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Preface

It is a well known fact that the classical electrodynamics is a linear theory. There
is no interaction between two electromagnetic waves in the classical vacuum,
which means one wave simply passes through another without any mutual influ-
ence. In other words, the waves behave like they do not know about each other.
However, the situation is quite different in quantum electrodynamics due to the
polarizability of vacuum which is an purely quantum effect.

In quantum electrodynamics (QED), charged virtual pairs can emerge from
"nothingness” and mediate interaction between photons. This means quantum
electrodynamics gives some nonlinear corrections to the classical theory. These
correction can cause a series of interesting and fascinating non-classical effects
including light by light scattering, photon splitting in vacuum or vacuum bire-
fringence.

This area of study proved to be a fertile soil for both the experimental and the
theoretical physics. First thoughts on this subject appeared shortly after Dirac
proposed his hole theory in 1928, and the discovery of positron in 1932. A brief
historical overview of this research area is given in the first chapter.

In this thesis we are interested in Lagrangians of Euler-Heisenberg type, which
function as the low-energy effective description of those nonlinear corrections.
The first part of the thesis is devoted to a detailed derivation of one-loop effective
Lagrangians of Euler-Heisenberg type in the lowest (four-photon) order in cases
of various versions of QED (spinor QED, scalar QED and vector QED). This
is accomplished by the direct calculation of one-loop diagrams and subsequent
matching the calculated amplitudes to the amplitude given by the effective theory.
The case of vector QED is calculated using the unitary gauge, which probably
has not been done to this date.

In the second part, we demonstrate an alternative approach that is based
on the path integral formulation. We derive the Euler-Heisenberg Lagrangian
for spinor QED by the calculation of the determinant of the Dirac operator in
constant background electromagnetic field.



1. Historical overview

Since there is a great number of published articles and other literature on this
subject, we restrict ourselves only to a few. A part of this overview is based on
.

The possibility of quantum-induced nonlinear corrections was first proposed
by Halpern who published a brief note that light by light scattering could occur.

Debye and Heisenberg privately discussed this, and Heisenberg then assigned
his student Hans Euler a task to study this problem using the density matrix
formalism Heisenberg had developed. This later became Euler’s PhD thesis that
he defended in 1936 at Leipzig [2].

A year later, in 1935, Euler and another Heisenberg’s student, Bernhard Kock-
el, published a paper, where they gave results for the light-light scattering ampli-
tudes in the low frequency limit [3] (meaning the energy of the scattering photon
is small compared to the mass of electron). In their paper, they computed the
leading quantum correction to the Maxwell Lagrangian
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where Ey = e/(e?/mc*)?. They also calculated the light-light scattering cross-

section 4 N
e h 1

In modern language, we can say that they studied QED vacuum polarization in
the limit of constant background field.

Not long after that Akhieser, Landau and Pomeranchuk published similar
results for the high frequency limit, which later became Akhieser’s PhD thesis
[4].

Euler and Heisenberg published a paper [5] in 1936 in which they significantly
extended the Fuler-Kockel results. They obtained a closed-form expression for
the full nonlinear correction to the Maxwell Lagrangian

&[T dn
Che Jy P
cos |£+/E? — B2+ 2i(E-B)| + c.c. 2
in*(E - B) [5“ } e+ B2 oEY) Y,
cos [(gi\/E2 - B2+ 2{(E- B)] —c.c. 3
(1.3)

where £. = m?c®/eh ~ 10 V/cm is the critical field strength.

This correction is non-perturbative — it incorporates all orders in the constant
background electromagnetic field. One can recover the original Euler-Kockel re-
sult by expanding this formula in a weak-field field expansion to quartic
order.

Remarkably, they were able to identify the physical significance of the sub-
traction terms in the formula. The first term corresponds to the subtraction of



the infinite free-field effective action. The second term is related to the charge
renormalization.

Finally, the formula has the form that we nowadays refer to as the ”proper-
time form”

Euler and Heisenberg used a brute force in their calculation, working with
exact solutions of Dirac equation in constant background. Soon after their paper,
Weisskopf presented [6] a significantly simplified computation of the effective
action not just for spinor QED, but for scalar QED as well. He worked directly
with the spectrum of the Dirac and the Klein-Gordon operators rather than with
their eigenfunctions.

Later the problem was studied by Feynman [7] who viewed QED processes as
evolution in proper-time (thanks to Fock) and tried to extend his path integral
formulation of non-relativistic quantum mechanics to the relativistic theory of
Dirac. His findings are now known as the worldline path integral formalism.

Soon after Feynman’s work, Schwinger published an essential paper [§], where
he reformulated the results of Euler and Heisenberg in the new language of renor-
malized QED. He also viewed QED processes as evolution in proper-time, but
instead of the path integral method, he used operator solutions.

The paper also presents the exact result for two special cases, first, the uni-
form background treated by Euler and Heisenberg, and second, the plane-wave
background, for which the Dirac equation had been solved by Volkov [9].

There is also a more recent paper by Dittrich [10], where the effective action is

derived using Schwinger’s proper-time method for the case of constant magnetic
field and a laser field.

The actual problem of light-light scattering in diagramatically formulated
spinor QED was attacked by Karplus and Neuman in 1950 [11]. They calculated
the relevant one-loop box Feynman diagrams and gave expressions for various
form factors in the corresponding amplitude as integrals over Feynman param-
eters. In the end, they performed low-energy expansion of the amplitude and
obtained a result which perfectly matched the amplitude calculated using the
effective Lagrangian (1.1).

Later was the same problem studied by Constantini, De Tollis and Pistoni
[12], [13]. They exactly calculated the rank-4 polarization tensor in terms of
rational, logarithm and dilogarithm function using dispersion relations and they
also provided the exact amplitudes for light-light scattering, photon splitting and
photon coalescence into photons on nuclei. Delbriick scattering (the deflection of
high-energy photons in the Coulomb field of nuclei) was studied as well.

Recently, these long-established results for the low-energy photon-photon scat-
tering have been questioned by Kanda and Fujita [14], [15] who claimed that the
differential cross-section formula should read

dovic 0" 905 4 costd 14

Q- (127r)2w2( + 2cos” 0 + cos* 0), (1.4)

which is in contradiction with the well-known result (see for example the article
itself, or any good book on QED)

do B 139a* Wb
dQ  (1807)2m3

(3 + cos®6)%. (1.5)
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This has been rebutted by Liang and Czarnecki [I6]. They have shown that
this different result originated from erroneous manipulations with unregulated
divergent integrals. The result is also in contradiction with the current
experimental upper limit [17].

So far, we have talked only about spinor QED (apart from Weisskopf). There
is a paper by Koénig [I8], in which he calculated the polarization tensor for the pro-
cess Z — vy via scalar loops in MSSM in the low-energy limit. This particular
process is very similar to the scalar light-light scattering.

In a related paper by Jiang and Zhou [19], the polarization tensors for the
processes Z — yyv and vy — 77 were calculated via vector boson loops in the
standard model.

Jikia and Tkabladze [20] calculated the process vy — 7 as well and presented
explicit formulae for the helicity amplitudes.

And finally, there is a quite old article by Vanyashin and Terent’ev [21]. They
calculated the nonlinear corrections to the Lagrangian of constant electromagnetic
field, caused by the vacuum polarization of charged vector field. In other words,
they computed the Lagrangian of Euler-Heisenberg type for vector QED.



2. Diagrammatic approach

In this chapter, we derive one-loop effective Lagrangians of Euler-Heisenberg type
in the lowest (four-photon) order for spinor, scalar and vector QED. This is carried
out through direct matching of one-loop four-photon amplitudes to the effective
theory.

First the relevant one-loop amplitudes are calculated in the underlying theory
in a low-energy approximation (meaning the energy of the participating photons
is considered much lower than the mass of the mediating charged particle). Sub-
sequently the results are fitted to the corresponding amplitude obtained via the
effective theory.

We start with a preparatory analysis of the effective theory.

2.1 Effective theory of Euler-Heisenberg type

2.1.1 Lagrangian form

It is clear that the effective theory that describes light by light scattering and
related processes should be characterized by a Lagrangian that is formed only
of from the electromagnetic fields A, since there are no other fields effectively
present.

Also the theory should be gauge invariant (the underlying theory certainly
is), therefore, to automatically ensure this, the gauge invariant field strength
tensor £}, should be used instead of the potential A, for the construction of the
Lagrangian.

We consider only four-photon interactions, therefore, there should be in total
four F),, tensors in the Lagrangian. Obviously all their Lorentz indices have to
be contracted since the Lagrangian is a scalar.

We are not interested in terms containing derivatives of the field strength
tensor since these are terms of a higher mass dimension. A general structure of
suitable Lagrangian terms then should be

F° F° F° F°, (2.1)

with various contractions of the indices (which are represented by ° and ,). There
are many possible contractions, however, many of them are zero (as a consequence
of the anti-symmetry of F},,). It turns out that there are only three independent
terms in total. Their mass dimension is 8 and they are (up to some numerical
constants)

Fo G TG, (2.2)

where

F=F,F" =-2(E - B?
G = «xF,, F" = 4(E - B) (2.3)

are the two fundamental invariants of electromagnetic field and

1
I g (2.4)

9 nvoo

*x F

N
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is the Hodge dual of F),,. The last term in (2.2) is a pseudoscalar, hence, it must
be dropped if one wishes to maintain parity conservation (parity is conserved in
the underlying theory).

This reasoning leads us to the final form of the effective Lagrangian[|

o%eff.(gla 92) = gl(F;wFuV)Q + 92(*F;WFMV)2' (25)

The coupling constants gi, g» of dimension —4 have been added to keep the correct
dimension of the Lagrangian (which must be 4). Our task is to find their values for
the case of spinor, scalar and vector QED. The Lagrangian then can be visualized
as a combination of two effective vertices, which can be seen in Fig. [2.1]

Figure 2.1: The effective vertices

2.1.2 Invariant amplitude

We now proceed with evaluation of the amplitude of a four-photon process. The
initial state and the final state are taken as

i=1

) = [H aT(pi,Ai)] 10), (2.6)

where p; are the momenta and \; = 1, 2 are the polarizations of the photons. The
photons are taken as outgoing, so

4
> pi=0, (2.7)
i=1

and as on-shell, so
pr =0, i=1,2,3,4. (2.8)

Conservation ([2.7) together with the on-shell condition ([2.8)) implies

P3 - Pa=DP1° P2
P2 P4 =DP1°DP3
P1 P4 = P2 P3, (2-9>
and also
(p1-p2) + (p1-p3) + (p2 - p3) = 0. (2.10)

I Alternatively, we could have used (F, WF“”)2 and F,, [V Fy,, F'7* as a different tensor basis
instead of (F},, F*)? and (%F},, F")?.



The potential A, is decomposed as follows [22]

Ae) =Y / B [eu(p, Nalp, Ne 7 + 2(p, Nal (o, Ne?™], (211

where ¢, is the polarization vector, £ = p, is the photon energy, and

d3p

d3p = .
p (QW)S/Q(QE)l/Q

(2.12)

By differentiation we get
2 - . .
0pAu(r) =iy / d3p [=posu(p, Na(p, e 7 + poes(p, Nal (p, \)e?] . (2.13)
A=1

We now begin analyzing the first term in (2.5)). The second term is processed
analogously later. Using

F,,F* =2(0,A,0"A” — 0,A,0"A"), (2.14)
we have
L = gi(F, F*)?
= 4¢,(0,A,0"A”0,A,0° A7
— 20,A,0"'AY0,A,0° A?
+0,A,0"A*0,A,07 A?). (2.15)
From this, using (2.13)) and (2.15]), we compute the element of the S-matrix in

the first order of the perturbation theory (the superscript denotes the first order
and the subscript denotes the first term of the Lagrangian)

4
(f571) = i / d' (0 [Ham,xz-)] £i(x)[0)
i=1
. 1
_ 45(4)
=M (2m)"°0" (p1 + p2 + p3 + pa) H B (2.16)
where M is the invariant amplitude and FE; are the photon energies.
For the amplitude M, we find
My = 4g, Z[(pm 'p7r2)<57r1 ) 57?2)(pﬂ3 'p7r4)<57r3 ) Z57?4)
- 2(p7r1 'pm)(em ' 57r2)(p7r3 ’ 5#4)(57@) 'p7r4)
+ (pﬂ'l ’ €7r2)(€m : pﬂ2)<p7r3 '€7r4)(€7r3 : pm)]ﬂ (217>

where &; = &(p;, A;). The summation runs over all permutations of four ele-
ments and each permutation 7, is understood to be a function of its index, i.eE|
7, = w(k). The summation is a consequence of the fact that there are 4! = 24

2For instance, we have 7, = k for the identity permutation.
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possible Wick contractions in (2.16)) and each possible contraction corresponds to
a permutation. One can easily see that the result reflects (in a way) the structure
of . Aside from the summation, it is basically its Fourier transform.

The amplitude can be further rewritten as

Ml = F;lwgg(php27p37p4>8?55€§<€z; (218)
where
F;liuga(plap%p?np‘l) = Symy @}ng<p17p2up37p4>
= @/iuga(plap%p?np‘l) + @iuga(p%plap?npél)
+@z)uua<p37p27p17p4) + ey (219)
and
@Luga(p17p27p37p4) = 491[(271 : P2)(p3 : p4)g,uuggo
- 2(]91 'PQ)(p3)a(P4)ggW
+ (p1>l/(p2),u,(p3)0'(p4)g]- (220)
The ”sym,” operator denotes the complete tensor symmetrization (without any

numerical prefactors) that is simultaneously acting on both Lorentz indices and

arguments (which are the momenta). The tensor F}WW is called the polariza-

tion tensor and it is (as we can see) the invariant amplitude stripped off the
polarization vectors.

