
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Karel Král

Viditelnostńı grafy
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Abstrakt: V předložené práci se zabýváme viditelnostńımi grafy, se zaměřeńım
na domněnku ,,velká př́ımka či velká klika.“ Pro danou množinu bod̊u P v rovině
řekneme, že se dva body vid́ı, právě když otevřená úsečka mezi nimi neobsahuje
žádný bod z P . Vrcholy viditelnostńıho grafu jsou body z P a dva body jsou spoje-
ny hranou, právě když na sebe vid́ı. Kára a spol. [35] vyslovili domněnku, že každá
dost velká konečná množina bod̊u obsahuje buď ℓ bod̊u na jedné př́ımce nebo jej́ı
viditelnostńı graf má klikovost aspoň k. V práci zobecňujeme domněnku na širš́ı
tř́ıdu graf̊u a t́ım poskytujeme alternativńı d̊ukaz pro k = ℓ = 4. Dále shrneme
dosavadńı souvisej́ıćı poznatky. Ześıĺıme pozorováńı o výskytu Hamiltonovy
kružnice ve viditelnostńıch grafech. Charakterizujeme asymptotické chováńı hra-
nové barevnosti viditelnostńıch graf̊u. Ukážeme, že pro daná n, ℓ, k lze poč́ıtačově
rozhodnout, zda p̊uvodńı domněnka plat́ı. Zároveň provedeme poč́ıtačové exper-
imenty jak pro zobecněnou, tak pro p̊uvodńı domněnku.
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Abstract: In the thesis we study visibility graphs focusing on the Big Line Big
Clique conjecture. For a given finite point set P in real plane we say that two
points see each other if and only if the open line segment between them contains no
point from P . Points from P are vertices of the visibility graph, and two points are
connected by an edge if and only if they see each other. Kára et al. [35] conjectured
that for every finite big enough point set there are at least ℓ collinear points, or
the clique number of its visibility graph is at least k. In the thesis we generalize
the conjecture, and thus provide an alternative proof for k = ℓ = 4. We also
review related known results. We strengthen an observation about occurrence of
a Hamiltonian cycle in visibility graphs. We characterize the asymptotic behavior
of the edge chromatic number of visibility graphs. We show that for given n, ℓ, k
the original conjecture is decidable by a computer. We also provide computer
experiments both for the generalized and for the original conjecture.

Keywords: visibility graph, plane, point set



Contents

Introduction 3

1 Point Sets in the Plane 5

1.1 Lines Intersecting Many Points . . . . . . . . . . . . . . . . . . . 5
1.1.1 Crossing Number Inequality . . . . . . . . . . . . . . . . . 5
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Introduction

Visibility graphs of various kinds are studied both in computational geometry and
computer science. Vertices of a visibility graph correspond to some geometric
objects, and two vertices are connected by an edge if they “see” each other.
For instance there are various classes of visibility graphs of polygons. Visibility
graphs of a set of points and some obstacles are used for example in robot motion
planning to find Euclidean shortest paths. We do not investigate these classes
here. For more examples and references see Develin et al. [15] for theoretical
point of view or de Berg et al. [7] for applications in path planning.

We consider a special class of visibility graphs called point visibility graphs
where the set of vertices corresponds to a set of points P in real plane, and
two vertices are connected by an edge if no other point from P lies on the open
segment between them. We often use the word point (resp. edge) instead of point
(resp. line segment).

We concentrate on the area of results that are related to the Big Line Big
Clique conjecture of Kára et al. [35]. They conjectured that for every k, ℓ there is
an integer n such that every finite visibility graph with at least n vertices contains
a Kk, or it contains ℓ collinear points.

Outline

Chapter 1 serves as a brief introduction to some selected parts of discrete geom-
etry and introduces some results about point line incidences with and without
bounded number of collinear points. We begin with the famous Szemerédi-Trotter
theorem. We review the problem of how many lines can meet a point set P at
exactly ℓ points if no ℓ+ 1 points in the set are collinear. This problem is called
Sylvester’s Orchard problem for ℓ = 3. We also mention bounds on the number
of points in general position in sets with no ℓ collinear points. Reader familiar
with these classical results may feel free to skip this chapter.

We study some properties of point visibility graphs in Chapter 2. Two easy
but useful techniques – minimizing the distance and line sweeping – are discussed
in the first part. Using line sweeping we show pancyclicity of visibility graphs.
We make an observation about the infinite case. Line sweeping and minimizing
distance inspired the generalization of the Big Line Big Clique conjecture dis-
cussed in Chapter 3. Later we review some results about chromatic number of
point visibility graphs. Characterization of two and three colorable graphs by
Kára et al. [35]. Using a result of Beck [6] we are able to characterize asymptotic
behavior of edge chromatic number of visibility graphs.

Chapter 3 mentions the history and the state of art knowledge about the Big
Line Big Clique conjecture. We also define much wider class of graphs and discuss
the conjecture for those providing alternative proofs of small cases. Using SAT
solvers we provide computer experiments suggesting better bound for k = ℓ = 4.
We disprove the generalized conjecture for k = 6 and ℓ = 4.

The notion of blocking and being blocked by another point set is reviewed in
Chapter 4. Such results are vital because they capture the nature of visibility
graphs. We present bounds of size of point sets needed to block.
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The main result of Chapter 5 is that for given parameters n, ℓ, k the Big
Line Big Clique conjecture is decidable by a computer. We briefly review the
background of existential theory of reals and computer experiments.

At the end of the thesis we mention possible ways of further research together
with a brief summary of our results.
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1. Point Sets in the Plane

In this chapter we review some known results dealing with point sets in real or
projective plane and lines spanned by them. We use results and definitions from
this chapter throughout the thesis. Let us call an incidence the point – line
pair where the point lies on the line. In the first part we present the powerful
framework of counting point-line incidences. Many problems in combinatorial
geometry can be elegantly solved using this theory.

In the second section we remind the famous Sylvester’s orchard problem which
asks what is the maximum number of collinear point triples when no four-tuple
is collinear. Sylvester [56] proves that this number is quadratic in the number of
points. The question may be generalized asking how many collinear k-tuples can
be in a point sets with no collinear r-tuple. It is still an open problem whether
there is a point set with quadratic number of collinear k-tuples without a collinear
k+1-tuple. Solymosi and Stojaković [53] give almost quadratic construction with
n2−ε collinear k-tuples without collinear k + 1-tuple.

Finally we recall bounds by Payne and Wood [44] of the maximal size of an
independent subset of a point set with bounded number of collinear points.

1.1 Lines Intersecting Many Points

First of all we remind the Crossing lemma, bounding the minimum number of
crossings in a drawing of a graph. As shown by Székely [57] this provides easy
and elegant proofs of lots of bounds involving incidences or distance problems.

We remind the famous Crossing lemma and the Szemerédi–Trotter theorem,
bounding the number of point line incidences, and its modification bounding the
number of lines containing many points. We use these results later when recalling
the proof of Beck’s theorem implying a linear lover bound on edge chromatic
number of visibility graph.

1.1.1 Crossing Number Inequality

Let us consider an undirected graph G = (V,E). A drawing of G is placing each
of its vertices to a different point of real plane R2 and for every edge uv placing a
simple curve connecting representations of its vertices. Furthermore we allow only
such drawings that no curve passes through a vertex other than its endpoints.

For a particular drawing D of the graph G we define cr(D) to be the number
of pairs of edges which are crossing. When three edges cross at one point we take
this as three individual crossings. On the other hand for an edge pair crossing in
more points we count only one crossing.

Definition. Let G be an undirected simple graph. Let the crossing number,
denoted by cr(G), be the minimum of cr(D) over all drawings D of the graph G.

Let us mention that by definition a graph is planar if and only if its crossing
number is zero.
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Lemma 1 (Crossing lemma, Leighton [37]). Let G = (V,E) be an undirected
graph with at least |E| ≥ 4|V | edges then

cr(G) ≥ |E|3
64|V |2

holds.

The Crossing lemma was conjectured by Erdős and Guy [24] [30] and proved
by Leighton [37] and then independently by Ajtai, Chvátal, Newborn, and Sze-
merédi [3].

Proof. The graph G is planar if and only if cr(G) = 0. For a finite, connected,
plane graph with f faces Euler’s formula |V | − |E|+ f = 2 holds.

By double-counting we get 3f ≤ 2|E| as there are two faces touching each edge
and every edge is surrounded by at least three edges. Plugging this inequality to
Euler’s formula gives us |E| < 3|V |.

For use of probabilistic method we want

cr(G) > |E| − 3|V |.

For a contradiction suppose that this does not hold, we take drawing ofG realizing
cr(G) ≤ |E| − 3|V |. Now for every crossing we remove arbitrarily one of the
crossing edges. The new graph is plane and has at least |E|− (|E|−3|V |) = 3|V |
edges which is a contradiction.

We take G′ = (V ′, E ′) to be a random vertex induced subgraph where we
take each vertex independently randomly with probability p to be chosen later.
We know that cr(G′) > |E ′| − 3|V ′|. By linearity of expectation the expected
value of the right hand side is p2|E| − 3p|V |. For the left hand side we have
p4 cr(G) ≥ cr(G′) because every crossing stays with probability p4. There might
be a better drawing of the graph chosen by chance, but that is the right side
inequality, so

p4 cr(G) ≥ p2|E| − 3p|V |
holds. Now we choose probability 0 ≤ p = 4|V |

|E| ≤ 1 and we get the desired bound.

1.1.2 Szemerédi–Trotter Theorem

Let us recall that an incidence is a point line pair where the point p lies on the
line l, we write p ∈ l. We would like to bound the maximal number of incidences
between a set of n points and a set of m lines.

Definition. Let P be a set of points in R2, and let L be a set of lines in R2. We
define I(P, L) = {(p, l) ∈ P × L | p ∈ l} to be the set of incidences between P
and L.

Theorem 2 (Szemerédi–Trotter [57]). Let P be a finite set of points in R2, and
let L be a finite set of lines in R2. We have |I(P, L)| = O((|P ||L|)2/3+ |P |+ |L|).
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Proof. Without loss of generality we may assume that every line in L meets a
point in P . Given a set of points P and a set of lines L we define the graph
G = (P,E) and its drawing in such a way that P is the vertex set, and two
vertices u, v ∈ P are connected by an edge, drawn as a straight line segment, uv
if and only if these are consecutive on a line l ∈ L.

There are no more than
(|L|

2

)

≤ |L|2 line crossings, so we have cr(G) ≤ |L|2.
Number of point line incidences along one line is one more than the number
of edges along that line. Number of incidences is then |I(P, L)| ≤ |E| + |L|.
The Crossing lemma gives us either 4|P | ≥ |I(P, L)| − |L| or |L|2 ≥ cr(G) ≥
(|I(P,L)|−|L|)3

|P |2 which concludes the bound.

To see that the bound in the Szemerédi–Trotter theorem is tight up to a
multiplicative constant we use simple construction mentioned by Dvir [17]. Let
us denote [n] the set 1, 2, . . . , n. We take the line set L to be the set of lines
of the form {(x, y) ∈ R2 | y = ax + b} for a ∈ [M ], b ∈ [M2] and the point
set P = {(x, y) ∈ R2 | x ∈ [M ], y ∈ [2M2]}. Sizes of both of these sets are
of the order M3. Notice that each line l ∈ L meets P in at least M points as
y = ax+ b ≤ 2M2 for every a, x ∈ [M ] and b ∈ [M2].

This theorem also gives us an interesting corollary showing that not many
lines may contain many points.

Corollary 3 (Szemerédi and Trotter [57]). Let 2 ≤ k ≤ √
n, P be a finite set of

points, and let L be a finite set of lines both in R2. The number of lines containing

at least k lines is bounded by |Lk| = O
(

|P |2
k3

+ |P |
k

)

.

Proof. Let us consider the same graph G as in the proof of the Szemerédi–Trotter
theorem, but only with lines containing at least k points in P . The graph G has

at least (k−1)|Lk| edges. By the Crossing lemma we have either |Lk|2 > |E|3
64|V |2 ≥

(|Lk|(k−1))3

64|P |2 or |Lk|(k − 1) < 4|P | which gives us the desired bound.

This bound is asymptotically tight for instance for points of the
√
n×√

n grid
as shown by Beck [6].

1.2 Orchard Problem

As opposite to the corollary from the previous section when investigating the Big
Line Big Clique Problem we are interested in point sets with no more than ℓ
collinear points. First problem of this kind is called Sylvester’s Orchard Prob-
lem [56] asking for the function bounding the maximum number of collinear triples
in a set of n points with no four of them collinear. Figure 1.1 of Burr et al. [10]
shows an example with nine points no four of them collinear.

Let us note that we often use l for a straight line and ℓ for the maximum
number of collinear points throughout the thesis.

Definition (Solymosi, Stojaković [53]). For a finite set of points P in R2 and
k ≥ 2 let tk(P ) be the number of lines meeting P in exactly k points. Let Tr(P )

7



Figure 1.1: Nine points forming ten collinear triples without four collinear points.

be the number of lines meeting P in at least r points. For r > k and n we define

t
(r)
k (n) := max

|P |=n
Tr(P )=0

tk(P ).

Theorem 4 (Sylvester [56]). t
(4)
3 (n) > 1

8
n2 +O(n).

Here we present the simplified version of Sylvester’s proof by Stone as shown
in Graham [28].

Proof. There is no straight line meeting the cubic curve y = x3 in at least four
points. Let us denote the point P (x) := (x, x3). The idea of this proof is that
points P (x1), P (x2), P (x3) are collinear if and only if x1 + x2 + x3 = 0.

If n = 2m+1 we set the point set to P (−m), P (−m+1), . . . , P (0), . . . , P (m)
these points form at least m2/2 collinear triples. For n even we omit the point

P (−m). This gives t
(4)
3 (n) ≥ n2/8.

