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Abstract

This work aims at showing synthesis and potential use of water-soluble fluorescent probes based
on BODIPY. The preparation of probes containing bioorthogonal mono- and heterobifunctional
functional groups was demonstrated. Ground work was done at the optimisation of reliable,
scalable and fast sulfonation of BODIPY in 2,6-positions. A protocol for handling sulfonated
BODIPY has been established; especially for the exchange of counterions. In counterion se-
lection, their relation to synthetic pathway and biocompatibility were taken into consideration.

The second part of the work shows series of water-soluble fluorescent probes, into which can
be easily introduced bioactive or bioorthogonal functional groups. This can be used for click
chemistry in connection with turn off/on probes or fluorescent sensing of molecules or ions. All
this can be done in aqueous solution without organic solvents, which is relevant for biochemical,
analytical and imaging applications.

Keywords BODIPY, bifunctional, water-soluble, fluorescent probe, solubilization, biocompa-
tible probes, bioorthogonal reaction, BODIPY sulfonation

Abstrakt

Cílem této práce bylo ukázat syntézu a potenciální využití fluorescenčních sond rozpustných
ve vodě založených na BODIPY. Konkrétně se jednalo o přípravu sond s mono- a heterobi-
funkčními funkčními skupinami. Bylo nezbytné optimalizovat podmínky pro spolehlivou, škálo-
vatelnou a rychlou sulfonaci BODIPY v polohách 2,6. Dále byl vytvořen postup pro práci se
sulfonovaným BODIPY, především výměnu protiiontů. Při výběru protiiontů byla uvažována
jejich biokompatibilita, reakční cesta při syntéze a separace produktů.

Ve druhé části práce byla připravena série ve vodě rozpustných fluorescenčních sond, do
kterých lze snadno zavést bioaktivní nebo bioortogonální funkční skupiny. Takto modifikované
sondy lze využít v klik chemii ve spojení s off/on sondou nebo pro fluorescenční detekci molekul
či iontů. Zásadní je, že navržené aplikace lze provádět ve vodných roztocích bez použití orga-
nických rozpouštědel, což je nezbytné pro biochemické, analytické a zobrazovací uplatnění.

Klíčová slova BODIPY, bifunkční, rozpustná ve vodě, fluorescenční sonda, solubilizace,
biokompatibilní sonda, bioortogonální reakce, sulfonace BODIPY
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1 | Introduction

The development of molecular imaging techniques in the recent years have brought enormous
demand for fluorescent molecular probes which are highly sensitive, selective and bioorthogonal.
Simultaneously, they must meet series of usual and new requirements such as [1]:

• Biocompatibility
• Water-solubility
• Chemoselectivity
• Brightness and high quantum yields
• Photochemical stability
• Reasonable reaction kinetics in physiological pH (if reacting covalently)
• Excitation and emission profiles in visible or near NIR region.

Fluorescent probes are molecules which exhibit characteristic fluorescent properties, such as
fluorescence intensity, excitation and emission band wavelengths, lifetime or quantum yields
etc. that can change as a result of an interaction with a target molecule. These interactions can
be generally covalent or non-covalent. While we use a term probe, it is important to keep in
mind the difference between a probe, indicator and label, as depicted in figure 1.1.

Probes Indicators Labels (tags) & tracers

Physical
parameters

Structural
parameters

Concentration
of a species

Visualization, localization
of a species

•Polarity
•Microviscosity and
molecular mobility
•Temperature
•Pressure

•Order parameters
•Distances

•pH
•Metal ions
•Anions
•Molecules

•Fluorescence microscopy
•Encoding for high 
throughput screenin

•Combinatorial chemistry
•Genomics
•Proteomics
•Frug screening

Figure 1.1: Difference between probes, labels and indicators. Redrawn from [2].
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CHAPTER 1. INTRODUCTION

1.1 Fluorescent probes based on BODIPY

The class of fluorescent dyes called BODIPY, first discovered by Treibs and Kreuzer in 1968 [3],
have experienced a tremendous boom in the last few years. There are several reasons for it: fast-
developing methods for versatile substitution of BODIPY, excellent fluorescence properties and
their tunability, high extinction coefficient, sharp excitation and emission bands, high quantum
yield and photostability.

Moreover, recent studies (experimental [4] and theoretical [5, 6], section 1.1.1) showed trends
in introducing the same (different) substituents in the same (different) positions which enables a
quite precise prediction of spectral properties. When combined, for instance, with the detailed
review on selective sensing of ions and molecules [7, 8], an excellent toolbox for preparing
tailor-made fluorescent probes is available.

1.1.1 Applications of BODIPY

Fluorescent dyes based on BODIPY currently experience a great boom. In the last few years,
the number of articles grew rapidly; therefore, only a few closely related topics will be covered
in this introduction. The number of BODIPY applications, not only as a proof of principle, but
also as readily applicable experiments, is growing fast.

Older reviews with broader scope will be often cited in this work, especially [9, 10, 11, 12],
since the field of BODIPY has become more complex in the latest years. The most recent
reviews cover only a small part of BODIPY field, rather than the diversity of BODIPY’s
physics, chemistry and biochemistry. For that reason, a short itemisation of current reviews is
listed below.

Detailed information on specific areas can be found in the following: photodynamic therapy
(PDT) in Ref. [13], photovoltaics in Ref. [14] and a comprehensive overview for design strategies

s-indacene
1

N
3a3a B

44 N
4a4a

88
44

NH
1010

HN
1111

66
55

55

66

7711

22

3399

88

7733

22

11

FF

BODIPY core

4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene
4

dipyrromethane
2

meso

α

β

NH N

dipyrromethene or dipyrrin
3

ox. BF3·OEt2

Figure 1.2: Structural motive of BODIPY (from left to right): terminological origin (1), syn-
thetic precursor (2), its oxidised form (3) and BODIPY with IUPAC name and numbering
(4).
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1.2. PREPARATION OF BODIPY
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NH NH
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R18

DCM, DDQ

Figure 1.3: Simplified scheme of synthesis of a symmetrical BODIPY core.

for organic photovoltaic in small-molecule and bulk-heterojunction solar cell in Ref. [15]. Bio-
logically oriented applications on pH sensing (intracellular) are review in Ref. [16, 8], strategies
for shifting BODIPY fluorescence into far red and NIR in [4] (pH probes), for comprehensive
review including calculations and prediction of properties see [6].

1.2 Preparation of BODIPY

The structural motive of boron-dipyrromethene, traditionally abbreviated as BODIPY 4 (Fi-
gure 1.2), is by IUPAC nomenclature derived from s-indacene (1). Synthetically, there is no
connection to the structure; the preparation of BODIPY core is done in multi-step synthesis,
starting with the condensation of (un)substituted pyrrole. This is usually done as a one-pot reac-
tion without isolation of a less stable dipyrromethane (2) or oxidised dipyrromethene (dipyrrin)
(3). The last step is the addition of a tertiary base (TEA, DIPEA) followed by boron trifluoride
to form fluorescent 4 (BODIPY). An unsubstituted BODIPY 4 resisted synthetic efforts up to
the recent time (2009), because it is missing stabilisation from substituents on the rest of the
BODIPY scaffold (mainly a meso-substituent or methyl groups on pyrrole units) [17, 18, 19].

1.2.1 BODIPY core

From the synthetic point of view, the condensation of pyrrole yielding dipyrromethane leads
to low yields (great number of byproducts) and it is highly dependent on a substituent in
a meso-position. Lower yields can be generally observed, when unsubstituted pyrrole is used

3
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X

5d
X = OAc, Br, Cl

R3 R2

R1N
H

HN

R4

O

N
H

R1

R2 R3 R3

R2

R1
5e

15

O

X

R4
+

14
X = Cl, Br, OOCR

or RC(OR')3

N N

R4

R1

R2

R3 R3

R2

R1

16
symmetrical

H+ or POCl3

N N

R4

R1

R2

R3 R8

R7

R76

17
asymmetrical

N
H

R6

R7 R8

5f

B

FF

B

F F

base, BF3·OEt2

H+ or POCl3
base, BF3·OEt2

convetional approach
meso-unsubstitued

Figure 1.4: Scheme of synthesis of both symmetrical and asymmetrical BODIPY.

for condensation (meso-position contain still substituent). This is caused by a poor sterical
hindrance, which leads to porphyrine-like adducts [20].

Therefore, if it’s suitable for further synthetic modification, substituted pyrrole (mainly 2,4-
dimethyl-pyrrole) is used. A detailed description of reactions is provided in [9, 12].

To prepare a symmetrically substituted core, condensation can be done by the reaction of
pyrrole (5b) with acylchloride (7) or aldehyde (6) (Figure 1.3). In case of the reaction using
aldehyde 6, resulting dipyrromethane 8 must be oxidised to dipyrromethene 9, which creates
more byproducts. The advantages of these approaches comprise higher yields (usually above
50 %) and a feasibility to use meso-substituent as a starting point for further functionalisation
[21]. If an aryl substituent in meso-position is not required, condensation can be done with
anhydride 11 and pyrrole 5c. Oxidised dipyrromethene (9,12) is then commonly complexed
with boron trifluoride forming fluorescent BODIPY 10 or 13.

Symmetrical BODIPY 16 (Figure 1.4) can be prepared by conventional self-condensation of
pyrrole-2-carbaldehyde formed by oxidation 5d, derivative 16 prepared this way will be meso-
unsubstituted. By preparation of ketopyrrole 15 from correspondingly substituted pyrrole 5e
and ketone 14, both symmetrical and asymmetrical BODIPY can be prepared. Dependent
on the addition of pyrrole 5c to ketopyrrole 15, asymmetrical derivative 17 can be prepared.
Reaction of 15 can be acid catalysed (commonly used) or catalysed with addition of phosphoryl
chloride. The latter catalysis is reported to provide better yields. It was first reported in 2008
[22] and the mechanism was proposed in Ref. [12].
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N
B
44 N

88

55

66

7711

22

33

FF

• Halogenation

• SEAr

• Pd Cross-Coupling

• Direct H substitution

• SN with O and C Nucleophiles

• O-, C- or E-BODIPY

• BF2 (de)protection

• SNAr

• Thiol-Halogen SNAr

• Pd Cross-Coupling

• Direct H substitution

• Direct Styrylation

• SE with NBS on CH3

• Halogenation

• SNAr

• Pd Cross-Coupling

• Direct Styrylation

• SNAr

• Liebeskind Cross-Coupling

• -N,-S,-CF3 derivatives

Cl

• CuAAC

• SN

Figure 1.5: Synthetically available functionalizations of BODIPY. Redrawn from [15].

To prepare aryl-substituted BODIPY, we chose a path using acylchloride 7 because we could
avoid the oxidation step, which produce a significant amount of by products and the reaction
can be done in one pot (Figure 3.1, Route C).

1.2.2 Functionalization of core

Great variation of fluorescent properties can be achieved on BODIPY by condensation pro-
perly substituted pyrroles (see section 1.2). Overview of synthetically available derivatization
of BODIPY is showed figure 1.5, especially the modification at 3,5- and 8-positions are well
described in the literature. The modifications prior complexation, are often not highlighted ,
for example, bromination of positions 1,2,3,5,6,7 to introduce sterically crowded BODIPY [23]
or chlorination of positions 3,5 in order to prepare library of 120 compounds (e.g. 18) [24].

1.2.3 Positions 3,5

Positions 3,5 can undergo electrophilic substitution (selectively) with NBS introducing bromine
to methyl group in positions 3,5 CH3, resulting into preparation of derivatives 19 [25] or oxi-
dative nucleophilic substitution to unsubstituted positions 3,5 [26]. Vicarious nucleophilic sub-
stitution (VNS) of hydrogen can be done, if the nucleophile carries a suitable leaving group
(Br, Cl, SPh). This results into compounds such as 20 [27], to direct palladium-catalysed C–H
(het)arylation forming 21 [28] or dimer 22 which have fluorescence shifted to red (absorption
max. 621 nm, emission max. 707 nm) [29]. Thiol–halogen nucleophilic substitution can be also
performed, forming 23 [30], or iridium-catalyzed borylation can be performed which is selec-
tive to positions 3,5 or 2,6 producing compounds 24a and 24b, resulting also into shift of
fluorescence to red [31]. Last reported is a new procedure of radical C-H arylation, which easily
introduces aromatic substituent(s) into positions 3,5 [32].

5
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N N
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COOMe
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Ar
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Ar

COOMe
24a

MeOOC

N N
B

FF

22

R = 2,6-dichlorophenyl

R

NN
B

F F

R

Figure 1.6: Modifications at 3,5-positions (with exception of compound 24b).