Owing to the following symmetries of ©! 0o

@}Lugg(p17p27p37p4> = @iugg(p%plap?npél)
= @Luog(php%pébpi%)
= @;Uuy(p37p47pl7p2)7 (221)

we easily obtain that

F;lwga(phpz,ps,pzi) = 3291[(271 ~p2)(p3 'p4)g,uuggo

+ (p1 - p3) (P2 P1)GuoGro

+ (p1 - pa) (P2 P3)GuoGve
—2(19 p2)(P3) o (P1) 09
— 2(p1 - P3)(P2)o (P4)vGuo
—2(271 p4)<p2)g(p3)uguo
+ (P1)0(P2) 1 (P3)o (P4)
+ (1) o(P3) 1 (P2) o (P4)o
+ (P1)o(Pa)u(P2) o(p3)]. (2.22)

Now, for the second term of the effective Lagrangian (2.5)), the situation is a
bit more complex. Let us similarly define

1°
1°

Ly = go(xF,, FM)2. (2.23)



Using ([2.4) we get
9% = %gaﬁﬂ/(sguugaF&BvéF“V@o—a

where

F

woo = FluFy.
Since it holds

Jop  9pu Gyu  Gép

det(G) = det o Iov Jov Jov | o §€ oo
Joo 980 Gve Yoo othme

Gao 9o Gyo Yéo
we can use the Leibniz determinant formula

det(G) = sgn(m) [ [ Gin,

™

to deduce that

g2 voo
9?2 = —ZFM ¢ (FNVQU—FVMQU_I_FVQMU—{_"')

= _692FMVQUF[;WQU]7

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

where | | denotes total tensor anti-symmetrization (including the 1/4! prefactor).

Again, because of the symmetries of F;

Uy oo

F/U/.QO’ = _Fyugo
= _FWUQ
= Fga’,ul/;

we get
Ly = =20 F" (Fluos + Fuovo + Fluoov)-

Finally, inserting
FMV@U = (8MAV - OVAM)(agAG - &IAQ)
into the expression yields

Ly = —8gy 0" AV 0° A7 (0, A,0,A, — 20,A,0,A, + 0,A,0,A,
+0,4,0,A, + 0,A,0,A, + 0,A,0,4,
+ 0,A4,0,A, — 05 Ay, A, — 0,A,0,4,
— 0,4,0,A, — 0,A,0,A,).

Analogously as in the previous case we have
— T? n_v_0_o
M2 - F,w/ga(php27p3ap4>515253€4,

where
Fiu@a(p17p27p37p4) = Synly @Zygo'<pl7p27p37p4)7

10

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)



and from the Lagrangian ([2.32)) we extract

O oo (D1, 12,13, D4) = —8ga[(p1 - P2) (D3 - Pa) v Gow
—2(p1 - p2)(P3)o (p4>gg,uu
+ (P1)(P2)u(P3)o (P4)
+ (p1 - p2)(P3)o (P4) uGve
+ (P1)(P2)o(P3 * P1)Guor
+ (p1)v (P2 - P3)(P1) uGoo
+ (p1 - P2) (P3)v (D) 0G0
( )u(pz)g(]?:s)o(m)u
( 2)(]73 p4)9ucrgu9
—( (
—(

3

p

FH
S

P1 - D2)(03)v(P4) uGoo
P1)v(P2 - P3)(Pa) 0Gpuo - (2.35)

Unfortunately, computing the polarization tensor ([2.34]) is not so easy as in
the previous case because ©2  does not possess any apparent symmetries (unlike
6/1;”/@0')

After summing over all of the 24 permutations of @HVQU (which was done
on the computer in FeynCalc and Wolfram Mathematica), we found that the

polarization tensor I'2  consists of 60 terms (see Fig. [2.2)).

uvoo

Qoo

—32g2 (2p4" p3" p2F p17 — p3H p4" p2° p17 — p2¥ p3” p4” p1°
2pa4t g P p2-p3pl? + 2" P pa" p2-p3pl? + 2" paf p2-p3pl? +
p3” g"f p2-papl? — ghP p3" p2-p4pl? +p2¥ g"F p3-pd p1?
gV p2f p3-pdpl? —paH p3" plf p27 + 2 p3¥ pa¥ p1” p2°
p3¥ pl” pa”f p2° — p2H pd¥ p1¥ p37 — pa¥ pl1¥ p2° p3°% +
2 p2¥ p1” pa?f p37 —pa¥ p3¥ g7 pl-p2 —p3¥pd" g7 pl-p2 +
p3* g"7 paPpl-p2 + g"? p3" paP pl-p2 + pa¥ g"F p37 pl-p2 +
g"f pa” p37 pl-p2 -2 g"" pa? p37 pl-p2 + p2¥ pa” g7 pl-p3 -
pd” g"7 p2f pl-p3 + g pd" p2P pl-p3 —p2¥ 2" pa¥pl-p3 +
pd” g"f p27 pl-p3 -2 g"F pa" p27 pl-p3 + g pa” p27 pl-p3 +
p2" p3” g‘”pl-p4+p3“g p2f pl-pd -2 g"7 p3" p2f pl-pd -
p3” g"f p27 pl-pd + g"¥ p3" p27 pl-pd —p2¥ g"F p37 pl-pd +
g"" p2f p37 pl-p4 +pa¥pl” g7 p2-p3 +pa¥ g"7 p1P p2-p3 -
g" pd plPp2-p3 — g7 pl"pdP p2-p3 +2g"7 g"Fpl-pdp2-p3 -
ghf g"  pl-pdp2-p3 —gM" g7 pl-pdp2-p3 +p3-pl" g7 p2-pd -
2p3¥ g  p1Pp2-pd + g"7 p3" plP p2-p4 — g p1”" p37 p2-pd +
g plPp3Tp2-pd g g"Fpl-p3p2-pd+2gHF g"7 pl-p3p2-pd -
g"" gf pl-p3p2-pd —2p2¥pl" g7 p3-pd +p2H g"7 p1”p3-pd +
g"7 pl" p2° p3-p4 + g p1" p27 p3-pd — g p1” p27 p3-pd -
g7 g"pl-p2p3-pd—gh¥ g" 7 pl-p2p3-pd+2g"" g7 pl-p2p3-pd)

Figure 2.2: The polarization tensor I'? Lwoo
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In conclusion, for the total invariant amplitude we then have
M = Ml + M2 - F,U,VQO'(plaPQap37p4)€/fgg€§€?l-’ (236>

where

Cyvoor (1,02, 03 94) = T o (P12 D2, 23, P1) + Do (D1, D25 D3, P4) (2.37)

is the total polarization tensor, which is shown in Fig. [2.3]

32 (g 4 pSV :;::2"5’1::1'3r —2g2 p4'“ pSV :;::2"5’1::1'3r +g2 p3'“p4v :;::2"5’1::1'3r +

p2H p3" paP p17 — gl pd” g"F  p2-p3pl17 +2g2p4  g" P p2-p3pl7 —
B p4a"p2-p3pl7 —g2 " pdP p2-p3pl7 —g2p3- g"F p2-pdpl” +
B p3 p2-pdpl? —g2p2  g" P p3-papl? +g2 " p2P p3-pdpl” +
pil“ p3vplp ng +gl pS“pilelp ng —2g2 pS“pilelp ng +
pS“prpilp ng +g2 pl“ pilvplp p3Gr +g2 pil“plvplp p3Gr +
pl“plvpilp p3Gr —2g2 pl“plvpilp p3Gr +g2 pil“ pSV gpg pl-p2+

34 p4" g” 7 pl-p2 —g2p3” g"7 p4Ppl-p2 —g2 "7 p3" p4”pl-p2 -
p4" g"F p37 pl-p2 — g2 g"F p4"p37 pl-p2 —gl g"" p4” p37 pl-p2 +
AV p4P p37 pl-p2 —g2p2F pd” g°7 pl-p3 +g2p4” g"7 p2P pl-p3
7 p4" p2° pl-p3 +g2p2” g"7 p4” pl-p3 — g2 p4” g"F p27 pl-p3 -

[T NSRS ST NS NPT N SO
= g 09

b e e e e e g g g

4 ]=}
1o
E g

g U9

“F p4aT p27 pl-p3 +2g2 g¥P pd” p27 pl-p3 — g2 g"" paP p27 pl-p3 -
2K p3" g” 7 pl-pd—g2p3” g"7 p2P pl-pd —gl g"7 p3" 2P pl-pd +
2g"7 p3" p2” pl-pd+g2p3” g"F p27 pl-p4 — g2 g"F p3" p27 pl-pd +
2K g" P p37 pl-pd—g2g"" p2P p37 pl-pd —g2p4" p1" g”7 p2-p3 -
p4  g" T p1Pp2-p3+g2 8" p4 p1P p2-p3 +g2 2" p1" p4”p2-p3 +
AT g " pl-pdp2-p3—2g2g"7 g"Fpl-pdp2-p3 +

B g7 pl-pdp2-p3+2g"" g7 pl-pdp2-p3 -
p3pl" g” 7 p2-pd —glp3” g" 7 p1P p2-p4 +22p3~ g7 p1P p2-pd -
Tp3 plPp2-pd+g2g"f pl" p37 p2-p4 - g2 2" p1” p37 p2-pd +

| ST

| SN (=T =T =]
=]

1 =]
=

g U9

o e =
T E

g Fpl-p3p2-pd+gl ghf g" 7 pl-p3p2-pd -

HE g7 pl-p3p2-pd+g2gH” g7 pl-p3p2-pd -

p2Xpl" g7 p3-pd +222p2¥ p1” g7 p3-pd —g2p2¥ g"7 p1”¥ p3-pd -
AT p1" p2f p3-pd — g2 g"F p1”" p27 p3-pd + g2 g"" p1P p27 p3-pd +

[ SN =T =T =T (=T =T | =T =]

to g 0

4 (=]
g

[ =T (=T (=T (=]
— e b

g
g'7 g" pl-p2p3-pd+g2ghf g"% pl-p2p3-pd +
g'"g” pl-p2p3-pd-2g2g"" g77 pl-p2p3-pd)

Figure 2.3: The total polarization tensor I',, 45

The total polarization tensor can be also further rewritten by eliminating the

momentum p, using (2.7)) and (2.9), see Fig. [2.4]
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32(gl g"” gP T p1-p2° — gl p2H p1” gf T pl-p2 + gl g"” (p1” + p2f + p3F)p37 pl-p2 +
glghP g% pl-p3® + gl gh7 g"Pp2-p3* — gl (p1# + p2* + p3H)p3” p2° p17 -
gl p3# (p1” + p2" + p3") p1” p27 — gl p2# p1¥ (p1” + p2° + p3°)p37 —
glp3” g" 7 p1fpl-p3 + gl g¥ (p1” + p2” +p3")p27 pl-p3 -
gl gt p3" p2f p2-p3 + gl (p1* + p2# + p3H) g P p17 p2-p3 —

/ ! 2 v 2 Ly _pa 2

2(-gh7g Ppl-p2° —ghPg"pl-p2° +2g"" g7 pl-p2° -
2p2# p1” g7 pl-p2 + (p1* + p2# + p3H)p3" g’ pl-p2 +
p3(pl” +p2" +p3") g T pl-p2 + p2H " T p1Ppl -p2 +
g7 pl"p2fpl-p2 —p3¥ g7 (p1” +p2F + p3f)pl-p2 -
g p3” (p1” + p2f + p3F)pl-p2 + p2H g" P p17 pl-p2 —
g p2fp17pl-p2+ g Ppl" p27 pl-p2 — gV p1¥ p27 pl-p2 -
(p1# +p2# + p3#) g" P p37 p1-p2 — g (p1” + p2" + p3")p37 pl-p2 +
2g"7 (p1f +p2° + p3*)p37 pl-p2 - g* 7 g"Fpl-p3” +
28"F g T pl-p3t — gtV g Tplp3t + 247 g P p2-p3? —
ghP g 7 p2-p3t — g"Y gP7 p2.p3t — 2(p1* + p2* + p3¥)p3¥ p2f p17 +
1::3'u (plv +p2‘" —kpSv]pE":’plGr +p§2'u p3v (plp +p2p +133":’]plGr +
(p1# + p2* + p3#)p3” p1Ff p27 — 2p3¥ (p1¥ + p2" + p3")p1¥ p27 +
1::3'u plv (plp + pEP +133":’]132Gr + 1::2'u (plv + pEV + pS'“']pl":’pSGr +
(p1# + p2* + p3#)p1” p2f p37 — 2p2¥ p1” (p1” + p2f + p3F)p37 +
p3# p1” g7 pl-p3 —p2H (p1" +p2" +p3") g7 pl-p3 -
2133'u gvgplppl-pS +g'“°rp3vp1pp1-p3 +
(p1# + p2* + p3*) g 7 p2P pl-p3 — g" 7 (p1” +p2" + p3") p2f pl-p3 +
p2* g" 7 (p1¥ +p2° + p3f)pl-p3 +p3H g F p19 pl-p3 -
ghPfp3Vpl? pl-p3 — (p1* + p2# + p3H) g" P p27 pl1-p3 +
2gMP (p1” +p2¥ +p3”)p27 pl-p3 — g" " (p1” + p2° + p3F) p27 p1-p3 -
gh¥fpl"p37 pl-p3 + g"" p1P p37 pl-p3 — (p1# +p2H + p3H)pl” gf7

p2-p3 +p2H p3¥ gf 7 p2-p3 — (p1* + p2¥ + p3H) g T p1¥p2-p3 +

g% (p1" +p2" +p3")p1P p2-p3 + p3H g" 7 p2P p2-p3 —
Eg“gpSW'pE’opE-pS + g'“crpfF (plp +p2p +p3p)p2-p3 +
2(pl* +p2H + p3H) g P p17 p2-p3 — g P (p1” + p2" +p3") p17 p2-p3 —
gV (p1? +p2f + p3f)p17 p2-p3 —p3H g" P p27 p2-p3 +
ghfp3' p27 p2-p3 — p2H g" P p37 p2-p3 + gV p2F p37 p2-p3))

Figure 2.4: The total polarization tensor — the momentum p, eliminated

2.1.3 Transversality

Using (2.7) and (2.8)) it can be checked (by hand or via FeynCalc) that both
(2.22) and ([2.34]) are transverse, i.e.

1
F,uz/gcrplf = 07
Fllujgapg = 07
I} e0P =0,

Fllujgapz = 07

13

2l =0
F;ngapg =0
I

Fiugapz =0

(2.38)



Obviously ([2.37) is then transverse as well. This is quite natural since we are
working with a gauge invariant theory.