Burr, Grünbaum and Sloane [10] give a construction based on Weierstrass’s
elliptic functions with n2/6 − n/2 + 1 collinear triples. Füredi and Palásti give
a construction using hypocycloids with same number of collinear triples. Green
and Tao [29] prove that the bound of Burr, Grünbaum, and Sloane is actually
tight. This also implies that Figure 1.1 shows an optimal arrangement.

Given this we cannot successfully use Turán’s theorem as these constructions
have too many edges missing.

1.3 Orchard Problem for Higher ℓ

Now we want a point set P of the size n without ℓ+ 1 collinear points but with
as many collinear ℓ-tuples as possible. Erdős [53] asked this question with ℓ = 4:
Is it possible that a planar point set contains many collinear four-tuples, but it
contains no five points on a line? Erdős also conjectured that t

(r)
k (n) = o(n2) later

and it was one of his favorite problems in geometry, see Erdős [20] or Solymosi,
Stojaković [53] for more references. It is still not known if this conjecture holds,
but if so it is tight.

Theorem 5 (Solymosi, Stojaković [53]). For k ≥ 4 even and ε > 0 there is a

positive integer n0 such that for n > n0 we have t
(k+1)
k (n) > n2−ε.

Proof. We are going to find lattice points on k/2 concentric high-dimensional
spheres such that there are a lot of lines through k of them. It is clear that no
line can intersect k/2 spheres in more than k points.
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For r > 0 and a positive integer d let us denote by Bd(r) and Sd(r) the closed
ball in Rd of radius r and the sphere in Rd of radius r respectively. For a set
S ⊆ Rd we denote the number of lattice points by N(S) := |S ∩ Zd|.

Walfisz [60] proves that for a large enough r0 there are

N(Bd(r0)) = (1 + o(1))V (Bd(r0))

= (1 + o(1))
πd/2

Γ((d+ 2)/2)
rd0

≥ c1(d)r
d

where c1(d) is a constant depending only on d.
For every lattice point in Bd(r0) the square of its distance from the origin is

at most r20. Since these squares are integers by pigeonhole principle we get that

there is a number r such that N(Sd(r)) ≥ N(Bd(r0))
r20

≥ c1(d)rd0
r20

= c1(d)r
d−2
0 .

There are
(

N(Sd(r))

2

)

≥
(

c1(d)r
d−2
0

2

)

≥ c2(d)r
2d−4
0

tuples of lattice point in Sd(r) where c2(d) is a constant dependent only on d. For
every two lattice points in Sd(r) their distance is smaller than 2r0 and the square
of it is an integer. By pigeonhole principle we have at least

c2(d)r
2d−4
0

4r2
≥ c2(d)r

2d−6
0

4

pairs of points with same distance ℓ.
Let p1, q1 ∈ Zd ∩ Sd(r) be two points at distance d(p1, q1) = ℓ we define

points p2, . . . , pk/2 on the line p1q1 such that the distance d(p1, pi) = i · ℓ and
d(q1, pi) = (i + 1)ℓ. We define points q2, . . . , qk/2 in a similar way such that the
distance d(q1, qi) = i · ℓ and d(p1, qi) = (i+ 1)ℓ.

All points pi, qi ∈ Zd due to definition and the fact that p1, q1 ∈ Zd. Defining
ri :=

√

r2 + i(i− 1)ℓ2 we see that pi, qi ∈ Sd(ri). The ri defined this way are the
same for different p1, q1 and p′1, q

′
1.

We let P := Zd ∩
(

∪k/2
i=1Sd(ri)

)

and n := |P |. By definition P ⊂ Bd(rk/2), so

we have n ≤ N(Bd(rk/2)) = (1 + o(1))V (Bd(rk/2)) = c1(d)r
d
k/2. Having ℓ ≤ 2r we

bound n ≤ c1(d)(
√

r2 + k/2(k/2− 1)4r2)d ≤ c1(d)(k
2 + 1)d/2rd ≤ c3(d, k)r

d ≤
c3(d, k)r

d
0 where c(d, k) is a constant depending only on d, k.

The point set P is a subset of the union of k/2 spheres, so there are no k + 1
collinear points. Every pair p1, q1 ∈ Zd ∩Sd(r) with distance d(p1, q1) = ℓ defines
one line through k points thus we have

tk(P ) ≥ c2(d)

4
r2d−6
0 ≥ c2(d)

4c3(d, k)
2d−6

d

n
2d−6

d ≥ c4(d, k)n
2d−6

d ,

where c4(d, k) is a constant depending only on d, k.
To obtain a two-dimensional set we project P to an arbitrary two-dimensional

plane in Rd along vector v choosing v such that no two points project to the same
point, and every three non-collinear points are mapped to three non-collinear
points.
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The projection at the end of the previous proof can be used to see that the
Big Line Big Clique problem is not more interesting in more dimensions.

Solymosi and Stojaković [53] also prove a theorem similar to Theorem 5 saying:
for every integer k ≥ 4, there is a positive integer n0 such that for n > n0 we

have tk+1
k (n) > n2− 2 log(4k+9)

log n where log means base two logarithm. We omitted it
because the idea is the same, but the proof requires more precise calculations.

When k is odd another sphere can be used in that way that only one of the k
tuple lies on it. We omit this proof as the idea is almost the same. The complete
proof for k odd can be found in Solymosi Stojaković [53].

1.4 General Position Subsets

We say that a point set in the plane is in general position if it contains no three
collinear points. It is easy to see that the vertex set of any clique subgraph of a
point visibility graph forms a set in general position. But it is not necessarily so
the other way — there might be a set of points in general position having another
point on the line-segment between the two points of that set. Nevertheless the
knowledge of this result appears to be interesting for us.

Erdős [21] asked for bounds of how big is the largest general position subset
of a finite point set where at most ℓ of them are collinear. For every n point
set P in the plane with no more than ℓ ≥ 3 collinear points we want to say
that it contains at least f(n, ℓ) points in general position. We distinguish two
cases: the case ℓ ≤ O(

√
n) and the case ℓ ≤ o(

√
n) both of them give different

estimates of f(n, ℓ).

1.4.1 At Most ℓ ≤ O(
√
n) Collinear Points

When the maximal number of collinear points is ℓ ≤ O(
√
n) we can find at least

f(n, ℓ) ≥ Ω(
√

n
ln ℓ

) points in general position. To prove this we need a useful
lemma bounding the number of collinear triples in a point set with no ℓ + 1
collinear points.

Lemma 6 (Payne, Wood [44]). Let P be a set of n points in the plane with
at most ℓ of them collinear. The number of collinear triples in P is at most
c(n2 lnn + ℓ2n) for a constant c.

Proof. Let si denote the number of lines meeting P in exactly i points. By the
Corollary 3 we have

∑

j≥i sj ≤ c(n
2

i3
+ n

i
). The number of collinear triples is

ℓ
∑

i=2

(

i

3

)

si ≤
ℓ
∑

i=2

i2
ℓ
∑

j=i

sj ≤
ℓ
∑

i=2

i2c

(

n2

i3
+

n

i

)

≤ c(n2 lnn+ ℓ2n).

In order to apply Lemma 6 it is useful to define a 3-uniform hypergraph with
vertex set P and collinear triples of vertices as edges.
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Lemma 7 (Spencer [54]). Let H be an r-uniform hypergraph with n vertices and
m edges. If m < n/r then α(H) > n/2. If m ≥ n/r then

α(H) >
r − 1

rr/(r−1)

n

(m/n)1/(r−1)
.

We now show the promised result of Payne and Wood [44].

Theorem 8 (Payne, Wood [44]). If ℓ ≤ O(
√
n) then f(n, ℓ) ≥ Ω(

√

n
ln ℓ

).

Proof. Let us denote a 3-uniform hypergraph H(P ) = (P,E) where u, v, w ∈ E
for u, v, w ∈ P if and only if points u, v, w are collinear. By Lemma 6 H(P )
satisfy |E|/|P | ≤ cn lnn for a constant c. Now we use Lemma 7 with r = 3. If
|E| < |P |/3 than α(H(P )) > n/2. Otherwise

α(H(P )) >
2n

33/2(m/n)1/2
≥ 2n

33/2
√
cn ln ℓ

=
2

3
√
3c

√

n

ln ℓ
.

1.4.2 At Most ℓ ≤ o(
√
n) Collinear Points

Assuming there are slightly asymptotically less collinear points we can show even
better estimates of the number of points in general position.

Lemma 9 (Sudakov [55]). Let H be a 3-uniform hypergraph on n vertices with m
edges. Let t ≥

√

m/n and suppose there exists ε > 0 such that the number of edges

containing any fixed pair of vertices of H is at most t1−ε then α(H) ≥ Ωε(
n
t

√
ln t).

Theorem 10 (Payne, Wood [44]). Fix constants ε > 0 and d > 0. Let P be a
point set with at most ℓ collinear points where 3 ≤ ℓ ≤ (dn)(1−ε)/2 where n := |P |
then P contains a set of Ω(

√

n logℓ n) points in general position.

Proof. Let m = |E(H(P ))| by Lemma 6 for a constant c ≥ 1

m ≤ cℓ2n+ cn2 ln ℓ < cdn2 + cn2 ln ℓ ≤ (d+ 1)cn2 ln ℓ.

Let t :=
√

(d+ 1)cn ln ℓ so t ≥
√

m/n. Each pair of vertices of H is in less
than ℓ edges and

ℓ ≤ (dn)(1−ε)/2 < ((d+ 1)cn ln ℓ)(1−ε)/2 = t1−ε.

Assumptions of Lemma 9 are satisfied, so H contains an independent set of
size Ω(n

t

√
ln t). Moreover,

n

t

√
ln t =

√

n

(d+ 1)c ln ℓ

√

ln
√

(d+ 1)cn ln ℓ

≥
√

n

(d+ 1)c ln ℓ

√

ln ℓ

2

=

√

1

2(d+ 1)c

√

n lnn

ln ℓ

= Ω(
√

n logℓ n).

Thus P contains a subset of Ω(
√

n logℓ n) points in general position.
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2. Some Properties of Point

Visibility Graphs

For a point set P ⊆ R2 in real plane we say that two distinct points p, q ∈ P are
visible (or see each other) with respect to P if P ∩ pq = {p, q} where pq is the
closed line segment between points p, q. The point visibility graph ν(P ) of P has
the vertex set P and two distinct points are connected by an edge if and only if
they are visible with respect to P .

One example of a point visibility graph is shown by Figure 2.1. As we do not
consider other than point visibility graphs we may use just visibility graph. We
call an edge the line segment between two visible points.

Figure 2.1: An illustration of a visibility graph with four vertices and five edges.

We review some general results about point visibility graphs that might be
useful when investigating the Big Line Big Clique conjecture. First we review
some observations where we can use minimality of distances and line sweeping
to prove them. We also strengthen an observation showing the existence of a
Hamiltonian cycle. Later we look at both vertex and edge chromatic number.

2.1 Geometric Properties Of Visibility Graphs

Using geometrical nature of visibility graphs we can easily deduce their diameter
and even prove that visibility graphs are pancyclic, i.e., contain cycles of all
lengths between three and the number of vertices.

More applications where minimality is necessary appear later in this thesis.
We do not include such applications in this section, but rather state and prove
them where used.

2.1.1 Minimizing the Distance

The fact that in a finite point set P there are two points p, q ∈ P with minimum
distance is often enough to prove interesting results. Moreover this is often nec-
essary and most theorems assume that the point set P is finite. Indeed this is
sound as there are often counterexamples with countably many points where no
two points with minimum distance exist.

Observation 11 (Kára et al. [35]). Let P ⊂ R2 be a finite point set. Then the
diameter of the visibility graph ν(P ) is











1 if P is in general position,

|P | − 1 if all points of P are collinear,

2 otherwise.
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p s q

r′

r

Figure 2.2: An example of minimizing distance.

Proof. Diameter of visibility graph is one by the definition of visibility graphs if
and only if P is in general position. When all points are collinear the visibility
graph is a path and has the diameter |P | − 1.

Consider a finite point set P not in general position and not all of them
collinear. There are two non-visible points p, q ∈ P . We choose r ∈ P such that
it does not lie on the line pq and the distance to it is minimized. Such r exists
because not all points are collinear and P is finite. There is no other r′ blocking
visibility of p and r or q and r as such r′ would be closer to the line pq as in
Figure 2.2.

The last proof actually says that if not all of finitely many points are collinear
then for every line l there is a point r ∈ P (r′ in Figure 2.2) which sees all points
on that line l.

A lemma by Ghosh and Roy [27] says that if not all of the points are collinear
then a breadth-first search from any point p has only three levels – the root r,
the points visible from r and the rest. This directly follows from the previous
observation. Moreover we can see that the second layer itself induces a connected
subgraph. This can be proved by taking points visible from r in an angular order
and observing that two consecutive points must see each other. Indeed points
r′, s, q in Figure 2.2 form a connected subgraph.

Payne et al. [45] investigated both vertex and edge connectivity of point vis-
ibility graphs. Let P be a finite point set not all of them collinear then every
minimum edge cut in the point visibility graph ν(P ) is the set of edges incident
to a vertex of minimum degree. When no ℓ points are collinear in a finite point
set P then the point visibility graph ν(P ) has vertex connectivity at least n−1

ℓ−1
.

For proofs of those theorems and some other related results see Payne et al. [45].
Now we proceed to an easy but useful observation by Ghosh and Roy [27]

which allows us to use lower bound on degree of a vertex without minimizing the
distance to a straight line.

Observation 12 (Ghosh and Roy [27]). Let P be a finite point set not all of
them collinear. Then for any straight line l all points not incident with l have
degree at least |P ∩ l|.

Proof. We take an arbitrary point r 6∈ l, and we assume that it does not see a
point p ∈ l. There must be a point r′ blocking visibility of r, p. We take the r′

closest to the point r. Now r sees a point p on the line l or the closest blocker
(Figure 2.2) thus it has at least |l ∩ P | neighbors.