1.2.4 Position 8 (meso)

Modifications at meso-position are interesting for several reasons: i) substitution on aryl sub-
stituent significantly change fluorescent properties in dependence on photoinduced electron
transfer (e.g. off/on) [33] ii) it is synthetically accessible to functionalization iii) it is suitable
for preparation of e.g. pH probes, metal-chelators, selective (chemo)sensors or biomolecule con-
jugating molecules [9]. Derivatives substituted in position 8 do not show distinctive changes
of spectral characteristics (shift of fluorescence maxima), because of the orthogonal geometry
of meso substituent and BODIPY core. However, the insertion of ortho-substituents on the
meso-phenyl ring, bulkier aromatic groups or the introduction of 1,7-substituents, improve sig-
nificantly fluorescence emission efficiency. This is caused by restricted intramolecular rotation
and steric hindrance between the substituents [21, 34].

As mentioned in section 1.2.1, a variety of substituents can be introduced via acid-catalysed
condensation of pyrrole and this method is widely used. Various studies of effects of electron-
rich or electron-deficient groups have been done so far [33, 35, 36]. Except the commonly used
substitutions, introducing hetero atom is of interest – for example “exchange” of C-meso for
nitrogen creates subclass called aza-BODIPY 25 [37]. These dyes have similar structure to
phthalocyanines and can be refered as “semi-phthalocyanines”. Aza-BODIPYs have absorption
and emission bands shifted to 650-850 nm range, high molar extinction coefficients and moderate
fluorescence quantum yields (φfl = 0.23-0.36). In addition they have a low sensitivity to the
solvent polarity. Thus, they present interesting alternative to BODIPY dyes, especially for use
in NIR region [38]. Red-shift of absorption and emission maxima is result of stabilisation of the
HOMO-LOMO energy gap by nitrogen [11].

6
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Figure 1.7: Modifications at the 8-position (meso).

Another variation is to introduce a heteroatom next to C-meso carbon, such as sulfur, which
is done by condensation of substituted pyrrole 5d with thiophosgene forming thioketone 26,
subsequent reaction enable to prepare S or N-meso-BODIPY [39]. Derivative 27 was employed
in Liebeskind-Srögl cross-coupling and series of (aromatic) substituents were introduced to
meso-position within few hours with high yields [40]. Using the same procedure and to avoid
harsh conditions of oxidation by Lindsay process, a series of secondary and tertiary amines was
prepared in meso-position (e.g. 28) from 27 by SNAr-like reaction. Fluorescence at blue edge
of the visible spectrum was observed for derivatives like 28 [41]. An introduction of meso-CF3
was also reported, both symmetrical and asymmetrical 30 [42].

1.2.5 Positions 1,7

Wider selection of functionalization reactions was missing for these positions for longer time.
Finally, more options for modification were accessed by halogenation (compound 30 in figure
1.8), followed by nucleophilic aromatic substitution (SNAr) or Pd-catalysed cross-coupling reac-
tion [43] resulting in 31. Another reported modification of positions 1,7 is by direct styrylation
of methyl groups 51-53 in figure 1.11 [44].

1.2.6 Positions 2,6

Positions 2,6 bear the least positive charge on BODIPY and can undergo electrophilic attack
(compound 32 in Figure 1.9); the extent of selectivity is not confirmed, though. In the majority
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Figure 1.8: Modifications of positions 1,7.
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Figure 1.9: Mesomeric structures of BODIPY, positions 2,6 are more susceptible for electrophilic
attack that other positions. Bottom: example of accessible derivatives for positions 2,6.

of the cases, other positions of pyrrole were blocked by methyl or ethyl substituents. The list of
reported types of reactions is thus shorter: sulfonation (Section 1.3.4), nitration, bromination
and iodation (compounds 33a, 33b [45], 33c [45, 46], 33d [47], respectively). Another reactions
are formylation and Pd-catalysed cross-coupling accessing alkyne substituents like compound
36 [48, 49].

Introduction of sulfonate groups does not virtually influence spectral properties and quantum
yields of prepared derivatives. On the other side, introduction of nitro or halo groups quenches
drastically fluorescence and shifts absorption and emission maxima to red. In the case of halogen
atoms, it can be attributed to the internal heavy atom effect. One of the applications of iodo-
BODIPY is generation of singlet oxygen in photodynamic therapy [13, 50], the second one
is the introduction of carbonyl derivatives from mono-iodo 33d derivatives to prepare 37 via
carbopalladation [51]. Bromo-BODIPY was used as reactant for Suzuki-Miyaura coupling [46].
Formylation of hydrogen at 2,6-positions was done via Vilsmeier-Haack reaction with mixture
DMF and POCl3 forming 34 and further functionalized via Knoevenagel condensation leading
to 35 [52].
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Figure 1.10: Synthetically available substitutions of fluorine atoms at position 4.

1.2.7 Position 4

At the 4-position, it is possible to exchange fluorine atoms by the means of nucleophilic sub-
stitution (SN). In the case of substitution for alkoxide (or aryloxy), the so called O-BODIPY is
prepared, in the case of aryl and ethynyl (ethynylaryl) substitution, C-BODIPY and E-BODIPY
are prepared, respectively.

To prepare O-BODIPY, it is sufficient to treat BODIPY with aluminium chloride and corre-
sponding alcohol producing compound 38-39 (Figure 1.10), which can improve inherent prob-
lems of BODIPY, especially small Stokes shift and fluorescence quenching [53, 38] and can be
also used for creating energy-cassettes [54]. Similar results can be achieved using aryl-Grignard
or organo-lithium reagents yielding compounds such as 40 [55]. To prepare E-BODIPY (e.g.
41-42), there are several pathways, well described in e.g. [56, 57, 58].

The previous modifications are known for about one decade.

Optimisation of microwave assisted substitution for alkoxide was recently reported (e.g. com-
pound 43) and characterisation of dihydroxy BODIPY 44 by X-ray was reported, even it was
suspected to be unstable. The implementation of BF2-deprotection (compound 45) and re-
versibility of the substitution seems even more interesting (46a↔46b). This can be used as
a masking tool for BODIPY, since substitution of a fluorine atom for alkyl usually leads to
stabilisation of BODIPY and more harsh reaction conditions can be employed [59, 60, 61].
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CHAPTER 1. INTRODUCTION

1.3 Strategies leading to water-soluble probes

Many applications of fluorescent dyes, such as pH probes, biomolecule labelling, in vivo imaging,
chemosensors, metal ion detection etc., rely on solubility in water, while maintaining fluores-
cence quantum yields at high as possible. BODIPY has several advantages in comparison to
other fluorescent dyes, such as strong absorption in visible region on the edge of “the imaging
window”, narrow emission bands, high quantum yields and excellent physiological stability [62,
10]. The majority of prepared derivatives are well soluble in organic solvents (usually from
DCM to MeOH), but insoluble in water.

High solubility of BODIPY in water can be achieved by introducing various hydrophilic
groups, such as the sulfonate group. The introduction of sulfonate groups to positions 2,6,
is discussed in section 1.3.4. There have been reported only two studies concerning solubility
of BODIPY, so far. One is a short review of prepared BODIPY compounds [62], the other
one discusses the effects of different hydrophilics groups, while the rest of BODIPY remains
unchanged. The authors convey an opinion that strongly anionic dyes may enter cell uneasily
and suggest using different groups, such as sulfobetain or trimethylalkylammonium [63].

1.3.1 Carboxylic groups

The carboxylic group was first introduced into 2,6-positions by Komatsu et. al 47 (Figure
1.11) and this derivative was introduced by means of SN2 reaction conversed to amide and
ester. All three compounds are soluble in water. The cleavage of ester 48 to form carboxylate
47 resulted in 20 nm red shift, which is caused by weaker electron withdrawing ability of
carboxylate and this is suitable for development of new ratiometric fluorescent probes [64].
Another application of BODIPY is off/on fluorescent probe 49, which have emission shifted
to NIR (emission maxima 670 nm). Fluorescence of the probe 49 is turned off when calcium
ions are not present. When the probe is exposed to calcium ions in live cell, an increase of
fluorescence was observed (φfl,off = 0.002 → φfl,on = 0.24) [65].

1.3.2 Quaternary ammonium, phosphonate groups and oligo-ethylenglycol
chains

The use of quaternary ammonium groups with BODIPY is scarce, they are often used with other
functional groups such as sulfonate or oligo-ethylenglycol moieties, for instance compounds 50
(Figure 1.11) or 51 with excess of sulfonate groups. By coupling with styryl substituents in 3,5-
positions, dyes such as 51 were prepared, which are water-soluble with emission shifted to red
region [66, 67]. The situation is similar for phosphonate derivatives, a little work was done also
with phosphonate groups, example of a such derivative is 52. Solubility was also significantly
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Figure 1.11: Different ways of preparing water soluble BODIPY.

improved by phosphonate groups and combined with oligo-ethyleneglycol groups [68]. The use
of oligo-ethyleneglycol was reported, e.g. 53. The other advantages can be ascribed to steric
hindrance that reduces aggregation and to the neutral hydrophilic groups what facilitate a cell
entry [69].

1.3.3 Sulfonate groups

BODIPY sulfonated in positions 2,6 has almost the same properties as non-sulfonated BODIPY,
especially high fluorescent quantum yield, e.g 55 in Figure 1.12 has fluorescent quantum yield in
water φfl = 0.85. For the application in biomolecule imaging a suitable option is representated
by 62 (Figure 1.13) and especially by the product of click reaction 63, with relative high
fluorescent quantum yield (φfl = 0.61 in water) [70]. Different use of sulfonated BODIPY is
demonstrated by Burgess group. BODIPY was used for through-bond energy transfer (TBET)
cassettes. This represents an alternative to the fluorescence resonance energy transfer (FRET).
TBET is not dependent on the overlap of fluorescence emission of the donor and absorption of
the acceptor, but depends on transfer of energy over π-electron system of 54 (Figure 1.11) [54].

1.3.4 Overview of sulfonated BODIPY

The first reported sulfonation was done by the authors of BODIPY themselves, although they
did not further worked with it 55 (Figure 1.12 on the following page) [3]. This free sulfonic acid
degrades on air if prepared by sulfonation with chlorosulfuric acid. Stabilisation of BODIPY
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CHAPTER 1. INTRODUCTION

was crucial for any further studies with sulfonated derivatives, which was done by neutralisation
forming 56, this was the first reported chemistry with sulfonated BODIPY [71]. For physical
studies compounds 55-58 were utilised [45, 72]. Compound 56 became commercially available
(Molecular Probes, Exciton, now Invitrogen) and it was used in many studies, without any
further modification [73, 74, 75, 76, 77]. There exist also a patent using BODIPY as multiphoton
device, namely derivative 59 [78].
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Figure 1.12: Reported sulfonated BODIPY before 2008.

Over 40 years to 2007 only five unique derivatives were reported . From this point of view,
when Li et. al. published in 2008 series of sulfonated compounds (Compounds 60-67 in figure
1.13), this can be seen as breakthrough [70]. Although Li et. al. prepared three times more
sulfonated derivatives∗ than was so far reported, group of Kevin Burgess also depicted the
major issues in this area. Two reasons given in conclusion are rather self-explanatory and
discouraging:
“i) inappropriate conditions give mixtures of products and
ii) sulfonic acid derivatives of BODIPYs can be hard to purify.”

This closure can be easily explained, using experience based on the work done previously
and in this thesis: the use of silica gel often generates new byproducts rather than purify the
sulfonation mixture. Other techniques must be employed to obtain pure product (see section
3.2). Later, Burgess published several papers containing derivatives originated from the same
precursor 64, for instance 54, 68 in figure 1.14 [79, 54], or tried to use 60 in photodynamic
therapy [50]. From 2008 there have been reported dozen of derivatives, namely for sensing
Diels-Alder reaction in biological system. Anthracene was used as a off switch of BODIPY
fluorescence (compounds 69-70), the product Diels-Alder reaction 71 restored its fluorescence
[80].

