
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Mikuláš Zelinka

Using yaPOSH for CTF team behaviour

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Michal B́ıda

Study programme: Computer Science

Specialization: Programming

Prague 2014

I would like to thank to my supervisor, Mgr. Michal B́ıda, for his patience and

invaluable advice.

I would also like to thank to Mgr. Jakub Gemrot for helping me with resolving

various Pogamut-related issues and to Bc. Vojtěch Tuma for helping me with

getting his bots to work.

Finally, my thanks belong to my family and to Anna.

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University in Prague has the right to conclude a license agreement

on the use of this work as a school work pursuant to Section 60 paragraph 1 of

the Copyright Act.

In date signature of the author

Název práce: Specifikace týmového chováńı pro CTF pomoćı yaPOSHe

Autor: Mikuláš Zelinka

Katedra: Kabinet software a výuky informatiky

Vedoućı bakalářské práce: Mgr. Michal B́ıda

Abstrakt: Vyhodnotili jsme vhodnost použit́ı yaPOSHe (nástroje pro plánováńı

virtuálńıch agent̊u) pro specifikaci složitého týmového chováńı v módu Capture

the Flag (CTF) hry Unreal Tournament 2004. Pomoćı yaPOSHe jsme vytvořili

tým bot̊u do CTF a porovnali jej s týmem napsaným V. Tumou v jazyce Java a

rovněž s boty od autor̊u hry.

Ukázalo se, že yaPOSH má oproti samotné Javě řadu výhod (zejména co se

týče čitelnosti kódu), nicméně neńı možné vytvořit kvalitńı boty pouze s jeho

výhradńım použit́ım. Důvodem je zejména absence podpory paralelńıho vyhod-

nocováńı yaPOSH plán̊u. Proto musely být části chováńı (např. řešeńı souboj̊u)

naprogramovány v Javě. Výsledný CTF tým je ale i tak znatelně lepš́ı než p̊uvodńı

boti autor̊u hry a ve většině př́ıpad̊u lepš́ı než bot V. Tumy.

Na základě těchto poznatk̊u jsme navrhli několik vylepšeńı jak vyhodocovaćıho

enginu yaPOSHe, tak i editoru jeho plán̊u. Výrazně by pomohlo umožnit paralelńı

vyhodnocováńı plánu nebo povolit vyhodnocováńı několika r̊uzných plán̊u jed-

noho agenta najednou. Naše návrhy a doporučeńı se neomezuj́ı na tento konkrétńı

mód a konkrétńı hru, nýbrž jsou relevantńı i pro specifikaci jiných složitých

týmových chováńı pomoćı yaPOSHe.

Kĺıčová slova: Umělá inteligence, yaPOSH, Pogamut, Unreal Tournament 2004,

Capture the Flag

Title: Using yaPOSH for CTF team behaviour

Author: Mikuláš Zelinka

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Michal B́ıda

Abstract: We evaluated the suitability of yaPOSH (an action-selection system

for virtual agents) for complex team behaviour development, specifically for the

Capture the Flag (CTF) mode in Unreal Tournament 2004. We created a CTF

team using yaPOSH and Java and compared them with a CTF team written by

V. Tuma in plain Java as well as with the native UT2004 bots.

We found out that although yaPOSH does have some advantages over plain Java

(mainly in code readability), one cannot create a competitive bot using yaPOSH

only. That is a direct consequence of the limitations the yaPOSH planner has,

with the most significant one being lack of parallelism support. Thus, some as-

pects of the behaviour (such as combat) were programmed in Java. Nevertheless,

the resulting team is better than the native bots by a margin and slightly better

than Tuma’s CTF team.

As a result, we have made several suggestions for improvements of the yaPOSH

engine as well as its editor, such as to add the possibility to execute multiple ya-

POSH plans at once, or to enable their parallel evaluation. These suggestions and

our other findings are not limited to the chosen domain of UT2004’s CTF mode

and instead are relevant to specification of any other complex team behaviour.

Keywords: Artificial Intelligence, yaPOSH, Pogamut, Unreal Tournament 2004,

Capture the Flag

Contents

1 Introduction 4

1.1 Unreal Tournament 2004 . 4

1.2 Capture the Flag . 5

1.3 Pogamut . 6

1.4 yaPOSH and Behaviour Oriented Design 7

1.5 Goal of the thesis . 8

1.6 Structure of the thesis . 8

2 yaPOSH and Behaviour Oriented Design 10

2.1 Behaviour Oriented Design . 10

2.2 yaPOSH plan . 11

2.2.1 Primitives . 11

2.2.2 Aggregates . 11

2.2.3 Plan example . 12

2.3 Comparison to Java . 14

2.3.1 Code readability . 14

2.3.2 Parallelism and Expressive power 14

3 Behaviour specification 16

3.1 Desired behaviour . 16

3.2 Behaviour decomposition . 17

3.3 Movement decision making . 18

3.3.1 Navigation in Pogamut . 18

3.4 Combat . 19

3.5 Communication . 20

3.6 Team strategy and roles . 21

4 CTF team implementation 22

4.1 Bot update cycle . 22

4.2 Roles . 23

4.2.1 Attacker . 23

4.2.2 Defender . 23

4.2.3 Roamer . 24

4.2.4 Role distribution and switching 25

4.3 Behaviour modules . 25

4.3.1 Communication . 26

4.3.2 Combat . 27

1

4.3.3 Movement decision making 28

5 Experiments 31

5.1 Opponents . 31

5.1.1 Native bots . 31

5.1.2 V. Tuma’s bots . 31

5.2 Match settings . 32

5.2.1 Difficulty level . 32

5.2.2 Weapons . 32

5.2.3 Match limits . 32

5.2.4 Team size . 32

5.2.5 Translocator . 33

5.2.6 Mutators . 33

5.2.7 Friendly fire . 33

5.2.8 Settings overview . 33

5.3 Maps . 34

5.3.1 CTF-Citadel . 34

5.3.2 CTF-Geothermal . 35

5.3.3 CTF-Lostfaith . 36

5.4 Format . 36

6 Results 37

6.1 Native bots . 37

6.1.1 CTF-Citadel . 37

6.1.2 CTF-Geothermal . 38

6.1.3 CTF-Lostfaith . 38

6.2 Tuma’s bots . 39

6.2.1 CTF-Citadel . 39

6.2.2 CTF-Geothermal . 40

6.2.3 CTF-Lostfaith . 40

6.2.4 Additional matches . 41

6.3 Summary . 41

7 Discussion 43

7.1 Decision making versus coding . 43

7.2 Importance of tool’s specifics . 43

7.3 Different techniques for different tasks 44

7.4 When to use yaPOSH . 44

7.5 When not to use yaPOSH . 45

7.6 Improvement suggestions . 45

2

7.6.1 Parallelism . 46

7.6.2 Plan variables . 46

7.6.3 Cosmetic changes . 46

7.7 Final thoughts . 47

8 Conclusion 48

Bibliography 49

List of Abbreviations 51

Appendix A: Resulting yaPOSH plan 52

Syntax . 52

Drive collection . 53

The main Attacker competence . 53

The main Defender competence . 53

The main Roamer competence . 54

Competences . 54

Attacker’s competences . 54

Defender’s competences . 56

General competences . 57

Appendix B: CD contents 59

Appendix C: User guide 60

Installation . 60

Starting the server . 60

Running our bots . 60

Modifying our bots . 61

Running native bots . 61

3

1. Introduction

Recently, there has been a significant increase in demand for artificial intelligence

(AI) in the computer games industry. Computer games come in a number of

different genres and each of these does have specific characteristics and different

needs for its AI. All the games, however, do have a common goal — to create

an illusion of intelligence and human-like behaviour of the in-game characters in

order to increase the game’s believability, making it consequently more enjoyable

to play. Our task will be to explore the possibilities of one of the AI techniques

by creating an AI team of co-operating virtual characters.

Intelligent virtual agents (IVAs)1 are virtual human-like characters that try

to exhibit and imitate human-like behaviour. Naturally, creating a truly human-

like virtual agent is a rather difficult task and there are many different ways to

approach the whole matter.

Our goal is to create a team of intelligent virtual agents using a specific ap-

proach, Behaviour Oriented Design (BOD, introduced in 2001 by J. J. Bryson [3]),

and a specific tool based on BOD, the yaPOSH reactive planner [10]. We would

like to find out whether this approach and this tool are suitable for developing

complex team behaviour and possibly identify their advantages, limitations and

tasks that could (or alternatively could not) be fittingly solved using this method.

Our team will play the Capture the Flag (CTF) game mode of Unreal Tour-

nament 2004 (UT2004). We chose this domain because its IVA development is

supported by the Pogamut platform [12] and some CTF teams based on Pogamut

have already been created. We will use these teams for comparison.

In this chapter, we will introduce the platforms and techniques we will use in

the thesis, discuss the goal of the thesis and then describe its structure. We will

start by introducing the environment of UT2004, which we are using for the IVA

simulation.

1.1 Unreal Tournament 2004

Unreal Tournament 2004 is a first-person shooter computer game developed by

Epic Games in 2004, in which each player controls a virtual character in a virtual

3D environment. The in-game characters can also be controlled by computer, in

which case they are commonly called bots.

The game features several game modes which share some aspects of the game-

play, such as collecting weapons, shooting and moving through the map. Some

1We will also call them agents or bots.

4

Figure 1.1: A screenshot from UT2004’s CTF mode on map CTF-Lostfaith.

game modes revolve solely around only these game mechanics with focus on com-

bat, while others, such as Capture the Flag, do have other important objectives

on top of the combat system. However, the combat system is still present in the

CTF game mode and our objective is to come up with solid CTF decision making

on top of specifying good combat behaviour.

Next we will describe the specific mechanics of the game mode we will be

creating our bot team for, Capture the Flag.

1.2 Capture the Flag

Capture the Flag is one of the modes featured in UT2004 as well as a traditional

outdoor game. In the game, two teams battle against each other for the most

important objectives, flags, in a certain game environment (a map2). In UT2004,

there are multiple maps for most game modes including CTF. Teams can have

different number of players, but the standard team size and the size we will use

is five players on each team.

On each map, a team has a base and a flag hidden within it. The goal is to

capture your enemy’s flag and bring it in to your own base while defending your

own flag, meaning that a team cannot score when its own flag is not in its base.

In UT2004’s CTF mode, each flag capture is worth one point and there is

2In FPS games, the areas in which the simulation takes place are commonly called maps
and matches can be played in several different game environments, maps.

5

a score limit and a time limit. The game ends either when a team reaches the

score limit or when the time expires. This is important because it makes certain

strategies viable, for example focusing on defence when already in a lead or trying

an all-out attack when losing while time is running out.

As mentioned above, the fundamental characteristics of UT2004 are the item

and the combat systems. A character can collect items (such as weapons, am-

munition or health packs) around the whole map and use them in combat against

other characters (or, in case of CTF, against members of the opposing team).

Every character has a health attribute that decreases when the character is hit by

an enemy. When the health reaches zero, the character dies. In the game, death

is not permanent. When killed, the bot or the player respawns in a predefined

spot but without the items he had previously collected. More information about

items and combat can be found in section 3.4.

We will focus on matches where all characters will be controlled by artificial

intelligence, i.e. bots.

1.3 Pogamut

Pogamut3 [12] (derived from POSH, Games, Unreal Tournament) is a Java mid-

dleware platform that enables its users to develop and control IVAs in several

games or game engines including UT2004. The platform is designed to simplify

the agent creation process and it provides a Java API with a wide variety of

high-level functions, meaning that even complex tasks, such as computing a nav-

igation path to a certain point, often require no more than a single command.

As a consequence, one can then fully focus on high-level decision making without

having to worry about how precisely the decisions are carried out on lower levels.

To some extent, the platform enables us to tell the bot what to do, instead of

how exactly to do it.

Pogamut also comes with a NetBeans4 plug-in that includes a number of useful

graphical and debugging tools for controlling the servers and the bots in the game

environment.

