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Introduction

In the recent years, quadrocopters have appeared on the market as a new toy.
While they certainly offer a lot of entertainment, we (and many others) see them
differently. We see an opportunity for interesting experiments in the field of
artificial intelligence and planning. Quadrocopters along with other multi-rotor
aircraft are very maneuverable and can be equipped with a wide variety of sensors.
Thanks to that, a wide range of experiments can be performed with them. A lot
has already been done in the field but there still is a lot of space left to fill.

The massive potential of multi-rotor aicraft for future applications motivated
us further to start experimenting with them. They come in various sizes, and can
be adapted or purpose-built to perform various tasks via the number of rotors
and selection of equipment. They are suitable for various applications, ranging
from entertainment through delivery services up to search & rescue operations
or military applications. Therefore, we believe research in this field to be very
important. We would like to create a founding base, upon which we (and others)
could build in the future, or use it directly in real-world applications.

The most fundamental aspect of quadrocopter operation is path planning. In
order to be able to perform tasks, the aircraft (or navigator) has to possess the
ability to navigate from point A to point B safely and efficiently. We will examine
this in the thesis. We will study path-finding algorithms, pick the one we consider
best, and evaluate its performance by experimenting with a real quadrocopter.
To make this easier, we will first create a 3D environment editor which will allow
us to conduct the experiments.

As stated earlier, many experiments have already been performed. Most of
them have used sensors outside of the aircraft. An example of that is using
a system of cameras in a room to accurately determine the position or other
parameters of the aircraft within. We aim to use only the sensors available on
the quadrocopter, and a computer as a controlling device. This is, however, just
a small step in a big dream of one day having an autonomous aerial drone.

We will model various scenarios. The quadrocopter will always be placed in
a closed room with or without objects. We will model this room in the program
and set start and goal positions in the real room as well as in the model. Objects
will be obstacles that the quadrocopter must avoid. Then the program will have
to find a path from start to goal that the quadrocopter can follow, and finally
navigate the aircraft without crashing.

There are three main goals of this thesis. The first is to create a 3D editor,
where it will be possible to model a real room with obstacles in a simple and in-
tuitive way. The second goal is to implement a path-planning system. The third
goal is to add the capability to navigate a quadrocopter using the editor and
the path-planning system. The application should be able to navigate a quadro-
copter from a given starting point to a given goal point within the room using the
created model of the room to avoid obstacles and fly in a safe and steady manner.

The structure of the thesis is as follows. First, we will examine the features
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of the environment editor. Then, we will introduce the chosen solutions and
technology - DirectX. A concise discussion of the implementation of the editor
will follow. Then we will move on to path-planning algorithms, take a look at a
selection of the algorithms we considered and at the one we chose - Lazy Theta*.
This section is, to a great extent, theoretical. Finally, we will introduce the Parrot
AR.Drone 1.0 and discuss the performed experiments.
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1. 3D environment editor

The editor is the core part of the application. All the other components are
connected to it and extend its functionality. It allows the user to model the envi-
ronment — a room with obstacles and the start and target locations. Then the
path-finding algorithm can be run to find a path from start to target suitable for a
quadrocopter. Finally the application can connect to a Parrot AR.Drone quadro-
copter and navigate it along the path. Everything is done in three-dimensional
space. In order to draw 3D objects and manipulate with them, a 3D graphics
API (Application Programming Interface) is required.

To navigate a quadrocopter, the application must repeatedly send commands
to the aircraft with a very short delay. Thus, the application should be real-time.
A new frame should be rendered at least 30 times per second.

1.1 Editor requirements

In this short paragraph, we discuss the necessary features our application must
implement. Either because they are the core functions of our application or
because a potential user simply expects to have such features at his disposal.

The most basic functionality comprises operations on objects in the environ-
ment. These operations cover the Addition of new objects and modification/re-
moval of objects added before. The application must also provide a 3D view of
the environment, so that the user can see what he has created. It should then
have an intuitive user interface implemented in such a way, that the user can in-
teract with the application seamlessly. It should also be possible to correct errors
easily, thus undo and redo functionality is a must. It is also important to provide
functions to save the environment into a file and load it later.

1.2 Window layout

Let us first take a look at what the application looks like. There are essentially
two options how one can create a 3D environment editor. It is important to realize
that this choice directly determines the way the user interacts with objects.

The first is to split the window into four smaller windows or sub-windows.
These provide the user with a 3D view of the created world and three 2D projec-
tions, each aligned with one of the (orthonormal) axes. This is, however, rather
complicated to implement, and more importantly, to work with. The user would
have to use the 2D views to modify objects, and he could observe the changes
in the 3D preview. This is perhaps easier to grasp but less efficient to use. For
example, changing the dimensions of an object would require one operation per
each of the 2D views, so 3 operations overall. Implementation-wise, to merge
these operations into one, we would obtain the same result as when using only a
single 3D window.

The other approach is to only create a 3D window, where the user will be able
to both modify and view the environment. This is easier to implement and for
the user to work with. Unlike in the example before, changing the dimensions
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of an object would only require one operation overall. Furthermore, it is more
natural, because the user is modelling the environment as he would in real life.
Considering that, we chose this option. It is not without disadvantages, though.
It is a lot more difficult to place objects at a precise position using the mouse, so
it is more convenient to implement a way around this. One must remember that
the 3D window is actually just a projection of the 3D world onto a 2D plane.
So to interact with objects using the mouse, we must be able to transform 2D
mouse pointer coordinates into a ray in our 3D space, and then intersect it with
the object mesh. This is called picking and will be described more closely later
(see chapter 2.1.4).

User interface layout is also a part of the window design and appearance. The
user interface is split into three parts: a menu bar on top of the screen, an objects
bar on the bottom of the screen and a context menu, which is only displayed near
the mouse pointer when activated. Figure 1.1 shows the application window.

Figure 1.1: Window appearance

1.3 Related applications

There are many 3D editors available on the market, be it commercial or non-
commercial solutions. At the lower end of the range are modelling applica-
tions designed for creation of single 3D models, scenes and animations. Namely,
such applications include, for example, 3DS Max [1] by Autodesk, Google
SketchUp [2] and Blender [3]. On the other end of the spectrum, there are
complete game engines with tools, capable of not only editing scenes but also
scripting and implementing artificial intelligence solutions. These include the fa-
mous CryEngine Software Development Kit [4], Unreal Engine 4 [5] and
many other sets of tools.

We can look up to those solutions for inspiration, however, they are very
advanced and we cannot hope to match their level of quality and feature-richness.
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Our editor is differentiated from those applications in multiple ways. The
editor does not support detailed modelling of single objects, rather is intended
for modelling of rooms and other realistic 3D environments with simple objects.
The user places pre-defined objects into the environment and can resize and rotate
them. More complex objects can be created by grouping several simple objects
together.

Furthermore, the entire editor is implemented with the support of the 3D
graphics API. In comparison with the tools mentioned above, this mostly ap-
plies to the user interface of the application. The editor is also equipped with
a path-planning system. We are not aware of modelling software with such fea-
tures. Of course, game engines implement path-planning as part of their artificial
intelligence solutions. Quadrocopter navigation also sets the application apart.

A related quadrocopter project is, for example, ardrone autonomy (see [6]).
However, we are not aware of this project implementing an environment editor or
a path-planning system. Multiple programs for manual quadrocopter user control
are also available.

1.4 Supported objects

The editor supports three types of base objects: A cube, a cylinder and a sphere.
These objects can be transformed into more general variants by scaling. The
cube can be scaled into a rectangular cuboid, the sphere into an ellipsoid and the
cylinder can be transformed into an elliptical cylinder (a cylinder with elliptical
base).

More complex objects can be created by grouping multiple simple objects
together. The following figure 1.2 shows a table and a chair modelled in the
editor.

Figure 1.2: A table and a chair
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1.5 Program functions

As we have already stated, the editor is intended for modelling of rooms or other
3D environments. The environment model is essentially a 3D map of objects.
The environment model can then be used to perform path-planning and ulti-
mately the path can be used to navigate a real quadrocopter within the modelled
environment.

First, the environment must be created. That is done by setting its dimen-
sions. This process creates three walls, which form the boundaries of the envi-
ronment. Then, objects can be placed inside.

Objects can be positioned by moving them with the mouse, setting a precise
position or by setting their offset. Offset is the distance of the object from the
three boundary walls. Objects can also be scaled and rotated to properly repre-
sent their real-life counterparts. Furthermore, objects can form groups. A group
can then be moved and rotated as a whole. Groups cannot be scaled as it is not
clear how this operation should behave.

To help the user correct mistakes easily, undo and redo functions are imple-
mented. They enhance the user experience greatly.

The modelled environment can be saved into a file to save progress. The envi-
ronment model is essentially a map. Usually, environments of scenes in computer
games are also called maps. The file can later be loaded for further editing and
use.

Path-planning requires a starting location and a goal location to be set. This
can be done by placing special objects into the environment. If a path is found,
it is then displayed as connected line segments.

The path can then be used to navigate a quadrocopter. Alternatively, way-
points can be placed in the environment, which allows for the path to be set
manually, skipping the path-planning process.

1.6 Use case

Let us present an example of using the program. We will model a room 4 m
by 4 m, 250 cm tall. In the room is a table and a bed. The quadrocopter start
location will be placed on the table and the goal location will be on the ground
next to the bed. Buttons are displayed in brackets: [button].

After clicking the [NEW MAP] button in the main menu, the room dimensions
are set (in centimetres). The scale parameter is left at its default value. After
confirming the data by pressing the [OK] button, the editing process can start. It
will be necessary to move the camera, which is done using the well-known WASD
combo. The [R] and [F] move the camera up and down, respectively.

The model of the bed is a simple box. A cube is placed into the environment
by clicking the [CUBE] button (first button from the left in the object bar). If
the cube is not selected, it should be selected by clicking it with the [left mouse
button]. The context menu is open by clicking the [right mouse button]. The
[Resize] button is clicked and the cube is resized to 200 cm length, 80 cm width
and 50 cm height to match the dimensions of the bed. The bed is on the ground
and is 10 cm far from the rear wall of the room and 20 cm far from the left wall.
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To position it in the program, the [Offset] button in the context menu is clicked,
and the parameters are set. The pairing of walls in the application with the walls
of the real room is up to the user. We consider the X offset to be the distance
from the left wall and the Z offset the distance from the rear wall. The Y offset is
always the distance from the floor to the object. The model of the bed is shown
in figure 1.3.

Figure 1.3: Model of the bed

The model of the table consists of three cylinders. The base is a cylinder 20 cm
in diameter and 4 cm tall. The board of the table is supported by a single colum
5 cm in diameter and 70 cm tall. The top of the table is a 3 cm thick elliptical
board 50 cm wide and 70 cm long.

The table can be constructed at an arbitrary location. The three cylinders
must be placed so that their centres align vertically. The [Position] button in the
context menu provides the necessary functionality to place the object centre at
a given location. Place the base of the table 40 cm from the left wall (X axis),
2 cm from the floor (Y axis) and 200 cm from the rear wall(Z axis). Then the
base is resized using the context menu [Resize] button. The supporting column
is scaled and positioned in a similar way, only at 39 cm height following its own
dimensions. The board of the table is also scaled and positioned similarly at
74 cm height. The board and the column slightly overlap in the model, however,
this does not cause any problems.

All the three cylinders are selected and a group is created by clicking the
[Group] button in the context menu. Then the table can be manipulated as a
single object. After clicking the [Move] button in the context menu, it is placed
into position using the mouse. The drawn grid can be used to estimate the
position of the table.

To be able to run the path-planning algorithm and quadrocopter navigation,
the start and goal locations must be set. There should always be at least 150 cm of
free space above the start and goal locations to make sure the aircraft can safely
take off and land. After clicking the [START] button (fourth button from the left
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in the object bar) and then clicking the top of the table, the start location is set.
The goal location is placed in the same way after clicking the [GOAL] button (to
the right of the [START] button). The start direction is set by selecting the start
location object and clicking the [Direction] button in the context menu.

By clicking the [BUILD] button in the menu bar the environment will be build
for the path-planning algorithm. The blocked environment units are displayed
as black cubes. This display can be turned off by pressing the [Z] button on the
keyboard. The path-planning algorithm is run by clicking the [PLAN] button in
the menu bar. A path is found and displayed as a purple line.

Figure 1.4 shows the finished model.

Figure 1.4: The finished model, also displaying the path

To connect to the quadrocopter, the [CONNECT] button is clicked. Before
the application can connect to the aircraft, the computer must first be connected
to it over Wi-Fi in the operating system. The quadrocopter should be placed and
orientated to match the start location and start direction. Pressing the [FLY]
button initiates the navigation and the quadrocopter starts flying.

Further information about the functions of the program and their use can be
found in the attached user guide. There also is a stand-alone version of the user
guide on the attached Disc.
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2. Chosen technologies and
solutions

In this chapter, we discuss the solutions and technologies we decided to use when
implementing the editor.

2.1 API for 3D graphics

When choosing the API for 3D graphics, there are many options. One can choose
either one of the dominant low-level DirectX [7] and OpenGL [8] APIs, or use
a higher-level API like OGRE [9]. Actually, OGRE is a game engine, not just
an API. Out of these, DirectX was chosen. First, it not only provides an API
for 3D graphics, but also for input devices and other hardware. Second, it is
the most widely used 3D graphics API, especially in game industry. That is
why it was chosen over OpenGL. DirectX also defines its own standard for files
defining 3D models, and has built-in methods to load models from such files. This
made the process of making basic geometric objects for the application very easy.
These were created in Google Sketchup with 3D Rad plug-in, both of which are
available for free. DirectX and OpenGL are very similar and essentially have the
same features, so we chose the more popular one of these two.

Using OGRE or any other engine would only add an unnecessary layer to the
application framework, that would also add a lot of extra code. And since we
were aiming for simple visuals in the editor, we saw DirectX as a better choice.
OGRE is a great tool but not suitable for our project because it is simply too big
and meant for projects with a much higher emphasis on graphics quality. OGRE
would be more suitable for a game project with a lot of graphical content.

However, choosing DirectX has one seemingly major downside — limited
portability. We did not consider this to be a big issue, though, because one
can simply run a virtual machine or use a compatibility layer to run a Windows
application on other systems.

2.1.1 DirectX and Windows game basics

Using DirectX to develop games and other real-time applications is usually con-
nected with the use of WIN32 API (Windows API). WIN32 API is a set of
libraries for programming of Windows applications.

An important part of DirectX is the DirectX device. One can think of it as a
layer between the application and a computer video card, and it provides video
card access to the application. In the core, our application is very similar to a
game. At first it is initialized, and then runs in an infinite loop. In this loop
it either handles basic Windows messages or renders a new frame. The loop is
called message loop.