2.1.4 Cross sections

Furthermore, we use the previous results to derive some formulae for differential
and total cross sections respectively.

The general formula for elastic binary process differential cross section (in
center-of-mass system) is given by

do _ M
dQ  64n2s’

(2.39)

where |M]|? is the square of the invariant amplitude and s is the square of the
center-of-mass system energy [22].

We now need to compute |[M|?. For the sake of simplicity, suppose that the
photons are unpolarized (i.e. we are averaging over the initial polarizations and
summing over the final ones). The unpolarized amplitude then reads

2
1 o _xo *B _*7v _x
IMJ? = > Thveo(p1, 92, 23, D) Tapas (D1, 2, p3, pa)elebesefei®es ey ey,
= 115,11%,4
(2.40)
The photon polarization sum has the following form [23]
P = Zs“ (D, Ne™ (p, A) = —g™ + A" (p), (2.41)

where A" is some longitudinal part (which is gauge-dependent). If A* is con-
tracted with any transverse tensor, the result is zero. Using this simple fact,
together with the identities (2.38)), we get the final answer

1
|-/\/l|2 = ,ng(f(pl7p27p37p4)F‘u e (p17p27p37p4) (242>

Using FeynCalc, we find

(M2 = 512{(597 — 69192 + 563)[(p1 - p2)* (p3 - pa)?
+ (p1 - p3)*(p2 - pa)?
+ (; '274)2(292 ']93)2}
—4(g1 — 92)2[(191 “p2)(p1 - p3) (P2 - Pa)(P3 - Pa)
+ (p1 - 3)(p1 - pa) (D2 - p3)(p2 - pa)
+ (p1 - p2)(p1 - pa) (P2 - p3)(p3 - pa)l},  (2.43)

where we used ([2.8)). After elimination of all the scalar products containing py
via (2.9) and by subsequent application of (2.10)), one gets

IM2=1024(397 — 29192 + 393)[(p1 - p2)? + (p1 - p3)* + (p1 - p2)(p1 - p3)]°. (2.44)

14



Now we can finally substitute (the signs might seem a bit weird since momenta
p1, p2 are outgoing instead of incoming)

s
P1-P2 = 2
s(cos?d — 1
- (T)’ (2.45)
which yields
IM|2 = (397 — 29192 + 3g3)(7 + cos 20)?, (2.46)

where ¥ is the angle between the spatial parts of p; and ps. Then (2.39) implies

do  s*(397 — 29192 + 393)(7 + cos 20)?
dQ 6472
_ 5*(39F — 20192 + 395)(3 + cos® V)?

- = (2.47)

After angular integration, we end up with (the 1/2! prefactor comes from the
fact that there are two identical particles in the final state)

1 [ do 7s3(397 — 29192 + 393)
_ = = 4O = . 2.48
7791 /e a0 b (245)

In the next sections, we start studying our four-photon process in the context
of various versions of QED and fitting the obtained amplitudes to the amplitude
that we found in this section. This will enable us to find the values of the coupling

constants in ({2.5)).

2.2 Case of spinor QED

The interaction Lagrangian of spinor QED readﬁ

ﬁnt. = —6727“14#1? = 67;447?7 (249>

where 1) is some fermionic field (electron, muon, quark, etc.), A, is the electro-
magnetic four-potential, and e is the coupling constant (electric charge).

It is self-evident from the Lagrangian, the lowest order contributions to our
four-photon process are given by fourth-order box diagrams with one closed
fermion loop (see Fig. [2.5]).

Figure 2.5: A box diagram

3The normal ordering symbol is omitted.
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2.2.1 Initial analysis

Let us write down the expression for the relevant element of the S-matrix

4
, 1
<f|S(4)’1> = Z /d4x1d4x2d4x3d4:1:4 <0‘ [H a(pi, )\z)]
) i=1

T[D%nt. <x1>$nt. (mQ)D%nt. <x3)$nt. ('754)] |0> . (250)

The integrand has the following structure

a1a2a304 T[@Elﬁil@bl 152442% @/_)3A31/}3 1;4444154]’ (2.51)
where
a; = a(pi, \i)
v = (x;)
A; = Azy). (2.52)
As we can see, there are 4! = 24 possible Wick contractions of the photon

annihilation operators with the A operators [see the decomposition ] There
are also 4! possible contractions of the fermionic operators 1,1, however, only
6 of them form a full cycle. This gives us 24 x 6 = 144 possible ways how to
contract the operators.

They are not distinct though. In fact, there are only 6 topologically distinct
diagrams and each one of them is contained 24 times in those 144. This factor
24 = 4! is exactly canceled by the Dyson expansion prefactor in (2.50)).

If we denote the contribution of one of these diagrams by © ... (p1, D2, P3)
[momentum p, is understood to be dependent on the other momenta through the
conservation law (2.7))], then for the polarization tensor one has

Lo (D1, P2, 03) = O s (P15 P2, P3) + Opove (D1, D3, P2)
+ Oupugo (P2, P1,03) + Ovguo (P2, D3, 1)
+ O oo (P3, P15 D2) + O oo (P3, P2, 1)
= symgs @Wg\a(pl,p%m), (2-53)

and the invariant amplitude of the process is given by contraction of the polar-
ization tensor with the polarization vectors (in the same way as in the previous
section).

This identity can be proved by writing down all the contractions and then
performing various renaming of the variables z; or swapping the momenta (and
the polarizations). For instance, a contraction

| — 1 '
(1020304 7'[1;14;41% ¢24|42¢2 ¢315i131/13 1?44?41?4] (2.54)
is the same as
r I A e | |
(102030, 7’[@/)117'111?1 %024;{2@/}2 ¢31f|13¢3 ¢44|14¢4] (2.55)

16



if we rename x; <> 2. And it is also the same as

| — '
(|116|126|l3(|14 7-[7;14;117#1 @924;{2@@2 ¢34ﬁ3¢3 ¢41fi14¢4] (2'56>

if we swap {p1, M1} <> {pa2, Ao}

There is also another, sort of intuitive, approach. There are 144 possible
ways how to contract the fermionic and photon operators. Each possible way
gives us a contribution to the polarization tensor. As before, we denote one of
those contributions by © .40 (p1, D2, 3, p4) (now we have also included the fourth
momentumﬁ).

Since the external lines are bosonic, we can guess that the polarization tensor
must be some kind of symmetrization (meaning there are no sign changes). The
easiest is to make total symmetrization of ©,,,,, which consists of 4! = 24 terms.
It is also clear that all of the 144 contributions should be treated equally. Based
on this, we can theorize that the correct formula should be (the 1/4! prefactor
comes from the Dyson expansion)

6
Fuu@a(pl)p%p&pll) - E Symly @/.Lugo(p17p27p3)p4>

1
= — Sylly @uuga(plap27p37p4)' (257)

4
In other words, each permutation should contribute 6 times (because 144/24 = 6).
We will see later that this sort of handwaving argument actually works pretty
well and gives correct results.

2.2.2 Ward identities

This section is more or less independent of the rest — we demonstrate that the
polarization tensor is transverse, i.e. it satisfies the Ward identities. We di-
rectly prove the following identity (the remaining three identities can be proved
similarly)

Fuuga(plap2>p37p4)pz =0. (258)

First we show that the contribution of a box diagram is independent on the
sense of the loop momentum circulation, which comes in handy later. The con-
tribution of the diagram on the left (Fig. [2.6) is proportional to

Te[(Fy +m)yu (ks +m)y (B +m)y,(ky + m)vs]
H?=1<ki2 —m?) 7
(2.59)
whereas the contribution of the diagram on the right is proportional to (R stands
for reverse)

Tuuga(p17p27p3> E/d4£

Trly, (Ky + m)vo(Fs + m)v (K + m)v. (K + m))]

[Tiei (k2 — m?) ’
(2.60)

T;E/go(p17p2>p3) E/d4€

4Even though the fourth momentum might not be present in the particular formula, we can
still consider it a function of the momentum.
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-
D1 k9 D1 ko9
y2! Pa

Figure 2.6: Box diagrams — the loop momentum circulating counter-clockwise
and clockwise

where

ki=/¢

ko =0+ py

ks =0+ p1+p2

ky =0+ p1+p2+p3 (2.61)
and

k=4

ky=10—p

ky =L —p1—p2

ky =L —p1—p2—ps. (2.62)

Replacing ¢ — —¢ in (2.60) and then using identityf]

TT[%N/B e '%ﬂw] = TI"[%W - '7,8%] (2.63)
we obtain

R _ 4 Tr[(’%l - m)%(k& - m)%(%:& - m)%(h —m)Yo]
T#VQU(p17p27p3> - /d g Hle(l{;g _ m2> .
(2.64)

Imagine the expansion of the traces in and and compare the
terms. Since (—1)" = 1 for n even, we can see that the terms proportional to an
even power of m are identical. On the other hand, the terms proportional to an
odd power of m are zero because a trace of an odd number of gamma matrices is
zero. Therefore

Tuu@o<p17p27p3) = Ti}j@g(]?lap?up?))' (265>
Now we show that (2.53)) can be actually reduced to the following form

Puuga(pl7p27p37p4) - 2[@uyga(pl7p27p3ap4)
+ @Vgp,o<p27p3aplap4)
+ @Quya(p37p17p27p4)]' (266)

5This identity can be proved via identity CWMC’_1 = —*yE and some basic linear algebra.
The trace identity holds for the even and the odd number of gamma matrices.
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For the sake of brevity, we use the tensor 7 instead of the tensor © (the tensors
T and © are proportional to each other).
Let us compare the (321) permutation

Tgl/,ua(p?np%pl) =

= /d4€ Tr

with the (123) permutation reversed

1 1 1
[—m%fﬂﬂﬁg _m,yVZ+}7)3+p2 _m%[—'—zﬁs—i_%—'_pl —m%]

(2.67)

T;E/Qo-(plvp%pS) -
:/d4€Tr

Shifting the loop momentum in the second expression ¢ — £+ p; + ps + p3 exactly
reproduces the first one. Thanks to (2.65)) we therefore have

1 . 1 ., 1 . 1 7]
f—p =Py py—m =P —py—m = —m S —m 7|
(2.68)

Tgyuo‘(p37p27p1) = TMVQO'(plﬂanp?))‘ (269)

Cyclic permutations

{p1, 1} = {p2, v} = {ps, 0} = {p1, 1} (2.70)

in (2.67)) and (2.68)) then yields the remaining two identities

Thugvo (P15 P3,P2) = Tuguo(P2: P3, P1)
Tl/,uga(p%plapii) - Tgpl/a(p37p17p2)' (271>

These equalities and (2.53) implies ([2.66]).
Finally we are ready to prove the Ward identity (2.58)). We have

Tp,uga (pla b2, p3)p401— =

A 1 1 1 1
:/d o F—m g, —m gt p,—m g +¢2+¢3—mp4]

4 - 1 ! :
:/d 0Tr _’Yu[_i_pl_m’YV[_i_pl+p2_m’yg[+pl+p2+p3_m]

1 1 1
- / d4¢ Tr vg] : (2.72)

7 Yv
f—m "/ pp—m / ptpP,—m
where we used

po=—m)—(f+p, +p,+p,—m) (2.73)
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and trace cyclicity. Again, using (2.70]) we obtain the remaining two equalities

Tygua(p27 D3, pl)pz— =

—/d4€Tr o ! vy ! ~ L
V[+p2_m g[+p2+p3_m u[+p2+p3+17}1_m
1 1 1
— [ dYTr Yy 7y ¥ 2.74
/ f—m [—i—pQ—m Q[—i_pz—i_ps_m“ 27
Tgpua<p37plap2)pz =

4 1 ! 1
:/d Ty ’yg[+¢3_m7u[+¢3+pl_mrylf[—i-pg—l—pl"‘}’jg_m]

— /d4€ Tr

The rest of the proof is now easy. If we shift the loop momentum ¢ — ¢ — p; in
the first term in , we can see that term is exactly canceled by the second
term in . Similarly, the first term in is canceled by the second term in
(2.75) (after shifting £ — ¢ — ps). And finally, the first term in is canceled
by the second term in (shifting ¢ — ¢ — p3). Therefore, if we sum all of the
terms up, the result is zero.

1 1
l—m%2+p3—m%‘l+p3+pl—m%]‘ (2.75)

2.2.3 Diagram parametrization

We are interested in the evaluation of the box diagram in Fig. in the low
energy limit and a subsequent calculation of the polarization tensor.