The platform is using the following architecture (see fig. 1.2). Data from the

game (UT2004) is sent with TCP/IP using the GameBots2004 text protocol, pro-

cessed by Gavialib and converted to Java objects. The end user then works only

with these objects and can also debug the agents with the help of the Pogamut

NetBeans plug-in.

We are using Pogamut as a tool that allows us to concentrate on implementing

3Pogamut is available at http://pogamut.cuni.cz/.
4NetBeans is an integrated development environment for developing primarily in Java.

6

http://pogamut.cuni.cz/
http://netbeans.org

Figure 1.2: Diagram representing the architecture of Pogamut.

the actual in-game decision making of our bots rather than on the necessary but

not necessarily that interesting technical problems such as communication with

and connection to the game engine.

Pogamut also contains the yaPOSH planner, a tool for developing strategies

for bots whose philosophy is based on Behaviour Oriented Design.

1.4 yaPOSH and Behaviour Oriented Design

Behaviour Oriented Design (BOD) [2] is a methodology focused on human-like

development of IVAs. BOD uses a human-like approach of behaviour decompos-

ition into behaviour modules and its concept is used by many planners, one of

which is the yaPOSH planner [10].

The yaPOSH planner is an action-selection system tailored for the develop-

ment of IVAs in UT2004. It is a dialect of POSH [3] and a part of the Pogamut

platform. One might view yaPOSH as an implementation of Behaviour Trees [4]

since its elementary component, the yaPOSH plan, is used for action selection

and does have a tree-like structure.

Figure 1.3: A part of a yaPOSH plan in Shed.

yaPOSH uses a human-like approach to behaviour specification since it is

based on BOD and the key components of its plans are senses and actions that

7

correspond to human senses and actions. Each bot has a single yaPOSH plan

assigned to him, and based on what he senses or perceives, he carries out a certain

action.

Pogamut’s recent versions also feature Shed, a graphical editor for yaPOSH

(or to be precise, for its plans) and its graphical debugger, Dash. These tools

as well as yaPOSH itself were introduced as a part of a diploma thesis of Jan

Havĺıček [13].

yaPOSH, yaPOSH plans and the philosophy of BOD are described in the next

chapter 2 in detail.

1.5 Goal of the thesis

The goal of the thesis is to create a CTF bot team for UT2004. The resulting

team should perform well, meaning that we want our team to perform at least as

well or better than the native5 bots and that our team should display human-like

behaviour, which is the usual requirement when creating IVAs for any computer

game, since human players do demand and enjoy human-like in-game characters.

See section 3.1 for more detailed specification of the desired behaviour.

Secondary goal is to evaluate the suitability of the BOD approach and the

yaPOSH planner for complex team behaviour specification and to show its ad-

vantages and disadvantages in comparison to plain Java. At the end, we would

like to be able to conclude whether these tools should or should not be used for

solving similar tasks and more importantly, why that is the case.

1.6 Structure of the thesis

First of all, we will introduce BOD as a concept of modelling human-like beha-

viour and introduce the yaPOSH planner based on BOD. Then we will describe

the desired CTF behaviour and decompose it into smaller parts using the BOD

approach introduced previously.

Afterwards, we will implement the behaviour using the yaPOSH tool with the

help of the decomposition mentioned beforehand.

Our resulting CTF team will then be compared against other bots programmed

previously as well as against the native UT bots. We will mainly focus on the

differences in in-game performance and code readability.

Finally, based on this comparison, we will appraise the suitability of yaPOSH

for solving similar tasks, come up with suggestions on how the yaPOSH planner

5Native bots are bots created by the authors of the game.

8

could be improved or what features could be added in the future.

More detailed description of the chapters follows.

In chapter 2, we will describe BOD and the yaPOSH reactive planner based

on BOD in detail. Its characteristics will be shown mainly with regard to the

behaviour specified in chapter 3. We will also discuss the differences between

this using the yaPOSH planner and plain Java and the consequences of these

differences.

In chapter 3, we will introduce the desired bot behaviour and decompose it

into different parts and describe these individually in detail.

In chapter 4, we will present our CTF strategy. We will show how the up-

date cycle of Pogamut bots works and introduce our implementation of the CTF

team based on the chosen strategy and Pogamut’s update cycle. We will also

describe how we implemented each of the behaviour parts in detail and present

the resulting yaPOSH plan.

Chapter 5 specifies parameters of the experiments carried out with the CTF

team against other bots. The exact match settings are introduced along with the

reasoning behind their selection. In addition, we will introduce the maps used in

the matches and our tool for working with the maps.

In chapter 6, we will present the results of the experiments and depict the

course of the matches.

In chapter 7, we will discuss our experiences during the course of behaviour

development, the issues we encountered and how they were dealt with. We will

present the identified limitations of yaPOSH and offer possible solutions to these

limitations. We will also share our thoughts on other related topics, such as the

impact of tool selection on performance of the resulting bots.

Finally, in chapter 8, we will draw conclusions based on the whole course of

the CTF team development, the experiment results and the discussion in the

previous chapter 7.

9

2. yaPOSH and Behaviour

Oriented Design

In this chapter, we will introduce the concept of Behaviour Oriented Design

(BOD) and the yaPOSH reactive planner based on BOD. We will also discuss

its properties in relation to the behaviour specified in the next chapter 3 and the

differences between using yaPOSH and plain Java when implementing the desired

behaviour.

2.1 Behaviour Oriented Design

BOD is a modular technique for behaviour development and action selection. It

is based on the idea that no matter how complex a behaviour is, it can be decom-

posed into lesser parts. These parts or smaller behaviours are called behaviour

modules. The modularity means that a single behaviour can consist of several

smaller behaviours and each of these can be decomposed further (and so on).

Then, using a collection (or library) of these modules, BOD uses a dynamic

plan, a data structure representing relations of the modules, to process agent’s

action selection.

In the end, the end parts of the plan (its leaves) correspond to the simplest

behaviour modules that cannot be decomposed further—and the whole behaviour,

as well as its every part, consists of these leaves and their connections.

To summarize, there is a modular collection of behaviours (one behaviour

can consist of several other behaviours) and there is a plan combining these

behaviours.

BOD also offers a methodology specifying how the decomposition should be made.

According to it, as described in the Pogamut lectures [16], one should

• name and identify the top-level behaviour the bot should be able to perform,

• identify behaviours that this higher-level behaviour consists of,

• identify senses that will trigger each of these lower-level behaviours,

• and identify these behaviours’ priorities and consequently their switching

conditions.

This process should then be repeated until primitive behaviours — primitives —

are reached. More details about BOD as well as its decomposition methodology

can be found in Bryson’s Ph.D. thesis [3].

10

2.2 yaPOSH plan

yaPOSH is a planner based on BOD and a modification of the original Parallel-

rooted, Ordered Slip-stack Hierarchical (POSH) planner introduced by J. J.

Bryson [3]. yaPOSH was created and integrated into Pogamut by Jan Havĺıček

in 2013 [13].

As mentioned in the previous section, the planner essentially provides a way to

define relations between the behaviour modules. As a consequence, the yaPOSH

plan contains two different classes of nodes: primitives, representing the lowest-

level behaviour modules, and aggregates, representing their relations.

2.2.1 Primitives

Primitives are methods implemented in some programming language (in our case

in Java) that each carry out a certain action in the game environment. There

are two kinds of primitives in yaPOSH and these also correspond to how humans

perceive and interact with the environment:

• actions, used to execute actions, e.g. jump

• senses, used to sense information from the environment, e.g. can I see a

player?

In the process of action selection through plan execution, the senses are used

to determine which behaviour module should be executed. Actions are the leaves

of the plan that are actually executed if selected. Simply put, based on what the

agent perceives, he chooses an actions that he performs.

In yaPOSH, both actions and senses can be parametrized, meaning that we

can have a sense canSeeFlag(team) instead of two senses canSeeOurFlag and

canSeeEnemyFlag.

2.2.2 Aggregates

Aggregates are the inner nodes of the yaPOSH plan. They combine primitives

together and thus form the whole plan. As opposed to the primitives, they do

not interact with the game environment in any way. There are three different

kinds of aggregates:

• Drive collection is the root of the yaPOSH plan. During every action-

selection cycle, this root selects one of its children that will be executed.

The drive collection can be viewed as a set of if-then rules with priority

(the higher a child node is, the higher priority it has). The first child node

11

that meets its condition will be selected. During one cycle, only node node

can be selected, meaning that any actions with lower priorities (those that

lie lower in the plan) will not be executed in this cycle.

• Competence is a general modular plan. It can be also viewed as a set

of if-then rules. Competences consist of multiple behaviour modules (other

competences or actions) that the agent will choose from based on his senses,

selecting a maximum of one module in each cycle (just as for Drive collec-

tion).

Competence is a generalization of Drive collection in the sense that there

can be multiple competences (but exactly one Drive collection). Other than

that, they are the same.

• Action patterns are simply sequences of actions that will be executed in the

given order, one by one.

Drive collection cannot be parametrized whereas competences and action pat-

terns can. These parameters are passed onto their children, e.g. primitives. Com-

petences and action patterns themselves do not use parameters because after all,

they do not have or execute any code and instead, they link and point to the

lower-level nodes, passing their parameters on.

The whole plan can then be viewed as a set of hierarchical if-then rules with

priorities.

2.2.3 Plan example

To give an idea what the plan looks like and how one might benefit from using

it, we present a plan of a dragon guarding his treasure. The plan is taken from

Jan Havĺıček’s thesis (page 11 in [13]).

The dragon’s task is to:

• Attack nearby thieves that try to steal his treasure, if there are any.

• Search of the treasure if its portion has been stolen.

• Blink if the above conditions are not fulfilled.

The plan’s textual representation uses notation described on page 52 and is

also included and taken from Havĺıček’s thesis (page 11 in [13]).

12

Figure 2.1: A yaPOSH plan of a dragon guarding his treasure.
Source: Jan Havĺıček, Tools for virtual agent behavior specification in POSH [13], page
11.

Figure 2.2: A textual representation of fig. 2.1.
Source: Jan Havĺıček, Tools for virtual agent behavior specification in POSH [13], page
11.

13

2.3 Comparison to Java

Using Pogamut, UT bots can be (and in most cases are) created using plain Java.

These agents usually use finite state machines (FSM) or simply a set or hierarchy

of if-then rules for their behaviour specification. This approach is not quite as

robust as BOD and there are some noticeable differences between the two.

2.3.1 Code readability

The biggest difference, apparent at first sight, lies in code readability. Determ-

ining how the bot acts when only having Java source code at your disposal can

take a lot of effort and time. On the other hand, the bot’s behaviour is deductible

from its yaPOSH plan very fast and easily. This is because the BOD approach

uses an intuitive way of behaviour specification, based on perception (senses) and

action execution.

However, this advantage is not granted as it requires the behaviour’s developer

to make use of one of the aspects of the BOD approach, that is a strong encour-

agement of proper naming conventions of both primitives and competences. It

is highly recommended to name the behaviour modules by their actual meaning

instead of with shortcuts or vague descriptions. The yaPOSH planner benefits

from this even more, since its graphical editor displays the names of the beha-

viour modules and their relations immediately in the yaPOSH plan. Which is

not something that one could typically get when using plain Java.

As a consequence, provided that the behaviour’s author follows the BOD

methodology, the behaviour is much easier to get a grasp of when specified with

yaPOSH. Among other things, this plays significant role when a behaviour is

being developed by multiple people, in which case the robustness and modularity

makes efficient behaviour specification, maintenance and extension possible. As

shown in several experiments presented in the study of AI tool evaluation [9],

development tools matter and can greatly help with AI development.

2.3.2 Parallelism and Expressive power

Can everything expressible in plain Java be also expressed in yaPOSH? Technic-

ally it can, since the yaPOSH primitives are in fact Java functions and in the very

least, one could simply create a yaPOSH plan with one action, the Java program.

However, that would be very much against the concept of BOD.

When actually having BOD in mind and obeying its methods, yaPOSH does

have some limitations, as also mentioned by Havĺıček [13]. These limitations

stem from the fact that a single bot can only have a single plan assigned to

14

him and there is no aggregate that would evaluate its children parallelly (or

simultaneously). Also, during every update of the plan (see section 4.1), only one

final action or aggregate is called.