Windows messages are part of the operating system and serve a purpose of
transferring information between windows and from the system to a window (like
user inputs). At the heart of this system is the message queue.
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In a real-time application, an appropriate method of extracting messages from
the message queue must be chosen. The WIN32 API provides two methods to
extract messages from this queue. GetMessage and PeekMessage, and they differ
greatly in their behaviour. GetMessage tries to retrieve a message from the queue
and if there is none, it then waits until a message appears. This would cause the
application window to refresh only when it receives a message, which is not real-
time.

A real-time application must use the PeekMessage method, which does not
wait for messages. So if the application receives a message, the message is pro-
cessed. Otherwise a new frame is rendered by calling the update method of the
application, as can be seen in the following figure 2.1.

Figure 2.1: Standard game message loop

2.1.2 DirectX 3D model representation

3D models can be represented in multiple ways. One of the very common ways
is the polygonal mesh representation (see [17]). In this representation, the 3D
model is a mesh of polygons. DirectX also uses this representation.

Polygons (usually triangles) are composed of vertices. The polygons then
define faces and faces together form the entire surface of the model. For the
purposes of lighting, each vertex also has a normal vector. The normal vector
determines how light reflects off the surface of the model.

DirectX defines a file format (X file, extension .x ) to store 3D model data
using the polygonal mesh representation. The file contains the vertex data: A
list of vertex coordinates, vertex normal vectors and a list of polygons. Vertex
colours are also stored in the file, and optionally texture coordinates and texture
file names.

2.1.3 DirectX transformation pipeline

The modelled environment is viewed through a camera, which defines a point of
view within the environment. The image that the camera can ”see” is rendered
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on the screen.
For a model to be rendered on the screen, it must be transformed multiple

times. Before we explain the transformations, let us first introduce the spaces
the model is gradually transformed into.

Model space: Is a 3D space with origin and three orthonormal vectors forming
its basis. The model vertices and normal vectors are defined within this
space.

World space: Is a 3D space like model space. However, unlike model space, it
contains all the models. The camera is also positioned within the world
space.

Camera space: Is again a 3D space like model and world space. In camera
space, the origin coincides with the camera position and the Z axis is point-
ing in the direction the camera is looking.

Projection space: Is a 3D space of a cuboid shape.

Viewport: Is a 2D space, the rendering target to which the models are trans-
formed. It is a part of the application window.

When a model is loaded from an X file, its vertex coordinates are in the
model space. The data has to go all the way through the DirectX transformation
pipeline in order to appear on screen. The transformation pipeline is illustrated
in figure 2.2.

Figure 2.2: DirectX transformation pipeline

First, the model has to be transformed from the model space to the world
space. This transformation is composed of three transformations — model scal-
ing, rotation and translation. It is represented by a world matrix. To obtain
this matrix, the model scale, orientation and position within the world must be
set. A temporary matrix is computed for each of the 3 transformations, and then
these matrices are multiplied to obtain the world matrix. This matrix is unique
to each model.

Then the transformation from the world space to the camera space follows.
The camera position and orientation within the world are used to compute a
view matrix. This matrix is common to all models.
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Finally, the transformation from the view space to the projection space is
performed. It is represented by the projection matrix, which can be created
using a built-in DirectX method and can use various coordinate systems. DirectX
naturally uses a left-hand coordinate system, which is a Cartesian coordinate
system. When you extend your left arm, bend your fingers upwards and extend
your thumb. Your hand shows the direction of the X axis, your fingers show the
direction of the Y axis and your thumb shows the direction of the Z axis.

In our editor, we use the method which creates a projection matrix for a
left hand coordinate system. Perspective projection is used, which makes objects
close to the camera appear bigger than objects far from the camera for a natural
result. This matrix is again common for all models.

The projection matrix defines the viewing frustum. That is a volume in
world space, in which objects (or their parts) are visible. In perspective projec-
tion, this volume is a cuboid. It can be visualized as a pyramid intersected by the
parallel front and rear (back) clipping planes. The clipping planes are two planes
at a set distance from the camera. The direction the camera is looking is a vector
perpendicular to both these planes. If an object is closer to the camera than the
front clipping plane, it is not rendered (clipped). Analogically, an object further
from the camera than the rear clipping plane is also clipped. An illustration of
the viewing frustum can be seen in figure 2.3.

Figure 2.3: The viewing frustum
Source: Microsoft Developer Network, [12]

The volume within the pyramid and between those planes is the viewing
frustum. The objects in the viewing frustum are projected onto a 2D plane—the
viewport. The viewport is the target area for rendering. It is a rectangular
part of the application window, and it also defines depth range, into which the
scene is rendered. This range is most often from MinZ = 0 to MaxZ = 1.0 and
is not particularly interesting for us as we do not modify it or use it in any way.

The transformation from the projection space to the viewport is performed
automatically. We do not need to compute nor set any matrices. DirectX auto-
matically obtains the parameters of this transformation from the viewport data.
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2.1.4 Picking

As we stated before, picking is a process of transforming coordinates from the
2D screen into a ray in the 3D space, and intersecting it with meshes of objects.
In order to do that, we have to move along the DirectX transformation pipeline
backwards. Picking is a key feature of the application and is illustrated in figure
2.4.

Figure 2.4: Picking illustration

Picking starts with coordinates (usually of the mouse pointer) within the
window. Then a line within the viewport is created. The line is defined by
two points, both with x and y components the corresponding mouse pointer
coordinates, and z component MinZ and MaxZ, respectively.

Then both those points are transformed from screen space back to model
space using inverse transformation matrices. it can either be done manually or
using a built-in DirectX method.

In the editor, we use the build-in method D3DXVec3Unproject. The advantage
of using the built-in method is that we save time and the method may be more
optimized than our solution would be. This method takes the point, viewport, and
the projection, view and world transformation matrices as parameters. It outputs
the coordinates of the point in model space. On a side note, if coordinates in the
world space are desired, the world matrix can be set to identity matrix.

Finally another another built-in DirectX method is used to compute the pre-
cise coordinates of the intersection of this now transformed ray and the model
mesh. The method also returns a boolean value signifying whether or not the ray
intersects the mesh.

In our application, object selection and movement are implemented with the
use of picking. If the left mouse button is pressed, we perform picking with all
objects. From the objects that intersect the ray, we choose the one closest to the
camera, as that is the object in the foreground and the object the user intended
to select or move.
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In case the object is being moved by the mouse, the movement is smooth.
The position of the object is updated every frame. The movement vector is
computed as the difference between the intersection coordinates of two successive
picking operations (one from the previous frame and one from the current frame).
Between two successive frames, the user can only move the mouse by a little, thus
the object also moves only slightly. Note that to move the object using the mouse,
the user must hold the left mouse button. When the button is released, picking
is not performed, thus the object does not move.

Picking is also used when new objects are being placed in the environment.
It is performed with already existing objects and also with the planes represent-
ing environment boundaries. The intersection coordinates then determine the
position of the new object.

2.2 User interface concept

The user interface of the editor consists of buttons. Usually, buttons in applica-
tions are implemented as standard Windows buttons. However, we wanted to try
something different. We chose the approach game developers take — designing
and implementing custom buttons using the 3D graphics API (DirectX). We took
advantage of the fact that DirectX is more than only a 3D graphics API; it also
provides an API which encapsulates input devices, DirectInput. The application
also implements a custom cursor.

A button has an image which is rendered on the screen. Each button has a
unique identifier and buttons also support highlighting.

The main advantage of this approach is that no further libraries are required.
Furthermore, thanks to using DirectInput and the application being real-time,
the user interface is very smooth and responsive.

However, this approach has one major disadvantage. It takes a lot more time
and effort to develop custom buttons than to use a library or Windows buttons.

2.2.1 Input processing

To process inputs, an input handler is required. The input handler should commu-
nicate with the input devices and the GUI (Graphical User Interface) to process
the inputs and control other components of the application accordingly.

The input devices are encapsulated by DirectInput. DirectInput obtains the
state of keyboard keys (up or down) and mouse buttons (again up or down). It
also obtains mouse movement speed, which is used to move the mouse cursor.

After the state of input devices is obtained, mouse parameters are sent to the
GUI component to determine whether a button was clicked. An identifier of the
button is returned to the input handler. Finally, the input handler processes the
keyboard inputs and the clicked button.

However, certain inputs are more complex than pushing a button. For ex-
ample, setting the dimensions of an object requires three values to be set by the
user. Such inputs are obtain with the use of Windows dialogs.

16



2.2.2 Undo and redo

To provide undo and redo functions, the application must keep track of performed
operations. Each of the operations must be somehow encapsulated within an
action which also contains data about what the operation performs, so that it is
possible to undo it.

To implement undo and redo, we chose the Command pattern (see [13]).
An alternative we were considering was the Memento pattern (see [14]). We
found the Command pattern to be superior to the Memento pattern for undo
and redo implementation. The Memento pattern stores information about the
state (essentially checkpoints), thus it can be very memory intensive.

The Command pattern provides much more flexibility by encapsulating op-
erations into commands. Each command stores information about the change it
performs — the affected objects and change of their parameters.

We store the commands in a stack-like structure. Thus, undone commands
are lost when a new command is created. It would be possible to store the com-
mand in a tree-like structure to keep the entire history, however, we considered
it unnecessary.

2.3 Saving the environment into a map file

Modelling complex environments may take a long time. Thus, it is necessary to
provide a way of saving the work, so that it can be further edited later.

The file should contain all the data necessary to reconstruct the environment,
when it is loaded. Essentially, three kinds of information should be saved in the
file:

• Parameters of the environment (dimensions)

• Models with their parameters

• Groups and their parameters

We have two choices of storing the data. Either use an XML file or a simple
text file with custom format.

We chose to store the data as a text file with custom format. The file is a
list of all the parameters. First, the environment dimensions are listed. Then the
model data and group data follow.

Using XML would require another library to parse the files. As the structure
of the saved data is very simple, we considered XML to be unnecessary. XML
would be more suited for storage of more structured data.

17



3. Editor implementation

Here we are going to take a look at how the editor is implemented. We use WIN
32 API quite extensively. Since the application is real-time, it runs in a loop. We
can think of this loop as having three parts: input processing, transformations
computing and image rendering. When the application is controlling a drone, it
also receives data from the drone and sends instructions to it during this loop.

To process inputs, we take advantage of DirectInput and we also create cus-
tom buttons using DirectX. More complex inputs are obtained with the use of
Windows dialogs. The concept of the user interface is described in chapter 2.2.

Windows dialogs run in a separate window and thread, so in order for our
application to not process the inputs in these windows, the loop must be paused.
Otherwise, DirectInput would register key and button states.

The editor consists of multiple components and each component comprises
several classes. In the following figure 3.1 we present the Component diagram.
The entire class diagram is on the attached Disc.

Figure 3.1: Component diagram

• GameMain component is in fact a single class, which exists only in a
single instance. It serves the purpose of connecting all the other components
together (as can be seen in the diagram).

• DirectX component comprises of classes that implement core DirectX func-
tionality. It consists of a class to manage DirectX itself, a lighting manager,
a text renderer, and the camera.

• Map component contains only two classes. One class encapsulates file
operations—map loading and saving, and the other contains information
about the map (room dimensions and scale) and is responsible for rendering
the walls and a grid which serve as guidelines for the user.
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• Models component encapsulates 3D models and their groups. It has three
classes. One class representing a 3D model, then a class defining a group of
models, and finally a wrapping class which encapsulates all the models and
groups in containers and implements many access methods and operations.

• Input & GUI component contains multiple classes. There is the input
manager, which encapsulates input devices. Then there is a class responsi-
ble for dialog windows and obtaining input data from them. And finally, the
GUI classes: a class for 2D image rendering, a button class and a wrapper
which encapsulates all GUI elements in containers.

• Command pattern component implements undo and redo functionality.
It contains an abstract command class, from which the non-abstract specific
command classes are inherited. These commands are held in a command
stack within a wrapper class.

• Path-finding component implements the path-finding algorithm and re-
lated features like the representation of the environment required by the
algorithm. The implementation of this component is described in chapter
4.3.

• Drone control component implements network communication between
the application and movement methods for drone control. It also imple-
ments the algorithm to navigate the drone along the path provided by the
path-planning component or defined by waypoints. This component is de-
scribed in chapter 5.

3.1 DirectX component

The DirectX component implements classes to handle DirectX objects at the core
of our application, and our camera. The main task of this component is to provide
access to the computer video card.

3.1.1 Basic DirectX classes

In order to use DirectX for rendering, we first need to create a DirectX device.
To do that, we use a DirectX manager class, dxMgr. This class also sets the
parameters of the viewport we mentioned in section 2.1.3.

The dxText class is very simple and lets us render text.
The LightManager class is a container of lights, which provide lighting for

the scene. Without them no objects would be visible. A light is specified by its
position in the environment, its colour and range. Lights are not physical objects
in our application and they do not correspond to any objects in the real world.
They purely serve the purpose of illuminating the scene for rendering.

3.1.2 Camera class - scene view

The application implements a first person camera, which can be moved around
and rotated. The camera is defined by the following parameters:
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Figure 3.2: DirectX component class diagram

• camera position: a three-dimensional vector describing the position of
the camera in the world

• camera angles: three floating point numbers, roll, pitch and yaw, rep-
resenting the camera rotation around the z, x and y axes of the world
coordinate system (world space), respectively. We only implement pitch
and yaw rotations for our camera, as roll is unnecessary for the application.

• camera vectors: a set of three-dimensional vectors look, right and up.
They point in the directions of where the camera is looking, where is the
camera right and up. These vectors are calculated using the camera angles.

When the camera is first created, it is set to look at the coordinate system
origin, and positioned to look along the Z axis of the coordinate system. The
projection matrix is initialized using a built-in DirectX method with field of view,
aspect ratio, near clipping and far clipping distances as parameters. Then the
camera is placed in a more convenient location.

Each time some camera parameters change, the view matrix has to be recalcu-
lated. Camera movement is realized by adding the corresponding camera vector
(multiplied by a small number) to its position, and then recalculating the view
matrix. The camera can move in all three directions.

To calculate the view matrix, we implement our own method. We do not use
DirectX built-in methods this time. We start with the world coordinate system
unit vectors. We set the look vector to be (0, 0, 1), the up vector to be (0, 1, 0),
and the right vector to be (1, 0, 0). Then we transform these vectors using the
current camera angles, and we obtain the camera vectors. Finally, we fill the view
matrix. It looks like this:

right.x look.x up.x 0
right.y look.y up.y 0
right.z look.z up.z 0

dot(right, position) dot(look, position) dot(up, position) 1
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The matrix is of size 4x4 and at first we set it to identity. This makes the last
column (0, 0, 0, 1), and we leave this column that way. The first column is then
set to be the camera right vector and dot product (also called scalar product)
of this vector and the camera position vector. The other columns are filled in a
similar way, as can be seen in the matrix above.

