calculation will statistically cancel similar pos-
itive noise contributions. In the right-hand side plot, columns are normalized
to unity, which means that each bin of the smearing matrix gives a probability
that the measured ξ̃± value corresponds to the given particle level value. This
plotting style also allows to observe the clear correlation across the full range,
which is impossible from the left-hand side plot due to the steeply falling cross
section. A strong reco-truth correlation is observed through most of the ξ̃± range
with the exception of very low ξ̃±, where events with truth log10ξ̃

± ∼ −3 are
reconstructed as having log10ξ̃

± down to -5. This loss of correlation is disturb-
ing and, as we shall see later on, it is a consequence of the remaining cluster noise.

There is one distinctive difference between the smearing matrix of the ∆ηF dis-
tribution and the one of ξ, and it is the non-diagonality. The fact that detector
level ξ̃± tends to be systematically smaller than the particle level one is caused by
energy losses from particles falling out of the detector acceptance, not reaching
the calorimeters (or ending up in dead regions) or losing most of their energy
traversing the inner detector. Based on the truth-reco comparison, it would be
possible to correct for these detection inefficiencies by ξ-dependent factors. They
can be, however, omitted as the unfolding procedure (see Chapter 9) will correct
for this effect.
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There is an alternative ξ approximation definition, which is mathematically simi-
lar to Equation 8.1 but equivalent only in case of zero-mass objects (TopoClusters,
particles):

ξ̃± =
∑
iobjects

pT,i · e±yi√
s

. (8.2)

The sum runs over all objects and adds together the transverse momenta multi-
plied by the exponential of the rapidity. This ξ̃± definition is henceforth known
as the “pT-method”. If the forward rapidity gap starts at η = −4.8 then the
sum takes the negative sign in the exponential function, while the positive sign
is chosen for gaps starting at η = +4.8. The benefit of this calculation is, simi-
larly as in case of the E ± pZ method, that the significance of particles in the X
system traveling in the very forward directions (large rapidities) is exponentially
suppressed in the ξ̃± calculation.

It is assumed again that a cluster noise-cancellation takes place due to the noise
being Gaussian symmetric around zero. A validation plot is at the left-hand side
of the Figure 8.4. It manifests, just as in case of the E± pZ method, a very good
diagonal behavior in the range of log10 ξ < −1.5. The particle level correlation
between the two methods is depicted at the right-hand side of the same figure,
showing that they are indeed consistent.
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Figure 8.4: Validation of ξ̃± (pT method) as calculated from particles in the
ATLAS acceptance (|η| < 4.8) (left) and pT vs. E ± pZ method comparison
(right). Columns normalized to unity, PYTHIA8 SD.

An important observation can be made from the smearing matrix for the pT

method in Figure 8.5(a). The large non-correlated tail in the small-ξ̃± region as
seen in Figure 8.3 disappeared. Another way to see this is through the correlation
plot between both detector level ξ̃± definitions in Figure 8.5(b). While both defi-
nitions give, in the region of larger reco-ξ̃±, the same results, the smearing matrix
at small ξ̃± is significantly improved. Figure 8.6(a) demonstrates the effect of the
cell significance cut of the E ± pZ method. It is obvious that the problematic
small ξ̃± region is strongly affected by calorimeter noise and therefore the noise-
cancellation assumption (when summing over all clusters in the event) does not
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Figure 8.5: (a) Smearing matrix of the ξ̃± variable (pT method) constructed at
reco (truth) level from all clusters (particles) in the calorimeter acceptance region
|η| < 4.8. (b) Detector level correlation plot between the pT method (y axis) and
E ± pZ method (x axis). PYTHIA8 ND+SD+DD.
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(a) ξ̃±: E ± pZ method
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(b) ξ̃±: pT method

Figure 8.6: Influence of an employment of the cell significance cut: (a) E ± pZ

method (clusters complying with the cell significance cut vs. all clusters), (b) the
same for the pT method. Columns normalized to unity. PYTHIA8 SD.

hold. It can by explained by the way the cluster momentum vector is calculated.
In case of a noisy cluster, the part of the Equation 8.1 corresponding to energy
can flip a sign from positive to negative and vice versa. However, the sign of the
pZ is never changed which in turn results in a failure of the noise-cancellation
assumption. Therefore, the E ± pZ method can be used only after well tuned
noise removal procedure.

As discussed in previous paragraph, the pT method of ξ̃± calculation in the large-
ξ̃± region behaves similarly to the E ± pZ method, while the low-ξ̃± tail does not
manifest a sensitivity to the noise anymore. This is given by the fact that when
the noisy cluster has a negative energy, even the pT is provided as a negative value
and so the noise-cancellation assumption (summing over all clusters across the
calorimeter) can hold. A correlation plot between ξ̃± calculated from all clusters
and ξ̃± calculated from clusters above cell significance threshold cuts (introduced
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in Chapter 7) is shown in Figure 8.6(b). The only result is that ξ̃± gets lower
but the shape is unchanged. The pT method can thus be used without additional
noise-suppression cuts.
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Figure 8.7: (a) Validation of the ξ̃±pT
calculation method (particles with

pcharged (neutral) > 500 (200) MeV vs. ξ as extracted from diffractive proton).

(b) A particle level difference between the ξ̃± as calculated from all particles
within |η| < 4.8 (horizontal axis) and particles with additional pcharged (neutral) >
500 (200) MeV cuts. PYTHIA8 SD, columns normalized to unity.

The final adjustment of the ξ̃± calculation follows the one made for the ∆ηF

definition as well. It reflects findings of the ET-flow analysis, that is requiring
particles with pcharged (neutral) > 500 (200) MeV (particles with lower momenta
cannot be detected). This particle level difference is validated in Figure 8.7, the
truth ξ̃± correlation between all particles in acceptance and particles above mo-
mentum cuts is also shown. The biggest change is observed at low ξ̃± while for
larger values the difference is minimal. The detector sensitivity to low-energy
particles is thus crucial for low-ξ̃± region.

However, the ξ̃± validation plot in Figure 8.7(a) is far from the almost perfectly
diagonal plot as in Figure 8.2. This effect can be better evaluated by plotting
the ratio of ξ̃± and ξproton in different ξ̃± bins, as is presented in Figure 8.8. It
is clear that in the region of interest (log10ξ̃

± < −2.5, as is discussed in Chapter
12) the effect or non-diagonality is well within 4-5%.

Final smearing matrices for ξ̃± measurement are depicted in Figure 8.9. The de-
tector level reconstruction is done by the pT method from all TopoClusters within
|η| < 4.8, while the particle level definition takes advantage of final state particles
with momentum cuts pch (n) > 500 (200) MeV and within |η| < 4.8. These are

the final definitions used for the ξ̃± measurement.

Finally, Figure 8.10 presents ξ̃± resolutions (pT method) fitted by Gaussian func-
tion in different log10 ξ̃

± ranges. Contrary to the ∆ηF resolutions, the ξ̃± variable
reveals an expected Gaussian shape. One can also notice a clear evolution of
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Figure 8.8: (a-c) Ratios of particle level ξ̃± (pT method) and ξproton in different
ξ̃± bins and with or without pcharged (neutral) > 500 (200) MeV cuts. (d) Different

ξ̃± bins for pT approximation method and with pcharged (neutral) > 500 (200) MeV
cuts. Distributions normalized to unity. PYTHIA8 SD. The error bars represent
statistical uncertainties.

standard deviations from small values at the large ξ region (typically around 7
%) up to 14% at the small ξ̃± tail. The worse resolution for small ξ̃± is to be
expected due to the bigger influence of low energy particles (many of them un-
detectable due to the limited calorimeter sensitivity).

8.2 ξ acceptance

Just as in case of ∆ηF , the detector acceptance for ξ̃± measurement can be stud-
ied by truth-reco comparisons as plotted in Figure 8.11. The detector level ξ̃±

spectrum is, again, dependent on the PV0 cut only in the very tail (ξ̃± < 0.003),
but contrary to ∆ηF this dependence is smaller. The truth-reco comparison re-
veals that the acceptance is in the range −3.4 < log10ξ̃

± < −0.3. Outside this
range, the reco ξ̃± gets significantly suppressed with respect to the particle level
distribution (by more than factor two), i.e. the measurement would not be reli-
able as the unfolding procedure would have to introduce very large Monte Carlo
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Figure 8.10: Resolutions of the ξ̃± variable (pT method). PYTHIA8
ND+SD+DD. The error bars represent statistical uncertainties. The error bars
represent statistical uncertainties.
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derived correction factors.
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Figure 8.11: Influence of the different versions of the primary vertex cut on the
detector level ξ̃± distribution (left) and reco-truth comparisons for the primary
vertex cut with at least two associated (denoted as PV0(2 trk)) tracks requirement
(right). The particle level approximation of the PV0(2 trk) cut (“2 cent. part.”)
was done by requiring a presence of at least two charged particles with |η| < 2.5
and pT > 150 MeV. The error bars represent statistical uncertainties.

8.3 The detector level Data vs. Monte Carlo

comparisons

The detector level data to MC comparisons are presented in Figure 8.12 for
events with jets reconstructed using the anti-kT R = 0.6 and R = 0.4 algo-
rithms. The region of large ξ̃± is dominated by the ND contribution while events
with log10ξ̃

± < −2.5 mostly diffractive events with ND suppressed by factor three
or more. Even stronger suppression can be gained by adding the ∆ηF > 3 re-
quirement, as discussed in Section 7.9. Such ξ̃± distribution is shown in Figure
8.13. While the effect on the lowest log10ξ̃

± data bin is minimal, the ND Monte
Carlo component gets suppressed to the level of ∼ 10% compared to the data.
Moreover - as expected from the anti-correlation between ξ and rapidity gap size
- the ξ̃± distribution with the ∆ηF > 3 cut is steeply falling off with increasing
ξ̃±. The ND becomes again the major contribution in the range ξ̃± > 0.01.