This is a severe limitation, especially in the context of BOD, where a beha-

viour module consists of other modules whose simultaneous execution is often

required. For example, just like a real soldier would move through the battlefield,

communicate with his squad and fight all at once, the bot has to perform all these

actions simultaneously as well. In our case, simultaneously does not mean at the

very same time, but rather in one update iteration (one cycle of plan evaluation).

Still, that might be a problem, because a bot can not be commanded to shoot

and move during one update iteration as long as the shoot and move commands

are separate actions (which they are required to be by design).

Theoretically, the problem could be solved by alternating behaviour modules

in cycles, i.e. by executing navigation in one update iteration, combat in the

other, and creating a cycle of behaviour module execution in this way. However,

that solution would be far from ideal since in action games like UT2004, one

cannot afford to delay any of behaviour modules by several update cycles — the

reactions need to be instant.

One of our goals is to find out whether this restriction will prevent us from

specifying a complex team behaviour in yaPOSH. If it will not be possible, we

are not going to break the principles of BOD and use primitives that carry out

different behaviour aspects. Instead, we will implement some of the behaviour

modules in Java and execute this parallelly (in reality sequentially, but in one

update iteration) to the yaPOSH plan.

15

3. Behaviour specification

In this chapter, we will describe what the resulting CTF behaviour should look

like (or in other words, what we want the bots to do), the three parts it could be

divided into and most importantly, why the decomposition is not only useful but

also needed.

The three pillars of the behaviour are movement decision making 3.3, com-

bat 3.4 and communication 3.5. We will describe these in detail.

3.1 Desired behaviour

We want the resulting CTF team to be able to play the game well and believably.

Playing well means being equally good as or better than the native UT2004 bots

on the same difficulty level1.

Playing believably means to play similarly to how human players would, i.e.

collect weapons before fighting, prioritize, capture and defend the flags, assist

teammates and have different roles (with different priorities) assigned to different

players. Ideally, when observing the game, one should not be able to tell the

difference between human players and bots.

In effect, believability and level of play do have a lot in common and in some

cases, the effort to create more believable bots can yield better results. Generally

speaking, the more human-like the team plays, the better results it is going to

achieve. Obviously, there are some exceptions to this rule (after all, making

mistakes is one of the characteristics of human behaviour), but in complex games

like UT2004’s CTF mode, humans do have the upper hand on AI and team-based

competitive FPS matches are only played between human teams, since bots are

not challenging enough.

For example, a CTF team of native UT2004 bots of similar skill level as a

group of human players poses hardly any challenge to the human team if the

human players cooperate. Albeit on higher difficulty levels the bots might have

an advantage in terms of aim precision and reaction times even over the best

human individuals, their teamwork and cooperation levels are nowhere close to

the cooperation effectiveness of human players.

To give an idea of what behaviour exactly we aim for, here is a list that

summarizes the key behaviour aspects that the resulting bots should display and

that are commonly observed when watching human players play CTF. Note that

1For Pogamut bots, the difficulty setting only changes their aim accuracy. On the other
hand, difficulty affects many more attributes of the native bots. See section 5.2.1 for details.

16

it does not include all of behaviour aspects and those mentioned below could

consist of several lesser parts.

• Before engaging in a fight, players collect weapons and other useful items

upon spawning in the game environment.

• Players prioritize flags. For instance, when seeing a dropped flag, they try

to get it instead of collecting items or chasing enemies.

• Players communicate and inform each other about flag status, enemy posi-

tions, important items, etc.

• Players on the same team have different roles and different priorities. For

example, one player defends the base while another tries to steal the enemy

flag.

• The roles may (and usually do) change dynamically depending on the in-

game situation. For instance, an attacker will help with defence when in a

more suitable position than a defender and vice versa.

3.2 Behaviour decomposition

The desired CTF team behaviour is immensely complex. In order to be able

to design and implement it successfully, we need to break it down into several

smaller and more easily graspable parts. We need these parts to be independent

of each other, so that we can approach them individually and one by one. In our

case, they are not completely independent as their certain elements are related.

For example, dodging the incoming projectiles while fighting (combat module)

would affect the navigation module a bit. However, we can deal with these cases

separately as there are not too many of them.

The three identified parts can then be further decomposed using essentially

the same approach. For instance, the combat system can be divided into picking

a target, shooting and dodging. And again, each of these behaviour modules can

be solved or approached independently and be decomposed further. The decom-

position can continue until we reach a truly simple behaviour that corresponds to

a single command in the context of Pogamut. Examples of these actions are shoot,

jump, move or turn. In fact, these four basic commands are almost everything

the bots need and a solid complex behaviour can be created using only a certain

connection of these few actions.

17

3.3 Movement decision making

Determining where each bot should go at any given moment is both the most

difficult and the most important problem of the CTF game mode. The reason

being that first, a bot does not have complete knowledge about the current state

of the game or map, second, there are dozens of locations he would benefit from

going to and third, the optimal target location is also dependant on where the

bot’s teammates are currently going.

The task of this module is to select a target location that the bot should go

to at any given time. Movement decision making will be the most complex of the

three modules and will be handled by a yaPOSH plan.

Our movement decision making will be functioning on top of Pogamut’s nav-

igation system described below.

3.3.1 Navigation in Pogamut

The UT2004 navigation, as handled by Pogamut, is much more simple than one

might imagine. This is because the bots do not actually see their surroundings.

Instead, they use a navigation graph that is predefined for each map.

Figure 3.1: A navigation graph of the CTF-Lostfaith map as shown in the Pogamut
NetBeans plug-in.

Bots move along the edges of the graph from one navigation point (a vertex

of the graph) to another navigation point. Consequently, the number of possible

destinations is severely limited, making the choices much more straightforward.

Nevertheless, it is possible to have a bot move to a location outside the graph,

but then the navigation is not quite that reliable.

Generally, when a bot finds himself out of the graph, he tries to get back to

the nearest vertex and since he does not actually see, this often results in him

18

Figure 3.2: A navigation graph of the CTF-Lostfaith map shown in-game, formed by
the yellow lines.

getting stuck in the environment. This is why certain actions, such as jumping or

dodging, might cause problems and we try to avoid these using these actions when

not necessary (often times, it might be better not to avoid incoming projectiles

since it could result in problems with navigation).

As already mentioned, Pogamut offers high-level functions including those for

pathfinding and path computation. To make a bot go to any location, one only

has to call one function with one parameter, the target location, though it is still

possible to specify the whole path manually. Pogamut also takes care of stuck

detection and resolution, modifying the navigation graph in the process.

3.4 Combat

The combat module will take care of fighting and engaging the enemies. It is

important to realize that since we decomposed our chosen behaviour into inde-

pendent modules, combat will not be able to decide where the bot will go. This

will be handled by movement decision making instead, which will also be taking

care of weapon collecting. In a way, we might say that a part of combat behaviour

handling will be delegated to the movement module.

Consequently, the combat module will be only in charge of shooting and

weapon selection. Although at first it might not seem like it, weapon selec-

19

tion is actually much more complex and difficult to assess than the shooting

process itself, which is because the weapon system of UT2004 is quite complex.

UT2004 features about ten different weapon types, each with different paramet-

ers, strengths and weaknesses. Luckily, Pogamut does have built-in tools that

help us select weapons automatically by specifying different weapon priorities for

different ranges (see combat’s implementation section 4.3.2 for details).

Even though we will focus on the CTF team behaviour and creating a perfect

combat behaviour will not be our main priority (which would be the case in

the Deathmatch mode), combat is still very important in CTF and the combat

strength greatly affects the individual’s and consequently the team’s performance

and results.

3.5 Communication

Communication between players is not necessary, not even in a team-based game

mode like CTF. Actually, using communication might result in worse performance

in some cases [18] than when not communicating.

On the other hand, its effective usage may improve a team’s performance sig-

nificantly. Our bots will communicate a number of different things, mostly those

which human players would inform each other about as well. The communicated

information include the following:

• flag locations;

• positions of visible enemies;

• position of the bot itself;

• information on items’ availability;

• role swapping (the concept of roles is introduced in the next section 3.6).

As a result, any bot should at any time know positions of all of his teammates,

know what items have been recently picked up and know the locations of enemies

and both flags if recently visible. All this information should help the bot make

better decisions if used properly.

In certain cases, however, not all the information has to be necessarily useful.

For example, when a dropped flag finds itself close to the bot, the bot does not

need to take positions of recently picked-up items into account to conclude that

he needs to rush to the flag.

In fact, there is a big difference between the ways humans and our bots com-

municate. Typically, when a human player needs to know a specific piece of

20

information, he simply asks his teammates whether they happen to possess it.

Which is quite unlike how our bots communicate — they simply send messages

any time a specific event occurs, regardless of whether the recipients will need

or use the information any time soon. The communication only occurs in one

direction; there is no question and an answer, the messages are just one-way

notifications.

3.6 Team strategy and roles

The three behaviour modules described above correspond to actions of individu-

als. But what about co-operation and differentiation inside the team? Human

players surely do differ from each other and they do have dissimilar playstyles,

which are all needed for a complex, universal and complete team performance.

How to make our individual bots play not in the completely same way as the

others and form a good team whose members would complement each other?

The answer to this question is by dividing the team members into certain

groups with different requirements and different priorities. We will call these

assignments roles. As commonly seen in game strategy guides [7] or observed in

professional e-sports matches (as a matter of fact, real-life sports are no excep-

tion), players in every game specialize in specific roles that require specific skills

and are different from other roles in that particular sport or game.

We will utilize this approach by assigning three different roles to our bots.

The three roles are Attacker, Defender and Roamer. Each of the roles will have

different objectives and priorities and as a result, our team’s performance as well

as its believability should be on significantly higher level than when not using

roles. Roles are further described in section 4.2.

21

4. CTF team implementation

In this chapter, we will outline our chosen CTF strategy and its implementation.

We will describe how Pogamut bots are updated, introduce the different roles and

their priorities and how each of the main behaviour modules were specified. For

complete information about the implementation, see the source code and most

importantly the resulting yaPOSH plan.

The final strategy has been created with the help of the Garvelous’ CTF

guide [7], match replays from the UT2004 international ClanBase Nations Cup

2011, V. Tuma’s bachelor thesis [18] and of course, personal experience. The

strategy has been tested, modified and improved iteratively while focusing on the

team CTF strategy rather than combat behaviour of individual bots.

4.1 Bot update cycle

Pogamut bots are updated periodically (rather than continuously), approximately

every 250 milliseconds, i.e. four times a second. During one update cycle, the

method logic() is called, executing the bot’s behaviour. When using yaPOSH,

which is our case, logic() is replaced by plan evaluation and in addition, methods

logicBeforePlan() and logicAfterPlan() are called during the update cycle

just before and just after the plan evaluation.

This allows us to use yaPOSH in addition to plain Java instead of as its re-

placement. By parallel evaluation, we mean sequential evaluation in one update

cycle, i.e. command execution in logicBeforePlan(), in the yaPOSH plan and

in logicAfterPlan() during one cycle. The three methods are called one imme-

diately after the other and the time discrepancy between these is so small that it

is not noticeable in the game environment. Thus, ”parallel” evaluation is in fact

possible but only with the help of Java methods surrounding the plan evaluation.

Pogamut also features custom event listeners that provide information about

the game state. Event listeners are methods that are called when and only when

a specific event occurs, meaning they are called asynchronously to the update

cycle.

Every event listener is bound to a certain event class representing a change

of either bot’s inner state or the game environment. In our case, the events are

specific to UT2004 and CTF and we use such event listeners as botKilled(),

targetReached() or itemPickedUp().

22

4.2 Roles

Our bots will use different roles, just as human players would when playing CTF.

Roles define priorities and main goals of an individual and the whole CTF team

strategy is essentially determined by the individual roles and their distribution.

Roles also allow us to decompose the desired behaviour even further, making

its development considerably easier and even more user-friendly and comprehens-

ible.

There are three basic roles, Attacker, Defender and Roamer, that differ mainly

in terms of flag priorities and consequently, map movement and navigation.

