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dient̊u rychlosti. Lq odhady jsou rovněž źıskané pro klasický evolučńı Stokes̊uv
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Title: Qualitative properties of solutions to equations of fluid mechanics

Author: Mgr. Jakub Tichý
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1
Generalized (Navier-) Stokes equations in Orlicz

spaces

1.1 Derivation of the model

This thesis is concerned with the qualitative properties of weak solutions to the
system of nonlinear partial differential equations describing incompressible flow
of a certain class of generalized Newtonian fluids.

In this introductory chapter we mention shortly physical background of the
equations. We precisely formulate the problem after a few historical remarks in-
cluding commentary about constitutive relations and optimal choice of boundary
conditions.

We start with the derivation of the differential form of the continuity equation
and equation of motion. Let Ω ⊂ Rn be a bounded domain and I = (0, T ) a finite
time interval. We fix a control volume V(0) ⊂ Ω and define V(t) as a volume
occupied by this fluid at the time t ∈ I. We assume V(t) ⊂ V(t) ⊂ Ω.

The continuity equation represents a mass balance which says that the mass
m of any control volume of fluid V(t) is independent of the time t. Let % denote
the density and u stands for the velocity of the fluid. In this chapter we suppose
that all quantities are sufficiently smooth such that all equations are well defined
(for instance %, u ∈ C1(I × Ω)).

The mass conservation can be formulated as follows

d

dt
m(V(t)) =

d

dt

∫
V(t)

%(x, t) dx = 0. (1.1)

We would like to derive the differential form of (1.1). Since V(t) depends on
t, we can’t use the theorem about the differentiation of the integral with respect
to the parameter. Instead so called transport theorem can be used. Precise
formulation can be found for example in [40, Chapter III.10]. Thus,

∂t%+ div(%u) = 0. (1.2)

If we consider incompressible flows of a homogeneous fluid, the density % is con-
stant and (1.2) reduces to

div u = 0. (1.3)

The equations of motion are derived from the balance of linear momentum
which asserts that the total force on the control volume V(t) is equal to the rate

3



4 Generalized (Navier-) Stokes equations in Orlicz spaces

which the linear momentum of the fluid in V(t) is increasing plus the rate of
outflow of momentum across ∂V(t), c.f. [40, Chapter V.15]. In symbols,

d

dt

∫
V(t)

(%v)(x, t) dx = F(V(t), t). (1.4)

In order to derive the differential form of (1.4) we split the force F into a
body force and a surface force

F(V(t), t) =

∫
V(t)

%f(x, t) dx+

∫
∂V(t)

s(x, t, ν(x)) dσ, (1.5)

where f is the density of a body force, ν a unit outward normal and s is the
stress vector expressing action of the fluid outside of V(t) at the time t on the
control volume V(t). Cauchy theorem, one of the central results of the continuum
mechanics states that s(ν) is linear in ν:

Theorem 1.1.1 (Cauchy) If s(x, ν) is continuous in x, then there is a spatial
tensor field T (called the Cauchy stress) such that s(x, ν) = T (x)ν(x) for all
x ∈ V and arbitrary ν.

Sometimes the Cauchy theorem contains the claim that the Cauchy stress T
is symmetric if and only if the balance of angular momentum is satisfied. The
proof can be found in [40, Chapter V.14].

Using the transport theorem, Cauchy and Green theorems we obtain from
(1.4) and (1.5) the equation of motion in the following form

∂t(%u) + div(%u⊗ u) = %f + div T . (1.6)

The equation (1.6) can be further specified. The relations between the Cauchy
stress and other quantities describing the flows are characterized by so called
rheological equations. We can consider the rheological equation of the form

T = −pI + T ′,

where p is the pressure, I a unit tensor and T ′ represents friction forces which
are consequence of viscosity. If we consider homogeneous incompressible fluids, %
is constant. Defining π = p/% and S = 1

%
T ′ we obtain

∂tu+ div(u⊗ u) = %f −∇π + divS. (1.7)

This formulation of equation of motion and its simplification is crucial for us
in this thesis.

1.2 Constitutive relations

In the previous section we briefly mentioned the derivation of equations under
interest. Now we would like to discuss how the stress tensor S can depend on



Constitutive relations 5

other quantities. Generally we can expect the dependence between the stress
tensor S, the pressure π and the shear rate, which is represented by a symmetric
part of the velocity gradient Du. These relations are called constitutive ones. We
start with the linear dependence between S and Du and observe the historical
evolution of the mathematical description of fluid mechanics with the emphasis
on the constitutive relations. Information of this section were put together from
[76, Section 1.2] and [15], where the interested reader can find more details.

I. Newton stated in [74]: ”The resistance arising from the want of lubricity in
parts of the fluid is, other things being equal, proportional to the velocity with
which the parts of the fluid are separated from one another.” It can be interpreted
as to give rise to the linear relationship between the stress tensor S and the shear
rate Du, in which the constant of the proportionality is the viscosity. In symbols,

S = 2µ0Du, µ0 ∈ (0,∞). (1.8)

The mathematical description of the fluid motion came relatively late. In the
year 1822 the French engineer C.M.L.H. Navier suggested a certain system of
partial differential equations as a model describing flows of viscous incompress-
ible fluids. However, his assumptions, under which he deduced the system from
molecular physics, appeared to be unrealistic. Surprisingly, G. G. Stokes obtained
in 1945 exactly the same system by more rigorous approach, i.e. the system (1.3)
and (1.7) with the linear relation between S and Du (1.8).

Modern mathematical attempts to study this system go back to the twenties
of the last century. Swedish mathematician and physicist C. W. Oseen [73] stud-
ied mostly the system with linearised convective term, but he was also the first
one who proposed a weaker version of the formulation to the problem. French
mathematician J. Leray followed Oseen’s ideas and proved existence and unique-
ness of a classical solution in the case when Ω = R2 in [63]. However, he failed
in the case when Ω = R3 and therefore he proposed another approach, which is
nowadays known as a weak formulation. J. Leray proved in [64] existence of such
solutions for Ω = R3. He was not able to decide, whether these solutions are
unique and whether they are smooth if data are so.

After the second world war J. Leray didn’t continue in work in mathematical
fluid mechanics. A new generation represented by E. Hopf [45], O. A. Ladyzhen-
skaya [62] or J.-L. Lions [65] appeared. Previous results were extended to many
other boundary value problems with similar results as for the Cauchy problem.
In particular, in two space dimensions regularity and uniqueness was proven, in
three space dimensions only the existence of weak solutions with partial results
in the direction of regularity and uniqueness.

Up to this time we have mentioned only the linear relation between the stress
tensor S and the shear rate Du. Fluids characterized by the linear dependence
(1.8) are called Newtonian. In case of nonlinear relations we talk about non-
Newtonian or generalized Newtonian fluids. O. A. Ladyzhenskaya was one of
the first ones who suggested to study fluids described by the power-law relation
instead of the linear one. On her lecture at International Mathematical Congress
in 1966 she suggested among others to study the system (1.7) described by the
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power-law relation

S = 2µ0(1 + |Du|p−2)Du, µ0 ∈ (0,∞), p ∈ [1,∞) (1.9)

with the growth p = 4. Later she extended this first results and presented in [59],
[60], [61] and [62]. Similar system was considered by J.-L. Lions in [65]. Whereas
O. A. Ladyzhenskaya derived non-linear dependence of S on Du with the help of
kinetic theory, J.-L. Lions used p-Laplace operator. By combination of monotone
operator theory together with compactness they showed existence of the weak
solution of power-law model for certain values of p.

Lots of excellent mathematicians extended these results in many directions.
Power-law model can be considered as simplest generalization of classical New-
tonian fluid and various generalizations such as

S = 2µ0(κ+ |Du|2)
p−2
2 , µ0, κ ∈ (0,∞), p ∈ R, (1.10)

were studied in recent years.
Many results about existence of the weak solutions of (1.7) and (1.3) with

some variant of (1.10) and their qualitative properties have been proven. To
mention only a few of them, we can refer for example to [8, 9, 10, 11, 12, 31, 32,
34, 48, 49, 50, 51, 52, 67, 68, 69, 89].

Power-law model can be generalized by using the framework of N−function
Φ as follows:

S =
Φ′(|Du|)
|Du|

Du (1.11)

for given N−function Φ. One of the advantage of this approach is that the
constitutive relation (1.11) allows to describe fluids with non-polynomial growth
such as

S = µ0(1 + |Du|2)
p−2
2 ln (1 + |Du|)Du, µ0 ∈ (0,∞). (1.12)

Note that the choice Φ(s) = 1
p
sp describes the power law model. When we

are dealing with (1.9), sometimes the different approach for p > 2 and p < 2
is needed. The setting (1.11) enables to work in a unified way in some cases.
Nevertheless, sometimes we still need to distinguish between the case when Φ′′ is
almost increasing and almost increasing, which corresponds to p > 2 and p < 2.
For more details, see Chapter 2.

The relation (1.11) can be slightly modified in order to catch fluids in which the
experimental data are reflected by a convex function Φ with different polynomial
upper and lower growth.

All the cases and examples of the constitutive relations mentioned above can
be covered by the model of fluid with shear-dependent viscosity:

S = µ(|Du|)Du, µ : R+ → R+. (1.13)

The dominant departure from the Newtonian behaviour, captured by the con-
stitutive relation (1.13), are effects such as shear thickening and shear thinning.
It seems to be useful to describe by this model for example the behaviour of very
dilute polymeric liquids or low molecular weights biological liquids.
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Although we don’t study more general constitutive relation than (1.13) in this
thesis, for a sake of completeness we point out that recently there was developed
theory for implicitly constituted incompressible fluid with response described by
the implicit relation

G(S, Du, π) = 0. (1.14)

For more details and some consequences that come from this general viewpoint
we refer to the original work [77, 78, 79]. In comparison with traditional models,
in which S is a function of Du, the implicit equation (1.14) is capable of capturing
several non-Newtonian phenomena, except shear thinning and shear thickening
mentioned above also pressure thickening or various activation and deactivation
criteria. A simple example that falls to the class given by (1.14) is following

G(S, Du) = µ(|Du|)(τ + (|S| − τ)+)D − (|S| − τ)+S, (1.15)

where x+ = max{0, x}. One can easily observe that (1.15) is equivalent to the
traditional description of fluid of Bingham or Herschel-Bulkley type:

|S| ≤ τ ⇔ Du = 0, |S| > τ ⇔ S =
τDu

|Du|
+ µ(|Du|)Du.

For the existence theory of implicitly constituted fluids and some further infor-
mation about the model see [14, 15, 16].

1.3 Boundary conditions

Although the system (1.3) with (1.7) together with the boundedness of the do-
main Ω represents a boundary value problem, up to now we haven’t been spoken
about boundary conditions. We discuss briefly the influence of the boundary and
appropriate choice of the boundary conditions. This section was inspired by [70,
Section 4], where interested reader can find more details.

We start with the simplest case when we don’t need to deal with the influence
of the boundary. Sometimes we are interested in the behaviour of fluid in the
interior of the domain Ω and it is convenient to eliminate completely the presence
of the boundary. It can be realized in two ways. First, assume that the fluid
occupies the whole space, i.e. Ω = Rn, and velocity vanishes at |x| → +∞. Then
we are interested in knowing the properties of the velocity u and pressure π of
the governing equations at any instant of the time t > 0 and any position x ∈ Rn.
Second, assume that for a positive constant L the velocity u and pressure π are
L−periodic at each direction xi with zero mean values. Here Ω = (0, L)n is a
periodic cell. Advantage of this second case consist in working on a domain with
a compact closure.

In most cases we can’t neglect the presence of the boundary. Boundary condi-
tions require an understanding of the nature of the bodies that are divided by the
boundary. A variety of suggestions were put forward by the pioneers of the field,
Bernoulli, DuBuat, Navier, Poisson, Grad, Stokes and others, as to the condition
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that ought to be applied on the boundary between an impervious solid and a
liquid.

G. G. Stokes [84] knew from DuBuat’s experiment with water flowing through
a pipe that for small velocities the water near the inner surface of the pipe is at
rest. In this case no-slip boundary conditions,

u = 0 at ∂Ω, (1.16)

seems to be suitable. Nevertheless, Stokes believed that for the higher velocities
the fluid is slipping at the boundary. The determination of appropriate boundary
conditions was an open problem for him.

C. L. M. H. Navier [71] derived a slip boundary conditions which can be
generalized to the condition

(1− λ)u · τ + λ[Sν] · τ = 0, λ ∈ [0, 1] at ∂Ω. (1.17)

If the boundary is impermeable, the normal component of the velocity is equal
to zero and therefore we add to (1.17) the relation

u · ν = 0 at ∂Ω. (1.18)

The above mentioned boundary conditions (1.17) with (1.18), when λ ∈ (0, 1)
are referred to as the slip boundary conditions or Navier boundary conditions.
If λ = 0 we obtain classical no-slip boundary condition (1.16). If λ = 1 we talk
about perfect slip boundary conditions. We point out that in this thesis we are
mostly interested in perfect slip boundary conditions.

The parameter λ is usually assumed to be a constant but it could however be
a function of the normal stresses and the shear rate. Then the Navier’s boundary
conditions can be generalized to

u · τ + λ̃(Sν · ν, |Du|)[Sν] · τ = 0 at ∂Ω.

Another boundary conditions that are sometimes used, especially when deal-
ing with non-Newtonian fluids, are the threshold-slip conditions, which can be
expressed as follows:

|Sν·τ | ≤ α|Sν·ν| ⇒ u·τ = 0, |Sν·τ | > α|Sν·ν| ⇒ u·τ 6= 0, −γ u · ν
|u · ν|

= Sν·τ,

where α is a positive constant and γ = γ(Sν ·ν, u ·τ, |Du|). The above mentioned
conditions implies that fluid will not slip until the ration of the magnitude of shear
stress and the magnitude of the normal stress exceeds a certain value. When it
does exceed that value, it will slip and the slip velocity will depend on both the
shear and normal stresses.

1.4 Formulation of the problem

After physical motivation and a few historical remarks we state the problem that
is studied in following chapters. Let Ω ⊂ Rn, n ∈ N, n ≥ 2 be a bounded domain,
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I = (0, T ) a finite time interval and I × Ω a time space cylinder. We investigate
qualitative properties of weak solutions to equations of flows of the incompressible
generalized Newtonian fluids described by (1.7) and (1.3) complemented with
perfect slip boundary conditions, i.e.

∂tu− divS(Du) + div(u⊗ u) +∇π = f in I × Ω, (1.19)

div u = 0 in I × Ω, (1.20)

u(0, ·) = u0 in Ω, (1.21)

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω. (1.22)

Recall that u is the velocity, π represents the pressure, f stands for the density
of volume forces and S denotes the extra stress tensor. Du is the symmetric part
of the velocity gradient, i.e. Du = 1

2
[∇u+ (∇u)>]. . By ν we denote an outward

normal vector and τ stands for any tangent vector to ∂Ω.
Some chapters are devoted to the stationary variant of (1.19)–(1.22) without

convective term:

− divS(Du) +∇π = f in Ω, (1.23)

div u = 0 in Ω, (1.24)

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω. (1.25)

To formulate the assumptions on the stress tensor S precisely we state some
basic facts about N-functions. More information about N−functions can be found
in Section A.2. We refer also to [55] or [80].

Definition 1.4.1 A real function Φ : R+ → R+ is called N-function if the
derivative Φ′(s) exists and is right continuous for s ≥ 0, positive for s > 0,
non-decreasing, Φ′(0) = 0 and lims→∞Φ′(s) =∞.

Definition 1.4.2 N-function Φ is said to satisfy the ∆2−condition, denoted Φ ∈
∆2, if there exists a positive constant C, such that Φ(2s) ≤ CΦ(s) for s > 0. By
∆2(Φ) we denote the smallest such constant C.

By (Φ′)−1 : R+ → R+ we denote the function

(Φ′)−1(s) := sup{t ∈ R+ : Φ′(t) ≤ s}.

The complementary function of Φ (which is again N -function) is defined as

Φ∗(s) :=

∫ s

0

(Φ′)−1(t) dt.

For a measurable function f we can define gauge norm as

‖f‖Φ := inf
{
λ > 0 :

∫
Ω

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

The Orlicz space LΦ(Ω) is defined as the set {f : ‖f‖Φ,Ω <∞}. We define

W 1,Φ
σ (Ω)n = {ϕi ∈ W 1,Φ(Ω), i = 1, . . . , n, ϕ · ν = 0 on ∂Ω, divϕ = 0}.
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We consider the constitutive relation for S of the form (1.13)

S = µ(|Du|)Du,

where µ : [0,∞) 7→ [0,∞) is generally non-constant function called generalized
viscosity. Construct a scalar potential Φ : [0,∞) 7→ [0,∞) to the stress tensor S
as follows:

Sij(A) = ∂ijΦ(|A|) = Φ′(|A|)Aij
|A|

, µ(|A|) =
Φ′(|A|)
|A|

∀A ∈ Rn×n
sym . (1.26)

By f ∼ g we mean that there are positive constants c and C such that cf ≤ g ≤
Cf . We require the following assumption to be fulfilled:

Assumption 1.4.3 Suppose that Φ ∈ C1,1(0,∞) ∩ C1[0,∞) is an N-function,
Φ ∈ ∆2, Φ∗ ∈ ∆2 and for s > 0

Φ′(s) ∼ sΦ′′(s) (1.27)

and Φ′′(s) is almost monotone, i.e. there exists C > 0 such that for all s ∈ (0, t]
either Φ′′(s) ≤ CΦ′′(t) (almost increasing) or Φ′′(s) ≥ CΦ′′(t) (almost decreas-
ing).

Remark 1.4.4 Every N-function Φ satisfying ∆2−condition automatically satis-
fies

Φ(s) ∼ sΦ′(s).

The relation (1.26) and Assumption 1.4.3 give us non-standard Φ−growth
conditions, see [22, Lemma 21].

Corollary 1.4.5 There are constants C1, C2 > 0 that for all A,B ∈ Rn×n
sym holds(

S(A)− S(B)
)
·
(
A−B

)
≥ C1Φ′′(|A|+ |B|)|A−B|2,

|S(A)− S(B)| ≤ C2Φ′′(|A|+ |B|)|A−B|.
(1.28)

Example 1.4.6 Let us mention that growth conditions (1.28) allow to consider
models with a great deal of disparity, for example, power-law models

S(Du) = µ0(1 + |Du|2)
p−2
2 Du, Φ(|Du|) = µ0

∫ |Du|
0

(1 + s2)
p−2
2 s ds,

S(Du) = µ0(1 + |Du|)p−2Du, Φ(|Du|) = µ0

∫ |Du|
0

(1 + s)p−2s ds,

µ0 ∈ R+, p ∈ (1,∞). Also the singular case

S(Du) = µ0|Du|p−2Du, Φ(|Du|) = µ0

∫ |Du|
0

sp−1 ds

is included.
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We define function V and N-function Ψ which are very well suited for express-
ing differentiability properties of weak solutions. Definition of the function V in
the framework of Orlicz spaces was first given in [22].

For given Φ we define the N-function Ψ by

Ψ′(s) :=
√

Φ′(s)s.

and we define V (A) such that Ψ(|A|) is a scalar potential to V (A), i.e.

Vij(A) := ∂ijΨ(|A|) = Ψ′(|A|)Aij
|A|

∀A ∈ Rn×n
sym .

It is shown in [22, Lemma 25] that

Ψ′′(s) ∼
√

Φ′′(s). (1.29)

Example 1.4.7 In the case of power-law models from Example 1.4.6 we have

V (Du) = µ0(1 + |Du|2)
p−2
4 Du, Ψ(|Du|) = µ0

∫ |Du|
0

(1 + s2)
p−2
4 s ds,

V (Du) = µ0(1 + |Du|)
p−2
2 Du, Ψ(|Du|) = µ0

∫ |Du|
0

(1 + s)
p−2
2 s ds,

µ0 ∈ R+, p ∈ (1,∞). Also the singular case

V (|Du|) = µ0|Du|
p−2
2 Du, Ψ(|Du|) = µ0

∫ |Du|
0

s
p
2 ds

is included.

Some results demand to specify the shape of the domain Ω, thus we give the
definition of axisymmetric domain in the same way as in [20, Definition-Lemma 1].

Definition 1.4.8 Let Ω be a smooth bounded open subset of Rn, n ≥ 2. We
say that Ω is axisymmetric if and only if there exists a nontrivial rigid motion R
which is tangent to ∂Ω; or equivalently, which satisfies for all t ∈ R etRΩ = Ω.
Here etR is the isometry defined via d

dt
etR(x) = RetR(x).

By rigid motions R we understand affine maps R : Ω→ Rn whose linear part
is antisymmetric. If we consider the most common dimensions n = 2 and n = 3
we can use a simpler definition. A domain in R2 is axisymmetric if it has a circular
symmetry around some point. A domain in R3 is axisymmetric if it admits an
axis of symmetry, i.e. the domain is preserved by a rotation of arbitrary angle
around this axis. If the domain admits two nonparallel axes of symmetry, then
it is spherically symmetric around some point.
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1.5 Structure of the thesis

In this thesis we present results which from papers [54, 66, 85]. Unlike the articles
we were able to bring forward more detailed proof in some parts. An example is
Section 2.2 in Chapter 2 regarding difference quotient technique. In paper [54]
this section is reduced to the short paragraph. We would like to point out that
the notation from the three papers is unified.

We briefly describe the main result of each chapter and connection with the
other chapters. Chapter 2 is concerned with the steady generalized Stokes system
(1.23) and (1.24) complemented with perfect slip boundary conditions (1.25). The
nonlinear elliptic operator satisfies non-standard Φ−growth conditions described
in Assumption 1.4.3. We show the existence of the second derivatives of the
velocity and their regularity up to the boundary of Ω. These results can be also
found in the paper [54].

Together with Václav Mácha we were able to extend the results from Chapter 2
and show higher integrability of the first gradient of weak solutions to the system
(1.23)–(1.25). These results can be found in [66] and we bring them forward in
Chapter 3. At this point we would like to accentuate that Chapter 3 consist of a
joint work with Václav Mácha.

In Chapter 5 we study evolutionary generalized Navier–Stokes system (1.19)-
(1.21) in two dimensions under perfect slip boundary conditions (1.22). The extra
stress tensor S is assumed to possess p−potential structure with p ≥ 2, therefore
it is a special variant of more general setting of a framework of N-functions.
Results from Chapter 2 together with Chapter 4 (which provides Lq theory for
classical evolutionary Stokes system under perfect slip boundary conditions) allow
us to show Hölder continuity of velocity gradients and pressure. Chapters 4 and
5 consist of the results from [85].



2
Differentiability of weak solutions to equations of

steady flows

2.1 Main result

This chapter is concerned with steady flows of an incompressible fluid in a bound-
ed domain Ω ⊂ Rn, n ∈ N, n ≥ 2 described by the system (1.23)–(1.25):

− divS(Du) +∇π = f in Ω,

div u = 0 in Ω,

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω.

Standard notation is used for Lebesgue spaces (Lp(Ω), ‖ · ‖p), Sobolev spaces
(W k,p(Ω), ‖ · ‖k,p), 1 ≤ p ≤ ∞, k ∈ N, Orlicz spaces (LΦ(Ω), ‖ · ‖Φ) and Orlicz-
Sobolev spaces (W 1,Φ(Ω), ‖ · ‖1,Φ), Ω is a domain with C3 boundary.

We begin with the definition of the weak solution of the problem (1.23)–(1.25).

Definition 2.1.1 We say that the function u is the weak solution to the problem
(1.23)–(1.25) if u ∈ W 1,Φ

σ (Ω)n and∫
Ω

S(Du) :Dϕ dx =

∫
Ω

f · ϕ dx

holds1 for all ϕ ∈ W 1,Φ
σ (Ω)n.

It is well known that the weak solution exists and is unique. It could be easily
proven using the monotone operator theory.

Now we are ready to state the main theorem of this chapter.

Theorem 2.1.2 Let Ω ⊂ Rn be a bounded non-axisymmetric C3 domain,
f ∈ W 1,Φ∗(Ω)n and suppose Assumption 1.4.3 is fulfilled. Let u be a weak
solution to (1.23)–(1.25). Then there exists constant C independent of u such
that ∫

Ω

|∇V (Du)|2 dx ≤ C
(∫

Ω

Φ∗(|f |) dx+

∫
Ω

Φ∗(|∇f |) dx
)
.

1As we use the notation W 1,Φ
σ (Ω)n for vector-valued functions with components in the func-

tion space W 1,Φ
σ (Ω), we use analogically the notation W 1,Φ

σ (Ω)n×n for tensor-valued functions.

13
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If moreover f = div g and g ∈ L(Φ∗)q , q ∈
[
1, n

n−2

]
for n ≥ 3, q ∈ [1,∞) for

n = 2, then the corresponding pressure π satisfies∫
Ω

(Φ∗(|π − 〈π〉Ω|))q dx ≤ C

∫
Ω

(Φ∗(|g|))q dx

+ C
(∫

Ω

Φ∗(|∇g|) dx+

∫
Ω

Φ∗(|∇2g|) dx
)q
.

(2.1)

Remark 2.1.3 (Assumptions on f and the domain Ω) For a special choice of Φ,
assumption on f could be weakened. For example if we would consider Φ such
that Φ′′ is bounded and decreasing (which corresponds to the power-law model with
p < 2 and non-singular case), it is sufficient to take f ∈ LΦ∗(Ω)n, cf. [52].

The assumption on the shape of Ω is related to the boundary condition u·ν = 0
on ∂Ω. In several parts of the proof we use a stronger version of Korn’s inequality,
see Lemma A.4.2, which is valid if the domain Ω is not axisymmetric (if we
considered homogeneous Dirichlet boundary conditions, then an arbitrary shape
of the domain would be admissible in the formulation of Korn’s inequality).

In this part we would like to mention the paper [29], where the author obtains,
with a different method, result very similar to our results. C. Ebmeyer studies
the problem (1.23)–(1.25) where the equation of motion contains the convective
term div(u⊗ u) and Ω ⊂ R3. He supposes that the tensor S has the p-potential
structure and is interested in the case p < 2. The author obtains the regularity
results in Sobolev spaces with fractional derivatives and in Nikolskĭı’s spaces.
Among others, he shows

∫
Ω

(κ+ |Du|)p−2|∇Du|2 dx <∞, κ ∈ {0, 1} for p ∈ (9
5
, 2)

in the case of power-law Navier-Stokes system and for p ∈ (1, 2) in the case of
power-law Stokes system. He uses the fact that perfect slip boundary conditions
allow to extend the solution beyond the flat boundary. Results are formulated for
the flat boundary and, by the local change of coordinates for the general shape
of the boundary.

In [12] the authors are concerned with the system (1.23) and (1.24) equipped
with homogeneous Dirichlet boundary conditions. The extra stress tensor is
given by a power-law ansatz with exponent p ≥ 2. Among others they show

that V (Du) ∈ W 1, 2q
p+q−2 (Ω)n×n for q = np+2−p

n−2
, if n ≥ 3 and for all q < ∞, if

n = 2. In tangential directions they are able to improve regularity properties to∫
Ω
|∂ταV (Du)|2 dx < ∞, but in the normal direction there is a loss of regularity

due to the absence of some special weighted version of Korn’s inequality and the
presence of pressure.

In [50, Theorem 3] the authors show a regularity result for non-circular domain
in 2D and with an additional assumption in [50, Theorem 4] the same result is
established for a circle.

The proof of Theorem 2.1.2 is divided into three main parts. In the first
part, Section 2.2, we show that for the quadratic potential, i.e. Φ′′ is bounded
from below and from above (which corresponds to the case p = 2 in the power-
law models), the solution u belongs to the space W 2,2(Ω)n. In the second part,
Section 2.3, we introduce the regularized problem where instead of the generalized
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viscosity µ we consider truncated viscosity µε = min
(

max(µ(|Dueε|), ε), 1
ε

)
for

ε ∈ (0, 1). Using the fact that for the regularized problem ueε ∈ W 2,2(Ω)n, we
show that the term

∫
Ω
µε(|Dueε|)|∂nDueε|2 dx can be estimated by lower order

terms and small same order terms, see Lemma 2.3.2. The main idea is to test the
regularized version of (1.23) by second normal derivatives (up to some correction),
which is possible due to perfect slip boundary conditions. Further we obtain
similar result for the term

∫
Ω
µε(|Dueε|)|∂αDueε|2 dx, α ∈ {1, . . . , n − 1}, see

Lemma 2.3.6. It can be done by taking tangent derivative of regularized version
of (1.23) and testing by suitable function. We finish Section 2.3 by putting
together estimates from Lemma 2.3.2 and Lemma 2.3.6, estimating lower order
terms and absorbing small same order terms into the left hand side. Although
we are using the function µε in Section 2.3, due to the Assumption 1.4.3 and
constitutive relation (1.13) we have µ(s) ∼ Φ′′(s) and due to (1.29) we easily
obtain the result in the terms of the function V ε. In the third part, Section 2.4,
we pass from the regularized problem to the original one.

2.2 Quadratic potential

In this section we will confine ourselves to the case Φ′′ is bounded from below
and from above. In the definition of the weak solution, Definition 2.1.1, the space
W 1,Φ
σ (Ω)n reduces to W 1,2

σ (Ω)n.

Lemma 2.2.1 Let Ω ⊂ Rn, Ω ∈ C3, f ∈ L2(Ω)n. Let Assumption 1.4.3 be
fulfilled and Φ′′ ∈ [c3, c4] ⊂ (0,∞). Then for every weak solution to the problem
(1.23)–(1.25) holds

u ∈ W 2,2(Ω)n, π ∈ W 1,2(Ω).

Proof. We will follow the proof in [68, Section 3] where the authors are dealing
with the evolutionary case in 3D under homogeneous Dirichlet boundary condi-
tion. The authors are interested in the power-law model for case p ≥ 2. The proof
is supposed to be divided to the interior regularity and the boundary regularity.
We will focus only on the boundary regularity, because the interior regularity can
be easily proved by the simple modification of the computation below. The proof
consist of three steps. At first we focus on boundary regularity of u in tangent
direction, later we obtain similar estimate for u in normal direction and at the
end we reconstruct pressure π.

Step 1 Boundary regularity in tangent direction

In this step we work in the local system of coordinates. We suppose that in a
neighborhood of P ∈ ∂Ω we can describe the boundary as a graph of a suitably
smooth function. By ΩR0 we understand an intersection of the domain Ω with
a ball with radius R0 and center P . Let 0 < r ≤ R ≤ R0

2
. Tα : ΩR → ΩR0

denotes the shift operator in tangent direction. δ+
α stands for the differences, i.e.

δ+
α g(y) = g(Tαy) − g(y). For properties of differences and precise description of

the boundary see Section A.1.
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We start with the weak formulation∫
Ω

S(Du)(y) :D(ψ(y)) dy =

∫
Ω

f(y) · ψ(y) dy, (2.2)

which is fulfilled for ψ ∈ W 1,2
σ (Ω)n, suppψ ⊂ ΩR.

The goal is to derive the identity which contains differences of each term of
the equation (2.2). To reach this, we need to test by ϕ(T−1

α y) instead ψ(y).
This function doesn’t belong to W 1,2

σ (Ω)n because nor divϕ(T−1
α y) 6= 0 neither

ϕ(T−1
α y) · ν 6= 0 on ∂Ω. That’s why we introduce the following correction:

ϕcor(y) := ϕ(T−1
α y)− (ϕ(T−1

α y) · δ−α ν(y))ν(y) + zc(y),

where zc(y) is the solution to the problem

div zc(y) = div[−ϕ(T−1y) + (ϕ(T−1y) · δ−α ν(y))ν(y)] in Ω,

zc(y) = 0 on ∂Ω,

supp zc ⊂ ΩR. On ∂Ω it holds∫
∂Ω

[−ϕ(T−1
α y) + (ϕ(T−1

α y) · δ−α ν(y))ν(y)] · ν(y) dy = 0.