13



2.1.2 Line Sweeping

Line Sweeping is a useful technique not just for geometric algorithms, but it can
be used to provide easy proofs as well. Ghosh et al. [27] prove that every finite
point visibility graph is either a path, or contains a Hamiltonian cycle. We use
sweeping to provide a different proof of a stronger result that every finite visibility
graph is either a path, or it is pancyclic. Actually we prove a bit stronger result
– a finite visibility graph is a path, or for every its edge e and every 3 ≤ k ≤ |P |
there is a Ck containing e and not intersecting itself. Typically there are many
such cycles.

Maybe most applications of line sweeping consider a finite set of points in
plane such that no two points have the same x coordinate. Then we ”sweep” by
line collinear to y axis, move it from −∞ to ∞ and do something with objects it
intersects. Algorithmically it is often enough to consider just lines {(xi, t) | t ∈ R}
where xi are sorted x coordinates of points.

When the given point set contains two points with same x coordinates we
rotate the whole set around the origin by an angle α. As the considered set is
finite and there are infinitely many angles α we can choose α arbitrarily small
such that points in the rotated set have distinct x coordinates.

In our proof we do not sweep as usually, but instead we sweep with a ray
(half-line) rotating around its initial point.

Observation 13. Let P be a finite point set such that not all points are collinear.
For every edge e of the visibility graph ν(P ) and every 3 ≤ k ≤ |P | there is a
cycle Ck containing e and not intersecting itself.

Proof. In the first part of this proof we show how to find a Hamiltonian cycle.
In the second part we generalize to shorter cycles. Finding a Hamiltonian cycle
is equivalent to finding an ordering of points in P such that no other point lies
between neither two consecutive ones nor between the first and the last one.

Let e be an edge of ν(P ), and let a, b ∈ P be corresponding endpoints. We
consider the ray ~r = {a+ t(b− a) | t ∈ [0,∞)}. Let Q := P ∩ ~r be ordered by
the distance from a, so we have q0 = a < q1 = b < . . . Points in Q precede all
other points ∀q ∈ Q, ∀p ∈ P \Q : q < p.

Rotating ~r around a we say that ~r meets point p with the angle α if we need
to rotate the ray ~r by α to the right to meet the point p. We say for p, q ∈ P \Q
that p < q if and only if ~r meets p with a strictly smaller angle than q, or meeting
angles are the same and q is closer to the point a.

It is easily seen that the defined total ordering of points in P defines a Hamil-
tonian cycle in ν(P ) which does not intersect itself.

The only thing left is to prove the existence of shorter cycles. We do this by
taking away points from P in a specific order. If there is a point w on the line
ab distinct from a, b we remove the point w that is farthest from a. If there is no
point on the line ab left we remove an arbitrary vertex of the convex hull of P
distinct from points a, b. We get a smaller point set with either just two points
a, b or with a point outside the line ab. No removed vertex of the convex hull
may block.

Here we also used minimality although it is not so obvious. At first sight this
observation seems possible to generalize to infinite sets. The visibility graph of the
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~rα

a b q2 q3

q4

q5

q6 q7

Figure 2.3: An eight point arrangement with the ordering and a C6.

rational lattice ν(Q2) is indeed empty. So we cannot expect infinite point visibility
graphs to have a Hamiltonian path. Strictly speaking the last observation still
holds for Q2 as we quantified that for every edge there is a cycle of length k.

On the other hand when we require that in an infinite point set no ℓ points
lie on one line there needs not to be a C3 as shown by Pór and Wood [48] with
ℓ = 4 (described in Theorem 40, in Section 3.3 of this thesis). When no ℓ points
are collinear there must be some cycles longer than ℓ.

Observation 14. Let P be an infinite point set with no ℓ of them collinear. For
every k ≥ 3 we have a Cc subgraph of ν(P ) where k ≤ c ≤ k + ℓ− 2.

Proof. A well known result in discrete geometry, the Erdős–Szekeres theorem,
states that for every k there is a minimum integer ES(k) such that all point sets
in general position contain a subset of k points in convex position. Abel et al. [1]
generalized the Erdős–Szekeres theorem for point sets with bounded collinearity.
Note that we do not need finite point sets as we can always pick a big enough
finite subset.

For k given we choose points in convex position p1, p2, . . . , pk in this order.
There might be at most ℓ− 2 points between pi and pi+1. When there are points
between pi and pi+1 we change pi+1 to be the point on the line segment pipi+1

which is the closest to pi. We get another point set in convex position. Repeating
this process we get a point set in convex position with no points between pi
and pi+1.

The only thing we do not control is the number of points between p1 and pk.
As there are no ℓ collinear points by the assumption we get a cycle Cc as subgraph
in the visibility graph ν(P ) where k ≤ c ≤ k + ℓ− 2.

2.2 Chromatic Number

For a graph G we say that a function c : V (G) → [q] is a proper vertex coloring
if c(u) 6= c(v) holds for every edge uv ∈ E(G). The vertex chromatic number of
a graph G denoted by χ(G) is the minimum q such that there is a proper vertex
coloring of G. Similarly for a graph G we say that a function c′ : E(G) → [q′]
is a proper edge coloring if c(e) 6= c(f) holds for every two incident edges e, f ∈
E(G), |e ∩ f | = 1. The edge chromatic number is the minimum number of colors
such that there is a proper edge coloring of G. Let us write χ′(G) for the edge
chromatic number.

The chromatic number is one of the most basic graph properties. We review
what is known about the vertex chromatic number of visibility graphs. Pfend-
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er [46] shows there are point visibility graphs with arbitrary vertex chromatic
number and with no K7 subgraph. We characterize the asymptotic behavior of
edge chromatic number at the end of this section.

2.2.1 Vertex Chromatic Number

Observation 15 (Kára et al. [35]). If P can be covered by k lines then the
chromatic number of its visibility graph is at most χ(ν(P )) ≤ 2k.

Proof. Points on each line induce a path in the visibility graph. Each point of P
lies on a covering line, so we choose for each point an arbitrary covering line on
which it lies. It now suffices to color points assigned to one line alternatively by
two colors and to use different colors for different lines.

We have already bounded the size of a maximal clique by twice the number
of lines to cover P . A simple observation of Kára et al. [35] is that if there is a
vertex p of degree d we can cover P by d lines passing through p. This follows
immediately by definition as p sees exactly d points and other points are blocked
by those.

Visibility Graphs of Chromatic Number Two

We present a characterization of Kára et al. [35] of point visibility graphs with
chromatic number two.

Theorem 16 (Kára et al. [35]). For the visibility graph ν(P ) of any finite point
set P the following are equivalent:

(a) chromatic number χ(ν(P )) ≤ 2,

(b) all points of P are collinear,

(c) ν(P ) does not contain K3.

Proof. Visibility graph of a collinear set of points is a path, and we can color it
by two colors thus (b) implies (a). It is trivial that (a) implies (c). It remains
to prove that (c) implies (b). Assume not all points lye on the same line. Let us
take three points u, v, w not collinear and such that the triangle uvw is of minimal
area. There is no point blocking visibility between them else we get new triangle
of smaller area, which is a contradiction. Points u, v, w induce K3 in visibility
graph thus the chromatic number is strictly greater than two.

Visibility Graphs of Chromatic Number Three

We use a special case of a theorem by Develin et al. [15] to see that a point
visibility graph is either plane, or contains a K4. To characterize point visibility
graphs with chromatic number three we first review a characterization of plane
visibility graphs by Eppstein [18]. Kára et al. [35] combine these results to a
complete characterization of point visibility graphs with chromatic number three.
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Lemma 17 (Develin et al. [15]). Let P be a finite point set. Assume that the
visibility graph ν(P ) contains two edges ab and uv that cross each other. Under
these assumptions points a, b are part of a K4.

Develin et al. [15] prove this for a wider class of visibility graphs, but this
special case is enough for us.

Proof. Let us take two points u, v such that the edge uv crosses the edge ab, and
u, v are the closest such points to the line ab. There are such uv by assumptions.

For a contradiction let us assume that the point a does not see the point u.
Then there is a point p closer to the line ab which blocks visibility of au. Moreover
the line segment pv crosses the line segment ab. By minimality p cannot see v,
so there must be another blocker q blocking pv (we choose the q closest to v).
We can see that the point q must be in the same half plane of the line ab as v
otherwise we would choose points qv instead of uv. But now instead of points
uv we can choose two points c, d from the line segment pq such that the edge cd
crosses the edge ab. Points cd are closer to the line ab than points uv – we have
a contradiction.

a b

u

v

p

q
c

d

Figure 2.4: The contradiction situation.

By symmetry every two points from {a, b, c, d} can see each other.

Eppstein [18] characterized those plane graphs where between each pair of
vertices there is a line segment consisting of one or more edges. Those graphs
are plane visibility graphs. Here we provide a proof of Ghosh and Roy [27] as it
contains less case analysis.

Lemma 18 (Ghosh, Roy [27]). Let P be a finite point set and l a line meeting P
at k ≥ 4 points. If the visibility graph ν(P ) is planar we have |P | ≤ k +

⌊

2k−5
k−3

⌋

.

Proof. We have at least k−1 edges along the line l. By Observation 12 we have at
least (|P |−k)k other edges. By Euler’s formula we have |E(H)| ≤ |V (H)|−6 for
every planar graph H . We have (k−1)+(|P |−k)k ≤ 3|P |−6 so (|P |−k) ≤ 2k−5

k−3
.

As |P | − k is integer we get the desired bound.

Corollary 19 (Ghosh, Roy [27]). Let P be a finite point set with a line l that
meets P in at least five points. There are six infinite families of such sets P with
planar point visibility graph ν(P ).
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Proof. By Lemma 18 we have that at most two points of P that are not incident
with the line l.

1. There is no point outside of the line l (see Figure 2.8 (d)).

2. There is only one point outside of the line l (see Figure 2.8 (b)).

3. There are two points outside of the line l both adjacent to each other and
all other points (see Figure 2.6).

4. There are two points outside of the line l not adjacent to each other but
adjacent to all other points (see Figure 2.8 (c)).

5. There are two points pi, pj outside of the line l adjacent to each other and
pj blocks visibility of pj to a point pk from the line (see Figure 2.5). Note
that this graph is planar but no visibility embedding of it is plane. Ghosh
and Roy [27] also distinguish two cases when pk is an endpoint of the line l.

. . .

Figure 2.5: Planar visibility graph family with no plane visibility embedding.

. . .

Figure 2.6: Planar visibility graph family with a K4 subgraph.

We need to deal with point visibility graphs with no five points collinear to
finish the characterization. Although it is possible we do not want to do case
analysis for big point sets. If there are four collinear points by Lemma 18 we
have at most seven vertices. With this and the next lemma we are left to deal
with at most eight vertices.

Lemma 20 (Ghosh, Roy [27]). Assume we have a finite point set P with no four
points collinear and with a planar visibility graph ν(P ) then |P | ≤ 8 holds.

Proof. Assume that P has at least five vertices. We have a line l through three
points of P otherwise we would have a K5 subgraph, and thus ν(P ) could not
be planar. Let us create the set P by adding vertices. We start with the three
points p1, p2, p3 ∈ l. We cannot add p4 and p5 on the line l, so each of them adds
at least three edges by Observation 12.

Adding the point pi adds at least
⌈

i−1
2

⌉

new edges because no four points are
collinear, thus pi sees at least that much other points. By assumption ν(P ) is
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planar, so by Euler’s formula we have 2+2 · 3+∑n
i=6

⌈

i−1
2

⌉

≤ 3n−6 which holds
for n ≤ 8.

In the previous proof we saw that if no four points are collinear the visibility
graph has minimal degree at least ⌈n−1

2
⌉. This is just a corollary of an observation

of Payne et al. [45], Ghosh and Roy [27]. For every point set P of size n with
no ℓ + 1 collinear points the minimal degree of a point visibility graph ν(P ) is
at least ⌈n−1

ℓ−1
⌉. The proof goes immediately by definition as every point sees at

least ⌈n−1
ℓ−1

⌉ others.
Case analysis of visibility graphs with at most eight vertices gives us special

cases given by Ghosh and Roy [27] (Figure 2.7 and Figure 2.8 (a)). Every case
in Figure 2.7 contains a K4.

(a) (b) (c)

(d)

Figure 2.7: Special cases of planar visibility graphs.

(a) . . .(b)

. . .(c)

. . .(d)

Figure 2.8: One special case and all infinite families of visibility graphs with
chromatic number at most three.

Theorem 21 (Kára et al. [35]). For a finite point set P the following are equiv-
alent:

(i) χ(ν(P )) ≤ 3,

(ii) P is one of the point sets in Figure 2.8,

(iii) ν(P ) has no K4 subgraph.
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Proof. By definition (i) implies (iii). Graphs in Figure 2.8 are easy to properly
color by three colors thus (ii) implies (i). We only need that (iii) implies (ii)
now. We saw all planar visibility graphs in Figures 2.5, 2.6, 2.7, and 2.8 and just
those in Figure 2.8 contain no four clique. On the other hand if a point visibility
graph is not plane, i.e., contains two crossing edges, we have a K4 subgraph by
Develin et al. [15] or its special case Lemma 17.

2.2.2 Chromatic versus Clique Number

Kára, Pór, and Wood [35] asked if the chromatic number of a visibility graph can
be bounded by a function of its clique number. In the previous subsection we saw
a characterization of visibility graphs with ω(ν(P )) ∈ {2, 3} where such bound
is easy. On the other hand Pfender [46] managed to construct visibility graphs
with arbitrarily large chromatic number and no K7 subgraph.

Lemma 22 (Pfender [46]). For M large enough there is a set of prime numbers
{pij | 1 ≤ i < j ≤ n} satisfying:

1. 2M < pij < 2M+1.

