
Charles University in Prague
Faculty of Social Sciences
Institute of Economic Studies

MASTER THESIS

Monte Carlo simulation of
Counterparty Credit Risk

Author: Robert Havelka

Supervisor: PhDr. Boril Šopov, M.Sc., LL.M.

Academic Year: 2014/2015

http://www.cuni.cz/UKENG-1.html
http://fsveng.fsv.cuni.cz
http://ies.fsv.cuni.cz/content/tree/index/lang/en


Declaration of Authorship

1. Hereby I declare that I have compiled this master thesis independently, using
only the listed literature and sources.

2. I declare that the thesis has not been used for obtaining another title.

3. I agree on making this thesis accessible for study and research purposes.

Prague, May 10, 2015
Signature



Acknowledgments

The author is grateful to PhDr. Boril Šopov, MSc., LL.M. for invaluable comments
and help. My thanks also go to our Alma Mater, which offers an academic environ-
ment supporting creativity and achievement.



Abstract

The counterparty credit risk is particularly hard to simulate and this thesis is only the
second work so far, which considers effective simulation of couterparty risk. There
are two new approaches to stochastic modelling, which are useful with respect to ef-
ficient simulation of counterparty risk. These are Path-Dependent Simulation (PDS)
and Direct-Jump to Simulation date (DJS). It had been show that DJS is far more ef-
fective, when it comes counterparty risk simulation of path-independent derivatives.
We focus on a portfolio of interest rate swaps, which are effectively path-dependent.
DJS approach yields estimates with much lower variance than PDS approach. But
as expected, the DJS is also much more computationally intensive. The increase in
computing time in majority of cases wipes out any gains in lower variance and PDS
approach is shown to be more effective, when computing time is taken into account.
We also show that in practice the convergence rate of Monte Carlo method signif-
icantly underestimates the true reduction in variance, which can be achieved with
increasing number of scenarios.
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Abstrakt

Kreditní riziko protistrany je obzvlášť těžké simulovat a naše práce je teprve druhá
v pořadí, která se zabývá efektivní simulací kreditního rizika protistrany. Dva nové
přístupy ke stochastickému modelování ve spojení s kreditním rizikem protistrany
se objevili v podobě přístupů ”Path-Dependent Simulation” (PDS) a Direct-Jump
to Simulation date (DJS). V minulosti bylo ukázano, že DJS přístup je mnohem
efektivnější než PDS pokud vezmeme v úvahu pouze deriváty závislé-od-cesty. My
bereme v úvahu portfolio swapů s výměnou úrokové sazby, které jsou efektivně jako
derivát závislé-od-cesty. DJS přístup vede k odhadům s mnohem větší přesností
než přístup PDS. Jak se dalo i očekávat tak přístup DJS je mnohem náročnější na
výpočetní sílu. Tato výpočetní náročnost ve většině případů avšak přesahuje jakékoli
zisky přesnosti přístupu DJS. PDS přístup je proto ve většinu případů efektivnější
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pokud jde o simulaci kreditního rizika protistrany. Také se ukázalo, že konvergenční
poměr metody Monte Carlo může značně podhodnotit zisky přesnosti, kterých je
možno dosáhnout v praxi při zvýšení počtu scenárií.
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Chapter 1
Introduction

Counterparty credit risk came to be of great importance since the last financial cri-
sis. This does not mean counterparty risk was not relevant for behavior of financial
markets before that, it just was not recognized as such (Borio, 2004). It is estimated
that two thirds of losses on OTC markets related to derivatives were caused in fact by
counterparty credit risk, specifically due to declines of creditworthiness of counter-
parties in the market (BIS, 2011). These losses are mark-to-market losses and they
can be represented as changes in the Credit Value Adjustment (CVA). That means
majority of the losses were not caused by bankruptcies or defaults of these counter-
parties, but rather due to changing perceptions of market participants. The insuf-
ficient emphasis on counterparty credit risk before the financial crisis can be most
easily deducted from the fact that Basel II does not address this topic at all, Basel
II addresses only actual defaults and changes in credit rating with respect to capi-
tal rules that market participants have to fulfill (BCBS, 2010). Basel III recognizes
counterparty credit risk in full extent and capital requirements specifically demand
that market participants set aside capital that covers potential losses resulting from
decline in creditworthiness of counterparties with whom they are in business with
(BCBS, 2010).

Thus CVA losses can be seen as a problem to be tackled as it caused the majority
of the losses during the last financial crisis and at the same time it was not given the
degree of attention it should have received. CVA is the difference between the value
of portfolio under the assumption of risk-neutrality and portfolio which takes into
account the possibility of counter-party’s default and changes in its creditworthiness
(Pykhtin and Zhu, 2007). Hence CVA can be seen as a value that market assigns
to counterparty credit risk. CVA is the central measure when it comes to pricing
of counterparty credit risk (Brigo et al, 2013). This risk is not observed on usual
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exchanges, where degree of uniformity is required and potential losses from coun-
terparty credit risk are covered by the exchange alone, namely by the clearing house.
The clearing house clears and settles the transactions and in case of default of the
counterparty steps in. The step in means that clearing house settles the transaction
for the failing counterparty and in the mean time also receives collateral from the
counterparties to account for this risk.

The CVA alone is very hard to calculate. The computational intensity needed to
quantify counterparty credit risk is significant due to number of reasons. This results
from properties of simulations, which require multiple steps and there is number
of complex steps that need to carried out before the estimates of CVA and other
measures of counterparty credit risk can be obtained (Brigo et al, 2013). Because
of multiple steps involved in these simulations it implies that an institution desiring
to quantify counterparty risk has to have complex internal system, but that is not the
case often (McKinsey, 2010). Tackling such problem with spreadsheet calculations
is common and it is very unfit for such task as spreadsheets are too slow, too simplistic
and without any possibility to build more complex model for quantification.

1.1 Why so complicated ?

If an institution participating in OTC markets assumes that its counterparties are not
default-free, then it should desire the pricing of counterparty risk. The hindrance
of this task is the sheer computational intensity, which results due to the need to
extrapolate future. As we will find out CVA can be approximated by the following
analytical formula

CVA = (1−R)E[E[1{τ ≤ T}V (τ))|τ]] =
T̂

0

E[V (t)]dF(t)

V (t) is the so-called credit exposure process and F(t) is the default probability dis-
tribution for a given counterparty. The first step is to set a future horizon T , the set
of risk factors as a drivers of the portfolio’s components and the stochastic model,
which describes the evolution of these risk factors. The previous formula can be
approximated as

ĈVA =
n

∑
i=1

E[V (ti)]∆F(ti)
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With the particular choice of discretization scheme, that is the selection of valuation
points ti, i = 1, ...,n and their closeness, we see that have to calculate another n ex-
pectations and the default probability distribution F(ti) in order to obtain estimate of
the initial expectation. For every time bucket [ti−1, ti], i = 1, ...,n, where n can range
from 15 to infinity, one has to generate at least m scenarios of risk factors and then
valuate the portfolio for each of the risk factors in order to obtain a good estimate
of E[V (ti)] for every time bucket. The range m assumes can be between 1000 and 4
billion (Brigo et al, 2013). The valuation alone can be intensive and we have to do
that n *m times at least, for variety of instruments. Carrying out all these steps is
going to yield us a single estimate of the initial expectation.

However, with a single estimate of CVA we will not know how precise the estimate
is. We would be required to repeat the previous steps many times to obtain a variance,
a measure of estimate’s accuracy.

The previous paragraphs only show the complexity of pricing the counterparty risk
and not risk measurement. Risk measurement would require to obtain Value-at-risk
of CVA. We would have to repeat the whole computation for every time-bucket in
order to obtain CVA estimates for every time bucket and generate the distribution of
CVA losses. This essentially leads to situation with many nested levels of simula-
tions, sub-simulations and sub-sub-simulations (Brigo et al, 2013).

As we stressed in the beginning of this section, the formula for calculating CVA we
present is analytical, in its entirety CVA should be calculated as a value of our port-
folio given the default of counterparty, not use its default probability( (Pykhtin and
Zhu, 2007). This would include generating number of exposures and simulating the
default process at the same time. Given that the default is highly unlikely, the num-
ber of exposures to be generated so that for some exposures the counterparty actually
defaults is potentially huge. Not a sensible approach without utilizing importance
sampling at least.

Another potential problems in counterparty risk include the amount of measures,
which are to be calculated with connection to counterparty risk. Even for regulatory
purposes, CVA is not the only quantity required.

1.2 The real world challenges

Financial institutions are investing large sums of money into developing systems for
measuring counterparty credit risk, which would enable them to calculate required
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capital to be set aside covering this risk (Ghamami and Zhang, 2013). These systems
are based on Monte Carlo simulations. But even systems not based on spreadsheet
calculations can not produce results financial institutions would like to. It is too
computationally intensive to quantify counterparty credit risk in its entirety.

Basel III includes standardized methods for CVA calculation that banks has to
apply if they do not opt to have their own internal system, which regulator has to
permit ex ante (BCBS, 2010). These standardized methods rely on various restrictive
assumptions and employ analytical approximations to calculate Value-at-risk of the
change in CVA. However, assumptions that simplify the calculation of CVA may lead
to estimates that do not approximate the true CVA very well (Brigo et al, 2013).

CVA has many features that are advanced and too complex to model. Such as the
wrong way risk, which describes the situation, when there is dependence between the
probability of default and size of the exposure (Pykhtin and Zhu, 2007). One often
assumes that wrong way risk does not exist.

Model for CVA calculation also depends on the type of instrument in question
(Antonov et al, 2011). Different approaches are taken to calculate CVA for credit in-
struments, such as Credit Default Swap (CDS), interest rate derivatives and commod-
ity instruments (Brigo et al, 2013). Financial institutions on average hold thousands
of instruments in their portfolio of varying type. As Brigo et al (2013) point out, it is
almost impossible task to actually standardize CVA calculations across instruments
and implement it in internal model systems.

1.3 Goals of this thesis

We want to compare different approaches for CVA calculation presently available
and potentially develop some of our own. For the case of Monte Carlo method it is
possible to employ so-called variance-reduction techniques, which should yield im-
provements in the speed of computations. Variance-reduction techniques try to ex-
ploit the specific or some general knowledge about the problem, that would increase
the accuracy of true estimates for the same number of iterations. Also the nature of
counterparty risk allows to use more effective versions of Monte Carlo simulations,
where we fundamentally change the approaches taken so far in this area.

However, the results can be misleading, when employing these techniques within
Monte Carlo method and different Monte Carlo methods. It is possible to increase the
accuracy of the estimates by some factor, but at the same time to increase significantly
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computational intensity per every iteration as to wipe out any gains in efficiency ob-
tained so far. In fact we can increase the overall computational intensity when using
some more accurate approaches. Thus, we will have to use appropriate measures
to account for such differences. These measures most often mix bias, variance and
computing time together in order to obtain a single quantity summarizing the three.