Because of zc(y) we have divϕcor(y) = 0 and we can also easily see that
ϕcor(y) · ν(y) = 0 on ∂Ω. It means that ϕcor(y) is good test function. Putting
ψ(y) := ϕcor(y) in (2.2) we obtain∫

Ω

S(Du)(y) :D(ϕ(T−1
α y)) dy

−
∫

Ω

S(Du)(y) : [(D(ϕ(T−1
α y))δ−α ν(y))⊗ ν(y)] dy

−
∫

Ω

S(Du)(y) : [(ϕ(T−1
α y)D(δ−α ν(y)))⊗ ν(y)] dy

−
∫

Ω

S(Du)(y) : (ϕ(T−1
α y) · δ−α ν(y))D(ν(y)) dy

+

∫
Ω

S(Du)(y) :D(zc(y)) dy =

∫
Ω

f(y)ϕ(T−1
α y) dy

−
∫

Ω

f(y)(ϕ(T−1
α y) · δ−α ν(y))ν(y) dy +

∫
Ω

f(y)zc(y) dy.

(2.3)

In the first term of (2.3) there is the derivative of the composite function
D(ϕ(T−1

α (y))), but we need Dϕ(T−1
α y). To reach this we apply Lemma A.1.3

which provides:

D(ϕ(T−1
α y)) = Dϕ(T−1

α y) + ∂nϕ(T−1
α y)⊗S (δ−α∇a).

In some terms we use the substitution y = Tαx. From Section A.1 we know that
dy = dx, because the Jacobian of the mapping Tα and T−1

α is equal to 1. In (2.2)
we put ψ(y) := ϕ(x) and subtract (2.2) from the resulting equation (2.3). We get
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0 =

∫
Ω

δ+
αS(Du)(x) :D(ϕ(x)) dx

+

∫
Ω

S(Du)(Tαx) : [∂nϕ(x)⊗S (δ−α∇a)] dx

−
∫

Ω

S(Du)(y) : [(D(ϕ(T−1
α y))δ−α ν(y))⊗ ν(y)] dy

−
∫

Ω

S(Du)(y) : [(ϕ(T−1
α y)D(δ−α ν(y)))⊗ ν(y)] dy

−
∫

Ω

S(Du)(y) : (ϕ(T−1
α y) · δ−α ν(y))D(ν(y)) dy

+

∫
Ω

S(Du)(y) :D(zc(y)) dy −
∫

Ω

δ+
α f(x)ϕ(x) dx

+

∫
Ω

f(y)(ϕ(T−1
α y) · δ−α ν(y))ν(y) dy −

∫
Ω

f(y)zc(y) dy =:
9∑
i=1

Ai

(2.4)

valid for the test function ϕ ∈ W 1,2
σ (Ω)n, suppϕ ⊂ ΩR.

We choose ϕ = ϕa + ϕb + ϕc such that

ϕa + ϕb =
1

h2
δ+
α u(x)ξ2(x) +

1

h2
νu(x)ξ2(x), (2.5)

where νu(x) := (u(Tx) · δ+
α ν(x))ν(x), h ∈ (0, R0

2
) and the cut-off function ξ(x) ∈

C∞(BR(P )) is defined as follows:

ξ(x)


= 1 x ∈ Br(P ),
∈ (0, 1) x ∈ BR(P ) \Br(P ),
= 0 x ∈ Rn \BR(P ).

(2.6)

We can easily see that condition (ϕa +ϕb) · ν = 0 on ∂Ω holds and supp(ϕa +
ϕb) ⊂ ΩR. But generally it doesn’t hold that div(ϕa + ϕb) = 0. That’s why the
correction ϕc ∈ W 1,2

σ (Ω)n with suppϕc ⊂ ΩR is included in the test function ϕ.
It is defined as a solution to the problem

divϕc = div(−ϕa − ϕb) in Ω,

ϕc = 0 on ∂Ω.

The compatibility condition is fulfilled, since

0 =

∫
∂Ω

ϕc · ν dσ =

∫
Ω

divϕc dx =

∫
Ω

div(−ϕa − ϕb) dx =

= −
∫
∂Ω

(ϕa + ϕb) · ν dσ = 0.

Bogovskĭı’s Lemma A.3.1 provides following estimate of zc and ϕc:

‖zc‖r1,r ≤ Chr‖ϕ‖r1,r, (2.7)

‖ϕc‖r1,r ≤ C‖ div(ϕa + ϕb)‖rr. (2.8)
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Using the definition of ϕa + ϕb and the incompressibility conditions div u = 0,
(2.8) can be rewritten as

‖ϕc‖r1,r ≤
C

hr
‖u‖r1,r(1 + ‖∇ξ‖r∞). (2.9)

With the knowledge (2.5) and (2.9) we get the estimate of zc:

‖zc‖r1,r ≤ C
(∥∥∥∇δ+

α u

h
ξ
∥∥∥r
r

+ ‖u‖r1,r(1 + ‖∇ξ‖r∞)
)
. (2.10)

Let’s estimate:

A1 =

∫
ΩR

∫ 1

0

∂ijSkl(Du+ λδ+
αDu)δ+

αDijuDklϕ dλ dx.

Using Lemma A.1.3 we get

A1 =

∫
ΩR

∫ 1

0

∂ijSkl(Du+ λδ+
αDu)[Dijδ

+
α u

−
(
(∂nu)(Tx)⊗S δ+

α∇a
)
ij

]Dklϕ dλ dx

=

∫
ΩR

∫ 1

0

∂ijSkl(Du+ λδ+
αDu)Dij(δ

+
α u)Dklϕ dλ dx

−
∫

ΩR

∫ 1

0

∂ijSkl(Du+ λδ+
αDu)

(
(∂nu)(Tx)⊗S δ+

α∇a
)
ij
Dklϕ dλ dx

=: A1.1 −A1.2,

A1.1 =
1

h2

∫
ΩR

∫ 1

0

∂ijSkl(Du+ λδ+
αDu)Dijδ

+
α u
[
Dklδ

+
α uξ

2(x)+

+ 2[δ+
α u]kξ∂lξ +Dklνuξ

2 + 2[νu]kξ∂lξ +Dklϕc dx
]

dλ dx =:
5∑
i=1

Bi.

Due to growth conditions from Corollary 1.4.5 and Lemma A.4.1 we can estimate
the term B1:

B1 ≥
2C1

h2

∫
ΩR

|Dδ+
α u|2ξ2 dx

≥ 2C1C3

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx− 2C1C4

∫
ΩR

∣∣∣δ+
α u

h

∣∣∣2(|∇ξ|2 + ξ2) dx.

On the second term B2 we apply (1.28)2 and Cauchy inequality with ε > 0

|B2| ≤
2C2

h2

∫
ΩR

|∇δ+
α u|ξ|δ+

α u||∇ξ| dx ≤ εC2
2

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx

+ C

∫
ΩR

∣∣∣δ+
α u

h

∣∣∣2|∇ξ|2 dx ≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ ‖∇u‖4
2 + ‖∇ξ‖4

∞

)
.
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In the third term B3 the following is used:

Dij(νu(x)) = ∂j{uk(Tx)[δ+
α ν]kνi(x)} =

= ∂juk(Tx)[δ+
α ν]kνi(x) + uk(Tx)∂j[δ

+
α ν]νi(x) + uk(Tx)[δ+

α ν]∂jνi(x).

We use Lemma A.1.4 to estimate the modulus of gradient of the normal vector
or the modulus of the difference of gradient gradient of the normal vector by the
constant Cn.

|B3| ≤
C2

h2

∫
ΩR

|Dijδ
+
α uDijνuξ

2| dx

≤ C2

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣(|∇u|Cn + |u|Cn + |u|C2
n)ξ2 dx

≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ ‖u‖2
1,2

)
.

|B4| ≤
2C2

h2

∫
ΩR

|∇δ+
α u||νu|ξ|∇ξ| dx

≤ C2
2ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ C

∫
ΩR

|u|2|∇ξ|2 dx

≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ ‖u‖4
2 + ‖∇ξ‖4

∞

)
,

|B5| ≤ C2

∫
ΩR

|Dijδ
+
α uDijϕc| dx ≤ εC2

2

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2 dx+ C

∫
ΩR

h2|∇ϕc|2

≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2 dx+ ‖u‖2
1,2 + ‖u‖4

1,2 + ‖∇ξ‖4
∞

)
.

(2.11)

Corollary 1.4.5 and similar steps as before allow us to estimate the term A1.2.

|A1.2| = |
∫

ΩR

∫ 1

0

∂ijSkl(Du+ λδ+
αDu)

(
(∂nu)(Tx)⊗S δ+

α∇a
)
ij
Dklϕ dλ dx|

≤ C2

h2

∫
ΩR

|
(
(∂nu)(Tx)⊗S δ+

α∇a
)
ij

[
Dijδ

+
α uξ

2 + 2[δ+
α u]iξ∂jξ

+Dijνuξ
2 + 2[νu]iξ∂jξ +Djiϕc

]
| dx =:

10∑
i=6

Bi.

Applying Lemma A.1.4 and estimate (2.9) on correction ϕc leads to
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|B6|+ |B7| ≤ C2

∫
ΩR

|∇u|Cn
(∣∣∣∇δ+

α u

h

∣∣∣ξ2 +
∣∣∣δ+
α u

h

∣∣∣ξ||∇ξ|) dx

≤ C2
2ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ C‖∇u‖2
2

+ C2
2C

∫
ΩR

∣∣∣δ+
α u

h

∣∣∣2ξ2 dx+ C‖∇ξ‖2
∞

∫
ΩR

|∇u|2 dx

≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ ‖∇u‖2
2 + ‖∇u‖4

2 + ‖∇ξ‖4
∞

)
,

|B8|+ |B9| ≤ C2

∫
ΩR

|∇u|Cn[(|∇u|Cn + |u|Cn + |u|C2
n)ξ2 + |u|Cnξ|∇ξ|] dx

≤ C(‖u‖2
1,2 + ‖u‖4

1,2 + ‖∇ξ‖4
∞),

On the term B10 we use estimate (2.9).

|B10| ≤ C2

∫
ΩR

|∇u|Cnh|∇ϕc| dx ≤
C2
n

2

∫
ΩR

|∇u|2 dx+
C2

2h
2

2

∫
ΩR

|∇ϕc|2 dx

≤ C(‖∇u‖2
2 + ‖u‖4

1,2 + ‖∇ξ‖4
∞),

|A2| = |
∫

ΩR

Skl(Du)(Tx)
(
(∂nϕ)(x)⊗S δ+

α∇a
)
kl

dx|

= |
∫

ΩR

∫ 1

0

∂ijSkl(λDu(Tx))(Diju)(Tx)
(
(∂nϕ)(x)⊗S δ+

α∇a
)
ij

dλ dx|

≤ C2

∫
ΩR

|∇u|
∣∣∣∇(δ+

α u

h
ξ2 +

νu
h
ξ2 + hϕc

)
Cn

∣∣∣ dx
≤ C2

∫
ΩR

|∇u|
(∣∣∣∇δ+

α u

h

∣∣∣ξ2 +
∣∣∣δ+
α u

h

∣∣∣2ξ∇ξ + |∇u|Cnξ2 + |u|Cnξ2

+ |u|C2
nξ

2 + |u|Cn2ξ∇ξ + h∇ϕc
)
Cn dx

≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ ‖u‖2
1,2 + ‖u‖4

1,2 + ‖∇ξ‖4
∞

)
,

|A3| ≤ C2

∫
ΩR

|DuD
[ 1

h2
δ−α uξ

2(T−1y) +
1

h2
νu(T

−1y)ξ2(T−1y) + ϕc

]
(δ−α ν)ν| dy

≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dy + ‖u‖2
1,2 + ‖u‖4

1,2 + ‖∇ξ‖4
∞

)
,

|A4|+ |A5| ≤ C2

∫
ΩR

|(Du)(y)
[ 1

h2
δ−α uξ

2(T−1y) +
1

h2
νu(T

−1y)ξ2(T−1y) + ϕc

]
|(

|∇(δ−α ν)ν|+ |(δ−α ν)∇ν|
)

dy ≤ C
(
ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dy + ‖u‖2
1,2

+ ‖∇u‖4
1,2 + ‖∇ξ‖4

∞

)
.
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In the next term we use the estimate (2.10) on zc:

|A6| ≤ C2

∫
ΩR

|Du||D(zc)| dy ≤ C‖∇u‖2
2 + C2

2ε‖∇zc‖2
2

≤ C
(
‖∇u‖2

2 + ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dy + ε‖u‖2
1,2

+ ε‖u‖4
1,2 + ε‖∇ξ‖4

∞

)
.

We express A7 in an alternative way

A7 =

∫
ΩR

δ+
α f · ϕ dx =

∫
ΩR

f · δ−αϕ dx.

After substitution of the test function and addition and subtraction of the
terms

1

h2

∫
ΩR

fi[δ
−
α u]iξ

2 dx,
1

h2

∫
ΩR

fi[νu]iξ
2(T−1x) dx

we get

A7 =
1

h2

∫
ΩR

fi[δ
+
α u− δ−α u]iξ

2 dx+
1

h2

∫
ΩR

fi[δ
−
α u]i[ξ

2 − ξ2(T−1x)] dx

− 1

h2

∫
ΩR

fi[δ
+
α νu]iξ

2(T−1x) dx− 1

h2

∫
ΩR

fi[νu]i[ξ
2 − ξ2(T−1x)] dx

+

∫
ΩR

fi[δ
−
αϕc]i =:

15∑
i=11

Bi.

|B11| ≤ C

∫
ΩR

|f |2ξ2 dx+ ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx,

|B12| ≤ C(‖f‖2
2 + ‖∇u‖4

2 + ‖∇ξ‖4
∞),

|B13| ≤
∫

ΩR

|f |Cn
∣∣∣δ+
α u

h

∣∣∣ξ2 ≤ ε

∫
ΩR

∣∣∣δ+
α u

h

∣∣∣2ξ2 dx+ C

∫
ΩR

|f |2ξ2 dx,

|B14| ≤ C(‖f‖2
2 + ‖u‖4

2 + ‖∇ξ‖4
∞),

|B15| ≤
1

2
‖f‖2

2 +
h2

2
‖∇ϕc‖2

2 ≤ C(‖f‖2
2 + ‖u‖2

1,2 + ‖u‖4
1,2 + ‖∇ξ‖4

∞).

A8 ≤
∫

ΩR

|f |
(∣∣∣δ−α u

h

∣∣∣ξ2 + |u|Cnξ2 + ϕc

)
Cn dy

≤ C(‖f‖2
2 + ‖u‖2

1,2 + ‖u‖4
1,2 + ‖∇ξ‖4

∞).

A9 ≤ C‖f‖2
2 + ε‖zc‖2

2 ≤ C
(
‖f‖2

2 + ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dy + ε‖u‖2
1,2

+ε‖∇ξ‖4
∞ + ε‖u‖4

1,2

)
.
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Putting all estimates together we obtain

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx ≤ εC

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2ξ2 dx+ εC ′
∫

ΩR

∣∣∣∇δ+
α u

h

∣∣∣2 dx

+C ′′(‖u‖2
1,2 + ‖u‖4

1,2 + ‖f‖2
2) + C ′′′‖∇ξ‖4

∞.

(2.12)

We are able to choose ε > 0 as small as we want, therefore we pick the one
in order to subsume the first term on the right hand side of (2.12) into the left
hand side. We know from the first apriori estimate that ‖u‖1,2 < C and from the
assumption ‖f‖2 < C. This gives the boundedness of the third term on the right
hand side of (2.12).

We can see that the procedure fails because of the fact, that there is missing
cut-off function ξ(x) in the integral in the second term on right hand side in
(2.12). But we can get rid of the uncomfortable term by virtue of the following
lemma which can be found in [35].

Lemma 2.2.2 Let f : [a, b] 7→ R+ is bounded. Suppose there exists constants
A,B, α > −1 and ε ∈ (0, 1), that

f(r) ≤ εf(R) + A(R− r)−α +B ∀a ≤ r < R ≤ b.

Then there exists positive constant c = c(α, ε), that holds

f(r) ≤ c[A(R− r)−α +B] ∀a ≤ r < R ≤ b.

Fix h ∈ (0, r). The term ∇δ+α u
h

has good sense on ΩR0 . The cut-off function ξ
satisfies C ′′′‖∇ξ‖4

∞ ≤ A(R−r)−4 for some A > 0 independent of r, R. We rewrite
the relation (2.12) to a more convenient form:

∫
Ωr

∣∣∣∇δ+
α u

h

∣∣∣2 dx ≤ ε

∫
ΩR

∣∣∣∇δ+
α u

h

∣∣∣2 dx+ A(R− r)−4 +B.

We use Lemma 2.2.2 for

f(r) :=

∫
Ωr

∣∣∣∇δ+
α u

h

∣∣∣2 dx,

As one can easily see, assumptions of the Lemma 2.2.2 are fulfilled. We obtain∫
Ωr

∣∣∣∇δ+
α u

h

∣∣∣2 dx ≤ c[A(R− r)−4 +B] ∀0 < r < R ≤ R0

2
,

where the constants A,B depends only on the norm of f in L2(Ω)n and on the
norm of u in W 1,2(Ω)n. As well the whole right hand side of (2.12) now depends
only on ‖f‖2 a ‖u‖1,2. Setting r := R0

4
and R = R0

2
we get∫

ΩR0
4

∣∣∣∇δ+
α u

h

∣∣∣2 dx ≤ C(‖f‖2, ‖u‖1,2).
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Due to (A.6) a (A.7) the previous estimate can be rewritten as

2∑
i=1

∫
ΩR0

4

|∂i∂ταu|2 dx ≤ C(‖f‖2, ‖u‖1,2). (2.13)

Step 2 Boundary regularity in normal direction

We will follow [68], where the problem of normal direction is solved for the
evolutionary variant of our problem in Ω ⊂ R3. This computation for stationary
problem in Ω ⊂ R2 is also done in articles [50] and [51].

In order to show boundedness of ∇2u we need an estimate of type (2.13) in the
normal direction which is locally xn. After formal employment 2 of the operator
curl

curl g = ∂αgj − ∂jgα for g : Ω 7→ Rn, α < j.

we get rid of the pressure from the equation (1.23). We obtain n
2
(n−1) equations

in W−1,2(Ω)n. Not all of them are useful for us. We put j = n and α < n, so

n∑
k=1

(∂α∂kSnk − ∂n∂kSαk)− ∂αfn + ∂nfα = 0, α = 1, . . . , n− 1. (2.14)

Set Gα ≡ ∂nSαn for α ∈ {1, . . . , n− 1}. It holds that

‖ξGα‖−1,2 ≤ C‖Sαn‖2 ≤ C‖Du‖2 ≤ C.

Further, thanks to (1.28) we have for k ∈ {1, . . . , n− 1}

‖∂k(ξGα)‖−1,2 ≤ C + ‖∂kSαn‖2 ≤ C + C ′
n∑
i=1

‖∂k∂iu‖2.

From the equation (2.14) we obtain

‖∂n(ξGα)‖−1,2 ≤ C + C ′
n∑
i=1

n−1∑
k=1

‖∂k∂iu‖2.

Now we can use the Nečas’ theorem on negative norms, see Theorem A.5.1, to
get

‖ξGα‖2 ≤ C(‖ξGα‖−1,2 + ‖∇(ξGα)‖−1,2) ≤ C + C ′
n∑
i=1

n−1∑
k=1

‖∂k∂iu‖2. (2.15)

Recalling the definition of Gα we have n− 1 equations for α ∈ {1, . . . , n− 1}

Gα =
n∑

i,j=1

∂ijSαn∂nDiju. (2.16)

2The process is based on testing the equation (1.23) by function rot g. The result is the
same, i.e. we get the equation (2.14) in distributional sense.
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Symmetry of S and Du gives us
∑n−1

j=1 ∂njSαn∂nDnju =
∑n−1

i=1 ∂inSαn∂nDinu and
therefore from (2.16) we obtain

2
n−1∑
j=1

∂njSαn∂nDnju = Gα −
n−1∑
i,j=1

∂ijSαn∂nDiju− ∂nnSαn∂nDnnu. (2.17)

In the first and third term of (2.17) we use the definition of Du. Instead of
the last term of (2.17) we can write

∑n−1
j=1 ∂nnSαn∂n∂juj, because Dnnu = ∂nun

and the equation div u = 0 gives us ∂nun = −
∑n−1

j=1 ∂juj. We have

n−1∑
j=1

∂njSαn∂2
nuj = Gα −

1

2

n−1∑
i,j=1

∂ijSαn∂n(∂iuj + ∂jui)

−
n−1∑
j=1

∂njSαn∂n∂jun +
n−1∑
j=1

∂nnSαn∂n∂juj.
(2.18)

Thanks to the Corollary 1.4.5 we know that the matrix A := (∂njSαn) is
regular. We can multiply (2.18) by ξ2∂2

nuα, where the cut-off function ξ(x) is
defined as in (2.6), sum over α and integrate over Ω. Using (2.15) we conclude
that

n−1∑
j=1

‖ξ∂2
nuj‖2

2 ≤ C + C ′
n∑
i=1

n−1∑
k=1

‖∂i∂ku‖2
2. (2.19)

From the relation (2.19) using the definition of the tangent derivative and
from relation (2.13) we derive

n∑
j=1

‖ξ∂2
nuj‖2

2 ≤ C + C ′
n∑

i,j=1

n−1∑
α=1

‖∂τα∂iuj‖2
2+

+ C ′′ sup
x′∈(−R0,R0)

n−1∑
α=1

|∂αa(x′)|
n∑
j=1

‖ξ∂2
nuj‖2

2.

(2.20)

If we choose R0 in order to have

C ′′max
P

sup
x′∈(−R0,R0)

n−1∑
α=1

|∂αa(x′)| ≤ 1

2
,

we can move the last term in (2.20) to the left hand side and together with tangent
direction and interior regularity we get u ∈ W 2,2(Ω)n. �

Step 3 Reconstruction of the pressure

In virtue of Lemma 2.2.1 we know that (1.23) holds almost everywhere. It
helps us to reconstruct the pressure in a simple way. In the weak formulation
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in Definition 5.1.1 there is no pressure π, because we considered divergence-free
test function. Now we are interested in the question whether there is π ∈ D′(Ω)n

such that ∫
Ω

S(Du) :Dϕ dx+ 〈∇π, ϕ〉 = 〈f, ϕ〉

holds for all ϕ ∈ D(Ω)n.
From De Rham’s theorem, see Theorem A.5.2, we know that the right hand

side of the equation
∇π = f + divS (2.21)

can be written in the gradient form. The equation (2.21) holds almost everywhere
and it’s right hand side is in L2(Ω)n. Thus, with the additional assumption∫

Ω
π dx = 0 we get that there exists the pressure π ∈ W 1,2(Ω)n.

2.3 The regularized problem

In this section we are concerned with the regularized boundary value problem

− divSε(Dueε) +∇πeε = f e in Ω, (2.22)

div ueε = 0 in Ω, (2.23)

ueε · ν = 0, [Sε(Dueε)ν] · τα = 0 on ∂Ω, (2.24)

where the regularization of f is chosen in order to have f e ∈ C∞(Ω̄)n and f e → f
in W 1,Φ∗(Ω)n as e→ 0 and

Sε = µε(|Dueε|)Dueε,

µε = min
(

max(µ(|Dueε|), ε), 1

ε

)
, ε ∈ (0, 1). (2.25)

Scalar potential Φε to Sε is

Φε(s) :=

∫ s

0

µε(t)t dt.

As one can easily check, the Assumption 1.4.3 and therefore also growth condi-
tions Corollary 1.4.5 hold if we replace Φ and S by Φε and Sε.

Proposition 2.3.1 If Φ ∈ ∆2, Φ∗ ∈ ∆2 then also Φε ∈ ∆2, (Φε)∗ ∈ ∆2 and
∆2({Φε, (Φε)∗}) doesn’t depend od ε.

Proof. At first we consider only truncation of µ from below, i.e.

µε(s) := max(µε(s), ε), Φε(s) =

∫ s

0

µε(t)t dt.

It is enough to show µε(2s) ≤ Cµε(s). We can distinguish four cases:
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(i) µ(s) ≥ ε and µ(2s) ≥ ε. Then µε(s) = µ(s), µε(2s) = µ(2s) and the claim
holds, because Φ ∈ ∆2.

(ii) µ(s) ≥ ε and µ(2s) ≤ ε. Then µε(s) = µ(s) ≥ ε and µε(2s) = ε. Trivially
µε(2s) ≤ µε(s).

(iii) µ(s) ≤ ε and µ(2s) ≥ ε. Then µε(s) = ε and µε(2s) = µ(2s), µ(2s) ≤
Cµ(s) ≤ Cε ≤ Cµε(s) and the claim holds.

(iv) µ(s) ≤ ε and µ(2s) ≤ ε. Then µε(s) = µε(2s) = ε and the claim trivially
holds.

The same is true for µ truncated from above, i.e. µε(s) := min(µ(s), 1
ε
). Putting

these two considerations together we obtain the proof for the viscosity defined in
(3.2). In the case of the complementary function one proceeds similarly.

The first apriori estimate, i.e. testing by the weak solution, gives us∫
Ω

Sε(Dueε) : Dueε dx ≤
∫

Ω

f e · ueε dx. (2.26)

Using Young’s inequality (A.8) and Korn’s inequality (A.20) on the right hand
side, definition of function V ε or the potential Φε on the left hand side, the
relation (2.26) can be rewritten in the form

C

∫
Ω

|V ε(Dueε)|2 dx ≤
∫

Ω

Φε(|Dueε|) dx ≤ C

∫
Ω

(Φε)∗(|f e|) dx =:Map. (2.27)

Now we fix a point P and work in the local system of coordinates for which
P = 0. We work in ΩP

R0
, but as before, we will drop the index P . For sim-

plicity we denote r := R0

4
. The following lemma shows us that the integral∫

Ωr
µε(|D(ueε)|)|∂nD(ueε)|2 dx can be estimated by lower order terms and small

terms of the same order which can be subsumed into the left hand side at the
end.

Lemma 2.3.2 Let Ω ⊂ Rn, Ω ∈ C3 be a bounded non-axisymmetric domain.
Let ueε be the weak solution of the regularized problem (2.22), (2.23) and (2.24).
Then there exist positive constants C and c̃i, i = 1, . . . , 4, independent of ueε such
that ∫

Ωr

µε(|Dueε|)|∂nDueε|2 dx ≤C
(∫

Ω3r

(Φε)∗(|f e|) dx

+

∫
Ω3r

(Φε)∗(|∇f e|) dx
)

+
4∑
i=1

Mi,

(2.28)

where
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M1 = c̃1

n∑
i,j,k,l,m=1

|
∫

Ω

Sεij∂k∂lueεmξ dx|, M2 = c̃2

n∑
i,j,k,l=1

|
∫

Ω

∂iSεjkueεl ξ dx|,

M3 = c̃3

n∑
i,j,k,l,m=1

|
∫

Ω

∂iSεjk∂lueεmξ dx|, M4 = c̃4a0

∫
Ω3r

µε(|Dueε|)|∇2ueε|2ξ2 dx.

Constants c̃i, i = 1, 2, 3, may depend on a0 and c0 defined in (A.1), but constant
c̃4 is an absolute one.

Remark 2.3.3 TermsMi, i = 1, . . . , 3, are of lower order. Instead of the cut-off
function ξ we should write ξ̃, where supp ξ̃ ⊂ supp ξ and in ξ̃ derivatives of ξ and
a are included. Since this difference is not important, we write only ξ.

The termM4 is of the same order as the left hand side of (2.28) but it is also
multiplied by a0. We can pick this constant as small as we want what allows us
to subsume M4 later into the left hand side of (2.28).

Proof of Lemma 2.3.2. From results of Section 2.2 we know that ueε ∈ W 2,2(Ω)n,
Sε(Dueε) ∈ W 1,2(Ω)n×n, πeε ∈ W 1,2(Ω). We can rewrite (2.22) into components,
multiply by a suitable test function and integrate over Ω3r. The test function has
to belong at least to L2(Ω)n in order the integrals had sense.

−
n∑

k,l=1

∫
Ω3r

∂lSεklϕk dx+
n∑
k=1

∫
Ω3r

∂kπ
eεϕk dx =

n∑
k=1

∫
Ω3r

f ekϕk dx, (2.29)

where ϕ ∈ L2(Ω)n. We would like to use the second normal derivatives of the
solution as a test function in (2.29). One can easily verify that this function is
not divergence free and does not fulfill boundary conditions, so we would have to
deal with terms containing the pressure. Instead we take as a test function

ϕ =
(
∂nΘ1, . . . , ∂nΘn−1,−

n−1∑
α=1

∂αΘα

)
, (2.30)

where we denoted

Θα := ∂ν(u
eε · τα)ξ2 − ueε · (∂ντα + ∂ταν)ξ2, α = 1, . . . , n− 1. (2.31)

The test function ϕ is constructed in order to fulfill divϕ = 0. It also has a useful
property:

Proposition 2.3.4 Θα = 0 for all α ∈ {1, . . . , n − 1} on ∂Ω in the sense of
traces.

Proof. We use two facts. First, ∂τα(ueε · ν) = 0 on ∂Ω, which is ueε · ∂ταν =
−∂ταueε · ν. Second, boundary conditions (Sεν) · τα = 0 can be rewritten as
∂ταu

eε · ν + ∂νu
eε · τα = 0 which gives us ∂νu

eε · τα = −∂ταueε · ν. Thus

Θα = ∂νu
eεταξ2 + ueε∂ντ

αξ2 − ueεξ2∂ντ
α − ueεξ2∂ταν

= −∂ταueενξ2 − ueεξ2∂ταν = ueε∂τανξ
2 − ueεξ2∂ταν = 0.
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Proposition 2.3.4 helps us to get rid of terms in (2.29) containing pressure. In
the case we are not on ∂Ω, it is useful to write out Θα.

Θα =
n∑

i,j=1

(∂iu
eε
j τ

α
j νi − ueεi ∂jνiταj )ξ2 = −∂nueεα ξ2 − ∂αa∂nueεn ξ2

+
n−1∑
β=1

(
∂βa(∂βu

eε
α + ∂αa∂βu

eε
n )− ∂α∂βaueεβ

)
ξ2,

(2.32)

where we use only the definition of the normal, the normal derivative, the tangent
and the tangent derivative.

Proposition 2.3.5 Let ϕ be defined by (2.30) and (2.31). Then

n∑
k=1

∫
Ω3r

∂kπ
eεϕk dx = 0.

Proof. If πeε ∈ W 2,2(Ω), a straightforward computation gives us

n∑
k=1

∫
Ω3r

∂kπ
eεϕk dx =

n−1∑
α=1

∫
Ω3r

∂απ
eε∂nΘα dx−

∫
Ω3r

∂nπ
eε

n−1∑
α=1

∂αΘα dx = 0,

where we integrated by parts twice and use the fact that boundary integrals are
equal to zero because Θα = 0 on ∂Ω due to Proposition 2.3.6. For πeε ∈ W 1,2(Ω)
the statement follows from density of W 2,2(Ω) in W 1,2(Ω).

For simplicity let us denote

Akl := −
∫

Ω3r

∂lSεklϕk dx, k, l = 1, . . . , n,

Bjkl :=

∫
Ω3r

∂jSεkl∂j∂lueεk ξ2 dx, j, k, l = 1, . . . , n.

We put (2.30) into (2.29) and estimate terms Akl, k, l = 1, . . . , n. Our goal is
to obtain terms Bnkl on the left hand side of (2.29). It will be done in four steps.
First we focus on Aαβ for fixed α, β ∈ {1, . . . , n − 1}. Later we estimate Aαn,
Anβ and finally Ann.

In the first term we integrate by parts twice, use the fact that there are no
boundary terms and apply (2.32).

Aαβ =

∫
Ω3r

∂βSεαβϕα dx = −
∫

Ω3r

∂βSεαβ∂nΘα dx = −
∫

Ω3r

∂nSεαβ∂βΘα dx

=

∫
Ω3r

∂nSεαβ∂β
[
∂αa∂nu

eε
n ξ

2 −
n−1∑
β=1

(
∂βa(∂βu

eε
α + ∂αa∂βu

eε
n )− ∂α∂βaueεβ

)
ξ2
]

+

∫
Ω3r

∂nSεαβ∂β∂nueεα ξ2 dx ≥ Bnαβ −
4∑
i=1

Mi.
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In the second term Aαn we use only (2.32) to get Bnαn.

