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rozděleńı, na základě které byly také odvozeny aproximace hustoty maximálně
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Introduction

Once one derives an estimator or a test statistic, it is also important to derive its
distribution to construct a test or confidence intervals. One may rely on asymp-
totics and with the aid of central limit theorem approximate the distribution.

However, this approach has certain drawbacks. This approximation (under
some assumptions) yields normal distribution, even for the estimators that are
heavy-tailed under finite number of observations. The asymptotics work very well
for larger sample sizes but it is desirable to have asymptotics that work even for
n = 1 (see Huzurbazar (1999)). In case of a smaller number of observations, one
may consider using Edgeworth expansions in order to improve the approximation
to the normal distribution. The ordinary central limit theorem leads only to the
first term of the expansion. One or two more terms often improve this basic
approximation and provide more insight into the distribution. Moreover, these
results help us to study the procedures equivalent to first order and discriminate
among them (see Bickel (1974)).

Unfortunately, the approximation by Edgeworth expansion might yield neg-
ative values for the density in the tails. One of the methods overcoming this
drawback is the so called saddlepoint method with the relative error O(n−1).
The density of the estimator is rewritten using Fourier transform as an integral
of a function of the cumulant generating function. Then, a saddlepoint of this
cumulant generating function is found and the integration path is modified in
a way that it goes through the path of steepest descent from the saddlepoint,
so it captures most of the mass and the remaining contributions to the integral
become negligible (for more information see Huber and Ronchetti (2009)).

The saddlepoint approximations were introduced into statistics by Daniels
(1954) where approximation to the density of mean was derived. Since then
these techniques have been further elaborated by Hampel (1973) and by Field
and Hampel (1982). For the overview on saddlepoint techniques see Field and
Ronchetti (1990), Jensen (1995), and Butler (2007). Hampel (1973) proposed the

small sample asymptotics where he suggested expanding the function g′n
gn

instead
of expanding gn to gain more precise approximation even for very small sample
sizes.

Based on the success and accuracy of saddlepoint approximation to the den-
sity for the estimators (see Jurečková and Sabolová (2011)), saddlepoint test for
M -estimator in parametric model was proposed in Ronchetti et al. (2003). These
tests are asymptotically χ2-distributed but under finite number of observations
exhibit better properties than classical tests based on likelihood (Wald, Rao score,
likelihood ratio). In Ronchetti et al. (2003) these tests were also extended for a
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nonparametric setting where the distribution of the observations under null hy-
pothesis is not available. These procedures exhibit better finite sample behavior
than the available tests by combining excellent accuracy, even in small samples,
and robustness. This thesis will mostly deal with saddlepoint approximations
and tests in quantile regression. Regression quantiles are M -estimators with not
very complicated ρ-function that yields explicit formulae for saddlepoint approx-
imations and test statistics, that is usually not the case for saddlepoint methods.

The thesis is organized as follows. The first chapter contains overview of ba-
sic results in the field of saddlepoint approximations and tests. The saddlepoint
approximations for the density are compared to the exact density for a special
class of estimators in a numerical study. In the second chapter, the density of
simple quantiles and regression quantiles is derived using saddlepoint approxi-
mations in two cases, whether the density of the errors in the linear model is
specified or unspecified. The procedure of approximating the density of averaged
regression quantiles is outlined. The third chapter deals with tests on the value
of simple and regression quantile. A test based on averaged regression quantiles
is introduced. The saddlepoint tests for regression quantiles are derived (both in
parametric and in nonparametric case) and the validity of the method is demon-
strated through a simulation study, which shows both the robustness and the
great accuracy of the new test compared to the available alternatives. In the last
chapter the Kullback-Leibler divergence for exponential family of distributions is
considered and saddlepoint approximations based on this approach are derived.



Chapter 1

Saddlepoint techniques in
statistics

In this chapter theory of saddlepoint approximations for the density of multivari-
ate M-estimators will be presented. Performance of these approximations will be
studied numerically for equivariant M -estimators, i.e. a special class of estima-
tors for which a formula for density under the finite number of observations is
available. Theory of saddlepoint approximations for the density of functions of
M-estimators will be also briefly outlined, and in the following chapter applied in
order to approximate the density of regression quantiles and averaged regression
quantiles. Later, the general theory of saddlepoint tests for M -estimators will be
also introduced in parametric and also nonparametric setup.

1.1 Saddlepoint approximations for the density

of estimators

Let X1, . . . , Xn be i.i.d. vectors with the distribution F (x, θ) and the correspond-
ing density f(x, θ). Consider an M -estimator Tn of parameter θ, defined as a
solution of the equation

n∑
i=1

ψ(Xi, t) = 0

for a suitable ψ-function.
Daniels (1954) derived the saddlepoint approximation of the density of mean.

The density was rewritten using Fourier transform and the integration path was
modified to go through the path of steepest descent, so it captured most of the
mass around saddlepoint.

An approximation of density of an M-estimator is based on techniques derived
for the mean (Field and Ronchetti (1990), Chapter 3); Tn is expressed as a mean
up to a certain order and then the saddlepoint approximation for the mean is
used.

We will introduce a saddlepoint approximation for the density of a multivari-
ate M -estimator. Denote Dj differentiation with respect to θj. The following
assumptions on the functions ψ and f(x, θ) are required in order to develop the
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CHAPTER 1. SADDLEPOINT TECHNIQUES IN STATISTICS 6

approximation. The smoothness conditions on ψ-function are necessary in order
to make Taylor expansion. The saddlepoint approximation for the density of Tn
will be denoted by fn(t). Further, we make the following assumptions:

(S1) The equation
∑n

i=1 ψj(Xi, t) = 0, for j = 1, . . . , p has a unique solution Tn.

(S2) There is an open subset U ⊂ Rp such that
(i) Fθ(U) = 1 for each θ ∈ Θ
(ii) the derivatives Dj ψr(x, θ), DkDjψr(x, θ), DlDkDjψr(x, θ) exist for 1 ≤
r, j, k, l ≤ p.

(S3) For each compact K ⊂ Θ
(i) for 0 ≤ j, k ≤ p,

sup
θ0∈K

Eθ0|DkDjψr(X, θ0)|4 <∞,

(ii) there is an ε > 0 such that for 1 ≤ r, j, k, l ≤ p

sup
θ0∈K

Eθ0( max
|θ−θ0|≤ε

|DlDkDjψr(X, θ)|3) <∞.

(S4) for each θ0 ∈ Θ
Eθ0ψr(X, θ0) = 0

and the matrices

A(θ0) =Eθ0
∂ψ

∂θ
(X, θ0),

C(θ0) =Eθ0 [ψ(X, θ0)ψTr (X, θ0)]

are non singular.

(S5) The functions A(θ) and Eθ[(Dk1Dj1ψr1)(Dk2Dj2ψr2)], 0 ≤ j1, j2, k1, k2 ≤ p,
k1 + j1 ≥ 1, k2 + j2 ≥ 1, 1 ≤ r1, r2 ≤ p are continuous on Θ.

The following theorem summarizes the approximation fn(t) (for proof, see
Field and Ronchetti (1990)):

Theorem 1. If Tn represents the solution of
∑n

i=1 ψr(xi, t) = 0, r = 1, . . . , p,
and Assumptions (S1) – (S5) are satisfied, then an asymptotic expansion for the
density of Tn, say fn, is

fn(t0) = (n/2π)p/2c−n(t0)|detA||detΣ|−1/2{1 +O(1/n)},

where p-dimensional vector α(t0) is a solution of∫
ψr(x, t0) exp

{
p∑
j=1

αjψj(x, t0)

}
f(x)dx = 0, r = 1, . . . , p, (1.1)
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c−1(t0) =

∫
exp

{
p∑
j=1

αj(t0)ψj(x, t0)

}
dx

A =

{
E
∂ψ(x, t)

∂tr
|t=t0

}
1≤r,j≤p

Σ = {Eψj(x, t0)ψr(x, t0)}1≤r,j≤p

and all expectations are with respect to the conjugate density

ht0(x) = c(t0) exp

{
p∑
j=1

αjψj(x, t0)

}
f(x).

The error term holds uniformly for all t0 in a compact set.

Theorem 1 gives the following approximation of the density fn :

gn(t0) =

√
n

2π
c−n(t0)

A(t0)

σ(t0)
. (1.2)

Notice that the saddlepoint approximation requires the existence of moment
generating function of ψ-function. For bounded functions ψ this condition is
satisfied even for random variables X having heavy-tailed distribution. In the case
of the approximation to the density of mean, the existence of moment generating
function of a random variable X is required.

Remark 1. For normally distributed random variables, the (1.1) can be solved
analytically and α(t) = t. For other distributions iterative methods (e.g., Newton-
Raphston) have to be used in order to find the solution of equation (1.1). When
looking for saddlepoint, one might use the fact that α(0) = 0 as a starting point.

We are often interested not in the approximation of the density of the estima-
tor, but we are looking for the approximation of the function of estimator. The
saddlepoint approximation of the function of an M -estimator was introduced in
Fan and Field (1995) where a saddlepoint approximation to the marginal density
of a general function u(.) of an M -estimator was derived. They suggested the
following procedure:

• center the joint conjugate density to the point r0 in the expectation, where
r0 = u(θ0)

• û = u(θ̂) is approximated by a linear combination of score functions

• the approximation is transformed back to an approximation under original
density f.
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1.2 Numerical comparison to the exact density

of equivariant M-estimators

In some special situations, even exact density of the estimator of the shift param-
eter can be derived. One of these cases is a translation equivariant M -estimator,
i. e. Tn satisfying

Tn(X1 + c, . . . , Xn + c) = Tn(X1, . . . , Xn) + c.

1.2.1 Density of equivariant M-estimators

Let X1, . . . , Xn be a sample from the distribution with distribution function
F (x − θ) such that F has an absolutely continuous density f and finite Fisher
information. Let Sn = Sn(X1, . . . , Xn) be a statistic whose distribution function
Hθ(s) is continuously differentiable in θ. Then we have the following identity for
the derivative of Hθ(s) w.r.t. θ (see Jurečková (1999)):

∂Hθ(s)

∂θ
=

∫
S(x1,...,xn)≤s

. . .

∫ n∑
i=1

(
−f

′(xi − θ)
f(xi − θ)

) n∏
i=1

f(xi − θ)dx1 . . . dxn

= Eθ

[
n∑
i=1

(
−f

′(xi − θ)
f(xi − θ)

)
.I[S(X1, . . . , Xn) ≤ s]

]
. (1.3)

Let especially, Tn be a translation equivariant estimator of θ and let gθ(t) be
its density. A possible finite-sample expression for the density gθ(t) we get from
(1.3); it will further enable to study various properties of Tn :

gθ(t) =

∫
T (x1,...,xn)≤t

. . .

∫ n∑
i=1

f ′(xi − θ)
f(xi − θ)

n∏
k=1

f(xk − θ)dx1 . . . dxn (1.4)

= E0

{
n∑
i=1

f ′(Xi)

f(Xi)
I
[
T (X1, . . . , Xn) ≤ t− θ

]}
.

If Tn is a solution of the equation
∑n

i=1 ψ(Xi − t) = 0 with monotone ψ, then
g(t) can be rewritten

gθ(t) = E0

{
n∑
i=1

f ′(Xi)

f(Xi)
I
[ n∑
j=1

ψ(Xj − (t− θ)) ≤ 0
]}

. (1.5)

Although (1.5) is an explicit formula for the density, the integral has to be
approximated numerically, therefore the applicability of the formula is limited
for larger sample sizes. In (Jurečková and Sabolová, 2011) we studied the per-
formance of saddlepoint approximation to the density and compared it with the
exact density for the following translation equivariant M -estimators:

(i) the mean (M-estimator with ψ(x) = x),
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(ii) the Huber M-estimator with

ψ(x) =

{
x : |x| ≤ k
k · sign(x) : |x| ≥ k

,

where k was set to 1.4,

(iii) the maximum likelihood estimator, i.e. the M-estimator with

ψ(x) = −f
′(x)

f(x)
.

The calculation was made for the following parent distributions:

• Standard normal distribution N(0, 1) with density

f(x) = 1√
2π
e−

x2

2 and −f ′(x)
f(x)

= x.

• Logistic distribution Log(0, 1) with density

f(x) = e−x

(1+e−x)2
and −f ′(x)

f(x)
= −1−ex

1+ex
.

• The Student t-distribution with 3 degrees of freedom t3 with density

f(x) = 6
√

3
π(3+x2)2

and −f ′(x)
f(x)

= 4x
3+x2

.

• The Student t-distribution with 5 degrees of freedom t5 with density

f(x) = 100
√

5
3π(5+x2)3

and −f ′(x)
f(x)

= 6x
5+x2

.