The portfolio of interest rate swaps will be our main interest. This is instrument
for which CVA is calculated most often (Pykhtin and Zhu, 2007). Also interest rate
swaps are relatively less demanding, when it comes to dependency modeling (Brigo
and Alfonsi, 2005). We can take assumptions about wrong way risk and use a simpler
framework for simulations. To our best knowledge, there is no academic article that
take these tasks upon itself. Research in this area is very limited.

1.4 Structure

In chapter 2 we will start describing what Monte Carlo simulations are and how useful
they are in derivative pricing. The next sections of the chapter will talk about the ran-
dom number generation, sampling from probability distributions and also variance-
reduction methods. Chapter 3 enlightens the topic of stochastic modeling and de-
scribes the processes and models we will later employ. This includes the genera-
tion of the Brownian motion, the description of models of the short-rate and making
the important distinction between two approaches to stochastic simulation - Path-
Dependent simulation (PDS) and Direct-Jump to simulation date (DJS). Finally, the
chapter 4 utilizes the previous findings and applies it to the simulation of counter-
party credit risk. We also specify what a default really is and what exposure means.
Practical simulations are carried out in chapter 5. We conclude with the chapter 6.



Chapter 2
Monte Carlo simulations

Methods of Monte Carlo simulations involve a significant range of algorithms, which
serve many purposes, but there are few generalization that can be made. First, Monte
Carlo methods are methods, which are based on repeated random sampling and that
is generally the first step of all algorithms in this domain. The first step serves as a
way how to address various problems at hand. Random sampling consists of generat-
ing random numbers of huge quantities. Generated numbers should satisfy particular
criteria. which can include dependence structure, size, other distributional proper-
ties. These criteria can be enforced using statistical tests, for instance to test for their
independence.

The problem at hand can be either deterministic of include some form of uncer-
tainty. Problems that involve some form of uncertainty are area, where Monte Carlo
method is very suitable. This is often the case, that uncertainty can not be tackled
otherwise and Monte Carlo is the only viable option. Analytical approximations can
be used in many case for expression of the properties of uncertain phenomena and it
can lead to relatively simple solution of the problem, but at the expense of precision
and accuracy. On the other hand, employing Monte Carlo can be very computation-
ally intensive, time-consuming and the implementation more complex and difficult.
To summarize, Monte Carlo methods are used determination and understanding the
properties of various phenomena using randomness.

The disciplines that use Monte Carlo methods extensively are Mathematics and
Physics, as well as the area of Finance. Specifically, the problem of integration is
tackled by Monte Carlo methods well even in cases when analytical approach does
not yield suitable results. This is the most common application. Monte Carlo meth-
ods is especially suitable for evaluating multidimensional integrals as it has prop-
erties that set it apart from deterministic methods for computing multidimensional
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integrals. This is crucial property as many problems in Finance are inherently mul-
tidimensional and representable as an integral. Monte Carlo methods involve also
techniques that can speed up the evaluation of integrals increasing the preciseness
of the estimates with the employment of so-called variance-reduction techniques.
Variance-reduction techniques reduce the computational intensity needed for esti-
mation of desired quantities by utilizing general or specific properties of the problem
at hand. Analytical representations alone can be employed with variance-reduction
techniques. This introduces degree of flexibility into Monte Carlo method others do
not have.

2.1 Pricing derivatives

Derivative is kind of financial instrument, whose value depends on the behavior of
other financial assets of more simple nature. Interest rate swap is one such deriva-
tive. Monte Carlo simulations are useful in derivative pricing due to the ability to
state derivative prices as expectations. To be able to obtain such simplified expres-
sions of derivative’s price a few assumptions have to be made. Glasserman (2004)
summarizes three most important principles of derivative pricing as follows:

1. The price of a derivative should be equal to the cost of replicating or emulating
the derivative’s payoff by employing other financial assets.

2. Such replication or emulation is possible in the so-called complete market and
every derivative is replicable in this market. Perfect hedge is possible for ev-
ery derivative contract. In complete market there is also unique probability
measure under which discounted asset prices are martingales.

3. Finally, price of a derivative is an expectation of derivative’s discounted payoff
under the assumption of complete market and the resulting unique probability
measure.

The unique probability measure is called the risk-neutral measure and its existence
is necessary for market completeness. The complete market assumption is crucial as
otherwise it is not ensured that a derivative can be perfectly replicated by other finan-
cial assets. One important assumption within market completeness is the assumption
of no-arbitrage, which means that there is no risk-free profit to be made and it effec-
tively assumes that all investments are risk-free and hence returns on all assets are
equal to the risk-free rate of return. To discount an asset price and obtain a present
value of the payoff we only use a risk-free rate. It would be possible to estimate price
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of a derivative upon finding a specific replicating strategy for it and its cost. The first
principle says exactly that, but such a strategy would be relatively more complicated.
Instead we use the advantages of risk-neutral measure and its world.

To estimate the price of a derivative through an expectation, first one has to sim-
ulate the behavior of the underlying assets, these can be asset price or interest rate,
through large number of scenarios and then quantify the derivative’s payoff on each
of them. Discount the payoffs to present by using a risk-free rate as a discount factor
and average over all paths.

2.2 Monte Carlo Method in Finance

Important parts of finance consist of valuation, risk measurement and analysis of var-
ious financial market instruments, portfolios of instruments, investments. However,
there is inherent uncertainty contained in these tasks and Monte Carlo method can
account for such uncertainty as mentioned. Uncertainty in finance can be expressed
for instance by future path of price of some underlying asset, which can influence
the price of derivative security, or the future development of interest rates, the level
of risk. Because the development of these variables is uncertain with respect to fu-
ture, we can not pinpoint or guess one specific path of variable’s development or one
specific price path of an underlying asset that would eventually turned out to be true.
Every price path may be interpreted as a single realization of the future. Ideally we
should be able to account for all possible realizations of the future and weight them
according to the probability of their occurrence. Monte Carlo method accounts for
this uncertainty by simulating many price paths, that is simulating a process, which
underlies the problem to be solved. Simulated paths are then used as an input to a
model, which produces the estimate of the problem at hand.

In case of an Asian option, where payoff is determined as an average of price of
an underlying asset over a specified period, we would first take average of a single
price path, it would yield the price of an option in one version of the future. To obtain
the price of the option accounting for uncertainty, we would then take average over
all versions of the future, represented by all price paths generated. The problems in
finance, which do employ Monte Carlo method need to be specified as an integral.
This comes as natural for many problems.
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2.3 Basic principles of Monte Carlo method

As we have discussed, Monte Carlo method is suitable for evaluating integrals. The
basic reason for that is the convergence rate of 1√

n for integral evaluation, which
Monte Carlo offers (Glasserman, 2004). This means in order to decrease variance by
two, we have to increase the number of scenarios by a factor of four. This convergence
rate also applies for integrals of any dimension.

Another popular procedure for integral evaluation is the so-called trapezoidal rule
for instance, which on the other hand has a convergence rate of 1

n
2
D

, where D is the
number of dimensions our integral possesses (Glasserman, 2004). It is obvious that
as the number of dimensions increases, the trapezoidal approach will become less and
less efficient. The degradation in performance is too large to consider this technique
in evaluating multidimensional integrals.

2.3.1 Statistics of Monte Carlo

In this section we will show how the convergence rate of Monte Carlo method is
determined, while following closely Glasserman (2004). Suppose we have N i.i.d.
realizations C1, ...,CN of a given integral and suppose C̄N = ∑

N
i=1 Ci

2 , where E[Ci] =C,
Var[Ci] = σ2

C < ∞. C̄N is then the estimate of the integral with standard error of σC

and C is the supposed true value. The central limit theorem would give us that

C̄N −C
σC√

N

→ N(0,1);N → ∞

which can be transformed as C̄N −C → N(0,σ2
C) (Glasserman, 2004). And it is

possible to replace the standard error with the standard sample deviation.

2.4 Generating Random Numbers

Generating random numbers is generally the first step of any Monte Carlo simulation,
these numbers are then driving force behind all following computations (Glasserman,
2004). Thus it is important to describe and understand how random numbers are
generated. Following sections will discuss methods for random number generation
and show that these methods are all deterministic, no random elements are employed.



Monte Carlo simulations 10

It begs to ask then if such numbers are truly random, when they are in fact generated
by deterministic algorithms only. This question will be answered as well.

2.4.1 Random number generation in simple manner

We only have to restrict our attention to generating a sample from uniform distri-
bution, i.e. U [0,1], since such sample can be transformed into sample of arbitrary
distribution. This is a question of efficiency as one would have to create new genera-
tor for every distribution individually, if it wouldn’t be for this solution. Sample from
U [0,1] is in fact also the distribution of function values of any possible distribution
as every probability distribution function is projected into the space of [0,1]. Follows
the formal definition for generator of random numbers.

Definition 1. Random number generator is a mechanism that produces random vari-
ables U1,U2, ..., which satisfy following two properties:

1. ∀i = 1,2, ... we have that Ui ∈ U [0,1], i.e. it is uniformly distributed on the
interval U [0,1]

2. every pair of random variables Ui,U j, where i ̸= j, is independent of each other
(Glasserman, 2004)

Generator that satisfies such properties should produce sequence of numbers with
apparently no pattern set in them and the number of values in any given sub-interval
should should be equal to the length of that particular sub-interval, assuming that the
number of generated values is large enough. Follows the definition of our first simple
generator of random numbers.

Definition 2. Linear congruential operator is recursive algorithm defined as follows:

xi+1 = axi mod k

ui+1 = xi+1/k

where a is the multiplier, initial value of x0 is the seed and U = (u1,u2, ...) follows
U [0,1].

This operator is the simplest generator of random numbers. It uses deterministic
means and is recursive in nature. It is effective in the sense that modulo operation can
be very effectively implemented at lower level of computation in terms of handling
the individual bits of number and then we only have to proceed with multiplication
and division of two numbers, which is very fast as well (Glasserman, 2004).



Monte Carlo simulations 11

2.4.2 Simple random number generation - dependency
and length

However, any sequence of values

x0,x1, ...,xn,n ∈ R

generated by this algorithms will always consists of sequences that repeat itself. As-
sume k = 9,a = 5,x0 = 2, then the sequence of values generated using this operator
looks like

1,5,7,8,4,2,1,5,7,8,4,2,1,5, ...

This way we have achieved to produce a unique sequence of the length 6, which
eventually repeats itself as observed. The number of values which linear congruential
operator produces before repeating is called the period and the longest possible period
is the full period, that is period with length of k−1 (Glasserman, 2004). This implies
that k should be very large in order to be able to generate large number of random
values, but also constants should be chosen carefully. The previous example shows
the length of the unique sequence is not necessarily always equal to k−1.

Being able to generate higher number of independent random numbers is useful,
as the distribution of these numbers will follow the uniform distribution more closely
and we can also better satisfy the needs for generating long sequences of independent
random numbers. This is often the case and the value of k can be regularly around
232. Not every operator produces sequence with full period and it depends on the
parameters selected as it is evident from our example.