Aαn = −
∫

Ω3r

∂nSεαnϕα dx = −
∫

Ω3r

∂nSεαn∂nΘα dx

≥
∫

Ω3r

∂nSεαn∂2
nu

eε
α ξ

2 dx−
4∑
i=1

Mi = Bnαn −
4∑
i=1

Mi.

At the beginning of the extraction of the term Bnnβ from Anβ we use (2.32)

and ∂nu
eε
n = −

∑n−1
α=1 ∂αu

eε
α , which comes from the divergence-free constraint:

Anβ = −
∫

Ω3r

∂βSεnβϕn dx =

∫
Ω3r

∂βSεnβ
n−1∑
α=1

∂αΘα dx

≥ −
∫

Ω3r

∂βSεnβ
n−1∑
α=1

∂α∂nu
eε
α ξ

2 dx−
4∑
i=1

Mi

=

∫
Ω3r

∂βSεnβ∂2
nu

eε
n ξ

2 dx−
4∑
i=1

Mi = B̃ −
4∑
i=1

Mi.

If we integrate by parts twice B̃, we are done. At this moment there would
appear boundary integrals. To avoid them we add and subtract some small terms
(which could be included in M4) in order to have (Sεν) · τβ instead of Sεnβ in B̃.

Writing out (Sεν) · τβ we get

Sεnβ = −(Sεν) · τβ +
n−1∑
α=1

∂αaSεαβ + ∂αa∂βaSεαn − ∂βaSεnn.

Therefore

B̃ =

∫
Ω3r

∂βSεnβ∂2
nu

eε
n ξ

2 dx ≥ −
∫

Ω3r

∂β[(Sεν)τβ]∂2
nu

eε
n ξ

2 dx−
4∑
i=1

Mi

=−
∫

Ω3r

∂n[(Sεν)τβ]∂β∂nu
eε
n ξ

2 dx−
4∑
i=1

Mi

≥
∫

Ω3r

∂nSεnβ∂n∂βueεn ξ2 dx−
4∑
i=1

Mi = Bnnβ −
4∑
i=1

Mi.

In the last term Ann we use only (2.32) and the incompressibility condition
∂nu

eε
n = −

∑n−1
α=1 ∂αu

eε
α .

Ann = −
∫

Ω3r

∂nSεnnϕn dx ≥
∫

Ω3r

∂nSεnn
n−1∑
α=1

∂α∂nu
eε
α ξ

2 dx−
4∑
i=1

Mi

=

∫
Ω3r

∂nSεnn∂2
nu

eε
n ξ

2 dx−
4∑
i=1

Mi = Bnnn −
4∑
i=1

Mi.
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n∑
k=1

∫
Ω3r

f ekϕk dx ≤
∫

Ω3r

|∇f e||Θα| dx

≤ C
(∫

Ω3r

(Φε)∗(|∇f e|) dx+

∫
Ω3r

Φε(|Dueε|) dx
)
.

(2.33)

Collecting all estimates and using the first apriori estimate (2.27) in (2.33) we
obtain ∫

Ωr

µε(|Dueε|)|∂nDueε|2 dx ≤
n∑

k,l=1

∫
Ω3r

∂nSεkl∂n∂lueεk ξ2 dx =
n∑

k,l=1

Bnkl

≤ C
(∫

Ω3r

(Φε)∗(|f e|) dx+

∫
Ω3r

(Φε)∗(|∇f e|) dx
)

+
4∑
i=1

Mi,

which concludes the proof.

Now we formulate lemma about boundedness of the term containing ”tangen-
tial parts” of the second gradient.

Lemma 2.3.6 Let Ω ⊂ Rn, Ω ∈ C3 be a bounded non-axisymmetric domain. Let
ueε be the weak solution of the regularized problem (2.22), (2.23) and (2.24). Then
there exist positive constants C and c̃i, i = 1, . . . , 5, independent of ueε, such that
for all α ∈ {1, . . . , n− 1} holds∫

Ωr

µε(|Dueε|)|∂αDueε|2 dx ≤ C
(∫

Ω3r

(Φε)∗(|f e|) dx

+

∫
Ω3r

(Φε)∗(|∇f e|) dx
)

+
5∑
i=1

Mi,

(2.34)

where Mi with c̃i, i = 1, . . . , 4 are defined in Lemma 2.3.2 and the term M5 with
absolute constant c̃5 and small δ > 0 is defined as

M5 = c̃5δ

∫
Ω

µε(|Dueε|)|∇2ueε|2 dx.

Remark 2.3.7 In contrary to Lemma 2.3.2, in the estimate (2.34) there appeared
the term M5. It can be described as ”small term of the same order as the left
hand side of (2.34)”. M5 comes from the usage of Bogovskĭı’s Lemma A.3.3,
therefore it has bigger support than M4. Hence, we work on the whole Ω instead
of Ω3r. Smallness of M5 is provided by Young’s inequality with δ > 0, not by the
presence of a0.

Proof. Let’s take ϕ ∈ C∞(Ω) such that suppϕ ⊂ Ω3r, divϕ = 0 and ϕ · ν = 0 at
∂Ω. We test (2.22) by −∂ταϕ and obtain∫

Ω3r

divSε(Dueε) · ∂ταϕ dx−
∫

Ω3r

∇πeε∂ταϕ dx = −
∫

Ω3r

f e∂ταϕ dx. (2.35)
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In order to let the boundary term vanish while integrating by parts in the first
term of (2.35), we add and subtract∫

Ω3r

divSε(Dueε) ·
(
ϕ · ∂ταν

ν

|ν|2
)

dx

in the equation (2.35). We get∫
Ω3r

divSε(Dueε) ·
(
∂ταϕ+ ϕ · ∂ταν

ν

|ν|2
)

dx = −
∫

Ω3r

Sε(Dueε) : ∇∂ταϕ dx

−
∫

Ω3r

Sε(Dueε) : ∇
(
ϕ · ∂ταν

ν

|ν|2
)

dx+

∫
∂Ω3r

Sε(Dueε) : (ψ ⊗ ν) dσ,

(2.36)

where ψ := ∂ταϕ + ϕ · ∂ταν ν
|ν|2 . We observe that ψ · ν = 0 on ∂Ω, because

ψ · ν = ∂ταϕ · ν + ϕ · ∂ταν = ∂τα(ϕ · ν) = 0 on ∂Ω. On ∂Ω3r \ ∂Ω it is clear.
Therefore due to the condition (Sεν) · τα = 0 at ∂Ω we realize that the boundary
integral in (2.36) is equal to zero.

Now we would like to integrate by parts in tangent direction in the first term
on the right hand side of (2.36). The tangent derivative doesn’t commute with
the gradient, but it holds that

∇∂ταϕ = ∂τα∇ϕ+∇∂αa⊗ ∂nϕ. (2.37)

With the help of this identity and Remark A.1.1 we obtain

−
∫

Ω3r

Sε(Dueε) : ∇∂ταϕ dx =

∫
Ω3r

∂ταSε(Dueε) : ∇ϕ dx

−
∫

Ω3r

Sε(Dueε) : ∇∂αa⊗ ∂nϕ dx.

(2.38)

We modify the term in (2.35) which contains the pressure. If πeε ∈ W 2,2(Ω),
we can integrate by parts in tangent direction, use the similar identity as (2.37),
integrate by parts in spatial direction, use the divergence-free constraint and the
equation (2.22) to replace ∂nπ

eε by fn + [divSε(Dueε)]n:

−
∫

Ω3r

∇πeε∂ταϕ dx =

∫
Ω3r

∂τα∇πeεϕ dx =

∫
Ω3r

∇∂ταπeεϕ dx

−
∫

Ω3r

∇∂αa∂nπeεϕ dx = −
∫

Ω3r

∇∂αa[fn + [divSε(Dueε)]n]ϕ dx.

(2.39)

For πeε ∈ W 1,2(Ω) the statement follows from density of W 2,2(Ω) in W 1,2(Ω).
Using modifications (2.36), (2.38) and (2.39) in (2.35) we obtain
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∫
Ω3r

∂ταSε(Dueε) : Dϕ dx =

∫
Ω3r

∂ταf
e · ϕ dx

+

∫
Ω3r

Sε(Dueε) :
[
∇∂αa⊗ ∂nϕ+∇

(
ϕ · ∂ταν

ν

|ν|2
)]

dx

+

∫
Ω3r

divSε(Dueε) · (ϕ · ∂ταν)
ν

|ν|2
dx+

∫
Ω3r

∇∂αa[fn + (divSε(Dueε))n]ϕ dx.

(2.40)

The identity (2.40) remains valid for ϕ ∈ W 1,2
σ (Ω)n, suppϕ ⊂ Ω3r. As a test

function ϕ we take

ϕ = ∂ταu
eεξ2 + (ueε · ∂ταν)

ν

|ν|2
ξ2 + z = ϕa + ϕb + z, (2.41)

where z is the solution to

div z = div(−ϕa − ϕb) in Ω3r, (2.42)

z = 0 on ∂Ω3r. (2.43)

The role of z is to ensure that divϕ = 0. One easily checks that ϕ · ν = 0 on ∂Ω:

ϕ · ν = (ϕa + ϕb) · ν = (∂ταu
eε) · νξ2 + (ueε · ∂ταν)ξ2 = ∂τα(ueε · ν)ξ2 = 0.

Therefore the compatibility condition holds

0 =

∫
∂Ω

z · ν dσ =

∫
Ω

div z dx =

∫
Ω

div(−ϕa − ϕb) dx = −
∫
∂Ω

(ϕa + ϕb) · ν dσ = 0

and z solving (5.31) and (5.32) exists by Bogovskĭı’s Lemma A.3.3 and has the
following properties:∫

Ω

Φ(|z|) dx+

∫
Ω

Φ(|∇z|) dx ≤ C

∫
Ω

Φ(|Dueε|) dx, (2.44)∫
Ω

Φ(|∇2z|) dx ≤ C
(∫

Ω

Φ(|Dueε|) dx+

∫
Ω

Φ(|∇2ueε|+ |∇ueε|+ |ueε|) dx
)

≤ C
(∫

Ω

Φ(|Dueε|) dx+

∫
Ω

Φ(|∇2ueε|) dx
)

(2.45)

for arbitrary N-function Φ. To derive these properties we used div ueε = 0, Korn’s
inequality (A.20), ∆2−condition and convexity of N-function Φ. Inserting (2.41)
into (2.40) and using Young’s inequality we obtain∫

Ω3r

µε(|Dueε|)|∂αDueε|2ξ2 dx+ J1 ≤ C
(∫

Ω3r

(Φε)∗(|f e|) dx

+

∫
Ω3r

(Φε)∗(|∇f e|) dx+ J2 + J3

)
+

4∑
i=1

Mi,
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where

J1 =

∫
Ω3r

∂ταSε(Dueε) : Dz dx, J2 =

∫
Ω3r

Φε(|z|) dx,

J3 =

∫
Ω3r

|Sε(Dueε)|(|∇z|+ |z|) dx.

The terms of the form
∫

Ω3r
divSε(Dueε).c(∂αa, ∂α∂βa)z dx can be estimated

as J3 after integration by parts and using facts that Ω ∈ C3 and z = 0 at ∂Ω.
It remains to estimate terms containing Bogovskĭı’s correction z. The term J2 is
estimated directly by (2.44). The term J3 is handled by Young’s inequality and
(2.44):

J3 ≤
∫

Ω3r

(Φε)′(|Dueε|)(|z|+ |∇z|) dx ≤ C
(∫

Ω3r

Φε(|Dueε|) dx

+

∫
Ω3r

Φε(|z|) dx+

∫
Ω3r

Φε(|∇z|) dx
)
≤Map,

whereMap is the constant from the first apriori estimate, see (2.27). To estimate
J1 the assumption on almost monotonicity of Φ′′ is needed. For almost increasing
(Φε)′′ we move J1 to the right hand side and apply Young’s inequality:

|J1| ≤ δ

∫
Ω3r

(Φε)′′(|Dueε|)|∇2ueε|2 dx

+ c(δ)

∫
Ω3r

(Φε)′′(|Dueε|)|∇z|2 dx ≤M5 + J1.1.

In the term J1.1 we use the fact that (Φε)′′ is almost increasing, the definition of
shifted N-function (A.11),∫

Ω3r

|V ε(Dueε)− V ε(〈Dueε〉)|2 dx ≤ C

∫
Ω3r

|V ε(Dueε)− 〈V ε(Dueε)〉|2 dx,

see [23, Lemma 2.8], shift change (A.12) and (2.44).

J1.1 ≤ C

∫
Ω3r

(Φε)′′(|Dueε|+ |∇z|)|∇z|2 dx ≤ C

∫
Ω3r

Φε
|Dueε|(|∇z|) dx

≤ C

∫
Ω3r

Φε
|〈Dueε〉|(|∇z|) dx+ C

∫
Ω3r

|V ε(Dueε)− V ε(〈Dueε〉)|2 dx ≤Map.

If (Φε)′′ is almost decreasing we integrate in J1 by parts using Lemma A.1.1
and get:

−J1 =

∫
Ω3r

Sε(Dueε) : ∂ταDz dx.

Using Young’s inequality with Φε
|Dueε| and the fact that

(Φε
|Dueε|)

∗((Φε)′(|Dueε|)) ≤ CΦε(|Dueε|)
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we obtain

J1 ≤ C

∫
Ω3r

(Φε)′(|Dueε|)|∇2z| dx ≤ C

∫
Ω3r

(Φε
|Dueε|)

∗((Φε)′(|Dueε|)) dx

+C

∫
Ω3r

Φε
|Dueε|(|∇2z|) dx ≤Map + C

∫
Ω3r

Φε
|Dueε|(|∇2z|) dx =Map + J1.2.

In the term J1.2 we apply shift change (A.12), (2.45), again shift change (A.12)
and finally monotonicity of (Φε)′′.

J1.2 ≤ δ

∫
Ω3r

Φε
|〈Dueε〉|(|∇2z|) dx+ c(δ)

∫
Ω3r

|V ε(Dueε)|2 dx

≤ δ

∫
Ω3r

Φε
|〈Dueε〉|(|∇2u|) dx+Map ≤ δ

∫
Ω3r

Φε
|Dueε|(|∇2u|) dx+Map

≤ δ

∫
Ω3r

(Φε)′′(|Dueε|+ |∇2ueε|)|∇2ueε|2 dx+Map

≤ δ

∫
Ω3r

(Φε)′′(|Dueε|)|∇2ueε|2 dx+Map =M5 +Map.

The following lemma combines results from Lemma 2.3.2 and Lemma 2.3.6,
estimates terms Mi, i = 1, 2, 3, by Map and finally subsumes Mi, i = 4, 5, to
the left hand side.

Lemma 2.3.8 Let Ω ⊂ Rn, Ω ∈ C3 be a bounded non-axisymmetric domain.
Let ueε be the weak solution of the regularized problem (2.22), (2.23) and (2.24).
Then there exists a positive constant C independent of ueε such that∫

Ω

µε(|Dueε|)|∇2ueε|2 dx ≤ C
(∫

Ω

(Φε)∗(|f e|) dx+

∫
Ω

(Φε)∗(|∇f e|) dx
)
. (2.46)

Proof. We put together (2.28) and (2.34) and show that Mi, i = 1, . . . , 3 are
estimated by Map and M4. Let us start with M1:

M1 ≤ δ

∫
Ω3r

µε(|Dueε|)|∇2ueε|2 dx+ c(δ)

∫
Ω3r

Φε(|Dueε|) dx ≤M4 +Map,

where we used only Young’s inequality with δ = a0. InM2 we integrate by parts

M2 ≤ C

∫
Ω3r

|Sε|(|∇ueε|+ |ueε|) dx+ C

∫
∂Ω3r

|Sε||ueε| dσ =M2.1 +M2.2.

To estimate M2.1 we use Young’s inequality (A.8), relation (A.10) and Korn’s
inequality (A.20).

M2.1 ≤ C

∫
Ω3r

Φε(|Dueε|) dx+C

∫
Ω3r

Φε(|∇ueε|) dx+C

∫
Ω3r

Φε(|ueε|) dx ≤Map.
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The boundary term M2.2 can be rewritten with the help of Young’s inequality
(A.8)

M2.2 ≤ C

∫
∂Ω3r

(Φε)′(|Dueε|)|ueε| dσ ≤ C(δ)

∫
∂Ω3r

Φε(|ueε|) dσ

+δ

∫
∂Ω3r

Φε(|Dueε|) dσ =M2.3 +M2.4.

To estimate M2.3 we show that Φε(|ueε|) ∈ W 1,1(Ω) and therefore Φε(|ueε|) be-
longs to the space L1(∂Ω) by the trace theorem:

M2.3 = C

∫
∂Ω3r

Φε(|ueε|) dσ ≤ C

∫
Ω3r

|∇Φε(|ueε|)| dx+ C

∫
Ω3r

Φε(|ueε|) dx

≤ C

∫
Ω3r

(Φε)′(|ueε|)|∇ueε| dx+ C

∫
Ω3r

Φε(|ueε|) dx

≤ C

∫
Ω3r

Φε(|∇ueε|) dx+ 2C

∫
Ω3r

Φε(|ueε|) dx ≤Map,

where we used Young’s inequality (A.8) and Korn’s inequality (A.20). To estimate
M2.4 we start with Φε(|∇ueε|) ∈ W 1,1(Ω) and use the imbedding W 1,1(Ω) ↪→
L1(∂Ω):

M2.4 = C

∫
∂Ω3r

Φε(|Dueε|) dσ

≤ C

∫
Ω3r

|∇Φε(|Dueε|)| dx+ C

∫
Ω3r

Φε(|Dueε|) dx

≤ C

∫
Ω3r

(Φε)′′(|Dueε|)|Dueε||∇2ueε| dx+ C

∫
Ω3r

Φε(|Dueε|) dx

≤ δ

∫
Ω3r

(Φε)′′(|Dueε|)|∇2ueε|2 dx+Map =M4 +Map.

In the termM3 almost monotonicity of (Φε)′′ has to be used. For almost increas-
ing (Φε)′′ we use Young’s inequality at first:

M3 ≤
∫

Ω3r

(Φε)′′(|Dueε|)|∇2ueε||∇ueε| dx ≤ δ

∫
Ω3r

(Φε)′′(|Dueε|)|∇2ueε|2 dx

+ c(δ)

∫
Ω3r

(Φε)′′(|Dueε|)|∇ueε|2 dx =M4 +M3.1.

For M3.1 we use that (Φε)′′ is almost increasing and Korn’s inequality.

M3.1 ≤ C

∫
Ω3r

(Φε)′′(|∇ueε|)|∇ueε|2 dx ≤ C

∫
Ω3r

Φε(|∇ueε|) dx ≤Map.

In the case when (Φε)′′ is almost decreasing, we integrate by parts in M3.

M3 ≤ C

∫
Ω3r

|Sε||∇2ueε|ξ dx+ C

∫
Ω3r

|Sε||∇ueε| dx+ C

∫
∂Ω3r

|Sε||∇ueε|ξ dσ

=M3.2 +M3.3 +M3.4.
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We treatM3.2 likeM1, the termM3.3 is easily estimated with the help of Young’s
and Korn’s inequalities,M3.4 (after Young’s inequality) can be treated likeM2.4

where we moreover use the fact that for almost decreasing (Φε)′′ we can replace
(Φε)′′(|∇ueε|) by (Φε)′′(|D(ueε)|).

We put together (2.28) and (2.34), use estimates of Mi, i = 1, 2, 3 and sum
over all points P . We recall that P are divided into k groups and in each group
the sets ΩP

3r are mutually disjoint. We have∫
Ω

µε(|Dueε|)|∇2ueε|2 dx ≤ k(c̃4a0 + c̃5δ)

∫
Ω

µε(|Dueε|)|∇2ueε|2 dx

+ C
(∫

Ω

(Φε)∗(|f e|) dx+

∫
Ω

(Φε)∗(|∇f e|) dx
)
,

(2.47)

If we choose a0 and δ small enough, we can absorb the first integral on the right
hand side of (2.47) into the left hand side.

Remark 2.3.9 In two dimensions we can avoid the assumption on almost mono-
tonicity of Φ′′. Instead of Lemma 2.3.6 we would test (2.22) by

ϕ = (−∂2[∂τ (u
eε · ν)ξ2], ∂1[∂τ (u

eε · ν)ξ2]),

which is sufficient only in R2 to obtain all information in tangent direction. In
M3 we would use the fact, that in boundary integral M3.4 (which comes after
integration by parts) we are able to replace full gradient by the symmetric one.
This works only in R2.

This technique concerning estimates in Orlicz setting was used first in [22],
where one of the main features is that it handles the case of p-Laplacean for
1 < p <∞ in a unified way. It would be nice to avoid the assumption on almost
monotonicity of Φ′′ in the case where we work with symmetric gradients of velocity
in n dimensions.

2.4 Limit passage

At first we fix e > 0. To pass with ε → 0 in equations (2.22), (2.23) and
(2.24) it is enough to have almost everywhere convergence of symmetric gradients,
Lemma 2.4.1, and uniform integrability, Lemma 2.4.2.

Lemma 2.4.1 Let −1 < β < 0 < α, c > 0. We define m(s) = csα for s ∈ (0, 1),
m(s) = csβ for s ≥ 1. Let there exits C > 0 such that the sequence {Ak}∞k=1,
Ak : Ω 7→ Rn×n fulfills∫

Ω

m2(|Ak|)(|Ak|2 + |∇Ak|2) dx ≤ C. (2.48)

Then there exists a subsequence {Akl}∞l=1 and A : Ω 7→ Rn×n such that Akl → A
a.e. in Ω as l→∞.
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Proof. Let Ψ̃ be an N-function such that m(|B|) = Ψ̃′′(|B|) for all B ∈ Rn×n. We
define

Mij(B) := ∂ijΨ̃(|B|) = Ψ̃′(|B|)Bij

|B|
forB 6= 0, Mij(B) = 0 forB = 0.

M is Lipschitz mapping and also homeomorphism of Rn×n onto Rn×n. From

∇AkM(Ak) = m(|Ak|)
Ak
|Ak|

⊗ Ak
|Ak|

+ Ψ̃′(|Ak|)
( Id

|Ak|
− Ak ⊗ Ak
|Ak|3

)
we easily see that

|∇AkM(Ak)| ≤ C
(
m(|Ak|) +

Ψ̃′(|Ak|)
|Ak|

)
.

Since Ψ̃′(s)
s
≤ Cm(s) for all s > 0, by simple computation we have

|∇M(Ak)| ≤ Cm(|Ak|)|∇Ak|,
|M(Ak)| ≤ Cm(|Ak|)|Ak|.

The assumption (2.48) gives M(Ak) ∈ W 1,2(Ω)n×n uniformly in k, so there exists
a subsequence kl such that

M(Akl) ⇀M∗ inW 1,2(Ω)n×n,

M(Akl)→M∗ inL2(Ω)n×n,

Akl →M−1(M∗) a.e. in Ω.

Putting M−1(M∗) =: A we complete the proof.

Now we use Lemma 2.4.1, where instead of the general Ak we have Dueε.
From Lemma A.2.3 we know that there exists α > 1, c > 0 such that for all
s ∈ (0, 1) holds µ(s) ≥ cs2α and there exists β ∈ (−1

2
, 0), c′ > 0 such that for

all s > 1 holds µ(s) ≥ c′s2β. It can be easily seen that function µε also fulfills
these conditions. So there exists function m(s) defined in Lemma 2.4.1 satisfying
m2(s) < µε(s) for all s ∈ (0,∞) and for all ε ∈ (0, 1).

The first apriori estimate (2.27) and Lemma 2.3.8 give∫
Ω

m(|Dueε|)
(
|Dueε|2 + |∇Dueε|2

)
dx ≤ C,

therefore Lemma 2.4.1 provides existence of A : Ω→ Rn×n such that

Dueε → A a.e. in Ω.

Moreover, if we use the definition of the N-function Ψ̃, using also Korn’s inequality
from the first apriori estimate (2.27) we have∫

Ω

Ψ̃(|ueε|) +

∫
Ω

Ψ̃(|∇ueε|) dx ≤ C.
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Thus, there exists ue ∈ W 1,Ψ̃(Ω), such that (up to a subsequence)

∇ueε ⇀ ∇ue in LΨ̃(Ω)n×n,

ueε ⇀ ue in LΨ̃(Ω)n.

Clearly A = Due and Dueε → Due a.e.
The following lemma gives the uniform integrability.

Lemma 2.4.2 Let
∫

Ω
Φε(|Dueε|) dx ≤ C. Then there exists δ > 0 such that for

all σ ∈ (0, 1) and for all E ⊂ Ω such that |E| < δ holds∫
E

(Φε)′(|Dueε|) dx < σ.

Proof. Let us denote φ(s) :=
∫ s

0
max(µ(t), 1)t dt. Then for all s > 0, ε ∈ (0, 1)

holds φ(s) ≥ Φε(s). Therefore

1

(Φε)−1(s)
≤ 1

φ−1(s)
.

We note that ‖χΩ‖Φε = 1
(Φε)−1(|Ω|−1)

by (A.9). Therefore

‖χΩ‖Φε ≤
1

(φ)−1(|Ω|−1)

and φ−1 is increasing function such that φ−1(s)→∞ as s→∞. Using Hölder’s
inequality (A.9) we obtain∫

E

(Φε)′(|Dueε|) dx ≤ 2‖χE‖Φε‖(Φε)′(|Dueε|)‖(Φε)∗

≤ C

φ−1(|E|−1)

∫
Ω

(Φε)∗((Φε)′(|Dueε|)) dx ≤ C̃

φ−1(|E|−1)

∫
Ω

Φε(|Dueε|) dx.

(2.49)

The right hand side of (2.49) tends to zero as |E| → 0. The constant C̃ depends
on ∆2({Φε, (Φε)∗}), but as we saw before, ∆2({Φε, (Φε)∗}) doesn’t depend on
ε.

Lemmata 2.4.1 and 2.4.2 allow us to pass to the limit ε → 0 in the weak
formulation of (2.22), (2.23) and (2.24). It remains to let ε→ 0 in (2.46). Since
{V ε(Dueε)}ε is bounded in W 1,2(Ω)n×n, it follows that up to a subsequence

V ε(Dueε) ⇀ χ in W 1,2(Ω)n×n,

V ε(Dueε)→ χ in L2(Ω)n×n.

To identify χ with V (Due) we show V ε(Dueε) → V (Due) a.e. in Ω. For that
we need (besides almost everywhere convergence of symmetric gradients) locally
uniform convergence of V ε, which is provided by the following lemma.
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Lemma 2.4.3 Let K ⊂⊂ Rn×n, then V ε ⇒ V on K as ε→ 0+.

Proof. We recall that ψε(|A|) is a potential to V ε(A), i.e. V ε(A) = (Ψε)′(|A|) A
|A|

and (Ψε)′(|A|) =
√
|A|(Φε)′(|A|) =

√
|A|2µε(|A|). Therefore, V ε(A) =

√
µε(|A|)A

and |V (A)− V ε(A)| = |
√
µ(|A|)−

√
µε(|A|)||A|.

We know that Φ′(s) = µ(s)s and since Φ′(s) is bounded on (0, 1] we get that
there exists C > 0 such that for all s ∈ (0, 1) and ε ∈ (0, 1) holds µε(s) ≤
max(µ(s), 1) ≤ C

s
. It follows that for any δ > 0 we find σ > 0 such that for all

ε ∈ (0, 1) holds |V (A)−V ε(A)| < δ on Bσ(0). Since K \Bσ(0) is compact, µ(|A|)
attains there its maximum and minimum. Consequently, there is ε0 such that for
ε ∈ (0, ε0) : V ε = V on K \Bσ(0).

Using Lemma 2.4.3 we get χ = V (Due) and we can pass on the left hand side
of (2.46) as ε→ 0 by weak lower semicontinuity of norms in W 1,2(Ω)n×n.

Passing to the limit as e→ 0 in equations (2.22), (2.23), (2.24) and in (2.46)
is easy, because the right hand side f was approximated in order to have f e → f
in W 1,Φ∗(Ω)n.

To conclude the proof of Theorem 2.1.2 it remains to reconstruct the pressure
and show the inequality (2.1). Using De Rham’s theorem A.5.2 we know that
there exist pressure π such that

∇π = divS + div g

holds in the sense of distributions. We add the assumption
∫

Ω
π dx = 0. Since

g ∈ L(Φ∗)q and [Φ∗(|S(Du)|)]q ≤ C[Φ∗(Φ′(|Du|))]q ≤ C(Φ(|Du|))q, we obtain

(2.1) by application of Nečas’ Theorem (A.5.1) and imbeddingW 1,2(Ω) ↪→ L
2n
n−2 (Ω).
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3
Integrability of weak solutions to equations of

steady flows

3.1 Main theorem

In this chapter we show Lq theory for the system (1.23)–(1.25):

− divS(Du) +∇π = f in Ω,

div u = 0 in Ω,

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω,

where f = divF . Since some results don’t demand the assumption on almost
monotonicity of the function Φ′′ we exclude it from Assumption 1.4.3:

Assumption 3.1.1 Suppose that Φ ∈ C1,1(0,∞) ∩ C1[0,∞) is an N-function,
Φ ∈ ∆2, Φ∗ ∈ ∆2 and Φ′(s) ∼ sΦ′′(s) holds for all s > 0.

We will use the space 1

ϕ ∈ W 1,Φ
ν (Ω)n := {ϕi ∈ W 1,Φ, i = 1, . . . , n; ϕ · ν = 0 on ∂Ω}.

Unlike Definition 2.1.1 we consider the pressure in the definition of the weak
solution:

Definition 3.1.2 We say that the pair (u, π) ∈ W 1,Φ
σ (Ω)n × LΦ∗(Ω) is a weak

solution to (1.23)–(1.25) if∫
Ω

S(Du) :Dϕ dx−
∫

Ω

π divϕ dx =

∫
Ω

F :∇ϕ dx

holds for all ϕ ∈ W 1,Φ
ν (Ω)n.

Before formulating the main result we would like to mention some previous
results which motivated us to our work. In [46] T. Iwaniec showed Lq theory result
for linear problem based on local comparison with the solution to the problem
with the zero right hand side. One year later in [47] he extended this result

1As we use the notation W 1,Φ
σ (Ω)n for vector-valued functions with components in the func-

tion space W 1,Φ
σ (Ω), we use analogically the notation W 1,Φ

σ (Ω)n×n for tensor-valued functions.

41
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also for p−Laplace equations. Among lots of papers based on the comparison
technique we mention especially [18]. The approach of L. Caffarelli and A. Peral
presented in [18] will be used to prove our main result. In connection with
Orlicz spaces we refer to [88], for results concerning the problem with growth
described with variable exponent c.f. [42]. Calderón-Zygmund estimates based
on the technique introduced by L. Caffarelli and I. Peral in [17] and [18] can be
also found in Section 7 of [56] and in [57] where J. Kristensen and G. Mingione
provided Lq estimates up to the boundary for Dirichlet problems involving general
nonlinear elliptic systems. For local Calderón-Zygmund estimates for parabolic
p-Laplacean systems we refer to [2]. To our knowledge the first result about Lq

regularity for Stokes type system with growth described by N -function was given
in [23]. L. Diening and P. Kaplický showed interior Lq regularity of generalized
Stokes system in R3 under Assumption 1.4.3. The key part of the proof was
Theorem 3.2, where for the problem with zero right hand side gradient of function
V (Du) is controlled by oscillations of V (Du). Unlike the previous chapter, a
different approach is used here. Instead of working on a general boundary from
the beginning, we use flattening the boundary and reflection the solution beyond
the boundary in a suitable way.

The main result of this paper concerns with higher integrability of the first
gradient of solutions to (1.23) – (1.25). By Br(x0) we denote a ball in Rn with a
center x0 and a diameter r, we also use an abbreviation Ωr = Ω ∩Br(x0).