\;;\NV ]{Zg 4}’/;:

-¢

Figure 2.7: The fermion box diagram

The evaluation is carried out using dimensional regularization. The contribu-
tion of the diagram is obtained using the standard Feynman rules

Z.@;U/ga(plap%p?)) =
_ D / AP0 Te[(Fy 4+ m)vu (ks +m) v (B + m) (kg +m)70]
(2m)P H?:l(k? —m?) ’
(2.76)
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where k; are defined by (2.61)) and p is an auxiliary scale used in the regularization
technique.
By employing the Feynman parametrization, we get

@uuga P1, P2, p3

o 4 D dDg Tr kl + m)%(kz +m)y, (f3 + m)%(h +m)7]
/FS A / — kD)x + (k3 — k)y + (K — k)2 + K — m?]
(2.77)

1 11—z l-z—y
/ d X, 56/ dx/ dy/ dz. (2.78)
Fs 0 0 0

Let us denote by R the inside of the bracket in the denominator. Application of

(2.8) and (2.61)) yields

R=2x(0-p1)+2y[(€-p1) + (£ p2) + (p1 - p2)]
+22[(€-p1) + (€-p2) + (€ p3) + (p1 - p2) + (p1 - p3) + (p2 - p3)]
+ 02 —m?. (2.79)

where

Introduce a shifted loop momentum
'=10+S5, S=(x+y+2)p+ (y+ 2)p2 + 2ps. (2.80)
It holds
R=10?-C, (2.81)

where

C=0%-R=25"—2y(p:-p2) — 2z[(p1 - p2) + (p1 - p3) + (p2 - p3)] + m°
=2z +y+2)(y+2)—y—2p1-p2)
+2[z(x+y+2)— z](p1 - p3)
+2[2(y + 2) — 2](p2 - p3)
+m2, (2.82)

We can write

3
C=m>+Y_ fislz,y.2)(pi p;), (2.83)
1<J

where the following functions have been defined

fiolz,y,2) =2y +2)(z+y+2—1)
fis(z,y,2) =2z(x+y+2—1)

fos(@,y,2) =22(y + 2 — 1). (2.84)
Or alternatively
C=m*(1+)\), (2.85)
where ,
— Pi - Py
A=Y st (2.86)
i<j
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By renaming the momentum ¢ — /¢, we finally obtain

Z‘G)M’/m"(plap?apﬁ’») = _64/1/4D/ dXF3
F3

/ dPe Te[(f + d, +m)v(f + g, + m)n (L + g, +m)v(f + d, +m)7]

(2m)P (2 -C)* ’
(2.87)
where we have defined
g =—(r+y+2)p— (y+2)p2 — 2p3
©=—(r+y+z—1p — (y+ 2)p2 — 2ps
@=—(r+y+z—1p —(y+2z—1)py— 2ps
Gpu=—(r4+y+z—Upr—(y+2z—1py— (2 — 1)ps, (2.88)
all generally
3
qi = Z ¢ij(x,y, 2)p;, (2.89)
j=1
where
rT+y+z y+z z
byley,z)=— [TTYTETL wEE 2] (2.90)

r+y+z—1 y+z2—-1 z
r+y+z—1 y+2—-1 z2—-1

2.2.4 Diagram evaluation

We now break the trace in the numerator of our integral expression into individual
terms and evaluate each term separately. The following master formula for loop
integrations [22] is used

(2m)P (62 = C) B (47)P/2 T (2)T(s) : (2.91)

2

/ dPe (e _i(=yrrertPPT (r+ )T (s —r — F)

The low energy limit is performed after the loop integrations (but before the
integration over the Feynman parameters).

We begin with the ¢¢0¢ term

Tovee = T v vV ol Vo] = Tr[Va Vs Vo Yy Ve Vs Vo L P07 (2.92)

in the trace. Under the loop integration we may effectively set (the so-called
symmetric integration)

off. £2 2
lolpl ls = %(gwyw + Gar9ps + Gas9s+)- (2.93)

The trace was computed in FeynCalc and the result is

4(D B 2) (Dg,uagl/g - Dguggua + Dg;wgga - 4g,uggua)
D(D +2) ’

T = (2.94)
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where 3
(%) Toeee = Toue- (2.95)

Since s —r = 4 — 2 = 2, the corresponding loop integral is logarithmically
divergent and thus we can not set D = 4. After setting D = 4 — 2¢, the trace
can be expanded in powers of

TMM =A+Be+ 0O (52) s (296)
where
4
A= g(g,uagup - 2gupgua + guugpa)
2
B = _5(4g#a’gyp — 59#/191/0 + 49;“/9,)0)‘ (297>

We are in fact interested in the following expression [see ([2.87))]

dDg (62)2
(2m)P (&2 = C)*

81ty = —c'u' DT [ (299)
The bar over © means that we are ignoring integration over the Feynman pareme-
ters ng dXp, for now. Via (2.87)) and after expanding all the functions in powers
of g, we get [O(e) terms are omitted]

4
Aeee € 9
CHmES 602 {A {A 5 In(1 + A)} + B} , (2.99)

where A is defined by
A=

(ORI

— 5 —1In ( m* > , (2.100)

4 p?
We also used the definition of C' ([2.85]) and the expansion of I-function

I'(e) = é — v+ O(e). (2.101)

Finally, let us consider the low energy limit. Suppose the photon energies are
small compared to the mass m (i.e. E; < m). This means

pi-p; = EBj(cosd — 1) < m?,  i#j. (2.102)

Scalar products are contained within the parameter A (2.86]). The low energy limit
therefore means that the parameter \ is sufficiently small compared to unity. To
perform the limit, we expand ([2.99) in powers of A to obtain

4
~ e
@ffvfga T U2 [(3 = 2A)GuoGup — (5 — 48)gupgvo + (3 = 2A) 91 9po)

64

+ m(guagw) - 2g,upguo + g,LLl/gp0'>(2)\ - )‘2)7 (2103>

where powers of A higher than 2 have been omitted.
The terms proportional to higher powers of A are not needed since they con-
tain far too many momenta. It the end, we would like to match the calculated
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polarization tensor with the effective one (derived in the previous section). The
effective polarization tensor is formed from terms that are constructed of four
momenta. The parameter A contains two momenta already, and that means that
A2 contains four.

The calculation of the remaining terms is straightforward because the corre-
sponding loop integrals are convergent for D = 4. The next terms we are going
to work with are of type ¢¢mm. There are six of them — we may collect all the
traces into one term

Té@mm = mz(Tl"[’Ya’Yu’Y,B%'Yg%]
+ Tr[YaYu Vo Y8Y0 Ve

)
+ Tr[Ya eV Y0]
+ Tr [y Y% Y8 Ve Vo]
+ Te[VuYa Ve 7870]
+ Tr[’Yu’yV/Ya/YQ’YB'VJ])éaEB- (2104)
The symmetric integration
off. 02
laly = 7 Ja8 (2.105)
and FeynCalc yields
Tfﬁmm - 4m2(_guagyp + QQWQW - guugpa)a (2106)
where again )
CToomm = Toomm. (2.107)
50 dt¢ ?
- \Umm 4
Z®,uugo = —€ TMmm/ (271’)4 (£2 — 0)4 (2108)

We then directly use (2.91]) and the definition of C' to get

64

Nlmm
Ouves = m(—guagup + 29upGve — Guv9po)- (2.109)

By expanding in powers of A we obtain

4
@Mmm _ €

Hv oo 1272

(=G0 Gup + 29upGve — Guvdpo) (L — X+ A?). (2.110)

The term of type mmmm is the easiest to process of all of them. Analogously,
we obtain for it

64

Owes" = =g 1 w2 Inodve ~ Gupfur + o) (2.111)
and then
4
@Zlyg::bm = _m(guagup — 9upY9vo + gm/gpg)(l — 2\ + 3/\2) (2112)
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The remaining terms are far more complicated. The next set of terms are
terms of type £lqq. Again, there are six of them. All the traces combined can be
written as

Tugq = Tr[Va V8702 Y0 Y670 (E €043 ¢
+ (g5 0]
+ G0
+qi 00
+qr gl
+ g 0e). (2.113)

Using the symmetric integration (2.105) and FeynCalc, the expression Taqq is
obtained, where )
€2T€€qq = T%qq' (2114)

The expression ngqq is shown in Fig. . The vectors g; are given by |D

-2 (qE'“ qlv g‘og + qS“ qlv gpg + q4'“ qlv g‘og + ql“ qlv gpg +
3" q2" g7 —qa" q2" g7 +q1¥ q3" g7 + 2" q3" g7 —
q4" q3" g7 —q1¥q4" g7 —q2" q4" g7 +q3" q4" g7 —
g""ql-q2 g7 —g""ql-q3g"°7 —g""ql-q4 g7 -
g7q2-q3 g7 +g""q2-q4 g7 —g"" q3-q4 g7 -

Q2" g"7 q1 —q3" g"7 q1” —q4" g"7 q1” - g"7 2" q1" —
g"7q3" ql” +g"7 q4" q1” —q1* "7

4" "7 2f + g7 q1" 27 + g7 q3" 2 + g7 4" 2 +

ql¥ g"7 q37 +q2" g"7 q3” —q4" g"7 q3” - g"7 q1" 3" +

g7 q2" 37 +g"7 q4" 37 +q1¥ g"7 g4 + 2" g7 q4F -~

Q3" g"7 q4” — g7 q1" q4” + g7 q2" 4" + "7 93" 4" +

q2" g"F q17 —q3" g"F q17 +q4" g"F q17 + g"F q2" q17 +

g"7q3" q17 - g"fq4" q17 - g"" 27 q17 + g"7" q37 q17 +

g" a4 q17 +q1" g"F 27 +q3" g7 27 +q4" g"7 27 —

g"fql" 27 - g"fq3" 27 — g"F q4" Q27 + g7 q17 27 -

g a3 27 - g"" g4 27 —q1¥ g 37 —q2" g7 37 +

q4" g"F 37 - g"fq1" q37 - g"F q2" @37 - g"F q4" 37 +

g“v qlp (:13Gr + g‘w qE'D qS'I + g“v qilp (:13Gr + ql'u gv‘o q4g +

Q2" g"F q4” —q3" g"F q4” — g"F q1" g4 + g"F q2" 4" +

g"7q3" q4” +g""q17 q47 — g7 27 @47 + g"7 q37 47 —

g 7g " ql-q2+g" g7 ql-q2+g"7 g" ql-q3 +

g Pg7q1-q3-g"" g"Fql-q4+g"" g"7 ql-q4 -

g 78 7q2-3+g" g7 q2-q3-2"" 2"  q2-q4 +

g g 7q2-q4-g"" g q3-q4+2"" 2"7 q3-q4)

q2” —q3* g"% q2f -

Figure 2.8: The expression ngqq
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After substituting them into the expression, the expression gets much longer. As
always, by applying the master formula (2.91)), we find

4

O, = —5——1. 2.115
Hv oo 4871'2(1 + )\) Llqqs ( )
and by expanding in powers of A
o
Ot = Jgz Ltaa(1 = V). (2.116)

It is sufficient to expand the expression only up to the first order in A because we

are already getting two momenta from the traces (and A contains two momen-

ta). The expression ([2.115)) can be found in the enclosed Mathematica notebook
spinor.nb denoted by lqu‘traceﬂ

The terms of type ggmm are similar. For them, we get

Togmm = m*( Tr[Yavu 787 Y0 V0107 4

+ Tr[va 1787070101

+ Tr[va Va1 0787014

+ Tr[vu 701787070192

+ Tr[y a1 Ye7870 1056

+ Tr[Vu 0707870165 44 )- (2.117)

We can see this expression evaluated in Fig. [2.9] Then again

e4

emmil = Tyqmm 2.118
Hres 967r2m2(1 + )27 ( )
and consequently
4
Q\ggmm €
@Z%QU - —Wqumm(l - 2)\) (2119)
The full form of (2.118)) can be found in the file denoted by qqmm‘trace.
The last and the worst is the gqqq term
Taqqq = Trhavu’)/g’yy%%%fyo]q?nggqi. (2.120)
The result is in Fig. [2.10} For the term, we have
— 64
6 = T Togaq- (2.121)

Since we are already getting four momenta from the trace, we may directly set
A = 0 (that means we are expanding up to the zeroth order). Once again, the
full form of the expression can be found in the file denoted by qqqq.

At last, we can determine the total contribution of the box graph

®/J,ygcr(p17p27p3) = / dXF (@fﬁfgg + @fﬁzg% + @Tyﬁglm
F3

@qu + @qqmm + @qqqq ) (2122)

nv oo proo e

®Instead of the functions ¢;; [see (2.89))], temporary constants a;; are used there (which are
later replaced by ¢;;).
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4(q2"ql" g7 —q3"ql" g7 +q4"ql" g7 +q1" 2" g7 +
Q3" q2" g7 —q4" q2" g7 +q1¥ q3" g7 +q2" q3" g7 —
q4" q3" g7 —q1"q4" g7 —q2" q4" g7 +q3" q4" g7 —
g"aql-q2 g7 +g""ql-q3 2”7 —g""ql-qd4 g7 -
g7a2-q3 g7 +g""q2-q4 g7 — 2" " a3-q4 g7 -

Q2" g"7 ql” +q3" g"7 q1” —q4" g"7 q1” - g7 q2" q1” -
g"7q3"ql? +g"7 q4"q1” —q1¥ g"7 @2’ —q3" g"7 2" +
qd" 2" @27 + g7 q1" q2” + g7 q3" 2" — g7 4" 2" +

ql¥ "7 q37 +q2" g"7 q3” —q4" g"7 @3 - g"7 q1" 3" +

g"7q2" q3” +g"7 q4" q3” +q1¥ g"7 a4’ +q2" g"7 q4” -

Q3" g"7 q4” - g"7 q1" q4” + g7 q2" q4” + g7 q3" 4" +

Q2" g"7 ql” —q3" g"P q1” +q4" g"7 q1” +g"F q2"q1” +

g"?q3"ql” - g"f q4" ql” - g"" q2” q17 + g"" g3 ql“ +

g‘” q4pq1 +q1“g q”“+q3“g q27 —qd4 g"P q27

g"?ql" 2 - g"fq3" 27 +g"f q4" 27 + g’ qlqu—

g""q3” 2% —g""qa" q2" —qlf g" q3” —q2" g P 37 +

q4“ g P q37 +g"fql" q37 - g"  q2" q37 - g"” q4" 37 -

g"" a1 37 + g7 q27 @37 + g g4 @37 +q1" g7 47 +

Q2" g"F q4” —q3" g"F q4” — g"F q1" g4 + g"F q2" 4" +

g"7q3" q4” +g""q17 q47 — g7 27 @47 + g"7 q37 47 —

ql-q2+g"f g"7ql-q2+g"7 g"¥ ql-q3 -

g Pg7q1-q3-g"" g"Fql-q4+g"" g"7 ql-q4 -

3+g"" "7 q2-q3+g"7 2" q2-q4 -

q4-g"7 g7 q3-q4+g"" g"7 q3-q4)

Figure 2.9: The expression Tgmm

The integrand of course depends on the Feynman parameters z,y, z via the pa-
rameter A and the vectors ¢; — see and . The final expression we
got using FeynCalc is quite lengthy (it is denoted by Theta). To shorten and
speed up the integration, we used the on-shell condition (2.8) to remove terms
proportional to p? and also the transversality condition

Pi - 5(]?2', )\z) = 0, 7= 1, 2, 3,4, (2123)

which in our context translates to pi = pjy = p3 = 0 (effectively). Note that
this "reduced” polarization tensor can not be used in formulae such as ,
but it can be still used for obtaining the invariant amplitude. This procedure
of removing longitudinal terms is correct as long as we do the same with the
effective tensor during the amplitude matching.