2.4.3 A seed

Another important property of our simple generator concerns the choice of so-called
seed, i.e. x0, which allows for reproducibility of our sequence of random values gen-
erated. If seed is given the same and parameters of the operator are kept unchanged,
we will always receive sequence with the same numbers. This property can come in
handy, if we want to retrace our steps during an individual simulation for instance.

Splitting random number sequences is also possible with linear congruential op-
erators. Such property is useful when running our algorithm on parallel computing
unit (Glasserman, 2004). We can simply split the sequence so that parallel computa-
tions are independent of each other. This is can be done by choosing different seeds,
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but not chosen randomly. We pick two numbers from the sequence generated with
particular seed, while keeping in mind that these two numbers has to be far away
from each other in the sequence. To get such number we pick the first one and then
skip ahead by l steps, i.e.

xi+l = alxi mod k

Then we can use the seeds x0 and xl+k to generate the sequence of random numbers,
which have l spaces between themselves.

2.4.4 Advanced Generators

Linear congruential operators against all its simplicity are still useful, when it comes
to advanced methods of random number generation. The next step are so-called Com-
bined Generators, which as name suggest combine number of linear congruential op-
erators together. It appears that such configuration leads to better dependence struc-
ture, which means higher degree of randomness in generated numbers and longer
periods, while inheriting the favorable property of simplicity (Glasserman, 2004).

Combining linear congruential operators proceeds in following manner: Assume
we have L such generators, l = 1,2, ..,L, each with parameters al,kl . One approach
is then to generate ui+1,l for every l and sum them. To obtain ui+1 we simply subtract
from the sum its integer part. Such combined generator produces random sequences,
which are shown to have no lattice structure and is able to generate random sequences
with length far longer than the ones generated by individual generators (Glasserman,
2004).

2.4.5 Independence of Random Numbers

There are a few approaches for evaluating our random generators and the values they
produce. Approaches include the lattice structure of generated values, spectral tests
and discrepancy measures.

Lattice structure relies on the fact that if random variables U1,U2, ...,Un are in-
dependently and identically distributed and come from U [0,1], then for any d ≤ n

the random variables U1, ...,Ud are uniformly distributed in the d-dimensional space
of [0,1]d (Glasserman, 2004). Thus to evaluate the linear congruential operator we
can generate a sequence of random numbers and form points in 2-dimensional space
using consecutive values in the sequence. If we follow this plan and plot the values
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generated using linear congruential operator, we would see there is clear pattern and
the numbers are hardly independent (Glasserman, 2004).

The graphs also can help us to pick the right parameter for our recurrence. Lattice
structures are in turn analyzed by spectral tests, which try to quantify the degree of
regularity in structure showed above. There are also other statistical tests that can
be carried out, these include tests of independence or weak dependence, which are
frequent in time series econometrics.

2.5 Sampling Methods

The previous section assures us of being able to generate a sequence of random num-
bers from U [0,1]. Now we approach the general topic of sampling from distributions
we actually want to study, while utilizing the sample from U [0,1]. We will discuss
two methods in use, which are most popular and that is the Inverse Transformation
and Acceptance-Rejection method. Most of simulations in stochastic finance involves
sampling from a few fundamental distributions, such as Normal distribution.

2.5.1 The Inverse Transform method

Assume we have a continuous cumulative distribution function F defined on some
set X , i.e. P(X ≤ x) = F(x),∀x ∈ X , and we want to generate a sample from this
distribution. Then if function F has its inverse well-defined, we can write

F(X) =U,U ∼U [0,1],X = F−1(U)

. This is justified by following

P(X ≤ x) = P(F−1(U)≤ x) = P(U ≤ F(x)) = F(x)

The last equality follows from the fact that any cumulative distribution function F(x)

is uniformly distributed between 0 and 1. The exact number between 0 and 1 signi-
fies the percentile of the cumulative distribution function. The inverse is defined for
all strictly increasing functions, while for non-decreasing functions the inverse still
exists if precautions are taken (Glasserman, 2004). If a function is non-decreasing,
there can be a single function value assigned to more than one value from the set X,
which corresponds to a flat section. The cases, where the inverse of a function does
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not exist in a closed form, techniques of numerical integration can be used, then our
problem would reduce to solving equation of the form F(x) = u for x.

2.5.1.1 The Inverse Transform method for discrete distributions

Discrete distributions can be handled without any need for explicit calculation of the
inverse of cumulative distribution function (Glasserman, 2004). Assume we have a
discrete random variable and its sample consisting of values

{x1,x2, ...,xn;n > 0,n ∈ R}

and their probabilities
{p1, p2, ..., pn;n > 0,n ∈ R}

Vector of values is sorted in ascending order. The cumulative distribution function
of such variable is then given as F(xi) = ∑

i
j=1 p j. To generate a sample X from this

distribution we generate a sample from U [0,1], i.e. ui, i = 1,2, ...,n, and find such
pair of xi,xi+1 for which

F(xi)< ui ≤ F(xi+1)

The desired value of X is then xi+1. The computational intensity of sampling from
discrete distribution is directly observable. Apart from generating a sample from
U [0,1], we only have look for a certain value in a sorted array, which can be handled
by binary search in logarithmic, i.e. in O(log(n)).

To apply this method we need to have ready the inverse of desired distribution we
want to sample from. Most comfortable is to have an analytical formulation for the
inverse function, this is not possible in many cases. The next method offers a remedy.

2.5.2 The Rejection Sampling

Another popular method for generating random samples from probability distribu-
tions is the so-called Rejection Sampling or Acceptance-Rejection method. Using
this method, we do not generate a random sample from the desired distribution di-
rectly, instead we use a more viable distribution and generate values from this dis-
tribution, some of which get randomly rejected. The random rejection part of this
method makes sure the generated sample is in fact distributed according to desired
distribution even though we are sampling from different distribution.
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We assume here that we face certain constraints in sampling from the desired dis-
tribution. Possibly, we do not have available the inverse function of the distribution
of interest and can not use the the inverse transform method consequently.

Suppose that we have two probability densities f and g defined on some set X .
The density f is the desired density, while the latter is a density from which random
sample is readily to be drawn. The densities are related as such f (x) ≤ cg(x),c ∈
R,∀x ∈ R. The following algorithm is due to Glasserman (2004) and allow us to
sample from f .

1. generate a sample x from density g and u from U [0,1]

2. accept x as sample from f , if u ≤ f (x)
cg(x)

3. repeat steps 1,2 as necessary

Every sample x from density g is accepted with probability f (x)
cg(x) . Sample from

Uniform distribution serves only as a metric for acceptance or rejection. Glasserman
(2004) shows formally that this method is in fact correct, we omit the proof of that.

2.6 Variance Reduction methods

Monte Carlo simulations tend to be computationally intensive and consequently vari-
ance reduction methods help to develop modified Monte Carlo estimators with higher
accuracy than crude versions of these estimators. The logic behind ambitions of this
method is that in every estimator there is inherent error present and it is embodied
by the variance. Variance is the error of estimates of given quantity. Given a con-
stant number of simulation runs, the variance of crude MC estimator shall be higher
than the variance of estimator with successfully implemented reduction of variance.
Effectively, with such an estimator lower number of simulation runs is needed to
achieve a given constant accuracy.

Application of these methods is not obvious and requires as good knowledge as
possible about the model and problems with which the simulations concern itselves.
To exploit its specific properties and not “generic application of generic methods”
(Glasserman, 2004) one shall. The methods to be discussed are Control Variates and
Stratified Sampling.
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2.6.1 Control Variates

One of the straightforward variance-reduction methods to apply is Control Variates.
Together with the variable of interest we generate as well some other variable for
which we know the estimate errors. Then we use it to reduce the variance of variable
of interest. The other variable is likely a one for which we already know how to
handily estimate the expectation. As we will see later the potential gain is governed
by the strength of the dependency between these two variables, the greater is the
dependency, no matter if positive or negative, the more is to gain.

Assume we have two random variables (X ,C) and i.i.d. sample of size n from
both distributions. The goal is to estimate E[X ]. This could be done by employing
a sample mean X̄ , which is an unbiased estimate of E[X ]. However, suppose we
transform the draws from the distribution of X followingly

X̂i(λ ) = Xi −λ (Ci −E[C]).

We assume a constant λ and the ability to easily obtain E[C]. To obtain E[X̂ ] we
simply take a sample mean again as

X̄(λ ) =
∑

n
i=1(Xi −λ (Ci −E[C])

n

It is an average over all n transformed draws from X given a constant λ .

2.6.1.1 Unbiasedness

To prove the unbiasedness of the Control Variates estimator we write

E[X̄(λ )] = E[X̄ −λ (C̄−E[C])] = E[X ]−λE[C−E[C]] = E[X ]

and we use the independence of the two samples and unbiasedness of sample means.

2.6.1.2 Variance

The variance of the estimator will however depend on the variance of control variable
C, the correlation between X and C, and λ :

Var[X̂i(λ )] = Var[Xi −λ (Ci −E[C])] =
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= (E[Xi −λ (Ci −E[C])])2 −E[Xi −λ (Ci −E[C])]2

= (E[Xi])
2 −2λE[Xi(Ci −E[C])]+λ

2E[Ci −E[C]]2

= σ
2
X −2λσXC +λ

2
σ

2
C

where Var[X ,C] = σXC, Var[X ] = σ2
X and Var[C] = σ2

C.

The crude estimator would exhibit variance of σ2
X and so in order for Control Vari-

ates estimator to reduce the variance the following inequality shall hold

2λσXC > λ
2
σ

2
C

The optimal value of λ for which the variance of our estimator is minimized is ob-
tained by minimizing with respect to λ

λ
* =

σCX

σ2
C

2.6.1.3 Efficiency of Control Variate estimator

We need to determine what exactly governs the gains in lower variance, when suc-
cessfully employing the control variate estimator. Also it would be advantageous
to see how the magnitude of the gain is determined. We compare the variance of
Control Variates estimator with variance of X as follows

Var[X −λ *(C−E[C])]

Var[X ]
= 1−ρ

2
XC

where ρXC is the linear correlation between X and C. The previous expression gives
us the explanation about why successful application of Control Variates requires the
variables to be highly correlated, no matter if positively or negatively.

2.6.1.4 Challenges of application

One of the challenges of applying this estimator is the additional work needed for gen-
erating sample from the distribution of control variable and transforming the draws,
hence rather high correlation is required for significant gains to be experienced. Also
one does not know immediately the optimal value of λ . It is again possible to estimate
it from the population using

λ
* =

∑
n
i=1(Xi − X̄)(Ci −C̄)

∑
n
i=1(Ci −C̄)2
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As Glasserman (2004) points the estimate is equal to the slope in single least
squares regression obtainable by regressing the control variates on the variable of
interest. Such interpretation is interesting in case of multiple variates.

It is often the case that the control variable is some function of the variable of
interest and additional computational demands are minor. Such situation can arise,
when working under the risk-neutral measure and based on some assumptions we
work out the expected value. For instance under the assumption of no-arbitrage, we
know that discounted asset prices are martingales and their future value at any point
in time is equal to the initial value. Hence initial value is then used as control variate
(Glasserman, 2004).