For the purpose of retrieving the soft survival probability S2, a Region of Interest
(RoI) can be selected by requiring a strong ND suppression. From the discussion
above (and taking into account the detection acceptance for the ξ̃± measurement)
it is obvious that the RoI in terms of the fractional momentum loss of the scat-
tered proton is −3.4 < log10ξ̃

± < −2.5.
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Figure 8.12: Detector level data to PYTHIA8 comparisons for jets reconstructed
by the anti-kT R = 0.6 (left) and R = 0.4 (right) algorithm. PYTHIA8 ND is
scaled to match the data in the first ∆ηF bin. The error bars represent statistical
uncertainties.
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Figure 8.13: Detector level data to PYTHIA8 comparisons with ∆ηF > 3 cut for
jets reconstructed by the anti-kT R = 0.6 (left) and R = 0.4 (right) algorithm.
PYTHIA8 ND is scaled to match the data in the first ∆ηF bin. The error bars
represent statistical uncertainties.
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9. Unfolding

Each experimental measurement of a physics quantity such as jet pT, η or diffrac-
tive variables ∆ηF and ξ̃± is influenced by various detector effects. They can
significantly affect the measured cross section via introducing systematic biases
and smearings of the measured distributions, arising primarily from reconstruc-
tion inefficiencies and limited resolutions. Various techniques, generally called
“unfolding”, have been developed to correct for these effects: from simple ones
such as the bin-by-bin method (correcting data by NTruth/NReco factors, where
NTruth is the number of generated and NReco the number of reconstructed events
in a given bin) up to complex ones such as the Iterative, Dynamically Stabilized
(IDS) method [50].

The unfolding method adopted in this analysis is the IDS. It requires as an input
a so-called response matrix (known also as a smearing matrix) constructed from
Monte Carlo with full ATLAS detector simulation, which is in fact a correlation
matrix between hadron and detector level definition of given measured quantity.
Unlike in the simple bin-by-bin method, the IDS unfolding is able to take into
account migrations between bins, fakes (events passing reco level cuts only) and
misses (events passing truth level cuts only).

Throughout this chapter, all ratio plots are calculated as a colored histogram
divided by a black histogram, with error bars representing the overall statistical
uncertainty of the ratio.

9.1 1D unfolding
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Figure 9.1: Closure test (unfolding the detector level PYTHIA8) of the 1D un-
folding procedure (1 iteration). Jets reconstructed with the anti-kTR = 0.6 algo-
rithm.

The 1D IDS unfolding method takes as an input two independent Monte Carlo
histograms: the truth distribution made of events passing particle level selection
cuts and the reco distributions made of events passing detector level selection
cuts. The truth distribution thus contains misses (events complying with truth
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Figure 9.2: The influence of number of iterations on ∆ηF and ξ̃± distributions.
The ratios are calculated with respect to the first iteration and jets are recon-
structed with the anti-kTR = 0.6 algorithm.

but not the reco selection) and the reco distributions contains fakes (events com-
plying with reco but not truth selection). The response matrix is a 2D histogram
with a correlation of the particle level and detector level quantity (∆ηF , ξ̃±)
made of events passing both hadron and detector level selection cuts (i.e. fakes
and misses are not included), see Figures 7.8 and 8.9. The measured distribution
is provided as a simple 1D histogram.

A way to test that the unfolding works well is via supplying it with the de-
tector level MC in place of the measured data distribution (so-called “closure
test”). The result of the unfolding should perfectly match the particle level MC
already after one iteration, as demonstrated in Figure 9.1 for both ∆ηF and ξ̃±

distributions. We can also notice that the correction factors that had to be ap-
plied to make the reco MC match the truth MC (blue ratio plots) are between 0.5
- 3, which are actually the inversed correction factors of the bin-by-bin unfolding
method.

Figure 9.2 presents unfolded distributions for different number of iterations. It
should be noted that the choice of this unfolding parameter is important, but it
seems that the change in final cross section is small from around 3-4 iterations.
The decision about the number of iterations is carefully studied in next section
where the 2D unfolding is discussed.

9.2 2D unfolding

For the final results, i.e. the dijet cross section as a function of ∆ηF and ξ̃±, a
two-dimensional iterative IDS unfolding procedure was adopted. It is necessary
to account for migrations with both the exponential fall of the jet pT spectrum
and with the exponential fall at larger ∆ηF (smaller ξ̃±). The effect of pT migra-
tions is investigated in Figure 9.3 via plotting the particle level pT of the leading
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and sub-leading jet for events passing detector level cut selection (i.e. at least
two jets are required at both particle and detector level). For the right-hand side

figure (reco p
jet1 (jet2)
T > 30 (20) GeV), the migration effect is evaluated to 5.9 %

by comparing the contribution of the area with truth p
jet1 (jet2)
T < 30 (20) GeV

to the overall cross-section. Similarly, the symmetrical p
jet1 (jet2)
T > 20 (20) GeV

cuts lead to 5.8 % of migrations from low-pT ranges.
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Figure 9.3: The effect of migrations from low-pT particle level range to the whole
detector level range. Particle level pT of the sub-leading vs. leading jet af-
ter passing detector level selection cuts are plotted. Left: Detector level cuts
p

j1(j2)
T > 20 (20) GeV. Right: Detector level cuts p

j1(j2)
T > 30 (20) GeV. PYTHIA8

ND+SD+DD.

Figure 9.4 demonstrates the need for 2D unfolding by plotting the detector level
∆ηF for different ranges of the particle level leading jet pT. The most important
observation is that the gap distribution shape is dependent on the jet pT, as ex-
pected from the relation between the size of the rapidity gap and the invariant
mass of the diffractive system X. Smaller jet pT tends to contribute more to the
large ∆ηF than to the small ∆ηF . We can see that the 20-25 GeV range accounts
for about 45 % of the total ∆ηF distribution at gap sizes 6 - 7 while for 25 % only
at ∆ηF = 0 − 1. The 2D unfolding thus provides an important tool to account
for the pT migrations and the pT dependence of the ∆ηF (or ξ̃± alternatively).

The 2D unfolding procedure is very similar to the 1D unfolding, except that
instead of 1D input histograms, 2D distributions have to be provided. Distri-
butions of interest (∆ηF and ξ̃±) are plotted as 2D histograms with respect to
the leading jet pT. Just in case of one dimension, inputs are the particle level
and detector level distributions (i.e. including fakes and misses) and the response
matrix, which contains events that pass both particle and detector level selec-
tion. All these spectra are provided in such a way the axes have the chosen pT

and ∆ηF (ξ̃± alternatively) bins merged together by chaining nmeas. bins in ∆ηF

(ξ̃±) in different pT ranges, so there are nmeas. bins for lowest pT bin followed
by another nmeas. bins for second-lowest pT bin etc. The unfolded spectrum has,
naturally, the same binning. To obtain final fully-corrected spectra, the ∆ηF

(ξ̃±) distributions in different pT ranges are summed together. The example is
provided in Figure 9.5 for transfer matrices of both ∆ηF and ξ̃±, along with their
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(b) ξ̃±: smearing matrix
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Figure 9.5: Monte Carlo inputs to the unfolding procedure. Smearing matrices
are in figure a) and b), their projections to x and y axes are in c) and d). Binning
in these plots corresponds to merged bins in jet pT and ∆ηF (ξ̃±). PYTHIA8
ND+SD+DD, anti-kTR = 0.6 jets.

Figure 9.6 presents graphically four possible classes of events entering the
unfolding procedure via Pythia8 samples: true events passed (passed both reco
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and truth level cuts), true events failed (neither reco nor truth level cuts passed),
fakes and misses. The share of fakes (misses) in reconstructed (truth) events is
found to be 20% (29% respectively).
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Figure 9.6: Graphical representation of the amount of fakes and misses entering
the unfolding procedure. PYTHIA8 ND+SD+DD samples scaled to cross section.

9.2.1 Choice of bins

The appropriate choice of bins for the unfolding procedure relies on two factors.
First, the resolution in given variable should be respected (bin-widths should not
be much smaller). Second, a sufficient statistics in bins of interest has to be en-
sured to avoid statistical fluctuations influencing the resulting unfolded spectrum
in a negative way. The combination of these two factors provides a key guideline
for an appropriate choice of the binning.
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Figure 9.7: Mean truth - teco values of the leading jet pT with error bars set to
the standard deviation divided by the square-root of the number of events in the
bin (resolution).
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Resolutions of the variables of interest, ∆ηF and ξ̃±, have been presented in chap-
ters 7 and 8, namely in Figures 7.9 and 8.10. The resolution in leading jet pT is
shown in Figure 9.7. Combining this information with the requirement on the ad-
equate statistics (which is, in the end, the major limitation) results in the choice
of bins as presented in the Table 9.1. Overview of the raw number of events for
these bins is shown in Figure 9.8.
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Figure 9.8: Numbers of raw events in the detector level histograms for the period
B data sample. Jet reconstructed by the anti-kT R = 0.6 algorithm.

Variable Number of bins Bins
∆ηF 8 0, 0.5, 1, 2, 3, 4, 5, 6.5, 10

log10 ξ̃
± 11 -5, -3.2, -2.5, -2.25, -2, -1.75, -1.5, -1.25, -1, -0.75, -0.5, 0

1)pT (GeV) 6 20, 30, 40, 60, 110, 260, 450
2)pT (GeV) 6 20, 30, 40, 50, 60, 120, 450

Table 9.1: Bins in different variables used for unfolding. 1) refers to binning used
for inclusive ξ̃± and ∆ηF spectra while 2) is used for ξ̃± with ∆ηF > 2 cut.