2.2.5 Polarization tensor

All changes when we use the symmetrization formula (2.53|) to obtain the polar-
ization tensor (see Fig. [2.11)). It looks pretty good — most importantly, both the
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4 (q4'“ qSV qEP ql'sr — (:13*i qilv qlp qlGr + q4'“ qEV qSP ql'sr + qEFi qilv qSP qlGr +

qS“ qlv qilp qlGr + qE'“ qSV q4p ql'sr — qil“ gv’o g2-q3 ql'sr +

g'f q4" q2

g"”q3" q2
g"”q2"q3

upe

-q3q17 — g""q4” q2
-q4q1” — g""q3” q2
-q4ql” + g

HY q2F g3

qS“ qilv qlp ng - q4'“ qlv q3p qZ'I + ql“ qilv q3p ng -
qS“ qlv qilp ng + ql'u qSV q4p qZ'I — qil“ qlv qlp (:13Gr -
ql“ qilv qlp (:13Gr + q4'“ qlv qE'D qS'I — ql“ qilv qlp (:13Gr +

g2 q1” q4” q37 + q1* q2" q4” q37 + q3* q2" q1” q47 + q2¥ q3" q1° q4“ -
q3* q1” q2° q47 + q1* q3" q2° q47 + q2" q1" q3” q47 + q1¥ q2" q3° q4“ +
-q2-q3"q4" g7 ql
-q2+q3" g"7 g4’ ql
-q2 + g"¥ q4" q37 ql
-q2 - g"”q3" q47 ql
-q3+q2"q4" g7 ql
-q3-q2"¢g"7 g4’ ql

q4" q3" g”7 ql
g"? q4" g37 ql
q4* "7 q37 ql
q3* g"" q47 ql
q4" q2" g”7 ql
g"? q4" q2° q1
q4" g"” q27 q1
q2" g"* q47 ql
a3 q2" g”7 q1
g"7 q3" q27 q1
q3" g"" q27 q1
q2" g"” q37 ql
q4" ql" g”7 q2
g'7 q4" q1” q2
ql* g"¥ q47 q2

-q3 — g"¥ q4" q27 ql
-q3 — g"¥ q2" q47 ql
-q4—q2"g3" g77 ql
-q4—q2" g"7 g3 ql
-q4 + g"¥ q3" q27 ql
-q4 + g"¥ q2" q37 ql
-q3+q1¥q4" g77 q2
-q3—ql” g"7 q4” q2
-q3+g"* ql" q4” q2

-q2 +g4" g"7 q3” ql
-q2 — g"7 q3" g4” ql
-q2 — g"" g4 q37 ql
-q2 — g"" g3 q47 ql
-q3 —g4" g"7 27 ql
-q3 — g"7 q2" g4” ql
-q3 + g"" g4 q27 ql
-q3 + g"" q2F 47 ql
-q4+ 3" g"7 27 ql
-q4 — g"7 q2" q3” ql
-q4 + g"" g3 q27 ql
-q4 — g"" q27 q37 ql
-q3+q4" g"7 q1” q2
-q3+g"7 q1" q4” q2
-q3 —g""ql” q4” q2

-q3q17 +q3" g"F q2-q4q17 -
-q4q1” —q2* g"F q3-q4q17 -
-q4 ql'sr — qil“ qSV qlp ng +

.q2—
.q2—
-q2 +
-q2 +
-q3 +
-q3 +
.q3 —
.q3 —
.q4 —
.q4 —
-qd +
.q4 —
.q3 —
.q3 —
-q3 +

g7 ql-q4q2-q3-g""g""ql-q4q2-q3+g"" g’ ql-q4q2-q3 +
93" ql" g7 q2-q4 - q1"q3" g7 q2-q4 - q3" g"7 q1” q2-q4 +

g7 q3"q1" q2-q4-ql¥ g" 7 q3 q2-q4 + 2" q1" @3 q2-q4 +

ql” g"7 q37 q2 -q4+g""q1”q37 q2-q4 -
g°7g7ql-q3q2-q4+g""g""ql-q3q2-q4-g""g"7 ql-q3q2
92" ql" g7 q3-q4 - q1" q2" g7 q3-q4 +q2" g"7 q1” q3-q4 +
g7 q2"q1” q3-q4+q1¥ g"7 q2° q3-q4 - "7 q1" q2” q3-q4 —
ql” g"7 27 q3-q4 +g"  q1"q27 q3-q4 - g"" q1” q27 q3-q4 +

g'7g""ql-q2q3-q4-g"" g"7 ql-q2q3-q4+ g"" g77 ql-q2 g3

-q4—g"¥ ql"q37 q2
g4 —

-q4)

T,

Figure 2.10: The expression Tjq4q

UV divergent terms [terms proportional to A, see ([2.100)] and the terms propor-
tional to two momenta are gone. This means that our tensor is UV finite and has
the proper structure that corresponds with the effective theory.
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me4 (14 g*7 p3" p1Ppl-p2 -3 g"7 p3" p2P pl-p2 -

Tg'“ppfplgpl-p2+?g'“pp3vp2gpl-p2+
7g"F p3" p37 pl-p2 -3 g"" p1” p37 pl-p2 -
3 g'wplppfrpl -p2—14 g‘“g gv'opl -p3pl-p2 +|
3gMF g""pl-p3pl-p2+3g " g7 pl-p3pl-p2+
37 g"Pp2-p3pl-p2—14g"F g"% p2-p3pl-p2 +
3 g'wg'ogpl-pS pl-p2+ 14 g“gplvplppl -p3 —
3gM7 p3"p2fpl-p3—7g"" p2f p17 pl-p3 -
3 g'“pplvplgpl -p3—3 g'“ppfpl'?pl -p3 +
Tg'wplpplgpl-pS+?g“1"p2pp3gpl-p3—
14g‘“gp1vplpp2-p3+?g'“pp1vp1gp2-p3+
Tg'wplpplgpl-pS+?g'“pp1vp2gp2-p3—
Tg'wplpplgpl-pS—?g'“pplva'IpE-pS+
T"g'm":;:al":’I::S';r p2-p3+3 g‘“g gv'opl -p3pl-p3 +
3gMf g" 7 pl-p3p2-p3—14g"" g”7 pl-p3p2-p3 +
p3t (=3¢ " plPpl-p2+14g"7 p2fpl-p2 +
?gv'oplgpl -pl—?gv'oplgpl -p2+?gvpp3gpl -p2 +
p3" (3p2°pl? +3p1Pp27 —14g°7 pl1-p2) -
3 gvgplppl-pS -3 g1""5’:;::1'3r pl-p3 +
pl" (3p1P p27 —7p2° (p17 +p27 +p37)+ 14 2°7 p2-p3)) +
p2H (=14 "7 p2fpl-p3+7g" P p17 pl-p3 +
?gv'oplgpl-pS—?gV'OPS'Tpl-pS+
p3 " (3p2°pl1? —7p1P (p17 +p27 +p39)+ 14 277 pl-p3) +
14 gvgplppl-pS -3 g1""5’:;::1'3r pl-p3 +
3pl” (p17° p37 +p2° p37 — g”7 (p1-p3 +p2-p3))))

Figure 2.11: The "reduced” polarization tensor for spinor QED

2.2.6 Amplitude matching

Now we are ready to enjoy the fruits of our hard labor. Let us compare the
calculated spinor QED polarization tensor I} (Fig. and the effective one
sz,ﬁ'ga (Fig. . Since we have thrown away longitudinal terms proportional to
P, py or p§ from the spinor QED tensor, we need to do the same with the effective
one.
Basically, we need to solve the following equation for the coupling constants
g1, 92
Lo = Ui (915.92) = 0. (2.124)
First, compare only the terms with no metric tensors. Fig. shows what we
obtain on the left-hand-side. Is it self-evident that this is equal to zero if the
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constants g1, g2 solve the following linear system

et +1920m*m* (g1 — ¢g2) = 0

Te* — 5760m*m* gy = 0. (2.125)
The solution is
et a?

9= 24 1

144072%m 90m

Tet T
— — 2.126
92 = B760m2mt ~ 360mA’ (2.126)

where we have introduced the fine structure constant o = e /4.
Substituting the solution back into the left-hand-side of our equation (2.124])

results in Fig. [2.13] which is equal to zero, thanks to the constraint (2.10]) [which
is a consequence of the on-shell conditions ({2.8))].

1
180 7° m*
p3” (3p17 p2° (¢* +19202° m* (g1 — g2)) -
pl? (7¢' — 57607 g2 m*) (p17 +p27 +p37))) +
p3¥ (3p3” (¢* + 1920 27 m* (g1 — g2)) (p17 p2° +p17 p27) +
pl” (3p1° p27 (' +19202° m* (g1 — g2)) -
p2f (7¢* — 57607 g2 m*) (p17 +p27 +p37))))

(p2* (3p1” p37 (p1° +p2°) (&' + 1920 7" m* (g1 — g2)) +

Figure 2.12: Matching the terms with no metric tensors

1 4

———e¢ (pl-p2 +pl-p3 +p2-p3)

202 (pl-p2+pl-p3 +p2-p3

(-7 plp pE'I g‘w + ?plvplp g“Gr - T"pl'sr pEp g‘w + 'f’plvplGr g“p -
7gh7 g pl-p2-Tg" g"  pl-p2 +10g"" g% pl-p2 +
p3* (7p1" gP7 + "7 (Tp2P —10p1¥) +7g"# (p17 —p27)) +
p2* (7 (p1” g"7 +p17 g"F +p3" g7 —p37 g"F) - 10p1" g77) +
?plppf g“Gr +T"pl"5’1::3'3r g'w—?plgpf g“p—T"plva';r g'“p—
77 g"Ppl-p3+10g" g"7 pl-p3 —Tg"" g% pl-p3 -
10 plp pSV g“Gr + ?pE'I pSV g'“p + ?plp p3Gr g“v +
10g"7 " p2-p3-T7g"" g"7 p2-p3 —7g"" g7 p2-p3)
Figure 2.13: The p3 = 0 constraint is factorized
We may conclude that the effective Lagrangian of Euler-Heisenberg type for
the case of spinor QED can be expressed as
2

Sp. __ «

o = 3g01 [4(FW ™) 4+ T(xFW F*™)?] (2.127)
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or )
2x

sp. _ 2 2\2 2
Lot = 501 (B =B+ 7(E-B)*]. (2.128)
One can also calculate the differential cross section using the formula (2.47))
do \** 139a* Wb 5 o
T0 = A2 % 2.12
(dQ) 3920072 i 0 + 0570 (2.129)

where s = (2w)?. We can see that the Lagrangian is exactly replicated [see (1.1))]
as well as the expression for the differential cross section [see ([1.5])].

2.3 Case of scalar QED

Although many things are similar or even identical same, the case of scalar QED
differs from the spinor case in some aspects. The interaction Lagrangian of scalar
QED can be expressed as [23]

Lot = —ieAL[¢T(0" @) — ("1 @] + 2 A, A" B, (2.130)

where ¢ is some charged scalar field, A, is again the electromagnetic field, and e
is the coupling constant (charge).
We can split the Lagrangian into a trilinear and a quadrilinear part

Lint. = Loon + Logry (2.131)

where

Ly = —ieA[61(0"9) — (0"¢T)g]
Lpiry = A AP G, (2.132)

From the structure of the Lagrangian, we can see that there are now three
types of one-loop diagrams that contribute to our four-photon process. We can
either use four trilinear vertices to build box diagrams, or two trilinear and one
qudrilinear to build triangle diagrams. Bubble diagrams arise from two quadri-

linear vertices (see Fig. [2.14)).

N N f e

So ! \

-
-7 \ !
-

- N~

rf’_,'_____

Figure 2.14: Three types of diagrams contribute

2.3.1 Box diagrams

The structure of the S-matrix element and the diagram parametrization is com-
pletely the same for the scalar box diagram as for the spinor one, so we can just
use expressions from the previous section.
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Figure 2.15: The scalar box diagram

Diagram evaluation

The diagram in question is shown in Fig. [2.15]
The expression for the diagram contribution is the only thing that is different.
Using standard Feynman rules, we obtain

i@El/QO'(plﬂp27p3) =

e4u4_D/ dPl (ki + ko) (ko —Zkg)y(kg + ky)o(ks + kl)(,’ (2.133)
(2m)P [ (k7 —m?)
where

k=14

ko =L+ py

ks ={+p1+p2

ky =€+ p1 + pa + ps. (2.134)

The Feynman parametrization and the loop momentum shift give

i@Euga(plaPQapfS) = 64M4_D/ dXF3
F3

/ dP0 20+ g1+ q2) (20 + g2+ 43)0 (20 + g3 + 1) (20 + g1 + @1)
(2m)P [02 — m2(1 + \)]* ’
(2.135)

1 11—z l-z—y
/ dXp, = 6/ da:/ dy/ dz, (2.136)
F3 0 0 0

A= Zz]xya p]

1<J
Sy 2) =2y +2)(z+y+z—1)
Sy, 2) =2z(x +y+2—1)
fo(,y,2) = 22(y + 2 — 1), (2.137)

where

and

32



and
3
g =Y oo,y 2)p;
j=1
r+y+z Y+ z z
0 _ |rF+yt+z-1 y+z z
by == T 1 .1 . | (2.138)
r+y+z—1 y+2z—-1 z2—-1

Just as before, we break the numerator of the integrand into individual terms
and deal with them one by one.
The first is the €007 term

TD%N = (2€)H<2€)V(2£)g(2€)g (2139)
The symmetric integration (2.93|) obviously yields

16(guug'y§ + Gar 985 + gaégﬁw)
D(D +2) ’

Trvee = (2.140)

where )
Troeee = Treeee(02)?. (2.141)

Exactly the same procedure [the master formula (2.91) and the expansion in
powers of & — check the previous section]| eventually results in

4
(&
@Efiff = Sur2 [A = In(1 + N(guoGvp + GupGve + GuvGpo ), (2.142)

where A is defined by (2.100f), and the low energy limit leads to (again, we stop
the expansion at A\ — we are getting two momenta per A)