The roles are not rigidly tied to specific agents and their assignments can

change during the course of a match for several reasons (see section 4.2.4).

Next we will briefly describe priorities and characteristics of all the roles.

For complete information about their logic implementation, refer to the easily

comprehensible resulting yaPOSH plan whose textual representation can be found

on page 52. However, it is best viewed in the Shed editor (page 59).

4.2.1 Attacker

Attacker’s main priority is to get the enemy flag and eventually capture it.

Before heading to the enemy base, Attacker arms up to be able to fight his way

all the way to the enemy base. When carrying the enemy flag, Attacker chooses

the shortest path to his base and performs defensive or speed combos when he

has enough adrenaline (see section 4.3.2 for information about adrenaline and

combos).

When there are more Attackers on a team and one of them is carrying the

enemy flag, the other Attackers follow and protect him on his way to the base.

When the team is close to scoring, the other Attackers stop following the flag

carry and go for the enemy flag instead.

Attackers also try to get their own team’s dropped flag when they are closest

to it, helping with the defence. When any of Attacker’s teammates are closer to

the flag than he is, he tries to get the enemy flag instead.

4.2.2 Defender

Defender defends his flag and his flag-base and if the flag is taken or dropped, he

chases the enemy flag carry (EFC) and tries to return the flag back to base.

Upon spawning, Defender picks items near his base and then finds a defending

point to defend the flag. We have experimented with various algorithms for find-

ing a good defending point, but in the end the best (and more importantly, most

23

universal) results were obtained by simply staying on top of the flag once having

enough items. This is mainly because there are more paths to the flag in all maps

and it is not possible to guard all of them with one bot. In addition, Defender

cannot afford to stay behind and chase the EFC, since Pogamut bots cannot use

Translocators1, which makes the chasing very hard and nearly impossible.

When the flag is taken, Defender either chases the EFC when visible, or runs

straight to the enemy base if not visible. He performs offensive combos that

increase his damage output when chasing the EFC.

When the flag is dropped, Defender goes to its last known location or to the

enemy base if the enemy flag is there and the location of our flag is unknown (or

visible with the flag not being there). Quite often, Defender gets to the enemy

base sooner than the EFC and runs away with the enemy flag, preventing the

enemy team from scoring.

4.2.3 Roamer

Roamer is a bit different from both Attacker and Defender — his goal is to control

the middle grounds and often the key points of the map, since when navigating

to the other team’s base, one must inevitably pass through this territory. To

identify the key points as well as other regions of the map correctly, we use map

division (see section 4.3.3).

Roamer guards the middle and takes control of the items and power-ups there,

which are important items that significantly boost a player’s defence or offence

capabilities temporarily. Consequently, Roamer should be able to take down or

at least significantly hurt all enemies trying to get to his base, making Defender’s

task much easier. Roamer can also weaken the enemy Defenders and consequently

help his Attackers.

Although flags are not Roamer’s main priorities, when there is a flag nearby,

he helps his team by either chasing the enemy flag carry, protecting his flag carry

or picking up dropped flags. Since Roamer should often find himself near the

centre of the map, he is often in a good position to aid his teammates.

When Roamer successfully takes control of important power-ups and is high

on health as well, he tries to get the enemy flag when in base.

As opposed to Attackers and Defenders, it is not necessary to have any

Roamers on a team, but having one can improve the team’s performance quite

substantially, especially on maps with choke points near their centre. It is im-

portant to realize that this role is not suitable for every CTF map. The less

different paths there are between the bases, the more effective is Roamer going

1Translocator is a weapon that allows the player to teleport around the map.

24

to be.

4.2.4 Role distribution and switching

The optimal role distribution, i.e. the ratio of the roles to each other, is of course

dependant on the map and on the enemy. We wanted our bots to be universal

instead of optimized for a specific map or a specific enemy.

Through a number of experiments, we concluded that the best role ratio is

3 Attackers : 1 Defender : 1 Roamer. We will use this distribution ratio by

default, since it is the most robust and universal of those that were tested and

most importantly, can be used in any situation and on any map and still yield

good results.

Nevertheless, our CTF team does not use completely rigid role distribution

and the bots may switch roles in certain situations. Our bots can switch roles

with a teammate as well as change roles without having the original role replaced

by a teammate, resulting in a change of the role ratio and consequently the global

team strategy.

Role switching occurs when a Defender or a Roamer picks up the enemy flag.

In fact, holding and capturing the enemy flag is not even defined for Defender or

Roamer and consequently, they change their role to Attacker and have a nearby

teammate switch to their former role. When both flags are in their bases, bots

that have previously switched roles return to their original roles. This step would

not be necessary (in effect, it does not change a whole lot, since all bots can fulfil

all roles equally well) but this is what human players would do as well — when

needed, they switch their roles momentarily, but return back to original roles

when possible.

Role changing (without replacements of the original roles) can occur when the

end of the match is near (near is defined by a constant time value) and the team is

winning or losing by some defined constant score value. When winning, Roamers

switch to Defenders but Attackers do not, since especially in CTF, where your

enemy cannot score when you possess their flag, the best defence is a good offence.

When losing, however, everyone except the Defender switches to Attacker since,

well, the best offence is a good offence too.

4.3 Behaviour modules

Our goal is to implement the CTF team using mainly yaPOSH. However, as we

concluded in the previous chapter, it is unfortunately not possible to use yaPOSH

only because the yaPOSH planner does not support parallel evaluation of its plans

25

and we do need to execute the three behaviour modules simultaneously.

Thus, we will use yaPOSH for the crucial behaviour module, movement de-

cision making. The other two behaviour modules could be handled by yaPOSH

just as well and we chose navigation mainly because it is the most complex mod-

ule of the three and also since it greatly benefits from the decomposition that

yaPOSH brings.

We will handle the other behaviour types — combat and communication —

separately by using plain Java. As we have already mentioned, the behaviour

execution is not truly parallel, but rather semi-parallel, in the sense that during

every update of the bot, each module is executed exactly once.

4.3.1 Communication

The communication module consists of sending and receiving messages. Bots

communicate with the help of the TeamComm Pogamut module that enables us to

define our own message classes with serialized Java objects and send them using

a TeamComm server. The server also uses channels, meaning that we can specify

the recipient or recipients of the message.

Our bots send these messages:

• During every update cycle, they send their own location to all teammates.

• If carrying the flag, they send its location to all teammates.

• When seeing a dropped flag or a flag held by enemy, they send its location

to all teammates.

• Upon seeing an enemy, they send his location to all teammates.

• Upon picking up an item that disappears temporarily, they send the item

information to all teammates.

• When switching roles and in need of a substitute player for the original role,

they send the role switch request to a specific teammate.

Communication significantly affects and improves navigation because it provides

teammates with additional information that is used for movement target selec-

tion. For example, our bots do not navigate to items that have been recently

picked up by a teammate because they know the item will not be there yet. More

importantly, bots send messages about flags and are able to recover them or help

with their capture very quickly.

26

Sending messages

Messages are sent in the logicBeforePlan() method before the combat mod-

ule is executed and obviously before the plan is evaluated. This is to provide

the information to teammates as soon as possible, preferably before the plan is

evaluated.

Receiving messages

Messages are received asynchronously with the help of message event listeners and

every bot is executed in a different thread. As a consequence, there is no guarantee

that a message sent in logicBeforePlan() will be received and processed before

the bot’s plan evaluation.

4.3.2 Combat

Since the combat module does not interfere with navigation target selection, it is

rather simple. Its main tasks are to identify visible enemy targets, pick a target

to shoot and choose a weapon to shoot with.

Target selection

Target selection is based on flag status and bots will prioritize the EFC if there is

one. When there is not a visible EFC, bots will try to hit the closest enemy, since

the closer an enemy is, the bigger the chance of hitting him gets. Most weapons

are also more effective in closer range.

Weapon selection

Choosing a weapon is a very important task as it has a great impact on bot’s per-

formance and consequently, on the performance of the whole team. In Pogamut,

weapon selection is done quite easily thanks to its weaponPreferences module.

Using this module, one can specify different weapon preferences (priorities) for

different ranges (distances to target). For example, in close range, weapons with

lower precision requirements and higher area of effect damage are preferred over

weapons similar to the sniper rifle. We have implemented weapon preferences

for 5 different ranges (for details, see method setWeaponPreferences(). When

actually shooting, one only has to call the shoot() method with the weapon pref-

erences as an argument and Pogamut takes care of automatic weapon selection.

Not only do different weapons have different uses and optimal distances to

the target, but the optimal weapon selection is also largely dependant on the

game difficulty setting. The higher the difficulty setting is, the better the slower,

27

single-target and high-damage weapons tend to perform. On the other hand,

weapons with larger area of effect and weapon spread are usually better on lower

difficulties, where the bots’ aim is not that precise. More information about how

the game difficulty affects the gameplay is in section 5.2.1.

Combat also includes dodging to nearby objectives — pickable items or flags,

to speed up their collection. This is the only way in which the combat module

affects movement. However, there is a drawback to this. Occasionally, the bot

might end up outside the navigation graph after dodging and that might slow his

navigation process temporarily.

Adrenaline and Combos

Adrenaline is an attribute (just like health or armour) that can be increased by

collecting adrenaline pills in the game environment. Adrenaline can then be used

for temporary power-ups — combos — getting consumed in the process.

Adrenaline is also gained on enemy kills and flag actions (recovery or capture).

Nevertheless, its collection is comparatively slow since each adrenaline pill only

yields 2 adrenaline points.

Adrenaline combos cost 100 adrenaline each. There are a total of six different

combos, of which the by far most useful are Speed (increases run speed tempor-

arily, useful for running away with the flag) and Booster (heals the bot over a

period of time). Our bots will use these two combos in appropriate situations as

well as the Berserk combo that increases the rate of fire temporarily (useful for

chasing down the enemy flag carry).

4.3.3 Movement decision making

Movement decision making is handled by a yaPOSH plan. The plan’s drive

collection has three choices, one for each role. In practice, there should be a

separate plan for each role, but since yaPOSH does not support multiple plans,

we have to have one plan with multiple choices, one for each role. The choices

themselves are competences with choices consisting of different flag states (in case

of Attacker and Defender) and miscellaneous senses (in case of Roamer, whose

main priorities are not flags).

To get an idea what the plan looks like and what it consists of, it is best

viewed in NetBeans with the yaPOSH plug-in (see page 59). The plan’s structure

is described in 2.2 and its textual representation can be found on page 52.

Pogamut’s navigation system in UT2004 is not ideal and does have some sig-

nificant flaws. As a part of movement logic specification, we tried to improve the

Pogamut navigation system by manual navigation graph changes for the tested

28

maps and by improving the stuck handling. We also added a tool called Map

division that divides the map into different regions.

Map division

Map division is an algorithm that divides the navigation graph of any UT2004

CTF map into three different regions. These regions can then be used by the

bots to improve their gameplay and their movement movement decision making.

Every navigation point is assigned to at least one map region based on its dis-

tance to both bases. The resulting map regions are ourBase, middle, enemyBase

and all, spanning the whole map.

The base regions contain those points that are close to the respective base.

Close means that the distance from the base to the point is at most 40% of the

distance between the two bases. The base region is used by Defender in order to

be close to his flag at all times.

The middle region contains points that are not too far away from both bases,

i.e. the distance between the points and the two bases is 60% of the distance

between the two bases or less. The middle part is used by Roamer to take control

of the important points that are on the way between both bases.

The resulting map division graphs for the maps we used in the experimental

matches can be seen in the Experiments chapter 5.3.

Altering Pogamut’s navigation system

Since Pogamut bots do not actually see the environment and all they use is the

navigation graph, they do get stuck relatively often, especially after being pushed

away from the graph itself. Being stuck means being unable to move and it is

most frequently caused by trying to get navigation back to it with an obstacle in

the bot’s way (which he obviously cannot see and instead tries to move through

it, resulting in him getting stuck in place).

Pogamut does have some methods for stuck detection which work very well

(in terms of the actual detection), but do not handle stuck bots properly. That

is why we implemented some basic stuck handling with the help of the built-in

stuck detectors.