2. For 1 ≤ k ≤ n we define Pk = 2nk
∏k−1

i=1 pik
∏n

j=k+1 pkj where we choose
such nk ∈ Z that ⌊log2 Pk⌋ = nM + 2k. Then pkl is the only number in
{pij | 1 ≤ i < j ≤ n} dividing Pℓ − Pk for 1 ≤ k < ℓ ≤ n.

Proof. Finsler [25] proves there are more than 2M/(3(M + 1) ln 2) > 2n3 primes
between 2M and 2M+1. We pick pij in lexicographical order, i.e., in the order
p12, p13, p14, . . . , p23, . . . , p(n−1)n satisfying:

1. 2M < pij < 2M+1 is a prime,

2. no pij is chosen twice,

3. pij does not divide Pk − Pℓ for all 1 ≤ ℓ < k < i,

4. and when j = n no pkl divides Pi − Pr for {k, l} 6= {i, r}.

We are about to pick pij. The first case is j < n. We selected no more than
(

n
2

)

primes before and each Pk−Pℓ has at most n prime divisors greater than 2M .
Thus only

(

n
2

)

+ n
(

n
2

)

< n3 choices are taken, and we can pick pij satisfying all
conditions 1. – 4.

Second case is picking pin. We saw we can pick pin satisfying conditions 1. – 3.
Suppose for some {k, ℓ} 6= {i, r} that pkℓ divides Pi − Pr. By definition of Pi all
piℓ divide Pi, so if k = i we would have also that piℓ divides Pr too, and thus
r = ℓ gives a contradiction. We proceed similarly to prove ℓ 6= i.

We pick another p′in. If pkℓ divides P
′
i − Pr then pkℓ divides P

′
i − Pi = (p′in −

pin)Pi/pin, so pkℓ divides p
′
in−pin. But this leads to a contradiction as |p′in−pin| <

2M < pkℓ. We see that each pkℓ can block at most one choice of pij, so we can
always find pij satisfying all conditions 1. – 4.
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Theorem 23 (Pfender [46]). For every graph G there is a point set X ⊂ R2 such
that the subgraph of V(X ∪ Z2) induced by X is isomorphic to G.

Proof. We have nk > 0 as
∏k−1

i=1

∏n
j=k+1 pkj < 2(n−1)(M+1) < 2nM so Pk ∈ Z.

Let our set of points X = {xi | 1 ≤ i ≤ n} be defined as

xi =

(

2−nMPi, i

∏

k<j(Pj − Pk)
∏

kj∈E(G) pkj

)

.

We want this point set X to be in general position. For 1 ≤ i < ℓ ≤ n we
denote the slope of line through points xi, xℓ by

miℓ =
ℓ− i

Pℓ − Pi

2nM
∏

k<j(Pj − Pk)
∏

kj∈E(G) pkj
.

Having 2nM+2i+1 ≤ Pi+1 − Pi < 2nM+2i+3 it holds that mi(i+1) > m(i+1)(i+2) thus
miℓ > mik for all i < ℓ < k. Slopes of lines connecting points are distinct, so
there are no three collinear points in X .

We are left to prove that there is a lattice point between xi and xj if and
only if ij 6∈ E(G). As 22j ≤ 2−nMPj < 22j+1 for every j there is an s such that
2−nMPi < s < 2−nMPℓ < 22n+1. Let zsiℓ = (s, ysiℓ) be a point on the line segment
from xi to xℓ. We have

ysiℓ = i

∏

k<j(Pj − Pk)
∏

kj∈E(G) pkj
+ (s− 2−nMPi)miℓ =

= i

∏

k<j(Pj − Pk)
∏

kj∈E(G) pkj
+ s

ℓ− i

Pℓ − Pi

2nM
∏

k<j(Pj − Pk)
∏

kj∈E(G) pkj
+ Pi

ℓ− i

Pℓ − Pi

∏

k<j(Pj − Pk)
∏

kj∈E(G) pkj
.

Given that pkj divides Pj − Pk the first summand is an integer. Moreover piℓ
divides Pi, so the third summand is also an integer.

If iℓ 6∈ E(G) the also the second summand is an integer which means there is
a lattice point blocking visibility of xi and xℓ.

If iℓ ∈ E(G) we have piℓ > 2M > max {ℓ− i, s}, so piℓ divides neither s nor
ℓ − i. Obviously piℓ does not divide 2nM , and it divides no other Pj − Pk than
Pℓ − Pi leaving zsiℓ 6∈ Z2 for all s possible.

Proposition 24 (Kára et al. [35]). Chromatic number of the visibility graph of
integer lattice is χ(ν({(x, y) | x, y ∈ Z})) = 4.

It is easy to four color the square lattice. On the other hand there is a K4 in
the visibility graph ν ({0, 1} × {0, 1}).

Corollary 25 (Pfender [46]). For every k ∈ N there is a point set P ⊂ R2 such
that χ(ν(P )) ≥ k and ω(ν(P )) ≤ 6.

Proof. We use Theorem 23 with Mycielski graph [41] (χ(M) = k, ω(M) = 2).
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2.2.3 Edge Chromatic Number

Edge chromatic number behaves more predictably – it is either two or asymptot-
ically linear in the number of vertices.

Theorem 26 (Beck [6]). Let P ⊂ R2 be a finite point set, and let L be the set
of lines containing at least two points from P . There is either a line containing
Ω(n) points or |L| = Ω(n2).

Proof. We partition lines to sets Lj ⊆ L of lines containing at least 2j and less
than 2j+1 points from P (∀l ∈ Lj : 2j ≤ |l ∩ P | < 2j+1). Corollary 3 bounds

|Lj | ≤ O
(

|P |2
23j

+ |P |
2j

)

.

We want to say that there are not enough lines with C ≤ 2j ≤ |P |/C points
for a constant C. There are at most 22(j+1) pairs of points on each line in Lj.
Thus summing all pairs of points on all lines with C ≤ 2j ≤ |P |/C points for big
enough C gives us only |P |2/100 pairs instead of

(|P |
2

)

.
Either there is a line with at least |P |/C points, and we are done. Or there

are Ω(|P |2) pairs of points on lines containing at most C points each, and we
have |P |2/C2 lines.

Corollary 27. Let P be a finite point set not all of them on one line then there
is a vertex of at least linear degree in the visibility graph ν(P ).

Proof. By Beck’s theorem we have either a line with linearly many points or
quadratic number of edges. Let C be as in Beck’s theorem.

If there is a line l with at least |P |/C points by assumptions there is a point
p not on l, and by Observation 12 it has degree at least |P |/C which is linear.

If there are at least |P |2/C2 lines there must be a point incident with at least
linearly many of them.

The corollary tells us there are two possibilities – all points lie on the same
line, and we have edge chromatic number two χ′(ν(P )) = 2, or there is a vertex
of linear degree, and we have χ′(ν(P )) = Ω(|P |). On the other hand by Vizing’s
theorem [59] we have χ′(G) ≤ ∆(G) + 1.
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3. Big Line Big Clique

Conjecture

Conjecture 28 (Kára et al. [35]). For every k ≥ 2 and ℓ ≥ 2 there is an integer
n such that every finite set of at least n points in the plane R2 contains ℓ points
on one line or k pairwise visible points.

Note that classical the Ramsey theorem [49] tells us that for every k, ℓ there
is an n such that in every graph on at least n vertices there is a clique Kk or an
independent set Kℓ as subgraph. Finding an independent set is not enough for
us as this does not imply that all of those points are on one line. It could even
happen that there is a set in general position I ⊆ P inducing an independent
set in the visibility graph ν(P ) which is blocked by some other points in P . We
investigate such blocking sets and asymptotic of their size in Chapter 4.

3.1 History

The Big Line Big Clique Conjecture first appears in Kára et al. [35] where it is
proved for k ≤ 4 and arbitrary ℓ. Addario-Berry et al. [2] prove the conjecture
with k = 5 and ℓ = 4 later.

Both Abel et al. [1] and Barát et al. [5] prove the conjecture for k = 5 and
ℓ ∈ N by finding five points Q = {p1, p2, . . . , p5} ⊆ P in convex position with no
other point p ∈ P in conv(Q).

3.2 Proof of the Big Line Big Clique conjecture

for k = 5 and ℓ ∈ N

Both Abel et al. [1] and Barát et al. [5] find empty pentagons in large enough
point sets. Here we discuss the proof of Barát et al. [5] as it is asymptotically
optimal. Indeed a square grid of size (ℓ − 1)(ℓ − 1) contains no K5 and no ℓ
collinear points.

Theorem 29 (Barát et al. [5]). Let P be a finite point set in plane containing at
least 328ℓ2 points then there are ℓ collinear points or an empty pentagon.

The last theorem is in fact strengthening the result of Harborth [31] that there
is an empty pentagon in every finite set in general position containing at least
ten points. Later Nicolás [42] and Gerken [26] independently prove that a finite
big enough point set in general position contains an empty hexagon. It is open if
this can be also strengthened for point sets with bounded collinearity or not.

On the other hand Horton [32] constructed arbitrarily large point sets in
general position with no empty heptagon.

We need a bit more precise definitions in this section. We use definitions of
Barát et al. [5]. A point set P is in a weakly convex position if every point of P
lies on the boundary of the convex hull conv(P ). The point p ∈ P is a corner
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Figure 3.1: Shaded regions represent a bounded and an unbounded 4-sector
S(p1, p2, p3, p4).

if conv(P \ {p}) 6= conv(P ). We say that a point set P is in a strictly convex
position if every point of P is a corner.

For a point set P we define convex layers L1, L2, . . . , Lr ⊆ P recursively: let
Li be the set of points of P on the boundary of P \⋃i−1

j=1 Lj and we take the index
r such that Lr is the last such nonempty set. We thus have each Li nonempty
and in weakly convex position and P is the disjoint union P = ˙⋃Li. The edges
of a layer are line segments connecting two consecutive points of a layer.

Let P be a point set and let Q be its strictly convex subset Q ⊆ P of five
(resp. m) points with no other points in the convex hull of Q (P ∩ conv(Q) = Q)
we call the set Q an empty pentagon (resp. an empty m-gon). It is easy to see
that such a Q forms a clique in the visibility graph ν(P ).

Let p1p2p3p4 be a strictly convex quadrilateral with points numbered in the
clockwise order we define the 4-sector S(p1, p2, p3, p4) to be the set of all points q
such that qp1p2p3p4 is a strictly convex pentagon. The 4-sector is an intersection
of three open half-planes and the closure of it is denoted by square brackets
S[p1p2p3p4]. Figure 3.1 shows both bounded and unbounded 4-sectors and also
shows that the order of arguments matters.

If the finite point set P contains no empty pentagon then for every empty
quadrilateral we have P ∩ S(p1p2p3p4) = ∅. If this did not hold we would select
the point q ∈ P ∩S(p1p2p3p4) closest to the line p1p4 forming an empty pentagon.

3.2.1 8ℓ Points in Convex Position

Theorem 30 (Barát et al. [5]). A point set containing 8ℓ points in weakly convex
position contains also an empty pentagon or ℓ collinear points.

Let P be a finite set that contains 8ℓ points in weakly convex position. We
could set P ′ to be the inclusion minimal subset of P such that P ′ contains 8ℓ
points in weakly convex position but not so for any its proper subset P ′′ ( P ′.
It is enough for us to consider just P ′, and find an empty pentagon E in it as E
will be also an empty pentagon of P .

Let A be the set of at least 8ℓ points in weakly convex position. It is easy to
see that A are exactly those points of P that are on the boundary of the convex
hull conv(P ). So A is the first convex layer of P . We set B to be the second
convex layer of P . The set A is at least weakly convex 9-gon otherwise we would
have ℓ points on one line. The set B is not empty otherwise we could just select
five pairwise visible points from A, and get an empty pentagon.
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Figure 3.2: (a) If |A ∩ b+| ≤ |B ∩ l(b)| then A is not minimal. The convex hull
conv(A′) is shaded. (b) If b+ contains three non-collinear points there is an empty
pentagon (shaded).

For an edge e of A or B we define e+ to be the open half-plane containing no
point from B which is determined by the line containing e. For convenience we
call l(e) the line containing the line segment e.

Observation 31 (Barát et al. [5]). For every edge b of the layer B we have
|A ∩ b+| > |B ∩ l(b)|. The same holds for b1, b2, . . . , bj edges of B, and we have
|A ∩⋃j

i=1 b
+
i | > |B ∩⋃j

i=1 l(bi)|.

Proof. If |A∩ b+| ≤ |B ∩ l(b)| we might remove vertices from A∩ b+ and replace
those with vertices from B ∩ l(b) getting A′ a set of at least 8ℓ points in weakly
convex position with conv(A′) ( conv(A) a contradiction with minimality of A.
This can be seen in Figure 3.2 (a).

The second claim follows from the minimality by a similar argument.

Observation 32 (Barát et al. [5]). For every edge e of the layer B all vertices
of A ∩ e+ are collinear, or we could find an empty pentagon.

Proof. By the previous observation (Observation 31) we have at least three points
in A ∩ e+. When the set A ∩ e+ is not collinear we can find an empty pentagon
as shown by Figure 3.2 (b).

Lemma 33 (Barát et al. [5]). We have 2|B| ≥ |A| or ℓ collinear points or an
empty pentagon.

Proof. We assume that there are no ℓ collinear points thus A has at least nine
corners because it has at least 8ℓ points. We already observed that B is not empty,
or we could just take an empty pentagon containing points from A. Moreover B
can not be covered by a line as there would be at least four corners strictly on
one side of that line which would create an empty weakly convex pentagon with
one point in B implying that there is a strictly convex empty pentagon.

We call a side the set of edges between two consecutive corners. We just saw
that B has at least three corners and thus at least three sides. Taking b1, . . . , bk
one edge of B from each side, and applying Observation 32 each set A ∩ bi is
collinear thus |A| ≤ ∑k

i=1 |A ∩ bi| < kℓ, so we have k ≥ 9. The layer B has at
least nine corners which means there is a point z ∈ P in the interior of the convex
hull of B.
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b0 b1

Figure 3.3: Edges in EX have to be consecutive.