2.6.1.5 Statistical properties of Control Variates estimators

The control variate estimator X̄(λ ) is simple mean of its i.i.d. replications Xi(λ ), i =

1, ..,n for given λ . To estimate the standard deviation σ(λ ) we can use the sample
standard deviation defined as

S(λ ) =

√
∑

n
i=1(Xi(λ )− ¯X(λ ))2

n−1

Consequently, we can form the (1−α) confidence interval for our estimator as (X̄(λ )±
zα/2

σ(λ )√
n ) , where σ(λ ) can be replaced by the sample standard deviation to keep con-

fidence intervals valid asymptotically and zα/2 is the (1−α/2) quantile from standard
normal distribution (Glasserman, 2004).

2.7 Stratified Sampling

Stratified sampling can be defined as a method, under which one systematically gen-
erates samples of desired size from disjoint subsets of the given sample space in or-
der to estimate quantities of interest more efficiently and without a bias (Glasserman,
2004).

Suppose we have a random variable X defined on the real line. Then we partition
the sample space into K disjoint subsets A1, ...,AK so that we have P(X ∈∪K

i=1Ai) = 1
and we want to find E[X ]. We can write

E[X ] =
K

∑
i=1

E[X ∩X ∈ Ai] =
K

∑
i=1

P(X ∈ Ai)E[X |X ∈ Ai] =
K

∑
i=1

piE[X |X ∈ Ai]



Monte Carlo simulations 19

If using general sampling method we generate enough draws from the given dis-
tribution, we would observe the number of draws from each subset Ai are converging
to pi

n , where n is the total number of draws (Glasserman, 2004). Stratified sampling
gives more control over generating values from individual subsets. These subsets are
named strata.

Assume we use a proportional sampling, so that if n is the total number of draws,
we would draw exactly ni = npi, i = 1, ...,n observations from each of the strata Ai.
Then if we obtain such stratified sample, to estimate E[X ] we use a sample mean this
way

X̄ =
∑

K
i=1 ∑

ni
j=1 Xi j

n
If we compare this to sample mean obtained the usual way, we find out stratified
sampling eliminates all variation across strata, but not within them (Glasserman,
2004).

2.7.0.6 Generalized stratification

Generally, one does not restrict himself from generating sample from a variable of
interest X , conditional on X ∈ Ai. But rather he samples conditional on S ∈ Ai, where
S is another random variable called the stratification variable (Glasserman, 2004).

This is important generalization, as X can be often a function of S, where S are
asset prices and X embodies the price of a derivative for instance. Since the price of
a derivative is fully determined by the price of underlying asset, it makes more sense
to use that asset price as a stratification variable, so that we can better explore the
sample space. This way we determine the price of a derivative more efficiently.

In credit risk , the stratification variable is often the default time of obligor or
counterparty. This stratification will allow to sample outcomes, which are relatively
more important to the modeler. These generally happen less proportionately then the
outcomes that involve the actual default (Pykhtin and Zhu, 2007).

Formally, if again P(X ∈ ∪K
i=1Ai) = 1, then

E[X ] =
K

∑
i=1

P(S ∈ Ai)E[X |S ∈ Ai] =
K

∑
i=1

piE[X |S ∈ Ai]

The above expression gives explicit instruction on how to apply stratified sampling
in practice.
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.



Chapter 3
Stochastic Modelling in Financial
Engineering

In this chapter we will build the stochastic models to be used and study stochastic
processes, which will be required for carrying out the practical simulations, including
construction of random walk and dealing with the Brownian motion

3.1 Brownian motion

We start with the definition of Standard Brownian motion.

Definition 3. Standard Brownian motion is defined as a stochastic process W (t),
where 0 ≤ t ≤ T,T ∈ R, that satisfies the following properties

1. W (0) = 0.

2. t →W (t) mapping is continuous function for 0 ≤ t ≤ T .

3. The increments of Brownian motion {W (tk)−W (tk−1),0 ≤ tk ≤ T} are inde-
pendent.

4. W (t)−W (s)∼ N(0, t − s) for any 0 ≤ s < t ≤ T .

5. Consequently, we have W (t)∼ N(0, t).

The previous definition is due to Glasserman (2004). The Brownian motion, whose
definition is presented next, is generalization of the initial Standard Brownian motion.

Definition 4. The Brownian motion with drift parameter µ and the diffusion param-
eter σ2, i.e. BM(µ,σ2) and both parameters are non-negative a higher than zero
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constants, is defined as a stochastic process X(t) that satisfies the following transfor-
mation property:

X(t)−µt
σ

∼W (t)

where W (t) is Standard Brownian motion.

The transformation property presented in the above definition leads to following
stochastic differential equation (SDE)

dX(t) = µdt +σdW (t)

and also can acquire form of

dX(t) = µ(t)dt +σ(t)dW (t)

where drift and diffusion parameters are allowed to vary with time (Glasserman,
2004). Integrating the second equation we obtain

X(t) = X(0)+

tˆ

0

µ(s)ds+

tˆ

0

σ(s)dW (s)

From the definition of Brownian motion we also have that X(t)∼ N(µt,σ2t), if X(t)

is BM(µ,σ2).

To construct a random walk using Standard Brownian motion, we assume a fixed
set of dates 0 = t0 < t1 < ... < tn = T and use the following recurrence

W (ti) =W (ti−1)+
√

ti − ti−1Zi, i = 1, ...,n

where Z = (Z1, ...,Zn) ∼ N(0,1) are i.i.d. random variables (Glasserman, 2004).
That will gives us the required vector (W (t0), ...,W (tn)) representing the random
walk. To generate random walk using Brownian motion we have the following recur-
rence

X(ti) = X(ti−1)+µ(ti − ti−1)+σ
√

ti − ti−1Zi, i = 1, ...,n

Obviously, the generated values are not independent, since the next value in recur-
rence is always made conditional on the previous one and hence there is dependence
structure present. This fact is important relatively to the methods of sampling we
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will use in later parts of this thesis. The simulated vector

(W (t0), ...,W (tn))

has the correct joint distribution of Standard Brownian motion at dates t1, ..., tn, if
simulated according to a given recurrence (Glasserman, 2004). It is clear that we can
restrict ourselves to dealing with Standard Brownian motion only, since the Brownian
motion is just a transformation of the first one and Standard Brownian motion is far
simpler for demonstrating purposes.

3.1.1 Generating Brownian motion from multivariate
distribution

Generating (W (t0), ...,W (tn)) can be also reduced to generating a sample from mul-
tivariate normal distribution with appropriate dependence structure (Glasserman,
2004). To generate such a sample from multivariate normal distribution we need
to obtain the covariance matrix and vector of means of the random walk. Vector of
means is just a vector of zeros, since E(W (ti)) = 0, i = 0, ..,n. The covariance matrix
is obtained again by considering the third property of Standard Brownian motion of
independent increments. We have that

Cov(W (s),W (t)) =Cov(W (s),W (s)+(W (t)−W (s)) = min(s, t)

where 0 < s, t < T . The covariance matrix is then represented as

Covi, j = min(ti, t j)

.

It is important to see that the above recurrence for constructing a random walk is
significantly more efficient than generating a sample from multivariate normal dis-
tribution.

The latter is done usually with Cholesky decomposition next, where the covariance
matrix is decomposed as C = AAT , so that A is lower triangular matrix for which
applies A j j = Ai j,∀i ≤ j. To generate sample from N(0,C) we do a multiplication
AZ, where Z ∼ N(0, I). The calculation of the previous product is inefficient in the
sense that it has many identical terms, which will be multiplied over and over again.
The complexity of this approach is then O(n2) (Glasserman, 2004).
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The random walk recurrence on the other hand never does the same work twice
and produces complexity of O(n). The quadratic complexity in the previous case
cannot be reduced by an optimization technique, due to identical terms always being
multiplied by different vectors of Z (Glasserman, 2004). Hence we will not consider
drawing samples from multivariate distribution and rather use the more efficient re-
currence.

3.2 Interest rate swap

The interest rate swap is defined as a derivative contract under which counterparties
are to exchange two streams of payments, which are derived from a common notional
principal. This principal, N, is never exchanged during the life of the derivative
contract and its only use is to calculate the payment streams (Kenyon and Stamm,
2012). For standard interest rate swap, the first payment stream is based on a fixed
rate K, and the other is based on a floating rate L.

Assume a discrete time grid 0 = t1 < ... < tn = T , and interest rate swap with reset
dates identical to dates ti, i = 1, ...,n. Now, the floating rate for period [ti−1, ti] is reset
at ti−1 and then applied for the whole interval [ti−1, ti], we denote this rate as L(ti−1).
The first payment exchange is done at t1 and the last at tn. The value of the fixed
payment stream is as follows

n

∑
i=1

D(0, ti)βiNK

where βi is the fraction of the year corresponding to the interval [ti−1, ti], D(0, ti) is
the discount factor. The value of the floating payment stream is similarly

n

∑
i=1

D(0, ti)βiNL(ti)

The value of the swap to a counterparty paying fixed rate is then

n

∑
i=1

D(0, ti)βiN(L(ti)−K)

Value of the swap to other counterparty is the previous payoff simply multiplied
by −1. When these two payment streams are thought of as a two kinds of bonds,
floating stream is just a floating rate bond easily replicable by investing N at t0 at rate
of L(t1) and at t1 canceling the investment, paying the interest and reinvesting again
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the principal for another period (Glasserman, 2014). By repeating this strategy the
floating bond can be replicated with an initial investment of size N. Hence the value
of floating payment stream is just N and we consequently obtain a value for fixed rate
payer as

ND(0, tn)+N −
n

∑
i=1

D(0, ti)βiNK

At time t0, when the contract is agreed upon, the fixed rate is set so that the present
value of both payment streams are equal. If not, then naturally one of the counter-
parties would not engage in this contract due to facing a contract of negative value.
The fair fixed rate K, is obtained from the previous expression as

K =
1−D(0, tn)

∑
n
i=1 D(0, ti)βi

The previous derivation applies not only for swaps starting at t0, but for any swap
starting at any future time t f . The fair forward swap rate starting at future time tm
and discounted to present is derived to be

Sm(t) =
D(t, t)−D(t, tm+1)

∑
n
i=1 D(t, ti)βi

(Glasserman, 2004).

3.3 Stochastic interest rate model

The underlying variable affecting the price of interest rate swaps is the interest rate.
Hence we need to choose a framework for modeling such a variable. To model the in-
terest rate one picks the stochastic model of the short-rate, denoted as r(t). Short rate
is typically instantaneous and continuously compounded and generally it is assumed
that it is normally distributed. Short rate approximates the behavior of interest rates.
The last assumption of normally distributed short-rate leads to Gaussian short-rate
models, which are the most popular and advantageous, when computational inten-
sity is considered. The assumption of normality allows for analytical tractability,
by yielding analytical pricing formulas for zero-coupon bonds and for the short-rate
(Brigo and Mercurio, 2006).