Various steps and regions of numerical integration depending on the shape of the
distribution were considered for the specific densities. All numerical integrations
were coded in C. As the approximation of multidimensional integrals is quite time
consuming, the densities using formula (1.4) were evaluated for small n, namely
for n ≤ 4. When approximating mean for n = 1 we get approximation of the
original density f . Results of these approximations are presented in the Fig. 1.1,
where exact density is drawn by the black solid line, saddlepoint approximation
by the red dashed line and formula (1.4) by the green dotted line.

When approximating the density of Tn by formula (1.2), it is necessary to find
α(t), which solves the equation∫

ψ(x, t)eα(t)ψ(x,t)f(x, θ)dx = 0.

For ψ(x, t) = x − t (i.e. the mean), and f(x) being density of N(0, 1) is α(t)
is equal to t. For other distributions and estimators one can use the fact that
α(t) = 0 for t = 0, which provides a good starting point for the Newton-Raphston
method for other t. Then c, S and A are approximated by numerical integration
and then inserted into formula (1.2) for fn.

The results of the numerical study are plotted in Figures 1.2–1.12. Note that
both methods lead to the similar outcomes for normally distributed data. The
results are also quite similar for f logistic unless t is close to 0. The method based
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on (1.4) does not work for the Laplace distribution whose density is not contin-
uously differentiable. As it was already observed by Field and Ronchetti (1990),
their approximation does not work very well for the Laplace distribution, either.
It was not possible to conduct a study for Cauchy distribution as the moment gen-
erating function does not exist. The differences between two methods are smaller
for Huber estimator than for the mean of the Student’s t-distribution, although
the results improve. It is of interest that the approximations are very close to
each other for the maximum likelihood estimators; this apparently demonstrates
the important role of the score functions.

Even though formula (1.4) provides exact expression of the density of the
estimator, the discrepancies are caused by approximation of integrals (even re-
sulting in negative values for Laplace distribution). The main disadvantage of
this method is its time complexity. Since for bigger n the computations take a
lot of time, this method proves to be inefficient for big n. On the other hand,
time consumed when approximating density by saddlepoint techniques does not
grow for bigger n. As the simulations were done for very small sample sizes,
the saddlepoint approximations proved to be very precise even in this extreme
situation.

1.3 Saddlepoint test for M-estimators

As the saddlepoint approximations proved to be very precise, tests forM -estimators
based on similar techniques were later also developed. The test statistic is based
on the value of cumulant generating function of ψ-function evaluated at its sad-
dlepoint. The test is first-order equivalent to classical tests based on likelihood,
but exhibits better second-order properties (see Ronchetti et al. (2003)).

Let us consider a composite hypothesis

H0 : θ1 = θ10 ∈ Rp1 , θ2 ∈ Rp2 ,

where θ = (θT1 , θ
T
2 ), θ̂ = (θ̂T1 , θ̂

T
2 ). We will shortly introduce general theory of

saddlepoint tests for M -estimators, as developed in Ronchetti et al. (2003).
One dimensional test statistic

h(θ̂1) = inf
θ2

sup
λ
{−KF (λ; (θ̂1, θ2))} (1.6)

was proposed in Ronchetti et al. (2003), where

KF (λ, θ) = log EF [eλ
Tψ(Xi,θ)]

is the cumulant generating function of the score ψ(Xi, θ) and expectation is com-
puted with respect to the distribution of the observations under the null hypoth-
esis. Note that (1.6) can be rewritten as

sup
λ
{−KF (λ; t)} = −KF (λ(t); t), (1.7)
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Figure 1.1: Estimated density compared to the exact one for different distribu-
tions, sample size n = 1
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Figure 1.2: Comparison of exact density (blue line) of mean and its saddlepoint
approximation (red dashed line), normal distribution
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Figure 1.3: Comparison of exact density (blue line) of Huber estimator and its
saddlepoint approximation (red dashed line), normal distribution
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Figure 1.4: Comparison of exact density (blue line) of mean and its saddlepoint
approximation (red dashed line), logistic distribution
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Figure 1.5: Comparison of exact density (blue line) of Huber estimator and its
saddlepoint approximation (red dashed line), logistic distribution
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Figure 1.6: Comparison of exact density (blue line) of MLE and its saddlepoint
approximation (red dashed line), logistic distribution



CHAPTER 1. SADDLEPOINT TECHNIQUES IN STATISTICS 17

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n=2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n=3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

n=4

Figure 1.7: Comparison of exact density (blue line) of mean and its saddlepoint
approximation (red dashed line), Student t3 distribution
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Figure 1.8: Comparison of exact density (blue line) of Huber estimator and its
saddlepoint approximation (red dashed line), Student t3 distribution
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Figure 1.9: Comparison of exact density (blue line) of MLE and its saddlepoint
approximation (red dashed line), Student t3 distribution
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Figure 1.10: Comparison of exact density (blue line) of mean and its saddlepoint
approximation (red dashed line), Student t5 distribution
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Figure 1.11: Comparison of exact density (blue line) of Huber estimator and its
saddlepoint approximation (red dashed line), Student t5 distribution
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Figure 1.12: Comparison of exact density (blue line) of MLE and its saddlepoint
approximation (red dashed line), Student t5 distribution
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where λ(t) is the saddlepoint satisfying

∂

∂λ
KF (λ, t) = 0,

i.e.
EF [ψ(Xi, t)e

λTψ(Xi,t)] = 0.

Moreover, in the case of simple hypothesis, the test statistic simplifies to

h(θ̂) = −KF (λ(t), t).

If observations X1, . . . , Xn are independent but not identically distributed, cu-
mulant generating function is replaced by

KF (λ, θ) =
1

n

n∑
i=1

KF i(λ, θ),

where KF i(λ, θ) = log EF i [e
λTψ(Xi,θ)] and F i is the distribution function of Xi.

Under H0

2nh(θ̂1)
D−−−→

n→∞
χ2
p1

with a relative error of order O(n−1), for assumptions and the proof see Ma and
Ronchetti (2011). This test is first-order equivalent to the three classical tests, but
exhibits better second-order properties, i.e. has better small sample properties.

In case F is not known, empirical test based on empirical exponential like-
lihood may be used. Denote by F0 the true cumulative distribution function
of X1, . . . , Xn and by F̂0 = (w1, . . . , wn) its empirical cdf that is closest to
(1/n, . . . , 1/n) and is obtained by minimizing backward Kullback-Leibler diver-
gence. The saddlepoint test statistic under F̂0 has the form

ĥ(θ̂) = inf
θ2

sup
λ

{
−Kw

0 (λ, (θ̂1, θ2))
}
,

where

Kw
0 (λ, θ) = log

(
n∑
i=1

wie
λTψ(xi,θ)

)
,

and weights wi are computed as

wi = eµ(θ∗)Tψ(xi,θ
∗)/

n∑
j=1

eµ(θ∗)Tψ(xj ,θ
∗), (1.8)

where

θ∗ =(θ10 , θ
∗
2)

θ∗2 = arg min
θ2
{−κ(λ(θ10, θ2), (θ10, θ2))} (1.9)

µ(θ) = arg max
µ
{−κ(µ, θ)} (1.10)

κ(λ, θ) = log

(
1

n

n∑
i=1

eµ(θ)Tψ(xi,θ)

)
. (1.11)
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When n→∞, the p-value satisfies

PH0{2nĥ(θ̂1) ≥ 2nĥ(θ̂1obs)} = {1−Qp1(2nĥ(θ̂1obs)){1 +OP (n−1)}},

where Qp1 denotes cdf of the χ2 distribution with p1 degrees of freedom. The
assumptions and the proof can be found in (Ma and Ronchetti, 2011).



Chapter 2

Saddlepoint approximations of
the density in quantile regression

In this chapter the distribution of regression quantiles will be studied. Quantile
regression enables us to study the conditional quantiles of a dependent random
variable and therefore offers a more complex view at its behavior. By appropriate
choice of quantile we can study not only conditional median but also behavior in
tails and get an idea about variability of a studied random variable. Although
finite-sample distribution of regression quantiles has been already derived by var-
ious authors, its formula is not suitable for computing. Distribution of a simple
quantile will be also studied as a special case of regression quantile.

2.1 Regression quantiles

Quantile regression was introduced in 1978 in a paper Koenker and Bassett (1978)
as an alternative to nonrobust least squares estimators for the linear model. Effi-
ciency of these estimators is comparable to least squares estimator (LSE) under
normality, whilst it outperforms LSE in models with non-Gaussian errors. Instead
of modelling the conditional expectation of the response given the covariates,
models the α quantiles of the conditional distribution and provides a richer infor-
mation on the underlying relationship between the response and the covariates.
From the original formulation for the standard regression model, many extensions
have been provided, including generalized linear models, survival data, autore-
gressive models, penalized methods, and nonparametric regression. Moreover,
many applications in various fields ranging from economics, finance to biology
and ecology have been developed. An excellent overview on theoretical, compu-
tational, and applied aspects is given in the book Koenker (2005).

Definition 1. (Koenker and Bassett, 1978) Let us consider a linear model

Yi = XT
i β + ei, (2.1)

where β ∈ Rp+1, Xi = (1, Xi1, . . . , Xip), and ei are i.i.d. with distribution func-
tion F . The αth regression quantile, 0 < α < 1 is defined as any solution to the

25
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minimization problem

min
b∈Rp+1

 ∑
i∈{i:yi≥xTi b}

α|yi − xTi b|+
∑

i∈{i:yi<xTi b}

(1− α)|yi − xTi b|


Since its influence function (Hampel (1974), Hampel et al. (1986)) is propor-

tional to the score function, it is bounded and the regression quantile estimator is
robust against small deviations from the underlying error distribution and against
possible outlying observations in the response variable.

Remark 2. The minimization problem in the definition of regression quantile is
equivalent to the following optimization problem, which solution are the so-called
regression rank scores:

maxYT â

s.t. XT â = (1− α)XT1n

â ∈ [0, 1]n.

The asymptotic distribution of the regression quantile was derived by Koenker
and Bassett (1978).

Theorem 2. (Asymptotic distribution of regression quantiles) Let the following
conditions be satisfied

(A1) The distribution functions {Fi} are absolutely continuous, with continuous
densities {fi} uniformly bounded away from 0 and ∞ at the points ξi(α) =
F−1
i (α), i = 1, 2, . . .

(A2) There exist positive definite matrices D0 and D1(α) such that

(i) limn→∞
1
n
XTX = D0,

(ii) lim 1
n

∑n
i=1 fi(ξi(α))xix

T
i = D1(α),

(iii) maxi=1,...,n ||xi||/
√
n→ 0

Then √
n(β̂α − βα)

D−−−→
n→∞

N(0, α(1− α)D−1
1 D0D

−1
1 )

and in the iid error model

√
n(β̂α − β)

D−−−→
n→∞

N

(
0,
α(1− α)

f 2
i (ξi(α))

D−1
0

)
.

Finite-sample distribution of regression quantiles was already derived in sem-
inal paper Koenker and Bassett (1978), although the result is not suitable for
computing. The density of a regression quantile for a finite number of observa-
tions was later also derived by (Jurečková, 2010).
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Theorem 3. Consider the linear regression model with deterministic regression
matrix X of rank p, with the first column equal to 1n. Assume that the errors
e1, . . . , en are i.i.d. with absolutely continuous distribution function F and with
density f , absolutely continuous and positive for z ∈ (a, b) where a = inf{z :
F (z) > 0} and b = sup{z : F (z) < 1}. Then the αth regression quantile β̂α,
0 < α < 1 has the density

g(b;α) =
∑

a∈An(α)

n∏
i=1

[(
F (xT

i [b− β])
)I[ai=0] (

1− F (xT
i [b− β])

)I[ai=1]×

(
f(xT

i [b− β])
)I[0<ai<1]

]
, b ∈ Rp+1,

where

An(α) =

{
a : 0 ≤ ai ≤ 1, i = 1, . . . , n,

n∑
i=1

xiai I[ai > 0] = (1− α)
n∑
i=1

xi and

0 < aij < 1, j = 1, . . . , p for 1 ≤ i1, . . . , ip ≤ n such that

xi1 , . . . ,xip is a basis of Rp
}
.

While working with regression quantiles, a problem of estimating the quantity
q(α) = 1

f(F−1(α))
often arises (the so called quantile density function), see the

asymptotic distribution in Theorem 2. One of the methods how to solve this was
proposed in Dodge and Jurečková (2000) where a histogram-type estimator was
suggested

Hn(α) =
1

2νn

[
β̂α1(α + νn)− β̂α1(α− νn)

]
,

where β̂α1 denotes the first component of a regression quantile and the recom-
mended choice of bandwidth νn is

νn =

(
q(α)

q′′(α)

)2/5(
9

2

)1/5

n−1/5.

The population counterpart of the α-regression quantile β̂α is the α-population
regression quantile (β0 + F−1(α), β1, . . . , βp).

Even though regression quantile is an M -estimator, due to the form of ρ-
function, the assumptions on smoothness of its derivative required by saddlepoint
techniques are usually not satisfied. Let us mention a useful result by (Ruppert
and Carroll, 1980).