Assume we have an edge xy of A such that the closed triangle ∆[x, y, z] has
an empty intersection with B. This means there is an edge x′y′ of B crossing the
triangle thus the 4-sector S(x′, x, y, y′) is not empty, and as we already saw we
can find an empty pentagon. A point in B can be in at most two such triangles
implying that 2|B| ≥ |A|.

We thus have at least 4ℓ points in the layer B.

Lemma 34 (Barát et al. [5]). Let X be a nonempty set of points we call EX

the set of edges of B such that X ⊆ b+ for every b ∈ EX . Edges in EX are
consecutive, and we have EX ( B.

Proof. First if we have a point of X in the convex hull of B (X∩conv(B) 6= ∅) we
have EX = ∅ and the lemma holds. Let x ∈ X be a point such that x /∈ conv(B),
and let y be an arbitrary point in the interior of conv(B) such that it is not
collinear with any tuple of points from B ∪ {x}. The line xy intersects exactly
two edges b0, b1 of B one of which such that x /∈ b+0 and one x ∈ b+ thus not all
edges of B are in EX .

When EX contains just one edge the lemma holds. Let b0, b1 ∈ EX be two
edges that are not consecutive. If these edges lie on the same line l(b0) = l(b1)
the edges between them are clearly also in EX . We can not have l(b0) and l(b1)
parallel as we would have b+0 ∩ b+1 = ∅. Without loss of generality let b0 be on the
left, b1 on the right and the intersection p := l(b0)∩l(b1) above B as in Figure 3.3.
We clearly have p ∈ b+0 ∩ b+1 and for a b the next edge of B between b0 and b1 we
have also b+ ⊇ b+0 ∩ b+1 thus b ∈ EX . Iterating this we have that edges in EX are
consecutive.

By Observations 31 and 32 we have an edge a of the layer A such that |A ∩
l(a)| ≥ 3, we name vertices along the line in clockwise order {v1, . . . , vk} =
A ∩ l(a). We have k < ℓ, or we would have ℓ collinear points.

Lemma 35 (Barát et al. [5]). Let {v1, . . . , vk} be as above. There is an edge b of
the layer B such that {v1, v2, v3} ⊆ b+ or {vk−2, vk−1, vk} ⊆ b+.

Proof. As v2 is not in conv(B) we have an edge b of B with v2 ∈ b+. By Observa-
tions 31 and 32 all points of A∩ b+ are collinear and there are at least three such
points. Thus if v1 ∈ b+ then also v3 ∈ b+ and we are done. Otherwise the line
l(b) intersects the line l(a) between points v1 and v2 leaving other points in b+.
By Observations 31 and 32 we have at least three such points all of them collinear
as required.
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Figure 3.4: (a) If the edge em is good we have B ⊆ e⊖m. (b) If the edge ep−1 is
the last good edge we have B ⊆ e⊖p−1.

In the rest of this section we also follow the approach of Barát et al. [5]. Let
a be an edge of the layer A, and let v1, v2, v3 ∈ A ∩ l(a) be points as above. By
Lemma 35 without loss of generality there is an edge b of B such that {v1, v2, v3} ⊆
b+. By Lemma 33 such edges are consecutive. Let b1 be the first such edge in
clockwise order.

The condition |b+ ∩ A ∩ l(a)| ≥ 3 can not hold for all edges of B otherwise
we would have l(a) ∩ A = A and thus many collinear points. Let us denote
the endpoints of b1 by w1 and w2 in clockwise order. Let w3, . . . , wm+1 and
bi = wiwi+1 be subsequent edges and their endpoints in clockwise order where
|A ∩ l(a) ∩ b+m−1| ≥ 3 but |A ∩ l(a) ∩ b+m| ≤ 1. Observation 31 implies that

m ≤ |B ∩⋃m−1
i=1 l(bi)| < |A∩⋃m−1

i=1 b+i | ≤ k. We define ei := viwi for i = 1, . . . , m.
And call e−i the open half-plane determined by l(ei) that contains v1 and e−1 the
open half-plane that does not contain v2.

Let the number j denote the minimum index such that the closed half-plane
e⊖j contains B. We have that w2 ∈ e+1 , so we have j 6= 1. First of all we need
to prove that the number j is well-defined. We call an edge ei good if wi is the
closest point of l(ei)∩ conv(B) to the point vi. There are two cases, first suppose
that the edge em is good so vm ∈ b+m−1. The index m was defined in such a way
that |A ∩ l(a) ∩ b+m−1| ≥ 3 but |A ∩ l(a) ∩ b+m| ≤ 1 and because m < k we have
vm ∈ b⊖m. This implies that B ⊆ e⊖m (Figure 3.4), so the index j is well-defined.
The second case is that the edge em is not good. Edges e1 and e2 are both good
by the choice of the point b1. Let p be the minimal index such that ep is not
good. We have that 3 ≤ p ≤ m. We have wp−2 ∈ e−p−1 as the edge ep−1 is good
and wp ∈ e−p−1 as the edge ep is not good. This implies that B ⊆ e⊖p−1 (Figure 3.4)
and that the index j = p− 1, and thus it is well-defined.

Let j be the minimum index such that the closed half-plane e⊖j contains B
as in the last paragraph. We denote the quadrilaterals Qi := wivivi+1wi+1 for
i = 1, . . . , j − 1. Suppose that Qh is not convex and h is the minimal such index.
There are two possibilities. Assume that we have vh ∈ b⊖h , so we would have B ⊆
e⊖h since the edge eh is good and thus contradicting the minimality of the index j

(Figure 3.5). The second possibility is that vh+1 ∈ b⊖h so A∩⋃h
i=1 b

+
i = {v1, . . . , vh}

which is in a contradiction with Observation 31 since |B ∩ ⋃h
i=1 l(bi)| ≥ h + 1

(Figure 3.5). Thus we have that quadrilaterals Qi for i = 1, . . . , j− 1 are strictly
convex.

We define the 4-sectors Si := S[wi, vi, vi+1, wi+1] to be the closed 4-sectors of
quadrilaterals Qi for i = 1, . . . , j−1. By definition we have Si∩B = B∩e⊕i ∩e⊖i+1.
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Figure 3.5: (a) If vh ∈ b⊖h we have B ⊆ e⊖h . (b) If vh+1 ∈ b⊖h we have A∩⋃h
i=1 b

+
i =

{v1, . . . , vh}.

For every point x ∈ B ∩ e⊕1 we have x ∈ e⊖j since B ∈ e⊖j . We set the number
h to be the minimal index such that x ∈ e⊖h+1. If h = 0 holds we have x ∈
l(e1) ∩ B ⊆ S1. Otherwise x /∈ e⊖h so x ∈ e⊕h and thus x ∈ Sh. We finally have
B ∩ e⊕1 ⊆ ⋃j−1

i=1 Si.
Every quadrilateral Qi is empty as they lie between two layers thus no Si

contains a point in its interior, and thus all points from B ∩ e⊕1 lie on the lines
l(e1), . . . , l(ej). We have that |B ∩ l(ei)| ≤ 2 for i = 2, . . . , j − 1 because the
layer B is in weakly convex position. Because we have A ∩ b+m−1 6= A ∩ b+m the
point wm is a corner. This implies that B ∩ l(ej) ⊆ {wj, . . . , wm} and thus
|B ∩ l(ej)| ≤ m− j+1 holds. Since we have m < ℓ and also j < ℓ we add bounds
of each l(ei) and we get |B ∩ e⊕1 | ≤ (ℓ− 2) + 2(j − 2) + (m− j + 1) < 3ℓ. As we
have |B| ≥ 4ℓ by Lemma 34 we have that B 6⊆ e⊕1 and thus |B ∩ l(e1)| ≤ 2 must
hold. Hence |B ∩ e⊕1 | ≤ 2(j − 1) + (m− j + 1) < 2ℓ also holds.

We now want to bound the size of the rest of the layer B that is the number of
points in the set B ∩ e−1 . We denote v0, v−1, v−2, . . . and w0, w−1, w−2, . . . vertices
in the layer A and B proceeding anticlockwise from the vertex v1 respectively the
vertex w1. We let b0 := w0w1. We have that v1 ∈ b+0 as B 6⊆ e⊕1 (Figure 3.6). We
know that the edge b1 is the first in clockwise order with {v1, v2, v3} ⊆ b+0 thus
neither v2 ∈ b+0 nor v1 ∈ b+0 . We thus have {v1, v0, v−1} ⊆ b+0 by Observation 31.
By Observation 32 we have that neither v0 ∈ b+1 nor v−1 ∈ b+1 , so the edge b0 is
the first edge with {v1, v0, v−1} ⊆ b+0 in anticlockwise order, and by Lemma 35
we have that these edges are consecutive in the layer B. We may make the
same argument that started at b1 and went clockwise, and start it at b0 and go
anticlockwise. The edge e1 will remain the same as the starting points v1 and
w1 remain unchanged. We will again cover B ∩ e⊖1 with 4-sectors and show that
|B ∩ e⊖1 | < 2ℓ. This with the previous paragraph implies that |B| < 4ℓ which is
in contradiction with Lemma 34. This finishes the proof of Theorem 30.

3.2.2 Finding 8ℓ Points in Weakly Convex Position

Let P be a finite point set with at least 328ℓ points no ℓ of them collinear. For
the sake of contradiction let us assume that there is no empty pentagon in P .
We name L1, L2, . . . , Lr convex layers of P where L1 is the outermost layer, and
Lr the innermost layer. For each layer |Li| < 8ℓ holds by Theorem 29. We
divide layers into three groups. Layers Lr−ℓ+1, . . . , Lr are called inner layers, and
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Figure 3.6: The union of closed sectors Si covers the conv(B).
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Figure 3.7: (a) Double-aligned. (b) Left-aligned. (c) Right-aligned.

layers L1, . . . , La are called outer layers where a is the minimum integer such that
|⋃a

i=1 Li| ≥ 64ℓ(ℓ− 1). The remaining layers are called middle layers.
Barát et al. [5] show that if there are too many middle layers then outer layers

contain less points than in definition. This argument with Theorem 29 bound
the number of points in middle layers giving a contradiction with the assumed
size of P .

Abel et al. [1] define for a fixed point z ∈ Lr that an edge xy of Li is empty
if the open triangle ∆(x, y, z) contains no points of Li+1.

Lemma 36 (Abel et al. [1]). If a layer Li contains an empty edge for an integer
i ∈ {1, . . . , r − ℓ+ 1} then P contains an empty pentagon or ℓ collinear points.

This lemma appears implicitly in the paper of Abel et al. [1].

Proof. For a contradiction we suppose that the set P contains no empty pen-
tagon. Let z ∈ Lr, and suppose there is an empty edge xy in an Li where
i ∈ {1, . . . , r − ℓ+ 1}. We call pq the edge of Li+1 that crosses the triangle
∆(x, y, z). We call the edge pq a follower of xy in this proof.

For an empty edge xy and its follower pq we have that the quadrilateral pxyq
is empty because x, y ∈ Li and p, q ∈ Li+1. Moreover if the edge pq is not empty
we have Li+2∩∆(p, q, z) 6= ∅. This means we have nonempty 4-sector S(p, x, y, q),
and thus we have an empty pentagon. We thus have that pq is empty.

For an empty edge xy and its follower qp we say that

(a) double-aligned if p ∈ l(xz) and q ∈ l(yz) as in Figure 3.7 (a).

(b) left-aligned if p ∈ l(xz) and q /∈ l(yz) as in Figure 3.7 (b).

(c) right-aligned if p /∈ l(xz) and q ∈ l(yz) as in Figure 3.7 (c).
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Figure 3.8: (a) Shaded empty pentagon when edges are not aligned. (b) Shaded
empty pentagon formed by last left-aligned, its follower, and one point from the
next follower.

If pq is a follower of an empty edge xy and pq is neither double-aligned nor
left-aligned nor right-aligned then we have nonempty 4-sector S(p, x, y, q) and
empty quadrilateral pxyq thus an empty pentagon.

Let x1y1 be an empty edge of the layer Li for an i ∈ {1, . . . , r − ℓ+ 1}.
Without loss of generality we may assume that i = r − ℓ + 1 because there are
followers of x1y1 in the layer Li+1 and so on. Let x1y1 be an empty edge of the
layer Lr−ℓ+1. We number xiyi the follower of xi−1yi−1 for i = 2, 3, . . . , ℓ− 1.

There is an integer j such that the edge xjyj is not doubly-aligned otherwise
we would have both {x1, x2, . . . , xℓ−2, z} and {y1, y2, . . . , yℓ−2, z} collinear. This
would imply that either {x1, x2, . . . , xℓ−1, z} or {y1, y2, . . . , yℓ−2, z} are collinear
as xℓ−1yℓ−1 must be either doubly-aligned or left-aligned or right-aligned.

We choose j to be the minimum integer from {2, . . . , ℓ− 2} such that xjyj
is not doubly-aligned. Such j exists by the previous paragraph. Without loss
of generality xjyj is left-aligned. Not all xkyk for k ∈ {j + 1, . . . , ℓ− 1} may be
left-aligned otherwise we would have {x1, . . . , xℓ−1, z} collinear. We take k the
minimum integer in {j + 1, . . . , ℓ− 1} such that xkyk is not left-aligned. We thus
have xk−1yk−1 left-aligned and xkyk not left-aligned. Points xj−2yj−2yj−1yjxj−1

form an empty pentagon as in Figure 3.8. This concludes the proof.

We consider only points in middle layers Li for i ∈ {a+ 1, . . . , r − ℓ} for now.
Let v be a point in Li, and let x denote the closest point in vz ∩ conv(Li+1). We
define a right child of v to be the point in Li+1 immidiately clockwise from x.
Similarly a left child of v is the point in Li+1 immidiately anticlockwise from x.
When x ∈ P we do not call it neither left nor right child. There is an example of
a right and a left child in Figure 3.9 (a).