9.2.2 Monte Carlo scaling for the use in the unfolding

The Monte Carlo used for the unfolding procedure should be successful in describ-
ing the shape of the detector level distribution in data. This can be achieved by
a proper combination of the non-diffractive, single diffractive and double diffrac-
tive components of our PYTHIA8 samples. The best combination was found by
minimizing the difference between the spectrum of interest (∆ηF or ξ̃±) in data
and in the Monte Carlo.

• ∆ηF distribution: ND*0.623 + (SD+DD)*0.206

• ξ̃± distribution: ND*0.577 + (SD+DD)*0.283

The effect of these fits is shown in Figure 9.9.
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Figure 9.9: The detector level comparisons between data and PYTHIA8. The
effect of the Monte Carlo scaling to the data shapes is demonstrated.

9.2.3 Unfolding tests

The unfolding, especially its 2D version, is a complex procedure which has to be
thoroughly tested before it can be relied upon. These tests are also important
for answering question what is the optimal value of the regularisation parameter
(specifying the number of iterations). They are summarized in next paragraphs
and are as follows:

• Closure test: reproducing the particle level Monte Carlo by unfolding the
detector level distribution

• Convergence test of higher iterations

• Stability checks against the choice of binnings

Closure test The simplest test of the unfolding performance is to substitute
the data-to-unfold distribution by the detector level Monte Carlo. If the unfold-
ing is implemented correctly, the result should be the exact particle level MC
distribution already after the first iteration. This is confirmed by Figure 9.10.
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Figure 9.10: Closure test (unfolding the detector level PYTHIA8) of the 2D
unfolding procedure (1 iteration).
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Figure 9.11: The influence of number of iterations on the ∆ηF distribution. The
ratios are calculated with respect to the first iteration.
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Figure 9.12: The influence of number of iterations on the ξ̃± distribution. The
ratios are calculated with respect to the first iteration.

Convergence of higher iterations The important parameter of the unfolding
procedure is the number of iterations. Figure 9.11 demonstrates the influence
of higher iterations for unfolding of the rapidity gap distribution, while Figure
9.12 presents the same for ξ̃± variable (ratios calculated with respect to the first
iteration). Both these distributions are obviously sensitive to the choice of this
parameter in bins with lower statistics, that is the small ξ̃± (large gap) region,
and demonstrate a clear convergence behaviour. That can be also quantified by
calculating the χ2 of neighboring iterations as

χ2(ith iter.) =

Nbins∑
j

(yi,j − yi−1,j)
2

ε2i,j + ε2i−1,j

(9.1)

where y is the variable under investigation and ε is its statistical error. As the
χ2 is sensitive to the number of events occupying the investigated bins as well
as the absolute values of the investigated variable, its value is dependent on the
choice of bins of interest. Therefore, tables 9.2 and 9.3 present χ2 in different
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ranges.

Iterations
χ2 χ2

rdist(full range) (2 < ∆ηF < 6.5)
1 - 2 0.99 0.115 12 %
2 - 3 0.42 0.021 5 %
3 - 4 0.23 0.005 3 %
4 - 5 0.14 0.0014 2 %
5 - 6 0.10 0.0008 1 %

Table 9.2: χ2 values calculated for cross sections corresponding to two consec-
utive iterations for the ∆ηF distribution. rdist is the maximal relative distance
(calculated bin-by-bin) of the corrected cross section between two consecutive
iterations. Jets reconstructed by the anti-kT R = 0.6 algorithm.

Iterations
χ2 χ2

rdist
(full range) (−3.5 < log10 ξ̃

± < −1)
1 - 2 45 0.91 7 %
2 - 3 20 0.15 5 %
3 - 4 11 0.037 4 %
4 - 5 6 0.012 2 %
5 - 6 4 0.006 2 %

Table 9.3: χ2 values calculated for cross sections corresponding to two consecutive
iterations for the ξ̃± distribution. rdist is the maximal relative distance (calculated
bin-by-bin) of the corrected cross section between two consecutive iterations. Jets
reconstructed by the anti-kT R = 0.6 algorithm.

Another variable defined to provide a quantitative insight into the unfolding
method is a maximum relative distance (calculated bin-by-bin) of the corrected
cross section between two iterations:

rdist(i
th iter.) = Maxjbins

|yi,j − yi−1,j|
yi−1,j

(9.2)

Combining all this information, we will be able to decide on an appropriate
choice of the number of iterations.

Stability against binnings Testing the unfolding stability with respect to
the choice of bins is presented in Figure 9.13. The ”Coarse” binning is defined in
Table 9.1. The ”Fine” bins, reflecting more the actual resolutions of the jet pT,
are as follows:

• pT ”fine” bins (23) - 12, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,
130, 140, 150, 160, 170, 180, 200, 220, 240, 260, 450 GeV

The unfolding proves to be stable against the choice of pT bins well within 1%
for both the ∆ηF and ξ̃± distributions.
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Figure 9.13: Comparisons of unfolded data (1 iteration) for different pT binnings.
Jets reconstructed by the anti-kT R = 0.6 algorithm.
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anti-kT R = 0.6 algorithm.

Migrations into neighbouring bins The IDS unfolding procedure adopted
in this analysis takes into account not only bin-by-bin corrections between the
detector level and particle level MC distributions, but also the influence of misses
and fakes. As a result, events can migrate to neighbouring bins. This effect can
be studied by unfolding a single bin only, instead of the full spectrum. This test
is presented in Figure 9.14. As expected from the smearing matrix, the ∆ηF

distribution in the large binning that we have selected has negligible migrations
(suppressed at least by two orders of magnitude). What is also important to
note is that the number of missing events caused by showering on the edge of the
calorimeter (migrations from the detector level ∆ηF = 0 − 0.5 to the unfolded
∆ηF > 3) has no impact on the measurement - it is suppressed by five orders
of magnitude. As for the ξ̃± distribution, a significant systematic shift from
small to large ξ̃± values is observed. This is caused by the non-diagonality of the
smearing matrix - due to the limited detector acceptance to low-energy particles,
the reconstructed ξ̃± is systematically smaller than the particle level value.
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9.2.4 Choice of the number of iterations

The regularization parameter within the unfolding method specifies the number
of iterations. Usually, a reasonable performance can be achieved already with a
small number of iterations. The price to pay for higher regularization parame-
ter is usually a significant growth of statistical uncertainties. To decide on the
optimal number of iterations, we can combine the information received from pre-
vious unfolding tests, notably the convergence of distributions corresponding to
increasing number of iterations.

Figures 9.11 and 9.12 demonstrate that the number of iterations has minimal
impact across most of the ranges. The biggest sensitivity to the choice of this
parameter is in bins with lower statistics available, that is in bins of our interest
(low ξ̃±, large ∆ηF ). For making a decision, it is useful to take into consideration
the χ2 values in tables 9.2 and 9.3, especially those that are in our region of inter-
est to avoid χ2 domination by low ∆ηF (high ξ̃±) bins which have majority of the
statistics (therefore low statistical uncertainties entering the χ2 calculation). The
χ2 values rapidly decrease with increasing number of iterations and have typically
very small values, that is smaller than 1 in all cases except the ξ in full range.
However, the χ2 values should be moreover divided by the number of degrees of
freedom (number of bins), so we get well below 1 even in this case starting from
fourth iteration.

To support this observation, we can inspect the rdist values in tables 9.2 and 9.3.
This distance between two consecutive iterations starts to be negligible (around
or less than 2%) when going from 4th to 5th iteration.
Therefore, putting both these observation together, we come to the decision that
four iterations is the appropriate choice for both the ∆ηF and ξ̃± distributions.

9.2.5 Statistical uncertainties

Statistical uncertainties of unfolded (fully corrected) spectra can be evaluated by
smearing the input 2D histograms with raw events by the Poisson distribution
with mean value of the number of entries in given bin. Histograms are then
normalized to the cross-section and unfolding is being run. This procedure is
repeated 1000 times (so called “pseudo-experiments”). The result is presented in
Figure 9.15. The total statistical uncertainty comprises of the data and Monte
Carlo components. Statistical fluctuations in data are evaluated by smearing the
input detector level data distribution, keeping the Monte Carlo inputs unchanged,
while the Monte Carlo component is evaluated by Poisson smearing of the input
smearing matrix (correlation of the particle level and detector level measurable
quantity), keeping the data detector level histogram unchanged. The result of
this test proves that the dominant contribution to the overall statistical error is
coming from a limited statistics in the data (error up to 50%) and a good avail-
able statistics of Monte Carlo events across full range of interest in both ξ̃± and
∆ηF (below 0.1%).

107



Fη∆

0 1 2 3 4 5 6

R
e
la

ti
v
e
 s

ta
t.
 e

rr
o
r

0

0.1

0.2

0.3

0.4

0.5

0.6
Uncertainties in det.level data

Unfolding uncertainties  data component

Unfolding uncertainties  MC component

(a) ∆ηF

±
ξ
∼

10
log

3− 2.5− 2− 1.5− 1− 0.5− 0

R
e
la

ti
v
e
 s

ta
t.
 e

rr
o
r

0

0.05

0.1

0.15

0.2

0.25

Uncertainties in det.level data

Unfolding uncertainties  data component

Unfolding uncertainties  MC component

(b) ξ̃±

±
ξ
∼

10
log

3.2− 3− 2.8− 2.6− 2.4− 2.2− 2−

R
e
la

ti
v
e
 s

ta
t.
 e

rr
o
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Uncertainties in det.level data

Unfolding uncertainties  data component

Unfolding uncertainties  MC component

(c) ξ̃± with ∆ηF > 2 cut

Figure 9.15: Statistical uncertainties of the unfolded distributions as coming from
the Monte Carlo and data. The detector level statistical errors in data are also
depicted.