The synthesis of derivative 72 seems to be more appealing, although BODIPY was sulfonated
in the last step of synthesis, radical scavenger (BHT) was added to stabilise the reaction mixture
[81]. The last found reported sulfonation applies to 73, with low yield using standard conditions

∗If we consider mono- and disulfonated derivative as two.
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1.3. STRATEGIES LEADING TO WATER-SOLUBLE PROBES

[82]. No further optimisations of sulfonation using chlorosulfuric acid and its separations were
found in literature.
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Different approach to sulfonation

Interestingly, there was reported a different approach to introduce sulfonate group to compound
74 (Figure 1.15) in 2014 [83]. The reaction with 93 % yield was performed with a high excess
(20 eq.) of sulfur trioxide-pyridine complex. This could be, once again, a turning point for
sulfonation, because the reaction undergoes easily. It is not known, whether monosulfonated
BODIPY can be isolated this way and how will the yield vary with different derivatives of
BODIPY. Experimental procedure gives the impression, that sulfonated BODIPY 75 can be
manipulated outside inert conditions (performing preparative TLC) even in the form of acid
(pyridine is not present in the spectra in supporting information). To our best knowledge, no
similar reaction has been reported so far.
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Figure 1.15: Different approach to sulfonation. It is not apparent if Y+ = H+ or Na+.
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2 | Aims of the study

In this work we aim at finding a simple, water-soluble fluorescent probes, which could be easily
integrated in other molecules. A suitable option is BODIPY that meets all the previously
mentioned requirements (Figure 2.1). First, we focused on finding a reliable methodology for
sulfonation and is scale up. Afterwards, we aimed at creating a series of sulfonated derivatives
and developing new chemistry of highly water-soluble fluorescent probes. These goals can be
summarised as follows:

1. To establish scaled up protocol for sulfonation.
2. To investigate the effect of different counterions and develop the methodology for exchange

of counterions.
3. To find conditions for alkylation of amines with BODIPY.
4. To prepare following small, water-soluble fluorescent probes:

4.1. Monofunctional
4.2. Heterobifunctional and bioorthogonal
4.3. Off/on

N
B

N

FF

Control of 
solubility

Stability

Bifunctionality & bioorthogonality

Off       on fluorescence

Biocompatibility

Quantitative analysis (ICP-AES)

N

+Na –O3S SO3
–

NH

R1
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&

fluoroscence

Tailoring fluorescence

Figure 2.1: Possible modification of BODIPY and accessible analytical methods.
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3 | Results & discussion

50 years after the discovery of BODIPY have been reported in the literature only about 30
sulfonated derivatives (see 1.3.4) Furthermore, the majority of them was prepared as a last
step in a synthesis, not as a starting point of synthetic pathways. The sulfonated derivatives
are reported only scarcely because their synthesis is extremely troublesome and tedious.

In the following text, we describe general and individual procedures for the preparation of
water-soluble fluorescent probes based on sulfonated BODIPY.

First, the synthesis and efficient purification of BODIPY dye is described. Then the sul-
fonation procedure and main challenges in it are explained; the essential part of the procedure
is swift and reproducible purification of product. Optimal conditions are no less important
for alkylation of amines by BODIPY, these conditions made possible further modification of
sulfonated BODIPY.

3.1 Synthesis of BODIPY dye

There are several approaches to prepare aryl-substituted BODIPY, which are described in well
known reviews [9, 12, 11]. In our synthesis, we employed three approaches to obtain B1 (Figure
3.1).

Route A is the most universal [53] and can be used to prepare differently substituted (aro-
matic) groups, only by preparing differently substituted ketopyrroles [43]. This option proves
useful when planning applications of a probe (e.g. preparing ortho-metallated complexes (sec-
tion 3.7 on page 26). Overall yields of route B are generally lower as it was demonstrated
in [21]. Separation of intermediate product B0 before complexation with boron trifluoride is
counterproductive.

We tried to prepare B1 from benzaldehyde derivative [84] (Route B) and then to employ a
common procedure using DDQ and a catalytic amount of TFA. This lead to moderate yields
and higher amount of byproducts. Therefore, several synthetic optimisations were needed, which
resulted in change of starting reagents and avoided oxidation step (Route C). The outcome
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3.2. SULFONATION

was a simplified and more elegant reaction procedure, including extraction of toluene with al-
kaline aqueous solution to neutralise residues of boron trifluoride. These refinements drastically
reduced the mass of byproducts, less than 80 wt% of byproducts compared to Route B. Fur-
ther, the mixture was purified in a single flash chromatography run. We found and optimized
crystallisation conditions and obtain a pure product in the form of small orange glittering crys-
tals. These optimised conditions were used to scale up the synthesis to several grams of B1 per
week.

Different changes of colour were observed during reaction: from transparent to yellowish
(after mixing reactants), red to dark red (50 °C), light red (toluene, triethylamine), greenish-
like fluorescence of dark purple solution (after adding 3 eq. of boron trifluoride), resulting in a
brown tar.
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Figure 3.1: Different approaches to the synthesis of B1: Routes A, B and C. The latter was
fully optimised.

3.2 Sulfonation

Sulfonation required a tedious optimisation to be reproducible and scalable, see section 1.3. We
present here a procedure of sulfonation and its workup. Besides, we will mention less efficient
or unsuccessful procedures so that they can be avoided. As a base for experimental procedures
we used articles from Li et. al. (2008, group of Kevin Burgess) [70] and Sauer et. al. (2008) [81].
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CHAPTER 3. RESULTS & DISCUSSION

The reaction mixture (product) tends to decompose if it contains sulfonic acid or its derivatives,
see section 1.3.4. The solubility of the product is highly affected by available counterions. For
these reasons, we decided to prepare several sulfonate salts by neutralisation of reaction mixture
with sodium carbonate, DIPEA, TEA, pyridine or Proton sponge (Figure 3.2).

The sulfonation of BODIPY was done using standard Schlenk procedures with dry solvents.
Because the dyes have typically very high absorption coefficients, the reactions were performed
in dark (the reaction flask was covered with aluminium foil). Products were stored as a solid,
or if necessary in solution, then in a freezer. Although it’s usually reported that sulfonation can
proceed only with a freshly prepared solution of chlorosulfuric acid, we performed the reaction
with 3 months old dichloromethane stock solution with uninfluenced yield. On the other hand,
BHT was used in excess as radical scavenger; if it was not added, formation of black tar on
tube wall was observed. Only vacuum grease was not used, since it is easily dissolved. PTFE
head inserts or joint sleeves were used strictly — for the reactions as well as for storing dry
solutions and solvents.
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Cl

BHT, HSO3Cl, DCM
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B2
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Figure 3.2: Preparing B2 by optimised sulfonation procedure.

3.2.1 Procedure of sulfonation

The optimised reaction setup of the sulfonation (Figure 3.2) is quite simple — reactants in a
reaction flask were dried in vacuum for 1 hour, the reaction flask was covered with an aluminium
foil and reactants were dissolved in dichloromethane. Then the reaction flask was cooled down
to –40 °C followed by the addition of diluted chlorosulfuric acid. Slowly, the cooling bath was
heated up to 0 °C and the formation of precipitate was observed. Suspension was diluted with
dichloromethane and transfered to S4 frit∗ by a double-tip needle. The suspension was dispersed
and rinsed on a frit three times with dichloromethane. Then the filter cake was dissolved in a
more polar solvent (ACN or DMF) and neutralised with the excess of sodium carbonate.

∗Also referred to sintered glass filter
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3.2. SULFONATION

A more complex apparatus (addition funnels, glass bend adaptors) lead to leaks, as well as
any glass joints with grease tend to freeze, especially while rotating the bottom of flask up, so
the suspension would be transffered to frit. Reactants and apparatus must be thoroughly dried,
especially when performing reaction in smaller amounts. Therefore, a simple Schlenk tube or
just a tube with Suba-seal® septum with an argon needle provided the best results.

The reaction proceeds quantitatively around –30 °C. If cooled below this temperature, chloro-
sulfuric acid can be added in a swift manner. Then the temperature is slowly risen to 0 °C ca.
in 30 minutes, until the formation of a precipitate is completed†. If not heated further, the reac-
tion reaches equilibrium without any observable decomposition, only the particles of precipitate
enlarge. The precipitate is usually too fine to be filtered out after less than 30 minutes. Optimal
time for reaction was found about one hour.‡ The smallest amount of solvent as possible was
used achieve maximal conversion. On the other hand, for the most efficient filtration of reaction
mixture was the volume of solvent in reaction flask to doubled or tripled prior filtration. This
cause
i) smaller losses of the product,
ii) better extraction of BHT and mixture of acids,
iii) prevents the creation of a sinter on a frit.

The latter is important for rinsing precipitate on a frit, thus washing away byproducts and
later reduce neutralisation heat. A supernatant should be yellowish-to-dark red and be disposed
after slow neutralisation. The precipitate can be dissolved in a polar solvent and flushed down
into a flask with the solution of sodium carbonate or dissolved in a polar solvent with a base.
Neutralisation takes approximately 1 hour and a gas is evolved. At this point, the evaporating
or lyophilising the mixture lead to a virtually pure product with some excess of base (purity
more than 90 %, depending on filtration and rinsing step). Purification of this mixture can be
tricky and lead to side products, as will be explained in the following section 3.2.2.

3.2.2 Separation of sulfonated BODIPY

Many separation approaches were tried: filtration, crystallisation or precipitations, ion ex-
change, chromatography on alumina, silica gel, and finally, reverse phase, which solved practi-
cally all separation problems.

Different approaches in separation

Simple filtration of a reaction mixture is sufficient, if some impurities are tolerable and the
mixture will be used immediately in the next reaction step. Evidently, the mass of the product

†The aluminium foil should not be removed before filtration, even cooled solution with acid can degrade in
light in 20 minutes. Once the mixture of acids in the reaction mixture is removed, the product is more stable.

‡If the temperature exceeds +10 °C, decomposition and lower yields were observed.
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can be only guessed since some excess of a salt is present.

Suitable conditions for the precipitation were not found. Several attempts were done with
a strongly acidic macroreticular cation exchange resin, giving poor purification results, low
loading capacity and permanent staining of resin with dyes. It is also a time-consuming method,
in comparison to flash chromatography. Although TLCs seemed promising, the use of basic or
neutral alumina with and without modifier, resulted in tailing and significant losses of product.

Huge effort was invested into silica gel separations; especially, using triethylamine as a coun-
terion which has optimal solubility for further organic synthesis. Due to low solubility, the
liquid load was out of question. Solid load on silica gel (1:5 ratio of mass mixture:silica gel) was
followed by isocratic and/or gradient flash chromatography in DCM/EA:MeOH and brought
mediocre result. The compound was pure enough for the synthesis and NMR characterisation,
but not for elemental analysis or even biochemical experiments.

The yield varied significantly (from 5 to 85 %) on the reaction setup and workup. Seek
of responsible step for loss of product exposed several weaknesses of whole procedure. While
searching for the step responsible for a product loss we revealed weaknesses of the whole proce-
dure. Firstly, a significant loss of sulfonated compound was observed after loading the mixture
into silica gel. This lead to a speculation that the sulfonated mixture degrades. Fumes were
observed during workup after the addition of non-dried dichloromethane (for extraction). This
would indicate, that the reaction mixture neutralized by the excess of triethylamine contained
byproducts which can degrade the product.

The search through the literature revealed several articles addressing the unanticipated re-
action of triethylamine with chlorosulfuric acid (Figure 3.3, top) [85]. Also the reaction of silica
gel with chlorosulfuric acid [86] and catalysis done on sulfonated silica gel was described [87],
which explained the decomposition of the reaction mixture. Alkylation of triethylamine by a
fragment of dichloromethane was observed (Figure 3.3, bottom) [88, 89], as well as side reaction
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Figure 3.6: Chromatogram of RP chromatog-
raphy used for ion exchange – desalination.
Collected yellow fraction containing products
equals ~30 ml.

triethylamine with BODIPY (Figure 3.4 on the preceding page).

This was, unfortunately, an excellent demonstration of a bad choice of triethylamine as a
counterion in the first place. From this, we made remedy and finally stopped using silica gel
and acquired reverse phase column for flash chromatography.

Purification and ion exchange protocol using RP

The use of a reverse phase (RP) solved problems, which ion exchanger failed surprisingly to
solve, such as complete exchange of ions. Furthermore, RP combined functions, in principle
inaccessible to an ion exchanger:

• Salt of choice e.g. Na TEA Protonsponge.
• Easy loading in water, even in larger volumes. In the case of bad solubility was sufficient
to add few drops of methanol.
• Fast, reliable salt exchange & chemical purification of sulfonated product in one (max.
two) flash chromatography runs.
• Sharp elution bands (less than 1CV = 45 ml) by application of MeOH gradient.
• Desalination.
• Cheap and scalable purification.
• Freeze-drying gives stable and easy-to-handle powder.

This brings a significant enhancement to the whole purification process and can be easily
generalised. The optimised procedure is rather trivial: add into water 0.1 % modifier of choice
(base or buffer: e.g. DIPEA, ammonium formate), precondition column with 95 to 100 % of
water, load a sample dissolved in water. The crucial part is to wash the column with 3-10 CV
of water (Figure 3.5). The progress of ion exchange can be sometimes observed visually on the
column, even if not, apply gradient and collect product with a single counterion. Sometimes
this can lead to worse separation resolution, if product is not pure enough, the removal of polar
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CHAPTER 3. RESULTS & DISCUSSION

solvent (methanol) and loading the sample again without isocratic part solved problem, as
showed in figure 3.6 on the previous page. Freeze-drying yields the final product as stable, light
powder. Volatile compounds (e.g. DIPEA, ammonium formate) were in this way also removed.
For biochemical applications the same procedure can be applied using preparative HPLC.