Lemma 1. Ruppert and Carroll (1980) Let r1, . . . , rn be the residuals from pre-
liminary estimate β0, suppose 0 < α < 1, and let µn be a sequence of solutions
to

n∑
i=1

ρα(ri − µn) = min.

Then

n−1/2

n∑
i=1

ψα(ri − µn)→ 0 a.s.
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In addition, the sequence of solutions β̂α satisfies

n−1/2

n∑
i=1

xiψα(yi − xiβ̂α) −−−→
n→∞

0 a.s.

2.2 Saddlepoint approximation to the density of

regression quantile

Saddlepoint approximations to the density of M -estimators have proved to be
very accurate. Unfortunately, one of their drawbacks is a need of numerical meth-
ods when computing saddlepoint and explicit solution is only rarely available.
Because the ρ-function and its directional derivatives for regression quantiles is
very simple, it allows us to write not only the saddlepoint, but the approximation
to the density in explicit form.

In the following computations we will use

ψα(Yi,b) = (α− I[Yi −XT
i b < 0])Xi.

Notice, that ψα(·) is bounded (this implies the existence of moment generating
function of ψ-function) and the derivative does not exist in one point.

2.2.1 Parametric case

To carry out the computations in this case, we assume for convenience that (Yi,xi)
are independent identically distributed with density g(yi−xTi β)k(xi), where k(·)
is the density of xi.

Theorem 4. Consider model (2.1) and assume that conditions (S1) – (S5) are
satisfied. Then the asymptotic expansion for the density of a regression quantile
is

fn(b) =
( n

2π

)1/2

c−n(b)A(b)/σ(b)[1 +O(n−1)],

where

c−1(b) =
αα−1

(1− α)α

∫ (
1−G

(
xTi (b−β)

σ

))α−1

G
(

xTi (b−β)

σ

)α
[
G

(
xTi (b− β)

σ

)2

+ α

−2αG

(
xTi (b− β)

σ

)]
k(xi)dxi

A(b) =c(b)

∫ (1− α)xi

1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
α−1

g

(
xTi (b− β)

σ

)
+

+αxi

1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
α g(xTi (b− β)

σ

)xik(xi)dxi
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and

σ2(b) =c(b)

∫ [
(1− α)G

(
xTi (b−β)

σ

)]α
[(

1−G
(

xTi (b−β)

σ

))
α
]α−1k(xi)xix

T
i dxi.

Remark 3. The saddlepoint approximation to the density of regression quantile
equals

gn(b) =
( n

2π

)1/2

c−n(b)A(b)/σ(b).

Proof. The saddlepoint approximation to the density of regression quantile will
be derived using Theorem 1, in particular we use the formula

fn(b) =
( n

2π

)1/2

c−n(b)A(b)/σ(b)[1 +O(n−1)],

where γ(b) is a solution of the equation∫
ψ(y,b) exp{γψ(y,b)}f(y)dy = 0

and

c−1(b) =

∫
exp{γψ(y,b)}f(y)dy

σ2(b) = Ebψ
2(y,b)

A(b) = EbDψ(y,b),

where Eb is expected value with respect to the conjugate density

hb(y) = c(b)exp{γ(b)ψ(y,b)}f(y).

The saddlepoint γ(b) satisfies the following equation∫
(α− I[yi − xTi b < 0])xie

γ(α−I[yi−xTi b<0])xi
1

σ
g

(
yi − xTi β

σ

)
k(xi)dxidyi = 0.

Using the form of ψ-function we can rewrite this equation in the form∫ ∫
αxie

γαxie−γ I[yi<xTi b]xig

(
yi − xTi β

σ

)
k(xi)dxidyi =

∫ ∫
I[yi < xTi b]xie

γαxie−γ I[yi<xTi b]xig

(
yi − xTi β

σ

)
k(xi)dxidyi

and using the indicator functions it simplifies to

α

∫ (∫ xTi b

−∞
e−γxig

(
yi − xTi β

σ

)
dyi +

∫ ∞
xTi b

g

(
yi − xTi β

σ

)
dyi

)
xie

γαxik(xi)dxi =
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∫ (∫ xTi b

−∞
exp{−γxi}g

(
yi − xTi β

σ

)
dyi

)
eγαxixik(xi)dxi

(1− α)

∫ xTi b

−∞
e−γxig

(
yi − xTi β

σ

)
dyi =α

∫ ∞
xTi b

g

(
yi − xTi β

σ

)
dyi

e−γ(b)xi =
α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

)
It is not possible to find explicit formula for saddlepoint γ(b), in the following
computations it is sufficient to consider the following function of saddlepoint

−γ(b)xi = log
α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

) .

Based on the derived saddlepoint, we can compute the following expectations
w.r.t. conjugate density (see Theorem 1.1)

c−1(b) =

∫
exp{γψ(yi,b)} 1

σ
g

(
yi − xTi β

σ

)
k(xi)dyidxi

=

∫ ∫  α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

)
α−I[yi<b]

1

σ
g

(
yi − xTi β

σ

)
k(xi)dyidxi

=
1

σ

∫ ∫ xTi b

−∞

 α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

)
α−1

g

(
yi − xTi β

σ

)
dyi+

+

∫ ∞
xTi b

 α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

)
α

g

(
yi − xTi β

σ

)
dyi

 k(xi)dxi

=

∫  α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

)
α−1

G

(
xTi (b− β)

σ

)
+

+

 α

1− α

1−G
(

xTi (b−β)

σ

)
G
(

xTi (b−β)

σ

)
α

(1−G
(

xTi (b− β)

σ

)
)k(xi)dxi

=
αα−1

(1− α)α

∫ (
1−G

(
xTi (b−β)

σ

))α−1

G
(

xTi (b−β)

σ

)α
[
G

(
xTi (b− β)

σ

)2

+ α

−2αG

(
xTi (b− β)

σ

)]
k(xi)dxi
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σ2(b) =c(b)

∫ ∫
(α− I[yi < xTi b])2xix

T
i

1

σ
g

(
yi − xTi β

σ

)
k(xi)∗

∗ e
− log α

1−α

1−G
(

xTi (b−β)
σ

)

G

(
xT
i
(b−β)

σ

) (α−I[yi<xTi b])

dxi

=c(b)

∫ (α− 1)2

 (1− α)G
(

xTi (b−β)

σ

)
α
(

1−G
(

xTi (b−β)

σ

))
α−1

G

(
xTi (b− β)

σ

)
+

+α2

(1− α)G
(

xTi (b−β)

σ

)
α(1−G

(
xTi (b−β)

σ

)
)

α(
1−G

(
xTi (b− β)

σ

)) k(xi)xix
T
i dxi

=c(b)

∫ [
(1− α)G

(
xTi (b−β)

σ

)]α
[(

1−G
(

xTi (b−β)

σ

))
α
]α−1k(xi)xix

T
i dxi

A(b) =EbDψ(yi,b)

=c(b)

∫ 1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
(α−I[yi<xTi b])

1

σ
g

(
yi − xTi β

σ

)
× k(xi)Dψ(yi,b)dyidxi

=c(b)

∫ 
ψ(yi,b)g

(
yi − xTi β

σ

)1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
(α−I[yi<xTi b])


∞

−∞

−

−
∫ ∞
−∞

ψ(yi,b)

 1

σ
g

(
yi − xTi β

σ

)1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
(α−I[yi<xTi b])


′

dyi


× xik(xi)dxi

=c(b)

∫ 
∫ xTi b

−∞
(1− α)xi

1

σ
g′
(
yi − xTi β

σ

)1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
(α−1)

−

−
∫ ∞
xTi b

αxi
1

σ
g′
(
yi − xTi β

σ

)1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
αxik(xi)dxi
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=c(b)

∫ (1− α)xi

1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
α−1

g

(
xTi (b− β)

σ

)
+

+αxi

1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
α g(xTi (b− β)

σ

)xik(xi)dxi

Remark 4. In case the matrix X is known, the saddlepoint approximation to the
density of regression quantile equals

fn(b) =
( n

2π

)1/2

c−n(b)A(b)/σ(b)[1 +O(n−1)],

where

c−1(b) =
αα−1

(1− α)α

n∑
i=1

(
1−G

(
xTi (b−β)

σ

))α−1

G
(

xTi (b−β)

σ

)α
[
G

(
xTi (b− β)

σ

)2

+ α

−2αG

(
xTi (b− β)

σ

)]

A(b) =c(b)
n∑
i=1

(1− α)xi

1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
α−1

g

(
xTi (b− β)

σ

)
+

+αxi

1− α
α

G
(

xTi (b−β)

σ

)
1−G

(
xTi (b−β)

σ

)
α g(xTi (b− β)

σ

)xi

σ2(b) =c(b)
n∑
i=1

[
(1− α)G

(
xTi (b−β)

σ

)]α
[(

1−G
(

xTi (b−β)

σ

))
α
]α−1 xix

T
i .

As a special case, we may compute the saddlepoint approximation to the
density of a sample quantile.

Corrollary 1. Assume the conditions (S1) – (S5) are satisfied. The saddlepoint
approximation to the density of a sample α-quantile equals

fn(b) = −
√

n

2π

(
1− α

1−G(b)

)n(α−1)(
G(b)

α

)nα
g(b)

log
(

1−α
α

G(b)
1−G(b)

) α−G(b)

G(b)(1−G(b))

√
α(1− α).
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Proof. The computations of saddlepoint γ(b), c−1(b) and σ2(b) are straightforward
and we get

γ(b) = log
1− α
α

G(b)

1−G(b)

c−1(b) =

(
1− α

1−G(b)

)α−1(
G(b)

α

)α
σ2(b) =α(1− α),

where the conjugate density equals

hb(y) =

(
1− α

1−G(b)

)1−α(
α

G(b)

)α(
1− α
α

G(b)

1−G(b)

)α−I[y<b]

g(y).

When computing A(b), in order to deal with the derivative of ψ-function, the
expectation has to be computed using integration by parts:

A(b) =EbDψ(y, b)

=

(
1− α

1−G(b)

)1−α−1(
α

G(b)

)α ∫ ∞
−∞

∂ψ(y, b)

∂y

(
1− α
α

G(b)

1−G(b)

)α−I[y<b]

g(y)dy

=− 1

log
(

1−α
α

G(b)
1−G(b)

) ( 1− α
1−G(b)

)1−α(
α

G(b)

)α{[(
1− α
α

G(b)

1−G(b)

)α−I[y<b]

g(y)

]∞
−∞

−
∫ ∞
−∞

(
1− α
α

G(b)

1−G(b)

)α−I[y<b]

g′(y)dy

}

=− 1

log
(

1−α
α

G(b)
1−G(b)

) ( 1− α
1−G(b)

)1−α(
α

G(b)

)α{(
1− α
α

G(b)

1−G(b)

)α−1

g(b)

−
(

1− α
α

G(b)

1−G(b)

)α
g(b)

}
=− g(b)

log
(

1−α
α

G(b)
1−G(b)

) α−G(b)

G(b)(1−G(b))
.

Thus the saddlepoint approximation to the density of a sample quantile equals

−
√

n

2π

(
1− α

1−G(b)

)n(α−1)(
G(b)

α

)nα
g(b)

log
(

1−α
α

G(b)
1−G(b)

) α−G(b)

G(b)(1−G(b))

√
α(1− α).

Because the formula for exact density of order statistic is available, we might
compare it to the derived approximation. In the following numerical study we
considered sample quantiles of standard normal distribution and exponential dis-
tribution with parameter λ = 2 for different sample sizes (n = 11, 21, 31, 41)
and different values of α (α = 0.1, 0.3, 0.5). The exact density is plotted by red
lines, the approximation by black lines. As expected, these two differ mostly for
α = 0.1. When increasing α and sample size, the saddlepoint approximation
proves to be very precise.
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Figure 2.1: Density of a sample quantile, comparison of exact density (red) and
its saddlepoint approximation (black), normal distribution
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Figure 2.2: Density of a sample quantile, comparison of exact density (red) and
its saddlepoint approximation (black), exponential distribution
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2.2.2 Nonparametric case

In case the distribution of errors in regression model is not known, it is possible
to use the so-called empirical saddlepoint approximation. Let us consider model

Yi = xTi β + ei, i = 1, . . . , n,

where e1, . . . , en are i.i.d. with distribution function F .
α-regression quantile βα is an approximate solution of

n∑
i=1

(α− I[yi − xTi β < 0])xi = 0.

Let us denote

Iij(b) =I[ri + xTj (β̂α − b) < 0],

F j
n(b) =

1

n

n∑
i=1

Iij(b).

Empirical saddlepoint density approximations were developed in Ronchetti
and Welsh (1994). In case of the regression model, the derivation of the ap-
proximation to the density is a bit more complicated than in i.e. location mod-
el, as it is necessary to consider the empirical distribution function of residuals
ri = yi−xT

i β̂α, i = 1, . . . , n. The computations remind of those in the parametric
case where the integrals are usually replaced by the sums.