3.2 Models component

This component encapsulates all the classes related to the 3D models in the
program. There is the Model class itself, which represents the objects and their
3D models. Then there is the ModelGroup class, which represents a group
of models. Operations can then be performed on those groups rather than on
each object individually. Finally, the ModelWrap class implements a wrapper
around the models and groups. It stores models and groups in containers and
implements many data access methods and operations.

Figure 3.3: Models component class diagram

3.2.1 Model class

The Model class provides functionality for the 3D model loading and drawing.
The class contains the following data:

• model mesh: the data loaded from the X file. This defines the shape of
the model. Multiple models with the same mesh do not share the data —
each model has its own copy of the mesh. The model also carries its type,
which is tightly connected with the mesh. It serves as an identifier, and it
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determines which mesh should be loaded when a new object is being added,
for example.

• model transformation data: consist of the model transformation vectors
and their respective matrices. The transformation vectors define the scale,
rotation and position of the model.

• group transformation data: Also consist of transformation vectors and
their matrices. However, they define the transformation of the whole group.
These are represented by the groupPosition and groupRotation vectors and
they are set only if the model belongs to a group.

• group identifier: an index into the group container in ModelWrap class,
also signifying whether or not the model belongs into a group.

The render method of Model class uses the model transformation data and,
if applicable, group transformation data to transform the mesh from model space
to world space. It is then presented to the DirectX device, which renders it on
the screen. The class also provides a method to highlight the model. In this case,
a specific scale vector is created and substitutes the original scale vector. The
transformations are applied to the mesh in the exact same way as during standard
rendering, only using this new scale vector. Then it is presented to the DirectX
device in wire-frame mode and with black colour. This results in a highlighting
overlay as seen in the image below. Model highlighting gives us the ability to
show the user which models are currently selected.

Figure 3.4: Seleceted model is highlighted

The models represent objects which are in the role of obstacles in the project.
This is why we must be able to transfer information about models into the envi-
ronment representation of the path-finding component. To do that, the Model
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class implements a method which computes a bounding volume of the model.
This is a volume which we can describe using a mathematical equation and the
entire mesh of the model fits inside it. The fit should be tight. We examine this
in more detail in the chapter about path-planning, see chapter 4.1.1.

3.2.2 ModelGroup class

This class is only a basic STL vector of model indices (into the ModelWrap
group container), and allows us to work with more models at once using group
operations. It also holds the group transformation data — groupPosition and
groupRotation vectors. Group scaling is not supported, because it is hard to
determine how this operation should behave. Moreover, while group rotation is a
very useful operation, the usefulness of group scaling is questionable. It is worth
noting that the class does not perform any computing, it only holds the data and
implements methods the ModelWrap class can use to retrieve and set the data.

3.2.3 Order of transformations

The transformations are performed in this order: model scaling, model rotation,
model translation, group rotation, and finally group translation.

Each transformation is represented by a matrix and they are multiplied to
obtain teh resulting world matrix. Each of the transformations is represented
by a vector, only the rotation transformations are represented by quaternions.
Quaternions are four-dimensional vectors which can represent rotation by an ar-
bitrary angle around an arbitrary axis.

The order in which transformations are performed influences the resulting
transformation. The result should be natural, predictable and anticipated by the
user.

The model mesh is created in such a way that the centre of the model is
identical with the origin of the model’s coordinate system (model space). If the
world matrix is set to identity matrix, the model is then positioned at the world
coordinate system origin. Considering the order of transformations, this means
that the scaling transformation behaves as if the object was inflated. Thus, scaling
does not influence other transformations and is performed first.

The centre of the rotation transformation is in the world coordinate system
origin, so it behaves naturally, too. Rotation must be performed after scaling.
Otherwise the object scale would change with rotation, which is not desired.

Translation places the object centre at a given point. We must perform ro-
tation and scaling before translation. Otherwise, the resulting transformation
would be unnatural, as translation would influence the results of both scaling
and rotation. For example, when the user places an object in the environment
and then decides to rotate it, he expects it to rotate around its own centre, not
around the coordinate system origin.

Group transformations allow for a common transformation of several models
at once. A group usually represents a complex object like a chair. However, it
is only possible to transform individual models. Thus, the group transformation
effect is achieved by placing the models into positions relative to the group centre
and then applying group transformations to individual models. The entire group
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then rotates naturally around its centre. For the same reason as before, group
translation comes after group rotation. Group scaling is not supported.

3.2.4 ModelWrap class

ModelWrap encapsulates models and groups in containers. It contains an STL
vector of models and an STL vector of groups. In addition, it also has an
STL vector of currently selected models. It implements the methods for object
and group manipulation, which are called as a result of pressing buttons in the
application context menu. The ModelWrap creates an abstraction layer over
all the models and groups to make accessing them from the GameMain class
easier. For example, instead of ”asking” each model to render itself, we ”ask”
ModelWrap to render all the models for us.

ModelWrap also implements the logic of creating groups and maintaining
the data after a model or group is deleted. Furthermore, it is able to exchange
necessary data with other components, like with the Map component to save
and load the map.

3.2.5 Creating a group - maintaining data consistency

The operation of creating a group must fulfil one condition. It must not change
the resulting transformations of objects. In other words, when the user creates a
group, he cannot be surprised by unpredictable object movement or rotation.

Let us assume that the group is to be created from an arbitrary number of
existing groups and single objects (objects that do not belong to any group). A
simple algorithm follows:

1. Objects belonging to the selected groups are transformed, so that their
transformations are no longer relative to the centre of their group.

2. A target group is chosen. It is the selected group which has the minimal
index in the ModelWrap group container.

3. All selected objects are added to the target group.

4. The centre of the target group is computed as the average of positions of
all its models.

5. All the selected groups except of the target group are destroyed and deleted
from the ModelWrap group container.

6. The group identifiers of all models are updated.

3.2.6 Destroying a group - maintaining data consistency

This operations turns a group of models into single models. The models are not
deleted from the scene. Maintaining data consistency when destroying a group
is much simpler than when creating one. This operation must also satisfy the
condition that it must have no effect on the resulting image.
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Step 1 of the algorithm above is applied. Then the selected group is destroyed
and deleted from the ModelWrap container. Finally, group identifiers of all
models are updated.

3.3 Map component

In this section we will talk about the map file structure and classes that work
with the files. This is needed so that the user can save what he has created. The
map file is a simple list of map parameters, objects with their parameters, and
groups. The data saved about a model are its type and transformation data. A
group is saved as a list of model indices and its group transformations, just as it
is represented inside the program.

Figure 3.5: Map component class diagram

3.3.1 File structure

The purpose of the file is to store all the necessary information to recreate the
modelled environment. It must contain map parameters, a list of models with
their parameters and a list of groups and their parameters. We use special tags to
separate the different sections of the file. These tags begin with the ’#’ character.
First section is the map parameters section, which begins with #OPTIONS, is
followed by a list of parameters and their values, and finally ends with #EN-
DOPTIONS. There are four map parameters: length, width, height and scale.
Their structure is @parameter value, where value is in centimetres (a positive
integer).

The map parameters are followed by a list of models, which begin with
#MODELS count. Count signifies the number of models that follow. Each
model is then on a separate line. Each line contains one integer and three sets
of floating point numbers and integers separated by spaces. In a set, floating
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point numbers form DirectX vectors and quaternions, and integer numbers form
equivalent values in centimetres and degrees.

The first integer represents the model type. The first set represents the model
position: three floating point numbers as the position vector, and three integers
as the position in centimetres. The second set represents the model rotation, four
floating point numbers for the rotation quaternion and three integers for angles
representing rotation around the coordinate system axes. Finally, the last set
is the model scale - three floating point numbers and three integers in a similar
fashion to the model position.

Then the groups follow. They begin in a similar fashion like models, with
#GROUPS count. Again each group is on one line and it contains an arbitrary
number of integers (model indices) and two sets of floating point numbers and
integers separated by spaces. The first number on the line is the number of models
in this group. The sets represent the group position and rotation like in the case
of a model.

The data in the file are always correct. The floating point values and integer
values match, however, in the case of models belonging into groups, the floating
point data are relative to the group while integer data are absolute. Code 3.1
shows a sample map file.

#OPTIONS
@length 400

@width 400

@height 250

@scale 10

#ENDOPTIONS

#MODELS 3

1 -0.56027 0.00000 -3.13398 68 87 158 0.00000 0.00000 0.00000

1.00000 0 0 90 1.00000 1.00000 1.00000 10 10 10

3 0.56027 0.00000 3.13398 80 87 96 0.00000 0.00000 0.00000

1.00000 0 0 90 1.00000 1.00000 1.00000 10 10 10

2 10.00000 5.00000 -10.00000 100 50 100 0.00000 0.00000 0.00000

1.00000 0 0 0 1.00000 1.00000 1.00000 10 10 10

#GROUPS 1

2 0 1 7.40761 8.73325 -12.79970 74 87 127 0.00000 0.00000 0.70711

0.70711 0 0 90

Code 3.1: A sample map file

3.3.2 Classes of the Map component

The component comprises two classes. Class MapLoaderSaver implements
method for file manipulation — saving the map into a file and loading a map
from a file.

The class MapDescription holds information about the map — dimensions
of the environment and scale. Scale is an important parameter. Not only does
scale influence the size objects appear on the screen, but it also provides a con-
nection between the application units (dimensionless floating point number) and
real-world length (centimetres). This connection is important for the quadro-
copter navigation.

26



3.4 User interface implementation

The user interface is implemented using DirectInput [11] and simulated buttons
rendered on the screen. We use DirectInput in immediate mode to obtain the
state of mouse and keyboard at every frame. This state is then processed by
an input-handling method. This method checks the state of pre-defined keys
(and mouse buttons) and reacts accordingly. We also implement undo and redo
functionality, for which the Command pattern (see[13]) is used. The command
pattern creates an abstraction layer over our operations, encapsulating them into
commands. The commands are stored in a stack-like data structure with an
index pointing at its top (the last valid command). Undo and redo operations
then translate into decrementing and incrementing this index by 1, respectively.

Figure 3.6: User interface component class diagram

3.4.1 Layout and interaction

The user interface is split into three elements. The first is the menu bar on top
of the screen. This contains buttons dedicated to program control, like saving
the created map, running path planning and drone control, and exiting to menu.
The second element is the object bar on the bottom of the screen. This contains
buttons that let the user place objects into the world. The third element is
a context-dependent menu that pops up every time the right mouse button is
clicked. This menu contains buttons which allow the user to work with the
objects within the world.

The user interface elements are described in more detail in the attached user
guide. The guide explains all the button functions and lists all used keyboard
keys.
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3.4.2 Basic classes of the GUI component

The GUIItem class is the class implementing buttons. Each button has an
image and a unique identifier.

The GUIInfo class implements an info panel with a close button. This is
used to display information about an object to the user upon request.

The GUI class is a wrapper class around the GUIItem and GUIInfo ob-
jects, holding them in containers and providing methods at a higher level of
abstraction. It also manages the cursor.

3.4.3 Sprite class

The Sprite class provides a layer over the DirectX sprite objects and related
methods. Sprites are 2D images integrated into a scene and can also be used
to draw elements of the user interface. For more information about sprites, see
[10]. We use sprites to render the images of buttons in the application. A sprite
holds image data with its position and dimensions. Together, they define the
area the image occupies. Sprite then implements the clickOnMe method. Given
mouse pointer coordinates, this method determines whether or not the pointer
is within the area defined by the sprite. It is only called when the left mouse
button is pressed. The purpose of this method is to identify a button that should
be highlighted or was clicked. It is called by methods of the GUI class, which
encapsulates buttons in containers.

The call order is as follows: The input handler (GameMain) calls the
checkClick method of GUI class, which then calls the checkClick method of each
GUIItem, which results to a call to the clickOnMe method of Sprite.

The use if DirectInput proved to have a major disadvantage. The system
cursor is not available in the application (a custom cursor is used), thus the
application window cannot be moved nor resized with the cursor. It would only
be possible using the ALT + SPACEBAR key combination, which most users are
not familiar with. Unfortunately, we were unable to solve this problem. Thus,
we decided to disable window movement and resizing.

3.4.4 BigBrother class

Many of the user inputs are quite complex and Windows dialogs are used to obtain
them. One example of such input is setting object dimensions. This requires
three parameters to be specified and a dialog window allows us to retrieve them
all at once. When a dialog is initiated, our application has to be paused and can
only resume after the dialog is closed. That is due to Windows dialogs naturally
running in a separate thread. The application is paused to ensure that it does
not process any inputs that belong to the dialog window. BigBrother lets us
pause our application, and it also retrieves the data input by the user in the
dialog. When an action that uses a dialog is selected, GameMain sets the pause
tag in BigBrother. While this tag is set, new frames are not rendered. Then
GameMain calls the get function of BigBrother with a parameter signifying
what dialog should be created. Different operations require different dialogs, so it
is necessary to specify, which dialog should be created. BigBrother then creates
the dialog and stores the data, if some are obtained.
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3.4.5 How it works

The DirectInput interfaces we use are encapsulated within the InputManager
class. Every frame, InputManager obtains the keyboard and mouse state. The
keyboard state consists of key states (up or down) and the mouse state consists
of button states (again up or down) and mouse movement parameters. Then
the input must be handled. The handleInput method of class GameMain goes
over all the controls our program uses, checks their state and performs actions
accordingly. Some actions are performed immediately (like camera movement),
for undo-able actions a command has to be created first.

Buttons are simulated as a class GUIItem. Each button has a unique iden-
tifier and an image as an instance of the Sprite class. These classes are very
similar. One could put the type variable directly into the Sprite class but we
wanted to separate button functionality from image drawing functionality. A
button also implements the checkClick method, which only calls the clickOnMe
method of the sprite to determine whether or not this button was clicked. Fur-
thermore, it implements the highlight method that draws a frame around the
image area when the mouse pointer is within the image area. This way we can
give feedback to the user about which button he is going to click.

All the GUIItem elements are encapsulated within the class GUI. This class
holds all the buttons in an (STL vector). Moreover, it manages the cursor. As
we stated before, it implements its own checkClick method which iterates over all
the GUIItem instances and returns the identifier of the one which returned true
in its checkClick method. If none of the items return true, a special identifier
is returned, signifying that the mouse pointer was outside of the user interface
(no button was clicked). The GUI class also manages the already so many times
mentioned context menu, creating it and destroying it when needed. The context
menu consists of buttons, which we have already described.

3.4.6 Undo and redo - the Command pattern

Undo and redo are functions every editor should have. If a user makes a mistake,
we want him to be able to fix it as easily as possible, and so we have implemented
undo and redo functionality. For that, we used the Command pattern.

