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Preface

It is a well known fact that the classical electrodynamics is a linear theory. There
is no interaction between two electromagnetic waves in the classical vacuum,
which means one wave simply passes through another without any mutual influ-
ence. In other words, the waves behave like they do not know about each other.
However, the situation is quite different in quantum electrodynamics due to the
polarizability of vacuum which is an purely quantum effect.

In quantum electrodynamics (QED), charged virtual pairs can emerge from
”nothingness” and mediate interaction between photons. This means quantum
electrodynamics gives some nonlinear corrections to the classical theory. These
correction can cause a series of interesting and fascinating non-classical effects
including light by light scattering, photon splitting in vacuum or vacuum bire-
fringence.

This area of study proved to be a fertile soil for both the experimental and the
theoretical physics. First thoughts on this subject appeared shortly after Dirac
proposed his hole theory in 1928, and the discovery of positron in 1932. A brief
historical overview of this research area is given in the first chapter.

In this thesis we are interested in Lagrangians of Euler-Heisenberg type, which
function as the low-energy effective description of those nonlinear corrections.
The first part of the thesis is devoted to a detailed derivation of one-loop effective
Lagrangians of Euler-Heisenberg type in the lowest (four-photon) order in cases
of various versions of QED (spinor QED, scalar QED and vector QED). This
is accomplished by the direct calculation of one-loop diagrams and subsequent
matching the calculated amplitudes to the amplitude given by the effective theory.
The case of vector QED is calculated using the unitary gauge, which probably
has not been done to this date.

In the second part, we demonstrate an alternative approach that is based
on the path integral formulation. We derive the Euler-Heisenberg Lagrangian
for spinor QED by the calculation of the determinant of the Dirac operator in
constant background electromagnetic field.
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1. Historical overview

Since there is a great number of published articles and other literature on this
subject, we restrict ourselves only to a few. A part of this overview is based on
[1].

The possibility of quantum-induced nonlinear corrections was first proposed
by Halpern who published a brief note that light by light scattering could occur.

Debye and Heisenberg privately discussed this, and Heisenberg then assigned
his student Hans Euler a task to study this problem using the density matrix
formalism Heisenberg had developed. This later became Euler’s PhD thesis that
he defended in 1936 at Leipzig [2].

A year later, in 1935, Euler and another Heisenberg’s student, Bernhard Kock-
el, published a paper, where they gave results for the light-light scattering ampli-
tudes in the low frequency limit [3] (meaning the energy of the scattering photon
is small compared to the mass of electron). In their paper, they computed the
leading quantum correction to the Maxwell Lagrangian

L =
E2 −B2

2
+

1

90π

~c
e2

1

E2
0

[
(E2 −B2)2 + 7(E ·B)2

]
, (1.1)

where E0 ≡ e/(e2/mc2)2. They also calculated the light-light scattering cross-
section

σ ∼
(
e2

~c

)4( ~4

mc

)4
1

λ2
(1.2)

In modern language, we can say that they studied QED vacuum polarization in
the limit of constant background field.

Not long after that Akhieser, Landau and Pomeranchuk published similar
results for the high frequency limit, which later became Akhieser’s PhD thesis
[4].

Euler and Heisenberg published a paper [5] in 1936 in which they significantly
extended the Euler-Kockel results. They obtained a closed-form expression for
the full nonlinear correction to the Maxwell Lagrangian

L =
e2

~c

∫ ∞
0

dη

η3
e−ηiη2(E ·B)

cos
[
η
Ec

√
E2 −B2 + 2i(E ·B)

]
+ c.c.

cos
[
η
Ec

√
E2 −B2 + 2i(E ·B)

]
− c.c.

+ E2
c +

η2

3
(B2 − E2)

 ,

(1.3)

where Ec ≡ m2c3/e~ ≈ 1016 V/cm is the critical field strength.
This correction is non-perturbative – it incorporates all orders in the constant

background electromagnetic field. One can recover the original Euler-Kockel re-
sult (1.1) by expanding this formula in a weak-field field expansion to quartic
order.

Remarkably, they were able to identify the physical significance of the sub-
traction terms in the formula. The first term corresponds to the subtraction of
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the infinite free-field effective action. The second term is related to the charge
renormalization.

Finally, the formula has the form that we nowadays refer to as the ”proper-
time form”

Euler and Heisenberg used a brute force in their calculation, working with
exact solutions of Dirac equation in constant background. Soon after their paper,
Weisskopf presented [6] a significantly simplified computation of the effective
action not just for spinor QED, but for scalar QED as well. He worked directly
with the spectrum of the Dirac and the Klein-Gordon operators rather than with
their eigenfunctions.

Later the problem was studied by Feynman [7] who viewed QED processes as
evolution in proper-time (thanks to Fock) and tried to extend his path integral
formulation of non-relativistic quantum mechanics to the relativistic theory of
Dirac. His findings are now known as the worldline path integral formalism.

Soon after Feynman’s work, Schwinger published an essential paper [8], where
he reformulated the results of Euler and Heisenberg in the new language of renor-
malized QED. He also viewed QED processes as evolution in proper-time, but
instead of the path integral method, he used operator solutions.

The paper also presents the exact result for two special cases, first, the uni-
form background treated by Euler and Heisenberg, and second, the plane-wave
background, for which the Dirac equation had been solved by Volkov [9].

There is also a more recent paper by Dittrich [10], where the effective action is
derived using Schwinger’s proper-time method for the case of constant magnetic
field and a laser field.

The actual problem of light-light scattering in diagramatically formulated
spinor QED was attacked by Karplus and Neuman in 1950 [11]. They calculated
the relevant one-loop box Feynman diagrams and gave expressions for various
form factors in the corresponding amplitude as integrals over Feynman param-
eters. In the end, they performed low-energy expansion of the amplitude and
obtained a result which perfectly matched the amplitude calculated using the
effective Lagrangian (1.1).

Later was the same problem studied by Constantini, De Tollis and Pistoni
[12], [13]. They exactly calculated the rank-4 polarization tensor in terms of
rational, logarithm and dilogarithm function using dispersion relations and they
also provided the exact amplitudes for light-light scattering, photon splitting and
photon coalescence into photons on nuclei. Delbrück scattering (the deflection of
high-energy photons in the Coulomb field of nuclei) was studied as well.

Recently, these long-established results for the low-energy photon-photon scat-
tering have been questioned by Kanda and Fujita [14], [15] who claimed that the
differential cross-section formula should read

dσFK

dΩ
=

α4

(12π)2ω2
(3 + 2 cos2 θ + cos4 θ), (1.4)

which is in contradiction with the well-known result (see for example the article
itself, or any good book on QED)

dσ

dΩ
=

139α4

(180π)2

ω6

m8
(3 + cos2 θ)2. (1.5)
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This has been rebutted by Liang and Czarnecki [16]. They have shown that
this different result originated from erroneous manipulations with unregulated
divergent integrals. The result (1.4) is also in contradiction with the current
experimental upper limit [17].

So far, we have talked only about spinor QED (apart from Weisskopf). There
is a paper by König [18], in which he calculated the polarization tensor for the pro-
cess Z → γγγ via scalar loops in MSSM in the low-energy limit. This particular
process is very similar to the scalar light-light scattering.

In a related paper by Jiang and Zhou [19], the polarization tensors for the
processes Z → γγγ and γγ → γγ were calculated via vector boson loops in the
standard model.

Jikia and Tkabladze [20] calculated the process γγ → γγ as well and presented
explicit formulae for the helicity amplitudes.

And finally, there is a quite old article by Vanyashin and Terent’ev [21]. They
calculated the nonlinear corrections to the Lagrangian of constant electromagnetic
field, caused by the vacuum polarization of charged vector field. In other words,
they computed the Lagrangian of Euler-Heisenberg type for vector QED.
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2. Diagrammatic approach

In this chapter, we derive one-loop effective Lagrangians of Euler-Heisenberg type
in the lowest (four-photon) order for spinor, scalar and vector QED. This is carried
out through direct matching of one-loop four-photon amplitudes to the effective
theory.

First the relevant one-loop amplitudes are calculated in the underlying theory
in a low-energy approximation (meaning the energy of the participating photons
is considered much lower than the mass of the mediating charged particle). Sub-
sequently the results are fitted to the corresponding amplitude obtained via the
effective theory.

We start with a preparatory analysis of the effective theory.

2.1 Effective theory of Euler-Heisenberg type

2.1.1 Lagrangian form

It is clear that the effective theory that describes light by light scattering and
related processes should be characterized by a Lagrangian that is formed only
of from the electromagnetic fields Aµ since there are no other fields effectively
present.

Also the theory should be gauge invariant (the underlying theory certainly
is), therefore, to automatically ensure this, the gauge invariant field strength
tensor Fµν should be used instead of the potential Aµ for the construction of the
Lagrangian.

We consider only four-photon interactions, therefore, there should be in total
four Fµν tensors in the Lagrangian. Obviously all their Lorentz indices have to
be contracted since the Lagrangian is a scalar.

We are not interested in terms containing derivatives of the field strength
tensor since these are terms of a higher mass dimension. A general structure of
suitable Lagrangian terms then should be

F ◦◦F
◦
◦F
◦
◦F
◦
◦, (2.1)

with various contractions of the indices (which are represented by ◦ and ◦). There
are many possible contractions, however, many of them are zero (as a consequence
of the anti-symmetry of Fµν). It turns out that there are only three independent
terms in total. Their mass dimension is 8 and they are (up to some numerical
constants)

F2, G2, FG, (2.2)

where

F ≡ FµνF
µν = −2(E2 −B2)

G ≡ ?FµνF
µν = 4(E ·B) (2.3)

are the two fundamental invariants of electromagnetic field and

? Fµν ≡
1

2
εµν%σF

%σ (2.4)
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is the Hodge dual of Fµν . The last term in (2.2) is a pseudoscalar, hence, it must
be dropped if one wishes to maintain parity conservation (parity is conserved in
the underlying theory).

This reasoning leads us to the final form of the effective Lagrangian1

Leff.(g1, g2) ≡ g1(FµνF
µν)2 + g2(?FµνF

µν)2. (2.5)

The coupling constants g1, g2 of dimension−4 have been added to keep the correct
dimension of the Lagrangian (which must be 4). Our task is to find their values for
the case of spinor, scalar and vector QED. The Lagrangian then can be visualized
as a combination of two effective vertices, which can be seen in Fig. 2.1.

g1 g2

Figure 2.1: The effective vertices

2.1.2 Invariant amplitude

We now proceed with evaluation of the amplitude of a four-photon process. The
initial state and the final state are taken as

|i〉 = |0〉

|f〉 =

[
4∏
i=1

a†(pi, λi)

]
|0〉, (2.6)

where pi are the momenta and λi = 1, 2 are the polarizations of the photons. The
photons are taken as outgoing, so

4∑
i=1

pi = 0, (2.7)

and as on-shell, so
p2
i = 0, i = 1, 2, 3, 4. (2.8)

Conservation (2.7) together with the on-shell condition (2.8) implies

p3 · p4 = p1 · p2

p2 · p4 = p1 · p3

p1 · p4 = p2 · p3, (2.9)

and also
(p1 · p2) + (p1 · p3) + (p2 · p3) = 0. (2.10)

1Alternatively, we could have used (FµνF
µν)2 and FµνF

ν%F%σF
σµ as a different tensor basis

instead of (FµνF
µν)2 and (?FµνF

µν)2.
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The potential Aµ is decomposed as follows [22]

Aµ(x) =
2∑

λ=1

∫
d̃3p

[
εµ(p, λ)a(p, λ)e−ip·x + ε∗µ(p, λ)a†(p, λ)eip·x

]
, (2.11)

where εµ is the polarization vector, E ≡ p0 is the photon energy, and

d̃3p ≡ d3p

(2π)3/2(2E)1/2
. (2.12)

By differentiation we get

∂%Aµ(x) = i

2∑
λ=1

∫
d̃3p

[
−p%εµ(p, λ)a(p, λ)e−ip·x + p%ε

∗
µ(p, λ)a†(p, λ)eip·x

]
. (2.13)

We now begin analyzing the first term in (2.5). The second term is processed
analogously later. Using

FµνF
µν = 2(∂µAν∂

µAν − ∂µAν∂νAµ), (2.14)

we have

L1 ≡ g1(FµνF
µν)2

= 4g1(∂µAν∂
µAν∂%Aσ∂

%Aσ

− 2∂µAν∂
µAν∂%Aσ∂

σA%

+ ∂µAν∂
νAµ∂%Aσ∂

σA%). (2.15)

From this, using (2.13) and (2.15), we compute the element of the S-matrix in
the first order of the perturbation theory (the superscript denotes the first order
and the subscript denotes the first term of the Lagrangian)

〈f|S(1)
1 |i〉 = i

∫
d4x 〈0|

[
4∏
i=1

a(pi, λi)

]
L1(x)|0〉

= iM1(2π)4δ(4) (p1 + p2 + p3 + p4)
4∏
i=1

1

(2π)3/2(2Ei)1/2
, (2.16)

where M1 is the invariant amplitude and Ei are the photon energies.
For the amplitude M1, we find

M1 = 4g1

∑
π

[(pπ1 · pπ2)(επ1 · επ2)(pπ3 · pπ4)(επ3 · επ4)

− 2(pπ1 · pπ2)(επ1 · επ2)(pπ3 · επ4)(επ3 · pπ4)
+ (pπ1 · επ2)(επ1 · pπ2)(pπ3 · επ4)(επ3 · pπ4)], (2.17)

where εi ≡ ε(pi, λi). The summation runs over all permutations of four ele-
ments and each permutation πk is understood to be a function of its index, i.e.2

πk ≡ π(k). The summation is a consequence of the fact that there are 4! = 24

2For instance, we have πk = k for the identity permutation.
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possible Wick contractions in (2.16) and each possible contraction corresponds to
a permutation. One can easily see that the result reflects (in a way) the structure
of (2.15). Aside from the summation, it is basically its Fourier transform.