3.3 Comparison of non-sulfonated and sulfonated BODIPY

In the course of work, crystal structures of non-sulfonated (B1, Figure 3.7) and salt of (1,8-
bis(dimethylamino)naphthalene and propargylamine of sulfonated (B2, Figure 3.8) BODIPY
were obtained. By comparing both structures, no significant changes were found (for data of
X-ray analysis see table 5.1). Length of bonds are nearly the same, angles between planes of
BODIPY core and aromatic substituent in meso-position differ slightly, changing from 84° (B1)
to 88°(B2).

Figure 3.7: Non-sulfonated BODIPY B1 Figure 3.8: Sulfonated BODIPY B2

Sulfonation did not significantly affected fluorescent spectra, since there is a minimal overlap
between delocalised electrons of BODIPY core and sulfonate group (see figures 3.9 and 3.10).
Fluorescent spectra of B1 and B2 in methanol (Figure 3.9) and water (Figure 3.10) were
measured, although solubility of B1 in water is poor. Red shift of absorption, excitation and
emission spectra from B1 to B2 is measurable, but small. Similar red shift was also reported
in the literature [70]. The most significant change of em. maxima is in methanol (8 nm), while
in water it is decreased (3 nm) (Table 3.1 on the facing page). Stokes shift of B2 is slightly
increased, about 1-2 nm.
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Figure 3.9: Fluorescence spectra of B1 and B2
in methanol.
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Figure 3.10: Fluorescence spectra of B1 and
B2 in water.

compound λmax (abs) λmax (ex) λmax (em) solvent
(nm) (nm) (nm)

B1 499 499 510 MeOH
B2 504 506 518 MeOH
B1 499 498 509 H2O
B2 498 500 511 H2O

Table 3.1: Spectroscopic properties of B1 and B2 in different solvents.

3.4 Alkylation by sulfonated BODIPY

Alkylation of amine with chloromethyl group turned out to be more complex. As a first
approach, a small amount of B2-DIPEA or B2-TEA was dissolved in ACN with amine
(dimethylamine or propargylamine). The reaction was monitored on TLC, followed by chro-
matography on silica gel, but the product was not isolated. Because of low reactivity, chloride
was substituted by iodide, prior to the addition of amine. Formation of precipitate was ob-
served and low conversion of B7 was confirmed in the mixture dry of ACN and MeOH. In
other solvents was observed none reaction (ACN, DMF, MeOH) at 50°C.

More thorough approach was chosen using the well-defined B2-Na and HPLC confirm zero
conversion in different solvents and temperatures even with more than 20 equivalents of amine.
This fact revealed a fundamental flaw in the approach — the buffering capacity of counterion
of sulfonate group. Simple addition of stronger base (1,8-bis(dimethylamino)naphthalene, com-
mercially called Proton sponge) deprotonated the amine and reaction proceed as was originally
expected. Reactions (Figure 3.11 on the next page) were carried out using crude mixture of
sulfonated B1 neutralised by 1,8-bis(dimethylamino)naphthalene, or by the addition of the ex-
cess of 1,8-bis(dimethylamino)naphthalene to purified B2-Na. We obtained reasonable yields
which varied from 10 to 50 % (Sections 3.5, 3.6, 3.7).

Despite a high excess of amine, part of amine in reaction mixture is probably protonated
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Figure 3.11: Different pathways to alkylate primary or secondary amines with sulfonated BO-
DIPY, Y+ = used protonated base after sulfonation, Z+ = mixture of salts used in previous
steps together with used amine.

and therefore it is unavailable for alkylation. This can turn to a disadvantage for more pre-
cious amines. Stronger base (1,8-bis(dimethylamino)naphthalene) was used as a compromise
between basicity and solubility. This can be partially circumvented by ion exchange at RP
chromatography, efficiently recovering unreacted amine.

3.5 Monofunctional probe
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Figure 3.12: Preparation of B21, Y+ = [Proton sponge-H]+, Z+ = NH +
4 .

We pursued several objectives while preparing compound B21 (Figure 3.12). Firstly, we
wanted to create a showcase of a simple, small, water-soluble monofunctional probe. Secondly,
we aimed to prepare a fluorescent probe with short, electronically disconnected link, which can
be easily introduced into biomolecules or polymers. From the experimental point of view, we
wanted to find an optimal counterion and procedure, which would be suitable for spectroscopic
measurements.

From the experimental point of view, we wanted to find an optimal salt and its purification
suitable for spectroscopic measurements and to develop a purification protocol.
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3.6. HETEROBIFUNCTIONAL PROBES

We started from reported procedures using coincident aromatic substituents with good yields
and performed reaction in condensed ammonia [90, 91]. We avoid competitive hydrolysis by
performing reaction at RT in pressure flask with dried ammonia.

Low yield of preparation of B21 was caused by several factors, i) reaction scheme, which
at that time consisted from two consecutive reactions without separation, ii) mishap by use
of triethylamine as modifier during flash chromatography, which with ellegantly demonstrated
the ability of to alkylate triethylamine by primary amines (B2), as mentioned before in section
3.2.

Repeated purifications using flash chromatography and HPLC, in order to establish optimal
purification procedure, decreased the final yield. Sufficient amount of sample was obtained for
characterisations and ongoing collaborative experiments.

3.6 Heterobifunctional probes
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BHT, HSO3Cl (DCM), then  Proton sponge followed by amine (DMF)

Figure 3.13: Synthesis of B4 and B5, where Y = [TEA-H]+.

The first heterobifunctional probe (Figure 3.13) was prepared in several steps. First, alky-
lation of propargylamine provided compound B3 with reasonable yield by separation after
sulfonation of B1. The second functional group was introduced to B3 by a reaction with digly-
colic anhydride (DGA). Due to poor solubility of B3 in ACN or less polar solvents (toluene,
THF), those solvents were not used, although good yields were reported [92, 93]. Slightly lower
yield [94] (76 % in comparison to 87 %) of target compound B4 was obtained. Purification of
the product was done using gradient flash chromatography with 0.1% of ammonium formate
in water as a mobile phase modifier, obtaining pure B4 in form of ammonium salt without any
further problems.

Evaporation residue was dissolved in water (5 ml) and loaded on a reverse phase column (C18,
40 g, H2O:MeOH, gradient from 100 % to 55 % of H2O) using 0.1% ammonium formate in water
as a mobile phase modifier. Title product B4 (35 mg, 0.050 mmol, 76 %) was preconcentrated
on rotary evaporator, lyophilised and obtained as orange powder.
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Figure 3.14: Synthesis of B11 and B12, where Y = [TEA-H]+.

Preparing heterobifunctional probe containing azide group and reactive aminooxy group
(B12) turn out to be more complicated. Same yields of B11 were obtained regardless to the
alkylation procedure since alkylation procedure of B2 was optimised. Unambiguous assignment
of signals in proton and carbon spectra was done with due to HMBC and HSQC experiments.

Amide coupling of aminooxy acetic acid with secondary amine turn out to be tricky. Jakub
Hývl, previous membrer of the group, done similar (unpublished) work on non-sulfonated BO-
DIPY, which was excellent starting point. Use of standard coupling procedures with 1-hydroxy-
benzotriazole, TBTU or TSTU, no product was observed. Surprisingly, the most simple condi-
tions were required for successful preparation of B12 using DCC and 2-((1,3-dioxoisoindolin-
2-yl)oxy)acetic acid. Keeping in mind high reactivity of aminooxy group towards aldehydes
and ketones, triethylammonium formate (TEAF) buffer was used and removal of solvent was
done carefully with rotary evaporator followed by freeze-drying. On the other hand, removing
DCU using RP was simple. Reactions were so far done in small scale and small amount of B12
was prepared (2 mg). Exchange of isoindoline-1,3-dione for proton in hydrazine was not per-
formed, since such small amount of B12 would easily react with impurities in solvents forming
corresponding oxime.

3.7 Off/on probes

Synthetic pathway showed in 3.16 aims to prepare water-soluble probe for selective imaging
of CO in living cells [1]. In the previous work, the reported synthesis was successfully repro-
duced, indicating the increase of fluorescence roughly by two orders of magnitude. In connection
with minimal change of fluorescent properties (Section 3.3), this nudge us to prepare similar
complex with sulfonated BODIPY. Unfortunately the reaction conditions could not be simply
transferred. Different approach for ortho-palladation as well for separation was employed.

During alkylation of HN(CH3)2, byproduct B22 was also prepared. This was probably caused
by small excess of dimethylamine or better availability of B7, which underwent second alkyla-
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Figure 3.16: Attempts on synthesis of compounds B7-10, where Y = [TEA-H]+.

tion (Figure 3.15). Lesson was taken from this reaction and for similar reactions, reactant B2
was slowly added into excess of deprotonated amine.

The preparation of B8 or B9 was due to insolubility unfeasible in hexane and optimal con-
dition for the reaction in polar solvents were needed to be found. From several selected papers,
procedure from Cope et. al. [95] was relevant, since it employed the reaction in polar solvents.
Reported Pt and Pd complexes were even separated on silica gel without decomposition. Series
of reactions were done in order to find optimal conditions for ortho-palladation (Figure 3.16).
Different solvents, temperatures (RT or 50 °C) and reactants were mixed in NMR tubes, moni-
toring conversion by changes in proton spectra in aromatic region. As apparent from table 3.2,
feasible conditions employed DMF at 50 °C with Pd(OAc)2 in less than 3 hours — in other
reactions was observed no conversion after 3 days at 50 °C.

Reaction conversion was monitored by NMR spectroscopy and product was confirmed by MS
spectroscopy. Unfortunately, impurities in reaction mixture prevented to assign signals unam-
biguously. Separation using silica gel as well as reverse phase were done with partial success.
Amount and purity of isolated product were not sufficient for spectroscopic characterisation
and preparation of intended compound B10.
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aaaaaaaa
Solvent

Reagent PdCl2 Na2PdCl4 Pd(OAc)2

H2O 7 7 7

MeOH 7 7 7

ACN 7 7 7

DMF 7 7 3

Table 3.2: Search for feasible conditions for ortho-palladation at RT or 50 °C for 3 days.
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Figure 3.17: Normalised emission spectra of
prepared compounds in MeOH.
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Figure 3.18: Normalised excitation spectra of
prepared compounds in MeOH.

3.8 Fluorescent spectra of prepared compounds

Brief look at fluorescent spectra (Figures 3.17,3.18,3.19,3.20) of prepared derivatives of BO-
DIPY are very similar in excitation or emission spectra. Measured maxima of prepared com-
pounds in different solvents are listed table 3.3. There are two molecules, which elude from
previous – non-sulfonated BODIPY B1§ and dimer B22.

§Due to poor solubility in water, quality of emission and excitation spectrum is poor, absorption was not
possible to measure.

4 6 0 4 8 0 5 0 0 5 2 0 5 4 0 5 6 0 5 8 0 6 0 0 6 2 0 6 4 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0
N o r m a l i s e d  e m i s s i o n  s p e c t r a  i n  H 2 O

a.u
. n

orm
alis

ed

w a v e l e n g h t  ( n m )

 E m .  o f  B 1  ( e x  4 9 8  n m )
 E m .  o f  B 2  ( e x  4 9 8  n m )
 E m .  o f  B 3  ( e x  4 9 9  n m )
 E m .  o f  B 4  ( e x  4 9 8  n m )
 E m .  o f  B 7  ( e x  4 9 9  n m )
 E m .  o f  B 1 1  ( e x  4 9 9  n m )
 E m .  o f  B 2 1  ( e x  4 9 8  n m )
 E m .  o f  B 2 2  ( e x  4 9 9  n m )

Figure 3.19: Normalised emission spectra of
prepared compounds in water.
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Figure 3.20: Normalised excitation spectra of
prepared compounds in water.
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Figure 3.21: Normalised absorption spectra of
prepared compounds in water.
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Figure 3.22: Normalised absorption spectra of
prepared compounds in water.

In figure 3.17, emission spectra in MeOH of two compounds slightly differ from the rest,
band of non-sulfonated B1 is shifted to the blue region (left), and sulfonated dimer B22 is red
shifted (right). The same trend can be observed in excitation spectra in MeOH (Figure 3.17).
Moreover, new shoulder is observed for B22. This could indicate slight interaction between two
BODIPY cores, but calculation is needed to support such claim. Emission spectra in figure 3.17
are more similar to each other, although the same tendency can be observed for B1 and B22.
On the other hand, excitation spectra in figure 3.20 are resembling each other, only shoulder
of B1 have lower intesity, but shift is almost identical and no tendency can be attributed
to substitutions. Normalised absorption spectra in methanol are same with exception of non-
sulfonated B1 (Figure 3.22) and absorption spectra in water are identical as apparent from
figure 3.21).