The Command pattern creates an abstraction layer over the operations, en-
capsulating them within commands. Commands store information about the
operation, so that it can be undone or executed again. The Command pattern
consists of three types of objects: The invoker, the receiver, and commands.
There also is a fourth essential element, the command stack.

The invoker is responsible for command creation. In our application, the
handleInput method of GameMain class acts as the invoker. Every time the
user chooses an operation that is undo-able it creates a new command. Then the
invoker ”asks” the command to execute itself and puts it on the command stack.
Since the invoker is the input-handling method, it is also responsible for calling
undo and redo functions of the command stack object.

There is one class for each type of command, and they are all inherited from
the base abstract Command class with pure virtual Execute and Undo methods.
Every command stores information about the models and values it is modifying.
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Figure 3.7: Command pattern class diagram

Every command has its own receiver, and the Execute and Undo methods call
corresponding methods of the receiver. In our application, only the ModelWrap
class acts in the role of the receiver, because only the operations on models are
undo-able actions and all operations are implemented within ModelWrap.

The command stack is, in fact, not a stack at all. It only simulates stack-like
behaviour. Since we also support redo, the command cannot be deleted from the
stack when Undo is called. That is why the command stack is an STL vector of
commands with an index that is pointing to the last valid command. When Redo
is called, this index is increased by 1 and Execute is called on the command it
points to. When Undo is called, the Undo method of the command is called, and
the index is decreased by 1. When a new command is added, all the commands
with a higher index than the last valid command are deleted. In other words, all
the undone commands are forgotten, and a new one is inserted at the end. This
way we keep the command history ”aligned in a line”, we do not create a tree of
branching histories.

Most commands only store information about the change that happened —
the affected models and the original and new parameters. However, the group
and ungroup commands are a little more complicated. They store the complete
original state of groups. Storing information about the change is not enough
in this case, as it is not possible to reconstruct the object groups using that
information. The entire state of groups is a memento, thus these commands also
combine a small part of the Memento pattern.

3.5 GameMain component

This component provides the connection between all the other components. It
also connects the components to the application window. It comprises of only a
single class — GameMain. It is also the base class of our application. If we
took away all the other components, our application would still work. However,
it would not do anything.

The update method we mentioned in section 2.1.1 is implemented within this
component. Our application can run in two modes: menu mode and editing
mode. Each of the modes has its own special update function responding to
different inputs and performing different operations. Depending on which mode
the application is in, the corresponding update function is called by the update
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method.
The menu update function only handles the three main menu buttons, while

the editor update function handles a multitude of inputs, be it buttons in the
user interface or keyboard keys.

This class also implements picking, which was explained in section 2.1.4. Pick-
ing provides the means to select objects and move them using the mouse. The
implementation of picking iterates over all the objects within the environment.
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4. Path planning

We want to navigate a quadrocopter from one location to another. For that, we
need to be able to find a path between these locations. In order to do that, we
need a way to represent the continuous space in our program. Obviously, that
would be complicated at the least. That is why space is represented as a set of
discrete units. There will also be objects - obstacles in our environment, so we
need a way to represent those, too. We also need an algorithm, which will use
our environment representation to find the path from a start location to a goal
location. Most path-finding algorithms work on graphs, where edges define the
neighbour relationship between vertices. If we manage to define when two units
of our environment are neighbours, we can use such algorithms.

4.1 Environment representation

Naturally, since we are navigating a quadrotor aircraft, we are working with three-
dimensional space. We also need to take into account the freedom of movement of
the aircraft. If we were to navigate an object with its movement constrained to a
plane (like a wheeled or legged robot), we would consider different options than for
an aircraft. To navigate a quadrocopter, we need to represent the complete space
because it can potentially go anywhere within our environment. We would also
like to treat all the dimensions equally, that is, give the aircraft equal options
whether it is moving horizontally or vertically. The condition stems from the
quadrocopter itself. It can move in all directions equally, albeit vertical movement
usually happens at a lower speed than horizontal movement.

There are many options how one can partition continuous space. In the 2D
case, the most basic approach is to create a rectangular grid. The vertices of the
graph can then be the midpoints of rectangles or rectangle vertices. In computer
games, navigation meshes are often used. Navigation mesh defines an accessible
area (surface) as a mesh of polygons. However, navigation meshes are limited
to flat surfaces and are not suitable for 3D space representation. An example of
a navigation mesh can be seen in figure 4.1. The white rectangles in the image
are obstacles. Other possibilities include quadtrees, which divide 2D space into a
grid of rectangles of various sizes. This can save space and speed up the search.
More possibilities are described, for example, in [20], Chapter 3.3.

In case of 3D space, the situation is a little more complicated. Most of the 2D
solutions can be extended to 3D by introducing flight levels, essentially partition-
ing 3D space into a set of 2D sub-spaces. Grids can also be used to partition the
space into a set of units that fill the space without gaps. An interesting option is
the use of visibility graphs. An example of a (complex) 2D visibility graph can
be seen in figure 4.2. The vertices of the graph are vertices of obstacles and two
vertices are connected, when they have line of sight. However, it is not possible
to find truly shortest paths on visibility graphs in 3D space because the truly
shortest paths do not have to be constrained to the edges of the graph, according
to [21]. The article further states, that finding truly shortest paths in 3D envi-
ronments with polyhedral obstacles is NP-hard, so this approach is unsuitable for
us.
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Figure 4.1: A Navigation mesh
Source: Stanford University, [22]

It is most common to partition the 3D space into cubic grids. This way, rea-
sonable time complexity and short paths can be found. Using this representation,
the paths are approximately 13% longer when they are constrained to graph edges
than true shortest paths (not constrained to graph edges), according to [21]. This
gives us a good reason to choose an algorithm, which does not constrain the paths
to graph edges.

Final choice of representation
In the end, we were considering two options. Partitioning the environment

into a cubic grid and using flight levels to partition 3D space into a set of 2D
spaces, which we can then partition into grids of 2D units.

We chose the cubic grid approach. That is because we wanted to treat all the
dimensions in the same way, and the cube is the only 3D body, that is regular
and can fill 3D space without gaps using only translation [16]. These properties
exactly dictate the arrangement of the cubes. Furthermore, this approach is
very natural and simple. There are other 3D bodies that fulfil our space-filling
condition, but they are not regular. So they do not satisfy our condition to
treat all the dimensions equally. Furthermore, they can be significantly more
complicated in shape than cubes. An example is a hexagonal prism or a truncated
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Figure 4.2: A 2D visibility graph
Source: Stanford University, [22]

octahedron.
Now when we have our environment represented as a set of units, we can

represent obstacles as sets of units, too. These units are blocked, so the quadro-
copter cannot pass through them, and has to fly around. We only need to be able
to compute the set of blocked units for each obstacle.

We then define the neighbour relationship, in which two units (cubes) are
neighbours when they share a face, an edge or a vertex. This results in a regular
26-neighbour grid of cubes. Every cube is a vertex with its center as coordinates
and it is connected to 26 other vertices. Now that we know what is a vertex and
when two vertices are neighbours, we have defined a graph.

The second approach is to divide the space into flight levels, and each flight
level into polygons like squares or hexagons. This, however, does not fulfil our
condition to treat all the dimensions equally. Flight levels are separated differently
from one another than cells within one level are, even though there can be some
correlation. Using flight levels presents many questions. What should be the
correlation between flight levels and cells within one level? We would also have
to define when two cells from subsequent flight levels are neighbours. Should
it be only the cells with the same horizontal position or also the in-flight-level
neighbours of those cells?

Furthermore, if we used squares and equidistant flight levels with distance
same as the length of the square side, we might obtain the same result as when
partitioning space into a grid of cubes (depending on how the neighbour relation-
ship is defined), only in a more complicated way.
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4.1.1 Determining blocked cells

Since we represent the environment as a 26-neighbour grid, we need a way to
transform the obstacles in the world into a set of blocked cells. There are many
ways this can be done, perhaps the first that comes to mind is computing whether
the cell(cube) intersects the object. This is quite complicated, as the object can
be arbitrarily rotated and may have a complicated mesh (geometric shape). Thus,
it is better to encapsulate each object within a bounding volume of simple shape.

The easiest bounding volume to use is a bounding sphere. Then all the cells
that intersect the sphere are blocked. Even though this is very efficient and simple,
we chose a slightly more complicated approach. Bounding spheres have one major
problem — they do not fit tightly around objects of elongated shape. That is
why we decided to use bounding ellipsoids. For some objects (a cube for example)
they do not offer any benefits over bounding spheres. But in the case of a general
rectangular cuboid, an ellipsoid gives a tighter fit. Actually, the more elongated
the shape, the bigger the difference between a bounding ellipsoid and a bounding
sphere. From our point of view, bounding ellipsoids are the best compromise
between simplicity and tight fit. Needless to say, the fit is not perfect. Figure
4.3 presents a comparison between a bounding sphere and a bounding ellipsoid
encapsulating the same object.

Figure 4.3: A bounding sphere and a bounding ellipsoid

We would like to mention one more way of enclosing geometric bodies. That is
using bounding boxes. Bounding boxes would be nearly perfect for our application
if we decided to forbid object rotation. Then we could achieve a perfect fit for
rectangular cuboids and a very close fit for spheres and cylinders. And considering
our implementation, computing the set of cells that fall within the bounding box
and should thus be blocked would be very simple. However, when working with
arbitrarily rotated objects, non-rotated bounding boxes actually give a worse fit
(block more cells unnecessarily) than bounding spheres. Rotated bounding boxes
could provide a perfect fit but the calculations would then be complicated and

35



the reason for using any bounding volume is to make the calculations simpler.

4.1.2 Computing bounding ellipsoids

We support three types of basic objects in our application: a cube, a sphere
and a cylinder. By scaling, these objects can be generalized into a rectangular
cuboid, an ellipsoid and an elliptical cylinder (a cylinder with elliptical base). The
ellipsoid is given by its position and three semi-axes. A semi axis is represented
by a direction vector and length.

Assume that the bounding ellipsoid of an object with position p, scaling vector
s and rotation matrix MR is being computed. The bounding sphere radius of the
base (unscaled) object is r. The parameters of the bounding ellipsoid must be
computed: semi-axes x, y, z, lengths of the semi-axes a, b, c and the position of
the ellipsoid pe. The calculation is performed by the following algorithm:

1. Position of the ellipsoid is set pe = p.

2. Lengths of the ellipsoid semi-axes are set. The scaling vector s of the
object is used. The vector has three components s1, s2, s3. The ellipsoid
parameters are set: a = s1 ∗ r, b = s2 ∗ r, c = s3 ∗ r.

3. Semi-axes x, y, z of the ellipsoid are initialized. x = (1, 0, 0), y = (0, 1, 0),
z = (0, 0, 1).

4. The semi-axes are now rotated using the object rotation matrix MR. The
rotation quaternion of the object is also saved within the data of the bound-
ing ellipsoid. It is used in the calculation described in chapter 4.1.4.

If the basic object is a sphere, we do not need to compute the radius of the
bounding sphere, we can simply use the scale of the sphere. Otherwise we simply
iterate over the vertices of the model mesh and find the vertex furthest from the
object centre. The distance between this vertex and the object center gives the
bounding sphere radius R. The same applies to computing the radius r of the
bounding sphere of the unscaled object, the calculation is only performed using
un-transformed vertices of the object.

The resulting ellipsoid encapsulates the object and also creates a slight margin
around it.

4.1.3 Quadrocopter in the environment

Now that we have the objects (obstacles) represented in our environment, we also
need to represent the aircraft. The aircraft is an object with certain dimensions,
and we want it to avoid the obstacles. Thus, we must ensure no collisions happen.
Again, using some kind of a bounding volume can simplify the situation. We could
encapsulate the quadrocopter within a bounding sphere, however, we did not take
this approach. Essentially, we ”flip” the idea.

We can either store information about the aircraft dimensions in the environ-
ment representation or we can compute collisions in the path-planning algorithm.
We chose the former for multiple reasons. Firstly, this approach is much simpler.
We only need to enlarge the bounding ellipsoids of all objects. Secondly, this
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approach does not slow our path-planning algorithm down. Collision avoidance
during path-planning most certainly would slow the algorithm down. It could
potentially have a big impact on the speed of the algorithm.

Computing collisions in our representation would mean computing intersec-
tions of spheres and ellipsoids. This can be transformed into computing the
distance between the ellipsoid and the sphere center (computing coordinates of
the point on the ellipsoid closest to the sphere center). However, the calculation
would be quite complicated.

Needless to say, the way we enlarge the ellipsoids does not give the same result.
What we would need is the outside offset of the bounding ellipsoid. Let us define
the outside offset of an object as a surface on which every point is at a given
distance from the object surface, and is outside of the object. An offset can also
contain points within the object but these are not interesting for us. However, we
only prolong each of the ellipsoid’s semi-axes, adding the quadrocopter bounding
sphere radius to their lengths. This does not produce the same result as the offset
of the ellipsoid. The outside offset of an ellipsoid is not an ellipsoid (because the
offset of an ellipse is not an ellipse). The semi-axes are of the same length as of
the enlarged ellipsoid but the curvature is different. Fortunately, the difference
between them is not too big. We also do not expect our aircraft to be able to
follow the path with perfect precision so we can afford to have some deviation
in obstacle representation. There is enough margin around the objects that no
collision should happen.

This way, the path-planning algorithm is simplified, as it searches for paths
for a point mass. Point mass is an infinitely small physical object. We then use
a path for a point mass to navigate a real object with dimensions. The path
does not collide with the enlarged obstacles, and the enlarged ellipsoids provide
enough of a margin around the bounding ellipsoids that the aircraft does not
collide with the obstacles. We should also point out that the bounding ellipsoids
(not enlarged) already create a margin around the real obstacles, only lowering
the chance of collision.

4.1.4 From a bounding ellipsoid to blocked cells

An obstacle is represented by its bounding ellipsoid. We then enlarge this ellipsoid
to take the quadrocopter dimensions into account.

Now we need to transform this representation into a set of blocked vertices
(cubes) in our environment representation. We could define a blocked cube this
way:

A cube is blocked when the bounding sphere of this cube is inter-
secting the bounding ellipsoid of an obstacle.

This would, however, result in a complicated calculation. We would have to
compute the distance between a point and the surface of the ellipsoid.

We use a simpler definition:
A cube is blocked, when its centre is within the bounding ellipsoid.
We can compensate for the error (in comparison to the previous definition)

by further enlarging the ellipsoid, lengthening its semi-axes by a small constant.
However, we do not do this as the ellipsoid is already enlarged enough by the
dimensions of the quadrocopter. More importantly, this definition then makes the
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calculation very simple, as we only use the equation of the ellipsoid to calculate
whether the cube centre falls within the ellipsoid or not. We do not have to
compute an intersection of a cube (or sphere) and an ellipsoid, which is very
complicated. This approach is very efficient.