The amplitude can be further rewritten as

M1 = Γ1
µν%σ(p1, p2, p3, p4)εµ1ε

ν
2ε
%
3ε
σ
4 , (2.18)

where

Γ1
µν%σ(p1, p2, p3, p4) ≡ sym4 Θ1

µν%σ(p1, p2, p3, p4)

≡ Θ1
µν%σ(p1, p2, p3, p4) + Θ1

νµ%σ(p2, p1, p3, p4)

+ Θ1
%νµσ(p3, p2, p1, p4) + . . . , (2.19)

and

Θ1
µν%σ(p1, p2, p3, p4) ≡ 4g1[(p1 · p2)(p3 · p4)gµνg%σ

− 2(p1 · p2)(p3)σ(p4)%gµν

+ (p1)ν(p2)µ(p3)σ(p4)%]. (2.20)

The ”sym4” operator denotes the complete tensor symmetrization (without any
numerical prefactors) that is simultaneously acting on both Lorentz indices and
arguments (which are the momenta). The tensor Γ1

µν%σ is called the polariza-
tion tensor and it is (as we can see) the invariant amplitude stripped off the
polarization vectors.

Owing to the following symmetries of Θ1
µν%σ

Θ1
µν%σ(p1, p2, p3, p4) = Θ1

νµ%σ(p2, p1, p3, p4)

= Θ1
µνσ%(p1, p2, p4, p3)

= Θ1
%σµν(p3, p4, p1, p2), (2.21)

we easily obtain that

Γ1
µν%σ(p1, p2, p3, p4) = 32g1[(p1 · p2)(p3 · p4)gµνg%σ

+ (p1 · p3)(p2 · p4)gµ%gνσ

+ (p1 · p4)(p2 · p3)gµσgν%

− 2(p1 · p2)(p3)σ(p4)%gµν

− 2(p1 · p3)(p2)σ(p4)νgµ%

− 2(p1 · p4)(p2)%(p3)νgµσ

+ (p1)ν(p2)µ(p3)σ(p4)%

+ (p1)%(p3)µ(p2)σ(p4)ν

+ (p1)σ(p4)µ(p2)%(p3)ν ]. (2.22)

Now, for the second term of the effective Lagrangian (2.5), the situation is a
bit more complex. Let us similarly define

L2 ≡ g2(?FµνF
µν)2. (2.23)
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Using (2.4) we get

L2 =
g2

4
εαβγδεµν%σF

αβγδF µν%σ, (2.24)

where
Fµν%σ ≡ FµνF%σ. (2.25)

Since it holds

det(G) ≡ det


gαµ gβµ gγµ gδµ
gαν gβν gγν gδν
gα% gβ% gγ% gδ%
gασ gβσ gγσ gδσ

 = −εαβγδεµν%σ, (2.26)

we can use the Leibniz determinant formula

det(G) =
∑
π

sgn(π)
4∏

k=1

Gkπk (2.27)

to deduce that

L2 = −g2

4
F µν%σ(Fµν%σ − Fνµ%σ + Fν%µσ + . . .)

= −6g2F
µν%σF[µν%σ], (2.28)

where [ ] denotes total tensor anti-symmetrization (including the 1/4! prefactor).
Again, because of the symmetries of Fµν%σ

Fµν%σ = −Fνµ%σ
= −Fµνσ%
= F%σµν , (2.29)

we get
L2 = −2g2F

µν%σ(Fµν%σ + Fµσν% + Fµ%σν). (2.30)

Finally, inserting

Fµν%σ = (∂µAν − ∂νAµ)(∂%Aσ − ∂σA%) (2.31)

into the expression yields

L2 = −8g2∂
µAν∂%Aσ(∂µAν∂%Aσ − 2∂µAν∂σA% + ∂νAµ∂σA%

+ ∂µAσ∂νA% + ∂σAµ∂%Aν + ∂%Aµ∂νAσ

+ ∂µA%∂σAν − ∂σAµ∂νA% − ∂µAσ∂%Aν
− ∂µA%∂νAσ − ∂%Aµ∂σAν). (2.32)

Analogously as in the previous case we have

M2 = Γ2
µν%σ(p1, p2, p3, p4)εµ1ε

ν
2ε
%
3ε
σ
4 , (2.33)

where
Γ2
µν%σ(p1, p2, p3, p4) ≡ sym4 Θ2

µν%σ(p1, p2, p3, p4), (2.34)
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and from the Lagrangian (2.32) we extract

Θ2
µν%σ(p1, p2, p3, p4) ≡ −8g2[(p1 · p2)(p3 · p4)gµνg%σ

− 2(p1 · p2)(p3)σ(p4)%gµν

+ (p1)ν(p2)µ(p3)σ(p4)%

+ (p1 · p2)(p3)σ(p4)µgν%

+ (p1)ν(p2)%(p3 · p4)gµσ

+ (p1)ν(p2 · p3)(p4)µg%σ

+ (p1 · p2)(p3)ν(p4)%gµσ

− (p1)ν(p2)%(p3)σ(p4)µ

− (p1 · p2)(p3 · p4)gµσgν%

− (p1 · p2)(p3)ν(p4)µg%σ

− (p1)ν(p2 · p3)(p4)%gµσ]. (2.35)

Unfortunately, computing the polarization tensor (2.34) is not so easy as in
the previous case because Θ2

µν%σ does not possess any apparent symmetries (unlike
Θ1
µν%σ).

After summing over all of the 24 permutations of Θ2
µν%σ (which was done

on the computer in FeynCalc and Wolfram Mathematica), we found that the
polarization tensor Γ2

µν%σ consists of 60 terms (see Fig. 2.2).

Figure 2.2: The polarization tensor Γ2
µν%σ
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In conclusion, for the total invariant amplitude we then have

M≡M1 +M2 = Γµν%σ(p1, p2, p3, p4)εµ1ε
ν
2ε
%
3ε
σ
4 , (2.36)

where

Γµν%σ(p1, p2, p3, p4) ≡ Γ1
µν%σ(p1, p2, p3, p4) + Γ2

µν%σ(p1, p2, p3, p4) (2.37)

is the total polarization tensor, which is shown in Fig. 2.3.

Figure 2.3: The total polarization tensor Γµν%σ

The total polarization tensor can be also further rewritten by eliminating the
momentum p4 using (2.7) and (2.9), see Fig. 2.4.

12



Figure 2.4: The total polarization tensor – the momentum p4 eliminated

2.1.3 Transversality

Using (2.7) and (2.8) it can be checked (by hand or via FeynCalc) that both
(2.22) and (2.34) are transverse, i.e.

Γ1
µν%σp

µ
1 = 0, Γ2

µν%σp
µ
1 = 0

Γ1
µν%σp

ν
2 = 0, Γ2

µν%σp
ν
2 = 0

Γ1
µν%σp

%
3 = 0, Γ2

µν%σp
%
3 = 0

Γ1
µν%σp

σ
4 = 0, Γ2

µν%σp
σ
4 = 0 (2.38)
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Obviously (2.37) is then transverse as well. This is quite natural since we are
working with a gauge invariant theory.

2.1.4 Cross sections

Furthermore, we use the previous results to derive some formulae for differential
and total cross sections respectively.

The general formula for elastic binary process differential cross section (in
center-of-mass system) is given by

dσ

dΩ
=
|M|2

64π2s
, (2.39)

where |M|2 is the square of the invariant amplitude and s is the square of the
center-of-mass system energy [22].

We now need to compute |M|2. For the sake of simplicity, suppose that the
photons are unpolarized (i.e. we are averaging over the initial polarizations and
summing over the final ones). The unpolarized amplitude then reads

|M|2 =
1

4

2∑
λi=1

i=1,2,3,4

Γµν%σ(p1, p2, p3, p4)Γαβγδ(p1, p2, p3, p4)εµ1ε
ν
2ε
%
3ε
σ
4ε
∗α
1 ε∗β2 ε

∗γ
3 ε
∗δ
4 .

(2.40)
The photon polarization sum has the following form [23]

P µν ≡
2∑

λ=1

εµ(p, λ)ε∗ν(p, λ) = −gµν + Λµν(p), (2.41)

where Λµν is some longitudinal part (which is gauge-dependent). If Λµν is con-
tracted with any transverse tensor, the result is zero. Using this simple fact,
together with the identities (2.38), we get the final answer

|M|2 =
1

4
Γµν%σ(p1, p2, p3, p4)Γµν%σ(p1, p2, p3, p4). (2.42)

Using FeynCalc, we find

|M|2 = 512{(5g2
1 − 6g1g2 + 5g2

2)[(p1 · p2)2(p3 · p4)2

+ (p1 · p3)2(p2 · p4)2

+ (p1 · p4)2(p2 · p3)2]

− 4(g1 − g2)2[(p1 · p2)(p1 · p3)(p2 · p4)(p3 · p4)

+ (p1 · p3)(p1 · p4)(p2 · p3)(p2 · p4)

+ (p1 · p2)(p1 · p4)(p2 · p3)(p3 · p4)]}, (2.43)

where we used (2.8). After elimination of all the scalar products containing p4

via (2.9) and by subsequent application of (2.10), one gets

|M|2 = 1024(3g2
1 − 2g1g2 + 3g2

2)[(p1 · p2)2 + (p1 · p3)2 + (p1 · p2)(p1 · p3)]2. (2.44)
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Now we can finally substitute (the signs might seem a bit weird since momenta
p1, p2 are outgoing instead of incoming)

p1 · p2 =
s

2

p1 · p3 =
s(cosϑ− 1)

4
, (2.45)

which yields
|M|2 = s4(3g2

1 − 2g1g2 + 3g2
2)(7 + cos 2ϑ)2, (2.46)

where ϑ is the angle between the spatial parts of p1 and p3. Then (2.39) implies

dσ

dΩ
=
s3(3g2

1 − 2g1g2 + 3g2
2)(7 + cos 2ϑ)2

64π2

=
s3(3g2

1 − 2g1g2 + 3g2
2)(3 + cos2 ϑ)2

16π2
. (2.47)

After angular integration, we end up with (the 1/2! prefactor comes from the
fact that there are two identical particles in the final state)

σ =
1

2!

∫
S2

dσ

dΩ
dΩ =

7s3(3g2
1 − 2g1g2 + 3g2

2)

5π
. (2.48)

In the next sections, we start studying our four-photon process in the context
of various versions of QED and fitting the obtained amplitudes to the amplitude
that we found in this section. This will enable us to find the values of the coupling
constants in (2.5).