9.3 Comparison of 1D and 2D unfolding tech-

niques

For ∆ηF and ξ̃±, it is possible to use the 1D approach but this does not take into
account having multiple exponentially falling distributions. A comparison of the
2D and 1D unfolding methods is shown in Figure 9.16. Different approaches lead
to similar results with the exception of bins with very limited statistics.
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Figure 9.16: Comparison of the unfolded data distributions between the 1D and
2D unfolding methods for ∆ηF and ξ̃± selected with anti-kT R = 0.6 jets.
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10. Evaluation of systematic
uncertainties

Each experimental measurement made by a complex detection system such as
the ATLAS detector is influenced by systematic uncertainties arising from the
reconstruction of detector objects such as jets, tracks etc. There is usually a
wide range of sources of uncertainties which have, sometimes significant, impact
on the final result of the measurement. As we shall see later on in this chapter
(systematic uncertainties will turn out to be large), their careful evaluation can
be as essential for the interpretation of the final result as the measurement itself.

The goal of this chapter is to calculate asymmetric bin-by-bin systematic un-
certainties for both ∆ηF and ξ̃± distributions. Generally, the uncertainty is eval-
uated by running the uncertainty-adjusted analysis (i.e. with shifts, smearings,
different weights etc.) on Monte Carlo (used for unfolding) samples. This way,
new response matrices and detector level distributions are obtained and used
for unfolding the nominal (unchanged) detector level data. The particular uncer-
tainty is obtained by comparing the newly unfolded data to the nominal unfolded
data distribution. Since systematic uncertainties from different sources are un-
correlated, they are eventually added together in quadrature to obtain the total
systematic uncertainty of the measurement.

10.1 Jet-related systematic uncertainties

Uncertainties related to the reconstruction of jets, which is based on TopoClusters
at the EM scale, is systematically influenced by factors such as dead material,
energy leakage, jet triggering, non-compensation of calorimeter for hadrons and
generally inefficiencies in the calorimeter clustering and jet reconstruction. The
evaluation of jet-related systematics is mostly based on the 2010 inclusive dijet
measurement [44].

10.1.1 Uncertainty of the L1 J5 Trigger Efficiency Fits

The trigger strategy adopted in this analysis is such that the events are collect-
ed below the 99% efficiency region. Fits of the trigger efficiency curves in five
different η-ranges have been made. The trigger uncertainty can be evaluated
by varying three fit parameters by their uncertainty, one at a time in all five η-
ranges. The procedure is not, however, that straightforward as the fit parameters
are correlated. The correlation matrix can be retrieved from the fitting procedure
in ROOT and subsequently diagonalized. Fit parameters in the diagonal basis
are not correlated anymore and their uncertainty is the square-root of the eigen-
values of the diagonal matrix. Their values can thus be adjusted up or down and
propagated back to the non-diagonal basis. The overall effect of the trigger fit
uncertainty is then retrieved as the sum of squares of relative differences of thirty
measurements (30 = 5η−ranges · 3Parameters · 2Up&Down) with respect to the nominal
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data distribution. This systematic uncertainty is below 0.7% across full ∆ηF and
ξ̃± range with the exception of the bin with the largest ∆ηF where the statistical
fluctuations influence the result (1.3%).

10.1.2 Trigger uncertainty

The trigger systematics can be evaluated by the use of Monte Carlo events. Our
default MC selection does not contain triggers, though they are well modeled.
We can therefore measure L1 J5 efficiencies in the same η-ranges as in data, fit
them and use these fits to obtain additional event weights. The uncertainty is
then obtained by comparing these MC distributions with our nominal Monte
Carlo distributions (i.e. without the use of triggers). As the prescale of the
L1 MBTS 1 trigger is not simulated in the MC (PS=1), it had to be incorporat-
ed by hand by the use of the random number generator. Thirty-nine events our
of fourty (PS was, in period B, around 40-50) were removed and the remaining
events appropriately scaled. The resulting uncertainty is within 3.5%.

10.1.3 Jet Energy Scale uncertainty (JES)

The EM+JES jet energy scale determination is based on comparing energies of
reconstructed (EM scale energy) and truth isolated jets in MC and providing a
correction as a function of η and pT(for details see [51]). The uncertainty on the
jet energy scale accounts for uncertainties in a number of factors including the
absolute EM scale (e.g. dead material, electronic noise, different responses of the
LAr and Tile calorimeters), the simulation of particle showers in calorimeters,
pile-up and the models of fragmentation used by different MC generators.

There are various components of the jet energy scale uncertainty:

• JES 1 (CALORIMETER) - calorimeter uncertainty from single particle
propagation

• JES 2 (NOISETHRESHOLDS) - use TopoCluster noise thresholds from
data

• JES 3 (PERUGIATUNE) - Perugia 2010 Pythia tune

• JES 4 (ALPGENHERWIGJIMMY) - Alpgen+Herwig+Jimmy

• JES 5 (ETAINTERCALIBRATION) - uncertainty due to intercalibration
(end-cap with respect to the central region)

• JES 6 (CLOSURE) - non-closure of numerical inversion constants

• JES 7 (PILEUP) - uncertainty due to in-time pile-up

Each component is evaluated by single pT and η dependent shifts of the jet pT up
and down in the MC, whilst keeping the data fixed. The combined uncertainty for
EM+JES jets reconstructed from topological clusters, in zero pile-up conditions,
is taken from [44] and its effect on the pT distribution of the leading jet is shown
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in Figure 10.1. It is largest at low pT and in the forward region. The effect of the
JES uncertainty on both the ∆ηF and ξ̃± per JES component is shown in Figure
10.2. The major contribution is from the eta intercalibration component, while,
as expected from practically non pile-up environment in the 2010 period B data,
the pile-up component has a zero effect.
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Figure 10.1: The impact of the combined Jet Energy Scale uncertainty for pT

of EM+JES jets reconstructed from topological clusters using the anti-kT with
R = 0.6 algorithm.
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Figure 10.2: Jet Energy Scale uncertainty of its seven components for EM+JES
jets reconstructed from topological clusters using the anti-kT algorithm R =
0.6. The yellow band is the combined uncertainty calculated by adding all seven
components in quadrature.

Diffractive dijets with very large gaps are constrained to be forward-going and are
mostly found at the low pT limit where the JES uncertainty is largest. As in the
2010 inclusive dijet analysis, this is the dominant contribution to the systematic
uncertainty and the resulting change in the differential cross section is typically
between 20-40%.
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10.1.4 Jet Energy Resolution (JER)

The jet energy resolution is obtained along with the jet energy response measure-
ment. The distribution of the ratio of pT of the calorimeter jets and matched
truth jets is fitted with a Gaussian function. While the mean value is the average
jet energy response, the width of the Gaussian fit relative to the mean value is
the jet energy resolution. For details, see [52].

The uncertainty on the measurement due to the energy resolution is evaluated
by smearing the pT of the reconstructed jets in the MC with a Gaussian defined
by σsmear, using the formula

σ2
smear = (σnominal + ∆σ)2 − σ2

nominal , (10.1)

where ∆σ is the uncertainty of the nominal σnominal jet energy resolution. The
left-hand side plot of Figure 10.3 demonstrates the effect of such smearing across
a full pT and η range.

To obtain a statistically relevant result, 1000 pseudo-experiments was run on
each MC event. The resulting change in the differential cross section is within
6%.
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Figure 10.3: Relative shifts applied to jets for the evaluation of the Jet Energy
Resolution (left) and the Jet Angular Resolution (right) uncertainty. Both dis-
tributions are integrated over full phase space (pT and η for JER and E and η for
JAR). Superscripts “New” (“Orig”) refer to the uncertainty-corrected (original)
jet variable.

10.1.5 Jet Angular Resolution (JAR)

Another uncertainty related to the jet reconstruction comes from the resolution
in the jet φ and η. It is measured using a similar technique as the one for the
jet energy response and resolution. The resolution is largest for low-pT jets (up
to 0.05 for jets with pT = 20 GeV), becoming smaller than 0.01 for jets with
pT > 100 GeV.

Details about this systematic uncertainty for dijet events can be again found
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in the 2010 inclusive dijet analysis documentation. As the uncertainty ∆σ on the
nominal resolution σnominal is very small, ∆σ is fixed at 0.1 for all jets (based on
recommendations of the inclusive dijet analysis). The right-hand side plot of Fig-
ure 10.3 demonstrates the effect of such smearing across a full E and η range. The
systematic uncertainty is evaluated in a similar way as the JER (1000 pseudo-
experiments on each event are done) and the resulting change in the differential
cross section is typically around 1-2%, a value practically negligible compared to
the JES uncertainty.

10.1.6 Jet Reconstruction Efficiency (JRE)

The efficiency of the reconstruction of calorimeter jets can be assessed by using
track jets acting as a proxy for truth jets. It is measured in both the data and
Monte Carlo, which provides a possibility to study a possible mis-modelling of
the calorimeter jet reconstruction efficiency. The difference, determined for the
2010 inclusive dijet analysis, was found to be 2% for jets with pT < 20 GeV,
becoming less than 1% for pT > 30 GeV, and is applied as an event weight. The
resulting change in the differential cross section is at most 2%.

10.1.7 Jet Cleaning Efficiency (JCE)

The standard medium quality jet cleaning cuts have an η and pT dependent effi-
ciency, as was already discussed in Section 6.3.3 and as is demonstrated by Figure
6.17. Many of the jet cleaning variables are not modelled well in the MC and so
the jet cleaning efficiency, defined as the number of jets remaining after cleaning
compared to the total number of jets, has been studied in ATLAS in-situ using a
tag-and-probe technique (the measured “probe” jet is required to balance in pT

and φ the central “tag” jet with |η| < 2). A detailed description is provided in
the 2010 inclusive dijet measurement documentation.