The sequence v1, . . . , vt of points in middle layers is called a right chain (resp.
a left chain) if vi+1 is the right (resp. the left) child of vi. A subchain is a chain
contained in another chain. We say that a chain is maximal if it is not contained
in a strictly bigger chain.

Lemma 37 (Barát et al. [5]). Every point of every middle layer is contained in
one and only one maximal right chain and one and only one maximal left chain.
The number of maximal left chains is equal to the number of maximal right chains
which is |Lr−ℓ| ≤ 8ℓ− 1.

Proof. If a point x is the right child of both points u and v then the edge (or
edges in the segment uv if u and v are not adjacent) is empty by the definition
of right childs. By Lemma 36 we have an empty pentagon or ℓ collinear points.
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Figure 3.9: (a) The point p is the left and the point q is the right child of the
vertex v. (b) Two points vq define the quadrilateral Q(vq) and the sector S[vq].

Moreover by the construction each point of a middle layer has both a left
and a right child. Thus maximal chains do not intersect one another and each
contains a point in the layer Lr−ℓ.

Let V be a chain. The edges of the chain V are the closed line segments
between consecutive vertices. We say that the chain V wraps around if every ray
from the point z meets at least two edges of V . In other words edges of V are
covering an angle of at least 4π around the point z.

Lemma 38 (Barát et al. [5]). If there are at least r − ℓ− a ≥ 32ℓ middle layers
then there is a chain with at most 32ℓ vertices that wraps around.

Proof. Let V = v1, . . . , vt be a right chain with v1 ∈ La+1. We may assume that
t = 32ℓ as r− ℓ− a ≥ 32ℓ. By Lemma 37 there are at most 8ℓ− 1 left chains and
each point vi lies in a left chain. By Dirichlet’s principle there is a left chain U
meeting V in at least five points. We select such left chain U that U and V are
meeting in exactly five points p1, . . . , p5 where p1 is the first point of U and p5 is
the last point of U .

By the definition right chains advance clockwise and left chains anticlockwise.
Edges of U and V between p1 and p2 thus cover an angle of 2π around z. The
same holds for pi and pi+1 with i = 2, . . . , 4. Together edges from U and V cover
an angle of at least 8π thus at least one of them is wrapping around. Both layers
U and V have at most t vertices as they lie in layers Li for i ∈ {a + 1, . . . , a+ t}.

Let v be a vertex of a middle layer Li, and let q be its right child. Let x be
the point in the layer Li+1 that is anticlockwise from q. Note that x is either the
left child of v, or it lies on the line segment vz. We choose y to be the point in
the open triangle ∆(x, q, z) that is closest to xq. There is such y as otherwise xq
would be an empty edge. We set Q(vq) := vxyq to be the quadrilateral asociated
with vq as in Figure 3.9 (b). By the construction Q(vq) is strictly convex.

Since x and q are adjacent vertices in the layer Li and y is the closest point
to xq we have that the closed triangle ∆[x, q, y] is empty. The closed triangle
∆[v, q, x] is empty too as it can not contain a point neither from Li nor from Li+1.
This implyes that Q(vq) is an empty quadrilateral. We let S[vq] be the closed
4-sector S[v, x, y, q] which must be empty as its quadrilateral Q[vq] is empty, and
we assume that there is no empty pentagon in P .
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Let V = v1, . . . , vt be a chain, and let us call its edges ei = vivi+1. We define
e⊕i to be the closed half-plane not containing the point z and determined by the
line containing ei. We denote Q(ei) = vixiyivi+1 and we let ci to denote the edge
between xi and vi. Let di be the opposite edge yivi+1 in the quadrilateral Q(ei).
Let us denote c⊕i to be the half-plane containing the edge di and determined by
the line containing ci. Similarly let d⊕i be the half-plane containing the edge ci
and determined by the line containing di. We set the closed 4-sector defined by
Q(ei) to be S[ei] = c⊕i ∩ d⊕i ∩ e⊕i .

Lemma 39 (Barát et al. [5]). If V = v1, . . . , vt wraps around then the corre-
sponding closed 4-sectors S[ei] cover all points of outer layers Li for i = 1, . . . , a.

Proof. Let u be a fixed point in
⋃a

i=1 Li. Without loss of generality we may
assume that V is a right chain and the point u is above the point z, i.e. the
x-coordinate of u is the same as the x-coordinate of z and the y-coordinate of u
is strictly bigger than the y-coordinate of z. We take the ray h contained in the
line l(uz) that starts in z and does not contain u. Edges of V intersect the ray
h at least twice as V wraps around. Thus there are two edges ej and ek which
are not consecutive with j < k and there is also an edge ep intersecting the line
segment uz with j < p < k.

We have that u lies in e+p ∩ e−j ∩ e−k . We set Ṽ to be the maximal subchain of

V containing ep where for each edge e ∈ Ṽ we have u ∈ e+. We let em and en be
the first and the last edge in Ṽ . We know that ej and ek are not in the subchain
Ṽ and j < m ≤ n < k thus u ∈ e⊖m−1 ∩ e+m. The point vm lies to the left of the
line l(uz) since j < m ≤ p implying that u and vm+1 lie on the same side of the
line l(cm) and u ∈ c⊕m. Furthermore u ∈ e+n ∩ e⊖n+1 holds and vn+1 lies to the right
of the line l(uz) since p ≤ n < k. This implyes that u ∈ d⊕n .

We have that u ∈ e+i ∩e+i+1 form ≤ i ≤ n−1. The point yi either precedes xi+1

in Li+2 or yi = xi+1 thus the point u can not be in both d−i and c−i+1. We have to
prove that u ∈ S[ei] = c⊕i ∩d⊕i ∩e⊕i . It is enough to prove that u ∈ S[ei] = c⊕i ∩d⊕i
for an i ∈ {m, . . . , n}. Set the integer q to be the minimal index such that u ∈ d⊕q .
Since u ∈ d⊕n there is such q. Then we have either q = m or u ∈ d−q−1, so in any
case u ∈ c⊕q holds therefore u ∈ S[eq] holds too.

By Lemma 38 if we have at least 32ℓ middle layers then there is a chain
V = v1, . . . , vt with t = 32ℓ that wraps around. By Lemma 39 all points of
outer layers are covered by closed 4-sectors of V . We assumed that there are no
empty pentagons, so every point of an outer layer must lie on a line l(ci) or l(di)
bounding the sector S[ei]. Thus we have at most 2t(ℓ− 3) = 64ℓ(ℓ− 3) points in
outer layers as no ℓ lines are collinear. By definition there were at least 64ℓ(ℓ−1)
points in outer layers, so there are strictly less than 32ℓ middle layers.

By Theorem 30 we have no 8ℓ points in weakly convex position, so there are
strictly less than 32ℓ · 8ℓ = 256ℓ2. At the beginning of the proof we defined
outer layers in a way that there were no more than 64ℓ2 points and inner layers
contained no more than 8ℓ2 points. Summing everything we get thet P contains
strictly less than 328ℓ2 points – a contradiction with assumptions concluding the
proof of Theorem 29.
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3.3 False for Infinite Point Sets

The Big Line Big Clique conjecture does not hold for infinite sets by the result of
Pór and Wood [48]. This implies that we cannot use an infinitary compactness
argument to prove it.

Theorem 40 (Pór, Wood [48]). There is a point set P ⊂ R2 of countable size
that has no three collinear points and no three mutually visible points.

Proof. Let x1, x2, x3 ∈ R2 be three points in general position. Given points
x1, . . . , xk−1 we want to add a point xk. There is a line meeting exactly two of
points {x1, . . . , xk−1} as proved by the Sylvester-Gallai theorem [39]. We choose
such two points xi, xj with i < j that there is no other point on the line xixj and
first j is minimized and then i is minimized. Finally we insert the point xk on the
line segment xixj at such position that the triple (xi, xk, xj) is the only collinear
triple containing xk.

By construction there are no four collinear points in the set {xi | i ∈ N}. The
key observation is that if xi, xj are visible where i < j there is a third point xi′

such that xi′ lies on the line xixj (otherwise we would add a point between xi, xj

later in the construction). Moreover xj lies on the line segment xixi′ , and i′ < j
holds.

Let us suppose that there are three pairwise visible points xi, xj , xk with index-
es i < j < k. By the observation in the previous paragraph we have points xi′ and
xj′ such that xk lies on the line segments xixi′ and xjxj′ . This is a contradiction
because xk belongs only to one collinear triple in the set {xi | 1 ≤ i ≤ k}.

3.4 Ordered Set Representation

As we have seen some properties of visibility graphs can be proved using just the
sweep line technique. It is natural to ask if the Big Line Big Clique conjecture
is provable in this way. In this section we provide a proof of the Big Line Big
Clique for ℓ = 4 and k = 4 for a class of graphs of which visibility graphs are
a strict subset. For this class of graphs the Big Line Big Clique conjecture does
not hold for ℓ = 4, k = 6.

3.4.1 Definition of the Ordered Set Representation

When we are line-sweeping a point set P we obtain an ordered set of points
p1, p2, . . . , p|P | and two points pi, pj, i < j do not see each other if there is a point
pk, i < k < j on the line pipj . A line l induces a set Q ⊆ P of points lying on l.
On the other hand if two point sets induced by lines share at least two points
they are equal, as no more than one line goes through two distinct points.

Definition. An ordered set representation is a tuple M = (n, L) where n ∈ N,
and L is a family of subsets of [n] such that ∀i, j ∈ [n], i 6= j : ∃l ∈ L : i, j ∈ l and
∀l0, l1 ∈ L : |l0 ∩ l1| ≤ 1. Numbers 1, . . . , n are called points, and elements of L
are called lines.
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The definition is indeed sound as setting L = {[n]} gives an ordered set
representation. As there is always one and only one line containing two points
we may call l(i, j) the line containing both points i, j.

Definition. We say that two points i < j see each other with respect to an
ordered set representation M if and only if there is no k such that i < k < j
and l(i, k) = l(k, j). For an ordered set representation M we define the visibility
graph of M as ν(M) = ([n], E) where there is an edge ij ∈ E if and only if i, j
see each other with respect to M .

We call a graph G ordered set representable, or OSR, if there is an ordered set
representation M such that the visibility graph ν(M) of M is isomorphic to G. It
is easy to see that for instance empty graph is not ordered set representable. On
the other hand a point visibility graph is ordered set representable. We can see
this by line-sweeping the set P and setting L to be the family of all lines through
at least two points of the set P .

3.4.2 k = 4 or ℓ = 4 Holds for OSR Graphs

In this section we show that Big Line Big Clique conjecture holds for k = 4 and
ℓ = 4 even with ordered set representable graphs. This also provides a different
purely combinatorial proof for point visibility graphs.

Theorem 41 (Turán [58]). Let G = (V,E) be a graph with n vertices that does
not contain Kr+1 as a subgraph then |E| ≤ (1− 1/r)n2/2 holds.

Theorem 42. There is an integer n0 such that for every n ≥ n0 every ordered
set representable graph with a set representation M = (n, L) contains a K4 as a
subgraph or ∃l ∈ L : |l| ≥ 4.

Proof. Let us assume that there is no line l ∈ L : |l| ≥ 4 and the graph ν(M)
contains no clique K4 as subgraph. It follows from Turán’s theorem that there
are at least

(

n

2

)

−
(

1− 1

r

)

n2

2
=

n(n− r)

2r

missing edges.
One line l ∈ L of size three blocks exactly one edge of ν(M) and a line of size

two blocks no edge. Assuming there is no bigger line we must have at least as
many lines of size three as there are missing edges in ν(M).

The point i ∈ [n] may block at most min(i − 1, n − i) edges as if i blocks
visibility of a < b ∈ [n] we have a < i < b. It follows that there are at most

2

⌈n/2⌉−1
∑

i=1

(i− 1) =

{

2
(

m
2

)

if n = 2m

2
(

m
2

)

+m if n = 2m+ 1

edges blocked. This is not enough for us yet. We can assume n = 2m. There
have to be at least n(n−2r)

8r
edges missing in the first half of points, the same holds

for the second half of points. Edge in one half can be blocked just by points in
that half. Totally there are at least n(n−2r)

4r
edges missing in both halves.
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23
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Figure 3.10: Points from equivalence class A modulo five block points from an-
other class B if and only if there is an arrow from A to B.

If b blocks the edge ac then we have a < b < c, and we are sure that c is
not blocking visibility of ad or bd for a d > c or there would be a big line. In
other words if ac is blocked by b then c can block visibility of neither a nor b. We
thus have to subtract these impossible lines from the number of edges needing
blocking.

n(n− r)

2r
−
(

(n− 2)n

4
− 4

n(n− 2r)

8r

)

= n

(

n

(

1

r
− 1

4

)

− 1

)

n(n− 3)

6
−
(

(n− 2)n

4
− 4

n(n− 6)

24

)

=
n(n− 12)

12

We can see that for n = 14 and k−1 = r = 3 the formula is positive, so there
are more edges to block than we possibly could block which is a contradiction.

3.4.3 k = 6 or ℓ = 4 Is False for OSR Graphs

We saw that a big enough ordered set representable graph contains aK4 subgraph
or a line of size four. On the other hand here we show that complete five-partite
graphs are ordered set representable without using a line bigger than three.

Theorem 43. There is a set representation M such that ∀l ∈ L : |l| ≤ 3 and
ν(M) does not contain K6 subgraph.

Proof. We divide points to equivalence classes modulo five, and we represent
complete five-partite graphs. We block points of modulo class j by points j − 1
(mod 5) and j − 2 (mod 5) as depicted on the Figure 3.10.