The most important of all models, from which all models of the short-rate are
derived, is the Vasicek model. We will its particular extension developed by Hull and



Stochastic Modelling in Financial Engineering 26

White (1990), which offers better properties and is still used in the risk management
departments (Brigo and Mercurio, 2006).

Starting with Vasicek model, the equation determining the short-rate can be spec-
ified as

dr(t) = α(θ − r(t))dt +σdW (t)

where W (t) is again the Standard Brownian motion, α and θ are positive constants.
The previous specification is due to the Glasserman (2004). This family of models
is also called the mean-reversion family of models. Since r(t) always converges to a
constant θ . We see that if r(t)< θ the drift becomes positive and negative if r(t)> θ

. The constant α determines the speed of convergence of r(t) to θ . The Hull-White
extension rests in making the θ time-varying. Hence, the Hull-White model is then
specified as

dr(t) = (θ(t)−αr(t))dt +σdW (t)

with the drift function θ(t) specified as

θ(t) = Fi(0, t)+αF(0, t)+
σ2

2α
(1− e−2αt)

The previous specification of the drift function is due to MathWorks (2014).

Chosen interest rate model should be able to model interest rates well enough and
provide good trade-off between computational tractability and realistic behavior of
interest rates. The Vasicek model does not provide as good fit to an initial interest rate
term structure, but the Hull-White extension should yield a much better fit (Brigo and
Mercurio, 2006). The constant α could be made time-varying as well, but it leads to
increased complexity, which need not provide as much benefits (Brigo and Mercurio,
2006). The constant σ specifies the volatility of the interest rate term structure. The
main equation can be integrated and interest reader can see detailed results in Brigo
and Mercurio (2006) and Glasserman (2004). Both of the references contain detailed
derivations.

3.3.1 Generating the short-rate using Euler approximation

The algorithms for generating the short-rate using Euler approximation is given by
Glasserman (2004) as

r(ti)= r(ti−1)+(θ(ti−1)−αr(ti−1))(ti−ti−1)+σ
√

ti − ti−1Zi,Z ∼N(0,1), i= 1, ..,n
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Again the previous algorithm is of sequential nature, where short-rate for a given
period is determined using a value of the short-rate in the previous period. Such an
approach is always viable for PDS approach and in this case for DJS approach as
well.

Due to the nature of stochastic discounting, which is path-dependent effectively,
there is no point in reformulating the previous equation to yield an algorithm for
always generating the short-rate given its initial value. It would be useless, since we
are striving to make exposures at two given dates independent. As we will find out
later, we always have to generate the short-rate path from the beginning and do not
carry out any exposure generation until the last value of the short-rate path. If the
short-rate used for generating these exposures has zero covariance terms along its
path, it is not going to decrease any variance.

3.3.2 Zero-rate curve and the discount curve

We are interested first and foremost in the zero-rate curve for every given valuation
date. If we denote R(t,T ) as the zero-rate at given date t for a tenor of up to t −T ,
we see that to obtain a yield curve at a given date t we have to generate function
T →R(t,T ). Such a yield curve will be generated at every simulation date. Formally,
we have

R(t,T ) =
1

(T − t)
lnA(t,T )+

1
(T − t)

B(t,T )r(t)

lnA(t,T ) = ln
P(0,T )
P(0, t)

+B(t,T )F(0, t)− 1
4a3 σ

2(e−aT − e−at)2(e2at −1)

B(t,T ) =
1− e−a(T−t)

a

The above equations are due to MathWorks (2014). One can observe that a given
yield curve is always generated in completely deterministic way, only r(t), the start-
ing point, is a stochastic variable.

The stochastic discount factor for the period (t1, t2) could be represented as

D(t1, t2) = exp(−
t2ˆ

t1

r(t)dt)

(Glasserman, 2004). That is, we express quantity of time t2 at time t1. It is a stochastic
variable, since r(t) is stochastic. To obtain this quantity, the obvious approach would
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be to calculate the integral on the right hand side the of the expression, but that would
require the stochastic rate to be simulated on a grid as fine as possible and it would
include approximating another integral (Brigo and Mercurio, 2006). Instead, if we
define P(t,T ) as a value of zero-coupon bond at time t, paying exactly one dollar at
time T , it is possible to show that P(t,T ) = D(t,T ) and P(t,T ) is an expectation of
D(t,T ) under a certain probability measure (Brigo and Mercurio, 2006). The upshot
of the last relationship is the possibility to calculate P(t,T ) analytically and we do not
have to concern ourselves with on how detailed time grid to generate the short-rate
path.



Chapter 4
Counterparty Credit Risk

Counterparty credit risk is faced by participants on Over-the-Counter financial mar-
kets (OTC), where there is no central authority clearing and settling the transactions.
On usual exchanges such central authority exists and in case of default of a partici-
pant, the central authority steps in and settles the transaction on its behalf. On OTC
no such central authority exists and in case of a default participants are more vulnera-
ble and face losses, which can be considerably high when trading derivatives (Brigo
et al, 2013). Such derivatives are often constructed to protect against market risk,
but there is also significant credit exposure created. To guard against counterparty
risk there is number of protective measures, such as posting collateral and marking-
to-market, which is accounting technique that requires counterparties to post loss
or profit made with regard to the position every day (Brigo et al, 2013). This ef-
fectively spreads the risk and mitigate the situations, where a position is settled by
one large lump-sum. Counterparty risk is best defined in terms of CVA. CVA is
the difference between the price of a portfolio assuming risk neutrality and portfolio
with incorporated possibility of default or change in creditworthiness of our coun-
terparties (Pykhtin and Zhu, 2007). It is the value financial markets are allocating to
counterparty risk (Brigo et al, 2013). There is number of other measures of counter-
party credit risk once could discuss, such as the Debit Value Adjustment (DVA), the
Funding Value Adjustment (FVA).

Counterparty credit risk was not given enough attention prior to the crisis, which
was also evident from the composition of Basel II. Basel II does not take care of
counterparty credit risk, when it comes to capital charges, institutions were not re-
quired to set aside any capital, which would cover this risk (BCBS, 2010). This is
remedied by Basel III, which has capital requirements covering counterparty risk. It
approaches financial institutions from two sides, they either can have their own inter-
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nal modeling system approved by a regulator ex ante or they have to use standardized
calculations to quantify counterparty credit risk.

4.1 Counterparty risk and financial crisis

The underestimation of counterparty risk and its important role during financial cri-
sis’s was already pinpointed by Borio (2004). Author analyzes the dynamics of mar-
ket distress and argues that the central problem of the “vanishing liquidity”, which
occurs during financial crisis often, is caused arguably by counterparty risk. The
first phase of the financial crisis are rising asset prices over sustainable levels, risk
exposures of financial institutions growing and market experiencing high liquidity.
At every point in time market participants need to have an amount of cash ready to
settle trades, for marking-to-market on derivatives, margin requirements. It is easier
to obtain these funds in times of high liquidity. Then there comes the reversal, which
leads to erratic adjustment of prices, liquidity dies-out and volatility increases. Re-
versal signifies that crisis is taken place. Then the erratic changes in prices, which
arise when crisis erupts, impact very negatively the cash flow demand of a market
participant. Marking-to-market for derivatives and margin requirements will require
highly volatile cash flows to be settled. Also as market participants face losses and in-
creasing volatility they will try to reduce their exposures, further negatively affecting
prices.

However, any kind of transaction on financial markets has inherent counterparty
risk as such transaction either involves exchanging cash flows for settlement and
derivatives also involve large credit exposure, this requires the other counterparty to
be solvent. Collateral and marking-to-market are used to limit such risk, but as there
is no liquidity to find, it is going to be harder to cover marginal calls and require-
ments for more collateral as no other market participant wants to give up its cash,
because they face the same problems. This will induce market participants to limit
their trades as they want to hoard liquidity in order to protect themselves and they can
not be sure if potential counterparties will be able to cover their end. Banks assume
that there is higher risk of default. Interbank markets are also impacted strongly,
since the lending is unsecured on this market. Result is market which will not be
functioning with such depth and information asymmetry will produce uncertainty
regarding creditworthiness of counterparties. Banks will not trade with each other,
liquidity vanishes.

Recently Taylor and Williams (2009) find robust evidence that counterparty risk in
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fact was behind widening spreads between interbank lending rates and federal funds
rate in USA. The measures that US central bank introduced early, the Term Auction
Facility (TAF) for instance, did not help to decrease the spread. This measure did not
take counterparty risk into account.

4.2 Definition of Default

So far we have not defined what exactly constitutes a default. The default is not
merely restricted to a bankruptcy, but rather when counterparty fails to honor the
obligations of a contract in a meaningful way (Brigo et al, 2013). This usually in-
cludes missed payments for which remedy has not been carried out during a given
period. Bankruptcy can be initiated by creditors or by counterparty itself and it is
formally decided in a court of law, which decides the fate of the counterparty here
on in. Bankruptcy could be understood as default in an official sense of the word,
but there are as well situations when default is not necessarily caused by bankruptcy.
Brigo et al (2013) gives the following six types of credit events defined by ISDA,
which shall encompass the concept of default as buyers and sellers of credit default
swaps understand it.

1. Bankruptcy - decided by court of law

2. Failure to pay - missed payment assumed certain restrictive assumptions hold

3. Restructuring company’s debt

4. Repudiation - bankruptcy of sovereign debtor

5. Covenant violations - debt contract may include restrictions, whose breach than
leads to liquidation of the debt for instance

4.3 Definition of Exposure

Alternative explanation for Counterparty risk is that if one of counterparties in a
derivative contract defaults, the other counterparty faces losses in the amount equal
to maintaining the same market position as before by engaging in a similar deriva-
tive contract with another counterparty (Pykhtin and Zhu, 2007). The market value
of the derivative contract to the counterparty can be either negative or positive. If it
is negative, then at the time of default it pays the defaulting counterparty the appro-
priate market value, closes out the position and at the same time engages in another
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contract similar to previous, which pays our counterparty its market value. In the
perfect market the loss experienced by our counterparty should be zero. If the value
of contract is positive, our counterparty faces a loss equal to the market value of it,
since defaulting counterparty can not honor its obligations and we have to buy sim-
ilar contract for its market value in order to keep unchanged market position. The
following definitions follow the rigor set up by Pykhtin and Zhu (2007).

Definition 5. Contract-level exposure at time t is defined as follows

Ei(t) = max{Vi(t),0}

where Vi(t) denotes the value of i-th contract at time t.

Hence contract-level exposure applies for the case of portfolio with a single deriva-
tive contract for a given counterparty. If portfolio contains more than a single contract
for a given counterparty the counterparty-level exposure needs to defined.

Definition 6. The counterparty-level exposure at time t is defined as the sum of in-
dividual contract-level exposures as follows

E(t) = ∑Ei(t) =
n

∑
i=1

max{Vi(t),0}

where n is the number of contracts with a given counterparty.

One of the most important mitigants of counterparty risk are the netting agree-
ments, which allow for the offsetting effect between contracts with positive and neg-
ative market value and reduce the overall exposure significantly. However, netting
agreements with a given counterparty does not have to apply for all the contracts,
which are held between the two counterparties. To generalize the above definition
we give the definition for counterparty-level exposure under netting agreements.