This confirm expectations, that influence from substituting electronically disconnected part
of molecule has virtually no effect on absorption and fluorescence spectra in water and slight
effect on spectra measured in MeOH.

compound λmax (abs) (nm) λmax (ex) (nm) λmax (em) (nm)
MeOH H2O MeOH H2O MeOH H2O

B1 499 499 499 498 510 509
B2 504 498 506 500 518 511
B3 505 499 508 499 519 511
B4 505 498 506 498 518 510
B7 506 500 509 502 520 513
B11 505 499 509 501 520 512
B21 505 499 506 501 518 512
B22 506 500 510 502 522 513

Table 3.3: Spectroscopic properties of prepared compound in water and MeOH.

29



4 | Experimental part

4.1 Material and methods

4.1.1 General information

Chemicals and solvents used were supplied by Sigma-Aldrich, Penta, Merck, Lachema, Fluka,
Acros Organics, Fisher Scientific, Linde or Chemotrade and used as received. Solvents (e.g.
toluene, DCM, MeOH) were dried by standard procedures [96] or bought dry (DMF) and then
used without further purification.

Reactions were performed under standard inert atmosphere techniques [97] with argon
(99.996%). Reported compounds were identified by their NMR spectra (often in different sol-
vents, as explained in section 4.1.4. For unambiguous determination, HR-MS was used. Using
ESI ionisation sulfonated BODIPY derivatives exhibited m/z peaks [M + H]− and [M]2−.

Unless stated otherwise, reaction temperatures were measured directly in aluminium block or
in ethanol-dry ice cooling bath. TLCs were carried out on Merck TLC Silica gel 60 F254 (silica
gel on aluminium foil) and spots were detected by UV-lamp (λ = 254 nm). Interpretation of
TLC in case of sulfonated derivatives was done with caution, accompanied always by other
analytical method. Retention factors Rf given in experimental part were estimated from freshly
dissolved samples – purified dye loaded in low concentration. Reaction monitoring was usually
done with two spots, one with low and the other with high concentration of mixture, in order
to rule out phantom spots.

Yield were determined for lyophilised samples, purity was checked by NMR spectroscopy.

4.1.2 List of Instruments

• Centrifuge: Eppendorf centrifuge 5430
• Chromatography: Biotage Isolera Prime and Buchi Sepacore® X50
• Fluorescent spectrometer: JASCO FP-6600 Spectrofluorometer
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• HPLC: 515 HPLC pump with 2996 PDA (Waters)
• LC-MS: Shimadzu LC-MS 2020
• Lyophilisation: Labconco CentriVap Cold Trap
• MS: Q-TOF Micro (Waters)
• NMR: Bruker Avance III™HD 400 MHz equipped with Prodigy cryo-probe
• Sonicator: Elmasonic P60 H
• Spectrophotometer: Specord 250 Plus

4.1.3 Purification and separation methods

Removal of volatile solvents (e.g. HEX, DCM, MeOH) was done using rotary evaporator, less
volatile compounds (e.g. water, DMSO, formic acid) were removed using lyophilisation. Flash
chromatography separation were done using Biotage Isolera™ Prime or Buchi Sepacore® X50
system in case of compound B1. For SiO2 separations prefilled Biotage SNAP Cartridges (HP-
SIL) or self-packed columns filled with Merck silica gel 60 (0.040 – 0.063 mm) were used. For
purification on revere phase column Reveleris™C18 Flash Cartridge was used. Ion exchanger
Amberlyst 15 from Fluka was used. HPLC separations were carried out using Phenomenex®

synergi Polar-RP column and for preparative HPLC purification was used YMC-Pack ODS-AM
(C18, Silica) column.

4.1.4 NMR spectroscopy

Spectra were measured using Bruker Avance III™ HD 400 MHz equipped with Prodigy cryo-
probe in several deuterated solvents due to great difference in solubility for different salts,
as follows: D2O (99,8 % D, Armar Chemicals), methanol d4 (99,80 % D, VWR Chemicals),
acetone d6 (99,8 % D, Acros Organics), DMSO d6 (99,9 % D, Acros Organics), DMF d7
(99,5 % D, Acros Organics), CDCl3 (99,96 % D, Sigma-Aldrich).

Non-sulfonated compounds were measured in chloroform (e.g. B1). Into deuterated water
was added 0,25 % of 1,4-dioxane for referencing. In longer period of time (one week), complete
exchange of CH3 for CD3 in deuterated water (methanol) was observed, for this reason some
spectra were also measured in dimethyl sulfoxide.

Spectra of 1H, 13C were referenced to signal from solvent or internal standard as stated in
table 4.1. For full assignment of 1H and partial assignment of 13C were used HSQC and HMBC
experiments. NMR spectra of 19F and 11B were not referenced by external standard and used
for purity control only, although all measured spectra are in good agreement with literature
[80, 59, 60].

All chemical shifts δ are given in ppm and coupling constants in hertz [Hz]. Multiplicity of
signals was describes as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet),
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TMS 1,4-Dioxane CHCl3 DMSO DMF CD3OD
δ1H [ppm] 0.00 3.75 7.26 2.50 8.03 3.31
δ13C [ppm] 0.00 67.19 77.16 39.52 34.89 49.00

Table 4.1: Chemical shifts of internal standards or solvents.

dd (double doublet), tt (triplet of triplets). Multiplicity of signals in 19F was described as
non-binomial quartet (1:1:1:1) as is expected from 11B [98].

4.1.5 Single-crystal X-ray diffraction

Measurement of compound B1 was done using 4-circle diffractometer Bruker NONIUS KAPPA
CCD at 150 K using MoKα (λ = 0,71073 Å) as a source of rays. Crystal structure was measured
and solved by RNDr. Ivana Císařová, CSc., verified by doc. RNDr. Jan Kotek, PhD. Data were
analysed by HKL package, solution and refining were done by SHELXS97, visualisation was
done in Crystal Maker.

The single crystal data B2 were collected 180K on Xcalibur PX diffractometer with the
graphite monochromatized CuKα radiation (λ = 1.54180 Å). CrysAlisProCCD [99] was used
for data collection, cell refinement and data reduction. The structure was solved by direct
methods (SIR92) [100] and refined by full-matrix least-squares based on F with CRYSTALS
[101] by Blanka Klepetářová PhD. All non-hydrogen atoms were refined anisotropically. The
hydrogen atoms were found on difference Fourier map, but those attached to carbon atoms
were recalculated into idealized positions and refined with riding constraints.

4.1.6 Fluorescent spectroscopy

Samples for spectral analysis were dissolved from lyophilised samples (if possible) immediately
before measurement. HPLC grade solvents were used (MeOH, DCM) and MilliQ water. Absorp-
tion spectra were measured on Specord 250 Plus, fluorescence spectra using JASCO FP-6600
Spectrofluorometer in range 300 – 700 nm. Band width was 1 nm for excitation, 2 nm for emis-
sion with high sensitivity and data pitch 1 nm for spectra in methanol, 0.2 nm for spectra in
water. Ex/em wavelength was set for maximal intensity and scanning speed was 200 nm/min.
Data were processed and normalised in Origin 9.1.
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4.2 Synthesis of BODIPY dye

4.2.1 Optimised synthesis of BODIPY B1

Reaction was done by modified and optimised procedure described in literature [81, 70]. Into
dried three-neck flask equipped with stirrer, addition funnel and condenser were placed with
2,4-dimethyl-pyrrole (5.28 g, 55.5 mmol, 2.1 eq.) in DCM (200 ml) under argon atmosphere.
Then 4-(chlormethyl)benzoyl chloride (5.00 g, 26.6 mmol) was dissolved in 10 ml of DCM and
added to reaction mixture. The flask was covered with aluminium foil and reaction mixture
was refluxed 12 hours in oil bath at 50 °C. Solvent was distilled of and obtained residue was
dissolved in 250 ml of toluene. Triethylamine (14.76 ml, 106 mmol) was added, followed by
dropwise addition of boron trifluoride etherate (BF3·OEt2) (19.59 ml, 159 mmol, 6 eq.) with
cooling reaction flask in water bath. The reaction mixture was stirred at 50 °C for 4 hours,
washed with 200 ml of solution of sodium carbonate and 3×200 ml with water. Organic phases
were dried over MgSO4, filtered and adsorbed into approx. 10 g of silica gel followed by slow
removal of the solvent. The resulting dark powder was dry-loaded and used as precolumn on
flash chromatography with 25g prepacked column.

Gradient chromatography was done using mobile phase HEX:DCM, starting from 100 % to
20 % of HEX yielding dark orange crystalline product. The product was dissolved in DCM (ap-
prox. 20 ml) and recrystallised after addition of 250 ml HEX and 100 ml MeOH (for better result
mixture was slightly concentrated on rotary evaporator). Title product 1,3,5,7-tetramethyl-8-
(4’-(chloromethyl)phenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (B1) was colleted by fil-
tration (3.22 g, 8.64 mmol, 33 %) as orange crystals.
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Figure 4.1: Compound B1.

Yield: 3.22 g orange crystals (8.64mmol, 33%).
TLC: DCM:HEX 1:2 Rf = 0.22; DCM:HEX 2:1 Rf = 0.70.
1H-NMR (600MHz, CDCl3): δ = 7.52 (d, 2H, 3JHH = 7.6, H10); 7.29 (d, 2H, 3JHH = 7.7,
H9); 5.98 (s, 2H, H3); 4.66 (s, 2H, H12); 2.55 (s, 6H, H1); 1.38 (s, 6H, H5).
13C-NMR (151MHz, CDCl3): δ = 155.8 (s, 2C, C2); 143.2 (s, 2C, C4); 141.1 (s, 1C, C7);
138.7 (s, 1C, C11); 135.2 (s, 1C, C8); 131.5 (s, 2C, C6); 129.4 (s, 2C, C10); 128.6 (s, 2C, C9);
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121.5 (s, 2C, C3); 45.8 (s, 1C, C12); 14.7 (s, 2C, C1); 14.6 (s, 2C, C5).
19F-NMR (282MHz, CDCl3): δ = −146.3 (non-binomial q., JFB = 33).
11B-NMR (128MHz, D2O): δ = 0.54 (t, JBF = 33).
MS (ESI): (+) m/z calc. for C20H20BClF2N2: 372.1, found: 373.2 [M + H]+; 395.1 [M + Na]+;
411.0 [M + K]+; 767.2 [2M + Na]+.
HR MS (ESI): (+) m/z calc. for [C20H21BClF2N2]+: 373.14489, found: 373.14499; m/z calc.
for [C20H20BClF2N2Na]+: 395.12683, found: 395.12692.
UV-Vis: 499.0 nm (MeOH); 498.5 nm (H2O); 502.5 nm (DCM).
Fluorescence: λex,em 499.0 nm, 510.0 nm (MeOH); λex,em 498.0 nm, 508.8 nm (H2O); λex,em
505.4 nm, 515.4 nm (DCM).

4.3 Sulfonation of BODIPY dye

4.3.1 Synthesis of B2-Na from B1

Into Schlenk tube with stirrer was added B1 (500 mg, 1.342 mmol) and 2,6-Di-tert-butyl-
4-methylphenol (BHT) (296 mg, 1.342 mmol). Reactants were washed with dichloromethane
(5 ml) into Schlenk tube. Apparatus was dried, reactants were dissolved under Ar atmosphere
in dichloromethane (5 ml), flask was covered with aluminium foil and the mixture was cooled
down to –40 °C. Chlorosulfuric acid (10 ml, 4.03 mmol, 0.4106m in DCM) was slowly transferred
into Schlenk tube via double-tip needle. Cooling bath was left to warm up to –10 °C within 1
hour and formation of orange precipitate was complete.

Reaction mixture was cooled down, suspension was diluted with dichloromethane (40 ml) and
reaction mixture was transferred via double tip needle to S4 frit under argon atmosphere with
constant flow of dry DCM. Precipitate was resuspended and rinsed three times with DCM, then
dried by argon flow. Filter cake was dissolved in dry, precooled acetonitrile and transferred into
flask with sodium carbonate (1,42 g, 13.42 mmol) with crushed ice. The mixture was stirred
for 3 h, then the solvents were removed.