Assume an ellipsoid with semi-axes x, y, and z of lengths a, b and c. The cube
has a midpoint p and the quadrocopter bounding radius is r. The calculation for
a single cell follows a simple algorithm:

1. Transform p into the coordinate system given by the ellipsoid semi-axes
x, y, z. Point p is translated and rotated using the ellipsoid position and
orientation parameters and has coordinates ap, bp, cp in the ellipsoid coordi-
nate system.

2. Follow formula 4.1. If f ≤ 1.0, the cube is blocked. Otherwise the cube is
not blocked.

f =

(
ap

a + r

)2

+

(
bp

b + r

)2

+

(
cp

c + r

)2

(4.1)

4.2 A survey of path-finding algorithms

Most modern path-finding algorithms are based on Dijkstra’s algorithm with
some adjustments. Here we will look at the widely-used A*, and also some
more sophisticated path-finding algorithms, which are based on A*. The most
important thing we had to keep in mind, was that in the end, we will be navigating
a quadrocopter. These have very high freedom of movement, but can also be quite
unstable when frequently or rapidly changing direction. That is why we would
like our algorithm to find paths with few direction changes, while keeping path
lengths reasonably close to optimal and direction changes not too sharp. That
would allow our quadrotor to fly in a smooth and steady manner.

4.2.1 Dijkstra algorithm

Dijkstra’s algorithm is a well-known path-finding algorithm. It works on graphs
with weighted edges that do not contain negative cycles — cycles on which the
sum of edge weights is negative. The graph representing our environment does
not contain any negative edges, thus it does not contain negative cycles. The
algorithm has one starting vertex and a goal vertex. Each vertex has a value,
which represents the length of the shortest path from the start vertex to this
vertex; and can have three states:

• unseen - a vertex the algorithm has not visited yet, its value is infinity (we
assume there is no path from start vertex to this vertex).

• open - a vertex that the algorithm has already visited but its value is not
yet final. A better path to this vertex (one with lower value) can still be
found.
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• closed - a vertex that will not be visited again. Its value is final, it can
not change and the value is equal to the minimal length of the path from
starting vertex to this vertex.

In Dijkstra’s algorithm the vertex value is often called g-value.
Each vertex has a parent in this algorithm. The parent p of a vertex s is the

predecessor of s on the path from start vertex to s. When a path from the start
vertex to the goal vertex is found, we only know its length. That is why vertices
must contain information about parents, which can then be used to reconstruct
the path.

The open vertices are maintained in a data structure ordered by their value.
In every step, the vertex s with the minimal value is taken from the open data
structure and is expanded. During expansion, a new value is computed for all
neighbours n of s which are not blocked nor closed. If such a neighbour is in the
open data structure, its value is updated. The s vertex is closed.

As can be seen, time complexity depends on what data structure is used to
hold the open vertices and how fast the state of a vertex can be found. The data
structure containing open vertices performs three operations: minimum extrac-
tion, vertex update and vertex add. The efficiency of these operations has a great
impact on the efficiency of the algorithm. For the open data structure a priority
queue or a heap is most usually used, and it is best when the vertex state can be
determined in constant time.

Algorithm 1 presents the Dijkstra algorithm in pseudocode. The helping
functions are presented together in algorithm 2. The algorithms examined in
further chapters are very similar.
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Algorithm 1 Dijkstra algorithm

function Dijkstra(start, goal)
g(start)← 0
parent(start)← start
open.Insert(start, V alue(start))
closed← ∅
while open 6= ∅ do

s← open.Pop()
[SetNode(s)] . only for Lazy Theta*
if s = goal then

solution← ExtractSolution(s)
return ”path found”

end if
closed← closed ∪ {s}
for all n ∈ neighbours(s) do

if n 6∈ closed then
if n 6∈ open then

g(n)←∞
parent(n)← null

end if
UpdateV ertex(s, n)

end if
end for

end while
return ”no path found”

end function

function Value(s)
return g(s)

end function
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Algorithm 2 Dijkstra help funcitons

function ExtractSolution(s)
while parent(s) 6= s do

solution.Add(s)
s← parent(s)

end while
solution.Add(s)
return reverse(solution)

end function

function UpdateVertex(s, n)
gold ← g(n)
ComputeCost(s, n)
if g(n) < gold then

if n ∈ open then
open.Remove(n)

end if
open.Insert(n, V alue(n))

end if
end function

function ComputeCost(s, n)
if g(s) + cost(s, n) < g(n) then

parent(n)← s
g(n)← g(s) + cost(s, n)

end if
end function

4.2.2 A*

Dijkstra’s algorithm explores a lot of vertices which do not lead to the goal.
Adding a heuristic function estimating the path cost from the current vertex to
the goal vertex, focusing the search towards the goal, can help find the path much
sooner.

A* is such a modification of the Dijkstra algorithm. This changes the order in
which the algorithm expands vertices; and thus helps find the shortest path sooner
and also expand fewer vertices. Most often the euclidean distance between the
vertex and the goal vertex is used as the heuristic function. So in the expansion
phase, the algorithm prefers vertices situated along the line from the start vertex
to the goal vertex before other vertices. This heuristic is admissible because it
is underestimating — the actual length of the path from a vertex s to the goal
vertex is at least as much as the heuristic estimate of its length. Using admissible
heuristics guarantees that A* finds the shortest path. The proof is presented in
[18] and consists of a few statements:

• A* must terminate: On finite graphs, this holds true. For A* not to termi-
nate, it would have to keep adding vertices into open infinitely. However,
every vertex is added into open at most once and at each step one vertex
is removed from open. Thus, A* terminates. Note: In our application the
graph is always finite.
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• A* terminates in the shortest path: A* terminates, when the goal vertex is
expanded. Since only the vertex with minimal f-value in open can be ex-
panded and it is the goal vertex (f-value(goal) = g-value(goal) for admissible
heuristics), the found path is the shortest path.

• In every step, there is a vertex in open, which is on the shortest path to
goal and A* has found the shortest path to this vertex. Finally, it also
satisfies the condition that the heuristic estimate of path length from start
to goal through this vertex is lower than the actual length of the shortest
path from start to goal. This holds true thanks to the heuristic function
being admissible (underestimating).

So the vertices in open are now ordered by their f-value = g-value + h-value
instead of only g-value, where h-value is the heuristic estimate.

The most important property of A* is, however, that it constrains the path to
graph edges. In other words, the parent (predecessor on the path) of a vertex can
only be its neighbour because they have to be directly connected with an edge.
Unfortunately, this makes it unsuitable for our project, because it introduces
many changes in direction of the aircraft. To solve this problem, the found path
could be post-smoothed. However, a direct any-angle path-finding approach gives
better results according to [15].

4.2.3 Non-Admissible heuristics in A*

This is quite a complicated topic. Using non-admissible heuristics with A* path-
planning can have many effects. Usually a non-admissible heuristic is intended
to speed up the search by lowering the number of expanded vertices. A non-
admissible heuristic is overestimating — it overestimates the cost of the path from
current vertex to goal vertex. The effect of such overestimation is that the search
is more focused towards the goal. This can also help with obstacle avoidance,
finding a path around the obstacle faster. Usually, however, if the search needs
to backtrack, the effect may be negative, resulting in longer run-times.

The biggest problem of non-admissible heuristics is determining the factor of
overestimation. It is very hard to determine by how much the heuristic should
overestimate and it is usually performed experimentally and tailored to the spe-
cific application.

Using a non-admissible heuristic with A* means that the algorithm is no
longer guaranteed to find the shortest path. It will find some path, it might find
it faster than with admissible heuristic, but the path may be longer than the path
found with an admissible heuristic.

Non-admissible heuristics can also be used in more advanced algorithms de-
rived from A*. We, however, do not take advantage of their features. In our
algorithm, we implement euclidean distance heuristic, as it is simple and we
think using non-admissible heuristics might have undesired effects on our paths,
which could potentially make quadrocopter navigation more complicated.

4.2.4 Theta*

Theta* is an any-angle path-finding algorithm based on A*. This is achieved by
dropping the A* constraint, that the parent of a vertex can only be its neighbour.
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Instead, for an arbitrary vertex s, its parent can be any vertex which has line of
sight on s. In our representation, two vertices have line of sight when the line
connecting the centres of the cubes they represent does not intersect any blocked
cubes. Detailed information about Theta* can be found in [15].

The main advantage of Theta* over A* is that it performs any-angle path-
planning and thus finds truly shortest paths on cubic grids (our representation).
A* constrains paths to graph edges, thus it cannot always find the truly shortest
path.

In the expansion phase, Theta* considers two paths. Let us assume that the
algorithm is expanding vertex s which has parent p (which may or may not be
a neighbour of s). It explores each neighbour n of s and performs a line of sight
check between p and n. Based on the result of the check, it chooses one of the
two following paths:

• direct path from p to n if the check is positive. In this case p has
line of sight on n, thus a detour through s is unnecessary and we can take
the direct path. Due to triangle inequality this path is shorter than the
path through s This path allows Theta* to find any-angle paths and is not
considered by A*.

• path through s from p to n if the check is negative. In this case p does
not have line of sight on n, thus the path through s must be chosen. We
can be certain this path is correct. The vertex p is the parent of s, thus it
must have line of sight on s. Otherwise it would not have been chosen as
the parent of s by the algorithm. Vertex n is a neighbour of s and is not
blocked (the algorithm does not explore blocked vertices), thus s also has
line of sight on n. So the path is not blocked.

In our 3D environment represented as 26-neighbour grids, performing line of
sight checks at the expansion phase is quite expensive. For every vertex inserted
into open, we could potentially perform the same check several times. In order to
speed up our algorithm, we would like to avoid this, and ideally perform a check
only once per expanded vertex. Fortunately, Lazy Theta* makes it possible.

4.2.5 Lazy Theta*

Lazy Theta* is a modification of Theta*, which postpones line of sight checks
until they are absolutely necessary. The algorithm is described closely in [19] and
[21]. In Theta*, the check for a vertex is performed before it is inserted into open.
Instead of performing the check at this point, Lazy Theta* assumes it would be
positive and postpones it until the vertex is being extracted from open. When
s is extracted from open, it has a parent p, and a line of sight check between
p and s is performed. When the check is positive, the assumption was correct.
However, if it is negative, a new parent for s has to be found. The algorithm now
iterates over all neighbours n of s, which are closed. Then the one with shortest
path length from the start vertex to itself (minimal g-value) is chosen as the new
parent of s.

The algorithm does not add much complexity over standard Theta* and it
significantly lowers the number of line of sight checks. Thanks to this it can
run noticeably faster. We determined it to be the best algorithm to navigate
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a quadrocopter in 3D space using our representation. It implements any-angle
path planning and can run reasonably fast on 3D spaces, so it can find relatively
smooth paths our quadrocopter should be able to follow.

As Lazy Theta* is the algorithm we implement, we present the pseudocode in
algorithm 3. Only the parts different from the Dijkstra algorithm presented in
algorithms 1 and 2 are shown.

Algorithm 3 Lazy Theta* algorithm

function Value(s)
return g(s) + h(s)

end function

function SetNode(s)
if ¬LineOfSight(parent(s), s) then

parent(s)← arg minn∈neighbours(s)∩closed (g(n) + cost(s, n))
g(s)← minn∈neighbours(s)∩closed (g(n) + cost(s, n))

end if
end function

function ComputeCost(s, n)
if g(parent(s)) + cost(parent(s), n) < g(n) then

parent(n)← parent(s)
g(n)← g(parent(s)) + cost(parent(s), n)

end if
end function

4.3 Implementation

We have already discussed the theoretical aspect of path planning and chosen the
path-planning algorithm. In this section we discuss the implementation. Figure
4.4 shows the class diagram of this component.

Figure 4.4: Path-finding component class diagram
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4.3.1 Environment representation

Our chosen representation of regular 26-neighbour grids proved to be very easy
to implement. At first we were experimenting with a memory-saving approach,
only providing a method that computes all the neighbours of a vertex. This was
a step in the wrong direction, because it made our algorithm very slow. When
vertex s was being expanded, for every neighbour of s, the algorithm had to
search through the open and closed data structures to determine its state. The
information was only accessible that way. That was, of course, very inefficient. It
is a much better approach to actually store information about vertices in memory.
Then we can determine the state and values of the vertex in constant time, unlike
before, when we had to search through all closed and open nodes.

We use the EnvironmentUnit class to represent vertices. Multiple proper-
ties are stored in the class: the position of the vertex, the state, path-planning
algorithm values (g-value and f-value) and finally a link to the parent of this
vertex. The class takes up only 36 bytes of space, so we can represent relatively
large environments. Even with 1 million units, the memory consumption is quite
negligible on computers of today, equipped with gigabytes of memory.

The environment is represented as a three-dimensional STL vector space
— STL vector containing STL vectors which contain STL vectors filled
with environment units. The blocked units are represented as an STL vector
containing identifiers of units. An identifier of a unit is a set of three indices into
the space data structure, one index per dimension. We implement identifiers as
a class UnitIndex.

4.3.2 Blocking cells

First, we enlarge the bounding ellipsoid to take the quadrocopter dimensions into
account. Then we select the set of candidates for blocking. We transform the
ellipsoid position into an index to the environment representation space structure.
We take the length of the greatest semi-axis of the ellipsoid and determine the
number of candidates in each direction. Then the candidates for blocking are
arranged in a cube. Finally, the calculation follows according to the definition
presented in 4.1.4.

In figures 4.5 and 4.6 we present an example of blocking cells. We use a sphere
with radius 10 cm and a cube 10 cm in size and scale parameter of 10 cm. The
margin around the objects already includes quadrocopter dimensions.
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Figure 4.5: A 10 cm sphere and a 10 cm cube in the environment

Figure 4.6: Vertices blocked by the sphere and the cube (shown in black)

4.3.3 Lazy Theta* implementation

Like the rest of our application, our algorithm is implemented in C++ utilizing
the C++ Standard Library. We have the entire environment stored in memory,
and thanks to that we can determine the state and values of any vertex in constant
time. Our algorithm also needs to maintain the open data structure. We do not
need a data structure for closed vertices because we already store this information
in the vertex itself. However, we keep it in the implementation as the size of the
closed ”list” lets us monitor algorithm progress. The open set is an STL vector
of unit identifiers paired with their f-value. The elements of open are instances of
EnvUnitID class.
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EnvUnitID class holds an environment unit identifier (class UnitIndex)
and f-value. These are all the data necessary for the open structure to perform
its role. The identifier provides a link to the environment representation so that
we can determine the state or neighbours of this vertex. The f-value is used to
order the vertices within the open STL vector.

However, using only the STL vector would result in slow performance of
open data structure operations. Thus the STL vector only serves as an under-
lying container for C++ Standard Library heap algorithms. The library
implements four algorithms encapsulating heap operations: push heap, pop heap,
make heap and sort heap. They can be used on multiple kinds of underlying
containers, however, we use a simple STL vector.