2.2 Case of spinor QED

The interaction Lagrangian of spinor QED reads3

Lint. = −eψ̄γµAµψ = eψ̄ /Aψ, (2.49)

where ψ is some fermionic field (electron, muon, quark, etc.), Aµ is the electro-
magnetic four-potential, and e is the coupling constant (electric charge).

It is self-evident from the Lagrangian, the lowest order contributions to our
four-photon process are given by fourth-order box diagrams with one closed
fermion loop (see Fig. 2.5).

Figure 2.5: A box diagram

3The normal ordering symbol is omitted.

15



2.2.1 Initial analysis

Let us write down the expression for the relevant element of the S-matrix

〈f|S(4)|i〉 =
1

4!

∫
d4x1d4x2d4x3d4x4 〈0|

[
4∏
i=1

a(pi, λi)

]
T [Lint.(x1)Lint.(x2)Lint.(x3)Lint.(x4)]|0〉. (2.50)

The integrand has the following structure

a1a2a3a4 T [ψ̄1 /A1ψ1 ψ̄2 /A2ψ2 ψ̄3 /A3ψ3 ψ̄4 /A4ψ4], (2.51)

where

ai ≡ a(pi, λi)

ψj ≡ ψ(xj)

/Aj ≡ /A(xj). (2.52)

As we can see, there are 4! = 24 possible Wick contractions of the photon
annihilation operators with the A operators [see the decomposition (2.11)]. There
are also 4! possible contractions of the fermionic operators ψ̄, ψ, however, only
6 of them form a full cycle. This gives us 24 × 6 = 144 possible ways how to
contract the operators.

They are not distinct though. In fact, there are only 6 topologically distinct
diagrams and each one of them is contained 24 times in those 144. This factor
24 = 4! is exactly canceled by the Dyson expansion prefactor in (2.50).

If we denote the contribution of one of these diagrams by Θµν%σ(p1, p2, p3)
[momentum p4 is understood to be dependent on the other momenta through the
conservation law (2.7)], then for the polarization tensor one has

Γµν%σ(p1, p2, p3) = Θµν%σ(p1, p2, p3) + Θµ%νσ(p1, p3, p2)

+ Θνµ%σ(p2, p1, p3) + Θν%µσ(p2, p3, p1)

+ Θ%µνσ(p3, p1, p2) + Θ%νµσ(p3, p2, p1)

= sym3 Θµν%|σ(p1, p2, p3), (2.53)

and the invariant amplitude of the process is given by contraction of the polar-
ization tensor with the polarization vectors (in the same way as in the previous
section).

This identity can be proved by writing down all the contractions and then
performing various renaming of the variables xi or swapping the momenta (and
the polarizations). For instance, a contraction

a1a2a3a4 T [ψ̄1 /A1ψ1 ψ̄2 /A2ψ2 ψ̄3 /A3ψ3 ψ̄4 /A4ψ4] (2.54)

is the same as

a1a2a3a4 T [ψ̄1 /A1ψ1 ψ̄2 /A2ψ2 ψ̄3 /A3ψ3 ψ̄4 /A4ψ4] (2.55)
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if we rename x1 ↔ x2. And it is also the same as

a1a2a3a4 T [ψ̄1 /A1ψ1 ψ̄2 /A2ψ2 ψ̄3 /A3ψ3 ψ̄4 /A4ψ4] (2.56)

if we swap {p1, λ1} ↔ {p2, λ2}.
There is also another, sort of intuitive, approach. There are 144 possible

ways how to contract the fermionic and photon operators. Each possible way
gives us a contribution to the polarization tensor. As before, we denote one of
those contributions by Θµν%σ(p1, p2, p3, p4) (now we have also included the fourth
momentum4).

Since the external lines are bosonic, we can guess that the polarization tensor
must be some kind of symmetrization (meaning there are no sign changes). The
easiest is to make total symmetrization of Θµν%σ, which consists of 4! = 24 terms.
It is also clear that all of the 144 contributions should be treated equally. Based
on this, we can theorize that the correct formula should be (the 1/4! prefactor
comes from the Dyson expansion)

Γµν%σ(p1, p2, p3, p4) =
6

4!
sym4 Θµν%σ(p1, p2, p3, p4)

=
1

4
sym4 Θµν%σ(p1, p2, p3, p4). (2.57)

In other words, each permutation should contribute 6 times (because 144/24 = 6).
We will see later that this sort of handwaving argument actually works pretty
well and gives correct results.

2.2.2 Ward identities

This section is more or less independent of the rest – we demonstrate that the
polarization tensor is transverse, i.e. it satisfies the Ward identities. We di-
rectly prove the following identity (the remaining three identities can be proved
similarly)

Γµν%σ(p1, p2, p3, p4)pσ4 = 0. (2.58)

First we show that the contribution of a box diagram is independent on the
sense of the loop momentum circulation, which comes in handy later. The con-
tribution of the diagram on the left (Fig. 2.6) is proportional to

Tµν%σ(p1, p2, p3) ≡
∫

d4`
Tr[(/k1 +m)γµ(/k2 +m)γν(/k3 +m)γ%(/k4 +m)γσ]∏4

i=1(k2
i −m2)

,

(2.59)
whereas the contribution of the diagram on the right is proportional to (R stands
for reverse)

TR
µν%σ(p1, p2, p3) ≡

∫
d4`

Tr[γσ(/k
′
4 +m)γ%(/k

′
3 +m)γν(/k

′
2 +m)γµ(/k

′
1 +m)]∏4

i=1(k′2i −m2)
,

(2.60)

4Even though the fourth momentum might not be present in the particular formula, we can
still consider it a function of the momentum.
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k1p1

k4

p4

k2

p2 k3 p3

µ

σ

ν
%

k′1
p4

k′2

p1

k′3p2

k′4

p3

σ

µ

ν
%

Figure 2.6: Box diagrams – the loop momentum circulating counter-clockwise
and clockwise

where

k1 ≡ `

k2 ≡ `+ p1

k3 ≡ `+ p1 + p2

k4 ≡ `+ p1 + p2 + p3 (2.61)

and

k′1 ≡ `

k′2 ≡ `− p1

k′3 ≡ `− p1 − p2

k′4 ≡ `− p1 − p2 − p3. (2.62)

Replacing `→ −` in (2.60) and then using identity5

Tr[γαγβ · · · γψγω] = Tr[γωγψ · · · γβγα] (2.63)

we obtain

TR
µν%σ(p1, p2, p3) =

∫
d4`

Tr[(/k1 −m)γµ(/k2 −m)γν(/k3 −m)γ%(/k4 −m)γσ]∏4
i=1(k2

i −m2)
.

(2.64)
Imagine the expansion of the traces in (2.59) and (2.64) and compare the

terms. Since (−1)n = 1 for n even, we can see that the terms proportional to an
even power of m are identical. On the other hand, the terms proportional to an
odd power of m are zero because a trace of an odd number of gamma matrices is
zero. Therefore

Tµν%σ(p1, p2, p3) = TR
µν%σ(p1, p2, p3). (2.65)

Now we show that (2.53) can be actually reduced to the following form

Γµν%σ(p1, p2, p3, p4) = 2[Θµν%σ(p1, p2, p3, p4)

+ Θν%µσ(p2, p3, p1, p4)

+ Θ%µνσ(p3, p1, p2, p4)]. (2.66)

5This identity can be proved via identity CγµC
−1 = −γTµ and some basic linear algebra.

The trace identity holds for the even and the odd number of gamma matrices.
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For the sake of brevity, we use the tensor T instead of the tensor Θ (the tensors
T and Θ are proportional to each other).

Let us compare the (321) permutation

T%νµσ(p3, p2, p1) =

=

∫
d4`Tr

[
1

/̀−m
γ%

1

/̀+ /p3
−m

γν
1

/̀+ /p3
+ /p2

−m
γµ

1

/̀+ /p3
+ /p2

+ /p1
−m

γσ

]
(2.67)

with the (123) permutation reversed

TR
µν%σ(p1, p2, p3) =

=

∫
d4`Tr

[
1

/̀− /p1
− /p2

− /p3
−m

γ%
1

/̀− /p1
− /p2

−m
γν

1

/̀− /p1
−m

γµ
1

/̀−m
γσ

]
.

(2.68)

Shifting the loop momentum in the second expression `→ `+p1 +p2 +p3 exactly
reproduces the first one. Thanks to (2.65) we therefore have

T%νµσ(p3, p2, p1) = Tµν%σ(p1, p2, p3). (2.69)

Cyclic permutations

{p1, µ} → {p2, ν} → {p3, %} → {p1, µ} (2.70)

in (2.67) and (2.68) then yields the remaining two identities

Tµ%νσ(p1, p3, p2) = Tν%µσ(p2, p3, p1)

Tνµ%σ(p2, p1, p3) = T%µνσ(p3, p1, p2). (2.71)

These equalities and (2.53) implies (2.66).
Finally we are ready to prove the Ward identity (2.58). We have

Tµν%σ(p1, p2, p3)pσ4 =

=

∫
d4`Tr

[
1

/̀−m
γµ

1

/̀+ /p1
−m

γν
1

/̀+ /p1
+ /p2

−m
γ%

1

/̀+ /p1
+ /p2

+ /p3
−m/p4

]

=

∫
d4`Tr

[
γµ

1

/̀+ /p1
−m

γν
1

/̀+ /p1
+ /p2

−m
γ%

1

/̀+ /p1
+ /p2

+ /p3
−m

]

−
∫

d4`Tr

[
1

/̀−m
γµ

1

/̀+ /p1
−m

γν
1

/̀+ /p1
+ /p2

−m
γ%

]
, (2.72)

where we used

/p4
= (/̀−m)− (/̀+ /p1

+ /p2
+ /p3

−m) (2.73)
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and trace cyclicity. Again, using (2.70) we obtain the remaining two equalities

Tν%µσ(p2, p3, p1)pσ4 =

=

∫
d4`Tr

[
γν

1

/̀+ /p2
−m

γ%
1

/̀+ /p2
+ /p3

−m
γµ

1

/̀+ /p2
+ /p3

+ /p1
−m

]

−
∫

d4`Tr

[
1

/̀−m
γν

1

/̀+ /p2
−m

γ%
1

/̀+ /p2
+ /p3

−m
γµ

]
(2.74)

T%µνσ(p3, p1, p2)pσ4 =

=

∫
d4`Tr

[
γ%

1

/̀+ /p3
−m

γµ
1

/̀+ /p3
+ /p1

−m
γν

1

/̀+ /p3
+ /p1

+ /p2
−m

]

−
∫

d4`Tr

[
1

/̀−m
γ%

1

/̀+ /p3
−m

γµ
1

/̀+ /p3
+ /p1

−m
γν

]
. (2.75)

The rest of the proof is now easy. If we shift the loop momentum ` → ` − p1 in
the first term in (2.72), we can see that term is exactly canceled by the second
term in (2.74). Similarly, the first term in (2.74) is canceled by the second term in
(2.75) (after shifting `→ `− p2). And finally, the first term in (2.75) is canceled
by the second term in (2.72) (shifting `→ `− p3). Therefore, if we sum all of the
terms up, the result is zero.

2.2.3 Diagram parametrization

We are interested in the evaluation of the box diagram in Fig. 2.7 in the low
energy limit and a subsequent calculation of the polarization tensor.

k1p1

k4

p4

k2

p2 k3 p3

µ

σ

ν
%

Figure 2.7: The fermion box diagram

The evaluation is carried out using dimensional regularization. The contribu-
tion of the diagram is obtained using the standard Feynman rules

iΘµν%σ(p1, p2, p3) ≡

− e4µ4−D
∫

dD`

(2π)D
Tr[(/k1 +m)γµ(/k2 +m)γν(/k3 +m)γ%(/k4 +m)γσ]∏4

i=1(k2
i −m2)

,

(2.76)
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where ki are defined by (2.61) and µ is an auxiliary scale used in the regularization
technique.