The resulting mixture was dissolved in water, part of sodium carbonate was precipitated
by addition of acetone and filtred out. Solvents were removed, mixture was dissolved in water
(20 ml) and liquid-loaded on reverse phase column multiple times (C18, 40 g, H2O:MeOH
gradient from 100 % to 85 % of H2O). Adequate fraction were preconcentrated on rotary
evaporator and lyophilized, obtaining title product (B2-Na) (620 mg, 1.076 mmol, 80 %) as
orange powder.

Yield: 620mg bright orange powder (1.076mmol, 80%).
TLC: EA:MeOH 1:1 Rf = 0.89; EA:MeOH 2:1 Rf = 0.64.
1H-NMR (600MHz, D2O): δ = 7.69 – 7.62 (m, 2H, H10); 7.32 – 7.25 (m, 2H, H9); 4.76
(s, 2H, H12); 2.76 (s, 6H, H1); 1.63 (s, 6H, H5).
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1H-NMR (401MHz, DMSO): δ =7.72 – 7.57 (m, 2H, H10); 7.46 – 7.33 (m, 2H, H9); 4.88
(s, 2H, H12); 2.64 (s, 6H, H1); 1.50 (s, 6H, H5).
13C-NMR (101MHz, D2O): δ = 155.92 (s, 2C, C2); 146.89 (s, 1C, C7); 144.43 (s, 2C, C4);
140.47 (s, 1C, C11); 134.00 (s, 1C, C8); 133.23 (s, 2C, C3); 131.15 (s, 2C, C6); 130.57 (s, 2C,
C10); 128.69 (s, 2C, C9); 46.22 (s, 1C, C12); 14.19 (s, 2C, C1); 13.39 (s, 2C, C5).
13C-NMR (101MHz, DMSO): δ = 154.3 (s, 2C, C2); 143.1 (s, 1C, C7); 139.5 (s, 2C, C4);
139.0 (s, 1C, C11); 137.8 (s, 1C, C8); 134.4 (s, 2C, C3); 129.8 (s, 2C, C10); 129.5 (s, CAr); 128.2
(s, 2C, C9); 45.6 (s, 1C, C12); 13.9 (s, 2C, C1); 12.5 (s, 2C, C5).
19F-NMR (377MHz, D2O): δ = −141.2 (non-binomial q., JFB = 30).
19F-NMR (377MHz, DMSO): δ = −142.1 (non-binomial q., JFB = 32).
11B-NMR (129MHz, D2O): δ = 0.68 (t, JBF = 33).
11B-NMR (129MHz, DMSO): δ = 0.59 (t, JBF = 33).
MS (ESI): (−) m/z calc. for [(C20H18BClF2N2O6S2)2–]: 530.0, found: 531.0 [M + H]– 553.4
[M + Na]–; 265.0 [M]2–.
HR MS (ESI): (−) m/z calc. for [(C20H18BClF2N2O6S2)2–]: 265.01834, found: 265.01816.
UV-Vis: 504.0 nm (MeOH); 498.0 nm (H2O).
Fluorescence: λex,em 506.0 nm, 518.0 nm (MeOH); λex,em 499.8 nm, 511.2 nm (H2O).

Synthesis of B2-DIPEA from B1

Into Schlenk tube with stirrer was added B1 (509 mg, 1.36 mmol) and BHT (295 mg, 1.34
mmol). Apparatus with an addition funnel and reactants were dried in vacuum for 30 minutes,
the argon atmosphere was established. Reactants were dissolved in small amount of DCM
(10 ml), stiring was set. Flask was covered with aluminium foil and cooled down to –40 °C.
Chlorosulfuric acid (29 ml, 2.93 mmol, 0.10m in DCM) was slowly added with the addition
funnel into reaction mixture. Cooling bath was left to warm up to –10 °C within 1 hour, and
held at this temperature until formation of orange precipitate was complete.

Reaction mixture was cooled down and transferred via glass bent adapter to S4 frit under
argon atmosphere. Precipitate was rinsed three times with DCM. Filter cake was dissolved in
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solution of dry DCM (50 ml) with DIPEA (0.5 ml, 2.73 mmol, 2 eq) and was quantitatively
transferred with 50 ml of methanol into 250 ml flask. Solvents were removed on rotary evapora-
tor and reaction mixture was purified multiple times on silica gel chromatography (SiO2, 40 g,
EA:MeOH, gradient from 95 % to 70 % of EA).

Volatile solvents were removed on rotary evaporator, obtaining title product (B2-DIPEA)
(746 mg, 0.943 mmol, 69 %) as orange powder.

Y+ = NH
S1S1

S3S3

S4S4

S2S2
S5S5
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Figure 4.3: Compound B2-DIPEA.

Yield: 746mg bright orange powder (0.943mmol, 69%).
1H-NMR (600MHz, MeOD): δ =7.72 – 7.57 (m, 2H, H10); 7.46 – 7.32 (m, 2H, H9); 4.77
(s, 2H, H12); 3.82 – 3.57 (m, 4H, HS3); 3.25 – 3.15 (m, 4H, HS1); 2.79 (s, 6H, H1); 1.68 (s,
6H, H5); 1.38 – 1.28 (m, 30H, HS2,4,5).
13C-NMR (151MHz, MeOD): δ = 156.75 (s, 2C, C2); 146.14 (s, 1C, C7); 143.24 (s, 2C,
C4); 141.48 (s, 1C, C11); 136.16 (s, 1C, C8); 135.82 (s, 2C, C3); 131.63 (s, 2C, C6); 131.01 (s,
2C, C10); 129.64 (s, 2C, C9); 55.85 (s, 4C, CS3); 46.14 (s, 1C, C12); 43.82 (s, 2C, CS1); 55.85
(s, 4C, CS3); 18.72, 17.28 (2·s, 8C, CS4,5); 14.51 (s, 2C, C1); 13.55 (s, 2C, C5) 13.18 (s, 2C,
CS2).
19F-NMR (282MHz, D2O): δ = −141.3 (non-binomial q., JFB = 32).
MS (ESI): (−) m/z calc. for [(C20H18BClF2N2O6S2)2–]: 530.0, found: 531.1 [M + H]–; 265.0
[M]2–.

4.4 Synthesis of alkylated amines

4.4.1 General procedure for sulfonation followed by alkylation of amines

Into Schlenk tube with stirrer was transferred B1 and BHT and the tube was sealed with
septum. Apparatus with reactants was dried in high vacuum for 30 minutes and the argon
atmosphere was established. Reactants were dissolved in small amount of DCM (5 – 10 ml),
stirring was set. Flask was covered with aluminium foil and cooled down to –40 °C.
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Diluted solution of chlorosulfuric acid (from 0.1m up to 0.5m in dry DCM) was slowly trans-
ferred via double-tip needle or syringe, in dependence on volume and safety of the work. Cooling
bath was left to warm up to –10 °C within 40 minutes until formation of orange precipitate
stopped.

Reaction mixture was diluted with DCM to double volume of reaction mixture and cooled
down again. Suspension was transferred via double tip needle to S4 frit under argon atmosphere
with constant flow of dry DCM from other double tip needle. Precipitate was resuspended and
rinsed three times with DCM and dried with flow of argon. Filter cake was dissolved in dry,
precooled acetonitrile and transferred into dry flask.

Into clear dark orange solution was added excess of 1,8-bis(dimethylamino)naphthalene, fol-
lowed in 15 minutes by addition of amine. Reaction mixture was heated at 40 °C until no further
conversion of reactant was observed (TLC or HPLC).

Solvent was removed, reaction mixture was dissolved in methanol followed by slow addition
of water. Resulting precipitate was removed by centrifugation, solution was concentrated on
rotary evaporator and liquid-loaded on reverse phase column (C18, 40 g, H2O:MeOH, gradient
from 100 % to 60 % of H2O) with or without mobile phase modifier (TEA, ammonium formate).
Purified product was preconcentrated on rotary evaporator and dried using lyophilisation.

4.4.2 Synthesis of B3-TEA from B1

Reaction was done in accordance with general procedure of in section 4.4.1.

Into Schlenk tube with stirrer was transferred B1 (502 mg, 1.348 mmol) and BHT (296
mg, 1.343 mmol). Apparatus was dried, reactant were dissolved in argon atmosphere in DCM
(5 ml), covered with aluminium foil and cooled down to –40 °C.

Diluted solution of chlorosulfuric acid (17.80 ml, 4.04 mmol, 0.227m in DCM) was added via
syringe. Cooling bath was left to warm up to –10 °C within 30 minutes.

Suspension was transferred via double tip needle to S4 frit with constant flow of dry DCM.
Part of a precipitate passed though frit, it was further treated by the same way as main
fraction. Precipitate was resuspended and rinsed three times with DCM and dried in flow of
argon. Precipitate was dissolved in 20 ml of acetonitrile with 1,8-bis(dimethylamino)naphtha-
lene (1.443 g, 6.73 mmol) and transferred into 100ml flask. Filtration extension was replaced
with septum and propargylamine (0.216 ml, 3.37 mmol) was added into transparent dark orange
solution . Reaction mixture was heated at 50 °C for 2 days.

Solvent was removed, reaction mixture was dissolved in methanol and byproducts were crys-
tallised by slow addition of water. Precipitate was removed, solution was concentrated on rotary
evaporator and liquid-loaded on reverse phase column (C18, 40 g, H2O:MeOH, gradient from
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100 % to 60 % of H2O) with 0.1 % TEA in both mobile solvents. Solution was preconcentrated
on rotary evaporator and title product (B3-TEA) was obtained by lyophilisation (74 mg,
0.098 mmol, 7 %) as orange powder and characterised.

Product which passed frit was purified for further spectroscopic measurements two times by
flash chromatography on reverse phase column (C18, 40 g, H2O:MeOH, gradient from 100 %
to 70 % of H2O, 0.1 % ammonium formate in H2O). Product (B3-NH4) was obtained by
lyophilisation (87.2 mg, 0.149 mmol, 11 %) as orange powder and characterised.

Synthesis of B3-TEA from B2-TEA

In small vial with prop-2-yn-1-amine (222.9 mg, 4.05 mmol) and 1,8-bis(dimethylamino)naph-
thalene (121 mg, 0.565 mmol, 3 eq.) were dissolved in DMF. In other vial was dissolved B2
(100 mg, 0.188 mmol) and of 1,8-bis(dimethylamino)naphthalene (202 mg, 0.942 mmol, 5 eq.)
in DMF. Solution of B2 was slowly transferred into the first vial and heated at 50 °C for 12
hours.

Solvent was removed, resulting mixture was dissolved in methanol and byproducts were
crystallised by slow addition of water. Precipitate was removed, solution was concentrated and
liquid-loaded on reverse phase column (C18, 40 g, H2O:MeOH, gradient from 100 % to 50 %
of H2O) with 0.1 % triethylamine in mobile solvent. Separation was done two times. Solvents
were removed on rotary evaporator and dried by lyophilisation. Title product was obtained as
triethylammonium salt B3-TEA (56 mg, 0.074 mmol, 39 %) in form of dark orange powder.

66

N
B

N

77

F F

44

33

22

88

1111
1010

99

1212

H
N

1313

55

11

SO3
– Y++Y –O3S

1414

1515
1616

Y+ =
H
N

S1S1

S2S2

N
B

N

F F

SO3
– Y++Y –O3S

Cl

N
B

N

F F

Cl

BHT, HSO3Cl

B2B1 B3-TEA

BHT, HSO3Cl, DCM, - 40 °C

Na2CO3

N N

DMF, 50 °C

Proton sponge, excess of propargylamine, DMF, 50 °C

NH2

Figure 4.4: Compound B3-TEA.

Yield: 55.6mg orange powder (0.074mmol, 39%).
TLC: EA:MeOH 1:1 Rf = 0.85; EA:MeOH 2:1 Rf = 0.15.
1H-NMR (401MHz, MeOD): δ =7.76 – 7.65 (m, 2H, H10); 7.47 – 7.36 (m, 2H, H9); 4.43
(s, 2H, H12); 3.94 (d, 2H, 4JHH = 2.6, H14); 3.19 (q, 2H, 3JHH = 7.3, HS1); 3.09 (t, 1H, 4JHH

= 2.5, H16); 2.76 (s, 6H, H1); 1.61 (s, 6H, H5) 1.27 (t, 3H, 3JHH = 7.3, HS2).
13C-NMR (101MHz, MeOD): δ = 156.54 (s, CAr); 146.28 (s, CAr); 144.37 (s, CAr); 136.08
(s, CAr); 134.29 (s, CAr); 133.27 (s, CAr); 132.46 (s, 2C, C10); 131.28 (s, CAr); 129.77 (s, 2C,
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C9); 79.54 (s, 1C, C16); 73.89 (s, 1C, C15); 50.46 (s, 1C, C12); 47.63 (s, 6C, CS1); 36.77 (s, 1C,
C14); 14.55 (s, 2C, C1); 13.63 (s, 2C, C5); 9.20 (s, 6C, CS2).
19F-NMR (377MHz, MeOD): δ = −144.30 (non-binomial q., JFB = 32).
11B-NMR (129MHz, MeOD): δ = 0.69 (t, JBF = 32).
MS (ESI): (−) m/z [(C23H22BF2N3O6S2)2–]: calc. for 549.1, found: 550.2 [M + H]–; 274.6
[M]2–.
HR MS (ESI): (−) m/z calc. for [(C23H23BF2N3O6S2)–]: 550.10949 found: 550.10959; m/z
calc. for [(C23H22BF2N3O6S2)2–]: 274.55111 found: 274.55115.
UV-Vis: 504.5 nm (MeOH); 499.0 nm (H2O).
Fluorescence: λex,em 508.0 nm, 519.0 nm (MeOH); λex,em 499.4 nm, 511.2 nm (H2O).