Theorem 5. Consider model (2.1) and assume that conditions (a) – (e) in
Ronchetti and Welsh (1994) are satisfied. Then the saddlepoint approximation to
the density of regression quantile in case the distribution of e1, . . . , en is unspeci-
fied, equals

ĝn(b) =
( n

2π

)s/2 ∣∣∣Σ̂(b)
∣∣∣−1/2 ∣∣∣Â(b)

∣∣∣ exp

{
n∑
j=1

K̂j(b)

}
where

K̂j = log

(
1

n

(
1− α
α

F j
n(b)

1− F j
n(b)

)α n∑
i=1

(
1− α
α

F j
n(b)

1− F j
n(b)

)Iij(b)
)

Σ̂(b) =
1

n

n∑
j=1

1∑n
l=1

(
α

1−α
1−F jn(b)

F jn(b)

)Ilj(b)

{
n∑
i=1

(α− Iij(b))2

(
α

1− α
1− F j

n(b)

F j
n(b)

)Iij(b)
}
xjx

T
j

Â(b) =
1

n

n∑
j=1

1∑n
l=1

(
α

1−α
1−F jn(b)

F jn(b)

)Ilj(b)

n∑
i=1

(
∂

∂b
(α− Iij(b))xj

)(
1− α
α

F j
n(b)

1− F j
n(b)

)−Iij(b)

Proof. The saddlepoint approximation to the density (see Ronchetti and Welsh
(1994)) equals

ĝn(b) =
( n

2π

)s/2 ∣∣∣Σ̂(b)
∣∣∣−1/2 ∣∣∣Â(b)

∣∣∣ exp

{
n∑
j=1

K̂j(b)

}
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where K̂, Â and Σ̂ can be considered as the empirical counterparts to the terms in
the saddlepoint approximation in parametric case. The saddlepoint γ̂(b) satisfies

n∑
j=1

n∑
i=1

(α−I[ri+x
T
j (β̂−b) < 0])xj exp

{
γ̂(b)T (α− I[ri + xTj (β̂ − b) < 0])xj

}
= 0.

Hence we again have the formula for the function of γ̂(b)

γ̂(b)Txj = log
1− α
α

F j
n(b)

1− F j
n(b)

,

where

Iij(b) =I[ri + xTj (β̂α − b) < 0]

F j
n(b) =

1

n

n∑
i=1

Iij(b).

The empirical cumulant generating function equals

K̂j(b) = log

(
1

n

n∑
i=1

exp
{
γ̂(b)T (α− Iij(b))xj

})

= log

(
1

n

n∑
i=1

(
1− α
α

F j
n(b)

1− F j
n(b)

)α−Iij(b)
)

= log

(
1

n

(
1− α
α

F j
n(b)

1− F j
n(b)

)α n∑
i=1

(
1− α
α

F j
n(b)

1− F j
n(b)

)Iij(b)
)

The empirical counterpart to matrix Σ equals

Σ̂(b) =
1

n

n∑
j=1

exp
{
−K̂j(b)

} 1

n

n∑
i=1

(α− Iij(b))2xjx
T
j exp

{
(α− Iij(b))γ̂(b)Txj

}

=
1

n2

n∑
j=1

n∑
i=1

n

(
α

1−α
1−F jn(b)

F jn(b)

)α
∑n

l=1

(
α

1−α
1−F jn(b)

F jn(b)

)Ilj(b)
(α− Iij(b))2xjx

T
j

(
1− α
α

F j
n(b)

1− F j
n(b)

)α−Iij(b)

=
1

n

n∑
j=1

1∑n
l=1

(
α

1−α
1−F jn(b)

F jn(b)

)Ilj(b)

{
n∑
i=1

(α− Iij(b))2

(
α

1− α
1− F j

n(b)

F j
n(b)

)Iij(b)
}
xjx

T
j .

Finally, the expectation of derivative of ψ-function is in nonparametric case
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replaced by

Â(b) =
1

n2

n∑
j=1

exp
{
−K̂j(b)

} n∑
i=1

(
∂

∂b
(α− Iij(b))xj

)
exp

{
γ̂(b)T (α− Iij(b))xj

}
=

1

n2

n∑
j=1

n

(
α

1− α
1− F j

n(b)

F j
n(b)

)α
1∑n

l=1

(
α

1−α
1−F jn(b)

F jn(b)

)Ilj(b)

n∑
i=1

(
∂

∂b
(α− Iij(b))xj

)
×

(
1− α
α

F j
n(b)

1− F j
n(b)

)α−Iij(b)

=
1

n

n∑
j=1

1∑n
l=1

(
α

1−α
1−F jn(b)

F jn(b)

)Ilj(b)

n∑
i=1

(
∂

∂b
(α− Iij(b))xj

)(
1− α
α

F j
n(b)

1− F j
n(b)

)−Iij(b)

and this concludes the proof.

Remark 5. The derivative of indicator function Iij(b) might be approximated
using the following approximation for the signum function

sign(x) ≈ x√
x2 + ε2

,

thus

Iij(b) =
1

2
(1− sign(ri + xTj (β̂α − b)))

≈1

2

1−
ri + xTj (β̂α − b)√

(ri + xTj (β̂α − b))2 + ε2


and the derivative with respect to b might be approximated by the following ex-
pression

−1

2
(ε2xTj )/(ε2 + ri + xTj (β̂α − b)2)(3/2).

2.3 Density of averaged regression quantiles

The results derived for regression quantiles might be also used in derivation of the
saddlepoint approximation to the density of averaged regression quantile. In this
Section the procedure of estimating the density of averaged regression quantiles
will be outlined. We will follow the development introduced in Fan and Field
(1995).

Let us again assume that (Yi,xi) are independent identically distributed with
density g(yi − xTi β)k(xi), where k(·) is the density of xi. Suppose we want to
compute the density of x̄β, where x̄ = (1, x̄1, . . . , x̄p)

T = 1
n

∑n
i=1 xi see Theorem

1 in Fan and Field (1995) for linear function u(t0) = x̄t0. Derivatives of function
u w.r.t. to components of vector β equal

u(i) =
∂u

∂βi
= x̄i, i = 1, . . . , p+ 1.
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Denote by b a solution of

1

n

n∑
i=1

ψl(Yl,b) = 0,

where ψl = (α− I[yl − xTl β < 0])xl and ψl = (ψ1l, . . . , ψpl).
The conjugate density hl,t0 to density of (Yl,Xl) has the form

hl,t0(yl,xl) = cl(t0) exp

{
p∑
j=1

γjψjl(yl, t0)

}
fl(yl,xl),

where cl(t0) is a normalizing constant so that
∫
hl,t0(yl,xl) dyl dxl = 1 and γ

satisfies

Eh

{
1

n

n∑
l=1

ψl(Yl, t0)

}
= 0.

The saddlepoint γ satisfies∫
(α− I[yl − xT

l t0 < 0])xle
γT (α−I[yl−xT

l t0<0])xl
1

σ
g

(
yl − xT

i β

σ

)
k(xl) dxl dyl =0

and following similar steps used in the previous parts of this chapter we get

−γ(t0)xl = log
α

1− α

1−G
(

xT
l (t0−β)

σ

)
G
(

xT
l (t0−β)

σ

) .

Let us denote

A(t0) = Eh

{
1

n

n∑
l=1

ψ
(j)
l (Yl,β)|β=t0

}
j=1,...,p

,

where h =
∏
hl and

ψ
(j)
l =

∂ψl
∂βj

and compute the expectation w.r.t. the conjugate density

A(t0) =Eh

{
1

n

n∑
l=1

ψ
(j)
l (Yl,β)|β=t0

}
j=1,...,p

=

∫ ∫
1

n

n∑
l=1

ψ
(j)
l (yl,β)|β=t0hl,t0 dxl dyl

=− 1∏
cl(t0)

∫ ∫
1

n

n∑
l=1

∂ψl
∂yl
|β=t0xl

1

σ
g

(
yl − xT

l β

σ

)

× k(xl) exp

{
p∑
j=1

γjψjl(yl, t0)

}
dxldyl
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=− 1∏
cl(t0)

∫ ∫
1

n

n∑
l=1

∂ψl
∂yl
|β=t0xl

1

σ
g

(
yl − xT

l β

σ

)
k(xl)

×
[

(1− α)Gl

α(1−Gl)

]α−I[yl−xT
l t0<0]

dxl dyl

where

Gl = G

(
xT
l (t0 − β)

σ

)
.

As a next step, the inverse of matrix A has to be computed numerically

B(t0) = −A(t0)−1

and finally, the density of the averaged regression quantile is equal to(
n∏
l=1

cl(t0)

)−1√
1

2πσ2
G|h

,

where σ2
G|h is the variance of

G = u0 +
1

n

n∑
l=1

p∑
j=1

p∑
k=1

uk(t0)Bkjψjl(Yl, t0)

under the conjugate density h =
∏

l hl and u0 = u(t0).



Chapter 3

Tests on the value of regression
quantile

Let us assume we have the observations Y1, . . . , Yn following the model (2.1).
Suppose we want to test hypothesis

H0 : βα = βα0
∈ Rp+1 against H1 : non H0. (3.1)

In case the distribution of the errors e1, . . . , en is known, classical parametric
tests based on likelihood, like Wald test, Rao score test or likelihood ratio test,
can be used. Although these tests possess asymptotic optimal properties under
the assumed model, they are not only nonrobust to small departures from as-
sumed distribution, but their relative error is of order n−1/2. One of the robust
alternatives to these tests are M -tests or eventually M -test of the Wald type.
Unfortunately, these tests require estimation of variance of the M -estimator.

Rank test for regression quantiles proposed by Gutenbrunner et al. (1993)
are also available, Koenker (1994) later inverted this test in order to compute
confidence intervals for βα.

Another approach to this problem might be saddlepoint tests. As saddlepoint
approximations for the density of an estimator have many desirable properties,
later have been developed also saddlepoint tests for M -estimators with relative
error of order n−1. We will deal with sample quantiles and regression quantiles
that are M -estimators with ρ-function having simple form that allows us to write
the test statistic by an explicit formula, not only in parametric case but also in
nonparametric case.

In this chapter we will propose two new tests for hypothesis H0, the first one
based on the asymptotic distribution of averaged regression quantiles that will
require the estimation of quantile density function and the second one will be
derived using theory of saddlepoint tests for M -estimators. Combination of sim-
plicity of ψ-function for regression quantile as an M-estimator and asymptotic
properties of saddlepoint tests allow us to construct a test statistic with an ex-
plicit formula that makes proposed test much easier to use and works very well
even under small sample sizes. The performance of the proposed tests will be
numerically illustrated and compared with other tests. This chapter is part of
the manuscript (Ronchetti and Sabolová, 2014) which is about to be submitted.

41
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3.1 Test based on averaged regression quantiles

The scalar statistic
x̄Tn β̂α,

where x̄n =
∑n

i=1 xi is called the averaged regression quantile. The proposed test
statistic is based on the asymptotic distribution of averaged regression quantiles.
Even though it requires the estimation of the quantile density function, unlike in
the case of classical tests based on likelihood, it does not require estimation of
the variance matrix.

Theorem 6. Consider the regression model Yi = xTi β + ei, i = 1, . . . , n, where
ei are i.i.d. with distribution function F . Suppose that the distribution func-
tion F is continuous and twice differentiable in neighborhood of F−1(α) and that
F ′(F−1(α)) = f(F−1(α)) > 0, 0 < α < 1. Let the following regularity conditions
on the matrix X be satisfied

(B1) limn→∞
1
n
XTX = Q, where Q is a positive definite matrix

(B2) 1
n

∑n
i=1 xij = O(1) as n→∞ for j = 1, . . . , p.

Consider the null hypothesis

H0 : βα = βα0
∈ Rp

against alternative
H1 : non H0.

The test statistic
√
n
f(F−1(α))√
α(1− α)

x̄T (β̂α − βα0
)

is under H0 asymptotically N(0, 1) distributed.

Proof. Gutenbrunner and Jurečková (1992) showed that under null hypothesis
the regression quantile admits the following second-order representation

√
n
(
β̂α − βα

)
=

1√
nf(F−1(α))

Q−1
n

n∑
i=1

xiψα(Eiα) +OP (n−1/4),

where Eiα = ei − F−1(α) and

ψα(x) =

{
α : x > 0
α− 1 : x ≤ 0

and from this it follows that

√
nx̄T

(
β̂α − βα

)
=

1√
n
f(F−1(α))

n∑
i=1

(
α− I[ei < F−1(α)]

)
+OP (n−1/4).
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From the properties of sample quantiles we get that I[ei < F−1(α)] ∼ Alt(α),
thus

E
(
α− I[ei < F−1(α)]

)
=0

var
(
α− I[ei < F−1(α)]

)
=α(1− α).

and by using Taylor moment expansion and central limit theorem we get that
under null hypothesis

1√
n

n∑
i=1

(
α− I[ei < F−1(α)]

) D−−−→
n→∞

N(0, α(1− α)).