By employing the Feynman parametrization, we get

iΘµν%σ(p1, p2, p3) =

− e4µ4−D
∫

F3

dXF3

∫
dD`

(2π)D
Tr[(/k1 +m)γµ(/k2 +m)γν(/k3 +m)γ%(/k4 +m)γσ]

[(k2
2 − k2

1)x+ (k2
3 − k2

1)y + (k2
4 − k2

1)z + k2
1 −m2]4

,

(2.77)

where ∫
F3

dXF3 ≡ 6

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz. (2.78)

Let us denote by R the inside of the bracket in the denominator. Application of
(2.8) and (2.61) yields

R = 2x(` · p1) + 2y[(` · p1) + (` · p2) + (p1 · p2)]

+ 2z[(` · p1) + (` · p2) + (` · p3) + (p1 · p2) + (p1 · p3) + (p2 · p3)]

+ `2 −m2. (2.79)

Introduce a shifted loop momentum

`′ ≡ `+ S, S ≡ (x+ y + z)p1 + (y + z)p2 + zp3. (2.80)

It holds
R = `′2 − C, (2.81)

where

C ≡ `′2 −R = S2 − 2y(p1 · p2)− 2z[(p1 · p2) + (p1 · p3) + (p2 · p3)] +m2

= 2[(x+ y + z)(y + z)− y − z](p1 · p2)

+ 2[z(x+ y + z)− z](p1 · p3)

+ 2[z(y + z)− z](p2 · p3)

+m2. (2.82)

We can write

C = m2 +
3∑
i<j

fij(x, y, z)(pi · pj), (2.83)

where the following functions have been defined

f12(x, y, z) ≡ 2(y + z)(x+ y + z − 1)

f13(x, y, z) ≡ 2z(x+ y + z − 1)

f23(x, y, z) ≡ 2z(y + z − 1). (2.84)

Or alternatively
C = m2(1 + λ), (2.85)

where

λ ≡
3∑
i<j

fij(x, y, z)
pi · pj
m2

. (2.86)
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By renaming the momentum `′ → `, we finally obtain

iΘµν%σ(p1, p2, p3) = −e4µ4−D
∫

F3

dXF3∫
dD`

(2π)D
Tr[(/̀+ /q1

+m)γµ(/̀+ /q2
+m)γν(/̀+ /q3

+m)γ%(/̀+ /q4
+m)γσ]

(`2 − C)4
,

(2.87)

where we have defined

q1 ≡ −(x+ y + z)p1 − (y + z)p2 − zp3

q2 ≡ −(x+ y + z − 1)p1 − (y + z)p2 − zp3

q3 ≡ −(x+ y + z − 1)p1 − (y + z − 1)p2 − zp3

q4 ≡ −(x+ y + z − 1)p1 − (y + z − 1)p2 − (z − 1)p3, (2.88)

all generally

qi =
3∑
j=1

φij(x, y, z)pj, (2.89)

where

φij(x, y, z) ≡ −


x+ y + z y + z z

x+ y + z − 1 y + z z
x+ y + z − 1 y + z − 1 z
x+ y + z − 1 y + z − 1 z − 1

 . (2.90)

2.2.4 Diagram evaluation

We now break the trace in the numerator of our integral expression into individual
terms and evaluate each term separately. The following master formula for loop
integrations [22] is used∫

dD`

(2π)D
(`2)r

(`2 − C)s
=
i(−1)r−sCr−s+D/2

(4π)D/2
Γ
(
r + D

2

)
Γ
(
s− r − D

2

)
Γ
(
D
2

)
Γ(s)

. (2.91)

The low energy limit is performed after the loop integrations (but before the
integration over the Feynman parameters).

We begin with the ```` term

T```` ≡ Tr[/̀γµ/̀γν /̀γ%/̀γσ] = Tr[γαγµγβγνγγγ%γδγσ]`α`β`γ`δ (2.92)

in the trace. Under the loop integration we may effectively set (the so-called
symmetric integration)

`α`β`γ`δ
eff.
=

(`2)2

D(D + 2)
(gαβgγδ + gαγgβδ + gαδgβγ). (2.93)

The trace was computed in FeynCalc and the result is

T̃```` =
4(D − 2)(Dgµσgν% −Dgµ%gνσ +Dgµνg%σ − 4gµ%gνσ)

D(D + 2)
, (2.94)
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where
(`2)2T̃```` ≡ T````. (2.95)

Since s − r = 4 − 2 = 2, the corresponding loop integral is logarithmically
divergent and thus we can not set D = 4. After setting D = 4 − 2ε, the trace
can be expanded in powers of ε

T̃```` = A+Bε+O
(
ε2
)
, (2.96)

where

A ≡ 4

3
(gµσgνρ − 2gµρgνσ + gµνgρσ)

B ≡ −2

9
(4gµσgνρ − 5gµρgνσ + 4gµνgρσ). (2.97)

We are in fact interested in the following expression [see (2.87)]

iΘ̄````
µν%σ ≡ −e4µ4−DT̃````

∫
dD`

(2π)D
(`2)2

(`2 − C)4
. (2.98)

The bar over Θ means that we are ignoring integration over the Feynman pareme-
ters

∫
F3

dXF3 for now. Via (2.87) and after expanding all the functions in powers
of ε, we get [O(ε) terms are omitted]

Θ̄````
µν%σ = − e4

16π2

{
A

[
∆− 5

6
− ln(1 + λ)

]
+B

}
, (2.99)

where ∆ is defined by

∆ ≡ 1

ε
− γE − ln

(
m2

4πµ2

)
. (2.100)

We also used the definition of C (2.85) and the expansion of Γ-function

Γ(ε) =
1

ε
− γE +O(ε). (2.101)

Finally, let us consider the low energy limit. Suppose the photon energies are
small compared to the mass m (i.e. Ei � m). This means

pi · pj = EiEj(cosϑ− 1)� m2, i 6= j. (2.102)

Scalar products are contained within the parameter λ (2.86). The low energy limit
therefore means that the parameter λ is sufficiently small compared to unity. To
perform the limit, we expand (2.99) in powers of λ to obtain

Θ̄````
µν%σ =

e4

24π2
[(3− 2∆)gµσgνρ − (5− 4∆)gµρgνσ + (3− 2∆)gµνgρσ]

+
e4

12π2
(gµσgνρ − 2gµρgνσ + gµνgρσ)(2λ− λ2), (2.103)

where powers of λ higher than 2 have been omitted.
The terms proportional to higher powers of λ are not needed since they con-

tain far too many momenta. It the end, we would like to match the calculated
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polarization tensor with the effective one (derived in the previous section). The
effective polarization tensor is formed from terms that are constructed of four
momenta. The parameter λ contains two momenta already, and that means that
λ2 contains four.

The calculation of the remaining terms is straightforward because the corre-
sponding loop integrals are convergent for D = 4. The next terms we are going
to work with are of type ``mm. There are six of them – we may collect all the
traces into one term

T``mm ≡ m2(Tr[γαγµγβγνγ%γσ]

+ Tr[γαγµγνγβγ%γσ]

+ Tr[γαγµγνγ%γβγσ]

+ Tr[γµγαγνγβγ%γσ]

+ Tr[γµγαγνγ%γβγσ]

+ Tr[γµγνγαγ%γβγσ])`α`β. (2.104)

The symmetric integration

`α`β
eff.
=
`2

4
gαβ (2.105)

and FeynCalc yields

T̃``mm = 4m2(−gµσgνρ + 2gµρgνσ − gµνgρσ), (2.106)

where again
`2T̃``mm ≡ T``mm. (2.107)

So

iΘ̄``mm
µν%σ ≡ −e4T̃``mm

∫
d4`

(2π)4

`2

(`2 − C)4
. (2.108)

We then directly use (2.91) and the definition of C to get

Θ̄``mm
µν%σ =

e4

12π2(1 + λ)
(−gµσgνρ + 2gµρgνσ − gµνgρσ). (2.109)

By expanding in powers of λ we obtain

Θ̄``mm
µν%σ =

e4

12π2
(−gµσgνρ + 2gµρgνσ − gµνgρσ)(1− λ+ λ2). (2.110)

The term of type mmmm is the easiest to process of all of them. Analogously,
we obtain for it

Θ̄mmmm
µν%σ ≡ − e4

24π2(1 + λ)2
(gµσgνρ − gµρgνσ + gµνgρσ) (2.111)

and then

Θ̄mmmm
µν%σ = − e4

24π2
(gµσgνρ − gµρgνσ + gµνgρσ)(1− 2λ+ 3λ2). (2.112)
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The remaining terms are far more complicated. The next set of terms are
terms of type ``qq. Again, there are six of them. All the traces combined can be
written as

T``qq ≡ Tr[γαγµγβγνγγγ%γδγσ(`α`βqγ3q
δ
4

+ `αqβ2 `
γqδ4

+ `αqβ2 q
γ
3 `
δ

+ qα1 `
β`γqδ4

+ qα1 `
βqγ3 `

δ

+ qα1 q
β
2 `
γ`δ). (2.113)

Using the symmetric integration (2.105) and FeynCalc, the expression T̃``qq is
obtained, where

`2T̃``qq ≡ T``qq. (2.114)

The expression T̃``qq is shown in Fig. 2.8. The vectors qi are given by (2.89).

Figure 2.8: The expression T̃``qq
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After substituting them into the expression, the expression gets much longer. As
always, by applying the master formula (2.91), we find

Θ̄``qq
µν%σ ≡

e4

48π2(1 + λ)
T̃``qq, (2.115)

and by expanding in powers of λ

Θ̄``qq
µν%σ =

e4

48π2
T̃``qq(1− λ). (2.116)

It is sufficient to expand the expression only up to the first order in λ because we
are already getting two momenta from the traces (and λ contains two momen-
ta). The expression (2.115) can be found in the enclosed Mathematica notebook
spinor.nb denoted by llqq‘trace6.

The terms of type qqmm are similar. For them, we get

Tqqmm ≡ m2( Tr[γαγµγβγνγ%γσ]qα1 q
β
2

+ Tr[γαγµγνγβγ%γσ]qα1 q
β
3

+ Tr[γαγµγνγ%γβγσ]qα1 q
β
4

+ Tr[γµγαγνγβγ%γσ]qα2 q
β
3

+ Tr[γµγαγνγ%γβγσ]qα2 q
β
4

+ Tr[γµγνγαγ%γβγσ]qα3 q
β
4 ). (2.117)

We can see this expression evaluated in Fig. 2.9. Then again

Θ̄mmqq
µν%σ ≡ −

e4

96π2m2(1 + λ)2
Tqqmm (2.118)

and consequently

Θ̄qqmm
µν%σ = − e4

96π2m2
Tqqmm(1− 2λ). (2.119)

The full form of (2.118) can be found in the file denoted by qqmm‘trace.
The last and the worst is the qqqq term

Tqqqq ≡ Tr[γαγµγβγνγγγ%γδγσ]qα1 q
β
2 q

γ
3q

δ
4. (2.120)

The result is in Fig. 2.10. For the term, we have

Θ̄qqqq
µν%σ ≡ −

e4

96π2m4
Tqqqq. (2.121)

Since we are already getting four momenta from the trace, we may directly set
λ = 0 (that means we are expanding up to the zeroth order). Once again, the
full form of the expression can be found in the file denoted by qqqq.