We do not use sort heap, as it is a sorting algorithm which takes advantage
of the heap structure to put the elements in the container into ascending order
quickly. We do not require this functionality. The make heap algorithm rear-
ranges the elements within the underlying container, so that they form a heap.
The push heap algorithm adds one element into an existing correctly formed heap.
The pop heap algorithm extracts the top (maximum) element from an existing
heap. Since we require the minimum element, this presents a problem, though it
is very easy to solve (see the following paragraph). The C++ Standard Library
heap algorithms implement exactly the operations required by our algorithm. Us-
ing these algorithms to implement path-planning algorithms is also suggested in
[20].

The C++ Standard Library heap algorithms by default construct a heap with
the maximum element on the top. However, we need the minimum element there.
Fortunately, they take an inequality comparison function as a parameter, so we
decided to take advantage of that. We implemented a comparison function which
returns the opposite of what the inequality operator on EnvUnitID would. So if
we compare EnvUnitID a and b using our function and comparison by inequality
operator a < b holds true, our comparison function returns false and vice versa.
This way we obtain a heap with the minimum element on top, thus we can extract
it quickly using the pop heap algorithm.

4.3.4 Adapting the algorithm to quadrocopter navigation

This adaptation is very simple and does not influence the algorithm directly. We
only normalize the start and goal locations by adjusting their hight to 1 m above
the start and goal locations set in the program to account for the aircraft takeoff.
The aircraft is programmed by the manufacturer to automatically hover around
1 m above the surface after takeoff.
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5. Plan execution

In this chapter we will introduce our aircraft, the Parrot AR.Drone, in detail and
examine its flight characteristics. Then we will describe the network interface
and how our program communicates with the drone. Finally, we will present the
navigation routine and the experiments we performed and their results.

5.1 Parrot AR.Drone

The AR.Drone is a quadrocopter aircraft — essentially a helicopter with four
propellers. The propellers are all aligned in one plane and their orientation is
fixed. The aircraft can move in all directions. To describe the movements, we
can split the four rotors into six pairs: front, rear, left, right and diagonal clockwise
and counter-clockwise pairs.

Movement forward and backwards is performed by changing the pitch angle
of the aircraft, which is done by adjusting the speed of the front and rear rotor
pairs. Left and right movement is performed by changing the roll angle, which
corresponds to adjusting the speed of left and right pairs of rotors. Movement up
and down corresponds to adjusting the speed of all four rotors equally. Finally,
turning left and right is performed by changing the yaw angle, which corresponds
to adjusting the speed of clockwise and counter-clockwise pairs of rotors. These
rotors are paired-up diagonally, which results in the quadrocopter turning in place
(the centre of rotation is in the middle of the aircraft).

The Parrot AR.Drone currently comes in two versions. The second version
is more advanced, features a wider array of sensors and overall has better flight
characteristics. For our project we were using the AR.Drone version 1.

5.1.1 Sensors on the Parrot AR.Drone

The first version of the AR.Drone is equipped with a 3-axis accelerometer, 2-axis
gyroscope and 1-axis yaw gyroscope. These sensors allow the drone to fly in a
relatively stable way and measure its orientation. Furthermore, it is equipped
with an ultrasound altimeter with range up to 6 meters which helps the drone
maintain altitude. It also features two cameras. One facing forward and one
facing down. The camera facing down is used to aid in stabilization. Image form
both of the cameras can be streamed onto the connected device.

The second version of the drone features a greatly improved frontal camera
(with 1280x720 resolution). It also adds more sensors — a pressure sensor for
more accurate altitude measurements and a magnetometer compass which allows
the use of a special control mode with some mobile devices. The second version
is an overall improvement over the first one.

Finally, both versions of the drone feature a Wi-Fi hotspot. To control the
aircraft, a computer or a mobile device must be connected to this hotspot. There
are three communication channels. On the first one, the drone receives control
commands. The other two channels are used to send data from the drone to the
controlling device; one channel for navigation data and one for video.
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5.1.2 Flying with the Parrot AR.Drone

Flying with the drone is quite easy and even children can manage it. However,
precise control is very hard to achieve. Control with a smartphone or a tablet
is usually quite imprecise and is mostly intended as a toy. More precision can
be achieved by using a computer joystick or a keyboard to control the aircraft.
Nevertheless, precise control is still problematic. A big part of this imprecision
stems from the characteristics of the aircraft itself.

We found out that the aircraft has a tendency to drift after taking off. Our unit
usually moves a couple of metres backwards. We found out from our colleagues
that they have similar problems, only their drone drifts to the right. This makes
navigation by a program even more complicated.

When moving, the aircraft has a certain momentum. For a human, this
is quite easy to compensate for. However, it is much harder to simulate in a
program. The AR.Drone is also very light, making it susceptible to wind and
even the turbulence it itself creates. It is capable of flying outdoors but even
a slight breeze can influence the trajectory. A stronger wind usually causes the
quadrocopter to lose control and/or flip over. Indoors, the aircraft creates a lot
of turbulence which can ”upset” it a lot, especially when close to objects or walls.
This turbulence can completely change the heading of the aircraft and it makes
flying in cluttered and confined areas nearly impossible.
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5.2 Drone communication

The following diagram shows the structure of the drone control component:

Figure 5.1: Drone control component class diagram

We implement all the classes ourselves, however, the CommunicationChan-
nel and Controller classes are inspired by a library created by Pongsak Suvan-
pong, see [23].

The CommunicationChannel class implements network communication:
creating the channel and sending and receiving data on the channel. It also
implements a specific method of sending the control commands to the drone,.
The method which obtains a command in a specific format and must encode it
into a stream of bytes to send it as a UDP (User Datagram Protocol) packet.

The Controller class then has two channels — a control channel and a data
channel. The control channel is used to send commands to the aircraft and the
data channel is used to receive the navigation data from the drone. We do not
use the cameras, thus a video data channel is not implemented. The Controller
also implements commands which encapsulate the raw commands processed by
the CommunicationChannel class.

The Drone class creates yet another abstraction layer over the commands,
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encapsulating the Controller commands into more natural commands like move-
Forward.

The Navi class implements the navigation routine. When navigation is start-
ed, it receives the desired path and then proceeds to send instructions to the
aircraft in order to guide it along the path.

5.2.1 Structure of commands

The Parrot AR.Drone is controlled by AT commands, which are essentially
text strings. These commands are sent within UDP packets [24]. According to
the AR.Drone Developer Guide [25], the commands should be sent at least every
30 ms for smooth drone movement. Our application sends commands even more
often than that. An important feature to keep in mind is that the drone will
consider the connection to be lost if a delay between commands is more than 2
seconds. If this happens, the drone will set its ”watch dog” and stop sending
data to the controller.

The command syntax is described in sufficient detail in the AR.Drone Devel-
oper Guide [25]. In simple terms, a command consists of a header and arguments.
The header signifies the type of the command (like set orientation) and the pa-
rameters provide the values to be set. The header always starts with the AT*
character sequence.

These are the most important commands:

• AT*REF: These are the takeoff, landing and emergency stop commands,
depending on the parameter.

• AT*PCMD: This command is used to set the drone orientation angles (roll,
pitch and yaw) and gaz (motor speed).

• AT*FTRIM: After receiving this command, the drone will reset its gyro-
scopes and other sensors, and set current orientation as default. Thus, it
should always be placed on a flat surface before this command is sent.

• AT*COMWDG: This command instructs the drone to reset its communi-
cation ”watch dog”. This command is helpful to counter the 2 second delay
described above. It can be used to keep the connection alive as well as
re-initiate the data streams with the help of other commands.

5.2.2 Incoming data streams

We only implement and use the navigation data stream. The video stream is
unnecessary for our application, as we do not use the cameras.

Both data streams are described in the AR.Drone developer guide [25]. Un-
fortunately, the navigation data stream is not described in enough detail, rather
refers to the Parrot SDK source code.

The navigation data stream packet consists of a header part and option blocks.
The header part consists of the header itself, followed by drone state, sequence
number and flags. Then the options follow, and each option consists of fixed-
length ID and block length values (always 16-bit unsigned integers), followed by
the data.

51



Table 5.1: Structure of AR.Drone navigation data
item type unit
ID 16-bit unsigned integer
length 16-bit unsigned integer
control state unsigned integer
battery level unsigned integer
pitch angle float millidegrees
roll angle float millidegrees
yaw angle float millidegrees
altitude integer centimetres
forward speed float mm/s
left/right speed float mm/s
vertical speed float mm/s

It is possible to receive the data in two modes: demo (minimal data) and
debug. We use the demo mode and we are only interested in the option names
navdata demo t, which contains data about drone orientation and speed.

All the values of navdata demo t are 32-bit floating point numbers and integers
(except of the option ID and length) and the structure is as follows:

5.2.3 Network interface

Since we have decided to use DirectX for 3D rendering, we knew our application
would be designed for the Windows operating system. Thus, we could use WIN32
API to implement the network communication. Network programming requires
sockets, which are implemented in Winsock.

We also had other options to implement the network communication. We
could have used the official API by Parrot, however we were not satisfied with it.
It is quite bloated and cumbersome. It has many features completely unnecessary
for our application. Furthermore, the documentation is sometimes missing crucial
information and does not go into enough detail.

Another option is to use a library or a program created by someone else.
We found a nice library implementing AR.Drone communication channels [23]
in C++, however, it was using the commonc++ library to implement socket
communication. The commonc++ library is very big and would not bring us any
benefits. Thus, we decided to implement our own solution. We took many ideas
from [23], especially since some important parts are not described in the Parrot
technical documentation in enough detail (e.g. the exact structure of navigation
data sent by the drone to the controller).

The main advantage of implementing a custom solution is that it is very
lightweight and thanks to using Winsock it does not require additional libraries
(Winsock is a part of WIN32 API).
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5.3 Navigation routine

The navigation routine is implemented within the class Navi. In this section, we
will explain how the navigation works.

To make navigation easier, we limit the maximum speed and maximum alti-
tude of the aircraft. It is possible to send commands setting maximum altitude
and maximum tilt angles of the drone. Maximum altitude is set at 2 m and the
tilt angle limits are 20 degrees. This was we limit the speed of the drone, making
both navigation and user control easier.

First, the navigation has to be started. The Navi class receives the path the
drone should follow and its starting direction vector . The path is a list of points,
in which two successive points form a line segment (a part of the path). Each
point (except of the first and last) is then a location where the drone will turn.
This way we divide the path into straight segments and turning locations.
The starting direction vector is important for initial heading adjustment.

From the path data, the heading of each segment is computed. Then the initial
heading correction angle is computed as the difference between the heading of the
first segment and the initial direction heading.

After the initialization is finished, navigation can start. We divide the process
into several phases:

Ready: This is the initial phase of the navigation, into which it is put after it is
started. The ”watch dog” reset command is sent to the drone to make sure
navigation data are being received. Then, the takeoff command is sent, and
we move on to the second phase.

Hover: The second phase lasts for five seconds and gives the aircraft time to
stabilize after takeoff. The navigation routine tries to compensate for the
drone movement, as it has a tendency to drift after taking off, see 5.1.2.

Setup: During this phase, the drone adjusts its heading to match the heading
of the first path segment. Then, navigation can proceed to the next phase.

Flight: In this phase, the navigation actually happens. We distinguish the last
segment from the other segments and the navigation is different in the two
cases. At all times, the navigation routine is checking if the drone heading
is correct and if the drone has not drifted too far to the left of right of
the path, and performs adjustments accordingly. We examine this phase in
detail below, as it is the bulk of the navigation routine.

Done: This phase is the second part of the last segment navigation. It is entered
when the navigation routine determines the drone has enough momentum
to drift to the goal and the hover command is sent repeatedly. The phase
exits when the forward speed of the drone drops below 100 mm/s.

Landing: This phase follows after the drone speed drops to negligible values
during the Done phase. The land command is repeatedly sent to the drone
until altitude drops below 10 cm. Then we can be sure the drone is actu-
ally landing. We implemented this because we encountered problems with
landing. Sometimes the drone would refuse to land if only one command
was sent.
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Landed: This is the last phase and marks the end of navigation. Commands are
no longer sent to the drone.

During all phases of navigation, a logging system is active and writes infor-
mation about navigation into a log file. The phase and performed adjustments
are logged, along with navigation data. Each piece of information written into
the log has a time stamp.

5.3.1 Hover phase

During this phase, we implement a ”controlled takeoff”. The navigation routine
sends commands to the aircraft to attempt to counter the drift of the aircraft.
The goal is to perform a takeoff as close to a perfect vertical takeoff (without
horizontal movement) as possible.

Navigation data from the drone are obtained and the horizontal speed values
from the data are used to compute the orientation of the drone to counter the
speed. The goal is to keep speed at minimal values. The calculation follows these
rules:

• drone pitch angle scales linearly with the value of the drone forward speed,
up to 1000 mm/s. Speeds over this value result in pitch angle being set to
the maximum or minimum, depending on direction.

• drone roll angle scales linearly with negated value of the drone left/right
speed, following the same rules as the pitch angle. Negating the value is
necessary because negative left/right speed values represent movement to
the left and negative roll angle moves the aircraft to the left.

Introducing ”controlled takeoff” helped improve our takeoffs, however, it did
not completely solve the problem. Sometimes the aircraft moves backwards a
lot (over 1 m). We believe this may be caused by the fact that our application
does not receive new navigation data as often as we expected. The AR.Drone
Developer guide states, that the drone should send data with a time interval of
less than 5 ms. Examining our flight logs, however, we found that our program
does not receive navigation data in such a short interval, rather around every 50
ms. Unfortunately, we were unable to solve this issue.

While flying the aircraft ourselves, we also noticed that it seems to ignore
commands for a short period after the takeoff command is sent. This makes it
very hard to compensate for the unstable takeoff.

5.3.2 Flight phase

The flight phase is when the drone is actually moving. We use the obtained
navigation data from the drone to compute position and heading changes, from
which we determine what commands we should send to the drone. This approach
mimics a PID controller (Proportional-Integral-Derivative controller) but is not
a true PID controller. It only considers the proportional part, so it is only a P
(proportional) controller. The integral and derivative parts were not implement-
ed.
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Last segment

Let us examine the special case first—navigation in the last segment. During
this segment, we compute the remaining distance the drone has to fly in order
to reach the goal. We also maintain the correct heading (in the same way as in
Setup phase) and short perpendicular (left/right) distance from the path.