4
000l
O s = 15220 =22+ N) (9o Gvp + GupGvo + GuwGpo)- (2.143)

The remaining terms are much easier to deal with because they are UV finite.
The next set of terms are terms of type ¢lqq

Tugg = (1 + q2)u(@2 + 3)0(20) ,(20)
+ (1 + ¢2)u(20) (g3 + q4)0(20) 5
+(20),(q2 + @3)0 (a3 + 04) o(20)
+ (@1 + 2)u(20),(20) (1 + @1)o
+ (20) (g2 + ¢3)0(20) o(qa + @1)5
+(20),(20), (g3 + qa) (s + @1)s (2.144)

The symmetric integration (2.105)) brings us to

Tmeeqq = (1 + @) u(a2 + ¢3)1900
+ (@1 + @2)u(33 + @u) o 9vo
+ (g2 + 43)0 (93 + 44) 0G0
+ (0 + @2)ulea+ @)

+ (g2 + 3)0 (94 + 1) o Gpo
+( )o(@1 + 1) Guv (2.145)
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where (as always)

CThueg = Theegq, (2.146)
then the loop integration master formula (2.91)) to
O las — _ ¢! Theton- (2.147)
pres 48m2m?2(1 4+ \) “
and the low energy limit to
4
Oporl = —mfmqq(l —A). (2.148)

The full expression (with the vectors ¢; are substituted in) for (2.147)) can be
found inside scalar.nb denoted by 11qq‘term.
The last term is of type qqqq

Thggeq = (@1 + @2) (@2 + 43)0 (a3 + @1) o(@s + @1) 0, (2.149)

for which we get (again, no A here)

4
Opa’ = 062y L Dagas: (2.150)
The full form can be found within the file denoted by qqqgq.
Now we just add all the terms up and integrate
O prop2n) = [ X, (O + 611 + O, (2.151)
3

The result is denoted by Theta‘sq in the file.
The total contribution from all of the box diagrams is then given by the

symmetrization formula (2.53))

I oo (D1, P2, p3) = syms @El,mg(pbpz,p:a)‘ (2.152)

2.3.2 Triangle diagrams

We leave the problem of the symmetrization to the end of this section — instead
we directly start with the evaluation of one of the triangle diagrams.

Diagram evaluation

We are interested in the diagram in Fig. [2.16]
The relevant expression reads

APl (ki + k2)u(ka + ks)ug
00 = _ A 4D/ “ vJeg 2.153
v ;w@a(plap2) e p (27)P H?ﬂ(k? —m?) ’ ( )
where
k’l =/
kQ =/ +p1
ks =0+ p1 + pa. (2.154)
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Figure 2.16: The scalar triangle diagram

The Feynman parametrization and the loop momentum shift results in

i@fugg(plap2) = _€4M4D/F dXF2
2

/ dDE (26 =+ q1 + q2)u(2g + q2 + q3)1/ggcr (2 155)
(2m)P [(2 —m2(1+ \)]? ’ '
where
1 1-x
/ dXp, = 2/ d:z:'/ dy, (2.156)
Fa 0 0
and
PP
fia(z,y) = 2y(z +y — 1), (2.157)
and
2
qi = Zﬁbﬁ(%y)pg’
j=1
Tty )
¢o(ry)=—a+ry—1 y |. (2.158)

r+y—1 y—1

The procedure we used for obtaining these results is standard (check the spinor
QED section).

Again, let us break the numerator into separate terms. The £/ term is the
first one

TAM = (2€>u(2€)l/gga' (2159)
The symmetric integration
62
0l g, 2.160
5= yYas (2.160)
yields
T 4 vy oo
Tro = _g,bgg ; (2.161)
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where

CTry = Thy (2.162)
The master formula and the e-expansion then provide
4
Opttr = ~ 7oA = In(L+ Vg or, (2.163)

where A is defined by (2.100). The A-expansion leaves us with

4

~ (&
@ﬁfﬁo = _327.(.2 (2A — 2\ + /\2)9,11,1/990‘ (2164)

The second term is the gq term (which is UV finite)

TAqq = (ql + q2),u(q2 + q3)1/gga- (2165)
We obtain for it .y
~ e
O = T 2.166
oo 327r2m2(1 T )\) Aqq) ( )
and then A
= e
@ﬁfgo = WTAqq(l - )\) (2167)
It is denoted qq’term in the file.
The last step is to add them together and integrate
O oo (P1,12) = /F dXp, (05, + 0210 (2.168)
2

The result is denoted by Theta’tr.

Problem of symmetrization

To get the contribution to the total polarization tensor from all triangles, we need
a formula similar to . Besides a tedious proof, we can try using an intuitive
rule from the end of the section 2.2.11

The structure of the relevant S-matrix element contains

1020305 T [ Lo (11) Loy (42) Lsgr (23)], (2.169)

where 2, and Ly, are given by (2.132), and a; = a(p;, ;). As always, there
are 24 possible Wick contractions of the photon operators. Additionally, we can
contract the scalar operators in 2 possible ways. Apart from that, there are also

3 ways how to assemble the actual time-ordered product — all of the following are
valid

T ZLopry(11) Lopr (12) Lispry (w3)]
T1Ls6r(21) Ly (12) Ly (23)]
T1Ls6r (1) Lo (02) Ly (23)]. (2.170)

These are 24 x 3 x 2 = 144 contributing terms in total. Since our tensor ©%
is a rank-4 tensor, its total symmetrization contains exactly 24 terms — there
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are no more. In order to make these numbers match, we can theorize that each
permutation in the symmetrization contributes 6 times (to get 144 terms). This
argument leads to

6
Fﬁ,gg (pl,pg,pg,m) = 5 Symmy @fyga(phpz,]?s,pzl)
= Syl Gfuga(plap%p&pll)a (2171)

where the 1/3! prefactor comes from the Dyson expansion. Although © is not
an explicit function of p3 or ps, we can still use this formula. The conservation
law (2.7)) then can be used to get rid of the fourth momentum p;.

2.3.3 Bubble diagrams

We again leave the problem of symmetrization to the end.

Diagram evaluation

This is the easiest diagram so far. It is displayed in Fig.

EQ D3
D2 ,/’ RN
y; \
/ \
| \
j¥2% oo
]
\\ /
N /
7’
\\»,/ p4
h kl

Figure 2.17: The scalar bubble diagram

Using standard Feynman rules, we get the relevant expression

dPe¢ G g
00 o) = € 4—D/ nries 2.172
,u,z/g(f(pl pQ) H (27T)D H1221(k12 _ mz) ( )
where
kl =/

The standard way of the Feynman parametrization and the loop momentum
shift provide

103, (01, p2) = €'u*™" / dx / 4o JuvJoo (2.174)
proo\PLP2) = E R | S [ on D[ —m2(1+ A2 ‘

1
/dXFlz/ dz, (2.175)
Fi 0
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and

_ O/ \P1-D2
A= fiz(2) m2

S(x) = 22(x —1). (2.176)

We have only one simple term in this case

To = GuwYoo- (2.177)

The standard way yields

64

pv oo 1677'2

[A —In(1 + A)]gw oo (2.178)

and
4

= e
@/9/@0 = 3972 (2A —2X\ + AZ)guqua' (2179)

The last step is the integration over the Feynman parameter

O 4o (P1,02) = / dXr, 6%, (2.180)

F1

Problem of symmetrization

We have no problem in this case. The relevant S-matrix element contains
11020304 T [Lygry (1) Ly (22)]; (2.181)

where L4, is given by (2.132)), and a; = a(p;, A;). There are 24 contractions
of the photon operators and only 1 contraction of the scalar ones. The Dyson
expansion contributes a prefactor of 1/2!. The correct formula can be immediately
written down

ro

1
iivoo D1, D2, D3, Pa) = o1 Sy @,9,@0(]9171927273,174)- (2.182)

Again, the conservation law (2.7) then eliminates the fourth momentum py.

2.3.4 Total polarization tensor

Now we can add up all the contributions to obtain the scalar QED polarization
tensor
I e =T + Dioe + TG

oo = Voo + Uioe + Do (2.183)
The result is displayed in Fig. 2.18 We have again thrown away the longitudinal
terms proportional to pf, py or p5.

Once again, we can see that the tensor has the proper structure (meaning it

is UV finite and the terms proportional to two momenta vanished).
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1
720 m* 72
et (30 g"% 2" Ppl-p2m’ +30g"P 2" pl-p2m’ +30g"*Y g7 pl-p2m’ +
30g”7 g"fpl-p3 m* + 30 g"f "% pl-p3 m +
30 g g7 pl-p3 m2+30g'“ggvpp2-p3 m +
30 g'“pgvgpl-pS m” + 30 g'wg'ogpl-pS m +4g'“'3r gv'opl -p22 +
4ghP g pl-p2t +8g"  g? T pl-p2t +4g"7 g"Ppl-p3” +
8gHP g pl-p3*+4g"" g°7 pl-p3t +8g"7 g"Pp2-p3” +
4g'“pgvgp2-p32 +4g'wg'°gp2-p32 +2g'“gp3vp1ppl-p2+
68" p3" p2fpl-p2—gHf p3"pl7 pl-p2 -4 g"F pl" p27 pl-p2 -
3 g'“ppfpl'?pl -p2+g'“pp3vp3gp1 -p2+2g'wp1pp3gp1 -p2 +
Egm'plpp??pl -p2+2g'“'rp1vp2pp1 -p3 +6g'“'rp3vp2pp1 -p3 —
g'wplpplgpl -p3 +2g'“pplvp2'rp1 -p3 +2g'“pp3vp2'rp1 -p3 +
g"" p2f p27 pl-p3 -4 g"" p1P p37 pl-p3 -3 g"" p2f p37 pl-p3 +
6g"7 g"Fpl-p2pl-p3+6g"F g" 7 pl-p2pl-p3 +
6g"" g”7 pl-p2pl-p3 —2g"7 p1" p1P p2-p3 + g"F p1" p17 p2-p3 +
g"" p1Ppl17 p2-p3 -3 g"F p1" p27 p2-p3 —4 g"F p3" p27 p2-p3 -
g"" p1P p27 p2-p3 — g"F p1" p37 p2-p3 -3 g"" p1¥ p37 p2-p3 -
ﬂfg'm’:;:al":’I::S';r pl-p3 +6g'“'3r gv'opl -p2pl-p3 +
6g"F g""pl-p2p2-p3+6g"" g7 pl-p2p2-p3 +
6g"7 g"Fpl-p3p2-p3+6g"Fg" 7 pl-p3p2-p3 +
6g"" g”7 pl-p3p2-p3 —p3”(-6g"7 p1¥pl-p2 -
Egvgplppl -p2+3 gv'oplgpl -p2+gvpp2gp1 -p —
g”’pS'Tpl -p2+2p31" (3 :;::2"5’1::1'3r +3plpplGr +g‘°gp1 -p2) +
4g1"pp1gpl -p3 —égvgplppl-pS —2g1""5’:;::1'3r pl-p3 +
pl” (6 p1” p27 +p2° (p17 +p27 +p37)-2g"7 p2-p3)) -
pE'“ (4 gv'oplgpl -p2+2gvgp2ppl -p3+3 gv'oplgpl -p3 —
g p27 pl-p3+g"F p37 pl-p3 +
p3" (6 p2° p17 +p17P (p17 +p27 +p37)-22°7 p1-p3) -
Egvgplppl-pS—Egv'oplgpl-pS+
6pl” (p1” p37 +p2° p37 — g7 (pl-p3 +p2-p3)))

Figure 2.18: The "reduced” polarization tensor for scalar QED

2.3.5 Amplitude matching

We are finally ready to compare the scalar QED polarization tensor (Fig. [2.18])
with the effective one (Fig. [2.4)).
The fundamental equation reads

rse T (g1,92) = 0. (2.184)

nvoo pvoo

Again, let us compare only the terms with no metric tensors. Fig. shows
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what we obtain on the left-hand-side of our equation. Clearly, the linear system
in this case is

e* — 3840m*m* (g1 — g2) = 0

et —230407*m*g, = 0, (2.185)
which has the following solution
Tel Ta?
T 93040m2mt  1440mA
g o _ o (2.186)

= 9304072mt | 1440mA

Substituting the solution back into the left-hand-side of our equation leads to
Fig. [2.20] Again, the constraint p3 = 0 is factorized.

_lenﬁ (p2# (6 p1” p37 (p1¥ +p2*) (¢* — 3840 7" m* (gl — g2)) +
p3” (6 p17 p2° (¢* — 3840 7% m” (g1 — g2)) +
pl? (¢* —23040 7% g2 m*) (p17 +p27 +p37))) +
p3* (6p3” (e* — 3840 7% m” (g1 — g2)) (p17 p2° +p1° p27) +
pl” (6 p1” p27 (¢* — 3840 7" m* (gl — g2)) +
p2f (' —230407° @2 m') (p17 +p27 +p37))))

Figure 2.19: Matching the terms with no metric tensors

4 5 '
o2 ,¢ (PL-P2Hpl-p3 +p2-p3)(30m g g7 + g7

(3"°(10m* +pl-p2 +pl-p3 +p2-p3)+pl” p2° +p3” (p1° +5p2°)) +
g"? (3”7 (10m” +pl-p2+pl-p3 +p2-p3) - p3” (p17 +3 p27) -
pl” (3p2° Jr13|35r}]+51::11';:2'“;5;")'5r +plfp2t g¥? —
3pl7 p2H g"f —pl7 p2F gM" —p1P p27 gH" +3 gHV g7 pl-p2 +
pl" p3# g7 +5p1Pp3tg"? —3p17 p3# g" P —3p1P p37 gV +
3g"7 g% pl-p3 +p2Fp3" gf T +p2Pp3tg"? —p27 p3t g"f -
p2H p37 g"f —3p2° p37 g"" +3 g7 g% p2-p3)

Figure 2.20: The p3 = 0 constraint is factorized

The effective Lagrangian of Euler-Heisenberg type for the case of scalar QED
can be then expressed as

062

or )
(67
i = 7 [T(E* —B?)? +4(E - B)*]. 2.1
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This exact result can be found in [24]. Again, we can also calculate the differential

cross section using the formula ([2.47))

do \ ™ 17a* WO
(d—Q> = m%(g‘*‘COSQ 0)2, (2189)

where s = (2w)?.