At last, we can determine the total contribution of the box graph

Θµν%σ(p1, p2, p3) ≡
∫

F3

dXF3(Θ̄
````
µν%σ + Θ̄``mm

µν%σ + Θ̄mmmm
µν%σ

+ Θ̄``qq
µν%σ + Θ̄qqmm

µν%σ + Θ̄qqqq
µν%σ). (2.122)

6Instead of the functions φij [see (2.89)], temporary constants aij are used there (which are
later replaced by φij).
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Figure 2.9: The expression Tqqmm

The integrand of course depends on the Feynman parameters x, y, z via the pa-
rameter λ and the vectors qi – see (2.86) and (2.89). The final expression we
got using FeynCalc is quite lengthy (it is denoted by Theta). To shorten and
speed up the integration, we used the on-shell condition (2.8) to remove terms
proportional to p2

i and also the transversality condition

pi · ε(pi, λi) = 0, i = 1, 2, 3, 4, (2.123)

which in our context translates to pµ1 = pν2 = p%3 = 0 (effectively). Note that
this ”reduced” polarization tensor can not be used in formulae such as (2.42),
but it can be still used for obtaining the invariant amplitude. This procedure
of removing longitudinal terms is correct as long as we do the same with the
effective tensor during the amplitude matching.

2.2.5 Polarization tensor

All changes when we use the symmetrization formula (2.53) to obtain the polar-
ization tensor (see Fig. 2.11). It looks pretty good – most importantly, both the
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Figure 2.10: The expression Tqqqq

UV divergent terms [terms proportional to ∆, see (2.100)] and the terms propor-
tional to two momenta are gone. This means that our tensor is UV finite and has
the proper structure that corresponds with the effective theory.
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Figure 2.11: The ”reduced” polarization tensor for spinor QED

2.2.6 Amplitude matching

Now we are ready to enjoy the fruits of our hard labor. Let us compare the
calculated spinor QED polarization tensor Γsp.

µν%σ (Fig. 2.11) and the effective one
Γeff.
µν%σ (Fig. 2.4). Since we have thrown away longitudinal terms proportional to
pµ1 , p

ν
2 or p%3 from the spinor QED tensor, we need to do the same with the effective

one.
Basically, we need to solve the following equation for the coupling constants

g1, g2

Γsp.
µν%σ − Γeff.

µν%σ(g1, g2) = 0. (2.124)

First, compare only the terms with no metric tensors. Fig. 2.12 shows what we
obtain on the left-hand-side. Is it self-evident that this is equal to zero if the
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constants g1, g2 solve the following linear system

e4 + 1920π2m4(g1 − g2) = 0

7e4 − 5760π2m4g2 = 0. (2.125)

The solution is

g1 =
e4

1440π2m4
=

α2

90m4

g2 =
7e4

5760π2m4
=

7α2

360m4
, (2.126)

where we have introduced the fine structure constant α = e2/4π.
Substituting the solution back into the left-hand-side of our equation (2.124)

results in Fig. 2.13, which is equal to zero, thanks to the constraint (2.10) [which
is a consequence of the on-shell conditions (2.8)].

Figure 2.12: Matching the terms with no metric tensors

Figure 2.13: The p2
4 = 0 constraint is factorized

We may conclude that the effective Lagrangian of Euler-Heisenberg type for
the case of spinor QED can be expressed as

L sp.
eff. =

α2

360m4

[
4(FµνF

µν)2 + 7(?FµνF
µν)2

]
, (2.127)
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or

L sp.
eff. =

2α2

45m4

[
(E2 −B2)2 + 7(E ·B)2

]
. (2.128)

One can also calculate the differential cross section using the formula (2.47)(
dσ

dΩ

)sp.

=
139α4

32400π2

ω6

m8
(3 + cos2 θ)2, (2.129)

where s = (2ω)2. We can see that the Lagrangian is exactly replicated [see (1.1)]
as well as the expression for the differential cross section [see (1.5)].

2.3 Case of scalar QED

Although many things are similar or even identical same, the case of scalar QED
differs from the spinor case in some aspects. The interaction Lagrangian of scalar
QED can be expressed as [23]

Lint. = −ieAµ[φ†(∂µφ)− (∂µφ†)φ] + e2AµA
µφ†φ, (2.130)

where φ is some charged scalar field, Aµ is again the electromagnetic field, and e
is the coupling constant (charge).

We can split the Lagrangian into a trilinear and a quadrilinear part

Lint. = Lφφγ + Lφφγγ, (2.131)

where

Lφφγ ≡ −ieAµ[φ†(∂µφ)− (∂µφ†)φ]

Lφφγγ ≡ e2AµA
µφ†φ. (2.132)

From the structure of the Lagrangian, we can see that there are now three
types of one-loop diagrams that contribute to our four-photon process. We can
either use four trilinear vertices to build box diagrams, or two trilinear and one
qudrilinear to build triangle diagrams. Bubble diagrams arise from two quadri-
linear vertices (see Fig. 2.14).

Figure 2.14: Three types of diagrams contribute

2.3.1 Box diagrams

The structure of the S-matrix element and the diagram parametrization is com-
pletely the same for the scalar box diagram as for the spinor one, so we can just
use expressions from the previous section.
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Figure 2.15: The scalar box diagram

Diagram evaluation

The diagram in question is shown in Fig. 2.15.
The expression for the diagram contribution is the only thing that is different.

Using standard Feynman rules, we obtain

iΘ�
µν%σ(p1, p2, p3) ≡

e4µ4−D
∫

dD`

(2π)D
(k1 + k2)µ(k2 + k3)ν(k3 + k4)%(k4 + k1)σ∏4

i=1(k2
i −m2)

, (2.133)

where

k1 ≡ `

k2 ≡ `+ p1

k3 ≡ `+ p1 + p2

k4 ≡ `+ p1 + p2 + p3. (2.134)

The Feynman parametrization and the loop momentum shift give

iΘ�
µν%σ(p1, p2, p3) = e4µ4−D

∫
F3

dXF3∫
dD`

(2π)D
(2`+ q1 + q2)µ(2`+ q2 + q3)ν(2`+ q3 + q4)%(2`+ q4 + q1)σ

[`2 −m2(1 + λ)]4
,

(2.135)

where ∫
F3

dXF3 ≡ 6

∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz, (2.136)

and

λ ≡
3∑
i<j

f�
ij (x, y, z)

pi · pj
m2

f�
12(x, y, z) ≡ 2(y + z)(x+ y + z − 1)

f�
13(x, y, z) ≡ 2z(x+ y + z − 1)

f�
23(x, y, z) ≡ 2z(y + z − 1), (2.137)

32



and

qi ≡
3∑
j=1

φ�
ij(x, y, z)pj

φ�
ij(x, y, z) ≡ −


x+ y + z y + z z

x+ y + z − 1 y + z z
x+ y + z − 1 y + z − 1 z
x+ y + z − 1 y + z − 1 z − 1

 . (2.138)

Just as before, we break the numerator of the integrand into individual terms
and deal with them one by one.

The first is the ```` term

T�```` ≡ (2`)µ(2`)ν(2`)%(2`)σ. (2.139)

The symmetric integration (2.93) obviously yields

T̃�```` =
16(gµνgγδ + gαγgβδ + gαδgβγ)

D(D + 2)
, (2.140)

where
T̃�```` ≡ T�````(`

2)2. (2.141)

Exactly the same procedure [the master formula (2.91) and the expansion in
powers of ε – check the previous section] eventually results in

Θ̄�````
µν%σ =

e4

24π2
[∆− ln(1 + λ)](gµσgνρ + gµρgνσ + gµνgρσ), (2.142)

where ∆ is defined by (2.100), and the low energy limit leads to (again, we stop
the expansion at λ2 – we are getting two momenta per λ)

Θ̄�````
µν%σ =

e4

48π2
(2∆− 2λ+ λ2)(gµσgνρ + gµρgνσ + gµνgρσ). (2.143)

The remaining terms are much easier to deal with because they are UV finite.
The next set of terms are terms of type ``qq

T�``qq ≡ (q1 + q2)µ(q2 + q3)ν(2`)%(2`)σ

+ (q1 + q2)µ(2`)ν(q3 + q4)%(2`)σ

+ (2`)µ(q2 + q3)ν(q3 + q4)%(2`)σ

+ (q1 + q2)µ(2`)ν(2`)%(q4 + q1)σ

+ (2`)µ(q2 + q3)ν(2`)%(q4 + q1)σ

+ (2`)µ(2`)ν(q3 + q4)%(q4 + q1)σ (2.144)

The symmetric integration (2.105) brings us to

T̃�``qq = (q1 + q2)µ(q2 + q3)νg%σ

+ (q1 + q2)µ(q3 + q4)%gνσ

+ (q2 + q3)ν(q3 + q4)%gµσ

+ (q1 + q2)µ(q4 + q1)σgν%

+ (q2 + q3)ν(q4 + q1)σgµ%

+ (q3 + q4)%(q4 + q1)σgµν , (2.145)
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where (as always)
`2T̃�``qq ≡ T�``qq, (2.146)

then the loop integration master formula (2.91) to

Θ̄�``qq
µν%σ ≡ −

e4

48π2m2(1 + λ)
T̃�``qq. (2.147)

and the low energy limit to

Θ̄�``qq
µν%σ = − e4

48π2m2
T̃�``qq(1− λ). (2.148)

The full expression (with the vectors qi are substituted in) for (2.147) can be
found inside scalar.nb denoted by llqq‘term.

The last term is of type qqqq

T�qqqq ≡ (q1 + q2)µ(q2 + q3)ν(q3 + q4)%(q4 + q1)σ, (2.149)

for which we get (again, no λ here)

Θ̄�qqqq
µν%σ ≡

e4

96π2m4
T�qqqq. (2.150)

The full form can be found within the file denoted by qqqq.
Now we just add all the terms up and integrate

Θ�
µν%σ(p1, p2, p3) ≡

∫
F3

dXF3(Θ̄
�````
µν%σ + Θ̄�``qq

µν%σ + Θ̄�qqqq
µν%σ ). (2.151)

The result is denoted by Theta‘sq in the file.
The total contribution from all of the box diagrams is then given by the

symmetrization formula (2.53)

Γ�
µν%σ(p1, p2, p3) = sym3 Θ�

µν%|σ(p1, p2, p3). (2.152)

2.3.2 Triangle diagrams

We leave the problem of the symmetrization to the end of this section – instead
we directly start with the evaluation of one of the triangle diagrams.

Diagram evaluation

We are interested in the diagram in Fig. 2.16.
The relevant expression reads

iΘ4µν%σ(p1, p2) ≡ −e4µ4−D
∫

dD`

(2π)D
(k1 + k2)µ(k2 + k3)νg%σ∏3

i=1(k2
i −m2)

, (2.153)

where

k1 ≡ `

k2 ≡ `+ p1

k3 ≡ `+ p1 + p2. (2.154)
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Figure 2.16: The scalar triangle diagram

The Feynman parametrization and the loop momentum shift results in

iΘ4µν%σ(p1, p2) = −e4µ4−D
∫

F2

dXF2∫
dD`

(2π)D
(2`+ q1 + q2)µ(2`+ q2 + q3)νg%σ

[`2 −m2(1 + λ)]3
, (2.155)

where ∫
F2

dXF2 ≡ 2

∫ 1

0

dx

∫ 1−x

0

dy, (2.156)

and

λ ≡ f412(x, y)
p1 · p2

m2

f412(x, y) ≡ 2y(x+ y − 1), (2.157)

and

qi ≡
2∑
j=1

φ4ij (x, y)pj

φ4ij (x, y) ≡ −

 x+ y y
x+ y − 1 y
x+ y − 1 y − 1

 . (2.158)

The procedure we used for obtaining these results is standard (check the spinor
QED section).

Again, let us break the numerator into separate terms. The `` term is the
first one

T4`` ≡ (2`)µ(2`)νg%σ. (2.159)

The symmetric integration

`α`β
eff.
=
`2

D
gαβ (2.160)

yields

T̃4`` =
4gµνg%σ
D

, (2.161)
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where
`2T̃4`` ≡ T4``. (2.162)

The master formula and the ε-expansion then provide

Θ̄4``µν%σ ≡ −
e4

16π2
[∆− ln(1 + λ)]gµνg%σ, (2.163)

where ∆ is defined by (2.100). The λ-expansion leaves us with

Θ̄4``µν%σ = − e4

32π2
(2∆− 2λ+ λ2)gµνg%σ. (2.164)

The second term is the qq term (which is UV finite)

T4qq ≡ (q1 + q2)µ(q2 + q3)νg%σ. (2.165)

We obtain for it

Θ̄4qqµν%σ ≡
e4

32π2m2(1 + λ)
T4qq, (2.166)

and then

Θ̄4qqµν%σ ≡
e4

32π2m2
T4qq(1− λ). (2.167)

It is denoted qq’term in the file.
The last step is to add them together and integrate