The jet cleaning efficiency for jets with pT > 100 GeV is above 99% in all η
regions, but can decrease down to ∼ 86% for jet pT ∼ 20 GeV. Systematic uncer-
tainties on the jet cleaning efficiency were derived by applying looser and tighter
selection criteria to the tag jet, and were found to be less than 2% across pT and
η. The effect on the differential cross section as a function of ∆ηF and ξ̃± is
typically ∼ 8%, well below the one from the jet energy scale uncertainty.

10.2 Diffractive systematic uncertainties

The systematic uncertainty sources related to specifics of the diffractive measure-
ment are inspired by the ATLAS soft rapidity gap analysis [45] and the ET -flow
analysis [49]. In the end, they are added together in quadrature with other sys-
tematic uncertainty sources to provide overall uncertainty for the ∆ηF and ξ̃±

measurement.
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10.2.1 Left-right asymmetry of the rapidity gap start

Given the ATLAS detector symmetry around η = 0, the ∆ηF distributions should
be the same when retrieved separately for the rapidity gap start from the left
(ηstart = −4.8) and right (ηstart = +4.8) side. There could be certain detec-
tor effects causing asymmetry of such independent measurements, in which case,
however, the distributions should get symmetrized after performing the unfolding
procedure.

In Figure 10.4, the result of this test is presented. Given large statistical uncer-
tainties at larger ∆ηF values, the left-right comparison can be considered com-
patible and this possible source of systematic uncertainty is therefore considered
to be negligible in comparison to the JES uncertainty.
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Figure 10.4: Uncorrected cross section as a function of the ∆ηF , constructed
starting from the left edge (η = −4.8) or from the right edge (η = +4.8) of the
calorimeter. For events found using the anti-kT R = 0.6 algorithm. Statistical
uncertainties only.

10.2.2 Cluster energy scale uncertainty (CES)

The uncertainty of the cluster energy scale is tested by adjusting the cluster en-
ergy correction factor, 1 + α, for combined EM and hadronic uncertainty (refer
to the “combined uncertainty” column in Table 7.1 and Figure 10.5). This un-
certainty affects only the ξ̃± measurement as the ∆ηF definition does not use
any energy or transverse momentum cut applied to TopoClusters. The result-
ing change in the differential cross section is typically 10% and is depicted in
summary plots in Section 10.4.

10.2.3 Cell Significance Threshold Uncertainty (CST)

Following the 2010 minimum bias rapidity gaps analysis, the η ring significance
thresholds (Sth) for clusters to exceed the noise fluctuation requirement were shift-
ed up and down by 10% to observe the effect on the forward gap size distribution.
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the “combined uncertainty”. Plot created based on values in Table 7.1.

The systematic effect on the final result in the rapidity gaps cross section mea-
surement was less than 5%, due to the fact that the clusters at η = ±4.9 had an
energy cut of 12 GeV resulting from the pT cut of 200 MeV. For the diffractive
dijets analysis, the requirement of clusters with p > 0 across the whole of the
detector is more sensitive to this shift, particularly in the forward regions, and
the resulting change in the differential cross section is typically 10-20% and is
depicted in summary plots in Section 10.4.

10.2.4 Tracking uncertainty

The main tracking uncertainty (specific for the ∆ηF measurement) arises from re-
construction inefficiencies of charged particle tracks due to possible mis-modelling
of the detector material through which the particles have to pass. It is taken from
the 2010 minimum bias rapidity gaps analysis, where the effect of track recon-
struction efficiency was taken into account by studying the influence of the addi-
tional material (new MC sample with 10% material enhancement was produced)
in the inner detector through which charged particles pass. The resulting uncer-
tainty was found to be smaller than 3.5% throughout the measured distribution
and was applied globally in all bins of measured quantities.

10.3 Other sources

10.3.1 Luminosity uncertainty

The uncertainty on the luminosity is taken from the final 2010 luminosity deter-
mination [53] to be ±3.5% and is applied in all bins of ∆ηF and ξ̃± quantities.
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10.3.2 Primary vertex requirement

One of the basic event selection cuts requires a presence of a primary vertex
with two or more associated tracks. This can lead to an inefficiency, which can
be assessed by by loosening the requirement in data to allow events without a
primary vertex but still not allow pile-up vertices. The increase of the number
of events results in a change of the differential cross section of 1%. The fact that
it is such a small effect can be understood as a result of the requirement on a
presence of two high pT jets, i.e. a system with a lot of hadronic activity.

10.3.3 Additional material

The effect of dead material requires an understanding of the detector geometry.
Properly evaluating the corresponding uncertainties requires special samples to
be generated in which the material budget of the inner detector, services and
calorimeters are modified. The uncertainty was not directly evaluated but in-
stead taken from the minimum bias rapidity gaps analysis as a symmetric shift
of ±3.0% to be applied to the total systematic uncertainty in each bin of the
∆ηF measurement. This systematic shift cannot be applied to ξ̃± measurement
as this is a completely different variable, which was not studied in the soft gap
analysis. However, we can exploit the ET flow analysis [49] which studied the in-
fluence of an extra material (geometry tag ATLAS-GEO-16-19-00) on the cluster
energy density, see Section 6.2 in the ET flow paper. A downward shift by 5%
(conservative estimate) was found and it can be applied to the cluster pT, which
is used for the ξ̃± calculation. The resulting uncertainty is found to be ±10%
(symmetrized around zero just as in the ET flow analysis), as demonstrated in
Figure 10.6.
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10.3.4 Unfolding uncertainty

The uncertainty introduced by the unfolding procedure can be evaluated by a
data-driven test based on the detector level MC and data comparison. The ratio
of the MC and data distribution is fitted by a smooth function, which is then
used as a reweighting function of the smearing matrix. The reweighting is applied
on particle level quantity (∆ηF or ξ̃±) extracted by doing 1D projection of the
smearing matrix to the y-axis. The reweighted smearing matrix can then be
projected to x-axis to obtain detector level spectrum, which now describes data
significantly better (it does not need to be perfect, though), as demonstrated in
Figure 10.7. The reweighting functions used are polynoms of the fourth order
with parameters

• ∆ηF spectrum: 0.705− 0.264x+ 0.05x2 + 6.63 · 10−3x3 − 8.12 · 10−4x4

• ξ̃± spectrum: 1.66 + 2.98x+ 3.06x2 + 1.33x3 + 0.2x4

The reweighted detector level MC is then unfolded by the standard procedure
used on data and the systematic uncertainty is then evaluated as the difference
between the unfolded reweighted MC and the reweighted particle level MC. In
order to test the sensitivity of the unfolding method to statistical fluctuations
in Monte Carlo, this test should be made statistically independent. This goal
is achieved by assigning each event an additional weight coming from a random
number generator with the Poisson distribution of the mean value µ = 1. The
resulting unfolding uncertainty is typically around 10%, only in some bins going
up to ∼ 15%.

10.4 Summary: combined systematic uncertain-

ties

The systematic uncertainties discussed above are depicted in Figure 10.8 as a
function of the ∆ηF , in Figure 10.9 as a function of the ξ̃± (inclusive) and in Figure
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10.10 as a function of the ξ̃± with ∆ηF > 2 cut. Numerically, they are summarized
in tables in Appendix B. The yellow band represents the overall uncertainty
calculated as the square-root of the sum of the individual uncertainties squared.
The dominant contribution is coming from the jet energy scale followed by the
cell significance threshold in case of rapidity gaps and the cluster energy scale in
case of ξ̃±. The overall uncertainty is within 20-50%.
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Figure 10.8: Systematic uncertainties for EM+JES jets reconstructed from topo-
logical clusters using the anti-kT algorithm with R = 0.6 (left) and R = 0.4
(right). The yellow band presents the combined uncertainty.
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11. Background influence

As one of the main goals of this analysis is an enhancement of the single diffrac-
tive contribution, obvious physical backgrounds are the non-diffractive and double
diffractive processes, as well as the Double Pomeron Exchange. They are thor-
oughly discussed in Chapter 12.

Besides physical processes, significant sources of background come from the col-
lision environment and can be classified into three categories:

• In-time pile-up

• Out-of-time pile-up

• Beam induced background

11.1 In-time pile-up

The multiple interactions in one bunch crossing form a background contribution
called the in-time pile-up. This contribution takes place in this analysis despite
the pile-up suppression cut (only one vertex with at least two associated tracks
per event) due to the limited position resolution of the vertex reconstruction pro-
cedure. This effect leads to the merging of vertices closer than ∆z = 10 mm
into one. As a result, certain fraction f of dijet events are contaminated by an
additional interaction in the same bunch crossing. The fraction f can be estimat-
ed by plotting the ∆z(PV0, vtxPU) distribution between the primary vertex and
the closest pile-up vertex, as shown in Figure 11.2. To estimate the fraction of
merging vertices in two-vertex events f ′, a gaussian fit of the distribution needs
to be done. Since the ∆z has a non-gaussian shape, the fit was done in the central
region only and the result is f ′ = 0.039. To obtain the fraction f , the f ′ has to
be multiplied by the probability of a multiple interactions occurrence in the given
data-sample, which was found to be 6% (from the distribution of the number of
two-track vertices). The result is f = 0.0023, meaning that the expected effect
of the in-time pile-up is very small. To evaluate it, a “toy” sample made of mini-
mum bias events has been created (by running on period B data with L1 MBTS 1
trigger) and overlayed with the nominal data sample with probability f . If the
toy rapidity gap is smaller than the nominal one, then ∆ηFnominal is set to the value
∆ηFtoy. The ξ̃± distribution is influenced by the extra energy deposition and since
it is calculated by summing over all clusters in a given event, the resulting value
is ξ̃±Final = ξ̃±Toy + ξ̃±Nominal. Two hundred pseudo-experiments have been done in
order to remove statistical fluctuations. The resulting distributions presented in
Figure ?? demonstrate that the effect of the in-time pile-up is within 0.5%.