2.4 Case of vector QED

The case of QED of charged vector bosons (vector QED as we call it) is really close
to the case of scalar QED. There are some differences though. The interaction
Lagrangian reads [22]

Lint. = Lwwry + Lwwanys (2.190)
where
Lww = —ie(A, W, O* Wt + W#WVT ot A” + WJAI, or W)
Lywwoy = —62(W#WT“A,,A” — WMA“WJA”), (2.191)
and -
fotg= fotg— go'f. (2.192)

The Lagrangian consists of trilinear and quadrilinear vertices. The Lagrangian
structure is, therefore, the same as in the case of scalar QED. This means that
the case of vector QED is completely analogous to it. There are again three types

of diagrams — boxes, triangles and bubbles (Fig. [2.21)).

Figure 2.21: Three types of diagrams contribute

Since all the diagram parametrizations and the symmetrization formulae are
exactly the same as in the previous section, we do not discuss them any longer.

The entire calculation is performed by using the canonical Proca propagator
for the massive charged vector boson. If the vector QED is considered as a part of
the standard electroweak theory, this corresponds to the so-called unitary gauge.
Thus, in what follows, we will refer to this choice simply as unitary gauge. This
is quite rare (this particular process probably has not been calculated using this
gauge yet). Within the standard model, loop diagrams are usually processed
using other gauges. In the unitary gauge, there are no auxiliary fields and there
are no Faddeev-Popov ghosts. Only three types of diagrams contribute as we
have stated before.

On the other hand, the expressions that appear during the calculation are
ridiculously long (thousands of terms are common) and there are many of them.
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Since there is nothing new about the method we demonstrated in the previous
sections, we restrict ourselves to a brief overview and only discuss some subtleties
and the used algorithm.

We start with the bubble since it is the easiest of the diagrams. But before
that, let us introduce the following shorthand notation

Vapy(a,b,¢) = (@ — b)ygap + (b — €)agsy + (¢ — @)3Gya

Vaﬁfyd = gaﬂg’yé - ga’ygﬁé

Ao
Pap(a) = ~gas + —* 5 (2.193)

2.4.1 Bubble diagrams
The diagram is shown in Fig. [2.22]

Figure 2.22: The vector bubble diagram

The standard Feynman rules lead to

dPy MO
20 — 4,4-D uvoo 2.194
1050 (D1, 12) = €'p1 /(QW)D [T, (k2 —m2)’ .

where [see ([2.193)]

Mgga =P% (k) Varas
P25 (k) Voo 8,3, - (2.195)

After the Feynman parametrization and the loop momentum shift, this becomes

09 ( ) =etut P / dX / aoe Niao (2.196)
proo \PLP2) = | CAT [ omD (@ —m2(1 + V2 '

where

NO = Pﬁwz1 (E + QI>Vpua1a2Pa2'B1 (ﬁ + qQ)VvQUBl[ﬁ

00
= (.g,uugoqozz - gualgua2)<ggag/3152 - g@ﬁﬁgaﬁg)

L+ @) (0 + q)™ (0 + )2 (0 + q2)"
{_962% + - 2 - —Gaspy T 2 m2 2

(2.197)
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Our standard procedure of identifying non-vanishing terms in the numerator
(terms containing even power of the loop momentum ¢) does not work very well
here. It would require expanding the entire expression, which is very tedious to
do by hand (and it would get much worse later).

Fortunately, we can use Mathematica functions to implement some automa-
tion. We can rescale the loop momentum

by — &Ly, (2.198)

and then expand our expression in powers of £ to pull out only the terms we want.
Looking at the expression , it is clear that there are terms proportional
to &* (terms containing four loop momenta), then £? (terms containing two loop
momenta), and then £° (terms containing no loop momentum).

All these terms are UV divergent. From the terms ¢* arise quartic diver-
genced’} from the terms ¢? quadratic ones, and from the terms ¢° logarithmic
ones.

Since we now deal with more complex divergences, let us do a little adjustment
to the master formula. We are interested in the following divergent integral

wp [P0 (YNNG,
H / @)D [ — m2(L+ N (2.199)

where Niﬁga is the part of the numerator (in our case NMQQU) that contained
2r of loop momenta before this part was symmetrically integrated (in a general
dimension), and all the loop momenta within were factored out. So, for instance,

if the part proportional to four loop momenta was

0,0, 0,0, X [something], (2.200)
N, .o would be
JpvJeo —;‘?’ggia;; JnoJve [something]. (2.201)
Clearly, N 25 00 18 generally a function of the dimension.
Now set D = 4 — 2¢ and expand N 3500 in powers of ¢
N2 o =An+Bye+ 0 (€7). (2.202)

Define a rational function

(r+l—e)(r—e)...3—¢)(2—¢)

B e = o T b —r 140 e o)1) 2209
ft holds I (r+2—¢)T(s —r — 2)
T2— o) = R(s,r,e)l'(e). (2.204)
Expand this function in powers of ¢
R(s,r,e) = Ap+ Bre + O (%) . (2.205)

“From now on, ”the terms ¢2"” means ”the terms proportional to £27”,
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Our integral now can be evaluated using the master formula (2.91])

M4—D/ a7 (€2)TN317:90
(2m)P [€2 — m2(1 + \)]®

i(—1)r*
- 153%21)“(5) [m*(1+ X)) "2 {AvAR[A — In(1 + N)] + BrAx + ArBy},
(2.206)
where we have set C'=m?(1+ \), and
1 m2
A=——1—hn (47m2> : (2.207)

We also omitted O(e) terms. This formula was actually used whenever we dealt
with a divergent loop integral.

Let us return back to our original problem. It turns out, we need to categorize
our terms in more detail (in order to do the A-expansion properly). If we look
at , we can see that there is no problem with the terms ¢*. These terms
contain only the loop momenta and not the external momenta that are hidden
inside the vectors ¢;. In fact, they cannot contain them.

It is different for the terms ¢2. These could contain some external momenta,
but they do not necessarily have to. For instance, we can just choose two ¢ from
the first bracket and the metric tensor from the second one, which is a term with
two ¢ and no external momenta.

The number of the external momenta contained within a term is actually
related to some other characteristics of the term via the following self-evident
formula

e+l—2n=d, (2.208)

where e is the number of the external momenta, [ is number of the loop momenta,
n is the power of 1/m? the term is proportional to, and d is the mass dimension
of the entire expression. Consequently, we have

e=d—1+2n. (2.209)

For instance, the mass dimension of our expression is 0. If we choose one ¢ from
the first bracket and a second ¢ from the second one, we have [ =2, n =2, e = 2,
and the formula holds.

We should have a good control of our terms now and should be able to sum-
marize our general algorithm:

1. Categorize terms according to the number of the loop momenta.

2. Sub-categorize each categorized term according to the power of 1/m? it is
proportional to.

3. Perform the symmetric integration (depends on the number of the loop
momenta, and is dimension-dependent for divergent terms).

4. Perform the loop integration using the master formula (2.91)) or using
(2.206).
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5. Perform the A-expansion up to the correct order (so there are four external
momenta in the result).

6. Plug into the processed terms the expressions for ¢; and .
7. Integrate over the Feynman parameters.

8. Use the symmetrization formulae and sum it all up.

Type of terms | Divergence | # of ext. mom. | A\-expansion stops at
I quartic 0 A2
Pm—2 quadratic | 0 A2
?m~ quadratic 2 A
Om? logarithmic | 0 A2
Om2 logarithmic | 2 AL
Om—4 logarithmic | 4 0

Table 2.1: The vector bubble terms summary

All the contributing terms are summarized in the Tab. The full expres-
sions can be found in the enclosed notebook bubble.nb. The notation should be
self-explanatory.

2.4.2 'Triangle diagrams
The triangle diagram is in the Fig. [2.23]

Figure 2.23: The vector triangle diagram

The relevant expression reads (after the Feynman parametrization and the
loop momentum shift)

0,100 (P1, 12) = —€' 4‘D/ dx / & Ve (2.210)
YO wes\P1,P2) = —€ 1 . Fa (2m)P [02 — m2(1 + \)]3’ ‘

where

NMA,,QU = PP (0 + ¢1)Viaras (01, 0+ 1, =1 — q2)
pe (0 + q2)Vipp, (P2, £ + G2, =1 — q3)
PP+ g3) Voo (2.211)
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Since the mass dimension of the expression is 2 in this case, the formula (2.209)
takes a form
e=2—142n. (2.212)

The contributing terms are shown in the Tab. and the full expressions can
be found in the enclosed notebook triangle.nb. We can see that the worst diver-
gence vanishes algebraically (meaning the (% terms are zero due to the algebraic
structure of the expression).

Type of terms | Divergence | # of ext. mom. \ A-expansion stops at
0 sextic vanishes algebraically
05 quartic 0 2

(A m=2 quadratic | 0 A2

m~ quadratic | 2 Al

(Am =6 quadratic 4 0

?m° logarithmic | 0 A2

>m2 logarithmic | 2 AL

Pm—4 logarithmic | 4 0

Om?° finite 2 Al

Om=2 finite 4 0

Table 2.2: The vector triangle terms summary

Apart from that, the terms ¢ do not contain any external momenta even
though they could (again, this is due to the algebraic structure). That means we
do not have to sub-categorize these terms according to the power of 1/m?.

It also means that we do not need the symmetric integration formula for six
loop momenta (because there can be only four non-contracted loop momenta in
the expression since there are only four Lorentz indices and there are no other
momenta,).

2.4.3 Box diagrams
The worst diagram is in Fig. [2.24]

Figure 2.24: The vector box diagram
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The relevant expression reads

4 4-D d (1l)€ j\CELQU
@uygo(php%pii =€eu - XF3 m2(1 T )\)]47 (2213)
where

NEVQU = P(SQal (6 + ql)VMOqOQ (pla l+ qi1, —{ — QQ)

POQﬂl (é + q2>VVﬁlﬂ2 (p27 E + q2, _E - Q3)

Pﬁrﬂ (ﬁ + q3)‘/97172 (p3> 0+ gs, —{ — Q4)
P7261 (g + q4)V<T5152 (p47 g + Q4; _g - ql) (2214)

The formula (2.209) takes a form

e=4—1+2n. (2.215)

The contributing terms are shown in the Tab. and the full expressions
can be found in the enclosed notebook box.nb. The worst two divergences vanish

algebraically and the ¢% terms do n
not need the symmetric integration

ot contain any external momenta (so we do
formula for eight loop momenta).

Type of terms | Divergence | # of ext. mom. \ A-expansion stops at
012 octic vanishes algebraically
010 sextic vanishes algebraically
08 quartic 0 2

Om—2 quadratic | 0 A2

Sm~1 quadratic 2 Al

Om =6 quadratic | 4 0

Am? logarithmic | 0 A2

Am—2 logarithmic | 2 Al

m—? logarithmic | 4 0

?m? finite 2 Al

?m=2 finite 4 A0

Om?° finite 4 0

Table 2.3: The vector box terms summary

The terms ¢ unfortunately contain external momenta so the following formula

has to used

(%)’

eff.
alplolsluly = 55

)(gaﬁgvéguu‘+---), (2.216)

+2)(D+ 4

where the bracket contains 15 terms in total.

2.4.4 'Total polarization tensor

At the end of the whole procedure, we got the vector QED polarization tensor

se = FD

uv oo

uv oo

+I¢

uroo*

+ I

pv oo

(2.217)
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1
_80:*:'14:r2
' (-2g"7 7P pl-p2” —54 gHP g"7 pl-p2® —2g"" g7 pl-p2” -
54 g% pl" p1P pl-p2 — 54 g7 p3" p1P pl-p2 -
2 p3 p2Ppl-p2+27 g p1”" pl1? pl-p2 +
27 g"P p3 p1 pl-p2+27 g4 p1P p1% pl-p2 +
27 g"P plY p27 pl-p2 — 27 g" P p3" p2° pl-p2 -
27 g" p1P p27 pl-p2 —27g"FP p1" p3° pl-p2 -
27 g"P p3  p37 pl-p2+ 25" p1P p3° pl-p2 -
2" p2P p3° pl-p2+50g"7 g"Ppl-p3pl-p2 —
54g"F g"% pl-p3pl-p2—54g"" g% pl-p3pl-p2 -
2847 g"Fpl-p3® —2g"P "7 pl-p3” — 54 gH” g7 pl.p3’ -
54 g% pl" p1P pl-p3 —54 g7 p1" p2P pl-p3 -
2" p3" p2Ppl-p3 +27 g p1”" pl1? pl-p3 +
27 g" p1P pl1% pl-p3 +27 gV p2°P p1° pl-p3 +
25g"P p1" p29 pl-p3 —2g"F p3" p27 pl1-p3 -
27 g plP p27 pl-p3 — 27 gV p2°P p2° pl-p3 -
27 g"P pl¥ p37 pl-p3 +27 "V p1P p37 pl-p3 -
27 g p2P p3 pl-p3 +p2H (542" plPpl-p2 +
2g"Ppl9 pl-p2+2p17 (p1° p3% +p2°p37 + 277 pl-p2) +
54g"  plPpl-p3+54g"% p2Ppl-p3 —25g"Ppl17 pl-p3 —
27" P p2° pl-p3+27 2" P p37 pl-p3 +p3"
(2p2° pl? +27p1° (p17 +p29 +p39)—54 277 pl-p3)) +
p3t(—54g" " p2Ppl-p2-25g" P p1% pl-p2 +
272" Pp2° pl-p2 272" P p37 pl-p2 +
2p3" (p2P p17 +p1P p27 +27g°% pl-p2) +
28" plPpl-p3+2g"Pp19 pl-p3+p1" (2p1P p27 +
ETplp(plg+p2LT+p30-}+54g'og(pl-p2+p1-p3}}}}

Figure 2.25: The "reduced” polarization tensor for vector QED

The result is displayed in Fig. 2.25] Again, we have thrown away the longitudinal
terms proportional to pf, py or p5.