Theorem 3.1.3 (Main Result) Let Ω ⊂ Rn be a C2,1 domain and Assump-
tion 3.1.1 be fulfilled. Then there exist λ > 1 depending only on the dimension
and r > 0 such that for a weak solution u to (1.23)–(1.25) and for every x0 ∈ ∂Ω
it holds (

Φ∗(|F |) ∈ Lq(Ωλr)
)
⇒
(
Φ(|Du|) ∈ Lq(Ωr)

)
,

provided q ∈ (1,∞) for n = 2 and q ∈
(
1, n

n−2

)
, resp. q ∈

(
1, n

n−2
+ δ
)

for n > 2
and some δ > 0 in case Φ′′ is almost monotone.2

Moreover,

−
∫

Ωr

Φ(|Du|)q dx ≤ c

(
−
∫

Ωλr

Φ∗(|F |)q dx+−
∫

Ωλr

Φ (|u|)q dx

)
+ c

(
−
∫

Ωλr

Φ(|Du|) dx

)q
, (3.1)

where c is independent of u, F, λ, r and x.

Theorem 3.1.3 provides a local regularity of solution near boundary. However,
the interior regularity of solution was proven in [23] and thus one may easily derive
global regularity of solution as well as global estimates in case Ω is a bounded
domain.

The method of the proof is basically the same as in [23] and it is based on
the approach published in [18]. The validity of two hypothesis (H1’) and (H2)

2For the definition of almost monotonicity see Assumption 1.4.3.
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from [18] has to be shown. We formulated these hypothesis for our problem in
assumptions of Lemma A.5.4.

At first we study homogeneous system near the flat boundary and verify the
hypothesis (H1’). Instead of working on the general smooth boundary like in
Chapter 1, we use the special structure of perfect slip boundary conditions in
order to extend the solution in a suitable way beyond the flat boundary. Finally,
we flatten the general C2,1 boundary and we complete the proof of the main
theorem by showing the validity of hypothesis (H2).

3.2 Approximative system on a flat boundary

In this section we put some ideas in the case when the boundary ∂Ω is flat. By
Q we denote a cube in Rn with center x0, sides parallel to the axis and one side
equal to 2R, i.e.

Q = Q(x0, R) =

{
x ∈ Rn; sup

i
|xi − (x0)i| < R

}
.

For s > 0 the abbreviation sQ stands for a cube with the same center as Q and
side 2sR, i.e. sQ = Q(x0, sR). By |Q| we mean the volume of Q. For f ∈ L1(Q)
we define

〈f〉Q = −
∫
Q

f(x) dx :=
1

|Q|

∫
Q

f(x) dx.

Let Ω = Rn
+ := Rn−1 × R+ and x0 ∈ Ω. We denote (5

3
Q)+ = 5

3
Q ∩ Rn

+ and
Γ( 5

3
Q)+ = ∂(5

3
Q)+ ∩ {x;xn = 0}. By ei we denote the unit vector in the direction

xi, i = 1, . . . , n. Since the boundary is flat, τα = eα for α = 1, . . . , n − 1 and
ν = −en, ∂ν = ∂n and ∂τα = ∂α for α = 1, . . . , n − 1. By x′ we denote the first
n− 1 components of x, i.e. x = (x′, xn).

Fix Q and consider the homogeneous system

− divS(Dv) +∇p = 0 in

(
5

3
Q

)+

,

div v = 0 in

(
5

3
Q

)+

,

v · ν = 0, [S(Dv)ν] · τ = 0 on Γ( 5
3
Q)+ .

(3.2)

Definition 3.2.1 The function v is said to be a local weak solution to (3.2), if
v ∈ W 1,Φ((5

3
Q)+)n and the weak formulation∫

( 5
3
Q)+
S(Dv) : Dϕ dx = 0

holds for all ϕ ∈ W 1,Φ((5
3
Q)+)n with divϕ = 0 in (5

3
Q)+, ϕ · ν = 0 on Γ( 5

3
Q)+,

suppϕ ⊂⊂ (5
3
Q).
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The aim of this section is to prove the following theorem.

Theorem 3.2.2 Let v ∈ W 1,Φ((5
3
Q)+)n be a local weak solution to (3.2). Then

there exists a constant C independent of v and R such that(
−
∫

( 4
3
Q)+
|V (Dv)|q dx

) 1
q

≤ C

(
−
∫

( 5
3
Q)+
|V (Dv)|2 dx

) 1
2

, (3.3)

for q ∈
[
2, 2n

n−2

]
provided n > 2 and q ∈ [2,∞) for n = 2. In case Φ′′ is almost

monotone, n > 2, we can even allow q = rn
n−r for some r > 2.

Proof. At first we extend the solution from (5
3
Q)+ to 5

3
Q. For α = 1, . . . , n − 1

define ṽ as follows

ṽα(x′, xn) =

{
vα(x′, xn) for xn > 0,
vα(x′,−xn) for xn < 0,

(3.4)

ṽn(x′, xn) =

{
vn(x′, xn) for xn > 0,
−vn(x′,−xn) for xn < 0.

(3.5)

Using (3.4) and (3.5) we compute components of the symmetric gradient of ṽ for
xn > 0

Dααṽ(x′,−xn) = Dααṽ(x′, xn),

Dαn(x′,−xn) = −Dαnṽ(x′, xn),

Dnnṽ(x′,−xn) = Dnnṽ(x′, xn).

(3.6)

Note that for v ∈ W 1,Φ
σ ((5

3
Q)+)n the extended solution ṽ belongs toW 1,Φ

σ (5
3
Q)n

since ṽ is absolutely continuous on lines a.e. and the derivative of ṽ is in
LΦ(5

3
Q)n×n pointwisely. For a test function ϕ ∈ W 1,Φ

σ (5
3
Q)n we define ϕ+ by

components

ϕ+
α =

1

2

(
ϕα(x′, xn) + ϕα(x′,−xn)

)
, α = 1, . . . , n− 1,

ϕ+
n =

1

2

(
ϕn(x′, xn)− ϕn(x′,−xn)

)
,

and similarly

ϕ−α =
1

2

(
ϕα(x′, xn)− ϕα(x′,−xn)

)
, α = 1, . . . , n− 1,

ϕ−n =
1

2

(
ϕn(x′, xn) + ϕn(x′,−xn)

)
,

One can easily check that divϕ+ = divϕ− = 0 holds in 5
3
Q. Thus,∫

5
3
Q

S(Dṽ) : Dϕ dx =

∫
5
3
Q

S(Dṽ) : Dϕ+ dx

+

∫
5
3
Q

S(Dṽ) : Dϕ− dx = I1 + I2 = 0 ∀ϕ ∈ W 1,Φ
σ

(5

3
Q
)n
, (3.7)
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where I1 is equal to zero due to the equation (3.2) and I2 is equal to zero because
of the symmetry of ϕ−.

The proof of Theorem 3.2.2 is based on the following lemma which will be
proven later.

Lemma 3.2.3 Let ṽ ∈ W 1,Φ(5
3
Q)n satisfies (3.7). Then there exists a positive

constant C depending only on ∆2({Φ,Φ∗}) and constants in (1.28) such that

−
∫

4
3
Q

|∇V (Dṽ)|2 dx ≤ C

R2

(
−
∫

5
3
Q

|V (Dṽ)|2 dx
)
. (3.8)

Moreover, if Φ′′ is almost monotone, the estimate (3.8) can be improved to

−
∫

4
3
Q

|∇V (Dṽ)|2 dx ≤ C

R2

(
−
∫

5
3
Q

|V (Dṽ)− 〈V (Dṽ)〉 5
3
Q|2 dx

)
. (3.9)

Application of Sobolev-Poincaré inequality (A.13) to the left hand side of (3.8)
(after multiplication of R2 and square root) leads to(

−
∫

4
3
Q

|V (Dṽ)− 〈V (Dṽ)〉 4
3
Q|q dx

) 1
q

≤ C

(
−
∫

5
3
Q

|V (Dṽ)|2 dx

) 1
2

(3.10)

for q ∈ [2,∞) in case n = 2 and q ∈
[
2, 2n

n−2

]
in case n > 2. For almost monotone

Φ′′ we can at first apply on (3.9) Sobolev-Poincaré inequality (A.13) and Reverse
Hölder inequality (A.25) to obtain for some r > 2

(
−
∫

4
3
Q

|∇V (Dṽ)|r dx

) 1
r

≤

(
C

R2
−
∫

5
3
Q

|∇V (Dṽ)− 〈∇V (Dṽ)〉 5
3
Q|2 dx

) 1
2

. (3.11)

Consequently, (
−
∫

4
3
Q

|V (Dṽ)|q dx

) 1
q

≤ C

(
−
∫

5
3
Q

|V (Dṽ)|2 dx

) 1
2

(3.12)

where q is the same as mentioned before. To conclude the proof it remains to go
from ṽ to v and from 4

3
Q, resp. 5

3
Q to (4

3
Q)+, resp. (5

3
Q)+. The integral on the

left hand side of inequality (3.12) can be estimated from above by the integral
over the smaller set (4

3
Q)+. The integral on the right hand side of (3.12) can be

split into a integral over (5
3
Q)+ and integral over 5

3
Q \ (5

3
Q)+. Then we can use

a fact that integral over 5
3
Q \ (5

3
Q)+ is proportional to the integral over (5

3
Q)+,

where we moreover use that due to the definition of function V and (3.6) we have
|V (Dv(x′, xn))| = |V (Dṽ(x′, xn))|.

Proof of Lemma 3.2.3. The extension beyond the flat boundary reduces the prob-
lem to the interior regularity which is covered in [23, Theorem 3.2] in case n = 3.
From this reason we would like to show only the generalization from n = 3 to
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higher dimensions. To underline the main idea of the proof we omit the technical
steps concerning the regularization of the solution. We suppose that the solution
is smooth enough to justify all calculations of this proof. At the end we briefly
discuss how one should proceed in case the solution is not regular enough.

The test function in [23, Lemma 3.5] is constructed to take advantage of the
operator curl, which is in R3 defined by curl g = (∂2g3 − ∂3g2, ∂3g1 − ∂1g3, ∂1g2 −
∂2g1). Since we are not aware of any straightforward generalization of the curl
operator to n dimensions, we use the language of exterior differential calculus to
construct the right test function.

At first we state some notation. Although we denoted by {ei, i = 1, . . . , n} the
orthonormal basis in Rn before, we need to distinguish vectors and forms now and
therefore we use {∂i, i = 1, . . . , n} to represent an orthonormal basis for vectors
in Rn, whereas {dxi, i = 1, . . . , n} denotes corresponding dual 1-form basis. In
order to follow the standard notation, we use in this section the upper indices for
components of vectors whereas the lower indices indicates components of form
of any order. In the next section we won’t work with such forms, therefore all
indices will be the lower ones.

We will use so called musical isomorphisms ] and [, where ] raise the indices
of a 1-form β to give the vector β] whereas [ lowers the indices of a vector z to
produces a 1-form z[, i.e.

β =
n∑
i=1

βidx
i, β] =

n∑
i=1

βi∂i, z =
n∑
i=1

zi∂i, z[ =
n∑
i=1

zidx
i.

By d we mean the exterior derivative and the symbol ∧ denotes the wedge prod-
uct. Let us denote

d̂xi := dx1 · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxn,
̂dxi ∧ dxj := dx1 · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxj−1 ∧ dxj+1 · · · ∧ dxn.

The Hodge map ? is linear isomorphism between the vector spaces of differential
k− and (n− k)− forms. In Riemannian metric it holds

?(dxi1 ∧ · · · ∧ dxik) = dxik+1 ∧ · · · ∧ dxin ,

where (i1, . . . , in) is any even permutation of (1, 2, . . . , n). Let ξ ∈ C∞0 (5
3
Q) be

a cut-off function with χ 4
3
Q ≤ ξ ≤ χ 5

3
Q and ‖∇jξ‖∞ ≤ C/Rj for j = 1, 2. Let

q : Rn → Rn be a linear function with ∇q = 〈∇ṽ〉 5
3
Q. We test (3.7) by

ϕ =
(
? d[ξ2 ? d(ṽ − q)[]

)]
. (3.13)

Note that the test function is well defined. [ converts the vector field (ṽ− q) into
a 1-form (ṽ − q)[. d computes something like a curl but expressed as a 2-form
d(ṽ− q)[. ? turns this 2-form into a (n− 2)-form. After multiplication by ξ2 and
application of the derivative d we obtain (n − 1)−form and Hodge star ? create
1−form, which is by ] converted to the vector.
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Moreover, one can easily see that divϕ = 0, since divϕ = ?d?ϕ[ and ddγ = 0
for any differential form γ.

Let’s see how (3.13) looks in components. For better lucidity we define z =
ṽ − q. At first we compute derivative of z[ =

∑n
i=1 zidx

i and apply the Hodge
map:

dz[ =
n∑

i,j=1

∂jzidx
j ∧ dxi =

∑
i<j

(∂izj − ∂jzi)dxi ∧ dxj,

ξ2 ? dz[ =
∑
i<j

ξ2(∂izj − ∂jzi)(−1)i+j−3 ̂dxi ∧ dxj,

where we used that dxi ∧ dxj = −dxj ∧ dxi for i 6= j and dxi ∧ dxi = 0. Further,

d(ξ2 ? dz[) =
∑
i<j

[ξ2(∂2
i zj − ∂i∂jzi) + 2ξ∂iξ(∂izj − ∂jzi)](−1)i+j−3dxi ∧ ̂dxi ∧ dxj

+
∑
i<j

[ξ2(∂j∂izj − ∂2
j zi) + 2ξ∂jξ(∂izj − ∂jzi)](−1)i+j−3dxj ∧ ̂dxi ∧ dxj.

(3.14)

We can change the summation indices in the second sum in (3.14), move dxi to
the ith position in the product and finally put these two sums together.

d(ξ2 ? dz[) =
∑
i<j

[ξ2(∂2
i zj − ∂i∂jzi) + 2ξ∂iξ(∂izj − ∂jzi)](−1)i+j−3+i−1d̂xj

+
∑
i>j

[ξ2(−∂2
i zj + ∂i∂jzi) + 2ξ∂iξ(−∂izj + ∂jzi)](−1)i+j−3+i−2d̂xj

=
∑
i 6=j

[ξ2(∂2
i zj − ∂i∂jzi) + 2ξ∂iξ(∂izj − ∂jzi)](−1)j d̂xj.

(3.15)

Thus, applying the Hodge star and going back from forms to vectors

[?d(ξ2 ? dz[)]] =
∑
i 6=j

[ξ2(∂2
i z

j − ∂i∂jzi) + 2ξ∂iξ(∂iz
j − ∂jzi)](−1)j+j−1∂j.

As one can easily check, z is divergence-free, therefore
∑

i 6=j ∂i∂jzi = −∂j∂jzj and
we finally obtain

ϕ =
n∑

i,j=1

(
− ξ2∂2

i (ṽ)j + 2ξ∂iξ[−∂i(ṽ − q)j + ∂j(ṽ − q)i]
)
∂j, (3.16)

where we moreover used that q is a linear function, thus ∂2
i q = 0. Inserting (3.16)

into (3.7) we get
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−−
∫

5
3
Q

[S(Dṽ)− S(Dq)] : ∇(ξ2∆ṽ) dx

+−
∫

5
3
Q

[S(Dṽ)− S(Dq)] : ∇
(
2ξ∇ξ(∇ṽ −∇q)− (∇ṽ −∇q)T

)
dx

= J1 + J2 = 0. (3.17)

From this point we proceed almost in the same way as in [23, Proof of Lemma 3.5],
where the authors L. Diening and P. Kaplický due to the regularization estimated
more terms. For the sake of completeness we reproduce the computation also here.

Lets start with proving (3.9). We proceed in a different way when Φ′′ is
almost decreasing or almost increasing. At first let us assume that Φ′′ is almost
decreasing. After some manipulation involving integrating by parts in the first
term we have

J1 = −
∫

5
3
Q

∇S(Dṽ)ξ2∇2ṽ dx−−
∫

5
3
Q

[S(Dṽ)− S(Dq)] div(∇ξ2 ⊗ (∇ṽ −∇q)) dx

+−
∫

5
3
Q

[S(Dṽ)− S(Dq)]∇[(∇ṽ −∇q)∇ξ2] dx

= J1.1 + J1.2 + J1.3. (3.18)

Assumption 3.1.1, symmetry of S, the relation between Ψ′′ and Φ′′ (1.29) and
the definition of the function V (5.38) are used to gain the following information
from J1.1:

J1.1 ≥ C−
∫

5
3
Q

Φ′′(|Dṽ|)ξ|∇Dṽ|2 dx ≥ C−
∫

4
3
Q

|∇V (Dṽ)|2 dx. (3.19)

Notice that J1.2, J1.3 and the term J2 have similar structure and can be estimated
together as follows

|J1.2|+ |J1.3|+ |J2| ≤ C−
∫

5
3
Q

|S(Dṽ)− S(Dq)|
( 1

R2
|∇ṽ −∇q)|+ 1

R
ξ|∇2ṽ|

)
dx

= J3 + J4.

(3.20)

In order to estimate J3 we use Young’s inequality (A.8) together with (A.10),
Korn’s inequality (A.4.5) and Lemma A.2.6.

J3 ≤
C

R2
−
∫

5
3
Q

Φ′|Dq|(|Dṽ −Dq|)|∇ṽ −∇q| dx ≤
C

R2
−
∫

5
3
Q

Φ|Dq|(|Dṽ −Dq|) dx

+
C

R2
−
∫

5
3
Q

Φ|Dq|(|∇ṽ −∇q|) dx ≤ C

R2
−
∫

5
3
Q

|V (Dṽ)− V (Dq)|2 dx.
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In estimates of the last integral J4 the assumption on almost monotonicity of
Φ′′ will be needed. Using Assumption 3.1.1, the classical Young’s inequality and
Lemma A.2.6 we get

J4 ≤
C

R
−
∫

5
3
Q

Φ′′(|Dṽ|+ |Dq|)|Dṽ −Dq|ξ|∇2ṽ| dx

≤ C(δ)

R2
−
∫

5
3
Q

Φ′′(|Dṽ|+ |Dq|)|Dṽ −Dq|2 dx

+ δ−
∫

5
3
Q

Φ′′(|Dṽ|+ |Dq|)|∇2ṽ|2ξ2 dx

≤ C

R2
−
∫

5
3
Q

|V (Dṽ)− V (Dq)|2 dx+ δ−
∫

5
3
Q

Φ′′(|Dṽ|)|∇2ṽ|2ξ2 dx,

where in the last term we used the fact that Φ′′ is almost decreasing. Since δ > 0
can be chosen arbitrarily small, this term can be subsumed into (3.19).

We use that Dq = 〈Dṽ〉 5
3
Q and apply Lemma A.2.7 to obtain

−
∫

5
3
Q

|V (Dṽ)− V (〈Dṽ〉 5
3
Q)|2 dx ≤ −

∫
5
3
Q

|V (Dṽ)− 〈V (Dṽ)〉 5
3
Q|2 dx,

Gathering estimates of J1−J4 leads to the estimate (3.9) provided Φ′′ is almost
decreasing.

In case Φ′′ is almost increasing, it suffices to estimate J1.2, J1.3 and J2 in a
different way, other estimates remains the same. We integrate by parts in J1.2,
J1.3 and J2 and obtain

|J1.2|+ |J1.3|+ |J2| ≤
C

R
−
∫

5
3
Q

|∇S(Dṽ)||∇ṽ −∇q|ξ dx

≤ δ−
∫

5
3
Q

Φ′′(|Dṽ|)|∇2ṽ|2ξ2 dx

+
C(δ)

R2
−
∫

5
3
Q

Φ′′(|Dṽ|)|∇ṽ −∇q|2 dx = J5 + J6,

where we moreover used the classical Young’s inequality in the last step. The
term J5 can be subsumed into (3.19). Since Φ′′ is almost increasing, we can add
|∇ṽ−∇q| to the argument of J6, use the definition of shifted N -functions (A.11)
and apply Lemma A.2.6.

J6 ≤
C(δ)

R2
−
∫

5
3
Q

Φ′′(|Dṽ|+ |∇ṽ −∇q|)|∇ṽ −∇q)|2 dx

≤ C(δ)

R2
−
∫

5
3
Q

Φ|Dṽ|(|∇ṽ −∇q|) dx ≤ C

R2
−
∫

5
3
Q

|V (Dṽ)− V (Dq)|2 dx.

From this point we proceed in the same way like for almost decreasing Φ′′.
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To prove (3.8) it is enough to focus on estimates of J1.2, J1.3 and J2 where the
assumption of almost monotonicity was used. Considering the same test function
and omitting the term S(Dq) in (3.17) we have

|J1.2|+ |J1.3|+ |J2| ≤ C−
∫

5
3
Q

|S(Dṽ)|
( 1

R2
|∇ṽ −∇q)|+ 1

R
ξ|∇2ṽ|

)
dx = J7 + J8.

In J7 we proceed like in J3. The situation is easier since we don’t need to deal
with shifted N-functions.

J7 ≤
C

R2
−
∫

5
3
Q

Φ′(|Dṽ|)|∇ṽ −∇q| dx ≤ C

R2
−
∫

5
3
Q

Φ(|Dṽ|) dx

+
C

R2
−
∫

5
3
Q

Φ(|∇ṽ −∇q|) dx ≤ C

R2
−
∫

5
3
Q

|V (Dṽ)|2 dx.

The term J8 can be handled in a similar way like J4:

J8 ≤
C

R
−
∫

5
3
Q

Φ′′(|Dṽ|)|Dṽ|ξ|∇2ṽ| dx

≤ C(δ)

R2
−
∫

5
3
Q

Φ′′(|Dṽ|)|Dṽ|2 dx+ δ−
∫

5
3
Q

Φ′′(|Dṽ|)|∇2ṽ|2ξ2 dx

≤ C

R2
−
∫

5
3
Q

|V (Dṽ)|2 dx+ δ−
∫

5
3
Q

Φ′′(|Dṽ|)|∇2ṽ|2ξ2 dx,

where the last term can be subsumed to (3.19). Thus, after similar steps as
before, the estimate (3.8) holds.

Now we comment very briefly how to proceed in case we don’t assume the
smoothness of the solution in order to do above mentioned computations. We
could consider the following truncation

(Φε)′′(s) = min

(
max (Φ′′(s), ε) ,

1

ε

)
, ε ∈ (0, 1).

Except this ”quadratic” approximation, which corresponds to the case p = 2 for
power-law models, we should moreover mollify boundary conditions on ∂(5

3
Q)+ \

Γ( 5
3
Q)+ . We would proceed in a similar way as in Chapter 2, including the limit

passage. For the solution ṽε of corresponding approximated problem would show
ṽε ∈ W 2,2((5

3
Q)+) via the difference quotient technique. After uniform estimates

with respect to ε we would show almost everywhere convergence of symmetric
velocity gradients and uniform integrability of (Φε)′ to pass from the approximat-
ed problem to the original one by Vitali’s theorem. To pass with ε → 0 in the
estimates we would moreover show the uniform integrability of V ε, where V ε has
the same relation to Φε as V to Φ.

Another possibility would be the system of approximations considered in [23].
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3.3 Flattening

In order to handle a general C2,1 non-flat boundary, we present its following
description. Throughout this section, we assume that x0 ∈ ∂Ω is fixed. The
boundary can be understood on a neighborhood of the point x0 as a graph of a
function a : Rn−1 7→ Rn, a(0) = x0 such that ∂αa(0) = eα for α = 1, . . . , n − 1.
Using the function a we can describe the normal vector as 3 ν(x′) = ∂1a× . . .×
∂n−1a(x′). We introduce a function Hx0 : Rn 7→ Rn which is defined as

Hx0(x) := a(x′)− ν(x′)xn.

We work with a cube Q = Q(0, R), for which we denoted Q+ = Q∩Rn
+. We also

consider restrictions Hx0,R of the function Hx0 on a rectangle Q+, i.e.:

Hx0,R(x) = Hx0(x)|Q+ .

Since x0 is fixed, we useHR instead ofHx0,R throughout this chapter. It holds that
HR(0) = x0 and ∇HR(0) = I and smoothness of the boundary implies that HR ∈
C1,1 and, consequently, ∇HR(x)−∇HR(0) = Rω where ω is a function bounded
independently of R. Similarly, also ∇H−1

R (x) − ∇H−1
R (0) = Rω. Hereinafter, ω

stands for a matrix valued function, ω′ for a tensor of third order and ω′′ for a
real-valued function which express a perturbation arising from a curvature of the
boundary. These functions may vary from line to line, however they are bounded
independently of R.

The function HR maps Q+ into Ω for all R ∈ (0, R0). Furthermore, we set
y = HR(x) and ΓR = HR(Q+) ∩ ∂Ω.

For a general function f : HR(Q+) 7→ R we state a function f : Q+ 7→ R
defined as f(x) = f(HR(x)) = f(y). It holds that

∇yf = ∇xf∇xH
−1
R = ∇xf +R∇xfω. (3.21)

In case f : HR(Q+) 7→ Rn it also holds

2Dyf =
(
∇xf∇xH

−1
R

)
+
(
∇xf∇xH

−1
R

)T
= 2(Dxf + Zf ), (3.22)

divy f = Tr
(
∇xf∇xH

−1
R

)
= divx f + Tr(∇xf(∇xH

−1
R − I)) (3.23)

= divx f +RTr(∇xfω),

where

Zf =
1

2

(
∇xf(∇xH

−1
R − I) + (∇xH

−1
R − I)T (∇xf)T

)
(3.24)

=
R

2

(
∇xfω + (∇xfω)T

)
. (3.25)

We consider a function πa := π − πc where a constant πc will be determined
later. From the Definition 5.1.1 we have∫

HR(Q+)

S(Du) : Dϕ dy −
∫
HR(Q+)

πa divϕ dy =

∫
HR(Q+)

F :Dϕ dy, (3.26)

3Recall that by x′ we denote the first n − 1 coordinates of x, i.e. x = (x′, xn) =
(x1, . . . , xn−1, xn)
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whenever ϕ ∈ W 1,Φ
ν (Ω)n, ϕ = 0 on ∂HR(Q+) \ ∂Ω. The equation (3.26) can be

transformed using the function HR into the following identity∫
Q+

S(Du+ Zu) : (Dϕ+ Zϕ) det∇HR dx

−
∫
Q+

πa(divϕ+ Tr(∇ϕ(∇H−1
R − I))) det∇HR dx

=

∫
Q+

F : (∇ϕ+∇ϕ(∇H−1
R − I)) det∇HR dx. (3.27)

which holds for all ϕ ∈ W 1,Φ(Q+)n satisfying

ϕ = 0 on ∂Q+ \ ΓQ+ , (3.28)

ϕ · ν = 0 on ΓQ+ , (3.29)

where ΓQ+ = ∂Q+ ∩ {x;xn = 0}. On the flat boundary portion it is natural to
work with the outward normal ν = −en. Using the function HR we can describe
relation between ν and −en as ν = −∇HRen. Thus, (3.29) can be rewritten as

ψ · en = 0 on ΓQ+ ,

where ψ(x) = (∇HR)Tϕ(HRx) = (∇HR)Tϕ. In order to express (3.27) with the
help of the test function ψ instead of ϕ we need to rewrite (3.21)–(3.23) for f = ϕ:

∇yϕ = ((∇xHR)T )−1∇xψ(∇xHR)−1 +∇x((∇xHR)T )−1ψ(∇xHR)−1

= ∇xψ +Rω∇xψ + ω′ψ, (3.30)

Dyϕ = Dxψ + Zψ + ω′ψ, (3.31)

divy ϕ = divx ψ +RTr(ω∇xψ) + Tr(ω′ψ), (3.32)

where we used that second gradient of HR is bounded independently of R. Denote
∇x((∇xHR)T )−1 by ω̃′. Instead of ω̃′ψω we can write ω′ψ for some another
bounded third order tensor ω′.4

Whereas in (3.27) we expressed all terms using function HR, after employment
of (3.30)–(3.32) for a better lucidity we prefer to write all terms of transformed
version of (3.27) with the help of general bounded functions ω, ω′ and ω′′ with
bounds independent of R. We get:∫

Q+

S(Du+ Zu) : (Dψ + Zψ + ω′ψ)(1 +Rω′′) dx

−
∫
Q+

πa
(

divψ +RTr(ω∇ψ) + Tr(ω′ψ)
)
(1 +Rω′′) dx

=

∫
Q+

F : (∇ψ +Rω∇ψ + ω′ψ)(1 +Rω′′) dx, (3.33)

where we used that det∇HR = 1 +Rω′′.

4In the same spirit we proceed in case of two bounded matrix functions ω1 and ω2. Instead
of ω1ψω2 we write ωψ for some another bounded matrix ω. The effect of this abbreviation is
negligible in further estimates. Nevertheless, it affects tremendously the lucidity of calculations.
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3.4 Comparison

In what follows, we verify that for a solution u there exists an approximative
function v, such that Du and Dv satisfy assumptions of Lemma A.5.4.

LetR0 > 0 be fixed and sufficiently small. Precise size ofR0 will be determined
later. We denote Q+

0 = Q0 ∩ Rn
+, where Q0 = Q(0, R0). Let the cube Q satisfy

Q ⊂ Q0 and 1
4
Q ⊂ Q+

0 . Denote Q′ = Q∩Rn
+. Side of such Q is equal to 2R′ with

R′ ∈ (0, R0). In what follows we assume that ΓQ′ := ∂Q′ ∩ {x;xn = 0} 6= ∅. We
define a function u2 as a function which satisfies the system of equation

div u2 = −R′Tr(∇uω) in Q′, (3.34)

u2 · en = R′(ωu) · en on ΓQ′ . (3.35)

On the right hand side of (3.34) and (3.35) there appeared R′, because we will
apply flattening with the function H−1

R′ . The boundary condition (3.35) comes
from the fact that we want

u2 · en = u · en = (I − (∇HR′)
T )u · en + (∇HR′)

Tu · en = R′(ωu) · en on ΓQ′ ,

because it holds −(∇HR′)
Tu · en = u · ν = 0 and (I − (∇HR′)

T ) = R′ω. Using
the fact that ω ∈ W 2,∞(Q′), Lemmata A.3.3, A.2.5 and A.4.5 we obtain

∫
Q′

Φ(|∇u2|) dx ≤ C

(∫
Q′

Φ(R′|∇u|) dx+

∫
Q′

Φ(R′|u|) dx

)
≤ C(R′)α

∫
Q′

Φ(|Du|) dx+ C

∫
Q′

Φ (|u|) dx, (3.36)

where α > 1 comes from Lemma A.2.5. We set u1 = u − u2 and from (3.36) we
get ∫

Q′
Φ(|Du1|) dx ≤ C

∫
Q′

Φ(|Du|) dx+ C

∫
Q′

Φ (|u|) dx. (3.37)

We consider a solution v to (3.2) in Q′ such that

v = u1 on ∂Q′ \ ΓQ′ , (3.38)

v · en = 0, [S(Dv)en] · eα = 0 on ΓQ′ , (3.39)

where α = 1, . . . , n − 1. Existence of such v can be shown by monotone
operator theory. It is worth emphasizing that u1 · en = 0 on ΓQ′ and div u1 = 0
on Q′, therefore also (u1 − v) · en = 0 on ΓQ′ and div(u1 − v) = 0 on Q′.

The integrability of approximative function (A.26) was verified in Theorem 3.2.2.
The verification of (A.27) and (A.28) is presented in the following lemma.

Lemma 3.4.1 Let v be the function constructed in (3.38) and (3.39). Then there
exists a positive constant C independent of u, v and Q′ such that∫

Q′
|V (Dv)|2 dx ≤ C

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx, (3.40)
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Furthermore, for all δ there exists a positive constant Cδ independent of v, u and
Q′ such that for some α > 1 it holds

∫
Q′
|V (Du)− V (Dv)|2 dx ≤ Cδ

∫
Q′

Φ∗(|F |) dx

+
(
δ + C(R′)α

) ∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx. (3.41)

Proof. We choose a constant πc such that, using considerations presented in [23,
Section 4.2], we can derive that

∫
Q′

Φ∗(|πa|) dx ≤ C

(∫
Q′

Φ(|Du|) dx+

∫
Q′

Φ∗(|F |) dx+

∫
Q′

Φ (|u|) dx

)
,

(3.42)
where we moreover employed similar steps as in (3.36).