Θ4µν%σ(p1, p2) =

∫
F2

dXF2(Θ̄
4``
µν%σ + Θ̄4qqµν%σ). (2.168)

The result is denoted by Theta’tr.

Problem of symmetrization

To get the contribution to the total polarization tensor from all triangles, we need
a formula similar to (2.53). Besides a tedious proof, we can try using an intuitive
rule from the end of the section 2.2.1.

The structure of the relevant S-matrix element contains

a1a2a3a4T [Lφφγ(x1)Lφφγ(x2)Lφφγγ(x3)], (2.169)

where Lφφγ and Lφφγγ are given by (2.132), and ai ≡ a(pi, λi). As always, there
are 24 possible Wick contractions of the photon operators. Additionally, we can
contract the scalar operators in 2 possible ways. Apart from that, there are also
3 ways how to assemble the actual time-ordered product – all of the following are
valid

T [Lφφγ(x1)Lφφγ(x2)Lφφγγ(x3)]

T [Lφφγ(x1)Lφφγγ(x2)Lφφγ(x3)]

T [Lφφγγ(x1)Lφφγ(x2)Lφφγ(x3)]. (2.170)

These are 24 × 3 × 2 = 144 contributing terms in total. Since our tensor Θ4

is a rank-4 tensor, its total symmetrization contains exactly 24 terms – there
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are no more. In order to make these numbers match, we can theorize that each
permutation in the symmetrization contributes 6 times (to get 144 terms). This
argument leads to

Γ4µν%σ(p1, p2, p3, p4) =
6

3!
sym4 Θ4µν%σ(p1, p2, p3, p4)

= sym4 Θ4µν%σ(p1, p2, p3, p4), (2.171)

where the 1/3! prefactor comes from the Dyson expansion. Although Θ4 is not
an explicit function of p3 or p4, we can still use this formula. The conservation
law (2.7) then can be used to get rid of the fourth momentum p4.

2.3.3 Bubble diagrams

We again leave the problem of symmetrization to the end.

Diagram evaluation

This is the easiest diagram so far. It is displayed in Fig. 2.17.

k1
p1

p2

k2 p3

p4

µν %σ

Figure 2.17: The scalar bubble diagram

Using standard Feynman rules, we get the relevant expression

iΘ©µν%σ(p1, p2) ≡ e4µ4−D
∫

dD`

(2π)D
gµνg%σ∏2

i=1(k2
i −m2)

, (2.172)

where

k1 ≡ `

k2 ≡ `+ p1 + p2. (2.173)

The standard way of the Feynman parametrization and the loop momentum
shift provide

iΘ©µν%σ(p1, p2) = e4µ4−D
∫

F1

dXF1

∫
dD`

(2π)D
gµνg%σ

[`2 −m2(1 + λ)]2
, (2.174)

where ∫
F1

dXF1 ≡
∫ 1

0

dx, (2.175)
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and

λ ≡ f©12 (x)
p1 · p2

m2

f©12 (x) ≡ 2x(x− 1). (2.176)

We have only one simple term in this case

T© ≡ gµνg%σ. (2.177)

The standard way yields

Θ̄©µν%σ ≡
e4

16π2
[∆− ln(1 + λ)]gµνg%σ, (2.178)

and

Θ̄©µν%σ =
e4

32π2
(2∆− 2λ+ λ2)gµνg%σ. (2.179)

The last step is the integration over the Feynman parameter

Θ©µν%σ(p1, p2) ≡
∫

F1

dXF1 Θ̄©µν%σ. (2.180)

Problem of symmetrization

We have no problem in this case. The relevant S-matrix element contains

a1a2a3a4T [Lφφγγ(x1)Lφφγγ(x2)], (2.181)

where Lφφγγ is given by (2.132), and ai ≡ a(pi, λi). There are 24 contractions
of the photon operators and only 1 contraction of the scalar ones. The Dyson
expansion contributes a prefactor of 1/2!. The correct formula can be immediately
written down

Γ©µν%σ(p1, p2, p3, p4) =
1

2!
sym4 Θ©µν%σ(p1, p2, p3, p4). (2.182)

Again, the conservation law (2.7) then eliminates the fourth momentum p4.

2.3.4 Total polarization tensor

Now we can add up all the contributions to obtain the scalar QED polarization
tensor

Γsc.
µν%σ ≡ Γ�

µν%σ + Γ4µν%σ + Γ©µν%σ. (2.183)

The result is displayed in Fig. 2.18. We have again thrown away the longitudinal
terms proportional to pµ1 , p

ν
2 or p%3.

Once again, we can see that the tensor has the proper structure (meaning it
is UV finite and the terms proportional to two momenta vanished).
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Figure 2.18: The ”reduced” polarization tensor for scalar QED

2.3.5 Amplitude matching

We are finally ready to compare the scalar QED polarization tensor (Fig. 2.18)
with the effective one (Fig. 2.4).

The fundamental equation reads

Γsc.
µν%σ − Γeff.

µν%σ(g1, g2) = 0. (2.184)

Again, let us compare only the terms with no metric tensors. Fig. 2.19 shows
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what we obtain on the left-hand-side of our equation. Clearly, the linear system
in this case is

e4 − 3840π2m4(g1 − g2) = 0

e4 − 23040π2m4g2 = 0, (2.185)

which has the following solution

g1 =
7e4

23040π2m4
=

7α2

1440m4

g2 =
e4

23040π2m4
=

α2

1440m4
. (2.186)

Substituting the solution back into the left-hand-side of our equation leads to
Fig. 2.20. Again, the constraint p2

4 = 0 is factorized.

Figure 2.19: Matching the terms with no metric tensors

Figure 2.20: The p2
4 = 0 constraint is factorized

The effective Lagrangian of Euler-Heisenberg type for the case of scalar QED
can be then expressed as

L sc.
eff. =

α2

1440m4

[
7(FµνF

µν)2 + (?FµνF
µν)2

]
, (2.187)

or

L sc.
eff. =

α2

360m4

[
7(E2 −B2)2 + 4(E ·B)2

]
. (2.188)
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This exact result can be found in [24]. Again, we can also calculate the differential
cross section using the formula (2.47)(

dσ

dΩ

)sc.

=
17α4

64800π2

ω6

m8
(3 + cos2 θ)2, (2.189)

where s = (2ω)2.

2.4 Case of vector QED

The case of QED of charged vector bosons (vector QED as we call it) is really close
to the case of scalar QED. There are some differences though. The interaction
Lagrangian reads [22]

Lint. = LWWγ + LWWγγ, (2.190)

where

LWWγ ≡ −ie(AµWν

↔
∂µ W †ν +WµW

†
ν

↔
∂µ Aν +W †

µAν
↔
∂µ W ν)

LWWγγ ≡ −e2(WµW
†µAνA

ν −WµA
µW †

νA
ν), (2.191)

and

f
↔
∂µ g ≡ f∂µg − g∂µf. (2.192)

The Lagrangian consists of trilinear and quadrilinear vertices. The Lagrangian
structure is, therefore, the same as in the case of scalar QED. This means that
the case of vector QED is completely analogous to it. There are again three types
of diagrams – boxes, triangles and bubbles (Fig. 2.21).

Figure 2.21: Three types of diagrams contribute

Since all the diagram parametrizations and the symmetrization formulae are
exactly the same as in the previous section, we do not discuss them any longer.

The entire calculation is performed by using the canonical Proca propagator
for the massive charged vector boson. If the vector QED is considered as a part of
the standard electroweak theory, this corresponds to the so-called unitary gauge.
Thus, in what follows, we will refer to this choice simply as unitary gauge. This
is quite rare (this particular process probably has not been calculated using this
gauge yet). Within the standard model, loop diagrams are usually processed
using other gauges. In the unitary gauge, there are no auxiliary fields and there
are no Faddeev-Popov ghosts. Only three types of diagrams contribute as we
have stated before.

On the other hand, the expressions that appear during the calculation are
ridiculously long (thousands of terms are common) and there are many of them.
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Since there is nothing new about the method we demonstrated in the previous
sections, we restrict ourselves to a brief overview and only discuss some subtleties
and the used algorithm.

We start with the bubble since it is the easiest of the diagrams. But before
that, let us introduce the following shorthand notation

Vαβγ(a, b, c) ≡ (a− b)γgαβ + (b− c)αgβγ + (c− a)βgγα

Vαβγδ ≡ gαβgγδ − gαγgβδ
Pαβ(a) ≡ −gαβ +

aαaβ
m2

. (2.193)

2.4.1 Bubble diagrams

The diagram is shown in Fig. 2.22.

k1
p1

p2

k2 p3

p4

µν %σ

Figure 2.22: The vector bubble diagram

The standard Feynman rules lead to

iΘ©µν%σ(p1, p2) ≡ e4µ4−D
∫

dD`

(2π)D
M©

µν%σ∏2
i=1(k2

i −m2)
, (2.194)

where [see (2.193)]

M©
µν%σ ≡P β2α1(k1)Vµνα1α2

Pα2β1(k2)V%σβ1β2 . (2.195)

After the Feynman parametrization and the loop momentum shift, this becomes

iΘ©µν%σ(p1, p2) ≡ e4µ4−D
∫

F1

dXF1

∫
dD`

(2π)D
N©µν%σ

[`2 −m2(1 + λ)]2
, (2.196)

where

N©µν%σ ≡ P β2α1(`+ q1)Vµνα1α2P
α2β1(`+ q2)V%σβ1β2

= (gµνgα1α2 − gµα1gνα2)(g%σgβ1β2 − g%β1gσβ2)[
−gβ2α1 +

(`+ q1)β2(`+ q1)α1

m2

] [
−gα2β1 +

(`+ q2)α2(`+ q2)β1

m2

]
(2.197)
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Our standard procedure of identifying non-vanishing terms in the numerator
(terms containing even power of the loop momentum `) does not work very well
here. It would require expanding the entire expression, which is very tedious to
do by hand (and it would get much worse later).

Fortunately, we can use Mathematica functions to implement some automa-
tion. We can rescale the loop momentum

`µ → ξ`µ, (2.198)

and then expand our expression in powers of ξ to pull out only the terms we want.
Looking at the expression (2.197), it is clear that there are terms proportional
to ξ4 (terms containing four loop momenta), then ξ2 (terms containing two loop
momenta), and then ξ0 (terms containing no loop momentum).

All these terms are UV divergent. From the terms `4 arise quartic diver-
gences7, from the terms `2 quadratic ones, and from the terms `0 logarithmic
ones.

Since we now deal with more complex divergences, let us do a little adjustment
to the master formula. We are interested in the following divergent integral

µ4−D
∫

dD`

(2π)D
(`2)rÑ2r

µν%σ

[`2 −m2(1 + λ)]s
, (2.199)

where Ñ2r
µν%σ is the part of the numerator (in our case N©µν%σ) that contained

2r of loop momenta before this part was symmetrically integrated (in a general
dimension), and all the loop momenta within were factored out. So, for instance,
if the part proportional to four loop momenta was

`µ`ν`%`σ × [something], (2.200)

Ñ4
µν%σ would be

gµνg%σ + gµ%gνσ + gµσgν%
D(D + 2)

× [something]. (2.201)

Clearly, Ñ2r
µν%σ is generally a function of the dimension.

Now set D = 4− 2ε and expand Ñ2r
µν%σ in powers of ε

Ñ2r
µν%σ = AN +BNε+O

(
ε2
)
. (2.202)

Define a rational function

R(s, r, ε) ≡ (r + 1− ε)(r − ε) . . . (3− ε)(2− ε)
(s− r − 2 + ε)(s− r − 1 + ε) . . . (ε− 2)(ε− 1)

. (2.203)

It holds
Γ (r + 2− ε) Γ(s− r − 2ε)

Γ(2− ε)
= R(s, r, ε)Γ(ε). (2.204)

Expand this function in powers of ε

R(s, r, ε) = AR +BRε+O
(
ε2
)
. (2.205)

7From now on, ”the terms `2n” means ”the terms proportional to ξ2n”.
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Our integral now can be evaluated using the master formula (2.91)