Definition 7. The counterparty-level exposure at time t under netting agreements,
which covers the first k of n contracts, such that k ≤ n, is defined as

E(t) = max{
k

∑
i=1

Vi(t),0}+
n

∑
i=k+1

max{Vi(t),0}

where n is the total number of contracts.

For full netting agreements the previous definition also applies if we set k = n.
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Counterparty risk is mostly concerned with how these exposures change with re-
spect to time t, t being somewhere in the future, by means of exposure profiles. Expo-
sure profiles are measures, which individually show different aspects of the exposure
distribution at a given set of simulation dates, sometimes with respect to different
probability measures. Most important profiles are The Expected Positive Exposure
(EPE), The Credit Value Adjustment (CVA), The Effective Expected Positive Expo-
sure (EEPE). These are important for regulatory purposes. There are also other such
as Peak Expected Exposure (PEE), which is the harshest one as it serves as a bound
on all the others. PEE is defined as a maximum value of the expected distribution,
i.e. its peak. This measure is then constant in time and for all t it is equal to the peak.
Following expansion of EPE’s and EEPE’s definitions from Ghamami and Zhang
(2013) offers itself readily.

Definition 8. The expected positive exposure at a counterparty-level under netting
agreements is defined as follows

EPE =

T̂

0

E[CE(t)]dt

where E[CE(t)] is the expected value of counterparty-level exposure under netting
agreements at time t ≥ 0 and T > 0 is equal to the maturity of contract in portfolio
with the furthermost date of expiration.

Next we define EEPE.

Definition 9. The EEPE at counterparty-level under netting agreements is defined in
continuous and discrete versions followingly

EEPEd =
n

∑
i=1

max1≤ j≤iCE( j)△i

EEPEc =

T̂

0

max0≤s≤t CE(s)dt

where △i = ti − ti−1, i = 1, ...,n and 0 = t1 < ... < tn = T .

EEPE is more strict measure than EPE, since it accounts for the roll-over risk
(Ghamami and Zhang, 2013). Such risk results from the assumption that when more
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short-term securities in our portfolio mature before time T , bank would in reality
replace them with the new contracts and hence bank’s exposure would not be as
much affected in a downward manner due to close-out of these positions. EPE does
not take into account the replacement of maturing contracts in the portfolio.

4.4 PDS vs DJS Sampling

When studying the simulation of Brownian motion, the initial recurrence given for
this task was of sequential nature. Assuming a time grid 0 = t1 < ... < tn = T ,
value of W (ti), i > 0 one samples conditionally on the value of W (ti−1). Such an
approach to simulation is called the Path-Dependent Simulation (PDS). Under PDS,
the values of Brownian motion at different points in time are always correlated to
previous values in the simulation. On the other hand, generating all the values of
W (ti), i = 1, ...,n given only initial value W (t0) yields very different results. This
time, values of Brownian motion at different points in time will be uncorrelated.
Such an approach to simulation is called the Direct-Jump to Simulation date (DJS).
We gave a specific recurrence for this case as well.

Both terms, DJS and PDS, were first coined by Pykhtin and Zhu (2007), and the
authors are first ones, who point out the its importance with relation to credit expo-
sure simulation. One should as well note that both approaches yield appropriately
distributed Brownian motion. We will later find out that these approaches yield very
different results, when it comes to variance of the estimator.

4.4.1 Simulation of EPE and PDS vs DJS

More practically, Ghamami and Zhang (2013) show importance of the distinction
between these two approaches by considering the simulation of EPE. Again assume
a time grid 0 = t1 < ... < tn = T , Brownian Motion {W (ti), i = 0, ..,n} and contract-
level exposure V (ti) driven by credit exposure process {C(ti), i = 0, ...,n} as such
V (ti) = max{C(ti),0}. The exposures are some function of the Brownian motion, so
that V (ti) = f (W (ti)).

The integral defined in .... can be approximated by right Riemann sum approxi-
mation as follows

EPE =
n

∑
i=1

E[V (ti)]△i
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ÊPE =
n

∑
i=1

¯V (ti)△i

where △i = ti − ti−1, ¯V (ti), i = 1, ...,n is the sample mean of m simulated values of
the exposure at a given date ti. Next to obtain a variance of this estimator, which is a
measure of its accuracy, Ghamami and Zhang (2013) show that

Var(ÊPE) =Var(
n

∑
i=1

¯V (ti)△i) =
n

∑
i=1

Var(V (ti))∆i

m
+

2
m ∑

i< j
∑Cov(V (ti),V (t j))∆i∆ j

.

Under DJS approach Cov(V (ti),V (t j)) = 0, i, j = 1, ...,n, while under PDS ap-
proach Cov(V (ti),V (t j)) ̸= 0, i, j = 1, ...,n. It is straightforward to see why DJS ap-
proach yields uncorrelated exposures at a given two distinct days, these exposure are
in no way related to each other, since their underlying risk factors, {W (ti),W (t j)}
are uncorrelated. For the PDS approach, Ghamami and Zhang (2013) prove that
under few mild assumptions, the covariance of exposures is positive, that is for any
ti, t j, i, j = 1, ...,n, we have Cov(V (ti),V (t j))> 0.

The assumptions differ based on nature of the credit exposure, since in some trans-
actions, unilateral, the counterparty risk is faced only by one counterparty in contract,
and in other transactions the risk is bilateral, such as interest rate swaps. The as-
sumptions include the monotonicity of payoff function in bilateral transactions, the
numeraire and the deterministic short rate in unilateral transactions.

Hence, due to zero covariance terms, the DJS approach seems to be far superior
to PDS in terms of accuracy, that is variance. Both approaches, DJS and PDS, in
this case yield identical computational demands as the same number of values of
Brownian motion is generated in both cases. Hence, DJS seems to be far superior to
PDS.

4.4.2 Path-dependent Processes

The discussion so far only considered path-independent processes in the form of
credit exposure of path-independent derivative. For path-dependent derivatives the
DJS approach has to be modified and its superiority seen thus far may not hold. The
exposure of path-independent derivative at any given time may depend only on the
value of risk factor, Brownian motion, at that time. In contrast, the exposure of path-
dependent at time ti depends on the whole realized path of Brownian motion up to
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and including time ti, that is Vi = f (W (t0), ...,W (ti)) for path-dependent derivative
and Vi = f (W (ti)) for the latter one.

No need to modify the PDS approach, but DJS again requires Cov(V (ti),V (t j)) =

0, i, j = 1, ...,n. To obtain {W (ti), i = 1, ...,n} we generate sequentially the full path
between W (t0) and W (ti) and save only the last value. DJS is just a combination of n

runs of PDS algorithm for different ti. Under DJS we need to generate exactly n(n+1)/2

values of Brownian motion, while PDS again requires only n values.

The complexity of variance under both approaches has not changed. Consequently,
both approaches seem to offset each other up to a certain degree with its advantages
and disadvantages. For the DJS the advantage in lower variance is offset by the need
to generate more random numbers to achieve zero covariance terms.

4.5 DJS vs stochastic discounting

In case of EPE, the requirement for DJS approach was to make the covariance terms
of exposures equal to zero. However, CVA requires calculation of the discounted
exposure given that the underlying asset is modeled within a stochastic interest rate
model, which interest rate swap is. The discount factor, D(0, t2), which discount a
quantity from time t2 to time 0, is path-dependent. This discount factor is given as
exp(−

´ t2
t1

r(t)dt) , where r(t) is the short-rate modeled by a given short-rate model,
in our case it is the Hull-White model, under the risk-neutral measure (Brigo and
Mercurio, 2006).

If again the time grid assumed is given as 0 = t1 < ... < tn = T , then for any
ti, i = 1, ...,n the discount rate evidently depends on the realized path of the short-
rate from 0 to ti. Now, assume a portfolio of interest rate swaps, whose exposure
depends on the risk factor S, {S(ti), i = 1, ...,n}. These risk factors in turn depend
on the short rate r(.), {r(ti), i = 1, ...,n}, i.e. S(ti) = S(r(ti)). The risk factor for an
interest rate swap would be a yield curve.

Generating a discounted exposure at time ti consists of generating the short-rate
path (r(t0), ...,r(ti)) and the risk factor at ti only, S(ti). Then we calculate the required
discounted exposure given as D(ti)V (ti). At time t j, j > i sampling from D(t j)V (t j)

is possible by generating the short-rate from r(ti) and continuing up to r(t j) (Pykhtin
and Zhu, 2007). Then again calculating the risk factor and discounted exposure even-
tually. However, this time we have that Cov(D(ti)V (ti),D(t j)V (t j)) ̸= 0, since dis-
count factors for both exposures and in part even exposures depend on the common
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set of short rates.

DJS approach is valid then if for any discounted exposure D(tk)V (tk), tk,k = 1, ...,n
the simulation is carried out by always generating the new short-rate path from the
beginning. Hence, DJS under stochastic discounting is similar to a DJS for path-
dependent derivative.

Valid assessment of the computational intensity is considering again the trade-off
between variance and the computing time. Ghamami and Zhang (2013) suggest

variancexE(computingtime)

This is due to the discussed expectation that DJS is to have higher computational
demands, but lower variance than what PDS approach offers.

4.6 CVA

CVA is positive subtraction from value of risk-free portfolio, which accounts for port-
folio’s counterparty risk. This proposition is formally proved by Brigo et al (2013).
He proves that the following applies

N̂PV (t,T ) = NPV (t,T )−CVA

Where the first term on the right-hand side is a discounted value of risk-free portfolio
and the left-hand side is equal to the value of risk-free portfolio. The second term on
the right-hand side is then the Credit Value Adjustment.

4.6.1 Definition of CVA

There is a number of ways how to define this quantity CVA. We can define CVA also
as a running spread (Vrins, 2011). We will proceed from the most general exposition
to an analytical formula, which will be then utilized during practical simulations.
First of the assumptions to be fulfilled is the assumption that, we, as a counterparty
are default-free and all the other counterparties, we are in business with, are not. We
are always calculating the counterparty risk from the point of view of our default-
free counterparty. This assumption may not be completely realistic, but is crucial
for reducing the complexity of the task ahead. It is then possible to define Unilateral
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CVA. On the other hand, bilateral CVA would take into account also the probability
of our default. The following definition is due to Pykhtin and Zhu (2004).

Definition 10. Unilateral CVA is defined as a risk-neutral expectation of discounted
loss due to a default of given counterparty. The discounted loss is given as follows

L = 1{τ≤T}(1−R)
B0

Bt
E(τ)

and unilateral CVA is given as follows

CVA = E[L] = (1−R)

T̂

0

E[
B0

Bt
E(τ)|τ = T ]dF(t)

T is the time horizon equal to a maturity of an instrument with the longest maturity
in the portfolio, Bt is the value of a bond contract of face value 1 at time t, E(t) is the
exposure at time t. 1{τ≤T} is the event indicator, F(t) is the risk-neutral probability
of counter-party’s default at time t, τ denotes the supposed default time of the coun-
terparty. The expectations is taken with respect to the risk-neutral density and finally
R is the recovery rate.