Proper stuck handling is important especially for longer matches, where bots

cannot afford to be stuck in one place forever, which is what can happen quite

often if not properly handled. We added a simple stuck counter that respawns

the bot when stuck for too long and we also use the following method of stuck

protection.

Pogamut features the UT2004PathAutoFixer class that automatically alters

29

the navigation graph by removing edges that cause navigation problems reported

by Pogamut’s stuck detectors. We used and modified the UT2004PathAutoFixer

specifically for CTF, where it now detects missing paths to flag bases and respawn

navigation points and can reset the navigation graph appropriately.

We also manually tweaked the navigation graphs of some of the tested maps

by removing the edges that often caused the bots to stuck and by adding some

safe edges to compensate for their overall decrease. In addition, we implemented

a navigation enhancer that uses Pogamut’s TabooSet class to temporarily prevent

the bot from navigating to locations that have recently caused him to get stuck.

As a result, our bots should never get stuck indefinitely and their navigation

works without any problems even after 12 hours of continuous gameplay on a

single map.

30

5. Experiments

In this chapter, we will introduce the opponents of our bots for the experimental

matches, specify the exact match settings and introduce the maps the matches

will be played on.

5.1 Opponents

We would like to see how our resulting bots perform in comparison to the native

UT2004 bots and to the CTF team created by V. Tuma in his bachelor thesis [18].

The matches will be played by two teams, each of size 5.

5.1.1 Native bots

Native bots are the in-game bots created by the developers of UT2004. As we

mentioned earlier, our goal is to make a team that is better than native bot CTF

teams, which would require actually making our bots smarter than native bots,

since on higher difficulty levels, native bots do have some advantages over our

bots (see section 5.2.1).

5.1.2 V. Tuma’s bots

Bots by Vojtěch Tuma [18] are a part of his bachelor thesis, in which Tuma

studied the influence of communication on CTF bot teams and consequently

implemented several different teams with different properties and strategies. In

our experiments, we will use Tuma’s most successful CTF team, i.e. the team

without communication whose individuals are based on GladiatorBot from David

Holaň.

GladiatorBot is a very successful Deathmatch bot and a two-time winner of

Pogamut Cup1.

Tuma’s experiments showed that his best team was able to beat native bots

convincingly, not losing a single match. Consequently, we would like to find out

whether our bots will perform better against the native bots than against Tuma’s

bots.

1Pogamut Cup (http://www.pogamutcup.com/) is an annual competition of UT2004
Deathmatch bots organized by the Artifical Minds for Intelligent Systems group (http://
amis.mff.cuni.cz/).

31

http://www.pogamutcup.com/
http://amis.mff.cuni.cz/
http://amis.mff.cuni.cz/

5.2 Match settings

Our general approach is to use the standard CTF settings when possible. By

standard we mean the settings used in past UT2004 CTF competitive matches.

Complete match settings can be seen in section 5.2.8.

5.2.1 Difficulty level

The difficulty (or skill level) ranges from 0 to 7 and for Pogamut bots, this setting

only affects their aim accuracy. On the other hand, the native bots’ parameters

vary significantly more on different difficulty levels because even attributes like

field of view or movement speed depend on the difficulty level.

Native bots below level 5 are handicapped in some way (such as by having

lower movement speed) and when above level 5, they do have unfair advantages

(they can see through obstacles or have a 360◦ field of view, etc.). For detailed

overview, see the Unreal Engine documentation [19]. The lower the skill level is,

the easier it gets for our bots to compete against native bots.

Even for Pogamut bots, however, the difficulty level can affect their per-

formance significantly, since weapon selection and weapon effectiveness is greatly

influenced by aim accuracy. For these reasons, we will carry out our experiments

on different difficulty levels, ranging from 5 to 7 to identify and possibly eliminate

the impact of difficulty level on match results. Our bots were not optimized for

any specific difficulty level and their weapon selection should be balanced across

the skill range.

5.2.2 Weapons

All weapons are enabled and the Weapons stay option is enabled, meaning that

weapons do not disappear temporarily after being picked up. This setting is

standard for the CTF mode to allow for fast game-pace based on objectives

(flags) instead of on weapon collecting.

5.2.3 Match limits

We will use a standard Time limit of 20 minutes per match and we will not be

using a Score limit.

5.2.4 Team size

Both teams will have 5 players, which is a standard CTF team size. Luckily,

Pogamut is able to handle simultaneous execution of 10 different agents without

32

any problems.

5.2.5 Translocator

Since Pogamut bots can not use Translocator, Translocator is disabled for all

matches. Translocator’s unavailability will change the whole CTF game consid-

erably compared to competitive matches, since it is one of the main elements of

CTF gameplay when played by human players.

5.2.6 Mutators

Mutators are game effects that change environment settings or add other effects,

such as gravity, game speed or healing over time to the game. We will not use

any Mutators.

5.2.7 Friendly fire

The friendly fire multiplicative ratio (from 0.0 to 1.0) determines how much can

a player hurt his teammates. The 1.0 value would mean that one can damage

his teammates in the same way as his opponents, 0.5 would mean half the total

damage, and so on. We will use a value of zero, meaning that the bots cannot

damage their teammates at all. However, friendly fire does not affect the damage

the player can inflict to himself (one can always damage himself, for example by

shooting with area of effect weapons in extremely close range).

5.2.8 Settings overview

This is a summary of the exact game and server settings we will use. In all

matches, both bot teams will be using the same skill level setting (5, 6 or 7).

Table 5.1: Match settings overview

Team Size 5
Time Limit 20 (minutes)
Goal Score none
Bot Skill 5 to 7
Weapons stay ON
Friendly Fire Scale 0.0
Spawn Protection Time 2.0 (seconds)
Allow Weapon Throwing ON

33

5.3 Maps

In order to avoid map-specific bias, we will test the bots on three different maps.

We will use the maps that were used by V. Tuma to make sure his bots run

without any problems there. The three maps are CTF-Citadel, CTF-Geothermal

and CTF-Lostfaith and their description follows.

We also included a graph created using the Map division tool for each map.

Red and blue nodes belong to the respective team bases and green nodes are

the middle parts of given maps. Note that the graph is a 2D projection of a 3D

environment since we neglected the z-coordinate (the height dimension).

5.3.1 CTF-Citadel

Citadel is the smallest and most open of the three maps. The bases are towers

facing each other with three narrow bridges between them. This map is also a

bit asymmetrical, since the shortest paths between the two bases are different for

each side and lie on the opposite sides of the map.

Figure 5.1: CTF-Citadel’s navigation graph created with the Map division tool. Red:
red base, blue: blue base, green: middle grounds.

Citadel is the only selected map with noticeable differences in the height

34

dimension, meaning that the map division graph might be slightly misleading.

For example, the middle bridge is well above the level of flag bases and one cannot

get the enemy flag and run straight back home using this bridge (this is why its

centre does not belong to the middle parts according to Map division).

5.3.2 CTF-Geothermal

Geothermal is a closed map with a number of smaller rooms and tunnels. It is

nearly symmetrical and probably the most balanced map of the three. It contains

all the power-ups and weapons.

Figure 5.2: CTF-Geothermal’s navigation graph created with the Map division tool.

35

5.3.3 CTF-Lostfaith

Lostfaith is by far the largest of the three maps and it does have a characteristic

open-spaced middle region that cannot be circumvented when going from one

base to the other.

Figure 5.3: CTF-Lostfaith’s navigation graph created with the Map division tool.

The pace of the game is often much slower here and flags can be recovered

easily thanks to the key middle grounds.

Lostfaith is also the map whose navigation graph had to be altered the most

in order to prevent the bots from getting stuck. We also added some safe edges

to the navigation graph that are not present by default there.

5.4 Format

Our bots will play three matches with the specified settings against each opponent

on each difficulty, each map and each side. Since there are two opponents, three

selected difficulty levels three maps and two sides, our bots will play a total of

108 20-minute matches which is equal to 36 hours of gameplay.

If the results will be very close in any specific match configuration, we will run

further tests to determine their outcome with greater precision. We expect our

bots to be able to beat the native bots and to hopefully stand up to Tuma’s bots

as well. We also think that our bots will perform much better on lower difficulties

than the native bots, who do have some advantages on difficulties 6 and 7.

36

6. Results

This chapter presents the results of our experiments. We also offer an insight into

the course of the matches.

The results are written from our bots’ perspective, meaning that the score is

always represented as our bots’ score:enemy bots’ score and Team represents the

current side of our bots. Score is the total number of successful flag captures

throughout the match.

6.1 Native bots

6.1.1 CTF-Citadel

As one can see in the table in table 6.1, two surprising phenomena occurred in

matches against native bots on Citadel: firstly, our bots’ performance compared

to the performance of native bots was very similar throughout the three difficulties

and secondly, the Red side apparently has a significant advantage on Citadel.

Table 6.1: Results of matches against native bots on CTF-Citadel

Skill level
Team 5 6 7

Red
17 : 0 14 : 2 18 : 0
15 : 0 13 : 0 20 : 0
20 : 0 13 : 1 12 : 1

Blue
12 : 4 7 : 2 7 : 1
11 : 4 6 : 2 7 : 1
11 : 4 8 : 3 10 : 0

We expected our bots to do better on difficulty 5 than on difficulties 6 and

7, which was not really the case. That can be attributed to weapon selection,

since in long range (which is most often the case on this Citadel), our bots use

high-range and high-damage weapons similar to the sniper rifle, that are most

effective on high difficulties (6 and 7).

The Red side’s advantage probably stems from the fact that the map is asym-

metrical and the path from blue base to red base is much more covered than the

other one.

37

6.1.2 CTF-Geothermal

Table 6.2: Results of matches against native bots on CTF-Geothermal

Skill level
Team 5 6 7

Red
12 : 2 10 : 3 8 : 4
10 : 2 10 : 2 6 : 1
10 : 3 9 : 2 6 : 1

Blue
13 : 2 7 : 1 7 : 0
12 : 1 8 : 1 3 : 1
10 : 2 8 : 1 6 : 0

Matches on Geothermal went as expected, meaning that our bots outper-

formed the native bots but the difference grew smaller as the difficulty got higher.

Nonetheless, our bots were still able to beat native bots quite handily and reliably.

6.1.3 CTF-Lostfaith

Table 6.3: Results of matches against native bots on CTF-Lostfaith

Skill level
Team 5 6 7

Red
6 : 2 4 : 1 3 : 0
6 : 1 3 : 0 3 : 0
7 : 1 3 : 1 3 : 0

Blue
7 : 2 3 : 0 1 : 0
6 : 1 3 : 0 2 : 0
5 : 1 4 : 1 5 : 1

In terms of results, Lostfaith was similar to Geothermal, except the game-pace

was much slower and there were fewer total flag captures.

Our Roamer bot also had a significant impact on the game by controlling the

very important armour power-up in the middle grounds.

38

6.2 Tuma’s bots

6.2.1 CTF-Citadel

Just like we observed in matches against the native bots, red side does appear to

have the upper hand on Citadel. Matches against Tuma’s bots also clearly show

that the lower the skill level of both teams is, the more the results are in favour

of our bots.

Table 6.4: Results of matches against Tuma’s bots on CTF-Citadel

Skill level
Team 5 6 7

Red
18 : 0 11 : 0 6 : 1
15 : 1 12 : 0 4 : 0
13 : 2 11 : 1 5 : 0

Blue
10 : 1 8 : 0 4 : 0
12 : 0 7 : 0 3 : 0
5 : 0 8 : 0 3 : 0

That is most likely a consequence of Tuma’s bots being optimized for skill

level 7, rather than our bots performing worse there, since the difference between

our and native bots was rather insignificant and can be mostly attributed to the

advantages that Tuma’s bots do not possess (such as the ability to see through

obstacles). It is worth mentioning that in his thesis, Tuma only ran the experi-

ments on difficulty level 7 [18].

The results on Citadel are quite regular except for the 5 : 0 match on difficulty

5, in which there was an about 10-minute long stalemate when both teams held

the opposing team’s flag in their respective bases. In fact, in the end neither team

was able to retrieve the respective flag and the game ended during the stalemate.