µ4−D
∫

dD`

(2π)D
(`2)rÑ2r

µν%σ

[`2 −m2(1 + λ)]s

=
i(−1)r−s

16π2Γ(s)
[m2(1 + λ)]r−s+2 {ANAR[∆− ln(1 + λ)] +BRAN + ARBN} ,

(2.206)

where we have set C = m2(1 + λ), and

∆ ≡ 1

ε
− γE − ln

(
m2

4πµ2

)
. (2.207)

We also omitted O(ε) terms. This formula was actually used whenever we dealt
with a divergent loop integral.

Let us return back to our original problem. It turns out, we need to categorize
our terms in more detail (in order to do the λ-expansion properly). If we look
at (2.197), we can see that there is no problem with the terms `4. These terms
contain only the loop momenta and not the external momenta that are hidden
inside the vectors qi. In fact, they cannot contain them.

It is different for the terms `2. These could contain some external momenta,
but they do not necessarily have to. For instance, we can just choose two ` from
the first bracket and the metric tensor from the second one, which is a term with
two ` and no external momenta.

The number of the external momenta contained within a term is actually
related to some other characteristics of the term via the following self-evident
formula

e+ l − 2n = d, (2.208)

where e is the number of the external momenta, l is number of the loop momenta,
n is the power of 1/m2 the term is proportional to, and d is the mass dimension
of the entire expression. Consequently, we have

e = d− l + 2n. (2.209)

For instance, the mass dimension of our expression is 0. If we choose one ` from
the first bracket and a second ` from the second one, we have l = 2, n = 2, e = 2,
and the formula holds.

We should have a good control of our terms now and should be able to sum-
marize our general algorithm:

1. Categorize terms according to the number of the loop momenta.

2. Sub-categorize each categorized term according to the power of 1/m2 it is
proportional to.

3. Perform the symmetric integration (depends on the number of the loop
momenta, and is dimension-dependent for divergent terms).

4. Perform the loop integration using the master formula (2.91) or using
(2.206).
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5. Perform the λ-expansion up to the correct order (so there are four external
momenta in the result).

6. Plug into the processed terms the expressions for qi and λ.

7. Integrate over the Feynman parameters.

8. Use the symmetrization formulae and sum it all up.

Type of terms Divergence # of ext. mom. λ-expansion stops at
`4 quartic 0 λ2

`2m−2 quadratic 0 λ2

`2m−4 quadratic 2 λ
`0m0 logarithmic 0 λ2

`0m−2 logarithmic 2 λ1

`0m−4 logarithmic 4 λ0

Table 2.1: The vector bubble terms summary

All the contributing terms are summarized in the Tab. 2.1. The full expres-
sions can be found in the enclosed notebook bubble.nb. The notation should be
self-explanatory.

2.4.2 Triangle diagrams

The triangle diagram is in the Fig. 2.23.

k1

p1

k3

p3

p4

k2

p2

µ

%σ

ν

Figure 2.23: The vector triangle diagram

The relevant expression reads (after the Feynman parametrization and the
loop momentum shift)

iΘ4µν%σ(p1, p2) ≡ −e4µ4−D
∫

F2

dXF2

∫
dD`

(2π)D
N4µν%σ

[`2 −m2(1 + λ)]3
, (2.210)

where

N4µν%σ ≡ P γ2α1(`+ q1)Vµα1α2(p1, `+ q1,−`− q2)

Pα2β1(`+ q2)Vνβ1β2(p2, `+ q2,−`− q3)

P β2γ1(`+ q3)V%σγ1γ2 . (2.211)
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Since the mass dimension of the expression is 2 in this case, the formula (2.209)
takes a form

e = 2− l + 2n. (2.212)

The contributing terms are shown in the Tab. 2.1 and the full expressions can
be found in the enclosed notebook triangle.nb. We can see that the worst diver-
gence vanishes algebraically (meaning the `8 terms are zero due to the algebraic
structure of the expression).

Type of terms Divergence # of ext. mom. λ-expansion stops at
`8 sextic vanishes algebraically
`6 quartic 0 λ2

`4m−2 quadratic 0 λ2

`4m−4 quadratic 2 λ1

`4m−6 quadratic 4 λ0

`2m0 logarithmic 0 λ2

`2m−2 logarithmic 2 λ1

`2m−4 logarithmic 4 λ0

`0m0 finite 2 λ1

`0m−2 finite 4 λ0

Table 2.2: The vector triangle terms summary

Apart from that, the terms `6 do not contain any external momenta even
though they could (again, this is due to the algebraic structure). That means we
do not have to sub-categorize these terms according to the power of 1/m2.

It also means that we do not need the symmetric integration formula for six
loop momenta (because there can be only four non-contracted loop momenta in
the expression since there are only four Lorentz indices and there are no other
momenta).

2.4.3 Box diagrams

The worst diagram is in Fig. 2.24.

k1p1

k4

p4

k2

p2 k3 p3

µ

σ

ν
%

Figure 2.24: The vector box diagram
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The relevant expression reads

iΘ�
µν%σ(p1, p2, p3) ≡ e4µ4−D

∫
F3

dXF3

∫
dD`

(2π)D
N�
µν%σ

[`2 −m2(1 + λ)]4
, (2.213)

where

N�
µν%σ ≡ P δ2α1(`+ q1)Vµα1α2(p1, `+ q1,−`− q2)

Pα2β1(`+ q2)Vνβ1β2(p2, `+ q2,−`− q3)

P β2γ1(`+ q3)V%γ1γ2(p3, `+ q3,−`− q4)

P γ2δ1(`+ q4)Vσδ1δ2(p4, `+ q4,−`− q1). (2.214)

The formula (2.209) takes a form

e = 4− l + 2n. (2.215)

The contributing terms are shown in the Tab. 2.1 and the full expressions
can be found in the enclosed notebook box.nb. The worst two divergences vanish
algebraically and the `8 terms do not contain any external momenta (so we do
not need the symmetric integration formula for eight loop momenta).

Type of terms Divergence # of ext. mom. λ-expansion stops at
`12 octic vanishes algebraically
`10 sextic vanishes algebraically
`8 quartic 0 λ2

`6m−2 quadratic 0 λ2

`6m−4 quadratic 2 λ1

`6m−6 quadratic 4 λ0

`4m0 logarithmic 0 λ2

`4m−2 logarithmic 2 λ1

`4m−4 logarithmic 4 λ0

`2m0 finite 2 λ1

`2m−2 finite 4 λ0

`0m0 finite 4 λ0

Table 2.3: The vector box terms summary

The terms `6 unfortunately contain external momenta so the following formula
has to used

`α`β`γ`δ`µ`ν
eff.
=

(`2)3

D(D + 2)(D + 4)
(gαβgγδgµν + . . .), (2.216)

where the bracket contains 15 terms in total.

2.4.4 Total polarization tensor

At the end of the whole procedure, we got the vector QED polarization tensor

Γsc.
µν%σ ≡ Γ�

µν%σ + Γ4µν%σ + Γ©µν%σ. (2.217)
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Figure 2.25: The ”reduced” polarization tensor for vector QED

The result is displayed in Fig. 2.25. Again, we have thrown away the longitudinal
terms proportional to pµ1 , p

ν
2 or p%3.

Clearly, the tensor has the proper structure (it is UV finite and the terms
proportional to two momenta are not present)

2.4.5 Amplitude matching

Again, let us compare the vector QED polarization tensor (Fig. 2.25) with the
effective one (Fig. 2.4).

The fundamental equation reads

Γvec.
µν%σ − Γeff.

µν%σ(g1, g2) = 0. (2.218)
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First, compare only the terms with no metric tensors. Fig. 2.26 shows what we
obtain on the left-hand-side. The linear system in this case is

e4 − 1280π2m4(g1 − g2) = 0

27e4 − 2560π2m4g2 = 0, (2.219)

which has the following solution

g1 =
29e4

2560π2m4
=

29α2

160m4

g2 =
27e4

2560π2m4
=

27α2

160m4
. (2.220)

Substituting the solution back into the left-hand-side of our equation leads to
Fig. 2.27. Again, the constraint p2

4 = 0 is factorized.

Figure 2.26: Matching the terms with no metric tensors

Figure 2.27: The p2
4 = 0 constraint is factorized

The effective Lagrangian of Euler-Heisenberg type for the case of vector QED
can be then expressed as

L vec.
eff. =

α2

160m4

[
29(FµνF

µν)2 + 27(?FµνF
µν)2

]
, (2.221)
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or

L vec.
eff. =

α2

40m4

[
29(E2 −B2)2 + 108(E ·B)2

]
. (2.222)

Precisely the same result can be found in [21], where it has been derived by
completely different means, namely by using the functional methods. Again, one
can also calculate the differential cross section using the formula (2.47)(

dσ

dΩ

)vec.

=
393α4

800π2

ω6

m8
(3 + cos2 θ)2, (2.223)

where we used s = (2ω)2. The identical result is shown in [20].
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3. Functional methods

In this chapter, as a counterpart to the previous one, we shall demonstrate the
power of the functional methods on a ”simple” example. We derive the Euler-
Heisenberg Lagrangian for the case of spinor QED using the Fock-Schwinger
proper time method. The calculation draws heavily on [23] and [25].

3.1 Preliminaries

The general theory of path integrals gives us the following formula for the effective
Lagrangian1 ∫

d4x Leff. = −i ln det D̄ ≡ −i ln det

(
D

D |Aµ=0

)
, (3.1)

where
D ≡ i/∂ − e /A−m (3.2)

is the Dirac operator. Both the logarithm and the determinant are understood
in the operator sense.

The important observation is that it suffices to consider and calculate this
determinant for the case of constant electromagnetic field (meaning constant Fµν).
The reason is that the Lagrangian in question contains no derivatives of the
electromagnetic tensor (see the beginning of the previous chapter).

We can write

ln det D̄ = Tr ln

(
i/∂ − e /A−m
i/∂ −m

)
, (3.3)

where we used the famous relation

det expA = exp TrA, (3.4)

and the operator ”Tr” denotes the trace both in the x-space (the position space)
and in the space of Dirac indices.

Next, we perform a little trick

ln det D̄ = Tr ln

[
C(i/∂ − e /A−m)C−1

C(i/∂ −m)C−1

]
= Tr ln

[
C(i/∂ − e /A−m)C−1

C(i/∂ −m)C−1

]
= Tr ln

[
−(i/∂ − e /A)T −m
−(i/∂)T −m

]
= Tr ln

(
i/∂ − e /A+m

i/∂ +m

)
, (3.5)

1This can be proved using the generating functional [25]

Z(j) =

∫
dψdψ̄dAµ exp

[
i

∫
d4x (LQED + jµAµ)

]
,

where we ”integrate out” the fermion degrees of freedom. This leads to a Berezin-Grassmann
integral of a gaussian.
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where we used the identity CγµC
−1 = −γT

µ . This trick allows us to write

2 ln det D̄ = Tr ln

(
i/∂ − e /A−m
i/∂ −m

)
+ Tr ln

(
i/∂ − e /A+m

i/∂ +m

)
= Tr ln

[
(i/∂ − e /A)2 −m2

(i/∂)2 −m2

]
. (3.6)

Now we use the following integral formula

ln
α

β
=

∫ ∞
0

ds

s

[
eis(β+i0) − eis(α+i0)

]
(3.7)

to obtain

2 ln det D̄ = −
∫ ∞

0

ds

s
e−is(m

2−i0)

∫
d4x tr

[