11.2 Out-of-time pile-up

The out-of-time pile-up is caused by overlapping signals in the detector from
neighboring bunch crossings. Typically, the observed energy in calorimeters is
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Figure 11.1: ∆z distribution between the primary vertex and the closest pile-up
vertex as seen in the period B of the 2010 data taking.
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Figure 11.2: The effect of the in-time pile-up in comparison with the nominal
data distributions.

decreased due to this effect. Run conditions in period B of the 2010 data taking
are summarized in Table 6.1. The important characteristics is the bunch distance,
∆t, which is not smaller than 5000 ns in the examined data sample. Since the
out-of-time pile-up plays a role for ∆t < 400 ns, it has no significance for the
analysis presented in this paper.

11.3 Beam induced background

The beam induced background is caused by the so-called “beam-gas” or “beam-
halo”, which is made of muons or pions traveling as a halo around the proton
beam due to interactions of protons having been produced well upstream. To
study this background, the analysis is repeated using so-called unpaired bunch-
es, which are events with only one bunch of protons passing through the AT-
LAS detector. These events can be triggered by the L1 MBTS 1 UNPAIRED
or L1 RD0 UNPAIRED (random trigger) and they alow, given their nature, to
study separately the effect of the beam-halo only. This background is expected
to have a negligible effect, just as was found out by the soft gap ATLAS analysis.
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12. Results

The purpose of this chapter is to summarize results of the diffractive dijet mea-
surement introduced in detail in previous chapters. The differential cross section
is defined in Section 6.2.3 and is measured as a function of the rapidity gap size
(∆ηF ; introduced in Chapter 7) and the fractional momentum loss of the diffrac-
tive proton (ξ̃±; introduced in Chapter 8). Additional distribution discussed here
is the ξ̃± with a ∆ηF > 2 cut whose purpose is to enhance the diffractive contri-
bution. All distributions, measured for two distance parameters of the anti-kTjet
algorithm, are corrected for detector effects using the IDS unfolding technique (see
Chapter 9). Various systematic uncertainties that influence this measurement are
evaluated in Chapter 10 and are presented as yellow bands around data points.
The error bars associated with data points represent statistical uncertainties only.

The event selection at the detector level is described in detail in Chapter 6. Two
jets within |η| < 4.4 and with pT > 20 GeV are required. A non pile-up collision
environment is ensured by requiring that there is not more than one vertex with
at least two associated tracks in the event.

The level to which the cross sections are corrected is described in Sections 7.5
and 8.1. The final state (stable) particles are required to be within the ATLAS
detector acceptance range, |η| < 4.8, with the minimal momentum p > 500 MeV
for charged particles and p > 200 MeV for neutral particles. This is valid for both
∆ηF and ξ̃± measurements; the only exception are charged particles in rapidi-
ty gap definition: they are required to have either p > 500 MeV or pT > 200 MeV.

12.1 Measurement of ∆ηF and ξ̃±

12.1.1 Process decomposition

In Figures 12.1 and 12.2, comparisons of data to PYTHIA8 ND, SD and DD
processes for the ∆ηF and ξ̃± distributions are presented. The diffractive MC
predictions are generated using the Donnachie-Landshoff (D-L) pomeron flux,
which is currently the most commonly used (e.g. [45]) as the best option for de-
scribing the SD and DD events (other fluxes are going to be discussed in Section
12.1.4).

In contrast to the ATLAS soft rapidity gap analysis, no diffractive plateau is
observed in the ∆ηF distribution in the region of large rapidity gaps. Instead,
the cross section falls off with increasing rapidity gap size. This behaviour is
explained by different event topology: while the previous soft gap analysis stud-
ied the diffractive events at soft scale (no jet requirement was introduced), our
analysis is focused on harder scale (dijet production) which implies larger particle
multiplicities (or, equivalently, larger invariant mass of the diffractive system X)
to be observed in the detector with the same acceptance in the (pT, η) space.
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Figure 12.1: Comparison of the corrected data to the particle-level Monte
Carlo ND, SD and DD components plotted as a stack. In the MC/Data
ratio plots, SD/Data is represented by green, (SD+DD)/Data by blue and
(ND+SD+DD)/Data by the red line. The jets were found the anti-kT algorithm
with R = 0.6. The yellow band presents the combined systematic uncertainty
and the PYTHIA 8 ND contribution is normalized to match data in the first ∆ηF

bin (by factor 1/1.35).
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Figure 12.2: Comparison of the corrected data to the particle-level Monte Carlo
ND, SD and DD components separately. The jets were found by the anti-kT al-
gorithm with R = 0.6. The yellow band presents the combined systematic uncer-
tainty and the PYTHIA 8 ND contribution is normalized to match data in the
first ∆ηF bin (by factor 1/1.35).

By plotting comparisons of the data and various PYTHIA8 components, it is
possible to study how the relative importance of ND, SD and DD processes as
a function of both variables, ∆ηF and ξ̃±. One of the important observations
is that the lowest ∆ηF bin is dominated by ND events (the total cross section
comprises of less than 2% of SD+DD processes). It is therefore possible to use
this measurement to derive a multiplicative factor applicable to ND in order to
make the Monte Carlo ND prediction match the data in the first ∆ηF bin. The
factor is found to be 1/1.35 for ND, while the SD and DD cross sections are left
unchanged. Such a straightforward prescription is not possible to adopt in the
case of the ξ̃± distribution which is observed to be flatter than that of the ∆ηF ,
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nevertheless there is a region where the ND contribution is dominant as well:
at high ξ̃±, which corresponds to low ∆ηF values (see Figure 8.1). The chosen
mixture of ND, SD and DD processes is therefore applied to the ξ̃± distribution
as well.

As can be seen from Figure 12.2, the ND component dominates over the SD
and DD ones by at least a factor of 10 in regions of very small gaps (∆ηF . 1)
and very large ξ̃± (log ξ̃± & −1.5). The ND and SD+DD components are then
seen to equalize around ∆ηF ∼ 3 and log ξ̃± ∼ −2.25 and finally, at very large
gaps ∆ηF & 4 and very small ξ̃± (log ξ̃± . −2.5), the SD and DD components
are dominant over the ND at least by a factor of 2 (see also Figures 12.5 and
12.6). Qualitatively, the situation is similar to that in the ATLAS soft rapidity
gap analysis [45]: ND contribution makes up the majority of the cross section at
low ∆ηF . However, differences are seen in the region of large gaps where the ND
processes are still present in the dijet analysis, whereas they are negligible in the
ATLAS soft rapidity gap measurement.

Finally, it should be noted (see e.g. Figure 12.1) that not just the overall shape
of both distributions is described reasonably well by PYTHIA8 ND+SD+DD,
but also the total cross section is. This conclusion would be surprising for any
model aspiring to provide good prediction of diffractive processes since the gap
survival probability (S2) is not simulated in any currently available MC model.
This discrepancy is attributed to the fact that PYTHIA8 is not a straightforward
implementation of a factorizable pomeron model. More appropriate choice for
diffractive predictions (POMWIG) is going to be discussed later on in this chap-
ter.

12.1.2 Comparisons to non-diffractive models
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Figure 12.3: The differential cross sections (corrected data) for both ∆ηF (left)
and ξ̃± (right) for jets found by the anti-kT algorithm with R = 0.6. Data
compared to two ND models all of them normalized to match data in the first ∆ηF

bin (factors fGenerator): LO PYTHIA8 (fPythia8 = 1/1.35) and NLO POWHEG
with PYTHIA8 (fPowheg Py8 = 0.93) hadronisations.
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To make reliable conclusions about the diffractive contribution in measured spec-
tra, it is advisable to investigate more of ND predictions. In Figure 12.3, the
dijet cross sections differential in ∆ηF and ξ̃± are compared with the PYTHIA8
ND contribution (at the leading order) and also with NLO calculation of non-
diffractive dijet production in the POWHEG framework with hadronisation done
by PYTHIA8. Both of the ND predictions are normalised to match the data
in the first bin of the ∆ηF distribution. The two different ND predictions show
a large uncertainty in the probability of producing gaps through hadronisation
fluctuations, such that for ∆ηF < 4 (log10 ξ̃

± > −2), it is not possible to draw
conclusions on the presence or absence of an additional diffractive contribution.
However, the ND predictions fall significantly short of the data (by a factor of
∼ 2 for NLO and even ∼ 3 for LO) for ∆ηF > 4 and for log10 ξ̃

± < −2.5. These
regions are therefore investigated in more detail in the following.

A presence of a significant ND contribution throughout the measured range also
matches observations by the CMS Collaboration [13]. The requirement of dijets
with pT above 20 GeV inside the system X, even at larger gap sizes, increases the
ND component relative to the total cross section. This contribution is, however,
very sensitive to the modelling of rapidity gap fluctuations in the hadronisation,
which are not well constrained.

12.1.3 Double Pomeron Exchange irreducible background

In Double Pomeron Exchange events, pomeron is emitted from each of the inter-
acting protons. As a consequence, both of them remain intact and two forward
rapidity gaps are thus produced. This kind of processes is usually called an irre-
ducible background since they cannot be distinguished experimentally from the
main signal events. To evaluate this contribution to the total cross section, DPE
events were generated by the use of the Pomwig generator (50 million events for
five pT samples: 8-17 GeV, 17-35 GeV, 35-70 GeV, 70-140 GeV, 140-280 GeV).
The particle level spectra compared to fully corrected data are presented in Fig-
ure 12.4. Depending on the chosen ∆ηF or ξ̃± bin, the suppression factor of DPE
with respect to data is around 50−100 and these processes can thus be neglected.