Clearly, the tensor has the proper structure (it is UV finite and the terms
proportional to two momenta are not present)

2.4.5 Amplitude matching

Again, let us compare the vector QED polarization tensor (Fig. [2.25) with the
effective one (Fig. [2.4)).
The fundamental equation reads

ey — o oe (g1, 92) = 0. (2.218)

uv oo Qv oo
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First, compare only the terms with no metric tensors. Fig. [2.26| shows what we
obtain on the left-hand-side. The linear system in this case is

et — 1280m*m* (g1 — g2) = 0
27¢* — 2560m*m?gy = 0, (2.219)

which has the following solution

_ 29¢4 B 2902
9= o560m2mt  160m?
927 2702

9 - = (2.220)

T 256072mA ~ 160m*

Substituting the solution back into the left-hand-side of our equation leads to
Fig. . Again, the constraint p? = 0 is factorized.

m (p2* (2p1” p37 (p1¥ +p2°) (e — 1280 2" m* (g1 — g2)) +
p3” (2p17 p2° (e — 1280 7" m* (g1 — g2)) +
plf (27" —25607" g2m") (p17 + p27 +p37))) +
p3# (2p3” (' — 1280 7° m* (g1 — g2)) (p17 p2° + 17 p27) +
pl" (2p1P p27 (¢* — 1280 2" m* (gl — g2)) +
p2” (27" — 25607 g2 m") (p17 +p27 +p37))))

Figure 2.26: Matching the terms with no metric tensors

1
P e (pl-p2 +pl-p3 +p2-p3)

(=54p1" p1P g7 +27p1F p17 g*V +27p1" p17 g#F -
27pl " p2F gH7 +27p17 p2P gV +25 M7 P pl-p2 -
27g*P " pl-p2-27g"" g7 pl-p2 +
p3t (27p1" gP7 +27 277 (p1F —p2P)+ 2" F (27p27 - 25p19)) +
p2H (27p1" gP7 +27p1F "7 —25p19 g"F - 27p3" gP7 +
27 p37 g"F) =27 p1F p3¥ "7 +27p17 p3" g"F +
25g"7 g"Ppl-p3—27g"P "7 pl-p3 —27g"" 277 pl-p3 +
25p2F p3¥ g7 — 27 p27 p3¥ gMPf - 27p2° p37 g"V -
25gH7 g P p2.p3+27g"F "7 p2-p3+27g"" gF7 p2-p3)

Figure 2.27: The p? = 0 constraint is factorized

The effective Lagrangian of Euler-Heisenberg type for the case of vector QED
can be then expressed as

062

vec. v\2 v\2
L = Toor [290(Fw ™)’ + 2T(xF F™)° (2.221)
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or

042

vec. _ 2 2\2 2
L = [29(E* — B?)* + 103(E - B)?] . (2.222)

Precisely the same result can be found in [2I], where it has been derived by
completely different means, namely by using the functional methods. Again, one
can also calculate the differential cross section using the formula (2.47))

(da > vee. _ 393a* Wb

2 2
d_Q = 8007{2%(3—{—008 9) s (2223)

where we used s = (2w)?. The identical result is shown in [20].
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3. Functional methods

In this chapter, as a counterpart to the previous one, we shall demonstrate the
power of the functional methods on a ”simple” example. We derive the Euler-
Heisenberg Lagrangian for the case of spinor QED using the Fock-Schwinger
proper time method. The calculation draws heavily on [23] and [25].

3.1 Preliminaries

The general theory of path integrals gives us the following formula for the effective
Lagrangianlﬂ

/d4x Zg = —ilndet Z = —ilndet ( 7 ) , (3.1)
D|a,-0

where

D=i —ed—m (3.2)

is the Dirac operator. Both the logarithm and the determinant are understood
in the operator sense.

The important observation is that it suffices to consider and calculate this
determinant for the case of constant electromagnetic field (meaning constant F,,,).
The reason is that the Lagrangian in question contains no derivatives of the
electromagnetic tensor (see the beginning of the previous chapter).

We can write

Indet Z = Trln (M) : (3.3)
id—m
where we used the famous relation
detexp A =expIr A, (3.4)

and the operator ”Tr” denotes the trace both in the z-space (the position space)
and in the space of Dirac indices.
Next, we perform a little trick

e B .
Indet 2 = Trln C’(z@ ed m)C ]

| C(id —m)C?
[C>i) — e — m)C’_l}
. C>i@ —m)C?

[— (i@ — ed)T — m}

L ()T —m

— Trln (%) , (3.5)

=Trln

=Trln

!This can be proved using the generating functional [25]

2() = / dpdidA, exp [z / d'a (Lo + j“AH)] ,

where we "integrate out” the fermion degrees of freedom. This leads to a Berezin-Grassmann
integral of a gaussian.
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where we used the identity Cy,C~1 = —73. This trick allows us to write

2Indet 7 = Trln (%) +Trin (%)

(i — eA)? —m?
=Trl . 3.6
[ 6

Now we use the following integral formula
ln = / dS zs (B+1i0) eis(a+i0)] (37)

to obtain
_ > d ) )
2Indet ¥ = —/ 8 g-istm?=i0) /d4x tr [<a:|e’8 (i —ed)? |2) — (x]e®*(?) @#) |z) | .
0 S

(3.8)

The trace in the a-space is now written explicitly as [ d*z, whereas the remaining
trace in the space of Dirac indices is denoted by "tr”.
Another needed identity reads

(iff — eA)? = (10, — eA,)(i0" — eA") — SJWFW

— (10, — eA,)? — SUWFW, (3.9)
where ‘
O = 5D 0 (3.10)
This can be proved straightforwardly using
1 1
WY = 510 wh + 51wl
= Juv — 0. (3.11)

Substituting (3.9)) into . 3.8) yields

= *d 4 4
2Indet 9 = _/ as o is(m?=i0)
0 S

{ [trexp (_%O’/JVFMV>:| /d4$ [(x|e’5 10 —eAy)? |CL’>]
- OAHO}y (3.12)
where

Oa,—0 = { [trexp (—i%e%uFW)] /d45€ [($|ei8(ia“7€A“)z|$>} }

Note that we have just used the fact the electromagnetic field is constant which
enabled us to pull the Dirac trace out of the integral.

(3.13)

Au=0
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3.2 Dirac trace

We are now ready to calculate the Dirac trace [the first part of the expression
(3.12)]. But first, we need to treat the (constant) electromagnetic field in some

way. We define two quantities a, b

1

0 b =B =B’ = —CF, "

1
abEE-B:Z( F, F*") =
and set
0 0 O
0 0 b
p
= 0 —b 0
a 0 O
Two o0, matrices are needed
0O 0 ¢ O
10 0 0 —i B
030_ Z 0 0 O Y 0-12_
0 — 0 0

We used the standard representation of Dirac matrices to obtain these.

From this, we have

% 0
0 —2
mw
Ok’ %ia 0
0 —2a

o O O

21a
0
2b
0

o O O

1
nd

0

—2ia

0

—2b

1
5

0 0
0 0
10
0 —1

The matrix exponential was evaluated using Mathematica

CoZ 0
18€ 0 Co?
exp | —— o, " | = _
2 SaZ 0
0 —suz
where
ca = cosh(aes)
Sq = sinh(aes)
__ _iebs
Zz =€ y

from which we can easily see that

SaZ
0
Ca2

0

0
— 847
0

CaZ

trexp (—%UWF’“’> = 4 cosh(aes) cos(ebs).
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)



3.3 Spatial trace

Processing the second part of (3.12) (the part with f d'zr) is a bit harder. First,
we define

Pu = 10, [T, Pv] = =19 (3.21)

We need a suitable electromagnetic potential for our constant electromagnetic
tensor. The general solution for this problem is a linear function

1
AM([L’) = _§(FNV + S;u/)xy + O;“ (322)

where F),, is our constant electromagnetic tensor, S, is any constant symmetric
matrix, and C), is any constant vector. We set C, = 0, and

0 00 —a
0O 00b O
Sy = 0o b0 0l (3.23)
—a 0 0 O
SO
Ay(z) = (0 —bza 0 axp). (3.24)
Now we define an auxiliary Hamiltonian
H = (i0, — eA,)?
=P — (p1 +bw2)? — p — (ps — azo)?. (3.25)
Using the BCH formula
eABe—A:iﬁ C,=1A,C,_1] Co=B (3.26)
— nl ; n = y “n—1] 0o=45o, .
the Hamiltonian can be recast into a separated form
H = H,+ H,, (3.27)
where
H,= o e (p(z) — ezang)e_ipg%
Hy=e o (—p2 — e®b?ad)e o (3.28)
For instance, BCH formula gives us [via (3.21))]
QB 2 mE g {Zpop:z’xg} N {Zpop:a’ {zpopz’%” ‘o
ea ea ea
_ 2 2xops pg
=T~ 2,2
ea e%a
2
- (:UO - @> , (3.29)
ea
which then leads to
pa — (ps — amp)? (3.30)
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in (3.25]). The other half is solved in the same way. The matrix element in ({3.12])
now can be written as

(z]e™H|z) = (z3z0|e"e|2073) (T2 0|21 29). (3.31)
Using
exp (e’ Be ) = eePe (3.32)
we can write ,
eisHa — elpgf?’e (p0,€ a 362) ZPOPS ) (333)

Now, let us process the first element

dpodpsdppdpsdgedgsdgndys
(x3m0]e H“]x0x3>:/ O s U0 (o | pops)

(27)®

ipQP3

p3p0|e ca |qOQ3>

q3qo |ezs po—etatag) | 0q3>

ipQP3

ngole ea ‘popz,)
p3p0\:v0333> (3'34>

{
{
{
{

where we used ([3.33]), and inserted eight relations of completeness. Using
(x|p) = e (3.35)

on pairs (zolpo), (zalps), (phlo), (phls), we obtain

(xole” | zoxs) = / dedp?)deC}gg(;ququ%d% g0 (Po—p)+iz3(ps—p})
s

ipgP3
(p3p0|e ca |C]0€I3>

'LS 62a2$
(g3q0le o 0 | dods)

<Q3QO|e e \p0p3> (3.36)
and using
(pspole ™ qoas) = e (21)%8(po — 40)8(ps — gs)
<Q3QO‘eZS(p° <t IO)’%%) = 27“5((]3 — %)(qo,els o e2a2x%)"¥6>
(dhdple™ 5" |phh) = e (2m)0(ply — )0 (0 — df), (3.37)
we get
(wwole™ e |zos) = 46a2 /dpo (pole™* =" "40) py). (3.38)

We can calculate this element in an elegant way. Consider the Hamiltonian
of the harmonic oscillator

2 2,2
_ Dby , WXy
Hy =— )
5 + 5 (3.39)
It holds |
Hoe In) = (n " 5) n). (3.40)



The following matrix element can be easily calculated

ea

< | GQiSHOSC.
472

Po)- (3.41)
Using the energy basis and (3.40)), we get

e , . ]
m;/dpo [(po|n)|” exp {223&) (n+ 5)]

ea eisw

ea

e <p |62isHosc.
472

= —— 3.42
27 1 — e2isw’ ( )
where we used normalization of the oscillator wave functions
/ dpo |(poln)|? = 27 (3.43)
To recover the element (3.38)), we need to substitute w = iea in (3.42)).
The result is ca
isH
@ =\ 3.44
(wazole™™ |zos) 47 sinh(eas) (344)
The second element can be processed analogously
isH eb
<x2x1|e b|$1$2> = (345)

4misin(ebs)

3.4 Final expansion

Now we can combine all the previous expressions. Substituting (3.44)), (3.45),

and ((3.20)) into (3.12]), we obtain

—ilndet 7 = /d4x — % e is(m?=i0) eQabC9Sh<eaS) C.()s(ebs) L .
872 s sinh(eas) sin(ebs) s
(3.46)
If we compare this with (3.1]), we can see that
1 [ds i m2 cosh(eas) cos(ebs) 1
‘,E/pe - e is(m*—i0) | 2 b i 3.47
T 32 o S ¢ c sinh(eas) sin(ebs) 2 (3:47)
This is the Euler-Heisenberg Lagrangian in all orders for spinor QED.
Let us expand the integrand in powers of €2
6—2(012 — %) — 64—S() +O (%) ] 7m0 (3.48)
3s 45 ’ '
and restore the original variables using (3.14)
a' 2% + V' = (B? - B?)’
a’h’ = (E-B)”. (3.49)
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So

a* + 5a%b* +b* = (a* — 2a** + b*) + 7(a’V?)

— (B> -B?)’+7(E-B)”. (3.50)
We find that
c%ﬁ. _ Q(EQ . BQ)/ % e—is(mQ—iO)
6 0 S
+ 207 [(E*—B*)?+7(E -B)’] +--- (3.51)
45mA ' '

The first (divergent) term can be absorbed into the kinetic term F,, F* of the
Maxwell Lagrangian, which leads to the charge renormalization.

The second term has been already integrated. We can clearly see that it is the
same formula we have derived in the previous chapter using the direct amplitude
matching.
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Conclusion

In the first part of the thesis, we have successfully derived effective Lagrangians
of the Fuler-Heisenberg type in the lowest order for the case of spinor, scalar and
vector QED. All the results coincide with those one we can find in the literature.
Note however that most common way of evaluating the effective Euler-Heisenberg
Lagrangian is based on functional methods, not on a direct diagrammatic calcu-

lation. The results are summarized in the following table

Version of QED | coeff. ¢q | coeff. ¢y | coeff. dy | coeff. dy | coeff. r
spinor 1/90 7/360 2/45 14/45 139/32400
scalar 7/1440 | 1/1440 | 7/360 1/90 17/64800
vector 29/160 | 27/160 | 29/40 27/10 393/800
We use the following notation
CY2 AV AY
o%ff. = ﬁ [Cl(FuuF ) + 62(*FMVF ) }
2
Q
Zir. = = (B — BY)? + du(E - B)?]
do  ra* b 5 o
d—Q—?ﬁ(?)—f-COS 9) .

In the second part, we have used functional methods to calculate the effective
Lagrangian in the lowest order for the case of spinor QED. The calculated result

match the one obtained via the diagrammatic methods.
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