39

6.2.2 CTF-Geothermal

Once again, the different skill level scaling was quite apparent in matches on

Geothermal. Nevertheless, the game was only drawn once and our bots secured

victory in all the other matches.

Table 6.5: Results of matches against Tuma’s bots on CTF-Geothermal

Skill level
Team 5 6 7

Red
11 : 0 4 : 0 0 : 0
12 : 0 3 : 0 4 : 0
8 : 0 6 : 1 2 : 0

Blue
9 : 0 5 : 0 2 : 0
13 : 0 6 : 0 2 : 0
7 : 1 7 : 0 1 : 0

It seems that although our strategy only included one Defender, our defensive

capabilities were more than sufficient and in some cases, it might be possibly

worth focusing on offence even more.

6.2.3 CTF-Lostfaith

Since Lostfaith is the largest and consequently the slowest-paced chosen map, it

should not come as a surprise that the results were closest here. At any rate, our

bots managed to score in every game on levels 5 and 6 whereas Tuma’s bots only

achieved one capture.

Table 6.6: Results of matches against Tuma’s bots on CTF-Lostfaith

Skill level
Team 5 6 7

Red
2 : 0 2 : 0 0 : 0
3 : 0 6 : 0 0 : 0
2 : 0 2 : 0 0 : 0

Blue
2 : 0 1 : 0 0 : 0
3 : 0 2 : 0 0 : 0
2 : 1 1 : 0 0 : 0

The most intense and close matches were played on the highest difficulty,

where all matches ended in a 0 : 0 tie. This is mainly a consequence of the open

middle grounds, where bots on the highest skill level kill each other almost always

and almost instantly, resulting in very few of them getting to the enemy base.

Actually, there were a couple of flag steals, some of which even occurred

simultaneously, but in the end, none of them resulted in a flag capture. Why is

40

that? Well, when having the enemy flag, one still has to get back to his base and

once again cannot avoid the open-spaced middle grounds, in which one is an easy

target.

6.2.4 Additional matches

Since the results on CTF-Lostfaith were very close, we decided to run additional

tests to find out which bots perform better in longer matches (20 minutes is often

not enough for a team to decisively prove it is better).

We ran 8-hour matches against Tuma’s bots on both sides and all three diffi-

culties. Here are the results:

Table 6.7: Results of the additional 8-hour matches on CTF-Lostfaith

Skill level
Team 5 6 7
Red 58 : 3 51 : 4 14 : 6
Blue 48 : 6 32 : 4 7 : 3

The results were quite clear except for the highest difficulty, which we would

like to talk about further.

Given the length of the matches (which would be equal to 24 20-minute

matches), they were still extremely close with very few captures. In the long

run, nonetheless, our bots performed better.

The deciding factor might have well been the use of adrenaline (4.3.2). Whereas

our bots do make use of it, especially when trying to capture the flag, Tuma’s

bots did not appear to use adrenaline at all. Since adrenaline is collected slowly

and over time, its usage does not play that big of a role in the shorter 20-minute

matches. In the longer 8-hour matches, however, it had a significant impact and

probably decided their outcome.

6.3 Summary

Our bots performed very well against both native and Tuma’s bots, did not lose

a single match and won their vast majority. Overall, our bots performed better

than expected, proving that good communication and teamwork can beat strong

individual skills.

While Tuma’s bots are more proficient in one-on-one combat and weapon

selection, our bots managed to exploit their lack of communication and team-

based objective focus and score more points despite not fighting so effectively.

One of the main reasons that our bots beat Tuma’s bots was simply a higher

41

prioritization of flag actions: in some cases, our bot got to the flag before one of

Tuma’s bots despite the latter being closer to the flag at first.

We also find it interesting that in few cases, our bots had better results against

the bots by Tuma than against the native bots. That is a bit surprising, since

Tuma’s bots were able to beat the native bots in their every game [18]. Then

again, that was on a different difficulty level, which shows how important it is to

carry out multiple experiments under different conditions.

42

7. Discussion

In this chapter, we will describe the lessons learned during the whole course of

the CTF team development and discuss the limitations, use cases and possible

improvements of yaPOSH.

7.1 Decision making versus coding

Our goal was simply to create a CTF team using yaPOSH and BOD. At first, the

task seemed fairly complex, but with the help of decomposition that BOD uses,

designing the desired CTF behaviour was rather straightforward.

What helped us immensely was the separation of specification of decision

making from the actual low-level Java coding. This is often mentioned as be-

neficial for the decision making specification, where one can forget about coding

and fully focus on the AI itself. That is surely true, but we believe that it also

works the other way around — and that it helped us greatly with programming

the primitives library. Another advantage of this approach that the collection (or

library) of primitives is a standalone entity that can be extended independently,

is not necessarily restricted to a single project or a piece of software and can be

reused in the future.

Once we had a library of actions and senses which we essentially could think

of as little pieces of behaviour, we could fully focus on the actual logic implement-

ation and the decision making, done by simply connecting the already finished

pieces.

7.2 Importance of tool’s specifics

Then, however, we encountered a serious problem — that yaPOSH does not sup-

port parallel evaluation of its plans or execution of multiple plans at once. By

design, we wanted and needed to evaluate our behaviour modules (communica-

tion, combat and map movement) simultaneously. We solved (or more precisely,

avoided) this problem by specifying the two smaller and less-demanding modules

in plain Java and by using yaPOSH for map movement specification only.

We purposely first designed the behaviour and only then started to think how

it could be implemented with yaPOSH, in order to discover its boundaries and

limitations and in order to find out whether the tool is universal and usable in

all cases (which did not prove to be the case).

43

However, when the implementation is the actual goal (instead of evaluating

a tool’s suitability), one should definitely first assess the tool itself, identify its

properties and limitations and only then work on the problem, having the tool’s

characteristics in mind and building the solution utilizing the tool’s qualities.

7.3 Different techniques for different tasks

Developing different modules using different techniques (or tools) helped us realize

that each of the techniques is more suitable for different tasks. For example, the

combat module was comparatively small and simple and we had no problems

implementing it using plain Java. In fact, using yaPOSH for this task would

probably take more effort and would not be as efficient.

On the other hand, the complex movement module could not have been writ-

ten in plain Java as easily as it was done with yaPOSH. Our observation is that

the more complex a behaviour is, the more it benefits from BOD’s robust and

modular approach. As a consequence, we believe that yaPOSH is a suitable tool

for developing complex behaviour, but it is not necessarily that effective when

the desired behaviour is comparatively simple. Additionally, there is a fine line

between simple and complex that most likely varies individually and it cannot

be ultimately determined whether a given task or behaviour is simple or complex.

In reality, selecting a suitable tool for a given task is a problem of its own and

in order to choose the proper tool or technique, one must be aware of his own

capabilities and preferences as well as the task’s and potential tools’ character-

istics.

7.4 When to use yaPOSH

Although we cannot say when exactly yaPOSH is the best or the most suitable

tool, we can still identify in which cases one would benefit from using it. These

cases include:

• complex behaviour that is decomposable into smaller parts,

• behaviour that in the end consists of few simple actions,

• behaviour whose modules can or need to be parametrized,

• behaviour that should be transparent and easily comprehensible,

• behaviour that is or will be developed by multiple subjects,

44

• behaviour whose iterative development and improvement is required,

• behaviour whose logic specification and actual implementation is done by

different subjects,

• behaviour for which a library of primitives already exists,

• behaviour with human-like characteristics.

In our case, we used yaPOSH for a complex human-like behaviour module that

made great use of decomposition as introduced by BOD as well as parametrization

and iterative development.

Without any doubts, creating the movement logic specification using yaPOSH

was the right decision as it made its continuous development considerably easier

and more comfortable than would be the case when using plain Java.

7.5 When not to use yaPOSH

As we have already mentioned, yaPOSH is not the ultimate solution to behaviour

specification and in some cases, it’s usage might not suitable or helpful. These

include mainly:

• behaviour with only one layer of decisions,

• behaviour that cannot be decomposed into smaller parts,

• behaviour that requires parallel evaluation of its modules.

We specified our combat and communication modules in plain Java and it

proved effective. On the other hand, combat was not our main focus and poten-

tially, this module could be further improved and extended, in which case using

yaPOSH from the very beginning would have been the more appropriate choice.

Then again, the lack of support of multiple plans or parallel evaluation is what

prevented us from doing so.

7.6 Improvement suggestions

Some of the limitations of yaPOSH (such as that it is not suitable for specification

of very simple or flat-structured behaviours) stem from the fact that yaPOSH is

based on a robust and modular methodology, BOD. These limitations should be

considered its properties rather than its flaws and there is no point trying to

remove them.

45

However, there are certain disadvantages that come from its implementation

and are not enforced by design.

7.6.1 Parallelism

Most importantly, yaPOSH does not support parallel evaluation or evaluation of

multiple plans at once. At least one of these features is required for complete and

complex behaviour specification to be possible.

It would be easier to implement the latter, that is the ability to execute multiple

plans at once. However, that would require the behaviour developer to only

execute independent actions in each of the plans, so that they would not interrupt

each other.

This is by far the most significant issue of yaPOSH as the other we have

identified would not open up new possibilities or improve the planner’s expressive

power.

7.6.2 Plan variables

Another improvement could be achieved by introducing plan variables. At the

moment, the plan’s primitives and aggregates can only be parametrized by con-

stants directly present in the individual nodes.

An addition of plan-wide variables that would be valid for all the plan nodes

would make the behaviour development considerably cleaner and more trans-

parent. Consequently, one would be able to parametrize multiple aggregates or

primitives using only one easily accessible and modifiable constant.

7.6.3 Cosmetic changes

The other suggested changes are purely cosmetic and are related to the user

interface of the Shed editor:

• When debugging, display the bot’s name in the plan (currently one cannot

match the plans to the in-game agents when there are more of them).

• Allow selection of multiple nodes.

• Allow operations on the selected nodes (copy, cut, paste, delete).

• Allow repositioning of the nodes.

46

Although the importance of the suggestions above is nowhere near to the import-

ance of multiple plan support, they would make the behaviour specification much

more user-friendly and would perhaps increase the planner’s popularity.

7.7 Final thoughts

Even though we were only able to use yaPOSH for a part (albeit the most im-

portant part) of the final behaviour, the tool helped us immensely to shape a

solid CTF team with very good performance results.

We have observed that the more complex the desired behaviour is, the more

can its development benefit from the BOD methodology as well as from its real-

ization by the yaPOSH planner.

Ironically enough, the probably most significant disadvantage of yaPOSH is

that in some cases, it cannot be used for everything one might like to — that is

when the behaviour requires parallelism support.

Should this limitation be removed in the future and should perhaps some of

the suggested quality of life improvements be introduced, yaPOSH would become

a truly universal tool for complex behaviour specification.

47

8. Conclusion

We created a competitive CTF bot team for UT2004 whose development was

driven by Behaviour Oriented Design (BOD), a robust and modular technique

for behaviour specification. The CTF team was implemented using the Pogamut

platform mainly with the yaPOSH planner, a tool based on BOD.

Selection of the BOD approach made the behaviour development very con-

venient and led to effortless behaviour debugging, modification and extension,

which is what allowed us to create a competitive CTF team.

The resulting CTF team performed very well in game, beating all its oppon-

ents including the native UT2004 bots and the CTF bots by V. Tuma [18].

The yaPOSH planner we used for CTF team specification does have some

limitations, such as the inability to have or execute multiple plans at once and

the lack of parallelism support. In spite of that, we strongly believe that even in

its current state, yaPOSH is a suitable tool for complex behaviour specification

that can make AI development considerably easier and much more user-friendly.

We have identified and suggested a number of improvements whose future

implementation would extend the usability of yaPOSH even further, namely the

ability to have and execute multiple yaPOSH plans at once and the addition of

plan variables.

The modularity of the BOD approach and the high level of code readability

of the yaPOSH planner also make future improvements and extensions of our

resulting CTF team possible.

48

Bibliography

[1] Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S. J., Bryson,

J. J.: POSH Tools for Game Agent Development by Students and Non-

Programmers. In: Mehdi, Q., Mtenzi, F., Duggan, B. and McAtamney, H.,

eds. The Nineth International Computer Games Conference: AI, Mobile,

Educational and Serious Games, 2006-11-01, Dublin.