The above quantity is always positive (Brigo et al, 2013). It could be argued that
the value of financial instrument with default-free counterparty is always higher than
value of financial instrument with default-able counterparty. Also we can see that if
the default time exceeds the given time horizon, there will be no less experienced by
us.

Next proposition is from Brigo et al (2013) and it redefines CVA to a simpler form,
which will be than picked apart with another assumptions.

Proposition 11. The Credit Value Adjustment (CVA) discounted to present can be
given as follows

CVA = E[1{1<τ≤T}(1−R)D(τ)E(τ))]

The expectation is taken with respect to the risk-neutral measure, R is the recovery
rate, τ is random variable denoting the default time of counterparty, D(...) is the
factor discounting the loss to present and 1{.} is the event indicator.

The derivation of the previous formula is described in detail in Brigo et al (2013).
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4.6.1.1 CVA on a discrete time grid

Since we can not practice in the continuous time in the real world, we have to derive
a similar formula applicable on a discrete time grid. Assume one such discrete time
grid 0 = t0 < t1 < ... < tn = T . Brigo et al (2013) discretizes and approximates the
previous expression as follows

CVA = (1−R)
n

∑
i=1

E[1{ti−1<τ≤ti}D(τ)E(τ)]

This gives a way how to practically estimate CVA for every given time bucket, of
course assuming the default occurs inside that bucket. It would be more useful to
assume the default does not occur somewhere inside the time bucket, but rather at
the end of the particular time bucket. If the time grid is fine enough, this assumption
is convenient and does not lead to serious over-simplification (Brigo et al, 2013).
Consequently, we can re-write the expression in previous proposition to yield

CVA = (1−R)
n

∑
i=1

E[1{ti−1<τ≤ti}D(ti)E(ti)]

This representation is still not sufficiently tractable for us. We need a representation,
which will allow us to model the probability of default independently of the model-
ing of the exposure process. The previous representation would require sophisticate
default model in order to model the value of the instrument together with the default.
Hence, next step is to assume the independence of size of the exposure and the de-
fault time τ . This assumption is justified for the case of interest rate swaps as we
will find out later. We can consequently follow Brigo et al (2013) and factor out the
probability of default and write

CVA = (1−R)
n

∑
i=1

F(ti)E[D(ti)E(ti)]

By assuming independence between exposure and the default variable τ , the wrong-
way risk is disregarded. It is possible for exposure to increase with increase in the
probability of default of the counterparty. That is called the wrong-way risk. The
risk would be right-way if exposure instead tends to decrease under otherwise same
conditions. However, wrong-way risk is assumed to be not as important for interest
rate derivatives Pykhtin and Zhu (2007). Next we will describe two approaches how
to make simulation of CVA potentially more efficient.
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4.6.2 Efficient MC Simulation of CVA

It is noticeable that EPE and CVA are both weighted sums of expected exposures.
Using the property of iterative expectations and Ghamami and Zhang (2013) and the
results from last section we obtain

CVA = (1−R)E[E[1{τ ≤ T}(D(τ)V (τ))|τ]] =
T̂

0

E[V (t)D(t)]dF(t)

where F is the cumulative distribution function of the default variable τ . For CVA
the weights are probabilities of default for a given sub interval, while for EPE weighs
the expected exposures using the length of particular sub interval. The right Riemann
sum approximation for the previous integral is

ĈVA =
n

∑
i=1

D(ti)V (ti)∆F(ti)

where ∆F(ti) = F(ti)−F(ti−1), D(ti)V (ti) = ∑
m
j=1

D(ti j)V (ti j)
m is sample mean of m

discounted exposures. Hence we have n time buckets and m scenarios. We draw a
i.i.d. sample of size m at every time bucket. This estimator likely produces biased
results due to time-discretization (Glasserman, 2004). The exact joint distribution
of stochastic process is sometimes unachievable and approximate solutions, such as
Euler scheme, do away with bias only as the time step converges to zero.

Effectively, one can choose between minimizing variance and minimizing bias. If
the number of scenarios m increases, the variance decreases as can be seen from the
variance of estimator for EPE. Then under fixed computational budget the number
of time buckets, n, has to be reduced, which in turn increases bias (Glasserman,
2004). Time-discretization bias is somewhere around 1

nβ
,β ≥ 1 (Glasserman, 2004).

One performance measure that takes into account bias and variance at once is Mean
Square Error (MSE), previous literature points to importance of choosing the right
number of scenarios and time buckets based on minimizing the MSE.

4.6.2.1 Stratified CVA estimator

Using the discussed stratification, one can obtain the unbiased estimator as follows

CVA = (1−R)E[1{τ ≤ T}(D(τ)V (τ))] = (1−R)
K

∑
i=1

E[D(τ)V (τ)|τεAi]
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=
n

∑
i=1

D(τi)V (τi)∆F(ti)

where Ai, i = 1, ..,n is appropriately defined a set of disjoint strata and τ is the strat-
ification variable. Suppose we allocate the number of scenarios for each strata as
mi, i = 1, ..,n so that following applies ∑

K
i=1 mi = M, where M is the total number of

scenarios. K is the number of strata and effectively the number of time buckets. The
average inside the previous expression is obtained by drawing a conditional sample
from F(τ|τ ∈ Ai) of size mi and for every point in this sample we draw D(τi j)V (τi j),
then form a sample mean as described. This estimator is due to Ghamami and Zhang
(2013).

As opposed to previous estimator, here the sampling of discounted exposures is
done inside the individual time buckets randomly. Also in comparison, here addi-
tional computational effort is required for generating conditional samples from dis-
tribution of default probabilities. The size of samples from strata can be selected
arbitrarily and proportional sampling mi =MF(τεAi)was seen to only decrease vari-
ance with respect to non-stratified estimator. The optimal allocation in the form of
mi = σiF(τε ∈A), where σi is the variance within i-th stratum is not possible directly
as the true value of this variance is unknown.

4.6.2.2 Implementation complications

To utilize stratified sampling for CVA simulation, one would have to able to draw con-
ditional samples from the default probability distribution F(t). This would require
in turn more sophisticated simulation of probability of default so as to obtain analyt-
ical representation of the default probability distribution. We will use bootstrapping
techniques to obtain default probabilities from credit default swaps of given counter-
parties. This is more elementary approach and we will not be able to obtain default
probability distribution from which conditional samples can be drawn. Also avail-
able data are not as detailed and hence do not contain as much information in order
to fully utilize the advantages of stratification variable.

Another complication is that at our time horizon T up to which simulations are
carried out, the default probability distribution does not likely reach the value of 1.
That complicates the setting number of observations allocated to each stratum.

On the other hand, Ghamami and Zhang (2013) do not mention the superior com-
putational demands of sampling the exposures and that this stratified estimator may
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not lead to much reduction in variance. In our framework with analytical represen-
tation of CVA the importance of modeling of default is not as high. Generating
exposures constitutes majority of the computational intensity.

4.6.3 MSE Minimization

The previous literature in Ghamami and Zhang (2013) employs a Mean Square Error
(MSE) minimization in order to determine the optimal selection of number of paths,
m, and the number of valuations points nin order to reduce variance and bias.

We have seen that it is not generally feasible to generate stochastic processes with
the exact distribution of its theoretical counterparts. Rather we have to get accus-
tomed to using methods such as the Euler approximation, which under fixed n does
not reproduce the exact joint distribution one would require. And so under fixed n our
estimator is biased, due to the so-called time-discretization bias, which is of order 1

n

under the right Riemann sum approximation (Glasserman, 2004). However, we are
guaranteed that the estimate would approach its true value as n → ∞.

On the other hand, under fixed budget selecting higher number of valuation points
reduces the number of replications or paths, m, we can generate.The number of repli-
cations determines the size of the variance (Glasserman, 2004). Hence, one can see
the trade-off between selecting the number of valuations points in order to reduce
bias and number of replications to reduce variance. MSE minimization should in
theory yield optimal combination of both numbers. The MSE is defined as follows.

MSE(θ̂) =Var(θ̂)+(E(θ̂)− θ̂)2

where θ̂ is the estimator of the desired quantity.

The spacing and number of valuation points is in risk management generally de-
termined by the prevailing practice and is not clearly justified by particular reasons.
The majority of valuations dates are closer to present, and then their density decrease
with increasing time. This is probably due to the observations that discount factor
reduces the importance of an observation with respect to increasing time.

4.6.3.1 MSE minimization for EPE

To derive a minimization problem involving number of scenarios m and number of
valuation points n, we need to represent MSE presented above in terms of these two
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unknowns. We cannot formulate this problem in terms of CVA estimation, but rather
in terms of EPE. The reason is that the form of CVA estimator does not allow for such
analytical manipulation as the form of EPE estimator does. We already specified of
the variance of PDS estimator of EPE as follows

Var(θ̂PDS) =
n

∑
i=1

Var(V (ti))∆i

m
+

2
m ∑

i< j
∑Cov(V (ti),V (t j))∆i∆ j

The variance of DJS estimator of the same quantity is on the other hand

Var(θ̂DJS) =
n

∑
i=1

Var(V (ti))∆i

m

First, Ghamami and Zhang (2013) show that the variance of DJS estimator θ̂DJS

can be given an upper bound of cT 2

mn ,c ∈ R. T is defined as the time horizon and we
have to assume the exposure process to have finite second moment and time grid with
equally spaced valuation points. Using the Landau symbol we see that the variance
is of order O( 1

mn). For bias, we already specified it is of order O(1
n). But for MSE we

have to include the squared bias. Hence, we need to solve the following optimization
problem

minm,n (
1

mn
+

1
n2 ),s = mn

where s is our computational budget (Ghamami and Zhang, 2013).

Possible solution of the above problem is to set m = 1,s = n. This shall be inter-
preted as devoting all of the budget to a valuation points and set number of scenarios
to once.

For PDS estimator, θ̂PDS, the only difference lies in the complexity of variance,
where covariance terms of exposures are dependent and the variance is of order
O( 1

mn +
1
m). The last term accounts for the covariances. Ghamami and Zhang (2013)

show that similar optimization problem for the PDS estimator yields not so clear
results. Optimal selection is estimated to be as n ∼= s

1
3 and m ∼= s

2
3 .

Obviously, these optimization problems are solved only approximately. However,
the results for DJS approach are very unambiguous.

4.6.3.2 MSE minimization vs Exposure Sampling

The MSE minimization is arguably not as useful as one would hope if exposure
sampling is taken into account. We found out that under DJS approach for path-
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independent derivatives all of the fixed budget is to be devoted to a valuation points,
n, while under PDS approach weighted division between the two is advised.

The previous results apply only for estimation of EPE. Ghamami and Zhang (2013)
also study the optimal selection of m and n for estimation of EEPE. The optimal
selection of m and n in the latter case is of course different. This results from the
form of EEPE, where the mathematical operator max{...} introduces new source of
bias. Ghamami and Zhang (2013) show that in order to minimize MSE of EEPE
estimator, one selects m and n according to following optimization problem

min (
a

mn
+

b
m
+(

c
m
+

d
n
)2);s = mn;a,b,c,dεR

What we arrive at in both cases is the different optimal number of valuation points n

and replications m. And we are dealing with only two different measures of counter-
party risk. In reality there are various other measures one desires to estimate.