Remark 6. Computation of test statistic requires estimation of quantile density
function that might be done using method already described in the previous chap-
ter. Test based on averaged regression quantiles simplifies the computation of the
test statistic and speeds up the numerical simulations as it is not necessary to
work with matrices.

The performance and robustness of the test in comparison with other known
tests will be studied later in this chapter.

3.2 Saddlepoint tests for sample and regression

quantiles

As sample and regression quantiles can be rewritten as M -estimators, it is pos-
sible to derive the test statistic for hypothesis (3.1) based on the theory of the
saddlepoint tests outlined in the first chapter. Even though the simple form of
the ρ-function and its directional derivatives yield explicit formula for the test
statistics, these functions do not satisfy conditions assumed in the theorems in
Ronchetti et al. (2003) and Ma and Ronchetti (2011) and thus it is not possible to
base the asymptotic distribution of the proposed statistics on the available theory.
Therefore in order to derive the test statistics, we will follow the development in-
troduced in aforementioned papers, but the proofs of the asymptotic distribution
under null hypothesis will have to be rewritten using other techniques.

We will first derive the test statistic for the sample quantile F−1(α) and later
concentrate on the test on the value of regression quantile. We are particularly
interested in the parametric and nonparametric tests for small sample sizes. We
will follow the development introduced in Ronchetti et al. (2003) and Ma and
Ronchetti (2011). Test statistic is based on the exponent in the saddlepoint
approximation to the density of the function of M -estimators. Although this
statistic is analogous to the log likelihood ratio in the parametric case, the relative
error is only of order n−1. In case the distribution of the observations is unknown,
we will use empirical likelihood statistic.
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3.2.1 Test on the value of F−1(α) in location model

Let us first consider the simplest case of regression quantiles, i.e. sample quantiles.
The quantile function is often intractable (i.e. for normally distributed random
variable), therefore it is useful to construct the test on the value of α-quantile.

Let Y1, . . . , Yn be independent identically distributed sample of random vari-
ables with distribution function F and underlying density f . Denote for 0 < α < 1

βα(F ) = F−1(α)

an α-quantile of distribution F , i.e. M -estimator with ψ-function equal to

ψ(y, βα) = αI[y > βα]− (1− α)I[y < βα] = α− I[y < βα]. (3.2)

Denote by β̂α its empirical counterpart, i.e.

β̂α = F−1
n (α),

where

Fn(y) =
1

n

n∑
i=1

I[Yi ≤ y]

is the empirical distribution function. Suppose we want to test the null hypothesis

H0 : βα = βα0

against alternative
H1 : βα 6= βα0.

We will derive test statistic for parametric case when F (.) is known and also for
nonparametric case when it is necessary to construct hypothetical distribution
function F̂0.

Parametric case

Theorem 7. Let Y1, . . . , Yn be i.i.d. with the distribution F0, with corresponding
density f0 and let f0(F−1(α)) > 0 for α ∈ (0, 1). Consider null hypothesis

H0 : βα = βα0

against two-sided alternative

H1 : βα 6= βα0.

The saddlepoint test statistic has the form

2n log

(F0(β̂α)

α

)−α(
1− F0(β̂α)

1− α

)−(1−α)


and under null distribution is asymptotically χ2
1-distributed.
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Proof. Let F0 be the distribution of observations Y1, . . . , Yn under null hypothesis.
Let us compute cumulant generating function of score function (3.2) correspond-
ing to α-quantile under H0 :

Kψ(λ, βα) = log Eeλψ(Y,βα)

= log eλαEe−λI{y<βα}

= λα + log

∫ ∞
−∞

e−λI{y<βα}f0(y)dy︸ ︷︷ ︸∫ β
−∞ e−λf0(y)dy+

∫∞
β f0(y)dy

= λα + log(e−λF0(βα) + 1− F0(βα)).

To obtain saddlepoint λ(βα) of Kψ, we have to solve the equation

∂Kψ(λ, βα)

∂λ
= α− e−λF0(βα)

e−λF0(βα) + 1− F0(βα)
= 0

with respect to λ, the solution being

λ(βα) = log
F0(βα)(1− α)

α(1− F0(βα))

and therefore by (1.6) and (1.7) we can rewrite test statistic in a following way

h(β̂α) = sup
λ
{−Kψ(λ, β̂α)}

= −Kψ(λ(β̂α), β̂α)

= −α log
α(1− F0(β̂α)

F (β̂α)(1− α)
+ log

1− F0(β̂α)

1− α

= log

(F0(β̂α)

α

)−α(
1− F0(β̂α)

1− α

)−(1−α)


Let us now approximate the asymptotic distribution of the derived test statistic
2nh(β̂α). We will use only the first two terms Taylor expansion for function F0

F0(β̂α) = F0(βα) + (β̂α − βα)F ′0(βα) = α + (β̂α − βα)f0(βα)

and the test statistic can be rewritten in a following way (using Taylor expansion
of function log(1 + x) for |x| < 1)

2nh(β̂α) =2n log

(F0(β̂α)

α

)−α(
1− F0(β̂α)

1− α

)−(1−α)


=− 2n

(
α log

F0(β̂α)

α
+ (1− α) log

1− F0(β̂α)

1− α

)

≈− 2n

(
α log

(
1 +

(β̂α − βα)f0(βα)

α

)
+ (1− α) log

(
1 +

(β̂α − βα)f0(βα)

1− α

))
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≈− 2n

(
(β̂α − βα)f0(βα)− 1

2

(β̂α − βα)2f 2
0 (βα)

α
+ (βα − β̂α)f0(βα)

−1

2

(β̂α − βα)2f 2
0 (βα)

1− α

)

=n
(β̂α − βα)2f 2

0 (βα)

α(1− α)
.

The sample quantile is asymptotically normally distributed

√
n(β̂α − βα)

D−−−→
n→∞

N

(
0,
α(1− α)

f 2
0 (βα)

)
,

thus

n
(β̂α − βα)2f 2

0 (βα)

α(1− α)

D−−−→
x→∞

χ2
1.

Hence under null hypothesis

2nh(β̂α) = 2n log

(F0(β̂α)

α

)−α(
1− F0(β̂α)

1− α

)−(1−α)


is asymptotically χ2
1-distributed.

Nonparametric case

Let us denote

Fn(β) =
1

n

n∑
i=1

I[yi − β < 0]

Ii(β) = I[yi − β < 0].

Theorem 8. The saddlepoint test statistic has the form

−2n

{
α log

∑n
i=1wiIi
α

+ (1− α) log

∑n
i=1wi(1− Ii)

1− α

}
,

where

wi =

{
α(1−Fn(βα0))
Fn(βα0)(1−α)

}I{yi<βα0}
∑n

j=1

{
α(1−Fn(βα0))
Fn(βα0)(1−α)

}I{yj<βα0} , i = 1, . . . , n

and is under null hypothesis χ2
1-distributed.

Let us now state and prove the lemma necessary for proving the asymptotic
distribution of the test statistic.
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Lemma 2. Under null hypothesis H0 : βα = βα0 it holds

sup
i=1,...,n

∣∣∣∣wi − 1

n

∣∣∣∣ 0−−−→
n→∞

a. s.

Proof. Under null hypothesis we have

∣∣∣∣wi − 1

n

∣∣∣∣ =

∣∣∣∣∣∣∣
{
α(1−Fn(βα0))
Fn(βα0)(1−α)

}I{yi<βα0}
∑n

j=1

{
α(1−Fn(βα0))
Fn(βα0)(1−α)

}I{yj<βα0} − 1

n

∣∣∣∣∣∣∣
=

1

n

1
α(1−Fn(βα0))
Fn(βα0)(1−α)

∑n
j=1 I[yj < βα0] + n−

∑n
j=1 I[yj < βα0]

×
∣∣∣∣nα(1− Fn(βα0))

Fn(βα0)(1− α)
I[yi < βα0] + n(1− I[yi < βα0])

−
n∑
j=1

α(1− Fn(βα0))

Fn(βα0)(1− α)
I[yj < βα0] +

n∑
j=1

(1− I[yj < βα0])

∣∣∣∣∣
=

1

n

∣∣∣∣∣∣n(I[yi < βα0]− Fn(βα0)) α−Fn(βα0)
(1−α)Fn(βα0)

n
(

1 + α−Fn(βα0)
1−α

)
∣∣∣∣∣∣

and by Glivenko-Cantelli theorem under null hypothesis sup |Fn(βα0) − α| → 0
almost surely. This concludes the proof.

Let us now proceed to the proof of the Theorem 8.

Proof. As the distribution of observations is unknown, it is necessary to find the
empirical hypothetical distribution function F̂0 = (w1, . . . , wn)T using (1.8). The
weights wi for sample quantile are of the form

wi =
eµ(βα0)ψ(yi,βα0)∑n
j=1 e

µ(βα0)ψ(yj ,βα0)
, (3.3)

where µ(βα0) is the solution of the following maximization problem

µ(βα0) = argmax

{
− log

(
1

n

n∑
i=1

eµψ(yi,βα0)

)}
(3.4)

= argmax

{
− log

(
1

n

n∑
i=1

eµ I[yi ≤ βα0] +
1

n

n∑
i=1

(1− I[yi ≤ βα0])

)}
= argmax{−µα− log(e−µFn(βα0) + 1− Fn(βα0))}.

The solution µ(βα) equals

µ(βα) = log
Fn(βα)(1− α)

α(1− Fn(βα))
.
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By inserting µ(βα0) into (1.8) we get the formula for components of F̂0

wi =

{
α(1−Fn(βα0))
Fn(βα0)(1−α)

}I{yi<βα0}
∑n

j=1

{
α(1−Fn(βα0))
Fn(βα0)(1−α)

}I{yj<βα0} , i = 1, . . . , n.

Then the test statistic has the form

h(β̂α) = sup
λ

{
− log

n∑
i=1

wie
λψ(yi,β̂α)

}

and can be rewritten using (1.8). The saddlepoint λ(β̂α) solves the equation

∂

∂λ

{
− log

n∑
i=1

wie
λψ(yi,β̂α)

}
= −

∑n
i=1wie

(α−I{yi<β̂α})λ(α− I[yi < β̂α])∑n
i=1 wie

(α−I{yi<β̂α})λ
= 0

and is equal to

λ(β̂α) = log
1− α
α

∑n
i=1wi I[yi ≤ β̂α]∑n

i=1wi(1− I[yi ≤ β̂α])
.

This leads to the following formula for the test statistic

h(β̂α) = − log
n∑
i=1

wie
λψ(yi,β̂α)

= − log

(
n∑
i=1

wi I[yi ≤ β̂α]e
(α−1) log 1−α

α

∑n
i=1 wi I[yi≤β̂α]∑n

i=1
wi(1−I[yi≤β̂α]) +

n∑
i=1

wi(1− I[yi ≤ β̂α])e
α log 1−α

α

∑n
i=1 wi I[yi≤β̂α]∑n

i=1
wi(1−I[yi≤β̂α])

)

= − log
n∑
i=1

1

1− α
wi(1− I[yi ≤ β̂α])

(
1− α
α

∑n
i=1 wi I[yi ≤ β̂α]∑n

i=1wi(1− I[yi ≤ β̂α])

)α

= − log


(∑n

i=1 wi(1− I[yi ≤ β̂α])

1− α

)1−α(∑n
i=1 wi I[yi ≤ β̂α]

α

)α
 .

Then the test statistic has the form

−2n log


(∑n

i=1wi(1− I[yi ≤ β̂α])

1− α

)1−α(∑n
i=1 wi I[yi ≤ β̂α]

α

)α


= −2n

{
α log

∑n
i=1wiIi
α

+ (1− α) log

∑n
i=1 wi(1− Ii)

1− α

}
,
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where logarithmic function can be approximated by the first two terms of the
Taylor expansion

log

(∑n
i=1wiIi
α

± 1

)
= log

(
1 +

∑n
i=1wiIi − α

α

)
=

∑n
i=1wiIi − α

α
− 1

2

(
∑n

i=1 wiIi − α)2

α2
+ ...

log

(∑n
i=1 wi(1− Ii)

1− α
± 1

)
= log

(
1 +

∑n
i=1wiIi − α

α

)
=

∑n
i=1wiIi − α

α
− 1

2

(
∑n

i=1 wiIi − α)2

α2
+ ....

Then the test statistic can be approximated by

n
(
∑n

i=1 wiIi − α)2

α(1− α)
.

Under H0 we have Ii ∼ Alt(α). Then

E(
n∑
i=1

wiIi − α) ≈ 0

var(
n∑
i=1

wiIi − α) ≈ α(1− α)

n

and therefore (using CLT) under null hypothesis

2nh(β̂α) =2n log


(∑n

i=1wi(1− I[yi ≤ β̂α])

1− α

)−(1−α)(∑n
i=1wi I[yi ≤ β̂α]

α

)−α
D−−−→

n→∞
χ2

1.