Following [23], we test the weak formulation of (3.2) by a function u1− v and
obtain ∫

Q′
S(Dv) : Dv dx =

∫
Q′
S(Dv) : Du1 dx. (3.43)

We point out that we decomposed u to u1 + u2 in order to u1 · en = 0 on ΓQ′
and div u1 = 0 in Q′ and due to the properties of the function v we also have
div(u1 − v) = 0 in Q′ and (u1 − v) · en = 0 on ΓQ′ . Whereas the left hand side of
(3.43) can be estimated from below by

∫
Q′
|V (Dv)|2 dx due to Lemma A.2.6, we

estimate the right hand side of (3.43) as follows

∫
Q′
S(Dv) : Du1 dx ≤ δ

∫
Q′

Φ(|Dv|) dx+ Cδ

∫
Q′

Φ(|Du1|) dx

≤ cδ

∫
Q′
|V (Dv)|2 dx+ Cδ

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx,

where we used Young’s inequality (A.8), (3.37) and Lemma A.2.6. Thus, for
sufficiently small δ > 0 we have∫

Q′
|V (Dv)|2 dx ≤ C

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx, (3.44)

which proves (3.40).

To conclude the proof of Lemma 3.4.1, it remains to prove (3.41). The function
u1 − v can be taken as a test function in (3.33). With the knowledge∫

Q′
S(Dv) : (Du1 −Dv) dx = 0
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we derive∫
Q′
S(Du+ Zu) : (Du1 −Dv + Zu1−v + ω′(u1 − v))(1 +R′ω′′) dx

−
∫
Q′
S(Dv) : (Du1 −Dv) dx

−
∫
Q′
πa
(

Tr(∇u1 −∇v)R′ω + Tr(ω′(u1 − v))
)
(1 +R′ω′′) dx

=

∫
Q′
F :
(
∇u1 −∇v +R′ω(∇u1 −∇v)

)
(1 +R′ω′′) dx

+

∫
Q′
F :
(
ω′(u1 − v)

)
(1 +R′ω′′) dx =: I1 + I2.

We can rewrite this identity as follows∫
Q′

(
S(Du1)− S(Dv)

)
: (Du1 −Dv) dx = I1 + I2

−
∫
Q′
S(Du+ Zu) : (Du1 −Dv)R′ω′′ dx−

∫
Q′
S(Du+ Zu) : Zu1−v(1 +R′ω′′) dx

−
∫
Q′
S(Du+ Zu) : (ω′(u1 − v))(1 +R′ω′′) dx

+

∫
Q′

(
S(Du)− S(Du+ Zu)

)
: (Du1 −Dv) dx

+

∫
Q′
πa Tr

(
(∇u1 −∇v)R′ω

)
(1 +R′ω′′) dx+

∫
Q′
πa Tr(ω′(u1 − v))(1 +R′ω′′) dx

+

∫
Q′

(
S(Du1)− S(Du)

)
: (Du1 −Dv) dx =

9∑
i=1

Ii. (3.45)

The left hand side of (3.45) can be estimated from below due to Lemma A.2.6 as∫
Q′

(
S(Dv)− S(Du1)

)
: (Dv −Du1) dx ≥ C

∫
Q′
|V (Dv)− V (Du1)|2 dx

≥ C

∫
Q′
|V (Dv)− V (Du)|2 dx− C

∫
Q′
|V (Du)− V (Du1)|2 dx

= C

∫
Q′
|V (Dv)− V (Du)|2 dx− I10. (3.46)

Lemmata A.2.4, A.2.6 and the relation (3.36) yield

I10 = C

∫
Q′
|V (Du)− V (Du1)|2 dx ≤ c

∫
Q′

Φ|Du|(|Du−Du1|) dx

≤ Cδ

∫
Q′

Φ(|Du2|) dx+ δ

∫
Q′
|V (Du)|2 dx

≤ (Cδ(R
′)α + δ)

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx.
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Further, using Lemmata A.2.6, A.2.4 and (3.44), we have

|I9| ≤
∫
Q′
|S(Du)− S(Du1)||Dv −Du1| dx ≤ Cδ

∫
Q′

Φ′|Du|(|Du2|)|Dv −Du1| dx

≤ Cδ

∫
Q′

Φ∗|Du|(Φ
′
Du(|Du2|)) dx+ δ

∫
Q′

Φ|Du|(|Dv −Du1|) dx

≤ Cδ

∫
Q′

Φ|Du|(|Du2|) dx+ δ

∫
Q′

(|V (Du)|2 + |V (Du1 −Dv)|2) dx

≤ Cδ

∫
Q′

Φ(|Du2|) dx+ δ

∫
Q′
|V (Du)|2 dx+ δ

∫
Q′
|V (Du1)|2 dx

+ δ

∫
Q′
|V (Dv)|2 dx ≤ (Cδ(R

′)α + δ)

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx.

The term I6 can be estimated in the same way as term I9. Briefly

|I6| ≤ Cδ

∫
Q′

Φ(R|(ω∇u+ (∇u)TωT )|) dx+ δ

∫
Q′
|V (Du)|2 dx

+ δ

∫
Q′
|V (Dv)|2 dx+ δ

∫
Q′
|V (Du1)|2 dx

≤ (C(R′)α + δ)

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx.

The term I7 can be estimated using Young’s inequality (A.8), Lemma A.2.5,
Korn’s inequality (A.24), (3.37), (3.44), (3.42) and Lemma A.2.6 as follows

|I7| ≤ C

∫
Q′
|πa||R′(∇u1 −∇v)| dx

≤ Cδ

∫
Q′

Φ(R′|∇u1 −∇v|) dx+ δ

∫
Q′

Φ∗(|πa|) dx

≤ (δ + C(R′)α)

∫
Q′
|V (Du)|2 dx+ δ

∫
Q′

Φ∗(|F |) dx+ C

∫
Q′

Φ (|u|) dx.

Terms I3 and I4 can be estimated easily as follows

|I3 + I4| ≤ C(R′)α
∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx.

In the same spirit as before

|I1| ≤ C

∫
Q′
|F ||∇u1 −∇v| dx ≤ Cδ

∫
Q′

Φ∗(|F |) dx+ δ

∫
Q′

Φ(|Du1 −Dv|) dx

≤ Cδ

∫
Q′

Φ∗(|F |) dx+ δ

∫
Q′
|V (Du)|2 dx+ C

∫
Q′

Φ (|u|) dx.

It remains to estimate terms I2, I5 and I8 which can be estimated in the
same way using Young’s inequality (A.8) and Poincaré inequality together with
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∆2−condition and Lemma A.2.5:

|I1|+ |I2|+ |I8| ≤ C

∫
Q′

Φ∗(|F |) dx+ δ

∫
Q′

Φ∗(|πa|) dx

+C(δ+(R′)α)

∫
Q′
|V (Du)|2 dx+C

∫
Q′

Φ (|u|) dx+C(R′)α
∫
Q′

Φ

(
u1 − v
R′

)
dx.

(3.47)

The term containing πa can be estimated in the same spirit like in the term I7.
The last term in (3.47), denoted by I11, is prepared for Poincaré inequality:

I11 ≤ C(R′)α
∫
Q′

Φ(|Du1 −Dv|) ≤ C(R′)α
(∫

Q′
|V (Du)|2 dx+

∫
Q′

Φ (|u|) dx

)
,

where we moreover used Korn’s inequality A.4.2 since u1 − v ∈ W 1,Φ
ν (Q′) and Q′

is not axisymmetric domain. The same steps like in I9 were also applied.
Putting these estimates into (3.46) and (3.45), we get (3.41).

3.5 Proof of the main theorem

Proof of Theorem 3.1.3. Recall that Q′ was defined as a rectangle Q ∩ Rn
+ with

Q ⊂ Ω0, 1
4
Q ⊂ Q+

0 and one side of Q is equal to 2R′. In order to obtain results for
a general C2,1 boundary, we are going to verify assumptions of Corollary A.5.8.

Let x0 ∈ ∂Ω be fixed and let Hx0,R0(Q
+
0 ) ⊂ Ω be an image of Q+

0 under the
mapping Hx0,R0 . Let R0 be so small, such that for every rectangle Q′ ⊂ Q+

0 there
exist cubes Qa, Qb, x1 ∈ ∂Ω and R′ ∈ (0, R0) such that

Ω 8
9
Qa

:=
8

9
Qa ∩ Ω ⊂ Hx0,R0(Q

′) ⊂ 10

9
Qa ∩ Ω =: Ω 10

9
Qa
, (3.48)

Hx0,R0

(
1

2
Q′
)
⊂ Hx1,R′

((4

3
Qb

)+
)
⊂ Hx1,R′

((5

3
Qb

)+
)
⊂ Hx0,R0(Q

′). (3.49)

This is possible, because ∇HR0 − I = R0ω, where ω is function bounded inde-
pendently of R0.

Let Qk be a dyadic cube obtained from Q̂, where Q̂ ⊂ Q+
0 with 4Q̂ ⊂ Q0. If

Hx0,R0(4Q̃k) ⊂ Hx0,R0(Q
+
0 ), Hx0,R0(4Q̃k) ∩ ∂Ω = ∅,

we use interior regularity result from [23]. Otherwise we proceed in the same
spirit as in previous section where instead of Q′ we consider H−1

x1,R′
(Hx0,R0(Q

′)).

We point out that H−1
x1,R′

(Hx0,R0(Q
′)) doesn’t need to be a rectangle, since in

general x1 6= x0. What is important for us is that

ΓH−1
x1,R

′ (Hx0,R0
(Q′)) ⊂ {x ∈ Rn, xn = 0},

therefore results from previous section can be applied. Now we verity assump-
tions of Corollary A.5.8, i.e. the validity of inequalities (A.26) - (A.28) after
transformation Hx0,R0 .



58 Integrability of weak solutions to equations of steady flows

From Theorem 3.2.2 we have(
−
∫

( 4
3
Q)+
|V (Dv)|q dx

) 1
q

≤ C

(
−
∫

( 5
3
Q)+
|V (Dv)|2 dx

) 1
2

, (3.50)

for q ∈
[
2, 2n

n−2

]
provided n > 2 and q ∈ [2,∞) for n = 2. In case Φ′′ is almost

monotone, n > 2, we can even allow q = rn
n−r for some r > 2. After substitution

y = Hx1,R′(x) we get5

(
−
∫
Hx1,R′

(( 4
3
Q)+)

|V (Dv + Zv)|q dy

) 1
q

≤ C

(
−
∫
Hx1,R′

(( 5
3
Q)+)

|V (Dv + Zv)|2 dy

) 1
2

,

(3.51)
Using (3.49) we obtain from (3.51)(
−
∫
Hx0,R0

( 1
2
Q′)

|V (Dv + Zv)|q dy

) 1
q

≤ C

(
−
∫
Hx0,R0

(Q′)

|V (Dv + Zv)|2 dy

) 1
2

, (3.52)

which is the first of the three inequalities in Corollary A.5.8 where
|wa|p := |V (Dv + Zv)|2 and 4Q̃k ∩ O = Q′. First outcome of Lemma 3.4.1 is

−
∫
H−1
x1,R

′ (Hx0,R0
(Q′))

|V (Dv)|2 dx ≤ C−
∫
H−1
x1,R

′ (Hx0,R0
(Q′))

|V (Du)|2 dx

+ C−
∫
H−1
x1,R

′ (Hx0,R0
(Q′))

Φ (|u|) dx, (3.53)

Application of the substitution y = Hx1,R′(x) leads to

−
∫
Hx0,R0

(Q′)

|V (Dv + Zv)|2 dy ≤ C−
∫
Hx0,R0

(Q′)

|V (Du)|2 dy + C−
∫
Hx0,R0

(Q′)

Φ (|u|) dy,

(3.54)
where we estimated Zu by Korn’s inequality. This provides the second inequality
in Corollary A.5.8 for |w|p = |V (Du)|2. The second outcome of Lemma 3.4.1 is

−
∫
H−1
x1,R

′ (Hx0,R0
(Q′))

|V (Du)− V (Dv)|2 dx ≤ Cδ−
∫
H−1
x1,R

′ (Hx0,R0
(Q′))

Φ∗(|F |) dx

+
(
δ + C(R′)α

) ∫
H−1
x1,R

′ (Hx0,R0
(Q′))

|V (Du)|2 dx+ C−
∫
H−1
x1,R

′ (Hx0,R0
(Q′))

Φ (|u|) dx.

(3.55)

5Unlike in (3.24) we go from v to v, therefore we should consider ∇HR instead of ∇H−1
R in

(3.24). Nevertheless, due to the properties of HR, (3.25) remains true. We point out that Zv
is small due to R′, not R0.
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After same steps as before we can estimate the left hand side of (3.55) as

−
∫
Hx0,R0

(Q′)

|V (Du+Zu)−V (Dv+Zv)|2 dy ≥ −
∫
Hx0,R0

(Q′)

|V (Du)−V (Dv+Zv)|2 dy

− c−
∫
Hx0,R0

(Q′)

|V (Zu)− V (Dv + Zv)|2 dy. (3.56)

The second term on the right hand side of (3.56) can be moved to the right hand
side of transformed variant of (3.55) and estimated from above as

−
∫
Hx0,R0

(Q′)

|V (Zu)− V (Dv + Zv)|2 dy ≤ C−
∫
Hx0,R0

(Q′)

|V (Du)|2 dy

+ C−
∫
Hx0,R0

(Q′)

Φ(|u|) dy.

where we used properties of function V , Korn’s inequality on Zu and (3.51).
Altogether we have

−
∫
Hx0,R0

(Q′)

|V (Du)− V (Dv + Zv)|2 dy ≤ Cδ−
∫
Hx0,R0

(Q′)

Φ∗(|F |) dy

+
(
δ + C(R′)α

)
−
∫
Hx0,R0

(Q′)

|V (Du)|2 dy + C−
∫
Hx0,R0

(Q′)

Φ (|u|) dy, (3.57)

which provides the third assumption of Corollary A.5.8 in case δ and R′ in (3.57)
are sufficiently small.

Let Φ∗(|F |) ∈ Lq(Ω). Since u ∈ W 1,Φ(Ω), it holds∫
Ω

|∇Φ(|u|)| dx =

∫
Ω

Φ′(|u|) |∇u| dx

≤ C

∫
Ω

Φ∗Φ′(|u|) dx+ C

∫
Ω

Φ(|∇u|) dx ≤ C. (3.58)

Thus, from Orlicz–Sobolev embedding we know that Φ(|u|) ∈ L
n
n−1 (Ω). All

assumptions of Corollary A.5.8 are met (with g = Φ(|u|) and f = Φ∗(|F |)+Φ(|u|))
and therefore we get V (Du) ∈ Lq̃(Hx0,R0(Q̂))n×n for q̃ = min{2q, 2n

n−1
} and Q̂ ⊂

Q+
0 with 4Q̂ ⊂ Q0. Consequently, Φ(|Du|) ∈ Lq̃/2(Hx0,R0(Q̂)). If q̃

2
= q, we

are done, otherwise, we use (3.58) on an N-function Ψ := Φ
n
n−1 in order to get

Φ(|u|) ∈ L( n
n−1)

2

(Ω). We may again use Corollary A.5.8 with the same setting in
order to get V (Du) ∈ Lq̃(Hx0,R0(Q̂))n×n for q̃ = min{2q, 2n2

(n−1)2
}. Again, if q̃ = 2q

we are done, otherwise we iterate this process till q̃ = 2q.
The estimate (3.1) follows easily from (A.29). To avoid the formulation of

(3.1) with the mapping Hx0,R0 we moreover use that there is some r > 0 and
λ > 1 depending only on dimension such that for each x0 ∈ ∂Ω it holds

Ωr := Br(x0) ∩ Ω ⊂ Hx0,R0(Q̂) ⊂ Hx0,R0((4Q̂)+) ⊂ Bλr(x0) ∩ Ω =: Ωλr.
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4
Lq theory for classical Stokes system

4.1 Introduction

In this chapter we collect facts about Lq theory for the Stokes system

∂tu−∆u+∇π = f in I × Ω,

div u = 0 in I × Ω, (4.1)

u(0, ·) = u0 on Ω,

equipped with the perfect slip boundary conditions

u · ν = 0, [(Du)ν] · τ = 0 on I × ∂Ω. (4.2)

Let E be a Banach space and α ∈ (0, 1), p, q ∈ [1,∞), s ∈ R. Recall that we
use standard notation1 for Lebesgue spaces Lq(Ω), Sobolev-Slobodeckĭı spaces
W s,q(Ω), Bochner spaces Lq(I, E) and Wα,q(I, E). By Hs

q (Ω) we mean Bessel
potential spaces and Bs

p,q(Ω) are Besov spaces. BUC stands for bounded and
uniformly continuous functions. Since the domain Ω is in our case at least C2,1,
we can define Lqσ(Ω) and W 1,q

σ (Ω) as follows:

Lqσ(Ω) = {ϕ ∈ Lq(Ω), divϕ = 0 in Ω, ϕ · ν = 0 on ∂Ω},
W 1,q
σ (Ω) = {ϕ ∈ W 1,q(Ω), divϕ = 0, in Ω, ϕ · ν = 0 on ∂Ω}.

Set W−1,p′
σ (Ω) := (W 1,p

σ (Ω))′.
Let P denote the projection operator from Lq(Ω) to Lqσ(Ω) associated with

the Helmholtz decomposition. By Bu = 0 we mean that (4.2) holds in the
sense of traces. Using the projection P we shall define the Stokes operator A by
Au = −P∆u for u ∈ D(A), where

D(A) = Lqσ(Ω) ∩H2
q,B(Ω), H2

q,B(Ω) := {u ∈ H2
q (Ω), Bu = 0, on ∂Ω}.

Applying the Helmholtz projection P to (4.1) with (4.2), we eliminate the pres-
sure from equations and with the help of the newly established notation the Stokes
system reduces to

∂tu+ Au = Pf, div u = 0 in I × Ω,

u(0, ·) = u0 on Ω, Bu = 0 on I × ∂Ω.
(4.3)

1In this chapter we don’t use different notation for scalar, vector-valued or tensor-valued
functions.
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4.2 Dynamical systems

Before we study properties of the Stokes operator A we establish some notation.
Let E and F be reflexive Banach spaces. Although it is not necessary to have
reflexive spaces in all definitions, for convenience we assume it. By L(E,F )
we mean the Banach space of all bounded linear operators from E to F and
L(E) := L(E,E). If E is a linear subspace of F and the natural injection
i : x 7→ x belongs to L(E,F ), we write E ↪→ F . In the case E is also dense in F ,

it will be denoted by E
d
↪→ F . Furthermore, Lis(E,F ) consists of all topological

linear isomorphisms from E onto F . We also write E
.
= F if E ↪→ F and F ↪→ E,

i.e. E equals F with equivalent norms. The bilinear map 〈·, ·〉 : E ′ × E → R is
the duality pairing between E ′ and E.

A Banach space E is said to be of classHT , if the Hilbert transform is bounded
on Lp(R, E) for some (and then for all) p ∈ (1,∞). Here the Hilbert transform
H of a function f ∈ S(R, E), the Schwartz space of rapidly decreasing E−valued
functions, is defined by Hf := 1

π
PV (1

t
) ∗ f . It is well known theorem that the

set of Banach spaces of class HT coincides with the class of UMD spaces, where
the UMD stands for the property of unconditional martingale differences. Note
that all closed subspaces of Lq(Ω) are UMD spaces provided q ∈ (1,∞).

If A is a linear operator with domain, denoted by dom(A), in a locally convex
space X and range in a locally convex space Y , we write A : domA ⊂ X → Y .
If X and Y are normed vector spaces, D(A) := (dom(A), ‖ · ‖A), where ‖x‖A :=
‖Ax‖Y + ‖x‖Y for x ∈ dom(A), is the graph norm of A. If X and Y are Banach
spaces, D(A) is a Banach space if and only if A is closed.

We follow the dynamical-system-type approach where the basic idea is to
interpret the partial differential system as an ordinary differential equation in an
infinite-dimensional Banach space. Consider a linear operator A and a boundary
operator B which are general, but fixed. In order to reformulate initial-boundary
value problems of the form (4.3) as an initial value problem for an ordinary
differential equation in E0:

u̇+ Au = f(t, u), t > 0, u(0) = u0,

we have to choose our basic space E0 in which we want to analyze the problem and
impose certain minimal requirements for the operator A. E0 will be embedded
to a Banach space of distributions and we define

dom(A) := {u ∈ E0, Au ∈ E0 and Bu = 0}.

Observe that the distributions in dom(A) has to be regular enough to admit
traces. For the linear operator A, we request that

(i) A is closed and densely defined in E0,

(ii) A has nonempty resolvent set.

Then, denoting by E1 the domain of A, endowed with its graph norm, we see

that E1
d
↪→ E0, i.e. (E0, E1) is a densely injected Banach couple. It can be shown
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that the resolvent set of −A consist of a half-plane {λ ∈ C; Reλ ≥ ω} for some
ω ∈ R and that there exists a constant κ such that

|λ|‖u‖E0 ≤ κ‖(λ+ A)u‖E0 , u ∈ E1, Reλ ≥ ω. (4.4)

The conditions (i) and (ii) together with (4.4) is equivalent to the assertion that
−A generates a strongly continuous analytic semigroup {e−At; t ≥ 0} on E0. By
H(E1, E0) we denote the set of all A ∈ L(E1, E0) such that −A, considered as a
linear (possibly unbounded) operator in E0 with a domain E1, is the infinitesimal
generator of a strongly continuous analytic semigroup on E0. It holds

H(E1, E0) =
⋃

κ≥1, ω>0

H(E1, E0, κ, ω),

where A ∈ H(E1, E0, κ, ω) if ω + A ∈ Lis(E1, E0) and

κ−1 ≤ ‖(λ+ A)u‖E0

|λ|‖u‖E0 + ‖u‖E1

≤ κ, Reλ ≥ ω, u ∈ E1.

By σ(A) we mean the spectrum of A and %(A) denotes the resolvent set. A
linear operator A in E is said to be of positive type if it belongs to
P(E) :=

⋃
K>1 PK(E). A ∈ PK(E) if it is closed, densely defined, R+ ⊂ %(−A)

and (1 + s)‖(s+ A)−1‖L(E) ≤ K for s ∈ R+, where K ≥ 1.
We say that a linear operator A in E is of type (E,K, ϑ), denoted by

A ∈ P(E,K, ϑ), if it is densely defined and if

Σϑ := {| arg z| ≤ ϑ}∪{0} ⊂ %(−A) and (1+|λ|)‖(λ+A)−1‖L(E) ≤ K, λ ∈ Σϑ.

Put P(E, ϑ) :=
⋃
K>1P(E,K, ϑ).

A linear operator A in E is said to have bounded imaginary powers, in symbols
A ∈ BIP(E), if A ∈ P(E) and there exist ε > 0 and K ≥ 1 such that Ais ∈ L(E)
and ‖Ais‖L(E) ≤ K for s ∈ (−ε, ε). We write A ∈ BIP(E,K, θ), if A ∈ BIP(E)
and if there are constants K ≥ 1 and θ ≥ 0 such that ‖Ais‖L(E) ≤ Keθ|s| for all
s ∈ R. It holds that

BIP(E) :=
⋃

K≥1, θ≥0

BIP(E,K, θ).

We introduce an interpolation-extrapolation scale which is essential in the proof
of Theorem 4.3.8. Let p, q ∈ (1,∞), θ ∈ (0, 1) and [·, ·]θ denotes the complex
and (·, ·)θ,q the real interpolation functor. Let A ∈ H(E1, E0). Then we denote
by [(Eα, Aα);α ∈ R] the interpolation-extrapolation scale generated by (E,A)
and [·, ·]θ or (·, ·)θ,q, where we set Ek := D(Ak) for k ∈ N with k ≥ 2. Also set
E] := E ′ and A] := A′, where A′ is the dual of A in E in the sense of unbounded
linear operators. Finally let E]

k := D((A])k) for k ∈ N. Then we define E−k for

k ∈ N by E−k := (E]
k)
′. We put Ek+θ := [Ek, Ek+1]θ (and similarly for the real

interpolation functor). If α ≥ 0 we denote by Aα the maximal restriction of A
to Eα whose domain equals {u ∈ Eα ∩ E1; Au ∈ Eα}. If α < 0 then Aα is the
closure of A in Eα.
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For the dual interpolation functor (·, ·)]θ (which is equal to [·, ·]θ for the complex
interpolation and (·, ·)θ,q′ for real interpolation) we abbreviate the interpolation-

extrapolation scale generated by (E], A]) and (·, ·)]θ, by [(E]
α, A

]
α);α ∈ R] and call

it interpolation-extrapolation scale dual to [(Eα, Aα);α ∈ R].
It holds (E−α)′

.
= E]

α and (A−α)′ = A]α. For more details see [3, Section V.2].

4.3 Lq theory for Stokes system

Now we are ready to mention some basic properties of the Stokes operator A.
From [81] we know that A ∈ H(Lqσ(Ω) ∩H2

q,B(Ω), Lqσ(Ω)). This also tells us that
A ∈ P(Lqσ(Ω), ω) for some ω ∈ [0, π/2) (see [30, Theorem II.4.6]). R. Shimada
later showed in [82] the Lq−maximal regularity for A. In [1, Theorem 1] H. Abels
and Y. Terasawa proved:

Proposition 4.3.1 Let q ∈ (1,∞), n ≥ 2, r ∈ (n,∞] such that q, q′ ≤ r. Let

Ω ⊂ Rn be a domain with W 2− 1
r
,r−boundary and ϑ ∈ (0, π). Then there is some

R > 0 such that (λ+ A)−1 exists and

(1 + |λ|)‖(λ+ A)−1‖L(Lq(Ω)) ≤ C

for all λ ∈ Σϑ with |λ| ≥ R. Moreover,∥∥∥∥∫
ΓR

h(−λ)(λ+ A)−1 dλ

∥∥∥∥
L(Lq(Ω))

≤ C‖h‖L∞(Σπ−ϑ)

for every h ∈ H∞(ϑ), where Γ = ∂Σϑ, ΓR = Γ \ BR(0) and H∞(ϑ) denotes
the Banach algebra of all bounded holomorphic functions h : Σπ−ϑ → C. In
particular, for every ω ∈ R and ϑ′ ∈ (0, ϑ] such that ω + Σϑ′ ⊂ %(−A) the shifted
Stokes operator ω + A admits a bounded H∞−calculus with respect to ϑ′, i.e.,

h(ω + A) :=
1

2πi

∫
Γ

h(−λ)(λ+ ω + A)−1 dλ

is a bounded operator satisfying

‖h(ω + A)‖L(Lq(Ω)) ≤ C‖h‖L∞(Σπ−ϑ)

for all h ∈ H∞(ϑ′).

Note that the class of operators with a bounded H∞−calculus is a subclass
of the operators which have BIP , therefore these operators admit all important
properties which have operators with bounded imaginary powers. For another
properties of a bounded H∞−calculus we refer for example to [19, Section 2,
Subsection 2.4], [41] or [58].

From the result of Y. Shibata and R. Shimada in [81] follows that ω + Σϑ′ ⊂
%(−A) even for ω = 0 provided the domain Ω is bounded and non-axisymmetric
(see Definition 1.4.8). Thus, Proposition 4.3.1 and [81, Theorem 1.3] gives A ∈
BIP . Let Eα be interpolation-extrapolation scale and Aα be the realization of A
on Eα for α ≥ −1. From [83, Section 2.2] we know that Aα ∈ H(Eα+1,Eα) for
α ≥ −1. Steiger in [83] provides the characterization of spaces Eα:
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Proposition 4.3.2 [83, Corollary 2.6] Set

sα := {−2 + 1/q,−1 + 1/q, 1/q, 1 + 1/q}

and F s
q (Ω) := Hs

p(Ω) for the complex interpolation functor and F s
q (Ω) := Bs

q,q(Ω)
for the real interpolation functor. Define

F s
q,B(Ω) :=


{u ∈ F s

q (Ω), Bu = 0 on ∂Ω}, s ∈ (1 + 1/q, 2],
{u ∈ F s

q (Ω), u · ν = 0 on ∂Ω}, s ∈ [1/q, 1 + 1/q),
F s
q (Ω), s ∈ [0, 1/q),(
F−sq′,B(Ω)

)′
, s ∈ [−2, 0) \ sα

(4.5)

and

F s
q,B,σ(Ω) :=

{
F s
q,B(Ω) ∩ Lqσ(Ω), s ∈ [0, 2] \ sα,(
F−sq′,B,σ(Ω)

)′
, s ∈ [−2, 0) \ sα.

(4.6)

Then Eα
.
= F 2α

q,B,σ(Ω) for 2α ∈ [−2, 2] \ sα.

This gives

Aα ∈ H(F 2α+2
q,B,σ (Ω), F 2α

q,B,σ(Ω)), 2α ∈ [−2, 2] \ sα. (4.7)

Remark 4.3.3 [83, Remark 2.3c] The Helmholtz projection P enjoys following
continuity properties:

P ∈ L(F s
q,B(Ω)) ∩ L(F s

q,B(Ω), F s
q,B,σ(Ω)), s ∈ (−1 + 1/q, 1 + 1/q) \ sα. (4.8)

We will use the fact, that the property of bounded imaginary powers can be
carried over the interpolation-extrapolation scales:

Proposition 4.3.4 [3, Proposition V.1.5.5] Let A ∈ P(E) and let [(Eα, Aα);
α ∈ (−n,∞)] be the interpolation-extrapolation scale generated by (E,A) and an
exact functor. If A ∈ BIP(E,M, σ) then Aα ∈ BIP(Eα,M, σ).

The reiteration property will be needed.

Proposition 4.3.5 [3, Theorem V.1.5.4] Suppose that A ∈ BIP(E). Then the
interpolation-extrapolation scale [(Eα, Aα);α ∈ [−n,∞)] generated by (E,A) and
complex interpolation functor possesses the reiteration property

[Eα, Eβ]η
.
= E(1−η)α+ηβ, −n ≤ α ≤ β <∞, η ∈ (0, 1).

Let us define the maximal Lq-regularity for an operator A (compare [3, Section
III.1, Subsection 1.5 and Section III.4, Remark 4.10.9.c])

Definition 4.3.6 Let A ∈ H(E1, E0) and q ∈ (1,∞). We say that(
Lq(I, E0), Lq(I, E1) ∩W 1,q(I, E0)

)
is a pair of maximal regularity for A (or A has maximal regularity), if for
u0 ∈ (E0, E1)1−1/q,q and f ∈ Lq(I, E0) there exists a unique solution
u ∈ Lq(I, E1) ∩W 1,q(I, E0) of (4.3), and

‖∂tu‖Lq(I,E0) + ‖u‖Lq(I,E0) + ‖Au‖Lq(I,E0) ≤ C
(
‖f‖Lq(I,E0) + ‖u0‖(E0,E1)1−1/q,q

)
.

(4.9)
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Further we mention the relation between maximal regularity and negative
infinitesimal generators of a bounded analytic semigroup.

Proposition 4.3.7 [3, Theorem III.4.10.7] Suppose that E0 is a UMD space,
A ∈ H(E1, E0) and there are constants M > 0, ϑ ∈ (0, π/2) such that
Σϑ ⊂ %(−A) and for λ ∈ Σϑ and j = 0, 1 holds

‖A‖L(E1,E0) + (1 + |λ|)1−j‖(λ+ A)−1‖L(E0,Ej) ≤M

and suppose that there exist constants N ≥ 1 and θ ∈ [0, π/2) such that
A ∈ BIP(E0, N, θ). Then A has maximal regularity and the estimate (4.9) holds
uniformly with respect to T .

The main result of this section is the following theorem, in which we use the
abbreviation from Proposition 4.3.2. In particular, B

1−2/q
q,q,B,σ(Ω) = F s

q,B,σ(Ω) for
s = 1− 2/q and the real interpolation functor.