12.1.4 Comparisons to various diffractive models

In order to enhance the final message coming from the dijet rapidity gap analysis,
fully corrected data are compared to various diffractive MC models. Such com-
parisons are presented in Figure 12.5 for rapidity gap distributions and in Figure
12.6 for the fractional momentum loss of the scattered proton. It is important to
note here that the ξ̃± variable (calculated by summing over energy depositions
in the ATLAS calorimeter system, see Equation 8.2) can be considered a good
estimate of the real ξ of the diffractive proton for log10 ξ̃

± < −1 region only.
This important conclusion follows from Figure 8.7(a) discussed in Section 8.1,
in which is the ξ̃± calculation method validated. Larger ξ̃± must be interpreted
as an energy flow measurement rather than the fractional momentum loss of the
diffractive proton, as we can conclude from figures presented in this chapter as
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Figure 12.4: Particle level Double Pomeron Exchange ∆ηF (left) and ξ̃± (right)
spectra in comparison with fully corrected data and other selected MC models.
PYTHIA8 ND is normalized to match data in the first ∆ηF bin (by factor 1/1.35).

well (diffractive contribution is ∼ 0 for larger ξ̃±).
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Figure 12.5: The differential cross section (corrected data) as a function of the
∆ηF for jets found by the anti-kT algorithm with R = 0.6 (left) and R = 0.4
(right). The yellow band presents the combined systematic uncertainty. The
Pomwig model is normalized by factors indicated in the legend and PYTHIA8
ND contribution is normalized to match data in the first ∆ηF bin (by factor
1/1.35).

Despite the fact that the ∆ηF distributions in Figure 12.5 reveal sizable differ-
ences observed among predictions of PYTHIA8 for the three different pomeron
fluxes, the sum of SD and DD contributions for any option is roughly 3–4 times
lower than that of the POMWIG SD model. Another interesting feature of the
comparison between these samples is that the POMWIG SD distribution falls
away less steeply with ∆ηF than PYTHIA8 SD+DD. Relative to the data, the
POMWIG SD prediction in the ∆ηF distribution is approximately two times
larger starting from ∆ηF = 2 for both jet cone sizes.

In Figure 12.6, the measured cross section as a function of ξ̃± is presented. Com-
parisons to various diffractive models in the region of interest, i.e. at low ξ̃±,
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Figure 12.6: The differential cross section (corrected data) as a function of the
ξ̃± for jets found by the anti-kT algorithm with R = 0.6 (left) and R = 0.4
(right). The yellow band presents the combined systematic uncertainty. The
Pomwig model is normalized by factors indicated in the legend and PYTHIA8
ND contribution is normalized to match data in the first ∆ηF bin (by factor
1/1.35).

reveal a large overestimate by the POMWIG SD model (by factor ∼ 4 in the
lowest ξ̃± bin), while PYTHIA8 (SD+DD) predictions are not that far from the
data - regardless the pomeron flux used. Another interesting comparison is be-
tween low and high ξ̃± region: while the ξ̃± predictions differ up to factor ∼ 7 at
large ξ̃±, they get significantly closer at the low ξ̃± tail (differences within ∼ 40%).

This analysis was performed for two values of the distance parameter of the anti-
kT jet algorithm: R = 0.4 and R = 0.6. The larger distance parameter roughly
doubles the cross section for the data but in overall, it keeps the ratio between
the data and PYTHIA8 or POMWIG approximately the same. Differences are
observed in the region of gaps larger than 3 where, however, the available statis-
tics in the data is limited. It is not therefore possible to conclude whether a
non-negligible dependence on the jet algorithm is observed in this region.

To further increase the ND suppression is lowest ξ̃± bins and thus enhance the
diffractive contribution to the cross section in this region, it is possible to intro-
duce an additional selection cut: events are required to have large rapidity gaps,
∆ηF > 2. Such ξ̃± distributions are presented in Figure 12.7. This measurement
is done for three lowest ξ̃± bins only due to the fact that the additional cut sig-
nificantly limits statistics in all other bins (see Figure 8.1 for correlation between
∆ηF and ξ).

The ξ̃± distribution has also been measured by the CMS Collaboration [13]. It
is not possible to do a direct comparison as the cross section definitions (at the
particle level) are different. The CMS definition corrects the data to all final
state particles in the range −4.9 < η < +∞ (−∞ < η < +4.9) to include more
of the system X, and the forward rapidity gap cut is 1.9 units in pseudorapidity.
In this analysis, the forward rapidity gap range is ∆ηF > 2 and the cross section
is defined by p > 200 MeV for neutral particles and p > 500 MeV for charged
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Figure 12.7: The differential cross section (corrected data) as a function of the
ξ̃± after the ∆ηF > 2 cut for jets found by the anti-kT algorithm with R = 0.6
(left) and R = 0.4 (right). The yellow band presents the combined systematic
uncertainty. The Pomwig model is normalized by factors indicated in the legend
and PYTHIA 8 ND contribution is normalized to match data in the first ∆ηF

bin (by factor 1/1.35).

particles with the aim to better reflect what can be observed experimentally in
ATLAS. Although the cross section definitions are different, the final fully cor-
rected results are similar in magnitude.

12.2 Estimate of the gap survival probability

An explanation for the excess of the POMWIG prediction over data in the small
ξ̃± (large forward rapidity gap) region is the fact that a rapidity gap destruc-
tion mechanism is present in the data but not modelled in POMWIG. Indeed, as
explained in Section 1.3.6, a similar excess had been first observed at the Teva-
tron and since then confirmed by other analyses. It is successfully explained by
absorptive processes which depend on a number of variables and are quantified
by the gap survival probability, S2. Although not expected to be a constant, S2

is often expressed for a given process under examination as a constant number
which is estimated for a range of ξ̃± where diffractive processes dominate. Based
on the discussions earlier in this chapter, the estimate of S2 for diffraction in di-
jet events is performed in the lowest ξ̃± bin, where the ND contribution is small
according to all available non-diffractive models. Moreover, for the first time for
this type of analysis, an attempt to estimate S2 from the measurement of the
rapidity gap size in the region 3 < ∆ηF < 4 is also performed (larger ∆ηF values
could provide better ND suppression, but it would be significantly influenced by
larger statistical uncertainties).

As indicated previously, this analysis is specific in the sense that MC predictions
are not yet tuned to describe the data well. One of the key aims is, therefore, to
provide measurements of fully corrected data which can help to tune these im-
perfect models. It must be noted that the S2 estimate presented in this section
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is expected to have large theory uncertainties when trying to extract the relevant
information from data using yet untuned MC models.

The gap survival probability S2 is estimated from the ratio of the data and the SD
contribution (predicted by POMWIG) in a given ∆ηF and ξ̃± region. Moreover,
the ND contribution is removed from the data based on the leading order predic-
tion by PYTHIA8. The influence of ND in selected bins is summarized in Table
12.1: the ND is suppressed by factors & 3 for all bins, with the only exception
of the rapidity gap bin for the R = 0.4 parameter of the jet anti-kT algorithm
(in such case, the factor is ∼ 2). Finally, the DD contamination in the data is
subtracted based on the DD/SD ratio as obtained from the PYTHIA8 generator
with the Donnachie-Landshoff pomeron flux1. The diffractive contribution in the
ξ̃± spectrum is enhanced by the ∆ηF > 2 requirement.

Data / MC 3 < ∆ηF < 4 −3.2 < log ξ̃± < −2.5
Data/NDPYTHIA8, Anti-kT R = 0.6 2.8± 1.0 5.1± 1.0
Data/NDPYTHIA8, Anti-kT R = 0.4 1.9± 0.7 2.8± 1.0

Table 12.1: Data to PYTHIA8 ND ratios along with the statistical uncertainties
for selected bins in ∆ηF and ξ̃±. The ξ̃± result is retrieved after the ∆ηF > 2
cut.

Like the ATLAS soft rapidity gap measurement, the H1 ‘SD’ measurements were
not able to completely suppress cases where the proton dissociates to low mass
states disappearing into the beam pipe. Rather than attempting to subtract this
DD contribution, H1 defined their measured cross section as including DD with
proton dissociation masses MY < 1.6 GeV. The DD contribution was estimated to
increase the measured cross section by a factor 1.23± 0.10 based on comparisons
with later Roman pot proton-tagged SD measurements. The 23% enhancement
was propagated through the QCD fits used to extract the DPDFs and further,
into the POMWIG model. We therefore remove it from POMWIG here by di-
viding the POMWIG prediction by 1.23 to get it to a pure SD prediction.

The procedure for the S2 estimate can be schematically expressed by equation

S2 =
(Data− NDPy8) · SDPy8

SDPy8+DDPy8

Pomwig/1.23
, (12.1)

where “Py8” stands for PYTHIA8 Monte Carlo (Donnachie-Landshoff pomeron
flux is used for SD and DD). The gap survival probability estimates are summa-
rized in Table 12.2. The S2 value is found to be 21% in the ∆ηF variable and
16% in the ξ̃± variable, for R = 0.6. For R = 0.4, the numbers are 12% and 7%
respectively. It needs to be emphasized that all these S2 estimates suffer from
sizable statistical uncertainties, so the S2

∆ηF ∼ 21% value is actually in a good

1This method is preferred over a direct DD subtraction (based on the prediction by
PYTHIA8 DD only), because it is not possible to fix the DD cross section in a similar fashion
as was done for ND models (normalized to match the data in the first ∆ηF bin).
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agreement with S2
ξ̃±
∼ 16% (and vice versa for R = 0.4 jets). Moreover, it can

be concluded that even the highest obtained value, 21% (found for the jet cone
radius of 0.6), is in a rough agreement (within total uncertainties) with the value

of 12% ± 5% found by the CMS Collaboration in the bin 0.0003 < ξ̃ < 0.002.
The CMS analysis used the jet cone radius of 0.5 and the LO POMWIG SD
from which the DD contribution has been subtracted in the same way as in our
analysis. This value then decreased to S2 of 8% ± 4% when the LO POMWIG
SD has been replaced by the NLO MC POWHEG SD.