4.4.3 Synthesis of B4-NH4 from B1

Into vial equipped with stirrer was added B3-TEA (50 mg, 0.066 mmol) and excess of digly-
colic anhydride (77 mg, 0.663 mmol, 10 eq.) and dissolved in 3 ml DMF. Argon atmosphere
was established and reaction mixture was stirred for 3 days at 40 °C. Solvent was removed,
evaporation residue was dissolved in water (5 ml) and loaded on reverse phase column (C18,
40 g, H2O:MeOH, gradient from 100 % to 55 % of H2O) using 0.1% ammonium formate in water
as a mobile phase modifier. Title product B4 (35 mg, 0.050 mmol, 76 %) was preconcentrated
on rotary evaporator, lyophilised and obtained as orange powder.
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Yield: 35.3mg orange powder (0.050mmol, 76%).
TLC: EA:MeOH 1:1 Rf = 0.00; EA:MeOH 1:2 Rf = 0.64.
1H-NMR (401MHz, D2O): δ =7.58 – 7.27 (2·m, 2·2H, H9,10); 4.80, 4.75 (2·s, 2·2H, H12);
4.57, 4.48 (2·s, 2·2H, H18); 4.18, 4.14 (2·d, 2·2H, 4JHH = 2.5, H14); 4.04, 4.01 (2·s, 2·2H, H20);
3.19 (q, 36H, 3JHH = 7.3, HS1); 2.69, 2.60 (2·t, 2·1H, 4JHH = 2.4, H16); 2.75 (s, 12H, H1);
1.64 (s, 12H, H5); 1.26 (t, 24H, 3JHH = 7.3, HS2).
13C-NMR (101MHz, D2O): δ = 177.97, 177.81 (2·s, 1C C21); 172.38, 172.19 (2·s, 1C C17);
155.79 (s, CAr); 144.49 (s, CAr); 138.42 (s, CAr); 137.77 (s, CAr); 133.69 (s, CAr); 133.06 (s, CAr);
131.22 (s, CAr); 129.94 (s, CAr); 129.39 (s, CAr); 128.84 (s, CAr); 128.60 (s, CAr); 79.06, 78.38
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(2·s, 2·1C, C16); 74.81, 73.57 (2·s, 2·1C, C15); 70.43, 70.36 (2·s, 2·1C, C20); 68.88, 68.78 (2·s,
2·1C, C18); 50.88, 50.10 (2·s, 2·1C, C12); 47.25 (s, 18C, CS1); 36.25 (s, 1C, C14); 14.17 (s, 2C,
C1); 13.44 (s, 2C, C5); 8.84 (s, 12C, CS2).
19F-NMR (377MHz, D2O): δ = −141.21 (non-binomial q., JFB = 29).
11B-NMR (129MHz, D2O): δ = 0.62 (t, JBF = 30).
MS (ESI): (−) m/z calc. for [(C27H26BF2N3O10S2)2–]: 665.1, found: 666.2 [M + H]–; 333.6
[M]2–.
MS (ESI): (+) m/z calc. for [(C27H26BF2N3O10S2)2–]: 665.1, found: 668.2 [M + 3H]+.
HR MS (ESI): (−) m/z calc. for [(C27H27BF2N3O10S2)–]: 666.12045 found: 666.12022; m/z
calc. for [(C27H26BF2N3O10S2)2–]: 332.55658 found: 332.55651.
UV-Vis: 504.0 nm (MeOH); 498.0 nm (H2O).
Fluorescence: λex,em 506.0 nm, 518.0 nm (MeOH); λex,em 498.4 nm, 510.2 nm (H2O).

4.4.4 Synthesis of B7-NH4 from B1

Reaction was done in accordance with general procedure in section 4.4.1.

Into 100ml Schlenk tube with stirrer was transferred B1 (500.24 mg, 1.342 mmol) and BHT
(298 mg, 1.352 mmol). An apparatus was dried in vacuum, argon atmosphere was established
and reactants were dissolved in DCM (5 ml), then the apparatus was covered with aluminium
foil and cooled down to –40 °C.

Diluted solution of chlorosulfuric acid (17.74 ml, 4.03 mmol, 0.227m in DCM) was slowly
added via syringe. Cooling bath was left to warm up to –10 °C within 1 hour.

Suspension was transferred via double tip needle to S4 frit with constant flow of dry DCM.
Precipitate was resuspended and rinsed three times with DCM and dried by flow of argon. Pre-
cipitate was dissolved in 20 ml of acetonitrile with 1,8-bis(dimethylamino)naphthalene; (1438
mg, 6.73 mmol) and transferred into 100ml flask. Filtration extension was replaced with septum
and into transparent dark orange solution was added dimethylamine hydrochloride (328 mg,
4.03 mmol). Reaction mixture was heated at 50 °C for 2 days.

Solvent was removed, resulting mixture was dissolved in methanol and byproducts were crys-
tallised by slow addition of water. Precipitate was removed, solution was concentrated on rotary
evaporator and liquid-loaded on reverse phase column (C18, 40 g, H2O:MeOH, gradient from
100 % to 60 % of H2O) with 0.1 % TEA in both mobile solvents. Main fraction was precon-
centrated on rotary evaporator and dried by lyophilisation. It was characterised as compound
B22 (370 mg, 0.358 mmol, 27 %) in form of orange powder.

Title product B7 was obtained as minor fraction in form of triethylamine salt (102 mg,
0.137 mmol, 10 %) as orange powder. Product was characterised and for spectroscopic mea-
surement purified on reverse phase column (C18, 40 g, H2O:MeOH, gradient from 100 % to 70 %
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of H2O with 0.1 % ammonium formate in H2O). Solution was preconcentrated on rotary evap-
orator and title product (B3-NH4) was obtained by lyophilisation (69.3 mg, 0.120 mmol, 9 %)
as orange powder.
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Yield: 69.3mg dark orange powder (0.120mmol, 9%).
TLC: EA:MeOH 1:1 Rf = 0.27.
1H-NMR (401MHz, MeOD): δ = 7.77 – 7.69 (m, 2H, H10); 7.53 – 7.45 (m, 2H, H9); 4.44
(s, 2H, H12); 3.21 (q, 12H, 3JHH = 7.3, HS1); 2.90 (s, 6H, H14); 2.82 (s, 6H, H1); 1.65 (s, 6H,
H5) 1.31 (t, 18H, 3JHH = 7.3, HS2).
13C-NMR (101MHz, MeOD): δ = 157.06 (s, CAr); 145.32 (s, CAr); 142.95 (s, CAr); 137.80
(s, CAr); 136.20 (s, CAr); 133.39 (s, CAr); 133.05 (s, 2C, C10); 131.45 (s, CAr); 130.42 (s, 2C,
C9); 61.60 (s, 1C, C12); 47.86 (s, 6C, CS1); 43.08 (s, 2C, C14); 14.56 (s, 2C, C1); 13.60 (s, 2C,
C5); 9.22 (s, 6C, CS2).
19F-NMR (377MHz, MeOD): δ = −142.59 (non-binomial q., JFB = 32).
11B-NMR (129MHz, MeOH): δ = 2.03 (t, JBF = 32).
MS (ESI): (−) m/z calc. for [(C22H24BF2N3O6S2)2–]: 539.1, found: 541.2 [M + 2H]–; 563.2
[M + Na + H]–; 270.1 [M]2–.
MS (ESI): (+) m/z calc. for [(C22H24BF2N3O6S2)2–]: 539.1, found: 541.2 [M + 3H]+.
HR MS (ESI): (−) m/z calc. for [(C22H25BF2N3O6S2)–]: 540.12514, found: 540.12469; m/z
calc. for [(C22H24BF2N3O6S2)2–]: 269.55893, found: 269.55896.
UV-Vis: 505.5 nm (MeOH); 499.5 nm (H2O).
Fluorescence: λex,em 509.0 nm, 520.0 nm (MeOH); λex,em 502.4 nm, 512.6 nm (H2O).

Characterization of B22-TEA

Yield: 370mg orange powder (0.358mmol, 27%).
TLC: EA:MeOH 1:2, Rf = 0.38.
1H-NMR (401MHz, MeOD): δ = 7.94 – 7.81 (m, 4H, H10); 7.72 – 7.54 (m, 4H, H9); 4.81
(s, 4H, H12); 3.19 (q, 24H, 3JHH = 7.3, HS1); 3.04 (s, 6H, H14); 2.81 (s, 12H, H1); 1.70 (s,
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12H, H5) 1.29 (t, 36H, 3JHH = 7.3, HS2).
1H-NMR (401MHz, DMSO): δ = 7.96 – 7.70 (m, 4H, H10); 7.65 – 7.34 (m, 4H, H9); 4.77
(s, 4H, H12); 3.09 (q, 24H, 3JHH = 7.3, HS1); 2.89 (s, 6H, H14); 2.66 (s, 12H, H1); 1.56 (s,
12H, H5) 1.16 (t, 36H, 3JHH = 7.3, HS2).
13C-NMR (101MHz, MeOD): δ = 157.14 (s, CAr); 144.99 (s, CAr); 142.95 (s, CAr); 138.77
(s, 2C, C11); 136.30 (s, 4C, C10); 135.75 (s, CAr); 131.40 (s, 4C, C10); 130.62 (s, CAr); 130.27
(s, 4C, C9); 69.35 (s, 2C, C12); 48.82 (s, 4C, C14); 47.86 (s, 12C, CS1); 14.56 (s, 4C, C1); 13.69
(s, 4C, C5); 9.23 (s, 12C, CS2).
13C-NMR (101MHz, DMSO): δ = 154.48 (s, CAr); 142.38 (s, CAr); 139.61 (s, CAr); 137.89
(s, 2C, C11); 136.67 (s, 4C, C10); 134.20 (s, CAr); 129.35 (s, 4C, C10); 128.80 (s, CAr); 128.74
(s, 4C, C9); 67.26 (s, 2C, C12); 48.47 (s, 4C, C14); 45.74 (s, 12C, CS1); 13.94 (s, 4C, C1); 12.71
(s, 4C, C5); 8.66 (s, 12C, CS2).
19F-NMR (377MHz, DMSO): δ =−142.10 (non-binomial q., JFB = 31).
11B-NMR (129MHz, MeOH): δ = 0.62 (t, JBF = 33).
MS (ESI): (−) m/z calc. for [(C42H42B2F4N5O12S4)3–]: 1034.2, found 1080 [M + 2Na]–; 1057
[M + H + Na]–; 1037 [M + 2H]–; 517.5 [M + H]2–; 528.5 [M + Na]2–; 344.6 [M]3–.
UV-Vis: 506.0 nm (MeOH); 499.5 nm (H2O).
Fluorescence: λex,em 510.0 nm, 522.0 nm (MeOH); λex,em 502 nm, 513.6 nm (H2O).

4.4.5 Synthesis of B9-TEA from B7-NH4

In vial with stirrer was transferred B7-NH4 (5.1 mg, 8.69 µmol) and Pd(OAc)2 (11.7 mg, 0.052
mmol) and in 3 ml of dry DMF dissolved and heated at 50 °C for 3 hours. Solvent was removed
and reaction mixture was dissolved in MeOH, black suspension filtered out and loaded on RP
samplet (300 mg of C18 silica gel). Resulting fraction were analysed by NMR and HLPC-MS.
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MS (ESI): (−) m/z calc. for [(C22H23BCl2F2N3O6PdS2)2–]: 713.95, found: 714 [M + H]–.
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4.4.6 Synthesis of B11-TEA from B1

Reaction was done in accordance with general procedure in section 4.4.1.

Into 100ml Schlenk tube with stirrer was transferred B1 (500.42 mg, 1.343 mmol) and BHT
(296 mg, 1.343 mmol). Apparatus was dried, reactants were dissolved in argon atmosphere in
DCM (5 ml), covered with aluminium foil and cooled down to –40 °C.