Theorem 4.3.8 Let Ω ⊂ Rn be a bounded non-axisymmetric C2,1 domain, q ∈
[2,∞), f ∈ Lq(I,W−1,q

σ (Ω)), u0 ∈ B1−2/q
q,q,B,σ(Ω) then there exists a constant C > 0

and the unique weak solution to (4.3) satisfying

‖∇u‖Lq(I×Ω) + ‖u‖
BUC(I,B

1−2/q
q,q,B,σ(Ω))

≤ C
(
‖f‖Lq(I,W−1,q

σ (Ω)) + ‖u0‖B1−2/q
q,q,B,σ(Ω)

)
.

The constant C is independent of T, u, f and u0.

Proof. We consider the system (4.3) instead of (4.1) with (4.2). Since for UMD
space E, E ′ is one as well and for an interpolation couple of UMD spaces the inter-
polation spaces are also UMD (see [3, Theorem III.4.5.2]), E−1/2 is a UMD space.
Proposition 4.3.4 gives us A−1/2 has BIP . Together with (4.7), [3, Corollary
I.1.4.3] and [81, Theorem 1.3] we can see that assumptions of Proposition 4.3.7
are fulfilled for A−1/2. Therefore we obtain (4.9) for A−1/2 and E0 = E−1/2:

‖∂tu‖Lq(I,E−1/2) + ‖u‖Lq(I,E−1/2) + ‖A−1/2u‖Lq(I,E−1/2)

≤ C
(
‖f‖Lq(I,E−1/2) + ‖u0‖(E−1/2,E1/2)1−1/q,q

)
.

(4.10)

It remains to determine the spaces in (4.10). For the space of initial condition
u0 we get by Proposition 4.3.2 for the complex interpolation functor

u0 ∈ (H−1
q,B,σ(Ω), H1

q,B,σ(Ω))1−1/q,q.

This space equals (with equivalent norms) to B
1−2/q
q,q,B,σ(Ω) since for q ≥ 2

B
1−2/q
q,q,B,σ(Ω)

.
= (Lqσ(Ω), H1

q,B,σ(Ω))1−2/q,q

.
= ([H−1

q,B,σ(Ω), H1
q,B,σ(Ω)]1/2, H

1
q,B,σ(Ω))1−2/q,q

.
= (H−1

q,B,σ(Ω), H1
q,B,σ(Ω))1−1/q,q,

(4.11)
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where we used Proposition 4.3.5. The similar interpolation of the solenoidal func-
tions in case of Dirichlet boundary conditions is done in [4, Proof of Lemma 9.1].
From the embedding [3, Theorem V.4.10.2]

Lq(I, E1) ∩W 1,q(I, E0) ↪→ BUC(I, (E0, E1)1−1/q,q),

we obtain u ∈ BUC(I, B
1−2/q
q,q,B,σ(Ω)). Due to ‖u‖E1/2

= ‖A−1/2u‖E−1/2
(which

follows from [3, Corollary V.1.3.9 and Theorem V.1.5.4]) and E1/2
.
= W 1,q

σ (Ω) we
have boundedness of ∇u in Lq(I × Ω). It remains to find the space for f . By
Proposition 4.3.2

f ∈ Lq(I,W−1,q
σ (Ω)),

since Hs
q (Ω)

.
= W s,q(Ω) for s ∈ Z.

Remark 4.3.9 In case of homogeneous Dirichlet boundary conditions we are able
to obtain the same result like in Theorem 4.3.8. We can omit the assumption on
the shape of the domain Ω. The results needed in proof of Theorem 4.3.8 are for
the homogeneous Dirichlet conditions more extended. It is well known that the
Stokes operator has bounded imaginary powers provided Ω is whole space, half-
space, bounded domain or exterior domain with sufficiently smooth boundary, c.f.
[36] and [38]. Lq estimates based on the theory developed by G. Dore and A.
Venni in [28] can be found in [37] and [39].

4.4 Interpolation

Without loss of generality we may assume that there exists a symmetric tensor
G ∈ Lq(Q), such that the weak formulation of the right hand side of (4.1) can be
written in the form∫

I

∫
Ω

G : Dϕ dx dt =

∫
I

〈f, ϕ〉 dt ∀ϕ ∈ Lq′(I,W 1,q′

σ (Ω)). (4.12)

To prove it, we proceed in the same way like in [52, Proof of Proposition 2.1,
Step 1] where the authors are dealing with periodic boundary conditions. Con-
sider the Stokes system which can be formulated in the weak form for a. a. t ∈ I
as follows ∫

Ω

Dw(t) : Dϕ dx = 〈f(t), ϕ〉 ∀ϕ ∈ W 1,q′

σ (Ω). (4.13)

As f ∈ Lq(I,W−1,q
σ (Ω)), there exists a solution w(t) ∈ W 1,q

σ (Ω) of (4.13) enjoying
the estimate

‖w(t)‖W 1,q(Ω) ≤ C‖f‖W−1,q
σ (Ω)

with the positive constant C independent of t. Consequently, w can be construct-
ed such that w ∈ Lq(I,W 1,q

σ (Ω)) and

‖w‖Lq(I,W 1,q(Ω)) ≤ C‖f‖Lq(I,W−1,q
σ (Ω)).
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DefiningG = Dw we conclude (4.12) from (4.13) by density arguments. Therefore
for all f ∈ Lq(I,W−1,q

σ (Ω)) there exists G ∈ Lq(I × Ω) such that (4.12) and
following estimate

‖G‖Lq(I×Ω) ≤ C‖f‖Lq(I,W−1,q
σ (Ω))

holds. We would like to point out that the perfect slip boundary conditions are
hidden in the weak formulation. If G is smooth enough then it holds∫
I

〈f, ϕ〉 dt = −
∫
I

∫
Ω

divG·ϕ dx dt+

∫
I

∫
∂Ω

(Gν)τ(ϕ·τ) dσ dt ∀ϕ ∈ Lq′(I,W 1,q′

σ (Ω)).

The Stokes system (4.1) with (4.2) can be formulated in the weak form as follows∫
I

〈∂tu, ϕ〉 dt+

∫
I

∫
Ω

Du : Dϕ dx dt =

∫
I

∫
Ω

G : Dϕ dx dt ∀ϕ ∈ Lq′(I,W 1,q′

σ (Ω)).

(4.14)

Introducing the solution operator S : (G, u0) 7→ Du, we conclude first from
the existence theory, that S is continuous from L2(Q)×L2

σ(Ω) to L2(I ×Ω) with
the norm less or equal to 1. By Theorem 4.3.8 we know that S is continuous
from Lq1(I × Ω) × B1−2/q1

q1,q1,B,σ
(Ω) to Lq1(I × Ω) with norm estimated by Cq > 1.

Since S(G, u0) = S(G, 0)+S(0, u0), Riesz-Thorin theorem and the real interpola-
tion method implies following assertion, see for example [13, Theorem 5.2.1 and
Theorem 6.4.5].

Lemma 4.4.1 Let Ω be a bounded non-axisymmetric C2,1 domain and q1 > 2.
There exist constant C > 0 and K := C

q1/(q1−2)
q1 such that for every q ∈ (2, q1),

arbitrary G ∈ Lq(I, Lqσ(Ω)), u0 ∈ B1−2/q
q,q,B,σ(Ω) there exists a unique solution u of

(4.14) satisfying

‖Du‖Lq(I×Ω) ≤ K1− 2
q

(
‖G‖Lq(I×Ω) + C‖u0‖B1−2/q

q,q,B,σ(Ω)

)
.

4.5 Lq theory for generalized Stokes system

For q > 2 small enough Lemma 4.4.1 allows us to prove the Lq theory for a
generalized Stokes system, where the Stokes operator is replaced by a general
elliptic operator with bounded measurable coefficients. More precisely, let
0 < γ1 ≤ γ2 and suppose that the coefficient matrix M ∈ L∞(I×Ω) is symmetric
in the sense Mkl

ij = M ij
kl = M ji

kl for i, j, k, l = 1, 2 and fulfils for all B ∈ R2×2,
x ∈ Ω and t ∈ I

γ1|B|2 ≤M(t, x) : B ⊗B ≤ γ2|B|2.
We consider the following system∫

I

〈∂tu, ϕ〉 dt+

∫
I

∫
Ω

M : Du⊗Dϕ dx dt =

∫
I

∫
Ω

G : Dϕ dx dt

∀ϕ ∈ Lq′(I,W 1,q′

σ (Ω)).

(4.15)

Following lemma states the Lq theory result.
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Lemma 4.5.1 Let Ω be a bounded non-axisymmetric C2,1 domain and q > 2.
There exist constants K,L > 0 such that if q ∈ [2, 2 + Lγ1

γ2
), G ∈ Lq(Q) and

u0 ∈ B
1−2/q
q,q,B,σ(Ω) then the unique weak solution u ∈ Lq(I,W 1,q

σ (Ω)) of (4.15)
satisfies

‖Du‖Lq(I×Ω) + γ
− 1
q

2 ‖u‖BUC(I,B
1−2/q
q,q,B,σ(Ω))

≤ K

γ1

(
‖G‖Lq(I×Ω) + γ

1− 1
q

2 ‖u0‖B1−2/q
q,q,B,σ(Ω)

)
.

Proof. We omit the proof. It can be found in [51, Proposition 2.1] for peri-
odic boundary conditions or in [49, Proposition 2.1] for homogeneous Dirichlet
boundary conditions. The only generalization consists of including perfect slip
boundary conditions. Lq theory result for classical Stokes system with perfect
slip boundary conditions is needed, but it is shown in Lemma 4.4.1.

We also use the Lq theory for stationary variant of the system (4.15). For
symmetric coefficient matrix M ∈ L∞(Ω) fulfilling for all B ∈ R2×2 and x ∈ Ω
γ1|B|2 ≤M(x) : B ⊗B ≤ γ2|B|2, 0 < γ1 ≤ γ2 we investigate the problem∫

Ω

M : Du⊗Dϕ dx =

∫
Ω

G : Dϕ dx ∀ϕ ∈ W 1,q′

σ (Ω). (4.16)

It holds:

Lemma 4.5.2 Let Ω be a bounded non-axisymmetric C2,1 domain. Then there
are constants K,L > 0 such that if q ∈ [2, 2 + Lγ1

γ2
) and G ∈ Lq(Ω), then the

unique weak solution of (4.16) satisfies

‖Du‖Lq(Ω) ≤
K

γ1

‖G‖Lq(Ω).

Proof. See [51, Lemma 2.6] for no slip boundary conditions. For perfect slip
boundary conditions we would proceed analogically.
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5
Full regularity of weak solutions to equations of

evolutionary planar flows

5.1 Main theorem

In this chapter we investigate flows of incompressible shear-thickening fluids,
which in evolutionary case are governed by the system (1.19)–(1.22):

∂tu− divS(Du) + div(u⊗ u) +∇π = f in I × Ω,

div u = 0 in I × Ω,

u(0, ·) = u0 in Ω,

u · ν = 0, [S(Du)ν] · τ = 0 on I × ∂Ω.

We restrict ourselves to the case of planar flows, i.e. Ω ⊂ R2. Instead of the
general formulation in the framework of N-functions we assume that the extra
stress tensor S possess p−potential structure with p ≥ 2. More precisely, we can
construct scalar potential Φ : [0,∞) 7→ [0,∞) to the stress tensor S , i.e.

S(A) = ∂AΦ(|A|) = Φ′(|A|) A
|A|

∀A ∈ R2×2
sym,

such that Φ ∈ C1,1((0,∞)) ∩ C1([0,∞)), Φ(0) = 0 and there exist p ∈ [2,∞) and
0 < C1 ≤ C2 such that for all A,B ∈ R2×2

sym

C1(1 + |A|2)
p−2
2 |B|2 ≤ ∂2

AΦ(|A|) : B ⊗B ≤ C2(1 + |A|2)
p−2
2 |B|2. (5.1)

In analysis of equations of fluid motions the question of Hölder continuity of
velocity gradients is an important issue. For instance, in optimal control prob-
lems, global regularity results that guarantee boundedness of velocity gradients
are needed in order to establish the existence of the weak solution for adjoint equa-
tion to the original problem and for linearised models. These results are closely
related to the regularity of the coefficients in the main part of the associated
differential operators and enable to derive corresponding optimality conditions,
as is done for example in [87]. For optimal control of flows with shear dependent
viscosities in the stationary case where the author is dealing with the lack of the
regularity result we refer to [6] and [7].
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Hölder continuity of velocity gradients is also important when one studies
exponential attractors. With such a regularity it is possible to show the differ-
entiability of the solution operator with respect to the initial condition, which is
the key technical step in the method of Lyapunov exponents. Differentiability of
the solution is equivalent to the linearisation of the equation around particular
solution which is used to study infinitesimal volume elements and leads to sharp
dimension estimates of the global attractor. This is done for example in [53].

We closely follow [49], where P. Kaplický shows Hölder continuity of velocity
gradients and pressure for (1.19)–(1.21) with p ∈ [2, 4) under no slip boundary
conditions. Based on the same structure of the proof and using the results from
[54] we extend the result to perfect slip boundary conditions and p ∈ [2,∞).
Although some steps of the proof in [49] can be easily modified, we have to
overcome a new difficulties connected to the another type of boundary conditions.
Particularly, the Lp theory result for the Stokes problem equipped with perfect
slip boundary conditions has to be established (this is done in previous chapter).
Keeping at our disposal results from Chapter 2, we are able to cover the case
p ≥ 4. From the point of application it would be very interesting to obtain
also the result for the case p ∈ (1, 2) for perfect slip or homogeneous Dirichlet
boundary condition.

The idea of the proof goes back to [72], where the authors show that every
weak solution u of ∂tu − div(S(∇u)) = 0 in Q has locally Hölder continuous
gradient in case that Ω ⊂ R2 and p = 2. This result was extended in [33] to the
case p ∈ (1, 2). Regularity of ∂tu is shown first and after moving ∂tu to the right
hand side the stationary Lq theory is applied.

In the case of generalized Newtonian fluids this method was modified in [52],
where the authors consider the shear-thinning fluid model with periodic boundary
conditions. In contrary to [72] the regularity of ∂tu and ∇u had to be obtained
at once. The authors showed that velocity gradients are Hölder continuous for
p ∈ (4/3, 2]. These results were extended to electro-rheological fluids and non-
zero initial condition in [21].

Among many works concerning regularity theory for generalized Newtonian
fluids we would like to mention two papers dealing with the stationary case. In [51]
the stationary version of (1.19)–(1.21) under homogeneous Dirichlet boundary
conditions is considered. The same authors later in [50] studied the problem
equipped with non-homogeneous Dirichlet boundary conditions with two types
of restriction on boundary data and perfect slip boundary conditions.

We begin with the definition of the weak solution to the problem (1.19)–(1.22).

Definition 5.1.1 Let f ∈ Lp′(I,W−1,p′
σ (Ω)), p ∈ [2,∞) and u0 ∈ L2(Ω). We say

that the function u : I ×Ω 7→ R2 is a weak solution to the problem (1.19)–(1.22),
if u ∈ L∞(I, L2(Ω)) ∩ Lp(I,W 1,p

σ (Ω)), ∂tu ∈ Lp
′
(I,W−1,p′

σ (Ω)), u(0, ·) = u0 in
L2(Ω) and weak formulation∫

I

〈∂tu, ϕ〉 dt+

∫
I

∫
Ω

S(Du) :Dϕ dx dt+

∫
I

∫
Ω

(u · ∇)uϕ dx dt =

∫
I

〈f, ϕ〉 dt

holds for all ϕ ∈ Lp(I,W 1,p
σ (Ω)).
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If we studied also the case p ∈ (1, 2), we would have to consider only test
functions from the space of smooth functions which are regular enough. It is well
known that the weak solution exists and is unique. It could be easily proven
using the monotone operator theory. See for example [67, Chapter 5] for periodic
boundary conditions.

Now we formulate the main results of this paper.

Theorem 5.1.2 Let Ω ⊂ R2 be a bounded non-circular C3 domain and (5.1)
holds for some p ∈ [2,∞). Let u0 ∈ W 2+β,2(Ω) for β ∈ (0, 1/4), div u0 = 0,

f ∈ L∞(I, Lq0(Ω)) and ∂tf ∈ Lq0(I,W
−1,q′0
σ (Ω)) for some q0 > 2. Then there

exists a unique solution (u, π) of (1.19)–(1.22), such that for some α > 0

∇u, π ∈ C0,α(I × Ω).

Remark 5.1.3 It would be very interesting to obtain the same result as in The-
orem 5.1.2 also for the Navier’s boundary condition. In several parts of the proof
of Theorem 5.1.2 we apply results from [54] that are formulated only for perfect
slip boundary conditions. We don’t know how to generalize these results also for
partial slip boundary conditions.

The proof of the main theorem is divided into two parts. At first, the main
theorem is proven in the case of quadratic growth, i.e. p = 2. Further we in-
troduce the quadratic approximation of the stress tensor S(Du) which is done
by the truncation of the generalized viscosity from above, i.e. µε(|Duε|) :=
min{µ(|Du|), 1/ε} for ε ∈ (0, 1). We prove the main result for the approxi-
mated problem and pass from the approximated problem to the original one at
the end.

5.2 Quadratic potential

In this section we prove Theorem 5.1.2 for p = 2.

Step 1 recalls apriori estimates from the existence theory.

For f ∈ W 1,2(I,W−1,2
σ (Ω)) with f(0) ∈ L2(Ω) and u0 ∈ W 2,2(Ω) ∩W 1,2

σ (Ω)
we know the existence of a unique weak solution of (1.19)–(1.22) fulfilling

u ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2
σ (Ω)),

∂tu ∈ L∞(I, L2(Ω)) ∩ L2(I,W 1,2
σ (Ω)), (5.2)

π ∈ L2(I, L2(Ω)).

It can be shown using Galerkin approximation. Let {ωk}∞k=1 be the orthogonal
basis of L2

σ(Ω) and W 1,2
σ (Ω) consisting of eigenvectors of the Stokes operator with

perfect slip boundary conditions. Such basis can be easily constructed provided
Ω is non-circular domain. Set Hn = span{ω1, . . . , ω

N} and define the continuous
projection PN : L2

σ(Ω)→ HN as follows:

PNu =
N∑
k=1

(u, ωk)ωk.
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Define uN(t, x) =
∑N

k=1 c
N
k (t)ωk where cNk (t) solves the Galerkin system

〈∂tuN(t), ωk〉+

∫
Ω

S(DuN) : D(ωk) dx+

∫
Ω

(un ⊗ un) : ∇ωk dx = 〈f, wk〉,

uN(0) = uN0 = PNu0, 1 ≤ k ≤ N.

(5.3)

After multiplying the Galerkin system (5.3) by cNk (t), summing up, using
Gronwall’s and Korn’s inequalities we derive the following apriori estimate

sup
t∈I
‖uN(t)‖2

2 +

∫
I

‖uN(τ)‖2
1,2 dτ ≤ C.

Further we apply the time derivative to (5.3), multiply it by ∂tc
N
k (t) and sum

up. Unlike the previous apriori estimates, before using Gronwall’s inequality,
the boundednes of ‖∂tuN(0)‖2

2 needs to be shown. This can be done easily, since
PN : W 2,2(Ω)∩W 1,2

σ (Ω)→ HN is bounded uniformly with respect to N (c. f. [67,
Lemma 4.26] in case of periodic boundary conditions), we can use (5.3). Thus,
after Gronwall’s inequality we have

sup
t∈I
‖∂tuN(t)‖2

2 +

∫
I

‖∂tuN(τ)‖2
1,2 dτ ≤ C.

Passing to the limit with N → ∞ (where we use the Aubin-Lions’ lemma to
obtain the strong convergence of uN in L2(I, L4(Ω)) and Minty’s trick to identify
the limit of S(DuN) with S(Du)) we get the first two relations in (5.2).

Since ∂tu, divS(Du), div(u⊗ u) and f lie in L2(I,W−1,2
σ (Ω)), we can recon-

struct the pressure π at almost every time level via De Rham’s theorem (Theo-
rem A.5.2) and Nečas’ theorem on negative norms (Theorem A.5.1) and obtain
π ∈ L2(Ω) for almost every t ∈ I.

Step 2 improves the regularity in space.

If we additionally assume f ∈ L∞(I, L2(Ω)) we are able to show that

u ∈ L∞(I,W 2,2(Ω)), π ∈ L∞(I,W 1,2(Ω)). (5.4)

From Step 1 we know that ∂tu is regular enough in order to move it to the right
hand side of (1.19). At almost every time level t ∈ I we can use the stationary
theory. Boundary regularity in tangent direction is based on the difference quo-
tient technique. In normal direction near the boundary the main tools are the
operator curl and Nečas’ theorem on negative norms. For details see Section 2.2.
The information about the pressure comes from the fact that the right hand side
of ∇π = f + divS − div(u⊗ u)− ∂tu is in L2(Ω) for a. a. t ∈ I. Adding the as-
sumption

∫
Ω
π dx = 0 we get by Poincaré inequality the existence of π ∈ W 1,2(Ω)

at almost every time level t ∈ I together with a bound independent of t.
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Step 3 improves the regularity in time using Lp theory for Stokes system.

If we moreover suppose that f ∈ Lq1(I,W
−1,q′1
σ (Ω)) for some q1 > 2 and

u0 ∈ W 2+β,2(Ω) for β ∈ (0, 1/4) we are able to prove the existence of q2 > 2 such
that the unique weak solution satisfies for all q ∈ (2, q2)

∂tu ∈ Lq(I,W 1,q
σ (Ω)) ∩BUC(I, B

1−2/q
q,q,B,σ(Ω)). (5.5)

Denoting w := ∂tu and τ := ∂tπ in the sense of distributions, we observe from
(1.19) that (w, τ) solves∫

I

〈∂tw,ϕ〉 dt+

∫
Q

∂2
DuΦ(|Du|) : Dw ⊗Dϕ dx dt =

∫
I

〈∂t(f − (u · ∇)u), ϕ〉 dt

(5.6)

for all ϕ ∈ Lq(I,W 1,q
σ (Ω)). It is easy to see that ∂t(u · ∇u) ∈ Ls(I,W−1,s(Ω)) for

all s ∈ [1, 4].
In order to obtain (5.5) as a result of application of Lemma 4.5.1 for the system

(5.6) we need to ensure that ‖∂tu(0)‖
B

1−2/q
q,q,B,σ(Ω)

is bounded. Let β ∈ (0, 1/4) and

ϕ ∈ W−β,2(Ω) with ‖ϕ‖W−β,2(Ω) ≤ 1 be arbitrary. We recall that the Helmholtz
projection P enjoys the continuity properties as mentioned in Remark 4.3.3 Thus,

|〈∂tu(0), ϕ〉| = |〈∂tu(0), Pϕ〉| ≤ |〈divS(Du0) + (u0 · ∇)u0 − f(0), Pϕ〉|
≤ C(‖u0‖W 2+β,2(Ω) + ‖u0‖2

W 2,2(Ω) + ‖f(0)‖Wβ,2(Ω)) ≤ C.
(5.7)

Since W β,2(Ω) ↪→ B
1−2/q
q,q (Ω) if q is close enough to 2 we obtain

‖∂tu(0)‖
B

1−2/q
q,q,B,σ(Ω)

≤ C

for all q ∈ (2, q2) where q2 is sufficiently close to 2.
Moving second term on the left hand side of (5.6) to the right hand side and

taking supremum over ϕ ∈ Lq′(I,W 1,q′
σ (Ω)) with norm less or equal to 1 we obtain

∂ttu ∈ Lq(I,W−1,q
σ (Ω)). (5.8)

Step 4 gives u ∈ L∞(I,W 2,q(Ω)) due to the stationary theory.

Previous step shows us that ∂tu ∈ L∞(I, Lq(Ω)) for some q > 2. Therefore
we are able to move ∂tu to the right hand side of (1.19) and apply the stationary
result [50, Theorem 3] for p = 2 which tells us that there exists a positive ε, such
that u ∈ W 2,2+ε(Ω) and π ∈ W 1,2+ε(Ω) for a. a. t ∈ I.

Step 5 improves the regularity of π in time.

There exists a q > 2 such that for all s ∈ (0, 1
2
)

π ∈ W s,q(I, Lq(Ω)). (5.9)
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We closely follow the proof of [49, Lemma 3.4]. For a function g(t) defined on
the time interval I and (t1, t2) ⊂ I set δtg := g(t2)− g(t1). The idea of the proof
is based on subtracting the equation (1.19) in the time t2 from the same equation
in time t1 which leads to∫

Ω

δtπ divϕ dx =

∫
Ω

[δt(∂tu− f)ϕ− δt(u⊗u−S(Du))Dϕ] dx for a.a. t1, t2 ∈ I,

(5.10)
which holds for all ϕ ∈ W 1,2(Ω) with ϕ · ν = 0 on ∂Ω. From (5.5) and (5.8)
one may easily show by interpolation that for all s ∈ (0, 1/2) there exists q > 2
such that u ∈ W s,q(I,W 1,q(Ω)) and ∂tu ∈ W s,q(I, Lq(Ω)). Together with the
assumptions on the right hand side f we can notice that (5.10) holds also for all
ϕ ∈ W 1,q′(Ω) with ϕ = 0 at ∂Ω. Consider the problem

divϕt = δtπ|δtπ|q−2 − 1

|Ω|

∫
Ω

δtπ|δtπ|q−2 dx in Ω,

ϕt = 0 at ∂Ω.

(5.11)

The right hand side of (5.11) has zero mean value over Ω and belongs to Lq
′
(Ω)

due to (5.4), therefore Bogovskĭı’s Lemma A.3.1 guaranties the existence of ϕt

satisfying the estimate ‖ϕt‖1,q′ ≤ C‖δtπ‖q−1
q . Taking ϕt as a test function in

(5.10) leads to

‖δtπ‖qq ≤ ε‖δtπ‖qq + Cε(‖δt∂tu‖qq + ‖δtf‖q−1,q + ‖δt∇u‖qq). (5.12)

Dividing (5.12) by |t2 − t1|1+sq and integrating twice over I gives

‖π‖qW s,q(I,Lq(Ω)) =

∫
I

∫
I

‖δtπ‖qq
|t2 − t1|1+sq

dt1 dt2 ≤ C,

which concludes the proof of (5.9).

Step 6 summarizes the result of this section and uses imbedding theorems to
complete the proof.

Up to now we have shown

u ∈ L∞(I,W 2,q(Ω)) ∩W 1,q(I, Lq(Ω)), π ∈ L∞(I,W 1,q(Ω)) ∩W s,q(I, Lq(Ω)).

As we are in two dimensions, q > 2, s ∈ (1
q
, 1

2
), following imbeddings hold

L∞(I,W 1,q(Ω)) ↪→ L∞(I, C0,1− 2
q (Ω)), (5.13)

W 1,q(I, Lq(Ω)) ↪→ C1− 1
q (I, Lq(Ω)), (5.14)

W s,q(I, Lq(Ω)) ↪→ Cs−
1
q (I, Lq(Ω)). (5.15)

Now we are ready to apply

Lemma 5.2.1 [49, Lemma 2.6] Let Ω ⊂ R2 be a bounded C2 domain. Let f ∈
L∞(I, C0,α(Ω)) and f ∈ C0,β(I, Ls(Ω)) for some α, β ∈ (0, 1) and s > 1. Then
f ∈ C0,γ(I × Ω) with γ = min{α, αβs

αs+2
}.

Using (5.13) and (5.14) together with Lemma 5.2.1 we obtain∇u ∈ C0,α(I × Ω)
for certain α > 0. (5.13), (5.15) with Lemma 5.2.1 gives us π ∈ C0,α(I × Ω) for
some α > 0, which concludes the proof of main results for p = 2.
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5.3 Super-quadratic potential

In this section we prove Theorem 5.1.2 for p > 2. The proof consists of several
steps.

Step 1 introduces quadratic approximations.

In a similar way like in Section 2.3 of Chapter 2 we are concerned with the
regularized problem

∂tu
ε − divSε(Duε) + (uε · ∇)uε +∇πε = f, div uε = 0 in I × Ω,

uε(0, ·) = u0 in Ω,
(5.16)

where we consider quadratic approximation Sε of S defined for ε ∈ (0, 1) by the
truncation of the viscosity µ from above:

µε(|Duε|) := min
{
µ(|Du|), 1

ε

}
, Sε(Duε) := µε(|Duε|)Duε. (5.17)

Scalar potential Φε to Sε(Duε) can be constructed in the following way

Φε(s) :=

∫ s

0

µε(t)t dt

and satisfies growth conditions (5.1) for p = 2, i.e. there exists C1 > 0 and C(ε)
such that for all A,B ∈ R2×2

sym

C1|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ C(ε)|B|2. (5.18)

The approximation (5.17) guarantees that for a fixed ε ∈ (0, 1) the results of
the previous section holds for uε and πε solving (5.16) equipped with the perfect
slip boundary conditions.

Step 2 gives growth conditions dependent on ε.

Due to the results of the previous section we are able to use techniques which
enable us to gain uniform estimates with respect to ε. At first we need a growth
estimates of Φε with precise dependence on ε. In other words, the constant C(ε)
in the estimate (5.18) needs to be specified. To this purpose we define the function

ϑε by ϑε(s) := min{(1 + s2)
1
2 , 1

ε
}. Now, there exist constants 0 < C3 ≤ C4 such

that for all ε ∈ (0, 1) and A,B ∈ R2×2
sym

C3ϑ
ε(|A|)p−2|B|2 ≤ ∂2

AΦε(|A|) : B ⊗B ≤ C4ϑ
ε(|A|)p−2|B|2. (5.19)

As a corollary of (5.19) following estimates can be derived (see [68, Lemma 2.22]
for the proof.)

Cϑε(|A|)p−2|A|2 ≤ Sε(A) : A, (5.20)

C|Sε(A)| ≤ ϑε(|A|)p−2|A|. (5.21)
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The lower estimate in (5.20) can be done independent of ε, since (5.18) holds:

C5|A|2 ≤ Sε(A) : A. (5.22)

At this point we would like to emphasize that from now all constants in following
steps are independent of ε.

Step 3 provides L∞(I, L2(Ω)) ∩ L2(I,W 1,2(Ω)) estimates of uε and ∂tu
ε.

We recall estimates from the previous section which hold also for the approx-
imated problem since the lower bound in (5.22) is independent on ε.

‖uε‖L∞(I,L2(Ω)) + ‖∇uε‖L2(Q) ≤ C, (5.23)

‖∂tuε‖2
L∞(I,L2(Ω)) + ‖∇∂tuε‖L2(Q) ≤ C. (5.24)

The relation (5.23) is an apriori estimate obtained by taking solution as a test
function (at the level of Galerkin approximation). Roughly speaking, the estimate
(5.24) is performed by taking time derivative of the equation (5.16) and testing
by time derivative of uε. More precisely, it is not applied directly to the equation
(5.16), but still to the Galerkin system. In order to estimate the time derivative
of the Galerkin approximation of uε at the time t = 0 we proceed in the same
way like in (5.7).

Note that (5.23) and (5.24) give uε ∈ L∞(I,W 1,2(Ω)):

‖∇uε(s, ·)‖2
2 − ‖∇uε(0, ·)‖2

2 =

∫
Ω

∫ s

0

∂t|∇uε(t, ·)|2 dt dx

≤ 2‖∇uε‖L2(I×Ω)‖∂t∇uε‖L2(I×Ω) ≤ C.

Step 4 describes the boundary ∂Ω.

In order to discuss boundary regularity in following steps, we need a suitable
description of the boundary ∂Ω. Let us denote x = (x1, x2). We suppose that
Ω ∈ C3, therefore there exists c0 > 0 such that for all a0 > 0 there exists n0 points
P ∈ ∂Ω, r > 0 and open smooth set Ω0 ⊂⊂ Ω that we have

Ω ⊂ Ω0 ∪
⋃
P

Br(P )

and for each point P ∈ ∂Ω there exists local system of coordinates for which
P = 0 and the boundary ∂Ω is locally described by C3 mapping aP that for
x1 ∈ (−3r, 3r) fulfils

x ∈ ∂Ω⇔ x2 = aP (x1), B3r(P ) ∩ Ω = {x ∈ Br(P ) andx2 > aP (x1)} =: ΩP
3r,

∂1aP (0) = 0, |∂1aP (x1)| ≤ a0, |∂2
1aP (x1)|+ |∂3

1aP (x1)| ≤ c0.