3.2.2 Test on the value of regression quantile based on
saddlepoint techniques

Let Y1, . . . , Yn be observations following the model

Yi = XT
i β + ei, i = 1, . . . , n

where ei ∼ 1
σ
g(.) and (Yi,Xi) are i.i.d. with density 1

σ
g
(
yi−xTi β

σ

)
k(xi) with k(xi)

being the density of Xi. We will first consider more general situation with random
matrix X and later simplify the result for fixed matrix X. We want to test simple
hypothesis

H0 : βα = βα0

against two sided alternative

H1 : βα 6= βα0
.
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Parametric case

Theorem 9. Consider the model (2.1), where ei ∼ 1
σ
g(.) and (Yi,Xi) are i.i.d.

with density 1
σ
g
(
yi−xTi β

σ

)
k(xi) with k(xi) being the density of Xi. Assume con-

ditions (A1) and (A2) in Theorem 2 are satisfied. The saddlepoint test statistic
has the form

2nh(β̂α) = −2n log Ex


G

(
xT (β̂α − βα0

)
)

α

α1−G
(
xT (β̂α − βα0

)
)

1− α

1−α .
For fixed matrix X the test statistic equals

−2
n∑
i=1

α log

(
1 +

xTi (β̂α − βα0
)f0(βα0

)

α

)
+(1−α) log

(
1 +

xTi (β̂α − βα0
)f0(βα0

)

1− α

)

and under H0 is asymptotically χ2
p+1-distributed.

Proof. Cumulant generating function of score function corresponding to regres-
sion quantile can be expressed in a following way

Kψ(λ,βα) = log Eeλψ(Yi,βα)xi

= log Ee
λTxi

(
α−I

[
Yi−xTi βα

σ
<0

])

= log

∫ ∫
1

σ
eαλ

Txie
−λTxi I

[
yi−xTi βα

σ
<0

]
g

(
yi − xTi β

σ

)
k(xi) dyi dxi

= log

∫ [∫ xTi βα

−∞

1

σ
eαλ

Txi−λTxig

(
yi − xTi β

σ

)
k(xi) dyi+∫ ∞

xTi βα

1

σ
eαλ

Txig

(
yi − xTi β

σ

)
k(xi) dyi

]
dxi

= log

∫ {
eαλ

Txik(xi)

(
e−λ

TxiG

(
xTi (βα − β)

σ

)
+1−G

(
xTi (βα − β)

σ

))}
dxi

In order to compute saddlepoint the derivative of Kψ(λ,βα) with respect to λ
has to be computed

∂Kψ(λ,βα)

∂λ
=
∂

∂λ
log

∫ {
eαλ

Txik(xi)

(
e−λ

TxiG

(
xTi (βα − β)

σ

)
+1−G

(
xTi (βα − β)

σ

))}
dxi
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=

∫ {
∂
∂λ
eαλ

Txik(xi)
(
e−λ

TxiG
(

xTi (βα−β)

σ

)
+ 1−G

(
xTi (βα−β)

σ

))}
dxi∫ {

eαλ
Txik(xi)

(
e−λ

TxiG(
xTi (βα−β)

σ
) + 1−G

(
xTi (βα−β)

σ

))}
dxi

=

{∫ {
αxie

αλTxik(xi)

(
e−λ

TxiG

(
xTi (βα − β)

σ

)
+1−G

(
xTi (βα − β)

σ

))
+

eαλ
Txik(xi)

(
−xie

−λTxiG

(
xTi (βα − β)

σ

))}
dxi

}
×{∫ {

eαλ
Txik(xi)

(
e−λ

TxiG

(
xTi (βα − β)

σ

)
+1−G

(
xTi (βα − β)

σ

))}
dxi

}−1

By solving
∂Kψ(λ,βα)

∂λ
= 0

we get the function of saddlepoint λTxi

λ(β̂α)Txi = − log

 α

1− α

1−G
(

xTi (β̂α−β)

σ

)
G
(

xTi (β̂α−β)

σ

)
 , i = 1, . . . , n.

Therefore

−Kψ(λ(β̂α), β̂α) = − log

∫ G
(

xTi (β̂α−β)

σ

)
α

α1−G
(

xTi (β̂α−β)

σ

)
1− α

1−α

k(xi) dxi

and hence the test statistic has the form

2nh(β̂α) = −2n log

∫ G
(

xTi (β̂α−β)

σ

)
α

α1−G
(

xTi (β̂α−β)

σ

)
1− α

1−α

k(xi) dxi.

In case matrix X is known, the test statistic can be rewritten as a mean over
rows of matrix X

−2
n∑
i=1

log

∫ G
(

xTi (β̂α−β)

σ

)
α

α1−G
(

xTi (β̂α−β)

σ

)
1− α

1−α

k(xi) dxi

=− 2
n∑
i=1

α log

(
1 +

xTi (β̂α − βα0
)f0(βα0

)

α

)
+ (1− α) log

(
1 +

xTi (β̂α − βα0
)f0(βα0

)

1− α

)
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≈− 2
n∑
i=1

α

(
xTi (β̂α − βα0

)g0(βα0
)

α
− 1

2

(xTi (β̂α − βα0
)g0(βα0

))2

α2

)

+ (1− α)

(
xTi (βα0

− β̂α)g0(βα0
)

α
− 1

2

(xTi (βα0
− β̂α)g0(βα0

))2

(1− α)2

)

=− 2
n∑
i=1

(xTi (βα0
− β̂α)g0(βα0

))2

α(1− α)

=
1

n

g2
0(βα0

)

α(1− α)

n∑
i=1

(√
nxTi (βα0

− β̂α)
)2

.

The proof can be completed using the asymptotic distribution of the regression
quantile (see Theorem 2)

√
n(βα0

− β̂α)
D−−−→

n→∞
Np+1

(
0,
α(1− α)

g0(βα0
)2

D−1
0

)
,

thus the asymptotic distribution of a test statistic is χ2
p+1.

Nonparametric case

In nonparametric setup we will again assume ei are i.i.d. with distribution func-
tion F and in the following computations work with residuals ri = yi − xTi β̂α,
i = 1, . . . , n. Let us denote

Ii = I[ri < 0]

Iij(β) = I[ri + xTj (β̂α − β) < 0]

F j
n(β) =

1

n

n∑
i=1

Iij(β)

wij =

(
α

1−α
1−F jn(βα0 )

F jn(βα0 )

)Iij(βα0 )

∑n
k=1

(
α

1−α
1−F jn(βα0 )

F jn(βα0 )

)Ikj(βα0 )
.

Theorem 10. Let Y1, . . . , Yn be observations following the model

Yi = XT
i β + ei, i = 1, . . . , n

where ei are i.i.d. with distribution function F , xi = (1, xi1, . . . , xip)
T ∈ Rp+1,

β ∈ Rp+1. The saddlepoint test statistic equals

−2
n∑
j=1

α log

∑n
i=1wijIi
α

+ (1− α) log

∑n
i=1wij(1− Ii)

1− α
.
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Proof. We will follow the development introduced in Ronchetti and Welsh (1994)
and consider empirical distribution functions of residuals

ri = yi − xTi β̂α, i = 1, . . . , n

and functions

Iij(β) = I[ri + xTj (β̂α − β) < 0]

F j
n(β) =

1

n

n∑
i=1

Iij(β).

Because it is not possible to derive explicit formula for µ (see (1.11)), we will use
formula for xTj µ

xTj µ = log
1− α
α

F j
n(βα0

)

1− F j
n(βα0

)

that solves

n∑
i=1

n∑
j=1

(α− I[ri + xTj (β̂α − βα0
)])xje

(α−I[ri+xTj (β̂α−βα0 )])xTj µ = 0,

because

n∑
i=1

n∑
j=1

(α− Iij(βα0
))

(
1− α
α

F j
n(βα0

)

1− F j
n(βα0

)

)α−Iij(βα0 )

xj = 0

n∑
i=1

n∑
j=1

α

(
1− α
α

F j
n(βα0

)

1− F j
n(βα0

)

)−Iij(βα0 )

xj =

=
n∑
i=1

n∑
j=1

Iij(βα0
)

(
1− α
α

F j
n(βα0

)

1− F j
n(βα0

)

)−Iij(βα0 )

xj

n∑
i=1

n∑
j=1

α
α

1− α
1− F j

n(βα0
)

F j
n(βα0

)
Iij(βα0

)xj +
n∑
i=1

n∑
j=1

α(1− Iij(βα0
))xj =

=
n∑
i=1

n∑
j=1

Iij(βα0
)

α

1− α
1− F j

n(βα0
)

F j
n(βα0

)
xj

n∑
i=1

n∑
j=1

αxj(1− Iij(βα0
)) =

n∑
i=1

n∑
j=1

(1− α)Iij(βα0
)

α

1− α
1− F j

n(βα0
)

F j
n(βα0

)
xj

n

n∑
j=1

xj −
n∑
j=1

n∑
i=1

Iij(βα0
)xj =

n∑
j=1

n∑
i=1

Iij(βα0
)

F j
n(βα0

)
xj −

n∑
j=1

n∑
i=1

Iij(βα0
)xj

n
n∑
j=1

xj =
n∑
j=1

1

F j
n(βα0

)
xj

n∑
i=1

Iij(βα0
)︸ ︷︷ ︸

nF jn(βα0 )
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Then we can write

Kψ(λ,β) =
1

n
Kj(λ,β)

=
1

n

n∑
j=1

{
log
[
e(α−I[ri<0])xTj λ+(α−Iij(βα0 ))xTj µ

]
− log

n∑
i=1

e(α−Iij(βα0 ))xTj µ

}
∂Kj(λ,β)

∂λ
=

∂

∂λ

{
log

n∑
i=1

e(α−I[ri<0])xTj λ+(α−Iij(βα0 ))xTj µ

}

=

∑n
i=1(α− I[ri < 0])xje

(α−I[ri<0])xTj λ+(α−Iij(βα0 ))xTj µ∑n
i=1 e

(α−I[ri<0])xTj λ+(α−Iij(βα0 ))xTj µ

Therefore the test statistic has the form

2nĥ(β̂α) = 2n sup
λ
Kψ(λ(β̂α), β̂α),

where λ(β̂α) satisfies

∂Kj(λ,β)

∂λ
= 0

n∑
i=1

(α− I[ri < 0])xje
(α−I[ri<0])xTj λ+(α−Iij(βα0 ))xTj µ = 0.

Denote by Ii indicator function of residuals

Ii = I[ri < 0], i = 1, . . . , n.

Function xTj λ of saddlepoint λ is a solution of the equation

n∑
i=1

(α− Ii)e(α−Ii)xTj λ

(
α

1− α
1− F j

n(βα0
)

F j
n(βα0

)

)Iij(βα0 )

= 0

(1− α)
n∑
i=1

Iie
(α−1)xTj λ

(
α

1− α
1− F j

n(βα0
)

F j
n(βα0

)

)Iij(βα0 )

=

= α
n∑
i=1

(1− Ii)eαx
T
j λ

(
α

1− α
1− F j

n(βα0
)

F j
n(βα0

)

)Iij(βα0 )

and is equal to

xTj λ = log


1− α
α

∑n
i=1

(
α

1−α
1−F jn(βα0 )

F jn(βα0 )

)Iij(βα0 )

Ii

∑n
i=1

(
α

1−α
1−F jn(βα0 )

F jn(βα0 )

)Iij(βα0 )

(1− Ii)

 .
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Denote

wij =

(
α

1−α
1−F jn(βα0 )

F jn(βα0 )

)Iij(βα0 )

∑n
k=1

(
α

1−α
1−F jn(βα0 )

F jn(βα0 )

)Ikj(βα0 )
.

Hence we have

xTj λ(β̂α) = log

{
1− α
α

∑n
i=1wijIi∑n

i=1wij(1− Ii)

}
and

Kj(λ(β̂α), β̂α) = log
n∑
l=1

(
1− α
α

∑n
i=1wijIi∑n

i=1 wij(1− Ii)

)α−Il
wlj

= log

{(
1− α
α

∑n
i=1 wijIi∑n

i=1 wij(1− Ii)

)α
×

n∑
l=1

(
α

1− α

∑n
i=1wij(1− Ii)∑n

i=1wijIi
wljIl + wlj(1− Il)

)}

= log

{(
1− α
α

∑n
i=1 wijIi∑n

i=1 wij(1− Ii)

)α∑n
i=1wij(1− Ii)

1− α

}
= log

{(∑n
i=1wijIi
α

)α(∑n
i=1wij(1− Ii)

1− α

)1−α
}
.

Finally, the test statistic has the form

2nĥ(β̂α) =− 2nK(λ(β̂α), β̂α) = −2
n∑
j=1

Kj(λ(β̂α), β̂α)

=− 2
n∑
j=1

log

{(∑n
i=1wijIi
α

)α(∑n
i=1 wij(1− Ii)

1− α

)1−α
}
. (3.5)

Remark 7. The asymptotic distribution of (3.5) has not been formally proved
yet. Based on available results for saddlepoint tests, we suppose that the asymp-
totic distribution is χ2

p+1 (see Fig. 3.2). This distribution has been used in the
simulations studies in this chapter and under hypothesis it provides very good
approximation even for small sample sizes.