[2] Bryson, Joanna Joy: Behavior-Oriented Design of Modular Agent Intelli-

gence. In: Agent Technologies, Infrastructures, Tools, and Applications for

e-Services, R. Kowalszyk, J. P. Müller, H. Tianfield and R. Unland, eds.

Springer, 2003, pp. 61-76.

[3] Bryson, Joanna Joy: Intelligence by Design: Principles of Modularity and

Coordination for Engineering Complex Adaptive Agents. PhD thesis, MIT,

Department of EECS. Cambridge, MA, 2001.

[4] Champandard, Alex J.: Behavior Trees for Next-Gen Game AI [online].

Internet presentation. 2008 [cit. 2014-07-28].

http://aigamedev.com/insider/presentations/

behavior-trees

[5] Champandard, Alex J.: AI Game Development. Indianapolis, Ind: New

Riders, 2003.

[6] DeLoura, Mark A.: Game Programming Gems. Rockland, MA: Charles River

Media, 2000.

[7] Garvelous: Unreal Tournament 2004 Capture the Flag Strategy Guide [on-

line]. Guide. 2009 [cit. 2014-07-05].

http://www.oocities.org/garvelous2004/

[8] Gemrot, J., Brom., C., Bryson, J. J., B́ıda, M.: How to Compare Usability

of Techniques for the Specification of Virtual Agents’ Behavior? An Exper-

imental Pilot Study with Human Subjects. In: Proc. Agents for Educational

Games and Simulations - International Workshop, AEGS 2011, LNCS 7471,

Springer, 2012, pp. 38-62.

[9] Gemrot, J., Černý, M., Brom, C.: Why you should empirically evaluate your

AI tool: From SPOSH to yaPOSH. In: Proceedings of 6th International

Conference on Agents and Artificial Intelligence (ICAART 2014). 2014, pp.

461-468.

49

http://aigamedev.com/insider/presentations/behavior-trees
http://aigamedev.com/insider/presentations/behavior-trees
http://www.oocities.org/garvelous2004/

[10] Gemrot, J., Havĺıček, J., B́ıda, M., Kadlec, R., Brom, C.: yaPOSH Action

Selection. In: Intelligent Virtual Agents. LNCS 8108, Springer, 2013, pp.

458-459.

[11] Gemrot, J., Hlavka, Z., Brom, C.: Does high-level behavior specification tool

make production of virtual agent behaviors better? In: Proc. of Cognitive

Agents for Virtual Environments, LNCS 7764, Springer, Heidelberg, 2013,

pp. 167-183.

[12] Gemrot, J., Kadlec, R., B́ıda, M., Burkert, O., Ṕıbil, R., Havĺıček, J.,

Zemčák, L., Šimlovič, J., Vansa, R., Štolba, M., Plch, T., Brom C.: Po-

gamut 3 Can Assist Developers in Building AI (Not Only) for Their Video-

game Agents. In: Agents for Games and Simulations, LNCS 5920, Springer,

2009, pp. 1-15.

[13] Havĺıček, Jan: Tools for virtual agent behavior specification in POSH. Mas-

ter’s thesis, Charles University in Prague, Faculty of Mathematics and Phys-

ics. Prague, 2013.

[14] Lewinski, M., Demir, C., Anantharam, R.: Incorporating Team Strategies

in Bots for Capture the Flag mode of Unreal Tournament 2004. Utrecht

University, Faculty of Science, Department of Information and Computing

Sciences. 2009.

[15] Partington, S. J., Bryson, J. J.: The Behavior Oriented Design of an Unreal

Tournament Character. In: Proceedings of IVA’05, LNAI 3661, Springer,

2005.

[16] Pogamut 3 Lectures 2013/2014 [online]. Practice lessons website of the

Human-like Artificial Agents course. 2014 [cit. 2014-05-26].

http://pogamut.cuni.cz/pogamut-devel/doku.php?id=

human-like_artifical_agents_2013-14_summer_semester

[17] Rabin, Steve: AI Game Programming Wisdom. Hingham, MA: Charles River

Media, 2002.

[18] Tuma, Vojtěch: Role of communication in team-oriented FPS games. Bach-

elor’s thesis, Charles University in Prague, Faculty of Mathematics and Phys-

ics. Prague, 2013.

[19] Unreal Engine Wiki: Bot Skill Levels [online]. 2007 [cit. 2014-07-05].

http://wiki.beyondunreal.com/Legacy:Bot_Mind#Skill_

Levels

http://liandri.beyondunreal.com/Bot

50

http://pogamut.cuni.cz/pogamut-devel/doku.php?id=human-like_artifical_agents_2013-14_summer_semester
http://pogamut.cuni.cz/pogamut-devel/doku.php?id=human-like_artifical_agents_2013-14_summer_semester
http://wiki.beyondunreal.com/Legacy:Bot_Mind#Skill_Levels
http://wiki.beyondunreal.com/Legacy:Bot_Mind#Skill_Levels
http://liandri.beyondunreal.com/Bot

List of Abbreviations

• AI – Artificial Intelligence

• FPS – first-person shooter, computer games genre

• UT2004 – Unreal Tournament 2004, an FPS computer game

• CTF – Capture the Flag, a game mode for UT2004

• BOD – Behaviour Oriented Design, a methodology for AI specification

• POSH [planner] – Parallel-rooted, Ordered Slip-stack Hierarchical [planner]

51

Appendix A: Resulting yaPOSH

plan

The resulting yaPOSH plan is too large for its visual representation to fit in the

document and is best viewed in the Shed editor in NetBeans (see Attachment B

on page 59).

Here, we present the resulting yaPOSH plan in its text form. Refer to sec-

tion 2.2 for yaPOSH plan documentation, description of the plan elements and a

plan example with both visual and textual representations.

Syntax

yaPOSH uses a Lisp-like postfix notation and the elements of the aggregates are

listed by their priority — with higher priority first. The lower the priority gets,

the lower the respective element is.

For example the Drive collection (the root of the plan) is written as:

(DC life

(drives

((attack (trigger ((senses.CurrentRole "Attacker" ==))) attack))

((defend (trigger ((senses.CurrentRole "Defender" ==))) defend))

((roam (trigger ((senses.CurrentRole "Roamer" ==))) roam))

((nothing (trigger ((Succeed))) DoNothing))

)

)

Which in the more common infix notation with if-then rules would correspond

roughly to:

(DC life

(drives

if (senses.CurrentRole == "Attacker") trigger attack (choice attack)

else if (senses.CurrentRole == "Defender") trigger defend (choice defend)

else if (senses.CurrentRole == "Roamer") trigger roam (choice roam)

else trigger DoNothing (choice nothing)

)

)

Nevertheless, the main advantage of yaPOSH is the visualization of its plans in

NetBeans and the Shed editor. It is highly recommended to view the plan there,

as one can see the relations of the plan’s nodes and consequently understand its

meaning immediately.

Next, we include the textual representation of all the aggregates present in

our resulting yaPOSH plan in the yaPOSH notation.

52

Drive collection

(DC life

(drives

((attack (trigger ((senses.CurrentRole "Attacker" ==))) attack))

((defend (trigger ((senses.CurrentRole "Defender" ==))) defend))

((roam (trigger ((senses.CurrentRole "Roamer" ==))) roam))

((nothing (trigger ((Succeed))) DoNothing))

)

)

The main Attacker competence

(C attack

(elements

((enemyFlag-ourFlag_home-home (trigger

((senses.FlagState($team="enemy",$state="home") true ==)

(senses.FlagState($state="home",$team="our") true ==))) attack-home-home))

((home-dropped (trigger ((senses.FlagState($state="home",$team="enemy") true ==)

(senses.FlagState($state="dropped",$team="our") true ==)))

attack-home-dropped))

((home-taken (trigger ((senses.FlagState($state="home",$team="enemy") true ==)

(senses.FlagState($state="taken",$team="our") true ==))) attack-home-taken))

((dropped-home (trigger ((senses.FlagState($state="dropped",$team="enemy") true

==) (senses.FlagState($state="home",$team="our") true ==)))

actions.GoToFlag($team="enemy")))

((dropped-dropped (trigger ((senses.FlagState($state="dropped",$team="enemy")

true ==) (senses.FlagState($state="dropped",$team="our") true ==)))

attack-dropped-dropped))

((dropped-taken (trigger ((senses.FlagState($state="dropped",$team="enemy") true

==) (senses.FlagState($state="taken",$team="our") true ==)))

attack-dropped-taken))

((taken-home (trigger ((senses.FlagState($state="taken",$team="enemy") true ==)

(senses.FlagState($state="home",$team="our") true ==))) attack-taken-home))

((taken-dropped (trigger ((senses.FlagState($state="taken",$team="enemy") true

==) (senses.FlagState($state="dropped",$team="our") true ==)))

attack-taken-dropped))

((taken-taken (trigger ((senses.FlagState($state="taken",$team="enemy") true ==)

(senses.FlagState($state="taken",$team="our") true ==))) attack-taken-taken))

)

)

The main Defender competence

(C defend

(elements

((have_enemy_flag (trigger ((senses.MyBotHoldsEnemyFlag)))

actions.ChangeRole($role="attacker",$requestSwitch=true)))

((ourFlag-enemyFlag_home-home (trigger

((senses.FlagState($team="our",$state="home") true ==)

(senses.FlagState($state="home",$team="enemy") true ==))) defend-home-home))

((home-dropped (trigger ((senses.FlagState($state="home",$team="our") true ==)

(senses.FlagState($state="dropped",$team="enemy") true ==)))

defend-home-dropped))

((home-taken (trigger ((senses.FlagState($state="home",$team="our") true ==)

(senses.FlagState($state="taken",$team="enemy") true ==)))

defend-home-taken))

53

((dropped-home (trigger ((senses.FlagState($state="dropped",$team="our") true

==) (senses.FlagState($state="home",$team="enemy") true ==)))

defend-dropped-home))

((dropped-dropped (trigger ((senses.FlagState($state="dropped",$team="our") true

==) (senses.FlagState($state="dropped",$team="enemy") true ==)))

defend-dropped-dropped))

((dropped-taken (trigger ((senses.FlagState($state="dropped",$team="our") true

==) (senses.FlagState($state="taken",$team="enemy") true ==)))

defend-dropped-taken))

((taken-home (trigger ((senses.FlagState($state="taken",$team="our") true ==)

(senses.FlagState($state="home",$team="enemy") true ==))) retrieve_our_flag))

((taken-dropped (trigger ((senses.FlagState($state="taken",$team="our") true ==)

(senses.FlagState($state="dropped",$team="enemy") true ==)))

retrieve_our_flag))

((taken-taken (trigger ((senses.FlagState($state="taken",$team="our") true ==)

(senses.FlagState($state="taken",$team="enemy") true ==)))

defend-taken-taken))

)

)

The main Roamer competence

(C roam

(elements

((attack (trigger ((senses.CloseToLosing)))

actions.ChangeRole($role="attacker",$requestSwitch=false)))

((defend (trigger ((senses.CloseToWinning)))

actions.ChangeRole($role="defender",$requestSwitch=false)))

((have_enemy_flag (trigger ((senses.MyBotHoldsEnemyFlag)))

actions.ChangeRole($role="attacker",$requestSwitch=true)))

((chase_enemy_flag_carry (trigger ((senses.SeeFlagHolder($team="enemy") true

==))) chase_enemy_flag_carry))

((get_our_flag (trigger ((senses.FlagState($team="our",$state="home") true !=)

(senses.ClosestToFlag($team="our") true ==))) actions.GoToFlag($team="our")))

((get_enemy_flag_closest (trigger ((senses.ClosestToFlag($team="enemy") true

==))) actions.GoToFlag($team="enemy")))

((stalemate (trigger ((senses.FlagState($state="held",$team="our") true ==)

(senses.FlagState($state="held",$team="enemy") true ==)))

actions.GoToBase($team="enemy")))