Diluted solution of chlorosulfuric acid (9.81 ml, 4.03 mmol, 0.4106m in DCM) was slowly
added via syringe. Cooling bath was left to warm up to 0 °C within 30 minutes.

Suspension was diluted with DCM (20 ml) and transferred to S4 frit with constant flow of
dry DCM. Precipitate was resuspended and rinsed three times with DCM and dried by flow
of argon. Precipitate was dissolved in 20 ml solution of acetonitrile with 1,8-bis(dimethylami-
no)naphthalene (1.727 g, 8.06 mmol) and transferred into 100ml flask. Filtration extension was
replaced by septum and into transparent dark orange solution was added 3-azidopropan-1-amine
(336 mg, 3.36 mmol). Reaction mixture was heated at 50 °C for 2 days.

Solvent was removed, reaction mixture was dissolved in methanol and byproducts were crys-
tallized by slow addition of water. Precipitate was removed, solution was concentrated. Re-
action mixture was dissolved in water and liquid-loaded on reverse phase column (C18, 40 g,
H2O:MeOH, gradient from 100 % to 75 % of H2O) with 0.1 % TEA in both mobile solvents.
Main fraction was preconcentrated, dried by lyophilisation, and title compound B11-TEA
(365 mg, 0.614 mmol, 46 %) was obtained in form of orange powder.

Synthesis of B11-TEA from B2-TEA

In small vial with 3-azidopropan-1-amine (56.6 mg, 0.565 mmol) and 1,8-bis(dimethylamino)na-
phthalene (121 mg, 0.565 mmol, 3 eq.) were dissolved in DMF. In other vial was dissolved B2
(100 mg, 0.188 mmol) and of 1,8-bis(dimethylamino)naphthalene (203 mg, 0.942 mmol, 5 eq.)
in DMF. Solution of B2 was slowly transferred into the first vial and heated at 50 °C for 3
days.

Solvent was removed, resulting mixture was dissolved in methanol and byproducts were
crystallized by slow addition of water. Precipitate was removed, solution was concentrated
and liquid-loaded on reverse phase column (C18, 40 g, H2O:MeOH, gradient from 100 % to
75 % of H2O) with 0.1 % TEA in H2O. Solvents were removed on rotary evaporator and dried
by lyophilisation. Title product was obtained as triethylammonium salt B11-TEA (67 mg,
0.084 mmol, 45 %) in form of orange powder.

Yield: 67.01mg orange powder (0.084mmol, 45%).
TLC: EA:MeOH 1:1 Rf = 0.53;EA:MeOH 2:1 Rf = 0.15.
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1H-NMR (401MHz, D2O): δ = 7.68 – 7.56 (m, 2H, H10); 7.31 – 7.23 (m, 2H, H9); 4.74
(s, 2H, H12); 3.47 (t, 2H, 3JHH = 6.3, H16); 3.07 (t, 2H, 3JHH = 7.3, H14); 2.76 (s, 6H, H1);
2.05 (tt, 2H, 3JHH = 7.3 and 6.3, H15);1.62 (s, 6H, H5).
13C-NMR (101MHz, D2O): δ = 155.91 (s, CAr); 146.85 (s, CAr); 144.35 (s, CAr); 140.51 (s,
CAr); 133.97 (s, CAr); 133.29 (s, CAr); 131.14 (s, CAr); 130.60 (s, 2C, C10); 128.63 (s, 2C, C9);
46.18 (s, 1C, C12); 37.89 (s, 1C, C14); 26.70 (s, 1C, C15); 48.84 (s, 1C, C16); 14.22 (s, 2C, C1);
13.42 (s, 2C, C5).
19F-NMR (377MHz, D2O): δ = −141.26 (non-binomial q., JFB = 28).
11B-NMR (129MHz, D2O): δ = 0.62 (t, JBF = 29).
MS (ESI): (−) m/z calc. for [(C23H25BF2N6O6S2)2–]: 594.1, found: 595.0 [M + H]–; 297.2
[M]2–.
HR MS (ESI): (−) m/z calc. for [(C23H26BF2N6O6S2)–]: 595.14218, found: 595.14108; m/z
calc. for [(C23H25BF2N6O6S2)2–]: 297.06745, found: 297.06713.
UV-Vis: 505.0 nm (MeOH); 499.0 nm (H2O).
Fluorescence: λex,em 509.0 nm, 520.0 nm (MeOH); λex,em 501.2 nm, 512.2 nm (H2O).

4.4.7 Synthesis of B12-TEA from B11-TEA

In 20ml vial with septum was dissolved 2-((1,3-dioxoisoindolin-2-yl)oxy)acetic acid (5.3 mg,
0.024 mmol) in 2 ml of dry DMF under argon atmosphere followed by addition of DCC (4.9
mg, 0.024 mmol). Reaction mixture was heated at 40 °C for 30 minutes. Then B11-TEA (9.5
mg, 0.012 mmol) was added. Only minor conversion was observed, therefore DCC (9.82 mg,
0.048 mmol) and 2-((1,3-dioxoisoindolin-2-yl)oxy)acetic acid (10.5 mg, 0.048 mmol) were added
into reaction mixture and stirred at 50 °C for 2 days.

Solvent was removed, resulting mixture was dissolved in water and liquid-loaded on reverse
phase column (C18, 40 g, H2O:MeOH, gradient from 100 % to 40 % of H2O) with 0,2 %
TEAF buffer in water. Major fraction was reactant B11 and title product B12-TEA (2.3 mg,
2.76 µmol, 23 %) was obtained by lyophilisation as minor fraction.
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Yield: 2.3mg orange powder (2.76mmol, 23%).
TLC: EA:MeOH 2:1 Rf = 0.76.
1H-NMR (401MHz, D2O): δ = 7.91 – 7.80 (m, 4H, H23,24); 7.61 – 7.57 (m, 2H, H10); 7.35
– 7.31 (m, 2H, H9); 5.02 (s, 2H, H18); 4.79 (s, 2H, H12); 3.54 – 3.46 (m, H16); 3.03 (t, 2H,
3JHH = 7.0, H14); 2.79 (s, 6H, H1); 1.96 – 1.78 (m, 2H, H15); 1.68 (s, 6H, H5).
MS (ESI): (−) m/z calc. for [(C33H30BF2N7O10S2)2–]: 797.2, found: 798.3 [M + H]–; 398.6
[M]2–.
MS (ESI): (+) m/z calc. for [(C33H30BF2N7O10S2)2–]:, 797.2 found: 800.1 [M + 3H]+; 822.1
[M + 2H + Na]+.

4.4.8 Synthesis of B21-NH4 from B1

Reaction was done in accordance with general procedure in section 4.4.1.

Into 100ml Schlenk tube with stirrer was transferred B1 (150 mg, 0.403 mmol) and BHT
(89 mg, 0.403 mmol). Apparatus was dried in vacuum, reactants were dissolved in argon at-
mosphere in DCM (5 ml), covered with aluminium foil and cooled down to –40 °C. Diluted
solution of chlorosulfuric acid (3.5 ml, 1.208 mmol, 0.4106m in DCM) was slowly added via
syringe. Cooling bath was left to warm up to –5 °C within 30 minutes.

Suspension was diluted with DCM (10 ml), transferred via double tip needle to S4 frit
with constant flow of dry DCM. Precipitate was resuspended and rinsed three times with
DCM and dried by flow of argon. Precipitate was dissolved in 10 ml of acetonitrile with 1,8-
bis(dimethylamino)naphthalene (431 mg, 2.013 mmol) and transferred into 50ml pressure flask,
solvent was removed.

Into reaction flask with cooling in dry-ice ethanol bath was condensed roughly 5 ml of liquid
ammonia. Pressure flask was sealed off and cooling bath was removed. Reaction mixture was
stirred for 3 days at RT, then liquid ammonia was removed.
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Reaction mixture was dissolved in methanol and byproducts were crystallized by slow ad-
dition of water. Precipitate was removed, solution was concentrated. Reaction mixture was
dissolved in water and liquid-loaded on reverse phase column (C18, 40 g, H2O:MeOH, gradient
from 100 % to 75 % of H2O) with 0.1 % TEA in mobile solvents, then repeated with 0.1 %
DIPEA in H2O. Main fraction was preconcentrated on rotary evaporator and dried by lyophili-
sation. Title product was obtained as DIPEA salt of B21 (53 mg, 0.074 mmol, 19 %) in form of
orange powder. For spectroscopic characterisation was the title product B21 purified on HPCL
column (RP) with 0.1 % ammonium formate in H2O and lyophilised, obtaining ammonium salt
of B21 (25 mg, 0.045 mmol, 11 %)

Y+ = NH4
+
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Figure 4.10: Compound B21-DIPEA.

Yield: 53mg orange powder (0.074mmol, 18%). HPLC purification gave 25 mg of pure com-
pound B-21:
Yield: 25mg orange powder (0.045mmol, 11%).
TLC: EA:MeOH 1:1 Rf = 0.30; EA:MeOH 2:1 Rf = 0.05.
1H-NMR (400MHz, MeOD): δ = 7.70 – 7.65 (m, 2H, H10); 7.49 – 7.45 (m, 2H, H9); 4.24
(s, 2H, H12); 3.35 (s, 2H, H14); 2.80 (s, 6H, H1); 1.66 (s, 6H, H5).
13C-NMR (101MHz, MeOD): δ = 156.92 (s, CAr); 145.67 (s, CAr); 143.19 (s, CAr); 136.88
(s, 2C, C11); 136.23 (s, CAr); 136.02 (s, CAr); 131.55 (s, CAr); 131.34 (s, 2C, C10); 130.22 (s, 2C,
C9); 43.92 (s, 3C, C12); 14.50 (s, 2C, C1); 13.71 (s, 2C, C5).
19F-NMR (377MHz, MeOD): δ = −144.50 (non-binomial q., JFB = 32).
11B-NMR (129MHz, MeOD): δ = 0.70 (t, JBF = 32).
MS (ESI): (+) m/z calc. for [(C20H20BF2N3O6S2)2–]: 511.1, found: 512.1 [M + H]–; 534.1
[M + Na]–; 255.5 [M]2–.
HR MS (ESI): (+) m/z calc. for [(C20H21BF2N3O6S2)–]: 512.09384, found: 255.54350; m/z
calc. for [(C20H20BF2N3O6S2)2–]: 255.54328, found: 255.54350.
UV-Vis: 505.0 nm (MeOH); 498.5 nm (H2O).
Fluorescence: λex,em 506.0 nm, 518.0 nm (MeOH); λex,em 500.6 nm, 511.6 nm (H2O).
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5 | Conclusions

In this thesis we:

i) established a protocol for reliable and scalable sulfonation of BODIPY,
ii) developed methodology to remove surplus salts and exchange of counterions,
iii) prepared a series of alkylated water-soluble species B3, B7, B11, B21,
iv) prepared series of water-soluble, biocompatibile fluorescent probes, which can be easily

modified and used as bioorthogonal probes.

This was done with the respect to compatibility with organic synthesis, analytical purification
and biological applications. Each branch of prepared compounds can be summed up in one of
following categories:

i) water-soluble monofunctional fluorescent probe B21,
ii) precursors of heterobifunctional fluorescent probes B4 and B12,
iii) water-soluble off/on probe B9, which has been confirmed by MS spectroscopy.
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Supporting information

Compound B1 B2
Formula C20H20BClF2N2 (C14H18N2)(C3H5N)C20H18BClF2N2O6S2

M r 372.65 800.13
Shape, colour prism, orange-reddish prism, red

Crystal diameters (mm) 0.27 × 0.37 × 0.53 0.12 × 0.26 × 0.37
Crystal system monoclinic triclinic
Space group P21 P1

a (Å) 8.7446(6) 11.6302(4)
b (Å) 8.9986(5) 12.7156(4)
a (Å) 11.5351(7) 13.9621(6)
α (°) 90.00 76.631(3)
β (°) 94.195(2) 73.002(3)
γ (°) 90.00 82.527(3)

Cell volume (Å3) 905.26(10) 1916.75(13)
Z 2 2

Dcalc g· cm−3 1.367 1.386
µ (mm−1) 0.236 2.427
T (K) 150 180

θ range (°) 1.77 – 27.49 4.397 – 75.944
Total refl. 4150 15241

Obsd. refl. (I > 2σ(I )) 3848 6080
GOF on F2 1.027 1.051

R; wR (I > 2σ(I )) 0.0308; 0.0769 0.0659; 0.0749
R; wR 0.0349; 0.0794 0.0802; 0.0843

Table 5.1: Summary of X-ray diffraction data for B1 and B2.
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