We still need to tell which points block which pair of points. Without loss of
generality we may assume the number of points is n = 5m. We are trying to block
visibility of pairs of points where i ≡ j (mod 5). Let us denote sets of blockers
Bb = {i ∈ [n] | i ≡ b− 1 (mod 5) ∨ i ≡ b− 2 (mod 5)} for b = 0, 1, . . . 4. To
block visibility of pairs of points {(i, j) | i, j ∈ [n], i ≡ j (mod 5)} in lexicographic
order we use points from Bb, b ≡ i (mod 5) bigger than i in increasing order. This
is depicted for n = 35 and j = 1 in the Table 3.1.

There are enough points to block because if we have points i, j ∈ [n] and
i < j, i ≡ j (mod 5) we also have the point j − 1 and j − 2 for blocking.

It remains to prove that no two lines coincide at two points, i.e., there is no
line of size at least four. When we have two lines a < b < c and d < e < f we
want to distinguish which pairs of points coincide. This is done by writing which
point in the first line is not present in the second one and vice versa. For example
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6 11 16 21 26 31
1 4 5 9 10 14 15
6 9 10 14 15 19
11 14 15 19 20
16 19 20 24
21 24 25
26 29

Table 3.1: Rows represent lesser and columns higher points of blocked pairs.

having lines a < b < c and d < a < b we call this case (3, 1). There are nine such
cases in total.

It is easy to see that there are no two lines of size three with the lowest and the
highest point in common as we block each edge just once – the case (2, 2). There
are no two lines with lower two points in common as we use different points to
block visibility of the lower one – the case (3, 3). The same follows for the upper
two points – the case (1, 1).

If there were two lines of cases (1, 3) or (3, 1) this would mean lines a < b < c
and b < c < d or a < b < c and d < a < b meaning that the point b blocks
visibility of the point a and vice versa. This cannot happen as in the Figure 3.10
we do not have arrows in both directions, and we block just edges inside one
equivalence class.

In all of other cases (1, 2), (2, 1), (2, 3), (3, 2) the middle point from one line
and the first or the last point from the other line coincide. But by construction
we block just edges in one equivalence class and by points from other equivalence
classes.

3.4.4 Computer Experiments

In combinatorics solutions of small cases can give us a valuable insight. In such
cases we often want to run some computer experiments. In this part we describe
computer experiments that we used for ordered set representations. In Chapter 5
we describe computer experiments for point visibility graphs.

Formulating SAT Formula

Boolean satisfiability problem, or SAT, is the problem of determining if boolean
variables of a given boolean formula ϕ can be assigned values to satisfy it. SAT
solver programs mostly assume that the input formula is in conjunctive normal
form, e.g. (x1 ∨ x2) ∧ (¬x1) which we can satisfy by setting x1 = False and
x2 = True.

For given n, k, ℓ there is a SAT formula deciding if there exists an OSR graph
of size n without Kk as subgraph and without a line of size at least ℓ. This can
be seen as a simple generalization of the next part where we consider just ℓ = 4
for efficiency reasons.

We number all lines (subsets of [n]) of size three, and for each line we have
a boolean variable. We do not consider lines of size two as those are blocking
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no edge. We also allow no line bigger than three. In later text we designate the
variables by xabc, a < b < c ∈ [n] for easier reading.

We need to express that there are no two lines with intersection of size at
least two. To do this we use that at most one of xabc and xdef where | {a, b, c} ∩
{d, e, f} | = 2 can be true:

∧

|{a,b,c}∩{d,e,f}|=2

(¬xabc ∨ ¬xdef ).

To express that the edge ac is blocked we use N(a, c) :=
∨

b>a∧b<c xabc. For a
k element subset K we write disjunction over all tuples {a, b} ∈ K of the prior
clause:

∨

{a,b}∈K N(a, b). We need this for every k element subset of [n]. So we

have another
(

n
k

)

clauses.

Experimental Results

We just generate the formula then we let a fast solver to decide that formula for
us. We use freely available SAT solvers Glucose [4] and PicoSAT [8]. For our
experiments we used personal computers and servers kamna and kamenozrout at
the Department of Applied Mathematics, Charles University.

The program sat.cpp is a straightforward generator of formulae in the DI-
MACS format [14]. Many SAT solvers use this format, so it is easy to run these
experiments with multiple solvers. The program paint.c expects numbers where
negative number means that the triple denoted by the number is not selected and
positive means that it is. It outputs the graph in the MetaPost format. Both
programs were written to be run just once and by an informed user. There are
some limitations and not validated inputs.

We compile the program sat.cpp by the command g++ sat.cpp -o sat.out

and the command gcc -std=c99 paint.c -o paint.out is used to compile the
program paint.c. To decide the existence of an OSR graph for given parameters
the number of vertices and size of the forbidden clique we run ./sat.out 9 4 |

picosat where picosat is a SAT solver that accepts the DIMACS format. To get
a MetaPost file run ./sat.out 9 4 | picosat | sed ’/s SATISFIABLE/d’ |

sed ’/c.*/d’ | tr -d "v" | ./paint.out 9. Forbidden assignments can be
written in the forbidden.txt file in the same form as for the program paint.out.

Due to computer results an ordered set representable graph without a K4

subgraph and without a line of size four can have at most nine vertices. Moreover
there are only three such graphs (see the Figure 3.11) each of them with exactly
two possible ordered set representations listed in Attachments as outputs of the
SAT solver.

Thanks to the nature of the problem and fast implementation of SAT solvers
we were able to find rather big ordered representable graphs. The Figure 3.12
shows the largest ordered set representable graph found with no ℓ = 4 or K5.
We do not know if there are any bigger, or if this is the only such graph on 42
vertices. Because of the running time I think this might be close to the largest
such graph.
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Figure 3.11: Only three OSR graphs on nine vertices without K4 and without a
line of size four. Edges are depicted as upper arcs in red, blocked (i.e. missing)
edges as lower arcs in blue.

Figure 3.12: An OSR graph on 42 vertices without K5 and without a line of size
four. Edges are depicted as arcs on the left in red, blocked (i.e. missing) edges
on the right in blue.
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4. Blocking Visibility

For a finite set of points P in real plane (or, more generally, in Rd) we say that
a set of points Q is a visibility blocking set if Q is disjoint from P and for every
p0, p1 ∈ P there is at least one point q ∈ Q lying on the line segment p0p1,
alternatively we could say that P is an independent set in the visibility graph of
the union P ∪Q.

If points in P are collinear then there is a visibility blocking set of size |P |−1.
The question is what is the smallest size of a blocking set for P having no three
points collinear. We let

b(P ) := min{|Q| | Q a visibility-blocking set for P},
b(n) := min{b(P ) | P ⊂ R2 with no three points collinear, |P | = n},

and we would like to estimate the asymptotic behavior of b(n).

4.1 Lower Bound

Matoušek [38] observes that the blocking set Q has the size at least as big as the
number of edges in a triangulation of P . Dumitrescu et al. [16] use this observation
in combination with bound of Kostochka and Kratochv́ıl [36] to provide a slightly
better constant.

Observation 44 (Matoušek [38]). Let P be an n-point planar set without three
collinear vertices and with conv(P ) having p vertices then b(P ) ≥ 3n− p− 3.

Proof. An arbitrary triangulation of P has 3n− p− 3 edges by Euler’s formula.
Each point of a visibility-blocking set covers at most one edge of the triangulation.

Superlinear bounds are known only for point sets in convex position. For
points in convex position the Ω(n log n) bound of Kostochka and Kratochv́ıl [36]
is known. For vertices of a convex n-gon even greater bound of Ω(n2) can be
given, as shown by Poonen and Rubinstein [47].

Theorem 45 (Kostochka and Kratochv́ıl [36]). For every n-point planar set P
in strictly convex position, we have

b(n) ≥
{

n
∑m

k=1 1/k for n = 2m+ 1,

1 + n
∑m−1

k=1 1/k for n = 2m.

Thus b(P ) ≥ 1
2
n logn.

Proof. Let p1, p2, . . . , pn be the points numbered as they appear around the
circumference of the conv(P ). We define the length ℓ(pi, pj) of the line seg-
ment pi, pj where i < j as the number of convex hull edges between pi, pj, i.e.,
min(j − i, n+ i− j).

The key observation is that for every blocking set Q and every q ∈ Q let ℓ be
the length of the shortest segment pi, pj that q is blocking then q is incident to
at most ℓ segments (Figure 4.1).
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q
p1

p2

p3

p4

p5

p6

p7
p8

Figure 4.1: The point q lies on the segment p1p4 with ℓ(p1, p4) = 3 and blocks
three segments.

We assign the weight 1/ℓ(pi, pj) to the segment pi, pj. No point in Q is incident
to segments with the sum of their weights greater than one. The theorem follows
by summing all weights.

Dumitrescu et al. [16] improve the constant of Observation 44 using the pre-
vious theorem for convex sets.

Theorem 46 (Dumitrescu [16]). Let P be an n-point planar set in general posi-
tion then every blocking set has size at least (25/8− o(1))n− 3.

Proof. We can assume n ≥ 10. Let P ′ denote the set of vertices of the convex
hull of the point set P and p := |P ′|. We distinguish two cases depending on p.
First assume p ≥ 25

2
n

logn
we can see that log p ≥ (log n)/2 and by Theorem 45 we

have b(P ) ≥ b(P ′) ≥ 1
2
25
2

n
logn

logn
2

= 25
8
n.

Let p ≤ 25
8

n
logn

, and for simplicity let n = 8k + 2 for a natural number k.
We choose a point p0 in P ′, and number the rest of points in clockwise order of
visibility from p0. We denote sets of ten points Pi := {p0, p8i−7, p8i−6, . . . , p8i+1}
for i = 1, 2, . . . k. Each two consecutive sectors have two points in common. An
example of one such sector is in Figure 4.2.

p0

p1p2

p3
p4p5

p6

p7

p8

p9

p10

Figure 4.2: An illustration of one sector with an empty pentagon p1p2p5p6p4.

Harborth [31] proves that every set of ten points in general position contains
a 5-hole, i.e., five points with empty convex hull. For each i we denote Qi these
sets of five points with empty inside. To cover diagonals of a Qi we need at least
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three points. We choose edges of convex hull of every Qi, and extend those edges
to a triangulation. As interiors of sets Qi are pairwise disjoint, we can see that
for each sector we need one extra blocking point more than the number of edges
in the triangulation. We need at least k = ⌊n/8⌋ more points in total. This gives
us that the set P needs at least 3n−p−3+k =

(

25
8
− o(1)

)

n−3 blocking points.

4.2 Upper Bound

Surprisingly the best upper bound known is for special blocking sets containing
all midpoints. For a point set P , let µ(P ) be the cardinality of the set of all
midpoints {1

2
(p + q) | p, q ∈ P, p 6= q} of all pairs of points of P . This set is

always blocking, so we have b(n) ≤ minµ(P ) where the minimum is over all
point sets in general position of size n.

Erdős, Fishburn, and Füredi [22] studied the problem of estimating min µ(P )
over all P in convex position, and established the upper and lower bounds of
0.40n2 and 0.45n2 respectively.

Pach [43] (based on Erdős et al. [23]) provided a construction of a point set P
and its midpoint-blocking set Q implying the upper bound µ(n) ≤ neC

√
logn for

a constant C.

Theorem 47 (Pach [43]). There is a constant C such that for n big enough
b(n) ≤ µ(n) ≤ neC

√
logn holds.

Proof. For simplicity let us consider n =
⌊

2d(d−2)/d
⌋

for an integer d greater or

equal to four. We take the lattice L =
{

0, 1, . . . 2d
}d

with intersections with

spheres Sk = {x ∈ L | ‖x‖2 = k}. We can see that L = ∪d(2d)2

k=0 Sk. By pigeonhole

principle there is a k for which |Sk| ≥ |L|
d(2d)2

≥ n points, let us denote P an
arbitrary such set.

As |{1
2
(p + q) | p, q ∈ P, p 6= q}| = |{p+ q | p, q ∈ P, p 6= q}| = |P + P | where

p + q are points of positive integer coordinates strictly less than 2d+1. We thus
have µ(P ) = |P + P | ≤ (2d+1)d < n28

√
logn.

By the argument we already saw, we can find a linear projection to a plane
where no two points from P coincide, and as P lies on a sphere no three elements
of the projected P are collinear. This argument can be extended for general
values of n.

Pach [43] also proves that the midpoint-blocking number is asymptotically
greater than n, i.e., limn→∞ µ(n)/n = ∞. It is still not known if the same holds
for general blocking sets.

41



5. Existential Theory of

the Reals

Satisfiability is a large branch of computer science with many important appli-
cations. Perhaps the best known is the boolean satisfiability problem which we
already saw in Chapter 3.

The boolean satisfiability problem is not the only problem of its kind. A whole
branch of decision problems is called satisfiability modulo theories, or SMT, where
the problem is to determine if a logic formula is satisfiable with respect to some
background theories. Examples of theories used are the theory of real numbers,
the theory of integers or theories of data structures such as arrays and bit vectors.

SMT has wide range of applications involving theorem proving, robotics vi-
sion, computer design, etc. Many software verification and test case generation
programs use SMT solvers internally. SMT is used even for planning. Design
of complex systems such as cars or trains often relies on some invariants that
can be checked by SMT. Scheduling of tasks to machines with some constraints
can be also solved using SMT. Often it is vital to use more SMTs (for example
the theory of reals and the theory of integers) to solve one problem. For more
applications of SMT see de Moura and Bjørner [9].

Here we discuss the existential theory of real numbers as it has direct applica-
tion to geometric problems. Canny [11] proves that any sentence in the existential
theory of the reals can be decided in PSPACE. By a result of Ghosh and Roy [27]
the problem of deciding whether a given graph is a visibility graph of a point set
is decidable by the existential theory of the reals. We show that the same holds
even for deciding the Big Line Big Clique conjecture for given parameters n, k, ℓ.
Using an idea of Schaefer [50] we are able to construct such a formula that neither
the number of variables, nor the number of polynomials, nor their degrees depend
on the parameter ℓ. We also try this formula with available solvers in Section 5.4.