We use the drone forward velocity together with the remaining distance to
calculate, whether we should switch to the Done phase or not. We do this
using basic physics formulae for uniformly decelerated motion. Since the drone
is moving at low speeds, we can consider the motion to be uniformly decelerated.
Thus, the deceleration parameter is constant and it is unnecessary to dynamically
change this parameter.

v = v0 − at; s = v0t−
at2

2

where

t : time interval
v : final velocity
v0 : original velocity
a : deceleration
s : distance

In this case, the final velocity v is 0 m/s, because the aircraft is supposed to
land. We use the Windows high resolution timer (method QueryPerformance-
Counter, see [26]) to compute the time interval t between the last drone command
and current command. We compute the distance s as the distance between the
current drone position and the goal. The current velocity v0 is obtained from the
drone navigation data. The forward velocity is used.

The deceleration parameter a is unknown and to determine it exactly would
be too complicated. Either we would have to take measurements in a wind
tunnel, which was not available to us; or derive the parameter from the aircraft
characteristics, which would be extremely complicated. Thus, we only estimated
this parameter by running test with the aircraft. Initially, we estimated the
deceleration value at 0.5m/s2. After examining the log files of our further test
flights we concluded that our estimate was very close to the real value. However,
during the first measured test flights, we noticed the aircraft ”overshoots” the
goal most of the time. By lowering the parameter to 0.45m/s2, we were able to
obtain much better results.

Using the current velocity v0 and deceleration a, we compute the expected
time te it would take the quadrocopter to stop (forward velocity drops to 0 m/s).
We then use the second equation to compute the expected distance d, which is
the distance the quadrocopter would travel if we switched to Done phase at this
moment. If expected distance d ≥ s (remaining distance), we know the aircraft
has enough momentum and navigation is switched to the Done phase. Otherwise
the navigation remains in the Flight phase.
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Standard segment

In case of a standard segment, we also maintain the correct heading and short
perpendicular distance from the path. This is necessary for our navigation routine
to recognize the turning locations. A turning location is located at each path
point.

We measure time the same way as in case of the last segment, and we also
obtain current velocity data from the drone. We use these to update the current
position of the drone, which in turn allows us to compute the distance from the
drone to the next turning location.

IF the drone is close to the next turning location, the navigation switches to
the next segment. Whether the drone is close is determined by computing the
distance between the drone position and turning location in the program. If the
distance is lower than 20 cm, the drone is considered close to the turning location.
Thus, the navigation routine will start adjusting the drone heading to match the
next segment heading, and the drone will turn.

5.3.3 Computing the change of drone parameters

Position change

The position change of the drone is computed using the speed values obtained
from the received navigation data and the time interval between the last and
current command.

Speeds in all directions are considered. The drone position is maintained as a
point in the 3D environment. Position change is a vector which is rotated around
the vertical axis by the drone yaw angle and is then added to the drone position
to compute the new position of the drone.

Heading change

Drone heading calculation is performed by comparing the yaw angle of the drone
from received navigation data with the heading of the segment and turning the
drone accordingly. At the beginning of navigation (at the start of Hover phase),
the headings of all segments are ”normalized”. The yaw angle of the drone is
added to all the segment headings because the initial yaw angle of the drone may
not be 0 degrees.

Maintaining short distance from the path

The horizontal distance between the current drone position and the segment line
is computed. This calculation also determines on which side of the segment line
the drone is located left or right). If this distance exceeds 10 cm, the navigation
routine tries to compensate and bring the drone closer to the segment line by
sending appropriate commands.
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6. Experiments

We performed several experiments with the aircraft, testing the navigation routine
and path-planning algorithm in various scenarios.

The test were performed in a closed room approximately 17 m by 8 m large
and 3 m tall. The room was nearly empty, except of a few small objects and two
big columns (95 cm x 125 cm) on one side. A ventilation system was running in
the room, and it was not possible to switch it off completely. Thus, near the vents
of the system, airflow was relatively significant. However, there was very little
airflow in the room overall. The size and low airflow made the room a suitable
location for our experiments. Needless to say, in some places, the airflow from
the vents impacted the aircraft significantly. In figure 6.1 a photo of the room is
shown.

Figure 6.1: Photo of the room where we performed the experiments

Our aircraft was not in perfect condition. It has been used in some experi-
ments before, where it took minor damage. Some of the components were also
quite worn, like the propellers. However, the aircraft was still capable of flight
and easy to control for a human. While creating the navigation routine, we had a
few crashes. Despite our best efforts, sometimes we were unable to prevent them.
One of the crash has unfortunately caused minor damage to the rear left motor.
After this incident, the motor would sometimes not spin up during takeoff, upon
which we have to reset the drone.

Unfortunately, we were not able to track the aircraft in flight because such
equipment was not available to us. We were only able to measure the distance
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between the goal and the point where the aircraft actually landed. This can give
us an idea about the overall accumulated error during the entire flight. However,
using these measurements, we cannot identify problematic aspects of the naviga-
tion routine easily. Neither can we objectively measure how closely the aircraft
has followed the path. We can only make observations and gather data from the
flight log.

6.1 Straight flight 3 metres

In this test, we set the path for the drone to be only a straight line 3 m long at
the same altitude. The drone should take off, fly 3 metres and land.

During the test, the aircraft was able to land relatively close to the goal most
of the time. In some cases, the flight was very unsuccessful due to outside factors
and we do not include these in the measurements.

We organized the measurements into a convenient table:

Table 6.1: Straight flight
flight difference in

direction [cm]
difference perpendicular
to direction [cm]

1 65 B 30 R
2 30 F 30 R
3 250 F 170 R
4 0 75 R
5 30 F 10 L
6 140 F 130 R
7 75 B 30 L
8 45 F 75 L
9 20 F 60 R
10 60 F 35 L

F, B, R and L stand for forward, backwards, right and left, respectively.

The table shows that the results are relatively inconsistent. While most of
the time the aircraft does indeed land close to the goal, very bad results are not
especially rare. The average of the values is quite good, however, it is not a
valuable piece of information in this case, due to the inconsistency of results.

During the test, we observed that it is very dependant on the quality of
the takeoff. Even after introducing ”controlled takeoff” in the Hover phase of
navigation, sometimes the aircraft moves more than 1 m backwards and to the
left, when taking off. Part of this problem may stem from the airflow within
the room as we described earlier. Also the problem with receiving navigation
data certainly plays a role. Moreover, when landing, the aircraft often drifts in
some direction due to outside influence. Then it lands in a different location to
that it was in when it started landing. During landing, we do not control the
aircraft. Unfortunately, with out tools it is not possible to measure where the
aircraft was in the air when it entered Landing mode. We also experienced issues
with landing, when the aircraft would refuse to shut down its engines and bounce
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off the ground several times before doing so. We cannot explain this behaviour.
Fortunately, it is very rare.

The results are close to what we expected. While we were hoping for more
consistent results, we are glad that we achieved results as good as this. However,
this is the easiest test and more demanding tests are ahead of us.

6.2 30 degree turn

In this test, we prepared a simple turn. The aircraft would fly straight 1 m and
then turn 30 degrees to the right and fly straight for 115 cm before landing.

At first, we were performing this test with the left/right drift compensation
turned on. So our navigation routine tried to make sure the aircraft stays close to
the set path. However, the results we obtained were unsatisfactory. Due to the
problematic takeoff, the aircraft would move to the left of the path, thus detect
that it needs to compensate for this drift. Unfortunately, the method was not
working very well and it caused our aircraft to fly the the right side excessively.

We concluded that this part of the navigation routine should be improved. To
still be able to perform the test, we decided to turn this feature off. We obtained
surprisingly good results, which we show in the following table.

Table 6.2: Flight with 30 degree turn
flight difference in

direction [cm]
difference perpendicular
to direction [cm]

1 5 F 20 R
2 20 F 10 L
3 40 F 60 R
4 10 B 50 R
5 30 F 10 L
6 50 F 60 R
7 0 15 L
8 15 F 10 R
9 50 F 45 L
10 30 B 0

F, B, R and L stand for forward, backwards, right and left, respectively.

This is a better result than we obtained when flying straight. This is quite
surprising and perhaps it is only a coincidence.

We observed that the aircraft performed the turn very close the the location
it should and it turned nearly precisely 30 degrees every time.

6.3 90 degree turn

We performed this test in the same conditions as the tests before. The drone
would fly 1 m straight, then turn 90 degrees to the right, fly 2 m straight and
land.
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When we began this test, the results looked very promising. We expected the
results of this test to be worse than in the case of the 30 degree turn test, which
proved to be the case after a few flights. During the testing, we encountered some
issues. Sometimes our aircraft behaved in an inexplicable way, performing actions
completely different from the commands we were sending. The aircraft rolled to
the right when no rolling instructions were sent. This may have been caused by
a problem in communication between the computer and the drone. Otherwise we
cannot explain such behaviour.

In one instance, the rear left engine of the drone did not start. So we restarted
the drone by pulling out the battery and plugging it back in. When we plugged
it in, a tiny explosion resounded and one of the engine boards started smoking.
Nothing else happened and after plugging the battery in again the drone was
flying normally. We were lucky that the drone was not severely damaged and we
could continue our experiments.

Again, we put the results in a table:

Table 6.3: Flight with 90 degree turn
flight difference in

direction [cm]
difference perpendicular
to direction [cm]

1 15 B 30 L
2 45 F 60 R
3 0 110 L
4 15 B 30 L
5 20 F 40 R
6 55 F 20 L
7 150 F 50 L
8 80 F 35 R
9 20 F 20 R
10 55 B 20 L

F, B, R and L stand for forward, backwards, right and left, respectively.

While the values in the table do not look bad, we had many unsuccessful
flights, partly due to the technical issues we experienced. The shortcomings of the
navigation routine are also partly responsible for unsuccessful flights. Moreover,
we were unable to explain certain errors.

We observed that the aircraft started turning slightly late. Then it got to the
left side of the path and landed on the left side of the target, which can also be
seen in the results in the table. This is caused by imperfections in our program.

On multiple occasions, the aircraft also turned too much and did not correct
its heading later like during other flights. We examined the flight logs of our
navigation routine and found out that the routine had detected this. It also kept
sending the right instructions to the AR.Drone to correct its heading. Despite
the fact that we could not find any error in the navigation or the flight logs,
the aircraft simply did not turn. The only way we could explain this is that a
problem in communication occurred. However, that should not have been the case
as the aircraft did respond to landing instructions later. We tested the aircraft
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by controlling it manually and it had no problems turning to either side. Thus,
we are unable to explain this behaviour.

6.4 Zig-zag

In this experiment, we defined a more complicated path. The aircraft would fly
1 m forward; turn 30 degrees to the right, fly 115 cm straight; turn 60 degrees
to the left and fly 2 m straight before finally turning 30 degrees to the right and
flying another 115 cm and landing.

Unfortunately, we did not manage to obtain any data from this test. The
aircraft simply was not capable of following the path all the way. The best result
we obtained was completing the second turn (60 degrees to the left). While the
heading of the aircraft was correct, it was not in the correct position and missed
the last turning location.

We knew the navigation routine would have big problems with this test, how-
ever, we did not expect results this bad.

6.5 Path from algorithm

In the tests before, we did not test the ability of our navigation routine to change
the altitude of the aircraft. Thus, we decided to set up this test to also include
altitude changes.

We modelled a scenario in which the quadcrocopter had to fly 3 m forward. In
the middle between the start and goal locations we placed an obstacle 65 cm tall,
40 cm long and 70 cm wide. We modelled this in the editor and also added ”fake”
obstacles to both sides of the real obstacle to force the path-planning algorithm to
find a path which leads over the obstacle. With only the real obstacle modelled,
the algorithm found a path around the obstacle which was not what we wanted
to test. The model is shown in figure 6.2. The figure also shows the found path.
We did not model the entire room where we performed the experiments, only a
part of it relevant to the experiment.

The aircraft flew over the obstacle without crashing every time. However, it
usually got thrown off course by its own turbulence hitting the obstacle. This is
due to the characteristics of the aircraft and is very hard to counter.

We could not objectively measure the altitude changes and observing them
was difficult as they were minimal.
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Figure 6.2: Model of the experiment in the editor
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Conclusion

At the beginning, we set out clear goals that we wanted to accomplish. Now is
the time to evaluate our work—whether or not we accomplished our goals.

We had three main goals:

• Implementing a 3D environment editor

• Implementing a path-planning system

• Extending the editor to be able to navigate a quadrocopter using a path
from the path-planning system

We succeeded at implementing the 3D environment editor. The editor has
a wide array of functions and allows for creation of environments with simple
objects. Simple objects can be placed into the environment directly, and more
complex objects can also be modelled by grouping multiple simple objects to-
gether.

The editor implements advanced but necessary features like undo and redo.
It also implements very easy to use functions to manipulate the objects in the
environment. Thanks to this, modelling a room with objects is simple and fast.

Implementing the editor was also our first venture into the world of DirectX
and 3D graphics. While we certainly did not take full advantage of the power
of DirectX due to implementing only simple visuals, we obtained experience and
learned about the principles of DirectX and game programming.

Using DirectInput and DirectX to implement the user interface of our ap-
plication was perhaps not the best choice. All the components work very well,
however, it took a lot of effort and development time. Using a higher level library
might have saved us time that we could have then devoted to other parts of the
project.

We have also successfully implemented a path-planning system. We examined
multiple options of representing the modelled environment and an array of path-
planning algorithms. We chose a simple yet efficient way of representing the
environment—a grid of cubes. For the path-planning algorithm, we chose the
modern and advanced Lazy Theta* algorithm.

The algorithm does indeed find paths suitable for a quadrocopter. Unfortu-
nately, we were unable to completely verify this due to the shortcomings of the
quadrocopter navigation. However, examining the paths found by the algorithm,
we notice that they usually do not contain very sharp turns. Thus, we are con-
fident a quadrocopter would be able to follow such a path, provided a quality
navigation system is available.

Our implementation of the algorithm runs reasonably fast and consumes very
little memory. However, we are certain that improvements are possible, espe-
cially to optimize the running-time of the algorithm. That could be done either
by implementing more advanced data structures or experimenting with heuristic
functions, which we already touched on.
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We also implemented quadrocopter navigation, however, we are not particu-
larly satisfied with it. We expected this to be problematic and the results roughly
match our expectations; however, we were hoping for more. Unfortunately, our
hopes did not come true.

The results of the navigation are inconsistent even in very simple tests and
complex tests result in failure most of the time. In simple tests, the aircraft
sometimes lands very close to the target and it is common for it to not follow the
path properly. In some cases this is caused by technical issues, in other cases by
the shortcomings of our navigation routine. In most cases, however, the aircraft
should fly in such a manner that it should be able to detect a marked landing
zone if such functionality was available.

In more complex tests, our navigation routine usually fails. This makes us
conclude that it is by far not ready for any real-world application. We have made
our first experiments and gained experience that we can use in the future. We
learned that a simple P (proportional) controller is not enough for the task.