Points P can be divided into k groups such that in each group ΩP
3r are disjoint

and k depends only on dimension n. Let the cut-off function ξP (x) ∈ C∞(B3r(P ))
and reaches values

ξP (x)


= 1 x ∈ Br(P ),
∈ (0, 1) x ∈ B2r(P ) \Br(P ),
= 0 x ∈ R2 \B2r(P ).
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Next, we assume that we work in the coordinate system corresponding to P .
Particularly, P = 0. Let us fix P and drop for simplicity the index P . The
tangent vector and the outer normal vector to ∂Ω are defined as

τ =
(
1, ∂1a(x1)

)
, ν =

(
∂1a(x1),−1

)
,

tangent and normal derivatives as

∂τα = ∂1 + ∂1a(x1)∂2, ∂ν = −∂2 + ∂1a(x1)∂1.

Step 5 gives uε ∈ L∞(I,W 2,2(Ω)) uniformly in ε ∈ (0, 1).

From Step 3 we obtained that ∂tu
ε ∈ L∞(I, L2(Ω)), therefore we can fix t ∈ I,

move ∂tu
ε to the right hand side of (5.16) and at almost every time level consider

the stationary problem

− divSε(Duε) + (uε · ∇)uε +∇πε = h, div uε = 0 in Ω,

uε · ν = 0, [Sε(Duε)ν] · τ = 0 at ∂Ω,
(5.25)

where h := f − ∂tuε ∈ L2(Ω). Section 5.2 provides uε ∈ W 2,2(Ω),
Sε(Duε) ∈ W 1,2(Ω) and πε ∈ W 1,2(Ω). Thus we can multiply (5.25) by a suitable
test function which is at least in L2(Ω) and integrate over Ω. We focus only on
the boundary regularity and work in the local system of coordinates. Following
[54, Lemma 4.2, Remark 4.9] we choose as a test function ϕ = (ϕ1, ϕ2)

ϕ = (∂2Θ,−∂1Θ),

Θ : = ∂ν(u
ε · τ)ξ2 − uε · (∂ντ + ∂ταν)ξ2 − ∂τα(uε · ν)ξ2.

This test function is constructed in order to get rid of the pressure πε and to
obtain optimal information from the elliptic term. These most difficult esti-
mates, in which we extract from −

∫
Ω

divSε(Duε) ·ϕ dx boundedness of the term∫
Ω
µε(|Duε|)|∇2uε|2 dx, are done in Chapter 2, Section 2.3, therefore we omit the

calculations. It remains to estimate the convective term and the right hand side
of (5.25). We start with the convective term.∫

Ω

[(uε · ∇)uε · ϕ dx =

∫
Ω

∂2Θ(uε1∂1u
ε
1 + uε2∂2u

ε
1)− ∂1Θ(uε1∂1u

ε
2 + uε2∂2u

ε
2)] dx

=

∫
Ω

Θ(−uε1∂2∂1u
ε
1 − uε2∂2

2u
ε
1 + uε1∂

2
1u

ε
2 + uε2∂1∂2u

ε
2) dx = J1,

where we used the fact that there arise no boundary terms while integrating by
parts since Θ = 0 at ∂Ω. Four terms in J1 vanished due to ∂1u

ε
1 = −∂2u

ε
2. Now

we put together terms containing uε1 and integrate by parts in the direction x1,
in other terms we integrate by parts in direction x2. We get

J1 =

∫
Ω

Θ(∂1u
ε
1∂2u

ε
1 − ∂1u

ε
1∂1u

ε
2 + ∂2u

ε
2∂2u

ε
1 − ∂2u

ε
2∂1u

ε
2) dx

+

∫
Ω

[∂1Θ(uε1∂2u
ε
1 − uε1∂1u

ε
2) + ∂2Θ(uε2∂2u

ε
1 − uε2∂1u

ε
2)] dx = J2 + J3.
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One can easily see that J2 = 0 since div uε = 0. Using

Θ = (−∂2u
ε
1 + ∂1u

ε
2 − 2a′′uε1)ξ2

we write out J3 in the following way

J3 =

∫
Ω

[(−∂1∂2u
ε
1 + ∂2

1u
ε
2)(uε1∂2u

ε
1 − uε1∂1u

ε
2)

+ (−∂2
2u

ε
1 + ∂1∂2u

ε
2)(uε2∂2u

ε
1 − uε2∂1u

ε
2)]ξ2 dx

+

∫
Ω

[(−2a′′′uε1ξ
2 − 2a′′∂1u

ε
1ξ

2 + (−∂2u
ε
1 + ∂1u

ε
2 − 2a′′uε1)2ξ∂1ξ)(u

ε
1∂2u

ε
1 − uε1∂1u

ε
2)

+(−2a′′∂2u
ε
1ξ

2 +(−∂2u
ε
1 +∂1u

ε
2−2a′′uε1)2ξ∂2ξ)(u

ε
2∂2u

ε
1−uε2∂1u

ε
2)] dx = J4 +J5.

The term J4 can be rewritten in the following way:

J4 = −1

2

∫
Ω

[u1∂1(∂1u
ε
2 − ∂2u

ε
1)2 + uε2∂2(∂1u

ε
2 − ∂2u

ε
1)2]ξ2 dx

=
1

2

∫
Ω

(∂1u
ε
1 + ∂2u

ε
2)(∂1u

ε
2 − ∂2u

ε
1)2ξ2 dx+

∫
Ω

(uε1ξ∂1ξ + uε2ξ∂2ξ)(∂1u
ε
2 − ∂2u

ε
1)2 dx

+

∫
∂Ω

(uε1ν1 + uε2ν2)(∂1u
ε
2 − ∂2u

ε
1)2ξ2 dx = J6 + J7 + J8.

One can see that J6 = 0, since div uε = 0 and J8 = 0, because uε · ν = 0 at ∂Ω.
Thus,

|J5|+ |J7| ≤ C

∫
Ω

(|uε||∇uε|2 + |uε|2|∇uε|) dx. (5.26)

Using Hölder and Young inequalities, ‖ · ‖2
4 ≤ C‖ · ‖1,2‖ · ‖2 and the information

uε ∈ L∞(I,W 1,2(Ω)) we continue estimating (5.26):

C(‖uε‖2‖∇uε‖2
4 + ‖uε‖2

4‖∇uε‖2) ≤ ε‖∇2uε‖2
2 + C‖u‖2

1,2 + C‖∇uε‖2
2‖uε‖2

2.

The right hand side of (5.25) is estimated easily:∣∣∣ ∫
Ω

h · ϕ dx
∣∣∣ ≤ ∫

Ω

|h|(|∇2uε|+ |∇uε|+ |uε|) dx ≤ C‖h‖2
2 + ε‖∇2uε‖2

2 + C‖u‖2
1,2.

Since µε(|Duε|) > 1 and ε > 0 can be chosen arbitrarily small, we obtain

‖∇2uε‖2
2 ≤

∫
Ω

µε(|Duε|)|∇2uε|2 dx ≤ C, (5.27)

where C doesn’t depend on ε and t ∈ I, therefore we have

uε ∈ L∞(I,W 2,2(Ω)). (5.28)
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Step 6 improves information about ∂tu
ε.

In the same spirit as in Step 3 in Section 5.2 we denote w := ∂tu
ε and τ :=

∂tπ
ε in the sense of distributions, which solves (5.6) where Φ is replaced by Φε.

The right hand side of (5.6) is bounded uniformly with respect to ε ∈ (0, 1) in

Lq0(I,W
−1,q′0
σ (Ω)) for some q0 > 2, since from (5.23), (5.24) and (5.28) we have

∂t[(u
ε · ∇)uε] ∈ Ls(I,W−1,s(Ω)) for all s ∈ [1, 4].

Set Vε := supQ |ϑε(|Duε|)|. From (5.19) we have for all t ∈ I, x ∈ Ω, for all
ε ∈ (0, 1) and A,B ∈ R2×2

sym

c|B|2 ≤ ∂2
AΦε(|A|) : B ⊗B ≤ CV p−2

ε (|A|)|B|2.

From Lemma 4.5.1 we have the existence of positive constants K and L such that
for all q ∈ (2, q2], where q2 := 2 + L/V p−2

ε holds

‖∇w‖Lq(I×Ω) + V
2−p
q

ε ‖w‖
BUC(I,B

1−2/q
q,q,B,σ(Ω))

≤ K
(
‖f‖Lq(I,W−1,q′ (Ω)) + V (p−2)(1−1/q)

ε ‖∂tu0‖B1−2/q
q,q,B,σ(Ω)

)
. (5.29)

Without loss of generality we may assume that q2 < q0. Thus, after estimating
last norm on the right hand side of (5.29) in the same way like in Step 3 in
Section 5.2 we have

‖∂tuε‖BUC(I,B
1−2/q
q,q,B,σ(Ω))

≤ C
(
V

p−2
q

ε + V p−2
ε

)
≤ CV p−2

ε .

Step 7 improves information about ∇2uε.

In this step we obtain better space regularity. Up to now we have ϑε ∈
L∞(I,W 1,2(Ω)). We are going to show that ϑε ∈ L∞(I,W 1,q(Ω)) for some q > 2.

We omit estimates of ∇2uε in the interior of Ω and we focus on estimates near
the boundary. We start with the tangential direction. Localizing the problem,
we work in ΩP

3r, where the boundary is locally described by the C3 mapping ap.
For simplicity we drop the index P .

We multiply (5.25) by −∂ταϕξ, integrate over Ω3r and after similar steps as
in [54, Lemma 4.6] we derive the identity∫

Ω3r

∂ταSε(Duε) : Dϕξ dx = −
∫

Ω3r

h · ∂τα(ϕξ) dx+

∫
Ω

(uε · ∇)uε∂ταϕξ dx

+

∫
Ω3r

Sε(Duε) :
[
∂ταϕ⊗∇ξ −∇ϕ∂ταξ + (∂2

1a, 0)⊗ ∂2ϕξ

+∇
(
ϕ · ∂ταν

ν

|ν|2
ξ
)]

dx+

∫
Ω3r

divSε(Duε) · [(ϕ · ∂ταν)
ν

|ν|2
ξ − ϕ∂ταξ] dx

+

∫
Ω3r

∂2
1a[h2 + (divSε(Duε))2 − (uε · ∇uε)2]ϕ1ξ dx

+

∫
Ω3r

[h1 + ∂1ah2 + divSε(Duε)1 + ∂1a divSε(Duε)2

+(uε · ∇uε)1 + ∂1a(uε · ∇uε)2]ϕ∇ξ dx

(5.30)
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for all ϕ ∈ W 1,q′
σ (Ω), suppϕ ⊂ Ω3r. Terms on the right hand side of (5.30) comes

at first from the fact that we add and subtract some lower order terms in order
to let the boundary term vanish while integrating by parts. Second, tangent
derivative doesn’t commute with the gradient and we use ∇∂ταϕ = ∂τα∇ϕ +
(∂2

1a, 0)⊗ ∂2ϕ. Third, we use the equation (5.25) and replace ∂2π
ε by

h2 + (divSε(Duε))2 + (uε · ∇uε)2 and similarly for ∂ταπ
ε.

We denote w := ∂ταu
εξ − (0, ∂2

1au
ε
1)ξ + z, where z is the solution of

div z = −∂ταuε · ∇ξ − ∂2
1au

ε
1∂2ξ in Ω3r, (5.31)

z = 0 on ∂Ω3r. (5.32)

The right hand side of (5.31) was obtained from div
(
− ∂ταu

εξ + (0, ∂2
1au

ε
1)ξ
)

using the fact that div uε = 0. The role of z is to ensure that divw = 0. On ∂Ω
it holds w · ν = 0 since

w · ν = [∂ταu
ε · ν + ∂2

1au
ε
1]ξ + z · ν = ∂τα(uε · ν)ξ = 0.

Thus, the compatibility condition holds∫
∂Ω

z · ν dσ =

∫
Ω

div z dx =

∫
Ω

div(−∂ταuεξ + (0, ∂2
1au

ε
1)ξ) dx

= −
∫
∂Ω

∂τα(uε · ν)ξ dσ = 0

and z solving (5.31) and (5.32) exists by Bogovskĭı’s Lemma and enjoys the
estimate ‖z‖1,q ≤ C‖∇uε‖q for some C > 0.

Using the definition of w we get from (5.30)∫
Ω

∂DuεSε(Duε) : Dw ⊗Dϕ dx = 〈g, ϕ〉 ∀ϕ ∈ W 1,q′

σ (Ω),

with

〈g, ϕ〉 = RHS of (5.30) +

∫
Ω

∂DuεSε(Duε) : [Dz + ∂ταu
ε ⊗∇ξ+

(∂2
1a, 0)⊗S ∂2u

εξ −D
(
(0, ∂2

1a, 0)ξ
)
]Dϕ dx.

Due to the assumption on f and results from Step 4 we have ‖g‖−1,q′2
≤ CV p−2

ε

and after application of Lemma 4.5.2 we obtain

‖∇∂ταuεξ‖Lq(Ω) ≤ CV p−2
ε . (5.33)

We recall that q depends on ε by the relation q ∈ (2, 2 + L/V p−2
ε ]. In order

to control whole ∇2uε we need an estimate of type (5.33) in the normal direction
which is locally x2. Since ∂2

2u
ε
2 can be expressed from the condition div uε = 0, we

focus on ∂2
2u

ε
1. Following [51, Theorem 3.19] we can extract the desired estimate

from the equation (5.25) after employment of the operator curl. Let us shorten
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Sε(Duε) to Sε and ϑε(|Duε|) to ϑε. Denoting G := ∂2Sε12 we have due to (5.21)
and (5.19)

‖ξG‖−1,q ≤ ‖Sε12‖q ≤ ‖(ϑε)p−2Duε‖q,
‖∂1(ξG)‖−1,q ≤ C‖(ϑε)p−2Duε‖q + C ′‖(ϑε)p−2∂1∇uε‖q.

From the equation (5.25) after application of curl we have

‖∂2(ξG)‖−1,q ≤ C(‖∂1(Sε21 + Sε22 − Sε11)‖q + ‖f‖q + ‖uε · ∇uε‖q + ‖∂tuε‖q)
≤ C

{
‖(ϑε)p−2Duε‖q + ‖(ϑε)p−2∂1∇uε‖q + V p−2

ε + 1
}

:= H.

Nečas’ theorem on negative norms A.5.1 gives

‖ξG‖q ≤ C(‖ξG‖−1,q + ‖∇(ξG)‖−1,q) ≤ H.

From definition of G and symmetry of Du we obtain

∂12Sε12∂2Du
ε
12 =

G

2
− 1

2
∂11Sε12∂2Du

ε
11 −

1

2
∂22Sε12∂2Du

ε
22.

Using ∂12Sε12 ≥ Cϑεp−2 and the condition div uε = 0 we get that

‖ξ(ϑε)p−2∂2
2u

ε
1‖q ≤ H.

Hence,

‖ξ(ϑε)p−2∇2uε‖q ≤ C‖ξG‖q + ‖ξ(ϑε)p−2∇∂ταuε‖q
+ C̃ sup

x1∈(−3r,3r)

|∂1a|‖ξ(ϑε)p−2∇2uε‖q, (5.34)

where C̃ is absolute constant. Since we can choose r sufficiently small in order
to C̃ maxP∈∂Ω supx1∈(−3r,3r) |∂1a| ≤ 1/2, the last term (5.34) can be absorbed into
the left hand side. We have

‖ξ(ϑε)p−2∇2uε‖q2 ≤ CV p−2
ε V p−2

ε . (5.35)

From (5.27) the boundedness of the term
∫

Ω
µε(|Duε|)|∇2uε|2 dx is obtained, in

other words ‖(ϑε) p−2
2 ∇2uε‖2 ≤ C. Interpolation of this result with (5.35) gives

for q ∈ (2, q2)

‖(ϑε)
p−2
2 ∇2uε‖q ≤ CV β2(p−2)

ε , (5.36)

where 1/q = β/q2 + (1 − β)/2. Since it holds ‖(ϑε)p/2‖1,q ≤ ‖(ϑε)p/2‖q +

‖(ϑε) p−2
2 ∇2uε‖q, we want to use the following lemma for f = (ϑε)p/2.

Lemma 5.3.1 Let Ω ⊂ R2 be a bounded C2 domain and f ∈ W 1,q(Ω) for some
q > 2. Then f ∈ C(Ω) and there is C > 0 independent of q such that

sup
Ω
|f | ≤ C

(q − 1

q − 2

)1−1/q

‖f‖1,q. (5.37)
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Proof. Follows from the proof of [90, Theorem 2.4.1]. The result holds also for
Ω ⊂ Rn, with q > n and q − n instead of q − 2 in the denominator of (5.37).

Because q−1
q−2
≤ CV p−2, we obtain

V
p
2
ε ≤ CV (p−2)(1− 1

q
)V β2(p−2)
ε . (5.38)

Note that (p− 2)(1− 1/q)→ p/2− 1 as q → 2 and the exponent containing the
interpolation parameter β can be made arbitrarily small, therefore we can rewrite
(5.38) as Vε ≤ Ĉ for suitable Ĉ > 0. This together with (5.36) gives

sup
t∈I
‖∇2uε‖q ≤ C.

Step 8 passes from the regularized problem to the original one.

In the previous step we showed Vε ≤ Ĉ, where Vε = supI×Ω |ϑε(|Duε|)|. Since

ϑε(s) = min{(1 + s2)
1
2 , 1

ε
} ≤ 1

ε
, it is sufficient to choose ε in order to have Ĉ ≤ 1

ε
.

Thus, uε = u is the solution of the original problem (1.19)–(1.22) and it holds
that supI×Ω(1 + |Du|2)1/2 ≤ C which leads to supt∈I ‖∇2u‖q ≤ C.

Since we passed from the regularized problem to the original one, the regu-
larity of pressure π which we proved in Section 5.2 for quadratic potential holds
also for the super-quadratic case.



6
Conclusion

In presented work some results known for homogeneous Dirichlet boundary con-
ditions were extended also for perfect slip boundary conditions. In Chapter 2,
which is concerned with stationary generalized Stokes system, we were able to
obtain optimal regularity results which are not known in case of homogeneous
Dirichlet boundary conditions. Structure of the perfect slip boundary conditions
allowed us to gain the information about normal part of the gradient of the func-
tion V , in case of homogeneous Dirichlet conditions there is a loss of regularity
due to the absence of some special weighted version of Korn’s inequality and the
presence of pressure. The proof of the main theorem of Chapter 2 is more tech-
nical since we need to overcome new difficulties that bring perfect slip boundary
conditions.

In Chapter 3 we showed Lq estimates up to the boundary. The proof is based
on the paper [23], where the interior estimates are obtained. Here we consider
different method than in Chapter 2. Instead of working directly on a general
boundary, we extended a solution beyond a flat boundary and then went from
the flat boundary to a general one.

In Chapter 4 we collect some known results about the classical Stokes operator
which allow us to get an Lq theory result using the semigroup approach and
interpolation-extrapolation scales. These results together with the results from
Chapter 2 were applied in Chapter 5 to show Hölder continuity of solutions to
the evolutionary generalized Navier-Stokes equations in R2.

Finally, let us mention some open problems which were mentioned only mar-
ginally or remained unsolved in spite of several attempts.

In particular, all the results obtained for perfect slip boundary conditions
would be more interesting in case of Navier’s slip boundary conditions that are
from the point of application more useful. Although some parts of the proofs can
be generalized easily, some technical steps relies on the structure of the perfect
slip boundary conditions. Up to now, we don’t know how to overcome these
difficulties.

Results of Chapters 2 and 3 can be considered as a starting point in achiev-
ing BMO estimates for generalized Stokes system. In [24] BMO estimates for
p−Laplace operator were obtained. These results were later extended in [25] for
generalized Stokes system in the interior of Ω ⊂ R2. Keeping at our disposal
results from Chapters 2 and 3, we could try to extend these result up to the
boundary for perfect slip boundary conditions.
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86 Conclusion

The question of Hölder continuity of velocity gradients and pressure in case
of evolutionary planar flow would be interesting from the point of application in
case of shear thinning fluids, i.e. the case p ≤ 2.

Also for Dirichlet boundary conditions there is still space for new results. For
instance optimal regularity for generalized stationary Stokes problem (Chapter
2) would allow us to cover the case p ∈ [4,∞) in case of Hölder continuity of
velocity gradients and pressure.



A
Appendix

A.1 Description of the boundary and differences

In the following we use the notation x = (x′, xn). Suppose1 that Ω ∈ C3, therefore
there exists c0 > 0 such that for all a0 > 0 there exists n0 points P ∈ ∂Ω, R0 > 0
and open smooth set Ω0 ⊂⊂ Ω that we have

Ω ⊂ Ω0 ∪
⋃
P

BR0
4

(P )

and for each point P ∈ ∂Ω there exists local system of coordinates for which
P = 0 and the boundary ∂Ω is locally described by C3 mapping aP that for
x′ ∈ (−R0, R0) and α, β, γ ∈ {1, . . . , n− 1} fulfils

x ∈ ∂Ω⇔ xn = aP (x′),

ΩP
R0

:= BR0(P ) ∩ Ω = {(x′, xn) ∈ BR0(P ) andxn > aP (x′)},
∂αaP (0) = 0, |∂αaP (x′)| ≤ a0, |∂α∂βaP (x′)|+ |∂α∂β∂γaP (x′)| ≤ c0. (A.1)

Points P can be divided into k groups such that in each group ΩP
R0

are dis-
joint and k depends only on dimension n. By ∇aP (x′) we denote the vector
(∂1aP , . . . ∂n−1aP , 0).

Let the cut-off function ξP (x) ∈ C∞(BR0(P )) be defined via

ξP (x)


= 1 x ∈ BR0

4
(P ),

∈ (0, 1) x ∈ BR0
2

(P ) \BR0
4

(P ),

= 0 x ∈ Rn \BR0
2

(P ).

Let us fix P and drop for simplicity the index P . Next, assume that we work in
the coordinate system anchored at P , i.e. P = 0. The tangent vector in the α
direction and the outer normal vector to ∂Ω are defined as

τα =
(
0, . . . , 0, 1, 0, . . . , 0, ∂αa(x′)

)
, α = 1, . . . , n− 1,

ν =
(
∂1a(x′), . . . , ∂n−1a(x′),−1

)
,

(A.2)

1In some parts of the thesis lower regularity of the boundary is required, but the description
would be analogical.
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tangent and normal derivatives as

∂τα = ∂α + ∂αa(x′)∂n, α = 1, . . . , n− 1,

∂ν =
n−1∑
α=1

∂αa(x′)∂α − ∂n.
(A.3)

We need to work with τα, ν, ∂τα and ∂ν not only on ∂Ω, but on the whole
ΩR0 . We can notice that (A.2) and (A.3) actually define τα, ν, ∂τα and ∂ν on ΩR0 .
Next, we assume that u is sufficiently smooth. It is easy to see, that ∂τα(u ·ν) = 0
on ∂Ω.

Remark A.1.1 There arises no boundary term from the tangent integration by
parts, because if supp g ⊂ BR0

2
or supp f ⊂ BR0

2
then∫

Ω

(∂ταf)g dx =

∫
Ω

(∇f)ταg dx = −
∫

Ω

f∇(ταg) +

∫
∂Ω

fταgν dx

= −
∫

Ω

f(∂ταg + g∇τα) dx.

Let eα, α = 1, . . . , n − 1 be the basis of the coordinate system in Rn−1. For
h ∈ (0, R0

2
) we define the mapping Tα : ΩR0

2
7→ ΩR0 :

Tα : x 7→ (x′ + heα, xn + a(x′ + heα)− a(x′)) = (y′, yn). (A.4)

Then the inverse mapping T−1
α is given by

T−1
α : y 7→ (y′ − heα, yn + a(y′ − heα)− a(y′)) = (x′, xn).

One easily checks that both matrices
(
∂j(Tα)i(x)

)n
i,j=1

and
(
∂j(Tα)−1

i (y)
)n
i,j=1

have

determinant equal to 1. Put

δ+
α g(x) := g(Tαx)− g(x),

δ−α g(x) := g(x)− g(T−1
α x).

For the tangential derivative of any vector function g holds in x ∈ ΩR0
2

∂ταg(x) = lim
h→0

δ+
α g(x)

h
.

The following lemma describes the relation between difference and gradient,
respectively difference and the tangential derivative.

Lemma A.1.2 [68, Section 3, 3.17-3.20] Let p > 1. Then for all g ∈ W 1,p
ν (Ω)n

it holds ∫
ΩR0

2

∣∣∣δ+
α g

h

∣∣∣p dx ≤ c(a)‖∇g‖pp. (A.5)
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If g ∈ Lp(Ω) and if for all h ∈ (0, R0

2
) holds∫

ΩR0
2

∣∣∣δ+
α g

h

∣∣∣p dx ≤ C, (A.6)

then ∂ταg exists in the sense of distribution∫
ΩR0

2

|∂ταg|p dx ≤ C. (A.7)

Lemma A.1.3 [12, Lemma 2.1] Let suppu ⊂ supp ξ. Then

D(u(Tαx)) = (D(u))(Tαx) + (∂nu)(Tαx)⊗S δ+
α∇a,

by the symbol u⊗S ν we understand 1
2
(u⊗ ν + (u⊗ ν)T ).

Lemma A.1.4 Let a(x′) be a C3 mapping locally describing ∂Ω and x′ ∈ (−R0

2
, R0

2
).

Then there exists Cn such that for all h ∈ (0, R0

2
) it holds:

‖a(x′)‖3,∞ +
∥∥∥δ±α a(x′)

h

∥∥∥
2,∞
≤ Cn,

Proof. Clear from (A.5) and properties of the function a(x′).

A.2 N-functions

In this section we focus on some basic properties of N−functions.

Definition A.2.1 A real function Φ : R+ → R+ is called N-function if the
derivative Φ′(s) exists and is right continuous for s ≥ 0, positive for s > 0,
non-decreasing, Φ′(0) = 0 and lims→∞Φ′(s) =∞.

Definition A.2.2 N-function Φ is said to satisfy the ∆2−condition, denoted Φ ∈
∆2, if there exists a positive constant C, such that Φ(2s) ≤ CΦ(s) for s > 0. By
∆2(Φ) we denote the smallest such constant C.

By (Φ′)−1 : R+ → R+ we denote the function

(Φ′)−1(s) := sup{t ∈ R+ : Φ′(t) ≤ s}.

The complementary function of Φ is defined as

Φ∗(s) :=

∫ s

0

(Φ′)−1(t) dt.

It is again an N-function and for all δ > 0 there exists c(δ) > 0 such that for
all s, t ≥ 0 holds so called Young’s inequality

st ≤ δΦ(s) + c(δ)Φ∗(t). (A.8)
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For a measurable function f we can define gauge norm as

‖f‖Φ := inf
{
λ > 0 :

∫
Ω

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

The Orlicz space LΦ(Ω) is defined as the set {f : ‖f‖Φ,Ω <∞}.2
Let f ∈ LΦ(Ω), g ∈ LΦ∗(Ω). Then fg ∈ L1(Ω) and∫

Ω

|fg| dx ≤ 2‖f‖Φ‖g‖Φ∗ .

In particular, for f = χΩ where χΩ is the characteristic function of Ω∫
Ω

|g| dx ≤ 2

Φ−1(|Ω|−1)
‖g‖Φ∗ . (A.9)

It holds
Φ∗(Φ′(s)) ∼ Φ(s). (A.10)

Lemma A.2.3 [80, Section 2.3, Corollary 5]. If Φ ∈ ∆2 is an N−function, then
Φ(s) ≤ Csα, s > s0 for some C > 0 and α > 1. Its complementary function Φ∗

satisfies Φ∗(t) ≥ C ′tβ, t > t0 > 0 for some C ′ > 0 and β > 1.

For a ≥ 0 we define shifted N-function Φa by

Φ′a(s) := Φ′(a+ s)
s

a+ s
. (A.11)

This basically states that cΦ′′a(s) ≤ Φ′′(a + s) ≤ CΦ′′a(s) for some C, c > 0.
Moreover, Φa ∈ ∆2 and Φ∗a ∈ ∆2 uniformly in a, see [22, Appendix].

Lemma A.2.4 (Shift change) [26, Lemma 5.15] Let Φ fulfils Assumption 3.1.1.
Then for any δ > 0 there exists c(δ) > 1 such that for all A,B ∈ Rn×n and s ≥ 0

Φ|A|(s) ≤ c(δ)Φ|B|(s) + δ|V (A)− V (B)|2. (A.12)

Lemma A.2.5 [22, Lemma 31] Let Φ be an N-function with ∆2({Φ∗,Φ}) <∞.
Then there exist δ > 0, c > 0 which depend only on ∆2({Φ∗,Φ}) such that for all
t > 0 and all s ∈ [0, 1]

Φa(st) ≤ cs1+δΦa(t).

Lemma A.2.6 [23, Lemma 2.4] Let Φ satisfy Assumption 3.1.1 and V be defined
as in (5.38). Then for all P,Q ∈ Rn×n we have

(A(P )−A(Q)) : (P−Q) ∼ |V (P )−V (Q)|2 ∼ Φ|P |(|P−Q|) ∼ Φ′′(|P |+|Q|)|P−Q|2

and
|A(P )− A(Q)| ≤ CΦ|P |(|P −Q|).

2In our case Φ always fulfils ∆2−condition, therefore the following sets coincide:

{f ;∃λ > 0 :
∫

Ω
Φ
(
|f(x)|
λ

)
dx <∞}, {f ;∀λ > 0 :

∫
Ω

Φ
(
|f(x)|
λ

)
dx <∞}, {f ;

∫
Ω

Φ(|f |) dx <∞}.
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By Q we denote a cube in Rn with center x0, sides parallel to the axis and
one side equal to 2R, i.e.

Q = Q(x0, R) =

{
x ∈ Rn; sup

i
|xi − (x0)i| < R

}
.

For s > 0 the abbreviation sQ stands a cube with the same center as Q and one
side 2sR, i.e. sQ = Q(x0, sR). By |Q| we mean the volume of Q. For f ∈ L1(Q)
we define

〈f〉Q = −
∫
Q

f(x) dx :=
1

|Q|

∫
Q

f(x) dx.

Lemma A.2.7 [23, Lemma 2.7] For all A ∈ LΦ(Q)n×n it holds

−
∫
Q

|V (A)− V (〈A〉Q)|2 dx ∼ −
∫
Q

|V (A)− 〈V (A)〉Q|2 dx.

Lemma A.2.8 (Sobolev - Poincaré) [22, Lemma 7] Let Φ be an N-function,
∆2({Φ∗,Φ}) < ∞. Then there exist θ ∈ (0, 1) and c > 0 such that the following
holds. If Q ⊂ Rn is some cube and f ∈ W 1,Φ(Q), then3

−
∫
Q

Φ

(
|f − 〈f〉Q|

diamQ

)
dx ≤ c

(
−
∫
Q

Φθ(|∇f |) dx

) 1
θ

. (A.13)

A.3 Bogovskĭı-type lemmata

Lemma A.3.1 (Bogovskĭı’s Lemma for Sobolev spaces) [5, Lemma 3.3, Corol-
lary 3.4] Let Ω ⊂ Rn be a bounded C0,1 domain. Let r ∈ (1,∞) and g ∈ W 1,r(Ω)n

fulfils the compatibility condition∫
∂Ω

g · ν dx = 0.

Then there exists u ∈ W 1,r
0 (Ω)n solving

div u = div g in Ω,

u = 0 on ∂Ω.

Moreover, there exists C > 0 such that

‖u‖r ≤ C‖g‖r.