In our case, the most computationally intensive part is generating the portfolio’s
exposure. The minimization approach discussed here implicitly assumes that one
generates the exposures specially for every given measure, and most likely at differ-
ent points in time. This is not an effective approach, the exposure sampling offers
a different view. Rather than selecting n arbitrarily for every different measure, un-
der exposure sampling we would first generate the distribution of exposures. Con-
sequently, to estimate any measure we would draw a sample from this distribution.
This is done easily as every measure in some form depends on expected positive
exposure of the portfolio. Most importantly, exposure sampling is also subject to a
time-discretization as any other simulated stochastic process in practice. Hence it
will be possible to draw samples from this distribution only at finite set of points,
without the possibility to arbitrarily pick a valuation date. We will have to generate
the exposure of a portfolio only once and yes the specific calculation of EPE, EEPE
and CVA will not be as effective, but it will be more than offset with less demanding
exposure sampling. MSE minimization in other words is only a micro-optimization.

4.6.3.3 Practical simulation of CVA

For practical simulations and calculation of CVA we will first employ naive approach,
when it comes to m and n selection and then try to select the constants given the
results from the MSE minimization in EPE’s case. As explained, the form of CVA’s
variance is such that it is not possible to derive an upper bound as for EPE. However,
the independence of exposures assumption is still satisfied for the DJS approach under
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stochastic discounting and the results for DJS approach are so clear-cut that it is likely
it could work even for the case of different probability measure.

Hence, under DJS we will also try to spend the whole computational budget on
making the valuation dates as close as possible. It is important to note that making
the grid as fine as possible is specifically due to the bias part of the MSE as we have
discussed. Since in reality we never know the true value of an estimate, we can not
estimate the amount of bias and only calculate the reduction in variance. That does
not have to be as large with all of the budget spent on n.



Chapter 5
Practical Simulations

5.1 Swap portfolio description

We have a portfolio of swaps with 5 different counterparties and for each of them the
counterparty risk measures are calculated. The data are obtained thanks to Math-
Works (2014). The statistics of the portfolio are presented in the following table.
Counterparty paying the fixed rate is denoted as 1. The decimal number in columns
Leg Rate Receiving/Leg Rate Paying denotes the floating rate that counterparty pays
or receives. The integer in the same columns denotes the number of basis points over
the zero-rate, which counterparty pays or receives through the fixed payment stream.

The assumption of full netting agreements is taken, since the counterparty risk
of swap portfolio without netting agreements is just a sum of counterparty risk of
individual swaps (Brigo et al, 2013). Such a case would be better studied with a
single swap. The individual swaps are all 1-year swaps, that is the floating rate is
reset every 12 months. However, they all have different maturities and reset dates
are not homogenous, but are spread over the whole year. We will have to employ
a number of approximations in order to find appropriate floating rates for differing
reset dates.

5.2 The default probability distribution
estimation

The default probabilities, which are used in estimating the CVA, are stripped from
credit default swaps (CDS) for a given counterparty. This is the most convenient way
to obtain default probabilities under a risk-neutral measure. The data on CDSs are
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Table 5.1: Description of the portfolio
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yearly and include 5 observation up to the settle date for every counterparty in the
portfolio. It is obvious that such few observations do not contains as much informa-
tion as one would like about the default distribution of given counterparty.

5.3 Practical simulation steps

When carrying out our practical simulations. we follow closely MathWorks (2014).
The first step is to select an initial zero-rate curve. This is an arbitrary choice. To
select valuation points we proceed with 12 dates 1 month apart for the first year and
after a first year the frequency drops to a one date every 3 months for another 6 years.

The valuation points are not in line with the individual reset dates, hence an ap-
proximation is to be carried out. The first part is to calculate for each valuation date
the previous reset date, this needs to be done to appropriately value the floating part
of the swap. As noted the reset dates are not homogenous and differ from valuation
dates. Hence the 1-year floating rate for each valuation date is approximated by in-
terpolating between the two nearest interest rate curves, which squeeze the last reset
date corresponding to the valuation date between themselves. Then the valuation
of individual swaps is carried out with respect to the interest rate curve at a given
valuation date.

Next task is to calibrate the Hull-White model we are using, this is done by speci-
fying constants α and σ . We select the α to be 0.2 and σ to be 0.015. Then for each
valuation date the interest rate curve is generated and this is repeated according to
the number of scenarios specified. The number of scenarios for PDS approach will
vary between 1000 and 16 thousand.

The number of scenarios for PDS approach will be 1 000, 4 000, 16 000. We
always increase the number of scenarios by multiplying the previous number by 4.
As was pointed out earlier, Monte Carlo method provides the convergence rate of
order 1√

n . This means, if we increase the number of scenarios by a factor of four, we
should be able to obtain estimates with standard errors cut in half. However, with
higher number of scenarios generated, we will as well see the computing time to
increase.

To estimate the variance we iterate 100 times the whole computation with a given
number of scenarios. It would be desirable to iterate at least 1 000, but due to the
limited computing power we have to scale back. The DJS approach and also the PDS
approach with 16 000 scenarios would take too long to finish. However, according to
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our observations the estimates of variance are quite stable and no significant change
is observed, when iterating 1 000 times as opposed to 100 times.

5.4 Results

The results are summarized in Tables 5.2 and 5.3. The table 5.2 contains statistics on
computing time, variance and the compound statistic. For variance and computing
time, we divide the values received due to different approaches by the value from
PDS approach with 1 000 scenarios. This allows to see by how many orders the
values of various approaches differ.

We can see that DJS approach yields estimates with variance lower by many or-
ders of magnitude than PDS approach with the same number of scenarios. However,
the reduction in variance varies significantly between the counterparties. For two
counterparties the variance drops by 11 orders of magnitude and for one the variance
drops by 19 orders of magnitude. Variances are often higher than the estimate alone,
which implies we can not be sure, where the true value lies. The likely cause is the
insufficient number of repetitions. The reduction in variance is especially high for
counterparties with high variances of their CVA estimates under PDS. On the other
hand, the estimates for counterparty, which is already relatively precise under PDS,
does not improve as much under DJS.

Although, DJS produces estimates with lower variance, we also observe significant
increase in computing time as opposed to PDS with the same number of scenarios.
In the next part, we utilize the discussed metric accounting for both the computing
time and for variance. The increase in computing time under DJS is by 13 orders
of magnitude. One can observe that gains in preciseness are fully wiped out by the
increased computing time in four cases out of all five. It is important to note that the
results on computing time in our case serve as an upper bound. It would be possible to
build the computational system better in order to fit more the DJS approach (Albanese
et al, 2011).

We also tested the PDS approach with 4 000 and 16 000 scenarios. The errors in
estimates improved more than expected. When going from 1 000 to 4 000 scenarios
and from 4 000 scenarios to 16 000 scenarios, we saw standard errors to be cut by 3-4
orders of magnitude, respectively by 15 orders of magnitude. The computing time
increases by 3 orders of magnitude, respectively by 11 orders of magnitude. One
could observe that convergence rate of Monte Carlo method significantly underrates
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Table 5.2: The compounded results
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the actual reduction in variance realized, when we increase the number of scenarios
generated. We would expect the reduction in variance by 2 orders.

The unbiasedness of estimates is impossible to determine. At least we observe
that estimates from both approaches are located always with the bound, which could
be deduced from any of the variances. However, for two counterparties, the DJS
approach produces markedly different estimates. They are always within the bounds
given a variance of the PDS estimator. It is not clear, if it is bias or insufficient number
of scenarios.

Now we consider the discussed measure

variance * E(computingtime)

We look if the gains in preciseness are really overshadowed by the increase in com-
puting time. The expected computing time is calculated as an average of computing
times for each iteration.

The only counterparty for which DJS approach yields comparatively the best re-
sults is the counterparty number 4. In this case the absolute value of the product of
variance and computing time is the lowest by about 20%. In all other cases, PDS
approach with 16 000 scenarios is the most advantageous from the computational
standpoint.



Chapter 6
Conclusion

Counterparty credit risk has seen its relevance increase after the last financial cri-
sis. It had been the reason for majority of losses occurring during this period (BIS,
2011). These losses were caused by changes in creditworthiness of counterparties,
not their actual defaults. One could ascribe such high losses to inability a properly
simulate the underlying risk. Simulation of counterparty credit risk is very compu-
tationally intensive as we discussed. Hence, it is important to study the effectiveness
of methods, which can decrease such intensity.

We have compared two fundamentally different approaches for stochastic mod-
elling, which surfaced with connection to counterparty risk in Pykhtin and Zhu (2007).
These two approaches, PDS and DJS, were already extensively studied by Ghamami
and Zhang (2013) for the case of individual path-independent derivatives. In our
case the test subject is the portfolio of swaps. We calculate portfolio’s CVA and the
effectiveness of both methods. Although a swap is not a path-dependent derivative,
it effectively becomes one when interest rate is simulated within a stochastic model,
such as the Vasicek model. The short-rate is path-dependent inside this model. DJS
is proved to be significantly more efficient, when it comes to path-independent pro-
cesses (Ghamami and Zhang, 2013). However, for path-dependent processes other
factors come into play and DJS approach may not have to be as effective compared to
PDS approach. To our best knowledge, there is no published work that deals with the
problems of effective simulation of counterparty credit risk for portfolio of swaps or
any kind of portfolio in fact.

We find that as expected the DJS approach yields more precise results than PDS
approach for the same number of scenarios. However, the results are not uniform and
for some counterparties the preciseness is more pronounced. One counterparty sees
its variance to be lower by 19 orders of magnitude, another by 11 orders of magnitude
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under the DJS approach.

Also as expected, the computational intensity of DJS approach is higher than that
of PDS approach. To evaluate both approaches accordingly, we used a criterion,
which accounts for both preciseness and also expected computing time. Only in one
case, that is for a given single counterparty in the portfolio, we see DJS approach to
consistently outperform the PDS approach. For any other counterparty in the port-
folio, the higher computing time under DJS approach does not justify the higher
preciseness of DJS approach. PDS outperforms DJS in majority of cases. Interesting
finding is that PDS approach yields more precise estimates than would be predicted
by the convergence rate of Monte Carlo method given increasing number of scenar-
ios.

We have not been able to apply any variance-reduction methods using the ana-
lytical approximation from Brigo et al (2013). Also as argues Brigo and Mercu-
rio (2006), it is always useful to include a no-arbitrage argument as a control vari-
able. Applying both of these approaches would require more sophisticated stochastic
model that which we used in this thesis. This could be a useful direction for a future
research.
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Chapter 7
Content of Enclosed DVD

There is a DVD enclosed to this thesis which contains data and MatLab source codes.

∙ Folder 1: Source codes

∙ Folder 2: Data
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