We believe it is possible to improve our navigation routine. Perhaps not to
obtain better results in terms of landing close to the target but mostly to make it
much more reliable and capable of flying along more complex paths. Extending
our navigation routine to use a true PID or even a PI (Proportional-Integral)
controller might improve the quality of our controller drastically. Further im-
provements are possible by solving the problem with navigation data receiving,
as the application is capable of sending instructions in a shorter interval than the
interval in which it receives new navigation data from the drone.

A pleasant side effect of implementing quadrocopter navigation is that we also
implemented the option to control the aircraft manually. It is very simple to use
and provides a fun experience.

Our project proved to be much bigger and more challenging than we had
originally anticipated. The quadrocopter navigation is far from perfect and leaves
a lot of room for improvement. However, we believe we created a foundation, upon
which we and others will hopefully be able to build in the future. At the very
least, we gained valuable experience which we share and can benefit from in our
future projects or use to help other projects.
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Shortcomings and possible
extensions

We are aware of the fact that our project is not perfect and has several short-
comings. In this short chapter, we name the problems we consider to be the
most significant. Then we look at the possibilities of future improvements and
extensions of our project.

Perhaps the biggest shortcoming of our project is the low quality of the
quadrocopter navigation component. We believe that the navigation routine
could be drastically improved by implementing a true PID or PI controller and
solving other issues, as stated in the Conclusion.

We are also quite dissatisfied with some flaws of the editor. Implementing
the user interface in DirectX with DirectInput was complicated and took a lot
of time. Furthermore, because of using DirectInput, it is not possible to move
or resize the application window. We were unable to solve this problem. This
does not impact the functionality of the application, however, it impairs the user
experience.

Looking at the implementation of the path-planning algorithm, we see poten-
tial for optimization, especially in terms of running time. This could be achieved
by implementing more advanced data structures. More advanced heuristic func-
tions might also improve the running time of the algorithm.

Our application could be easily adapted to use a different quadrocopter con-
troller. Furthermore, if our controller was improved, it might be possible to join
our project together with other projects to perform more complex tasks. Overall,
there are many possibilities of extending our application, only limited by one’s
imagination.
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Attachments

1. Disc contents

The attached Disc contains the following files:

• user guide.pdf – The user guide

• thesis.pdf – This text

• setup.exe – Program installer

• \source – Program source code

• class diagram.pdf – The class diagram

The user guide describes the features of the user interface and functions of
buttons and keys. It also guides the user through the installation process.

The installer (file setup.exe) unpacks the application and necessary redis-
tributable components. For convenience, it also contains the user guide.
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2. User guide

Drone3D is a simple application providing a 3D environment editor combined
with path-planning and Parrot AR.Drone controlling functionality.

The editor allows for the modelling a room, in which obstacles can be placed.
A start location and a goal location for the quadrocopter can also be defined. A
model of an environment is often called a map.

Then, the path-planning algorithm can be run, which will find a path between
the start and goal locations. Alternatively, a custom path can be defined using
waypoints. However, the obstacles are ignored when waypoints are used.

Finally, the AR.Drone navigation can be run, which will use the path to
navigate a real AR.Drone. Manual control of the quadrocopter is also possible
and during program navigation, it is possible to take over control of the drone.

Combining all the features together, experiments with the Ar.Drone can be
performed. For example, an obstacle course can be created in a room and mod-
eleed in the application. Then, a start location and a goal location can be defined,
which will correspond to locations in the room. Then the application can be used
to navigate the quadrocopter from the start to the goal.

About the guide

This user guide serves as a simple and concise explanation of the program func-
tions, and how to use them.

The application contains many buttons and uses multiple keys on the key-
board. In the guide they are distinguished from standard text by brackets: [but-
ton].
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Installation

Installing the application is very simple. However, it also requires DirectX 9 and
Visual C++ 2010 redistributable components to be installed on your system.

The application supports the Microsoft Windows Vista, 7 and 8 operating
systems.

The installation procedure is as follows:

1. Run setup.exe

2. In the setup, choose a destination folder for the application. Default is
C:\Drone3D

3. Let the setup process finish

4. Open the folder, where you have installed the application

5. Run the DirectX redistributable component setup (file dxwebsetup.exe).
This requires internet connection.

6. Run the Visual C++ redistributable component setup(file vcredist x86.exe)

7. You are now finished and can run the application (file Drone3D.exe)

In step 2 of the installation process, it is recommended to choose a non-
protected folder on Windows 7 and 8 operating systems. Otherwise the applica-
tion must be run in administrator mode to be able to save maps.
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Main menu

When the application is run, the main menu is presented. A frames per second
counter is displayed in the top left of the screen.

Figure 6.3: Main menu

The main menu has three items:

NEW MAP Opens a dialog which starts the creation of a new map

LOAD MAP Opens a dialog which can load a saved map from a file

EXIT Exits the application

New map dialog

The new map dialog can be seen in the image above. The dialog requires the
dimensions of the map to be set in centimetres. You can model an environment
of any size, however, we recommend rooms from 5 m by 5 m to 10 m by 10 m for
quadrocopter applications.

The scale parameter can also be set. However, this is an advanced parameter
and it is not recommended to change it. The default value is 10. Scale provides a
connection between the program and the real world, and connects the 1.0 value
in the program to the given value in centimeters. By default, 1.0 = 10 cm

Load map dialog

This option runs the standard Windows dialog to open files. By default, the the
Maps folder in the application directory is open.
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Figure 6.4: New map dialog
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Map editor

After creating a new map or loading a map from a file, the editor is shown. The
user interface has three parts:

• A menu bar on the top of the screen

• An object bar on the bottom of the screen

• A context menu with operations

Figure 6.5: Editor interface

The menu bar contains buttons that let the user navigate in the application
and run specific parts of the program like path-planning.

The object bar contains buttons that let the user place objects in the envi-
ronment.

The context menu contains buttons that let the user perform operations on
objects. It is only displayed when the [right mouse button] is clicked.

The environment

The environment is a box. The boundaries are represented by the drawn planes.
A regular grid is also displayed, with the distance between lines equal to 1.0 in
program, which corresponds to the scale parameter, which is set set when a new
map is created.

The coordinate axes are highlighted, the X axis is red, the Y axis is green,
and the Z axis is blue. This is to make orientation easier.

75



Camera movement

The camera is moved using the classical WASD combo. Hold the [W] key to move
the camera forward. The [A] key moves the camera to the left, [S] key backward,
and [D] key to the right. You can also use the [R] and [F] keys to move the
camera up and down, respectively.

Plase note that the direction the camera is moving depends on the camera
orientation. So if the camera is looking down, holding the [R] key will actually
not move it up in the environment but the camera will move in the direction of
it’s own up vector.

The camera can be rotated by holding down the [SHIFT] key and moving the
mouse.

Menu bar functions

Figure 6.6: Menu bar

The menu bar contains multiple buttons with the following functions:

[EXIT]: By pressing this button, the editor exits into the main menu. If unsaved
changes were made to the map, the user will be prompted to save the map.
Either the file name can be set and the button [[]OK] pressed to save, or
the [[]Cancel] button to ignore the changes.

[SAVE]: This button opens a dialog which lets the user input the name of the
map file. Then, the map will be saved in that file in the Maps folder in the
application directory.

[BUILD]: By pressing this button, the environment building is initiated. This
transforms the created environment into a space that the path-planning
algorithm can then search for a path. As a minimum, start and end points
are required.

[PLAN]: Pressing this button will start the path-planning algorithm, if the en-
vironment has been built. Otherwise it will pop-up a message box saying
that the environment must be built first.

[UNDO]: If applicable, pressing this button will undo an action in the editor
(e.g. moving an object). If the user makes a mistake, he can easily correct
it this way.

[REDO]: Redo is the inverse of undo. Pressing this button will redo an undone
action, if there is any.

[CONNECT]: After pressing this button, the application will connect to the
parrot AR.Drone. Please note that the computer must be connected to
the drone via Wi-Fi, otherwise the program will not be able to establish
connection.
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[FLY]: After pressing this button, the AR.Drone navigation will be started if
a path is available. The path can be either found by the path-planning
algorithm or input as waypoints.

Path-planning

Before the path-planning algorithm can be run, the environment must be built
by pressing the [BUILD] button. Then, black cubes will be displayed in place of
blocked environment units. This feature can be toggled on and off by pressing
the [Z] key.

It is expected that at least 150 centimetres of free space is above both the
quadrocopter start and goal locations. The quadrocopter automatically takes
off into an altitude of 1 metre, thus the algorithm is designed to take this into
account.

When the path-planning is run, the application will show a dialog showing
the number of expanded units (representing progress) and a button that lets you
close the dialog and a button to stop the algorithm.

The algorithm runs in a separate thread, so that the user can interact with
the application while it is running. In some cases, it may take several seconds
(possibly even minutes) for the algorithm to finish.

Undo and redo

Undo and redo are functions which can make work with any editor much easier,
and thus Drone3D also provides them. If the user makes a mistake, he can correct
it easily using those functions.

If the parameters of a model are changed, this change can be undone by press-
ing the [UNDO] button. In case the button is pressed accidentally, the [REDO]
button can be pressed to re-do the change. When the user reverts multiple ac-
tions and then performs a new action, the undone actions will be forgotten and
it will not be possible to redo them.

Consider an example: The user adds a new model and sets its position. Then
he rotates it, and finally makes it twice as big. However, the result did not
turn out the way he expected. So he decides to undo the scaling and rotation
operations. Then he performs a new scaling operation. At this point, the rotation
and first scaling operations are forgotten, and it is not possible to redo them.

Mouse modes

The mouse works in various modes in the application. The default and most com-
mon mode is object selection. To deselect individual objects, the mouse switches
to deselect mode. When an object is being moved using the mouse, the mouse
is in movement mode. Finally, when an object is being added, the mouse is in
object adding mode.
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Object bar functions

The object bar contains buttons that let the user place objects in the environment.
When he clicks a button in the object bar, the application enters object adding
mode. Each button represents a different object.

After a button in the object bar is clicked, the selected type of object can be
placed by clicking in the environment, either at an existing object or one of the
three border planes. A preview of the object is displayed, showing the position
where it will be placed when the user clicks to confirm. The [ESCAPE] key can
be pressed to exit object adding mode.

Figure 6.7: Object bar

The object bar contains the following buttons from left to right:

[CUBE]: Place a cube in the environment

[SPHERE]: Place a sphere in the environment

[CYLINDER]: Place a cylinder in the environment

[START]: Set the starting location in the environment

[GOAL]: Set the goal location in the environment

[WAYPOINT]: Place a waypoint in the environment

Selecting objects

When the mouse is in object selection mode, the user can select objects by clicking
them with the [left mouse button]. Objects can also be grouped, and when an
object in a group is clicked, the entire group is automatically selected.

Currently selected objects are highlighted, as can be seen in the following
image showing one cube and a selected cube.

If necessary, deselect individual objects can be deselected by holding down
the [CTRL] key and clicking them with the [left mouse button]. All objects can
be deselected using the [Deselect] button in the context menu, described in the
following chapter.

Context menu functions

The context menu is displayed after the [right mouse buton] is clicked. The
items it contains depend on the type of selected objects. It is not possible to
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Figure 6.8: Selected object highlighting

manipulate with multiple types of objects at once. There are four types of objects:
a standard object, start, goal and waypoint.

The standard context menu looks like this:

[Info]: Displays information about the object.

[Move]: Switches the mouse to movement mode, then you can move the selected
objects with the mouse.

[Position]: Opens a dialog which lets you set object position in centimeters.
This operation can be only be performed on a single object or a single
group.

[Offset]: Opens a dialog which lets you set the object offset in centimeters. This
is very similar to setting object position. However, offset is the distance
between the displayed border planes and the object. Object rotation influ-
ences the result of this operation.

[Resize]: Opens a dalog, in which the user sets the object size in centimeters.
Previous object rotation or size are not taken into account.

[Rotate]: Opens a dialog, which lets the user set the object rotation around the
X, Y and Z axes. Previous settings are not taken into account.

[Lock]: Locks the object in position.

[Unlock]: Unlocks the object for manipulation.

[Group]: Creates a group from the selected objects and/or groups.

[Ungroup]: Disbands the selected groups into individual objects.
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[Delete]: Deletes the selected objects or groups.

[Deselect]: Deselects all selected objects and groups.

Figure 6.9: Context menu

The start and goal objects support only some of those operations. The
unsupported operations are not shown in their context menus.

The start object introduces one new operation, that is [Direction] which
lets the user set the direction of the drone. This is expected to correspond to
the direction the Parrot AR.Drone is facing, when you put it on the ground and
initiate navigation.

Drone control

The application also allows manual control of the drone. After it is connected to
the drone, press [T] key to take off. The drone will take off and start hovering
in position. The IJKL keys and arrow keys are used to control the aircraft. The
[I] key will cause the drone to move forward. The [J] key moves the drone to the
left, the [K] key backward and the [L] key to the right.

The [LEFT ARROW] and [RIGHT ARROW] keys turn the drone left and
right, while the [UP ARROW] and [DOWN ARROW] keys are for vertical move-
ment. To land, press the [G] key.

Sometimes, the drone sensors need to be reset. To do this, place the aircraft
on a flat surface and press the [M] key while connected to the drone to send the
flat trim command. The aircraft should reset its sensors.
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If no command is sent for over 2 seconds, the drone will stop sending naviga-
tion data to the computer. To re-initiate this process, press the [V] key and then
the [X] key. However, the navigation data are not important for manual control
and the application ensures that the data are being received when it is in control.
To verify whether or not the application is truly connected to the drone, press
the [B] key. The drone LEDs should blink.

When the application is in control of the drone, control can be aborted and a
landing forcedby pressing the [SPACEBAR] key. The user can take over control
by pressing [ENTER].

List of used keyboard keys

key function
[W] Move the camera forward
[A] Move the camera to the left
[S] Move the camera backwards
[D] Move the camera to the right
[R] Move the camera up
[F] Move the camera down
[LEFT SHIFT] Enable camera rotation
[ESCAPE] Cancel object adding
[LEFT CTRL] Switch mouse to deselecting mode
[O] Undo
[P] Redo
[Z] Toggle display of blocked environment units on or off
[T] Quadrocopter take off
[G] Quadrocopter land
[I] Quadrocopter forward
[J] Quadrocopter roll left
[K] Quadrocopter backwards
[L] Quadrocopter roll right
[UP ARROW] Quadrocopter increase altitude
[LEFT ARROW] Quadrocopter turn left
[DOWN ARROW] Quadrocopter decrease altitude
[RIGHT ARROW] Quadrocopter turn right
[B] Quadrocopter blink LEDs
[N] Disconnect from the quadrocopter
[M] Send the flat trim instruction to the quadrocopter
[V] Send the watch dog reset command to the quadrocopter
[X] Request navigation data from the quadrocopter
[SPACEBAR] Abort quadrocopter navigation and force a landing
[ENTER] Take over control of the quadrocopter
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