3If we have a cube Q with one side equal to 2R, the general definition diamQ = sup{|x −
y|, x, y ∈ Q} leads to diamR = 2

√
nR.
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Lemma A.3.2 (Bogovskĭı’s Lemma for Orlicz spaces, case 1) Let Ω ⊂ Rn be
a bounded C0,1 domain. Let Φ be N-function with Φ ∈ ∆2 and Φ∗ ∈ ∆2,
g ∈ LΦ

0 (Ω) := {g ∈ LΦ(Ω);
∫

Ω
g dx = 0}. Then there exists z ∈ W 1,Φ

0 (Ω)n

solving

div z = g in Ω, (A.14)

z = 0 on ∂Ω. (A.15)

Moreover, there exists C > 0 depending only on ∆2(Φ) and ∆2(Φ∗) such that∫
Ω

Φ(|z|) dx+

∫
Ω

Φ(|∇z|) dx ≤ C

∫
Ω

Φ(|g|) dx.

Let Ω ∈ C1,1. There is a constant C > 0 depending only on ∆2({Φ,Φ∗}) such
that if additionally g ∈ W 1,Φ(Ω), then there is a solution z ∈ W 2,Φ(Ω)n∩W 1,Φ

0 (Ω)n

solving (A.17), (A.18) and the following estimate holds

2∑
j=0

∫
Ω

Φ(|∇jz|) dx ≤ C
1∑
j=0

∫
Ω

Φ(|∇jg|) dx. (A.16)

If, moreover, for some r > 0, supp g ⊂ Ωr, we can assume that supp z ⊂ Ω2r.

Proof. The first part of the theorem follows from [27, Theorem 6.6]. Now we
proceed to the situation when g ∈ W 1,Φ(Ω)n. It consist of 5 steps.

Step 1

We notice that from the fact that Φ and Φ∗ satisfy ∆2 condition follows the
existence of 1 < p < q such that Φ(t) = tph(tq−p) and h is pseudoconcave, i.e.
there is a C > 0 such that h(λt) ≤ C max(1, λ)h(t), c.f. [75, Section 5]. Constants
p and q are determined by ∆2({Φ,Φ∗}).

According to [75, Section 5] a bounded linear operator T ∈ L(Lp(Ω), Lp(Ω))∩
L(Lq(Ω), Lq(Ω)) with norm bounded by M > 0 belongs to L(LΦ(Ω), LΦ(Ω)) and
there is a C > 0 depending only on p and q such that the following modular
estimate holds: ∫

Ω

Φ
( |Tg|
M

)
dx ≤ C

∫
Ω

Φ(|g|) dx.

The proof of this estimate is based on L-functional and can be directly re-
peated also for T ∈ L(Lp(Ω)n+1, Lp(Ω))∩L(Lq(Ω)n+1, Lq(Ω)). The corresponding
estimate then looks as follows∫

Ω

Φ
( |Tg|
M

)
dx ≤ C

n∑
k=1

∫
Ω

Φ(|gk|) dx.
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Step 2

Now, we define the canonical linear isometry of Sobolev spaces

J : W 1,r(Ω)→ Lr(Ω)n+1, J g = (g, ∂1g, . . . , ∂ng).

If Ω ∈ C1,1 the subspace J (W 1,r(Ω)) of Lr(Ω)n+1 is closed and complemented.
This is equivalent to the continuity of the solution operator for the problem

−∆u+ u = f + divF in Ω

with homogeneous Neumann boundary condition from Lr(Ω)n+1 to W 1,r(Ω). The
result can be found for r ≥ 2 in [86, Theorem 3.16], for r < 2 it follows by the
duality argument. The required projection is then the solution operator.

The subspace W 1,r(Ω) ∩ Lr0(Ω) is complemented in W 1,r(Ω). The projection
is defined as P (g) = g −

∫
Ω
g dx and it is continuous by embedding theorem.

Consequently, there is a projection Q : Lr(Ω)n+1 onto→ J (W 1,r(Ω) ∩ Lr0(Ω)) which
is continuous for all r > 1, Q is independent of r.

Step 3

In [5, Corollary 3.8] it is possible to find that the problem (A.17), (A.18) is
solvable if g ∈ W 1,r(Ω) ∩ Lr0(Ω) for r > 1. In fact analyzing the proof itself it
is possible to construct a continuous solution operator R : W 1,r(Ω) ∩ Lr0(Ω) →
W 2,r(Ω)n ∩W 1,r

0 (Ω)n. This operator is independent of r > 1.

Step 4

Next, we identify W 1,r(Ω) ∩ Lr0(Ω) with J (W 1,r(Ω) ∩ Lr0(Ω)) and fix α ∈
(N ∪ {0})n with |α| ≤ 2, k ∈ {1, . . . , n}. We define S : Lr(Ω)n+1 → Lr(Ω) by
S(G) = Dα[Rk ◦J−1 ◦P (G)]. This mapping is continuous for any r > 1 by Step 2
and Step 3. It is possible to interpolate it by Step 1. Restricting the operator S to
J (W 1,Φ(Ω)∩LΦ

0 (Ω)) and defining g = J−1(G) we obtain for g ∈ W 1,Φ(Ω)∩LΦ
0 (Ω)

the modular estimate∫
Ω

Φ(|Dα[Rk(g)]|) dx ≤ C
(∫

Ω

Φ(|g|) dx+
n∑
k=1

∫
Ω

Φ(|∂kg|) dx
)
.

Since α was arbitrary, the estimate (A.16) follows by properties of Φ.

Step 5

It remains to find z with supp z ⊂ Ω2r for g with supp g ⊂ Ωr. We find a
solution to (A.17) and (A.18), take a smooth cut-off function η such that χΩr ≤
η ≤ χΩ2r . Compute div(zη) = (div z)η+ z ·∇η = gη+ z ·∇η. It is enough to find
a correction v ∈ W 2,Φ

0 (Ω2r)
n, the solution of the problem div v = z · ∇η. Since

z ·∇η ∈ W 1,Φ
0 (Ω2r)∩LΦ

0 (Ω2r), this is possible by the same methods used to prove
(A.16). The solution operator R from Step 3 satisfies R : W 1,r

0 (Ω2r)∩Lr0(Ω2r)→
W 2,r

0 (Ω2r)
n, cf. [34, Theorem III.3.2].
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Lemma A.3.3 (Bogovskĭı’s Lemma for Orlicz spaces, case 2) Let Ω ⊂ Rn be
a rectangle. Let Φ be an N-function with ∆2({Φ∗,Φ}) < ∞, g ∈ LΦ(Ω), h ∈
W 1,Φ(Ω)n and Γ be one side of Ω. Then there exists a linear mapping B : (g, h)→
z, where z ∈ W 1,Φ(Ω)n solves

div z = g in Ω, (A.17)

z · ν = h · ν on Γ, (A.18)

Moreover, ∫
Ω

Φ(|∇z|) dx ≤ C

(∫
Ω

Φ(|g|) dx+

∫
Ω

Φ(|∇h|) dx

)
, (A.19)

where the positive constant C depends only on ∆2({Φ,Φ∗}).

Proof. Without loss of generality, we may assume that Γ is a part of a hyperplane
{x;xn = 0}. It is enough to consider equation

div z̃ = g − div h−−
∫

Ω

(g − div h) dx in Ω,

z̃ = 0 on ∂Ω.

Furthermore, we define an affine function b : Ω 7→ R3 as follows

bi(x) =


0 for i ∈ {1, . . . , n− 1} and x ∈ Ω,
0 for i = n and x ∈ Γ,

xn−
∫

Ω
(g − div h) dx for i = n and x ∈ Ω.

Then z = z̃ + h + b solves (A.17) and (A.18). According to [27, Theorem 6.6]
there exists a positive constant c independent of diamΩ such that∫

Ω

Φ(|∇z̃|) dx ≤ c

∫
Ω

Φ

(∣∣∣∣g − div h−−
∫

Ω

(g − div h) dx

∣∣∣∣) dx.

The estimate (A.19) follows easily.

A.4 Korn-type Inequalities

Lemma A.4.1 [68, Lemma 6.5] Let Ω ⊂ Rn be a C1 domain, u ∈ W 1,2(Ω)n and
ξ ∈ D(Ω). Then there are positive constants C3 and C4 such that

C3

∫
Ω

|∇u|2ξ2 dx ≤
∫

Ω

|Du|2ξ2 dx+ C4

∫
Ω

|u|2(|∇ξ|2 + ξ2) dx.

Lemma A.4.2 (Korn’s inequality for Orlicz spaces, case 1) Let Ω ⊂ Rn be a
bounded non-axisymmetric C0,1 domain. Let Φ be N-function with ∆2({Φ∗,Φ}) <
∞. Then for all u ∈ W 1,Φ

ν (Ω)n it holds that∫
Ω

Φ(|u|) dx+

∫
Ω

Φ(|∇u|) dx ≤ C

∫
Ω

Φ(|Du|) dx, (A.20)

where C = C(Ω,∆2({Φ∗,Φ})).
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For the proof of this version of Korn’s inequality two propositions will be
needed.

Proposition A.4.3 Let q ∈ (1, 1 + ε) for some suitably small ε > 0. Then

function h(s) defined as h(s) := Φ(s
1
q ) is convex.

Proof.

h′′(s) =
(

Φ′(s
1
q )

1

q
s

1
q
−1
)′

= Φ′′(s
1
q )
(1

q
s

1
q
−1
)2

+ Φ′(s
1
q )

1

q

(1

q
− 1
)
s

1
q
−2

≥ CΦ′′(s
1
q )
(
s

1
q
−1)2 1

q

(2

q
− 1
)
> 0,

where we used Φ′′(s
1
q )s

1
q ≤ CΦ′(s

1
q ).

Proposition A.4.4 [34, Exercise 4.5] Let Ω be a bounded C1 domain, u ∈
W 1,q(Ω), 1 ≤ q <∞ and u · ν = 0 at ∂Ω. Then

‖u‖q ≤ C‖∇u‖q, C ≤ δ(Ω)(|q − 2|+ n+ 1).

Proof of Lemma A.4.2. Using Korn’s inequality [27, Theorem 6.13], which tells
us ∫

Ω

Φ(|∇u− 〈∇u〉|) dx ≤ C

∫
Ω

Φ(|Du− 〈Du〉|) dx,

and convexity of Φ we obtain∫
Ω

Φ(|∇u|) dx ≤
∫

Ω

Φ(|∇u− 〈∇u〉|) dx+

∫
Ω

Φ(|〈∇u〉|) dx

≤ C

∫
Ω

Φ(|Du− 〈Du〉|) dx+

∫
Ω

Φ(|〈∇u〉|) dx

≤ C

∫
Ω

Φ(|Du|) dx+

∫
Ω

Φ(|〈∇u〉|) dx.

(A.21)

We also used convexity of Φ, ∆2-condition and Jensen’s inequality in the last
estimate in (A.21). It remains to estimate the last term in (A.21).∫

Ω

Φ(|〈∇u〉|) dx ≤
∫

Ω

Φ
( 1

|Ω|

∫
Ω

|∇u| dx
)

dx

≤ C(Ω,∆2(Φ))

∫
Ω

Φ
([ ∫

Ω

|∇u|q dx
] 1
q
)

dx

≤ C

∫
Ω

Φ
([ ∫

Ω

|Du|q dx
] 1
q
)

dx =: J ,

where we used Hölder’s inequality, ∆2−condition and Korn’s inequality for Lebesgue
spaces (see cf. [43] and [44]).

To estimate the term J we use the definition of the function h(s), Jensen’s

inequaliy and the fact, that h(tq) = Φ(t) and therefore t = Φ
[
h

1
q

−1(t)
]
, which

follows from implication below

t = ΦΦ−1(t) = h
(
Φq
−1(t)

)
⇒ h−1(t) = Φq

−1(t)⇒ Φ
[
h

1
q

−1(t)
]

= t.
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Thus,

J = C

∫
Ω

Φ
([
h−1h

∫
Ω

|Du|q dx
] 1
q
)

dx

≤ C

∫
Ω

Φ
([
h−1

(∫
Ω

h(|Du|q) dx
)] 1

q
)

dx

= C

∫
Ω

Φ
([
h−1

(∫
Ω

Φ(|Du|) dx
)] 1

q
)

dx

= C

∫
Ω

∫
Ω

Φ(|Du|) dx dx ≤ C(Ω)

∫
Ω

Φ(|Du|) dx.

The first term on the left hand side of (A.20) can be estimated after adding
and subtracting the average of u, Poincaré inequality [27, Theorem 6.5] and
∆2−condition. To estimate

∫
Ω

Φ(|〈u〉|) we use Proposition A.4.4 and then follow
in the same way like in the estimate of

∫
Ω

Φ(|〈∇u〉|).

This version of Korn’s inequality differs from more standard versions which
have an additional term on the right hand side. If we considered boundary con-
ditions u = 0 on ∂Ω, we could admit an arbitrary shape of the domain Ω. Only
because of the boundary conditions u ·ν = 0 on ∂Ω the restriction on the shape of
the domain Ω is necessary. We need to know that Du = 0 a.e. in Ω and u · ν = 0
on ∂Ω together imply u = 0 a.e. in Ω. It holds when Ω is not axisymmetric (see
for example [43, 44] if n = 3). The constant in (A.20) could be used to quantify
the deviation of Ω from axisymmetry. In [20, Theorem 3] the authors obtained
fully explicit upper bounds for the constant C in terms of the geometrical infor-
mation about Ω in the case when there is an L2-norm instead of the modular
norm in (A.20).

Lemma A.4.5 (Korn’s inequalities for Orlicz spaces, case 2) Let Φ be an N− func-
tion with ∆2({Φ,Φ∗}) <∞. There exists a positive constant C such that for any
cube Q ⊂ Rn and function u ∈ W 1,Φ(Q)n it holds that∫

Q

Φ(|∇u|) dx ≤ C

(∫
Q

Φ(|Du|) dx+

∫
Q

Φ

(
|u|

diamQ

)
dx

)
, (A.22)

−
∫
Q

Φa(|∇u− 〈∇u〉Q|) dx ≤ C−
∫
Q

Φa(|Du− 〈Du〉Q|) dx, (A.23)

where a is a positive constant or |Du|. Moreover, if u|∂Q = 0, it holds that∫
Q

Φ(|∇u|) dx ≤ c

∫
Q

Φ(|Du|) dx. (A.24)

Proof. The inequality (A.22) folows from [27]. Namely, one should focus on
Lemma 5.17, Proposition 6.1 and Theorem 6.13 given there. The inequality
(A.23) for a = |Du| is proven in [23, Lemma 2.9] and in [27]. For the proof of
(A.24) see Theorem 6.10 in [27].
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A.5 Miscellaneous

In the following two theorems we deal with the standard Sobolev space Wm,r(Ω)
defined for m ∈ N and r ∈ (1,∞) as follows

Wm,r(Ω) = {f ∈ Lr(Ω); ∀k ∈ Nn, 1 ≤ |k| ≤ m, ∂kf ∈ Lr(Ω)}.

By Wm,r
0 (Ω) we mean the closure of C∞0 (Ω) in Wm,r(Ω). The dual space of

Wm,r
0 (Ω) is denoted by W−m,r′(Ω), and this extends the definition of Wm,r(Ω) to

all negative integer values of m.

Theorem A.5.1 (Nečas’ theorem on negative norms) [5, Theorem 2.3] Let Ω ⊂
Rn be a bounded C0,1 domain, m ∈ Z and r ∈ (1,∞). Then there exists a positive
constant C depending only on Ω,m and r such that for all f ∈ Wm,r(Ω)n it holds

‖f‖m,r ≤ C
(
‖∇f‖m−1,r + ‖f‖m−1,r

)
.

Theorem A.5.2 (De Rham-type theorem) [5, Theorem 2.8] Let Ω ⊂ Rn be
a bounded C0,1 domain, m a non-negative integer, and r ∈ (1,∞). Let f ∈
W−m,r(Ω)n satisfy

〈f, ϕ〉 = 0, ∀ϕ ∈ C∞0 (Ω)n with divϕ = 0.

Then there exists π ∈ W−m+1,r(Ω) such that f = ∇π. If in addition the domain Ω
is connected, then π is defined uniquely, up to an additive constant, by f and there
exists a positive constant C independent of f , such that the following estimate
holds:

‖π − 〈π〉Ω‖W−m+1,r(Ω)n ≤ C‖f‖W−m,r(Ω)n .

We would like to remark that classical De Rham’s theorem is usually formu-
lated for distributions, c.f. [5, Theorem 2.1]. Our version can be considered as a
combination of the classical version with Nečas’ theorem.

Lemma A.5.3 (Reverse Hölder inequality) [35, Proposition V.1.1] Let Q0 be a
cube in Rn. Suppose

−
∫
Q′
fp dx ≤ K

(
−
∫

2Q′
f dx

)p
+ θ−
∫

2Q′
fp dx+−

∫
2Q′

gp dx

holds for any Q′ = Q(x0, R
′) ⊂ Q0 with x0 ∈ Q0 and R′ < min{1

2
dist(x0, ∂Q0), R0},

where R0 > 0, K > 1, θ ∈ [0, 1) are given constants. Then there exists q > p
such that f ∈ Lqloc(Q0) and(

−
∫
Q

f q dx

) 1
q

≤ C

(
−
∫

2Q

fp dx

) 1
p

+ C

(
−
∫

2Q

gq dx

) 1
q

(A.25)

holds for 2Q ⊂ Q0, where side of Q is less than 2R0 and C, ε are positive constants
depending only on K, θ, p, n.
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For a dyadic sub-cube Qk of Q we denote its predecessor by Q̃k.

Lemma A.5.4 Let O ⊂ Rn, 1 ≤ p < q < s < ∞, f ∈ Lq/p(O), g ∈ Lq/p(O)
and w ∈ Lp(O)n. Further, let Q ⊂ O be a cube and Qk be dyadic cubes obtained
from Q. Then there exists ε > 0 independent of Q and O such that the following
implication holds:

If for every dyadic sub-cube Qk ⊂ Q there exists wa ∈ Lp(4Q̃k ∩ O)n with
following properties:(

−
∫

2Q̃k∩O
|wa|s dx

) 1
s

≤ C

2

(
−
∫

4Q̃k∩O
|wa|p dx

) 1
p

, (A.26)

−
∫

4Q̃k∩O
|wa|p dx ≤ C−

∫
4Q̃k∩O

|w|p dx+ C−
∫

4Q̃k∩O
|g| dx, (A.27)

−
∫

4Q̃k∩O
|w − wa|p dx ≤ ε−

∫
4Q̃k∩O

|w|p dx+ C−
∫

4Q̃k∩O
|f | dx, (A.28)

then w ∈ Lq(Q)n. Positive constants C and ε are independent of Qk, wa and w.
Furthermore, there exists a positive constant c independent of f , g and w such
that

−
∫
Q

|w|q dx ≤ c

(
−
∫

4Q∩O
|f |

q
p dx+−

∫
4Q∩O

|g|
q
p dx+

(
−
∫

4Q∩O
|w|p dx

) q
p

)
. (A.29)

The proof itself is based on nonlinear Calderón–Zygmund theory and the
considerations presented in [18]. L. A . Caffarelli and I. Peral proved Lemma A.5.4
in [18, Theorem A] in case f, g = 0. This lemma was later used by L. Diening
and P. Kaplický in [23] for f 6= 0, however, authors did not provide any proof.

Throughout the proof we suppose that the functions wa, w, f and g are
extended by zero outside the domain O. Since volume of 4Q̃k ∩O is proportional
to 4Q̃k, the estimates (A.26), (A.27) and (A.28) still hold true for slightly changed
constants when we replace 4Q̃k ∩ O with 4Q̃k and 2Q̃k ∩ O with 2Q̃k.

We introduce Hardy-Littlewood maximal operator

M(f)(x) = sup
{
−
∫
P

|f(y)| dy, P ⊂ 4Q is a cube containing x

with sides parallel to axes
}
,

which satisfies the weak type (1, 1) inequality on 4Q and strong (r, r) estimate
on 4Q if r ∈ (1,∞). In order to prove Lemma A.5.4 we present the following
observation

Lemma A.5.5 There exists K0 > 2n(p+1) such that for all K > K0 and for every
δ ∈ (0, 1) there exists L ∈

(
0, K0

2

)
and ε > 0 such that for every λ > 0, for A =

{x ∈ Q,M(|w|p) > Kλ,M(|f |) + M(|g|) ≤ Lλ} and B = {x ∈ Q,M(|w|p) > λ}
it holds, that if (A.26), (A.27) and (A.28) hold with ε, then following implication
is true

|Qk ∩ A| > (δ + CBK
−s/p)|Qk| ⇒ Q̃k ⊂ B,
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where CB is a constant coming from (A.26), (A.27) and from strong type (r, r)
estimate for Hardy-Littlewood maximal operator.

Proof. We proceed in a similar way like in [18]. We suppose, for contradiction,
that |Qk ∩ A| > (δ + CBK

−s/p)|Qk| and it is not true that Q̃k ⊂ B for K0

arbitrarily large and K > K0, δ ∈ (0, 1) and ε, L arbitrarily small. Thus there
are points x0 ∈ Q̃k and x1 ∈ (Qk ∩ A) ⊂ Q̃k such that

M(|w|p)(x0) ≤ λ and M(|f |)(x1) +M(|g|)(x1) ≤ Lλ. (A.30)

Then −
∫

4Q̃k
|wa|p dx ≤ Cλ due to (A.27) and (A.30). From (A.26), (A.28) and

(A.30) we get

−
∫

2Q̃k

|wa|s dx ≤ C ′λs/p, −
∫

4Q̃k

|w − wa|p dx ≤ (ε+ L)Cλ. (A.31)

We define an operator M∗ as follows:

M∗(f)(x) = sup

{
−
∫
P

f(y) dy, P is a cube containig x, P ⊂ 2Q̃k

}
. (A.32)

Due to (A.30), it holds for every x ∈ Qk that M(|w|p)(x) ≤ max {M∗(|w|p), 2nλ}.
For K > 2n it follows that

M(|w|p) > Kλ⇒M∗(|w|p) > Kλ. (A.33)

We use (A.31), Tchebyshev inequality and a strong type
(
s
p
, s
p

)
estimate for M∗

in order to obtain the following estimate∣∣∣∣{x ∈ Qk,M
∗(|wa|p) >

K

2p+1
λ

}∣∣∣∣ =

∣∣∣∣∣
{
x ∈ Qk,M

∗(|wa|p)s/p >
(

K

2p+1
λ

)s/p}∣∣∣∣∣
≤ 2s+s/p(λK)−s/p‖|wa|p‖s/ps/p = 2s+s/p(λK)−s/p|2Q̃k|−

∫
2Q̃k

|wa|s dx ≤ CBK
−s/p|Qk|.

(A.34)

Using weak type (1, 1) estimate and (A.31), we get∣∣∣∣{x ∈ Qk,M
∗(|w − wa|p) >

K

2p+1
λ,M(|f |) +M(|g|) ≤ Lλ

}∣∣∣∣
≤ C

2p+1

Kλ

∫
4Q̃k

|w − wa|p dx ≤ C
2p+1

K
(ε+ L) |Qk|. (A.35)

Due to (A.33)

| {x ∈ Qk,M(|w|p) > Kλ,M(|f |) +M(|g|) ≤ Lλ} |
≤ | {x ∈ Qk,M

∗(|w|p) > Kλ,M(|f |) +M(|g|) ≤ Lλ} |
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and, further, using (A.34) and (A.35)

| {x ∈ Qk,M
∗(|w|p) > Kλ,M(|f |) +M(|g|) ≤ Lλ} |

≤
∣∣∣∣{x ∈ Qk,M

∗(|w − wa|p) +M∗(|wa|p) >
K

2p
λ,M(|f |) +M(|g|) ≤ Lλ

}∣∣∣∣
≤
∣∣∣∣{x ∈ Qk,M

∗(|w − wa|p) >
K

2p+1
λ,M(|f |) +M(|g|) ≤ Lλ)

}∣∣∣∣
+

∣∣∣∣{x ∈ Qk,M
∗(|wa|p) ≥

K

2p+1
λ

}∣∣∣∣ ≤ C
2p+1

K
(ε+ L) |Qk|+ CBK

−s/p|Qk|.

By a suitable choice of constants L and ε we get the contradiction with the
very first assumption of this proof.

We will need the following consequence of Calderón-Zygmund decomposition
proved in [18, Lemma 1.2]:

Lemma A.5.6 Let Q be a bounded cube in Rn. Assume that A and B are
measurable sets, A ⊂ B ⊂ Q and that there exists a δ > 0 such that

(i) |A| < δ|Q| and

(ii) for each dyadic sub-cube Qk such that |A ∩Qk| > δ|Qk|, its predecessor Q̃k

is contained in B.

Then |A| < δ|B|.

Corollary A.5.7 Let A and B be defined as in Lemma A.5.5. Let K > 1 be
so large and δ ∈ (0, 1) so small, that K

q
pCK < 1 where CK := (δ + CBK

− s
p ),

moreover, let λ0 > 0 be so large that

C1

λ0

∫
Q

|w|p = δ|Q|, (A.36)

where C1 depends only on the dimension. Then for all λ > λ0 holds |A| < CK |B|.

Proof. From (A.36) follows for all λ > λ0

A ≤ |{x ∈ Q,M(|w|p) > Kλ}| ≤ C1

Kλ

∫
Q

|w|p < δ|Q|, (A.37)

which provides the first assumption of Lemma A.5.6. The second one is given by
Lemma A.5.5. Hence, we conclude the proof by application of Lemma A.5.6.

Proof of Lemma A.5.4. We set h = M(|f |) +M(|g|) and l = M(|w|p). By µh we
denote the distribution function of a function h:

µh(s) = |{x ∈ Q : |h(x)| > s}|, s ≥ 0.

Suppose that constants K, δ and λ0 are fixed as in Corollary A.5.7. Therefore for
any λ > λ0 one may derive

µl(Kλ)− µh(Lλ) ≤ CKµl(λ). (A.38)



Miscellaneous 101

By arguments of a measure theory it is true that l ∈ Lq/p(Q) if and only if

∞∑
k=1

Kk q
pµl(K

kλ) <∞.

Setting λ = Kk−1λ0 in (A.38) we get µl(K
kλ0) ≤ CKµl(K

k−1λ0) + µh(LK
k−1λ0)

for every k ∈ N. Thus,

µl(K
kλ0) ≤ Ck

Kµl(λ0) +
k−1∑
j=0

Cj
Kµh(LK

k−1−jλ0).

Consequently,

∞∑
k=1

Kk q
pµl(K

kλ0) ≤ µl(λ0)
∞∑
k=1

Kk q
pCk

K +
∞∑
k=1

Kk q
p

k−1∑
j=0

Cj
Kµh(LK

k−1−jλ0)

≤ µl(λ0)
∞∑
k=1

(
Kq/pCK

)k
+
∞∑
k=1

Kk q
p

k−1∑
j=0

Cj
Kµh(LK

k−1−jλ0). (A.39)

We point out that δ and K were chosen in order to Kq/pCK < 1. Thus,

µl(λ0)
∞∑
k=1

(
Kq/pCK

)k
<∞.

It holds that

∞∑
k=1

Kk q
p

k−1∑
j=0

Cj
Kµh(LK

k−1−jλ0) =
∞∑
j=0

Cj
K

∞∑
k=j+1

Kk q
pµh(LK

k−1−jλ0)

=
∞∑
j=0

µh(LK
jλ0)

∞∑
i=0

(K
q
p )j+i+1Ci

K

=
∞∑
j=0

(Kq/p)jµh(LK
jλ0)K

q
p

∞∑
i=0

(
Kq/pCK

)i
=

Kq/p

1−Kq/pCK

∞∑
j=0

(Kq/p)jµh(K
jLλ0) <∞,

provided h ∈ L
q
p (Q). Thus from (A.39) we have l ∈ L

q
p (Q) and, consequently,

w ∈ Lq(Q)n.
Further,∫
Q

|w|q dx =

∫
Q

(|w|p)q/p dx ≤
∫
Q

(M(|w|p))q/p dx =

∫ ∞
0

q

p
t
q
p
−1µl(t)︸ ︷︷ ︸

=:ν(t)

dt

=

∫ Kλ0

0

ν(t) dt+

∫ ∞
Kλ0

ν(t) dt = J1 + J2. (A.40)
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To estimate J1 we use weak 1-1 inequality for |w|p. We get

J1 =

∫ Kλ0

0

q

p
t
q
p
−1µl(t) dt ≤ C

∫ Kλ0

0

q

p
t
q
p
−1 1

t

∫
4Q

|w|p dx dt ≤ Cλ
q
p
−1

0

∫
4Q

|w|p dx.

In J2 we use the substitution t = Ks at first, further we increase the domain of
integration and apply (A.38).

J2 =

∫ ∞
λ0

q

p
(Ks)

q
p
−1µl(Ks)K ds ≤ K

q
p

∫ ∞
0

q

p
s
q
p
−1 (CKµl(s) + µh(Ls)) ds

≤ K
q
pCK

∫ ∞
0

q

p
s
q
p
−1µl(s) ds+ C

∫
Q

(
M(f)

q
p +M(g)

q
p

)
dx. (A.41)

The first term on the right hand side of (A.41) can be subsumed in the term∫∞
0
ν(t) dt in (A.40), because K

q
pCK < 1. We put estimates of J1 and J2 into

(A.40) and, after application of a strong-type
(
q
p
, q
p

)
estimate for the maximal

operator, we get∫
Q

|w|q dx ≤ C

∫
4Q

(
|f |

q
p + |g|

q
p

)
dx+ Cλ

q
p
−1

0

∫
4Q

|w|p dx, (A.42)

From (A.37) we know that λ0 = C
δ
−
∫
Q
|w|p dx. Dividing (A.42) by |Q| leads to

−
∫
Q

|w|q dx ≤ C

(
−
∫

4Q

|f |
q
p dx+−

∫
4Q

|g|
q
p dx+

(
−
∫

4Q

|w|p dx

) q
p

)
,

which concludes the proof.

We would like to apply the Calderón-Zygmund theory not only on cubes,
but on a image of diadic subdivision of Q under sufficiently regular mapping T .
Therefore we formulate following corollary.

Corollary A.5.8 Let Q ⊂ O be a cube and Qk diadic subcubes obtained from Q.
Let T : Q → Rn be a bi-Lipschitz mapping and let assumptions of Lemma A.5.4
hold on T (4Q̃k ∩O), resp. T (2Q̃k ∩O) instead of 4Q̃k ∩O, resp. 2Q̃k ∩O. Then
the claim of Lemma A.5.4 holds for T (Q), resp. T (4Q ∩ O).

Proof. The corollary follows easily from the substitution y = Tx and properties
of the mapping T .
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Świerczevska-Gwiazda, A.: On flows of fluids described by an implicit
constitutive equation characterized by a maximal monotone graph, London
Mathematical Society Lecture Notes Series (No. 402), Cambridge University
Press, 26–56, 2012.
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[55] Krasnosel’skĭı, M. A., Rutickĭı, Y. B.: Convex functions and Orlicz
spaces, (Russian) Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow. 1958. English
transl.: P. Noordhoff, Groningen, 1961.

[56] Kristensen, J., Mingione, G.: The singular set of minima of integral
functionals, Arch. Rational Mech. Anal. 180 (2006), no. 3, 331–398.

[57] Kristensen, K., Mingione, G.: Boundary regularity in variational prob-
lems, Arch. Rational Mech. Anal. 198 (2010), no. 2, 369–455.

[58] Kunstmann, P., Weis, L.: Maximal Lp regularity for parabolic equations,
Fourier multiplier theorems and H∞− functional calculus, Functional analy-
tic methods for evolution equations, Lecture Notes in Math., 1855, Springer,
Berlin, (2004) 65—311.

[59] Ladyzhenskaya, O. A.: New equations for the description of the motions
of viscous incompressible fluids, and global solvability for their boundary value
problems, Proc. Stek. Inst. Math. 102 (1967), 95–118.

[60] Ladyzhenskaya, O. A.: On some new equations describing dynamics of
incompressible fluids and on global solvability of boundary value problems to
these equations, Proc. Stek. Inst. Math. 102 (1967), 85–104.

[61] Ladyzhenskaya, O. A.: On some modifications of the Navier–Stokes equa-
tions for large gradients of velocity, Zapiski Naukhnych Seminarov LOMI 7
(1968), 126–154.

[62] Ladyzhenskaya, O. A.: The mathematical theory of viscous incompress-
ible flow, New York London Paris: Gordon and Breach Science Publishers,
1969.
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