3.3 Composite hypothesis

Suppose we now want to perform a test only on the first subvector of regression
quantile:

H0 : βα1 = βα10 ∈ Rp1 , (3.6)

where βα = (βTα1,β
T
α2)T and β̂α = (β̂

T

α1, β̂
T

α2)T . Denote xi1 ∈ Rp1 the subvector
of xi consisting of the first p1 components of xi.
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We will state theorems on the form of the test statistic and its asymptotic
distribution under null hypothesis, but in the proofs only the derivation of the
form of the test statistics will be outlined, as the asymptotic distribution can be
proved using similar techniques already used in this chapter.

3.3.1 Parametric case

Theorem 11. Test saddlepoint test statistic for composite hypothesis (3.6) has
the form

−2n inf
βα2

log

∫ G
(

xTi1(βα10−β̂1)+xTi2(βα2−β2)

σ

)
α


α

×

1−G
(

xTi1(βα10−β̂1)+xTi2(βα2−β2)

σ

)
1− α


1−α

k(xi) dxi

and under hypothesis H0

2nh(β̂α1)
D−−−→

n→∞
χ2
p1
.

Proof. Denote
β∗α = (βα10 ,βα2).

Cumulant generating function of the score ψ is equal to

KF (λ,βα) = log EF e
λTψ(Yi,βα)

= log

∫ {
eαλ

Txik(xi)

(
e−λ

TxiG

(
xTi (β − β∗α)

σ

)
+1−G

(
xTi (β − β∗α)

σ

))}
dxi.

By solving
∂KF (λ, (βα10 ,βα2))

∂λ
= 0

we get the formula for λTxi

λTxi = log
1− α
α

G
(

xTi1(βα10−β1)+xTi2(βα2−β2)

σ

)
1−G

(
xTi1(βα10−β1)+xTi2(βα2−β2)

σ

) .
Therefore the test statistic can be rewritten as

h(β̂α1) = inf
βα2

log

∫ G
(

xTi1(βα10−β̂1)+xTi2(βα2−β2)

σ

)
α


α

×
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1−G
(

xTi1(βα10−β̂1)+xTi2(βα2−β2)

σ

)
1− α


1−α

k(xi) dxi

and under hypothesis H0

2nh(β̂α1)
D−−−→

n→∞
χ2
p1
.

3.3.2 Nonparametric case

Theorem 12. The saddlepoint test statistic for composite hypothesis (3.6) equals

−2nh(β̂1) = −2 inf
βα2

n∑
j=1

log

{(∑n
i=1wijIi(βα2)

α

)α(∑n
i=1 wij(1− Ii(βα2))

1− α

)1−α
}
.

Proof. Denote

β∗α2 = arg min
βα2

{
− log

(
1

n

n∑
i=1

exp
[
λTψ(yi, (βα10 ,βα2))

])}

= arg min
βα2

{
− log

(
1

n

n∑
i=1

exp
[
λT (α− I[yi − xTi1βα10 − x

T
i2βα2 < 0]xi

)]}
and β∗ = (βα10 ,βα2). Then we follow the development for simple hypothesis,
where

xTj µ = log
1− α
α

F j
n(β∗)

1− F j
n(β∗)

solves
n∑
i=1

n∑
j=1

(α− I[ri + xTj (β̂α − β∗)])xje(α−I[ri+xTj (β̂α−β∗)])xTj µ = 0,

therefore the weights are of the form

wij =

(
α

1−α
1−F jn(β∗)

F jn(β∗)

)Iij(β∗)
∑n

k=1

(
α

1−α
1−F jn(β∗)

F jn(β∗)

)Ikj(β∗)
Hence

xTj λ(β̂α1,βα2) = log

{
1− α
α

∑n
i=1 wijIi(β2)∑n

i=1 wij(1− Ii(βα2))

}
,

where
Ii(β2) = I[yi − xi1β̂α1 − xi2βα2 < 0].

Then we can write

Kj((β̂α1,βα2),λ(β̂α1,βα2)) = log

{(∑n
i=1 wijIi(βα2)

α

)α(∑n
i=1wij(1− Ii(βα2))

1− α

)1−α
}
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and

h(β̂α1) = inf
βα2
− 1

n

n∑
j=1

log

{(∑n
i=1 wijIi(βα2)

α

)α(∑n
i=1 wij(1− Ii(βα2))

1− α

)1−α
}
.

and the test statistic is equal to

−2nh(β̂1) = −2 inf
βα2

n∑
j=1

log

{(∑n
i=1wijIi(βα2)

α

)α(∑n
i=1 wij(1− Ii(βα2))

1− α

)1−α
}
.

3.3.3 Asymptotic distribution of saddlepoint test statis-
tics

We performed simulation study in order to demonstrate the robustness of sad-
dlepoint tests for regression quantiles in comparison to the Wald test. We per-
formed 50000 simulations for various sample sizes both for parametric and non-
parametric cases. The true parameter value for β in both cases is (3, 2)T . Er-
rors ei were generated from normal, Laplace, logistic and contaminated nor-
mal distributions (with another normal distribution with larger variance). In
parametric cases, as the distribution of observations was used normal standard-
ized distribution. All tests were performed for regression quantiles with α =
0.25. We considered one of the simplest situation where the i-th row of ma-
trix X is equal to (1, i−1

n
). For parametric case, we considered size samples

n = 5, 10, 20, 50, 100, 300, 1000, 10000. As simulation study for nonparametric
case was much more time consuming due to computations with matrices, we
considered only n = 21, 51, 101.

In the nonparametric case, the asymptotic covariance matrix of β̂α used in
the Wald test was estimated using the formula from Koenker and Bassett (1978)
(implemented in the function summary.rq in R).

The results of the simulations are represented by plots (Fig. 3.1 and 3.2)
and tables (Tab. 3.1 and 3.2). We plotted percentage of simulated test statistics
that did not cross quantile of χ2 (we used quantiles χ2

0.9, χ2
0.95 and χ2

0.99) against
logarithm of number of observations. By stars we denoted results of saddlepoint
tests (in tables denoted by ”SAD”), by dots results of Wald test. We can see
that for parametric case, the saddlepoint statistic and the Wald test behave very
similarly. On the other hand, in nonparametric case saddlepoint test is much
more precise and closer to χ2 than the Wald test. These percentages are also
written down in the tables.
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Figure 3.1: Comparison of parametric sadlepoint test and Wald test, probability
that the test statistic does not exceed corresponding quantile of χ2-distribution
plotted against logarithm of number of observations
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Figure 3.2: Comparison of nonparametric sadlepoint test and Wald test, probabil-
ity that the test statistic does not exceed corresponding quantile of χ2-distribution
plotted against logarithm of number of observations
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n = 21 n = 51 n = 101
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

N(0, 1)
SAD 0.9093 0.9570 0.9776 0.9040 0.9559 0.9907 0.8998 0.9527 0.9916
Wald 0.7744 0.8259 0.8927 0.8116 0.8641 0.9276 0.8316 0.8854 0.9468

cont
SAD 0.8825 0.9371 0.9699 0.8883 0.9456 0.9864 0.8932 0.9481 0.9901
Wald 0.7526 0.8083 0.8806 0.8097 0.8631 0.9262 0.8302 0.8849 0.9451

Log
SAD 0.8972 0.9495 0.9748 0.8939 0.9512 0.9891 0.8935 0.9487 0.9903
Wald 0.7661 0.8187 0.8864 0.8045 0.8603 0.9232 0.8241 0.8806 0.9438

Lap
SAD 0.8720 0.9322 0.9703 0.8676 0.9320 0.9831 0.8713 0.9310 0.9839
Wald 0.7196 0.7799 0.8603 0.7656 0.8260 0.8989 0.7977 0.8573 0.9264

Table 3.1: Comparison of nonparametric saddlepoint test (SAD) and Wald test, H0 :
βα = β +F−1

N(0,1)(α), α = 0.25, N = 50000; data generated from: N(0,1), contaminated

N(0,.) with N(0,9) (ε = 0.2), Laplace and logistic distribution; probability that the
test statistic does not exceed the corresponding quantile of χ2-distribution
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3.4 Simulation study

A numerical study comparing several tests with tests introduced in this chapter
was carried out. We compared the proposed tests to the following alternatives:

• test based on the asymptotic distribution of regression quantiles,

• Wald test (with covariance matrix estimated using function summary.rq in
R),

• likelihood ratio (LR)-type test,

• rank test.

The test statistic of LR type test has the form

LRn = 2
B

A

n∑
i=1

{
ρα(yi − xTi βα0

)− ρα(yi − xTi β̂α)
}
,

where A = E[ψ2
α] = α(1− α), B = E[ψ′α] = g(G−1(α)) and under null hypothesis

LRn
D−−−→

n→∞
χ2
p+1.

B was estimated using the following relationship between the asymptotic variance
of β̂α and design matrix X, A and B

varβ̂α =
A

B2
(XTX)−1.

Test denoted by asymp is based on the asymptotic distribution of regression
quantiles

√
n
(
β̂α − βα

)
=

1√
nf(F−1(α))

Q−1
n

n∑
i=1

xTi ψα(Eiα) +Op(n
−1/4),

where Eiα = ei − F−1(α) and

ψα(x) =

{
α : x > 0
α− 1 : x ≤ 0

Then
√
n(β̂α − βα)

D−−−→
n→∞

Np+1

(
0,D−1

0

α(1− α)

f 2(F−1(α)

)
and the test statistic

n
f 2(F−1(α))

α(1− α)
(β̂α − βα0

)TD0(β̂α − βα0
) ∼ χ2

p+1,

where 1
f(F−1(α))

was estimated by kernel estimator

β̂n1(α + νn)− β̂n1(α− νn)

2νn
,
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where νn was set to 3
4
α.

The rank test is implemented in R in package quantreg using command
rq(..., se = "rank"). This command returns confidence intervals described
in Koenker (1994).

The results for saddlepoint test statistics are denoted by ”SAD-par” for para-
metric saddlepoint test and ”SAD-non” for nonparametric saddlepoint test.

We performed simulations for sample sizes n = 21, 31, 41 and 51, number
of replications was set to 50000. The i-th row of matrix X was equal to xTi =
(1, xi1 . . . , xi5), where xij ∼ U(0, 1), j = 1, 2, . . . , 5. The true value of parameter
β was set to βT = (3, 1, 2, 3, 4, 5). The errors ei, i = 1, . . . , n were generated
from two distributions with the same α-quantile: normal distribution N(0, 1) and
contaminated normal distribution N(0, ·) with N(0, 9) (ε = 0.2). The simulations
were carried out for different values of α: 0.1, 0.15, 0.25 and 0.5

In the tables 3.3 - 3.6 we summarized the results of the numerical study under
the hypothesis, the results are presented as a percentage (out of N) of simulated
test statistics not exceeding the quantile (0.9, 0.95 and 0.99) of its asymptotic
distribution. Notice that the approximation by χ2-distribution is much more
accurate for saddlepoint test statistics (both parametric and nonparametric) than
for other compared tests. The accuracy of this approximation stays very high for
parametric saddlepoint test even in contaminated model. These tests are very
precise even for small values of α. The test based on the asymptotic distribution
of averaged regression quantiles performes better than other classical tests. Notice
that the results for rank test deteriorates for larger values of n. Although also
other matrices X were considered, the results stayed similar.