5.1 Introduction

Informally the task of the existential theory of reals is to decide if a logical formula
consisting of inequalities involving real valued variables is satisfiable. For example
we might want to decide if variables x1, . . . , xn could be assigned real values to
satisfy a given formula, e.g. (x1 < 5) ∧ (x2 + x5 = 7 ∨ x3x4 = 0) ∧ . . .

More formally the first-order existential theory of the real numbers is the set
of all true sentences of the form (∃x1, . . . , xn)ϕ(x1, . . . , xn) where ϕ is a quantifier
free (∨,∧,¬)−Boolean formula over the signature (0, 1,+, ∗, <,≤,=) and the
sentence is interpreted over real numbers.

It is known that the theory of reals can be decided in PSPACE. This result is
due to Canny [11]. As proposed by Schaefer [50] we can introduce a new complex-
ity class ∃R of problems with the same complexity as deciding the existential the-
ory of reals. Note that Schaefer [50] defines two classes with and without equality
and proves with Štefankovič [51] that these classes are the same, although the two
classes algebraically differ (x2 = 2 defines irrational number which is impossible
without equality).
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We say that a problem is ∃R-complete if it can be solved using the existential
theory of reals, and every problem in ∃R can be reduced to it by a polynomial
reduction. Stretchability of simple pseudoline arrangements is the first problem
known to be ∃R-complete. It is quite easy to see that this is decidable by the
existential theory of the reals. Mnev [40, 52, 34] proves the other side. Later
other problems proved to be ∃R-complete; for references see Schaefer [50].

5.2 Recognition and Reconstruction

A complete characterization of the class of visibility graphs still remains open.
One natural question is to determine the visibility graph of a given point set.
The reverse question is to decide whether a given graph is the visibility graph
of a point set. We are going to see that both these problems are decidable by a
computer.

5.2.1 Visibility Graph Reconstruction

Let us begin with the simpler question – the problem of computing the visibility
graph ν(P ) of a point set P .

Algorithm mentioned by Ghosh and Roy [27]: Let P be a given point set of
size n. For every p ∈ P we order the rest of points in angular order around p.
The angular order gives us a partition of P \ {p} = P1∪̇ . . . ∪̇Pk to sets of points
lying on the same line going through p (q1, q2 ∈ Pi are collinear with p but not
so for q0 ∈ Pi, q1 ∈ Pj , i 6= j). Taking one such set Pi at most one point at each
side closest to p might be visible from p. Chazelle et al. [12] found an algorithm
to construct angular orders of all points in O(n2) time, so we could improve time
complexity of constructing the graph ν(P ) to O(n2) using their approach.

5.2.2 Visibility Graph Recognition

We would like to decide if a given undirected graph G is the visibility graph of
a point set P . Ghosh and Roy [27] prove that this recognition problem lies in
PSPACE.

Theorem 48 (Ghosh, Roy [27]). The recognition problem for point visibility
graphs lies in PSPACE.

Proof. For a given graph G = (V,E) it is sufficient to construct a formula in the
existential theory of reals which is polynomial in the size of G and which is true
if and only if G is the visibility graph of a set of points P .

Suppose (vi, vj) /∈ E(G). This means that for every point set P with the ν(P )
isomorphic to G there is a blocker, say pk, on the line segment joining pi and pj.
Let the coordinates of the points pi, pj, pk be (xi, yi), (xj , yj), (xk, yk) respectively.
So we define:

N(i, j, k) := (0 < ti,j,k < 1)∧((xk−xi) = ti,j,k(xj−xi))∧((yk−yi) = ti,j,k(yj−yi)).

We need at least one blocker, so we have
(

∨

k 6=i,k 6=j N(i, j, k)
)

.
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Suppose (vi, vj) ∈ E(G). This means that for every point set P which vis-
ibility graph is G there is no blocker on the line segment joining pi and pj.
So either pk forms a triangle with pi and pj, or pk lies on the line passing
through pi and pj but not between pi and pj . With quantifier-free formulas we
can define the predicate collinear(x1, y1, x2, y2, x3, y3) expressing that the three
points (x1, y1), (x2, y2), (x3, y3) are not collinear. Indeed the area of the trian-
gle (x1, y1)(x2, y2)(x3, y3) can be computed using determinant. It is enough for us
that the determinant is nonzero thus we can safely omit the one half and absolute
value, and write (x2 − x1)(y3 − y1) 6= (y2 − y1)(x3 − x1).

As the result of the previous paragraph we define:

E(i, j, k) = collinear(xi, yi, xj, yj, xk, yk)∨

∨ ((ti,j,k < 0 ∨ 1 < ti,j,k) ∧ (xk − xi = ti,j,k(xj − xi)) ∧ (yk − yi = ti,j,k(yj − yi))) .

We can have no blocker, so we have
(

∧

k 6=i,k 6=j E(i, j, k)
)

.

For every triple of vertices vi, vj, vk we add a t = ti,j,k to the existential part
and corresponding quantifier free formula. The final formula is:

∃x1∃y1 . . .∃xn∃yn∃t1,2,3, . . .∃tn−2,n−1,nP (x1, y1, . . . , xn, yn, t1,2,3, . . . , tn−2,n−1,n)

where P is conjunction of E resp. N which is of size O(n3).

We could use an equisatisfiable formula in conjunctive normal form instead of
the formula given in the proof. This could be done by adding new variables and
only linearly increasing the size.

5.3 Deciding the Big Line Big Clique Conjec-

ture for Given n, ℓ, k

The existential theory of reals is strong enough to even decide the Big Line Big
Clique conjecture for given parameters n, ℓ, k. We give a deciding formula of size
depending only on n and k but not on ℓ.

5.3.1 No k-Clique

Using a quantifier-free formula, we can define that a k-tuple of vertices p1, . . . , pk
is not a clique. For every tuple pi, pj, 1 ≤ i < j ≤ k we need a blocking point

(possibly not one of the k-tuple). For every k-tuple T we thus define C(T ) :=
∨

1≤i<j≤k

∨

m∈[n],m6=i,m6=j N(i, j,m). We need no k-tuple to form a clique thus we

have
∧

k-tuple T C(T ).

For just one k-tuple we need a formula with O(k2n) polynomials. Thus to
forbid all cliques of size k we use a formula with O(k2n

(

n
k

)

) polynomials.
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5.3.2 No ℓ Collinear Points

We can define that no more than ℓ points lie on the same line with a formula of
size not depending on ℓ. Schaefer [50] used a predicate atmosta(z1, . . . , zb) which
guarantees that no more than a of variables zi are greater than zero. Here we
present a slightly modified version:

∑

i∈[b]
zi < a ∧

∧

i∈[b]

((

− a+ 3

3b(b− a)
< zi < 0

)

∨
(

1 +
1

3b
< zi

))

where 0 < a < b. Options “at most zero” of the variables zi or “at most b” of the
b variables zi make little use anyway.

If strictly more than a of the zi are positive, the total sum is at least

∑

i∈[b]
zi ≥ (a+ 1)

(

1 +
1

3b

)

− (b− (a + 1))

(

a+ 3

3b(b− a)

)

≥ a+ 1− 2

3b
> a

as there are at most b− (a + 1) negative zi.
On the other hand given any subset of the zi of size at most a, we can assign

each zi in the set the value 1 + (a + 1)/(3ab) and every other zi gets the value
−(a + 2)/(3b(b− a)), so that

∑

i∈[b]
zi ≤ a

(

1 +
a+ 1

3ab

)

− (b− a)

(

a + 2

3b(b− a)

)

= a− 1

3b
< a.

For every two points pi, pj ∈ P, i < j we want no more than ℓ−2 points on the
same line. We use zi,j,m > 0 to indicate that a point pm may lie on the line pipj.
Let A(i, j) := atmostℓ−2(zi,j,1, . . . , zi,j,i−1, zi,j,i+1, . . . , zi,j,j−1, zi,j,j+1, . . . , zi,j,n). Fi-
nally we write A(i, j)∧∧

(

zi,j,m > 0 ∨ collinear(xi, yi, xj, yj, xm, ym)
)

for the point
tuple pi, pj.

The predicate atmost is of linear size and so is the last big conjunction. We
use these for every two points in P , so we create a formula of size O(n3).

5.3.3 Final Formula

We already gave a description of quantifier free formulae forbidding big line and
big clique. We just concatenate those, and we close this formula by putting ∃x
before it for every free variable x.

Formulae forbidding a clique of size k use O(k2n
(

n
k

)

) polynomials and formu-
lae forbidding ℓ collinear points have O(n3) polynomials. Using both formulae
and considering only interesting cases where k ≥ 2 we get the total number of
polynomials O(k2n

(

n
k

)

). Moreover we only use O(n3) variables and polynomials
of degree at most two. The biggest constant used is 3nℓ. It thus follows that
deciding the Big Line Big Clique conjecture for any given n, ℓ, k is in PSPACE.

5.4 Computer Experiments

If there is a solution we can rotate it to get distinct x-coordinates, and thus there
is a solution with xi < xi+1 for all indexes i. To further improve the length of the
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used formula by a multiplicative constant we add the condition xi < xi+1 for all
1 ≤ i < n and thus a point pj can block points pi, pk, i < k only if i < j < k.

The program smt.cpp straightforwardly generates an input in the SMT2 for-
mat [13] which seems to be the most popular input format amongst moder solvers.
The program expects three arguments n l k that are numbers where n ≤ ℓ and
n ≤ k. This program is written to be run just once and by an informed user.
There might be some inputs which are not validated.

Unlike SAT solvers there are many formats used in SMT. Moreover there are
not so many solvers that are able to solve nonlinear formulas.

We compile the program with the command g++ smt.cpp -o smt.out. To
run tests we use ./smt.out 5 4 3 | ./z3 -in -smt2 with the z3 program
available from http://z3.codeplex.com/.

The solver did not finished with parameters n = 6, ℓ = k = 4 although there
is a solution in Figure 2.8. The solver is able to solve formulae with n = 5. The
solver did not finished with n = 6.

For our experiments we use mainly personal computers. For parameters
n = 6, ℓ = k = 4 we use the server kamenozrout at the Department of Ap-
plied Mathematics, Charles University. The solver we use is z3 [33]. Due to the
size of used formulae and the fact that the solver has to deal with non-linear
rational arithmetics we are not able to produce any non-trivial results.

I hope that thanks to the development in computer science and hardware it
would be possible to get either some larger counterexamples or computer evidence
for ℓ = 4 and k = 6 someday.
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Conclusion

In this chapter we briefly summarize new results that appear in this thesis, and
mention some possible directions for further research.

We make two observations about properties of point visibility graphs in Chap-
ter 2. First we prove that point visibility graphs are pancyclic in Observation 13.
We also discuss the infinite case. Then we give a characterization of edge chro-
matic number of point visibility graphs in Corollary 27. Techniques used in these
proofs inspired the definition of ordered set representable graphs which gave an
alternative proof for the Big Line Big Clique conjecture with ℓ = k = 4 in Theo-
rem 42. In the last chapter we deduce that the Big Line Big Clique conjecture is
decidable by a computer for given parameters n, ℓ, k.

It is still an open question if there are asymptotically n2 lines with |P ∩ l| = ℓ
where |P | = n and no ℓ+ 1 lines in P are collinear.

It might be interesting to characterize which properties of visibility graphs
can be proved using just minimizing distance and line sweeping. We discuss
some such results in Section 2.1. Many results concerning visibility graphs use
these properties implicitly.

The asymptotic behavior of the size of blocking set is still open. We reminded
a linear lower bound and a superlinear upper bound in Chapter 4.

We know that the problem of recognition of visibility graphs lies in PSPACE.
I do not know if the recognition problem is in ∃R-complete or in another class.

The Big Line Big Clique conjecture still remains open. We provided an al-
ternative proof for the case k = ℓ = 4. On the other hand we also provided
Theorem 43 which proves that ordered set representable graphs cannot help with
open cases. Nevertheless it would be nice to decide remaining cases.

With the fast development of both hardware and computer science it would
be possible to try to run provided computer experiments in the horizon of several
years. Especially the experiment provided in Section 5.4 could bring interesting
results as SMT solvers are still young compared to SAT solvers.
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[48] Pór, Attila, Wood, David R. The Big-Line-Big-Clique conjecture is false
for infinite point sets. arXiv:1008.2988 [math.CO].

[49] Ramsey, Frank P. On a problem of formal logic. In: Proceedings of the Lon-
don Mathematical Society. 1930, vol. 30, pp. 264–286, DOI:10.1112/plms/s2-
30.1.264.

[50] Schaefer, Marcus. Complexity of some geometric and topological problems.
Springer 2010. ISBN 978-3-642-11804-3.
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List of Tables

1. Table 3.1 shows an example of blocking of one modulo class in an OSR
graph with 35 vertices.
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List of Abbreviations

1. OSR graph G is a graph for which there is an Ordered Set Representation
(|V (G)|, L) such that the given graph G is isomorphic to the visibility graph
ν((|V (G)|, L)) as defined in Definition 3.4.1 and Definition 3.4.1.

2. SMT stands for Satisfiability Modulo Theories, the branch of satisfiability
theory, see Chapter 5.

3. SMT2 is a popular input format of SMT formulae.
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Attachments

1. SAT experiments:

(a) sat.cpp is a program that generates input in the DIMACS format for
a SAT solver.

(b) paint.c is a program that gets numbers of edges, and paints the OSR
graph in a MetaPost file.

(c) Files 91.txt, 92.txt, 93.txt, 94.txt, 95.txt, 96.txt contain-
ing lexicographically numbered triples of vertices. Positive ones are
exactly those which are in the L of the Ordered Set Representation.
These are the only ones with nine vertices without K4 in the visibility
graph or ℓ = 4. There are no such OSR graphs with ten vertices.

(d) File 42.txt contains the biggest OSR graph without k = 5 and ℓ = 4
found. The format is the same as the format of previous files.

2. File smt.cpp is a program that generates an input for a solver in the
SMT2 format.
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