〈x|eis(i/∂−e /A)2|x〉 − 〈x|eis(i/∂)2 |x〉

]
.

(3.8)
The trace in the x-space is now written explicitly as

∫
d4x, whereas the remaining

trace in the space of Dirac indices is denoted by ”tr”.
Another needed identity reads

(i/∂ − e /A)2 = (i∂µ − eAµ)(i∂µ − eAµ)− e

2
σµνF

µν

= (i∂µ − eAµ)2 − e

2
σµνF

µν , (3.9)

where

σµν ≡
i

2
[γµ, γν ]. (3.10)

This can be proved straightforwardly using

γµγν =
1

2
{γµ, γν}+

1

2
[γµ, γν ]

= gµν − iσµν . (3.11)

Substituting (3.9) into (3.8) yields

2 ln det D̄ = −
∫ ∞

0

ds

s
e−is(m

2−i0){[
tr exp

(
−ise

2
σµνF

µν

)]∫
d4x

[
〈x|eis(i∂µ−eAµ)2 |x〉

]
−©Aµ=0

}
, (3.12)

where

©Aµ=0 ≡

{[
tr exp

(
−ise

2
σµνF

µν

)]∫
d4x

[
〈x|eis(i∂µ−eAµ)2|x〉

]}∣∣∣∣∣
Aµ=0

. (3.13)

Note that we have just used the fact the electromagnetic field is constant which
enabled us to pull the Dirac trace out of the integral.
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3.2 Dirac trace

We are now ready to calculate the Dirac trace [the first part of the expression
(3.12)]. But first, we need to treat the (constant) electromagnetic field in some
way. We define two quantities a, b

a2 − b2 ≡ E2 −B2 = −1

2
FµνF

µν = −1

2
F

ab ≡ E ·B =
1

4
(?FµνF

µν) =
1

4
G, (3.14)

and set

F µν =


0 0 0 −a
0 0 b 0
0 −b 0 0
a 0 0 0

 . (3.15)

Two σµν matrices are needed

σ30 =


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

 , σ12 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (3.16)

We used the standard representation of Dirac matrices to obtain these.
From this, we have

σµνF
µν =


2b 0 2ia 0
0 −2b 0 −2ia

2ia 0 2b 0
0 −2ia 0 −2b

 . (3.17)

The matrix exponential was evaluated using Mathematica

exp

(
−ise

2
σµνF

µν

)
=


caz̄ 0 saz̄ 0
0 caz 0 −saz
saz̄ 0 caz̄ 0
0 −saz 0 caz

 , (3.18)

where

ca ≡ cosh(aes)

sa ≡ sinh(aes)

z ≡ eiebs, (3.19)

from which we can easily see that

tr exp

(
−ise

2
σµνF

µν

)
= 4 cosh(aes) cos(ebs). (3.20)
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3.3 Spatial trace

Processing the second part of (3.12) (the part with
∫

d4x) is a bit harder. First,
we define

pµ ≡ i∂µ, [xµ, pν ] = −igµν . (3.21)

We need a suitable electromagnetic potential for our constant electromagnetic
tensor. The general solution for this problem is a linear function

Aµ(x) = −1

2
(Fµν + Sµν)x

ν + Cµ, (3.22)

where Fµν is our constant electromagnetic tensor, Sµν is any constant symmetric
matrix, and Cµ is any constant vector. We set Cµ = 0, and

Sµν =


0 0 0 −a
0 0 b 0
0 b 0 0
−a 0 0 0

 , (3.23)

so
Aµ(x) =

(
0 −bx2 0 ax0

)
. (3.24)

Now we define an auxiliary Hamiltonian

H ≡ (i∂µ − eAµ)2

= p2
0 − (p1 + bx2)2 − p2

2 − (p3 − ax0)2. (3.25)

Using the BCH formula

eABe−A =
∞∑
n=0

Cn
n!
, Cn ≡ [A,Cn−1], C0 ≡ B, (3.26)

the Hamiltonian can be recast into a separated form

H = Ha +Hb, (3.27)

where

Ha ≡ e
ip0p3
ea (p2

0 − e2a2x2
0)e−

ip0p3
ea

Hb ≡ e
ip1p2
eb (−p2

2 − e2b2x2
2)e−

ip1p2
eb . (3.28)

For instance, BCH formula gives us [via (3.21)]

e
ip0p3
ea x2

0e−
ip0p3
ea = x2

0 +

[
ip0p3

ea
, x2

0

]
+

[
ip0p3

ea
,

[
ip0p3

ea
, x2

0

]]
+ 0

= x2
0 −

2x0p3

ea
+

p2
3

e2a2

=
(
x0 −

p3

ea

)2

, (3.29)

which then leads to
p2

0 − (p3 − ax0)2 (3.30)
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in (3.25). The other half is solved in the same way. The matrix element in (3.12)
now can be written as

〈x|eisH |x〉 = 〈x3x0|eisHa|x0x3〉〈x2x1|eisHb|x1x2〉. (3.31)

Using
exp

(
eABe−A

)
= eAeBe−A, (3.32)

we can write
eisHa = e

ip0p3
ea eis(p

2
0−e2a2x20)e−

ip0p3
ea . (3.33)

Now, let us process the first element

〈x3x0|eisHa|x0x3〉 =

∫
dp0dp3dp′0dp′3dq0dq3dq′0dq′3

(2π)8
〈x3x0|p0p3〉

〈p3p0|e
ip0p3
ea |q0q3〉

〈q3q0|eis(p
2
0−e2a2x20)|q′0q′3〉

〈q′3q′0|e−
ip0p3
ea |p′0p′3〉

〈p′3p′0|x0x3〉 (3.34)

where we used (3.33), and inserted eight relations of completeness. Using

〈x|p〉 = eipx (3.35)

on pairs 〈x0|p0〉, 〈x3|p3〉, 〈p′0|x0〉, 〈p′3|x3〉, we obtain

〈x3x0|eisHa|x0x3〉 =

∫
dp0dp3dp′0dp′3dq0dq3dq′0dq′3

(2π)8
eix0(p0−p′0)+ix3(p3−p′3)

〈p3p0|e
ip0p3
ea |q0q3〉

〈q3q0|eis(p
2
0−e2a2x20)|q′0q′3〉

〈q′3q′0|e−
ip0p3
ea |p′0p′3〉, (3.36)

and using

〈p3p0|e
ip0p3
ea |q0q3〉 = e

ip0p3
ea (2π)2δ(p0 − q0)δ(p3 − q3)

〈q3q0|eis(p
2
0−e2a2x20)|q′0q′3〉 = 2πδ(q3 − q′3)〈q0|eis(p

2
0−e2a2x20)|q′0〉

〈q′3q′0|e−
ip0p3
ea |p′0p′3〉 = e−

ip0p3
ea (2π)2δ(p′0 − q′0)δ(p′3 − q′3), (3.37)

we get

〈x3x0|eisHa|x0x3〉 =
ea

4π2

∫
dp0 〈p0|eis(p

2
0−e2a2x20)|p0〉. (3.38)

We can calculate this element in an elegant way. Consider the Hamiltonian
of the harmonic oscillator

Hosc. ≡
p2

0

2
+
ω2x2

0

2
. (3.39)

It holds

Hosc.|n〉 = ω

(
n+

1

2

)
|n〉. (3.40)
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The following matrix element can be easily calculated

ea

4π2

∫
〈p0|e2isHosc. |p0〉. (3.41)

Using the energy basis and (3.40), we get

ea

4π2

∫
〈p0|e2isHosc. |p0〉 =

ea

4π2

∞∑
n=0

∫
dp0 |〈p0|n〉|2 exp

[
2isω

(
n+

1

2

)]
=
ea

2π

eisω

1− e2isω
, (3.42)

where we used normalization of the oscillator wave functions∫
dp0 |〈p0|n〉|2 = 2π. (3.43)

To recover the element (3.38), we need to substitute ω = iea in (3.42).
The result is

〈x3x0|eisHa |x0x3〉 =
ea

4π sinh(eas)
. (3.44)

The second element can be processed analogously

〈x2x1|eisHb|x1x2〉 =
eb

4πi sin(ebs)
. (3.45)

3.4 Final expansion

Now we can combine all the previous expressions. Substituting (3.44), (3.45),
and (3.20) into (3.12), we obtain

− i ln det D̄ =

∫
d4x

1

8π2

∫ ∞
0

ds

s
e−is(m

2−i0)

[
e2ab

cosh(eas) cos(ebs)

sinh(eas) sin(ebs)
− 1

s2

]
.

(3.46)
If we compare this with (3.1), we can see that

Leff. =
1

8π2

∫ ∞
0

ds

s
e−is(m

2−i0)

[
e2ab

cosh(eas) cos(ebs)

sinh(eas) sin(ebs)
− 1

s2

]
. (3.47)

This is the Euler-Heisenberg Lagrangian in all orders for spinor QED.
Let us expand the integrand in powers of e2[

e2

3s
(a2 − b2)− e4s

45
() +O

(
e6
)]

e−is(m
2−i0), (3.48)

and restore the original variables using (3.14)

a4 − 2a2b2 + b4 =
(
E2 −B2

)2

a2b2 = (E ·B)2 . (3.49)
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So

a4 + 5a2b2 + b4 = (a4 − 2a2b2 + b4) + 7(a2b2)

=
(
E2 −B2

)2
+ 7 (E ·B)2 . (3.50)

We find that

Leff. =
α

6
(E2 −B2)

∫ ∞
0

ds

s
e−is(m

2−i0)

+
2α2

45m4

[
(E2 −B2)2 + 7(E ·B)2

]
+ · · · . (3.51)

The first (divergent) term can be absorbed into the kinetic term FµνF
µν of the

Maxwell Lagrangian, which leads to the charge renormalization.
The second term has been already integrated. We can clearly see that it is the

same formula we have derived in the previous chapter using the direct amplitude
matching.
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Conclusion

In the first part of the thesis, we have successfully derived effective Lagrangians
of the Euler-Heisenberg type in the lowest order for the case of spinor, scalar and
vector QED. All the results coincide with those one we can find in the literature.
Note however that most common way of evaluating the effective Euler-Heisenberg
Lagrangian is based on functional methods, not on a direct diagrammatic calcu-
lation. The results are summarized in the following table

Version of QED coeff. c1 coeff. c2 coeff. d1 coeff. d2 coeff. r
spinor 1/90 7/360 2/45 14/45 139/32400
scalar 7/1440 1/1440 7/360 1/90 17/64800
vector 29/160 27/160 29/40 27/10 393/800

We use the following notation

Leff. =
α2

m4

[
c1(FµνF

µν)2 + c2(?FµνF
µν)2

]
Leff. =

α2

m4

[
d1(E2 −B2)2 + d2(E ·B)2

]
dσ

dΩ
=
rα4

π2

ω6

m8
(3 + cos2 θ)2.

In the second part, we have used functional methods to calculate the effective
Lagrangian in the lowest order for the case of spinor QED. The calculated result
match the one obtained via the diagrammatic methods.
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Phys. Rev. 93, 250 (1935)

[10] W. Dittrich, One-loop effective potentials in quantum electrodynamics, J.
Phys. A A9, 1171 (1976)

[11] R. Karplus and M. Neuman, Non-Linear Interactions between Electromag-
netic Fields, Phys. Rev. 80, 380 (1950)

[12] V. Constantini, B. De Tollis, and G. Pistoni, Nonlinear Effects in Quantum
Electrodynamics, Nuovo Cim. 2A, 733 (1971)

[13] B. De Tollis, The Scattering of Photons by Photons, Nuovo Cim. XXXV,
1182 (1965)

[14] N. Kanda, Light-Light Scattering, arXiv:1106.0592 (2011)

[15] T. Fujita and N. Kanda, A Proposal to Measure Photon-Photon Scattering,
arXiv:1106.0465 (2011)

[16] Y. Liang and A. Czarnecki, Photon-photon scattering: a tutorial, arX-
iv:1111.6126v2 (2011)

59



[17] E. Lundström, G. Brodin, J. Lundin, and M. Marklund, Using High-Power
Lasers for Detection of Elastic Photon-Photon Scattering, Phys. Rev. Lett.
96, 083602 (2006)

[18] H. König, Contribution of scalar loops to the three-photon decay of the Z,
Phys. Rev. D, 50, 602 (1994)

[19] X. Jiang and X. Zhou, Calculation of the polarization tensors of Z → 3γ
and γγ → γγ via W -boson loops in the standard model, Phys. Rev. D 47,
214 (1993)

[20] G. Jikia and A. Tkabladze, Photon-photon scattering at the photon linear
collider, Phys. Lett. B 323, 453 (1994)

[21] V. S. Vanyashin and M. V. Terent’ev, The vacuum polarization of a charged
vector field, Soviet Physics JETP 21, 375 (1965)

[22] J. Hořeǰśı, Fundamentals of Electroweak Theory, The Karolinum Press,
Prague 2002

[23] C. Itzykson and J.-B. Zuber, Quantum Field Theory, Dover, New York 2005

[24] G. V. Dunne, Heisenberg-Euler Effective Lagrangians: Basics and Exten-
sions, arXiv:hep-th/0406216v1 (2004)

[25] U. Meissner, lecture notes
teorica.fis.ucm.es/tae2012/charlas.dir/meissner.dir/part2.pdf

60


	Preface
	Historical overview
	Diagrammatic approach
	Effective theory of Euler-Heisenberg type
	Lagrangian form
	Invariant amplitude
	Transversality
	Cross sections

	Case of spinor QED
	Initial analysis
	Ward identities
	Diagram parametrization
	Diagram evaluation
	Polarization tensor
	Amplitude matching

	Case of scalar QED
	Box diagrams
	Triangle diagrams
	Bubble diagrams
	Total polarization tensor
	Amplitude matching

	Case of vector QED
	Bubble diagrams
	Triangle diagrams
	Box diagrams
	Total polarization tensor
	Amplitude matching


	Functional methods
	Preliminaries
	Dirac trace
	Spatial trace
	Final expansion

	Conclusion
	References