((retrieve_our_flag (trigger ((senses.FlagState($state="home",$team="our") true

!=) (senses.FlagLocationKnown($team="our") true ==)))

actions.GoToFlag($team="our")))

((attack_when_armed_up (trigger ((senses.FlagState($state="home",$team="enemy")

true ==) (senses.Health 100 >=) (senses.Armor 100 >=)))

actions.GoToBase($team="enemy")))

((roam pick_items))

)

)

Competences

Attacker’s competences

(C attack-home-home

(elements

54

((heal_up (trigger ((senses.Health 75 <)))

actions.PickItems($category="health",$part="any")))

((get_ready (trigger ((senses.ExtraWeaponsNumber 2 <)))

actions.PickItems($category="weapon",$part="any")))

((assault_base assault_enemy_base))

)

)

(C attack-home-dropped

(elements

((return_our_flag (trigger ((senses.ClosestToFlag($team="our") true ==)))

actions.GoToFlag($team="our")))

((assault_base assault_enemy_base))

)

)

(C attack-home-taken

(elements

((chase_enemy_flag_carry (trigger ((senses.SeeFlagHolder($team="enemy") true

==))) actions.FollowPlayer))

((assault_base assault_enemy_base))

)

)

(C attack-dropped-dropped

(elements

((return_our_flag (trigger ((senses.ClosestToFlag($team="our") true ==)))

actions.GoToFlag($team="our")))

((get_enemy_flag actions.GoToFlag($team="enemy")))

)

)

(C attack-dropped-taken

(elements

((get_enemy_flag (trigger ((senses.ClosestToFlag($team="enemy") true ==)))

actions.GoToFlag($team="enemy")))

((chase_enemy_flag_carry (trigger ((senses.SeeFlagHolder($team="enemy") true

==))) actions.FollowPlayer))

((get_enemy_flag_anyway actions.GoToFlag($team="enemy")))

)

)

(C attack-taken-home

(elements

((capture_enemy_flag (trigger ((senses.MyBotHoldsEnemyFlag))) capture_fast))

((attack (trigger ((senses.CloseToScoring))) assault_enemy_base))

((assist_our_flag_carry assist_our_flag_carry))

)

)

(C attack-taken-dropped

(elements

((get_our_flag (trigger ((senses.ClosestToFlag($team="our") true ==)))

actions.GoToFlag($team="our")))

((capture (trigger ((senses.MyBotHoldsEnemyFlag))) capture_heal))

((assist_our_flag_carry assist_our_flag_carry))

)

)

55

(C attack-taken-taken

(elements

((capture (trigger ((senses.MyBotHoldsEnemyFlag))) capture_heal))

((chase_enemy_flag_carry (trigger ((senses.SeeFlagHolder($team="enemy") true

==))) actions.FollowPlayer))

((assist_our_flag_carry assist_our_flag_carry))

)

)

Defender’s competences

(C defend-home-home

(elements

((heal_up (trigger ((senses.Health 75 <)))

actions.PickItems($category="health",$part="our")))

((get_ready (trigger ((senses.ExtraWeaponsNumber 3 <)))

actions.PickItems($category="weapons",$part="our")))

((defend_base actions.DefendBase))

)

)

(C defend-home-dropped

(elements

((get_enemy_flag (trigger ((senses.FlagVisible($team="enemy") true ==)))

actions.GoToFlag($team="enemy")))

((go_to_enemy_flag (trigger ((senses.ClosestToFlag($team="enemy") true ==)))

actions.GoToFlag($team="enemy")))

((defend_base actions.DefendBase))

)

)

(C defend-home-taken

(elements

((defend_base actions.DefendBase))

)

)

(C defend-dropped-home

(elements

((get_our_flag (trigger ((senses.FlagLocationKnown($team="our") true ==)))

actions.GoToFlag($team="our")))

((assault_enemy_base actions.GoToBase($team="enemy")))

)

)

(C defend-dropped-dropped

(elements

((get_our_flag (trigger ((senses.FlagVisible($team="our") true ==)))

actions.GoToFlag($team="our")))

((get_enemy_flag (trigger ((senses.ClosestToFlag($team="enemy") true ==)))

actions.GoToFlag($team="enemy")))

((retrieve_our_flag (trigger ((senses.FlagLocationKnown($team="our") true ==)))

actions.GoToFlag($team="our")))

((find_enemy_flag (trigger ((senses.FlagLocationKnown($team="enemy") true ==)))

actions.GoToFlag($team="enemy")))

((assault_base actions.GoToBase($team="enemy")))

)

)

56

(C defend-dropped-taken

(elements

((get_our_flag (trigger ((senses.FlagLocationKnown($team="our") true ==)))

actions.GoToFlag($team="our")))

((chase_enemy (trigger ((senses.SeePlayer($team="enemy") true ==)))

actions.FollowPlayer))

((assault_base actions.GoToBase($team="enemy")))

)

)

(C defend-taken-taken

(elements

((chase_enemy_flag_carry (trigger ((senses.SeeFlagHolder($team="enemy") true

==))) actions.FollowPlayer))

((find_our_flag (trigger ((senses.FlagLocationKnown($team="our") true ==)))

actions.GoToBase($team="enemy")))

((assault_base actions.GoToBase($team="enemy")))

)

)

General competences

(C assault_enemy_base

(elements

((go_to_base actions.GoToBase($team="enemy")))

)

)

(C assist_our_flag_carry

(elements

((follow_our_flag_holder (trigger ((senses.SeeFlagHolder($team="our") true ==)))

actions.FollowPlayer))

((go_to_enemy_flag actions.GoToFlag($team="enemy")))

)

)

(C retrieve_our_flag

(elements

((chase_enemy_flag_carry (trigger ((senses.SeeFlagHolder($team="enemy") true

==))) chase_enemy_flag_carry))

((get_enemy_flag (trigger ((senses.FlagVisible($team="enemy") true ==)))

actions.GoToFlag($team="enemy")))

((find_our_flag (trigger ((senses.FlagLocationKnown($team="our") true ==)))

actions.GoToBase($team="enemy")))

((assault_base actions.GoToBase($team="enemy")))

)

)

(C capture_fast

(elements

((adrenalin (trigger ((senses.Adrenaline 100 >=)))

actions.AdrenalineCombo($type="defensive")))

((capture actions.GoToBase($team="our")))

)

)

(C capture_heal

(elements

57

((adrenalin (trigger ((senses.Adrenaline 100 >=)))

actions.AdrenalineCombo($type="defensive")))

((capture actions.GoToBase($team="our")))

)

)

(C chase_enemy_flag_carry

(elements

((adrenalin (trigger ((senses.Adrenaline 100 >=)))

actions.AdrenalineCombo($type="berserk")))

((chase actions.FollowPlayer))

)

)

(C pick_items

(elements

((get_powerups (trigger ((senses.CanGetPowerup($part="middle") true ==)))

actions.PickItems($category="powerup",$part="middle")))

((get_weapons (trigger ((senses.ExtraWeaponsNumber 3 <)))

actions.PickItems($category="weapon",$part="middle")))

((get_health (trigger ((senses.Health 75 <)))

actions.PickItems($category="health",$part="middle")))

((roam actions.GoToMapPart($part="middle")))

)

)

58

Appendix B: CD contents

The attached CD contains:

• Thesis.pdf – this thesis.

• /netbeans/ – NetBeans 7.4 installation package.

• /pogamut/ – Pogamut 3.6.1 installation package.

• /src/ – Source code of the resulting CTF bot team, its executable .jar

files and software documentation.

59

Appendix C: User guide

In this attachment, we will describe how our CTF team can be installed, run and

modified.

Installation

1. Install NetBeans 7.4 (/netbeans/ folder on the CD).

2. Install Unreal Tournament 20041.

3. Install Pogamut 3.6.1 (/pogamut/ folder).

Starting the server

1. Run UT2004. Select Host Game, GameBots CTF Game, specify map (the

tested maps were CTF-Citadel, CTF-Geothermal and CTF-Lostfaith), and

specify Game Rules (the rules we used are described in table 5.1).

The Bot Skill setting can be set from 0 (Novice) to 7 (Godlike) and will

only affect the native bots.

2. Click on Listen to start the server.

3. When in the game, press Escape and select Spectate to spectate the game.

Only after starting the server can any bots be run.

Running our bots

Our bots can be launched by running their compiled .jar file:

/src/CTFBot/target/CTFBot-3.6.1.one-jar.jar. By default, their

skill level is 7, team size is 5 and their side is red.

To launch the .jar file, use command java -jar CTFBot-3.6.1.one-jar.jar

in the /target/ folder.

The bots can be also run by opening the project folder in NetBeans (/src/CTFBot)

and by pressing the F6 key or selecting Run Project.

For additional information about the Pogamut platform and basic tutorials,

refer to the Pogamut lectures website [16].

1As UT2004 is a commercial application, it cannot be provided with the thesis. UT2004 can
be bought for example at
http://store.steampowered.com/app/13230/ or
http://www.gog.com/game/unreal_tournament_2004_ece.

60

http://store.steampowered.com/app/13230/
http://www.gog.com/game/unreal_tournament_2004_ece

Modifying our bots

In order to modify our bots’ parameters, open the project in NetBeans (/src/CTFBot)

and open the CTFBotLogic.java class file.

Modify the following parameters (all these parameters only affect our bots

and not the native bots):

• SKILL_LEVEL - skill level of our bots, 0 to 7 (default is 7).

• TEAM_SIZE - number of bots in our team, recommended and default value

is 5.

• START_TWO_TEAMS - whether our bots should play against another team

of our bots. True for two teams, false for one team when wanting to play

against other (native) bots.

• TEAM - whether our bots should be playing as the red or the blue team. Pos-

sible values: 0 and 1 or AgentInfo.TEAM_RED and AgentInfo.TEAM_BLUE.

When modified, press the F6 key or select Run Project to run the modified

bots.

Running native bots

The native bots are most comfortably run by opening the in-game console which

is done by pressing the ’‘’ or ’;’ key above the Tab key.

Then, one can launch n native bots by typing ADDBOTS n and pressing Enter.

To remove all the bots, write KILLBOTS into the console.

Skill level of the native bots is determined by the server game settings.

61

	Introduction
	Unreal Tournament 2004
	Capture the Flag
	Pogamut
	yaPOSH and Behaviour Oriented Design
	Goal of the thesis
	Structure of the thesis

	yaPOSH and Behaviour Oriented Design
	Behaviour Oriented Design
	yaPOSH plan
	Primitives
	Aggregates
	Plan example

	Comparison to Java
	Code readability
	Parallelism and Expressive power

	Behaviour specification
	Desired behaviour
	Behaviour decomposition
	Movement decision making
	Navigation in Pogamut

	Combat
	Communication
	Team strategy and roles

	CTF team implementation
	Bot update cycle
	Roles
	Attacker
	Defender
	Roamer
	Role distribution and switching

	Behaviour modules
	Communication
	Combat
	Movement decision making

	Experiments
	Opponents
	Native bots
	V. Tuma's bots

	Match settings
	Difficulty level
	Weapons
	Match limits
	Team size
	Translocator
	Mutators
	Friendly fire
	Settings overview

	Maps
	CTF-Citadel
	CTF-Geothermal
	CTF-Lostfaith

	Format

	Results
	Native bots
	CTF-Citadel
	CTF-Geothermal
	CTF-Lostfaith

	Tuma's bots
	CTF-Citadel
	CTF-Geothermal
	CTF-Lostfaith
	Additional matches

	Summary

	Discussion
	Decision making versus coding
	Importance of tool's specifics
	Different techniques for different tasks
	When to use yaPOSH
	When not to use yaPOSH
	Improvement suggestions
	Parallelism
	Plan variables
	Cosmetic changes

	Final thoughts

	Conclusion
	Bibliography
	List of Abbreviations
	Appendix A: Resulting yaPOSH plan
	Syntax
	Drive collection
	The main Attacker competence
	The main Defender competence
	The main Roamer competence
	Competences
	Attacker's competences
	Defender's competences
	General competences

	Appendix B: CD contents
	Appendix C: User guide
	Installation
	Starting the server
	Running our bots
	Modifying our bots
	Running native bots