Data / MC 3 < ∆ηF < 4 −3.2 < log ξ̃± < −2.5
S2

Data/SDPomwig
, Anti-kT R = 0.6 0.21± 0.10 0.16± 0.04

S2
Data/SDPomwig

, Anti-kT R = 0.4 0.12± 0.09 0.07± 0.04

Table 12.2: S2 as the data to the POMWIG Monte Carlo ratios along with the
statistical uncertainties for selected bins in ∆ηF and ξ̃±. The ξ̃± result is retrieved
after the ∆ηF > 2 cut. ND component as predicted by PYTHIA8 is subtracted
from the data. The DD component is subtracted based on Pythia8 (D-L flux)
DD/SD ratio. A DD component 23%± 10% is subtracted from Pomwig SD.

As we saw, the gap survival probability is dependent on the choice of jet cone
size and the particular distribution (∆ηF or ξ̃±). Since the S2 estimate from
the 3 < ∆ηF < 4 bin has larger statistical uncertainties and worse ND suppres-
sion (see Table 12.1), the value extracted from the measurement of ξ̃± with the
∆ηF > 2 cut is preferred. Similar argument is valid for the difference between jet
algorithms: due to smaller statistical uncertainties and better ND suppression,
the result for R = 0.6 is favored. No attempt has been made to asses the model
dependence of the S2 estimate as only one reliable diffractive model is available
(Pomwig). However, changing the ND contribution in the extraction procedure
from PYTHIA8 LO to POWHEG + PYTHIA8 NLO results in the gap survival
probability of 15%.
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13. Conclusions

The physics analysis discussed in this thesis is the first cross section measure-
ment of this kind performed at the ATLAS Experiment. It provides a significant
extension of the previous ATLAS soft rapidity gap analysis as it is done at the
hard scale (two relatively high pT jets are required) and it introduces, in addition
to the rapidity gap measurement, the measurement of the fractional momen-
tum loss of the diffractive proton. Compared to the similar measurement by the
CMS Collaboration, substantial improvements are achieved as well: the rapidi-
ty gap size distribution in diffractive dijet events is provided in addition to the
proton fractional momentum loss (on which the CMS analysis focused) and the
measurements are done for two distance parameters (R = 0.4 and R = 0.6) of
the anti-kT jet reconstruction algorithm (CMS provided results for R = 0.5 only).

Forward rapidity gaps, denoted as ∆ηF , constitute a characteristic attribute of
diffractive interactions. Though it is found that even non-diffractive interactions
can produce large rapidity gaps, they are exponentially falling off with increasing
∆ηF . Rapidity gaps thus provide an ilustrative mean for distinguishing between
diffraction and non-diffraction. The relationship between ∆ηF and the mass of
the diffractive system leads to a direct relationship between ∆ηF and ξ̃±, which
approximates, for single diffractive events, fractional momentum loss of the scat-
tered proton based on the information available within the acceptance of the
calorimeter system of the ATLAS Experiment.

Comparisons of the data corrected for experimental effects to various Monte Car-
lo models lead to the conclusion that though the non-diffractive models alone are
able to describe a significant portion of the data via fluctuations in the hadronisa-
tion process, a diffractive component is also needed for a more complete descrip-
tion of the data, especially for large rapidity gaps and small ξ̃±. Finally, it was
found that the requirement of the hard scale changes the topology of diffractive
interactions. Consequently, the rapidity gap distribution, instead of reaching a
plateau at large ∆ηF as observed by the ATLAS soft rapidity gap analysis, falls
off expeonentially with increasing ∆ηF .

Besides measurements of the differential cross sections as a function of ∆ηF and
ξ̃±, the estimate of the gap survival probability is provided. It is found to be
significantly model dependent as the data, from which the non-diffractive and
double diffractive contributions to the cross section have to be subtracted, are
compared to POWMIG model of single diffraction. At the leading order, the gap
survival probability is found to be 0.16 ± 0.04(exp.) ± 0.08(syst.) based on the
−3.2 < log10 ξ̃

± < −2.5 region of the ξ̃± distribution with the ∆ηF > 2 require-
ment and for the R = 0.6 distance parameter of the anti-kT jet reconstruction
algorithm.
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A. Reproduction of the 2010
inclusive dijet measurement
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Systematic −3.2 < log10 ξ̃
± < −2.5 −2.5 < log10 ξ̃

± < −2.25 −2.25 < log10 ξ̃
± < −2

JES (+38.0; -55.0)% (+27.6; -40.3)% (+20.5; -26.5)%
JES1 (+11.9; -11.2)% (+7.9; -8.1)% (+7.3; -7.1)%
JES2 (+15.5; -11.8)% (+11.9; -9.6)% (+9.1; -7.0)%
JES3 (+13.3; -13.4)% (+9.8; -10.4)% (+7.6; -8.3)%
JES4 (+18.3; -13.5)% (+14.0; -10.6)% (+11.0; -8.3)%
JES5 (+28.3; -37.6)% (+17.7; -25.5)% (+9.2; -12.2)%
JES6 (+9.6; -6.9)% (+7.4; -5.3)% (+6.7; -5.5)%
JES7 (+0.0; -0.0)% (+0.0; -0.0)% (+0.0; -0.0)%
JER (+5.9; 0.0)% (+0.4; 0.0)% (+0.0; -0.8)%
JAR (+1.7; 0.0)% (+0.1; 0.0)% (+0.0; -0.9)%
JRE (+1.7; -1.7)% (+1.5; -1.5)% (+1.4; -1.5)%
ClustE (+5.0; -6.3)% (+3.8; -3.9)% (+1.9; -1.4)%
CST (+1.5; -2.2)% (+1.9; -2.6)% (+5.5; -7.8)%
JCE (+0.5; -0.4)% (+0.4; -0.3)% (+0.4; -0.4)%
LoosePV0 (+0.3; 0.0)% (+0.4; 0.0)% (+0.0; -0.0)%
Unfolding (+0.0; -0.4)% (+0.8; 0.0)% (+6.1; 0.0)%
Trigger (Fit) (+0.4; -0.1)% (+0.3; -0.3)% (+0.4; -0.3)%
Trigger (MC) (+1.0; 0.0)% (+1.7; 0.0)% (+1.4; 0.0)%
Tracking ±1.0 % ±1.0 % ±1.0 %
Luminosity ±3.5 % ±3.5 % ±3.5 %
Added Material ±10.0 % ±10.0 % ±10.0 %
Total uncertainty (+44.3; -47.4)% (+31.6; -34.6)% (+25.1; -24.4)%

Table B.5: Contributions to the systematic uncertainty on the differential cross
section for log10 ξ̃

± with ∆ηF > 2 cut selected with anti-kT R = 0.6 jets. The
total systematic uncertainty is calculated as the quadratic sum of the individual
contributions.

Systematic −3.2 < log10 ξ̃
± < −2.5 −2.5 < log10 ξ̃

± < −2.25 −2.25 < log10 ξ̃
± < −2

JES (+28.5; -49.9)% (+23.3; -29.1)% (+27.5; -31.3)%
JES1 (+8.4; -7.1)% (+4.2; -6.1)% (+8.3; -8.8)%
JES2 (+10.9; -3.5)% (+9.7; -6.1)% (+10.6; -4.1)%
JES3 (+6.9; -13.6)% (+5.1; -9.6)% (+10.1; -12.0)%
JES4 (+11.4; -6.3)% (+8.1; -7.1)% (+10.5; -8.0)%
JES5 (+22.7; -39.1)% (+19.7; -23.2)% (+14.5; -16.4)%
JES6 (+8.7; -4.7)% (+5.5; -3.8)% (+9.7; -7.5)%
JES7 (+0.0; -0.0)% (+0.0; -0.0)% (+0.0; -0.0)%
JER (+6.5; 0.0)% (+0.7; 0.0)% (+3.9; 0.0)%
JAR (+0.4; 0.0)% (+0.0; 0.0)% (+0.0; -0.2)%
JRE (+1.5; -1.6)% (+1.0; -1.3)% (+1.4; -1.4)%
ClustE (+5.4; -6.7)% (+4.5; -4.6)% (+11.1; -9.0)%
CST (+2.5; -2.2)% (+2.0; -1.1)% (+2.3; -4.3)%
JCE (+0.2; -0.2)% (+1.0; -0.9)% (+1.2; -1.0)%
LoosePV0 (+0.4; 0.0)% (+0.4; 0.0)% (+0.0; 0.0)%
Unfolding (+0.0; -4.5)% (+11.3; 0.0)% (+0.0; -2.7)%
Trigger (Fit) (+0.5; -0.2)% (+0.5; -0.4)% (+0.4; -0.2)%
Trigger (MC) (+2.0; 0.0)% (+3.0; 0.0)% (+2.9; 0.0)%
Tracking ±1.0 % ±1.0 % ±1.0 %
Luminosity ±3.5 % ±3.5 % ±3.5 %
Added Material ±10.0 % ±10.0 % ±10.0 %
Total uncertainty (+34.0; -45.0)% (+29.9; -30.1)% (+31.1; -29.1)%

Table B.6: Contributions to the systematic uncertainty on the differential cross
section for log10 ξ̃

± with ∆ηF > 2 cut selected with anti-kT R = 0.4 jets. The
total systematic uncertainty is calculated as the quadratic sum of the individual
contributions.
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