In the tables 3.7 and 3.8 we summarized the results of a numerical study of
performance of the compared tests under alternative. The percentages of reject-
ed hypotheses are written down. We again considered the same sample sizes,
values of α and distributions as in the previous study, but we considered differ-
ent matrix X. The i-th row of matrix X was equal to xTi = (1, xi1, xi2), where
xij ∼ U(0, 1), j = 1, 2. The percentage of rejected hypotheses is similar for all
parametric tests, although it seems that saddlepoint test tends to reject the null
hypothesis more often. Nonparametric saddlepoint test performes much better
than the rank test - i.e. the only other nonparametric test we considered. Observe
that the percentage of rejected hypotheses is larger for α further from 0.5.
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n = 21, α = 0.1 0.9 0.95 0.99 n = 21, α = 0.15 0.9 0.95 0.99
SAD - par. 0.86804 0.92902 0.98486 SAD - par. 0.88280 0.93950 0.98678
SAD - non. 0.88044 0.88634 0.88830 SAD - non. 0.94910 0.95918 0.96318
avg 0.63630 0.66554 0.70692 avg 0.74260 0.78260 0.83400
Wald 0.10420 0.14444 0.23148 Wald 0.28650 0.35050 0.47362
LR 0.31886 0.43328 0.63562 LR 0.50612 0.61812 0.78590
asymp 0.29802 0.31960 0.35678 asymp 0.46778 0.49726 0.54654
rank 0.86314 0.97908 0.99970 rank 0.70074 0.92168 0.99842

n = 31, α = 0.1 0.9 0.95 0.99 n = 31, α = 0.15 0.9 0.95 0.99
SAD - par. 0.87644 0.93378 0.98454 SAD - par. 0.89132 0.94388 0.98770
SAD - non. 0.95298 0.95978 0.96240 SAD - non. 0.97114 0.98708 0.99320
avg 0.76566 0.80110 0.85028 avg 0.80814 0.84362 0.88538
Wald 0.20138 0.25206 0.35594 Wald 0.43304 0.49554 0.60172
LR 0.43262 0.53868 0.71466 LR 0.61814 0.70896 0.83724
asymp 0.49138 0.52192 0.57022 asymp 0.57320 0.60272 0.65146
rank 0.67218 0.87578 0.99606 rank 0.60458 0.80896 0.98270

n = 41, α = 0.1 0.9 0.95 0.99 n = 41, α = 0.15 0.9 0.95 0.99
SAD - par. 0.88148 0.93776 0.98586 SAD - par. 0.89292 0.94542 0.98844
SAD - non. 0.97418 0.98258 0.98566 SAD - non. 0.97380 0.98434 0.99662
avg 0.82206 0.85528 0.89390 avg 0.84748 0.87820 0.91310
Wald 0.32152 0.38134 0.48658 Wald 0.53280 0.58982 0.68236
LR 0.52972 0.63186 0.78336 LR 0.68136 0.76238 0.86834
asymp 0.61246 0.63880 0.68164 asymp 0.65254 0.67888 0.72056
rank 0.61848 0.82932 0.98482 rank 0.58254 0.78580 0.97286

n = 51, α = 0.1 0.9 0.95 0.99 n = 51, α = 0.15 0.9 0.95 0.99
SAD - par. 0.88536 0.93996 0.98666 SAD - par. 0.89586 0.94698 0.98914
SAD - non. 0.97366 0.98858 0.99494 SAD - non. 0.97446 0.99104 0.99698
avg 0.82450 0.86084 0.90184 avg 0.85108 0.88352 0.91784
Wald 0.42662 0.48592 0.58368 Wald 0.58198 0.63746 0.72374
LR 0.60806 0.69886 0.82726 LR 0.71506 0.78902 0.88868
asymp 0.63534 0.66484 0.70734 asymp 0.67636 0.70202 0.74096
rank 0.60102 0.80352 0.97936 rank 0.57236 0.77244 0.96780

Table 3.3: Comparison of accuracy of tests under H0 : βα = β + F−1
N(0,1)(α), α = 0.1

and α = 0.15, N = 50000; data generated from: N(0,1)
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n = 21, α = 0.25 0.9 0.95 0.99 n = 21, α = 0.5 0.9 0.95 0.99
SAD - par. 0.90398 0.95206 0.98962 SAD - par. 0.91792 0.96042 0.99206
SAD - non. 0.94268 0.97126 0.98764 SAD - non. 0.66840 0.77144 0.86402
avg 0.80866 0.84476 0.88824 avg 0.85766 0.88724 0.92042
Wald 0.61122 0.67176 0.76364 Wald 0.82858 0.87172 0.92620
LR 0.73076 0.80806 0.90578 LR 0.85454 0.90960 0.96522
asymp 0.56892 0.59784 0.64588 asymp 0.67004 0.69622 0.73666
rank 0.58270 0.80776 0.99036 rank 0.53908 0.75868 0.97580

n = 31, α = 0.25 0.9 0.95 0.99 n = 31, α = 0.5 0.9 0.95 0.99
SAD - par. 0.90588 0.95358 0.99036 SAD - par. 0.91516 0.95816 0.99202
SAD - non. 0.95312 0.98046 0.99592 SAD - non. 0.66496 0.78486 0.91788
avg 0.83580 0.86936 0.90506 avg 0.86430 0.89564 0.92762
Wald 0.64718 0.70142 0.78170 Wald 0.79630 0.84672 0.91344
LR 0.74792 0.81880 0.90770 LR 0.84310 0.90098 0.96322
asymp 0.62778 0.6554 0.69678 asymp 0.69028 0.71806 0.75908
rank 0.56548 0.77104 0.97078 rank 0.54516 0.75146 0.96300

n = 41, α = 0.25 0.9 0.95 0.99 n = 41, α = 0.5 0.9 0.95 0.99
SAD - par. 0.90470 0.95292 0.98974 SAD - par. 0.91000 0.95642 0.99060
SAD - non. 0.95342 0.98018 0.99700 SAD - non. 0.64784 0.77602 0.92290
avg 0.85402 0.88566 0.91810 avg 0.86688 0.8964 0.9276
Wald 0.70236 0.7565 0.83576 Wald 0.78776 0.8396 0.9099
LR 0.79302 0.85934 0.93760 LR 0.84148 0.9011 0.96426
asymp 0.66898 0.69302 0.7333 asymp 0.70640 0.73192 0.77302
rank 0.56280 0.76130 0.96188 rank 0.5558 0.75356 0.95764

n = 51, α = 0.25 0.9 0.95 0.99 n = 51, α = 0.5 0.9 0.95 0.99
SAD - par. 0.90548 0.95256 0.99034 SAD - par. 0.90852 0.95582 0.99156
SAD - non. 0.95232 0.9812 0.99782 SAD - non. 0.64336 0.77280 0.92098
avg 0.85818 0.88904 0.92328 avg 0.87742 0.90960 0.94244
Wald 0.7240 0.77910 0.85714 Wald 0.79668 0.85200 0.92038
LR 0.80724 0.87216 0.94580 LR 0.84676 0.90692 0.96862
asymp 0.69076 0.71664 0.75576 asymp 0.75904 0.78602 0.82538
rank 0.55464 0.75494 0.95762 rank 0.54912 0.74234 0.95080

Table 3.4: Comparison of accuracy of tests under H0 : βα = β + F−1
N(0,1)(α), α = 0.25

and α = 0.5, N = 50000; data generated from: N(0,1)
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n = 21, α = 0.1 0.9 0.95 0.99 n = 21, α = 0.15 0.9 0.95 0.99
SAD - par. 0.52832 0.61044 0.73616 SAD - par. 0.60838 0.68272 0.79198
SAD - non. 0.70362 0.78770 0.86418 SAD - non. 0.81418 0.87836 0.93316
avg 0.68432 0.71002 0.74610 avg 0.77648 0.80996 0.85380
Wald 0.03148 0.05012 0.10260 Wald 0.18670 0.24184 0.35832
LR 0.23376 0.33026 0.52510 LR 0.45784 0.56820 0.74352
asymp 0.34594 0.36948 0.40810 asymp 0.52920 0.55738 0.60396
rank 0.84188 0.97074 0.99960 rank 0.69074 0.91630 0.99772

n = 31, α = 0.1 0.9 0.95 0.99 n = 31, α = 0.15 0.9 0.95 0.99
SAD - par. 0.49938 0.58342 0.71614 SAD - par. 0.62172 0.69808 0.80124
SAD - non. 0.73562 0.81704 0.92078 SAD - non. 0.82706 0.89412 0.96670
avg 0.77958 0.81224 0.85368 avg 0.83172 0.86062 0.89768
Wald 0.07012 0.09888 0.17024 Wald 0.28308 0.34378 0.45642
LR 0.29808 0.39914 0.58788 LR 0.53440 0.63836 0.78894
asymp 0.55898 0.58638 0.63058 asymp 0.64688 0.67262 0.71232
rank 0.66538 0.86740 0.99500 rank 0.59874 0.80284 0.98268

n = 41, α = 0.1 0.9 0.95 0.99 n = 41, α = 0.15 0.9 0.95 0.99
SAD - par. 0.48252 0.56840 0.69812 SAD - par. 0.62916 0.70622 0.81512
SAD - non. 0.72142 0.80280 0.91338 SAD - non. 0.82158 0.88094 0.96070
avg 0.84016 0.86798 0.90130 avg 0.87688 0.90066 0.92752
Wald 0.12516 0.16412 0.24976 Wald 0.37698 0.43874 0.54562
LR 0.36274 0.46618 0.64550 LR 0.60218 0.69642 0.82822
asymp 0.68836 0.71112 0.74684 asymp 0.74552 0.76472 0.79356
rank 0.61782 0.82756 0.98462 rank 0.58238 0.78702 0.97262

n = 51, α = 0.1 0.9 0.95 0.99 n = 51, α = 0.15 0.9 0.95 0.99
SAD - par. 0.47374 0.55988 0.69304 SAD - par. 0.64148 0.72206 0.82962
SAD - non. 0.71602 0.79900 0.91050 SAD - non. 0.83258 0.89372 0.96012
avg 0.86196 0.88778 0.91702 avg 0.89274 0.91414 0.93710
Wald 0.18766 0.23534 0.33052 Wald 0.44420 0.50370 0.60680
LR 0.43034 0.53270 0.70254 LR 0.64754 0.73154 0.85204
asymp 0.72784 0.74862 0.78144 asymp 0.77206 0.78944 0.81784
rank 0.59346 0.79878 0.97880 rank 0.57124 0.77018 0.96614

Table 3.5: Comparison of accuracy of tests under H0 : βα = β + F−1
N(0,1)(α), α = 0.1

and α = 0.15, N = 50000; data generated from: contaminated N(0,.) with N(0,9)
(ε = 0.2)
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n = 21, α = 0.25 0.9 0.95 0.99 n = 21, α = 0.5 0.9 0.95 0.99
SAD - par. 0.72562 0.79042 0.87354 SAD - par. 0.71024 0.79116 0.89402
SAD - non. 0.86140 0.91612 0.95962 SAD - non. 0.70332 0.79820 0.88620
avg 0.83910 0.86896 0.90304 avg 0.87988 0.90556 0.93214
Wald 0.55818 0.62516 0.72748 Wald 0.84880 0.8896 0.93632
LR 0.72508 0.80318 0.90290 LR 0.88092 0.92804 0.97384
asymp 0.64082 0.66730 0.70734 asymp 0.72046 0.74146 0.77482
rank 0.57848 0.80612 0.99062 rank 0.53954 0.75926 0.97612

n = 31, α = 0.25 0.9 0.95 0.99 n = 31, α = 0.5 0.9 0.95 0.99
SAD - par. 0.76470 0.83204 0.91118 SAD - par. 0.72858 0.81406 0.91880
SAD - non. 0.88332 0.93580 0.98084 SAD - non. 0.69918 0.81444 0.93150
avg 0.86950 0.89430 0.92352 avg 0.8775 0.90428 0.93228
Wald 0.60114 0.66170 0.75316 Wald 0.81258 0.86138 0.92170
LR 0.74636 0.81888 0.90754 LR 0.86146 0.91548 0.97052
asymp 0.70808 0.73022 0.76412 asymp 0.71862 0.74146 0.77578
rank 0.56514 0.77072 0.96982 rank 0.54602 0.75380 0.96396

n = 41, α = 0.25 0.9 0.95 0.99 n = 41, α = 0.5 0.9 0.95 0.99
SAD - par. 0.78388 0.84942 0.92720 SAD - par. 0.74074 0.82710 0.92812
SAD - non. 0.88812 0.93724 0.98332 SAD - non. 0.68256 0.80520 0.93660
avg 0.88938 0.91212 0.93664 avg 0.87472 0.90146 0.93078
Wald 0.66990 0.72860 0.81676 Wald 0.80260 0.85452 0.92052
LR 0.79272 0.86002 0.93728 LR 0.85538 0.91382 0.96978
asymp 0.75202 0.77154 0.80014 asymp 0.71238 0.73596 0.77268
rank 0.56060 0.76388 0.96354 rank 0.55346 0.75134 0.95660

n = 51, α = 0.25 0.9 0.95 0.99 n = 51, α = 0.5 0.9 0.95 0.99
SAD - par. 0.79906 0.86552 0.94150 SAD - par. 0.74558 0.83170 0.93486
SAD - non. 0.89326 0.94330 0.98456 SAD - non. 0.66450 0.79154 0.93506
avg 0.89170 0.91472 0.94018 avg 0.88350 0.91102 0.94010
Wald 0.69184 0.75050 0.83468 Wald 0.80770 0.85940 0.92502
LR 0.80168 0.86784 0.94262 LR 0.85996 0.91760 0.97284
asymp 0.76258 0.78204 0.81068 asymp 0.73088 0.75660 0.79492
rank 0.55466 0.75116 0.95632 rank 0.54434 0.74216 0.95154

Table 3.6: Comparison of accuracy of tests under H0 : βα = β + F−1
N(0,1)(α), α = 0.25

and α = 0.5, N = 50000; data generated from: contaminated N(0,.) with N(0,9)
(ε = 0.2)



CHAPTER 3. TESTS ON THE VALUE OF REGRESSION QUANTILE 69

α = 0.1 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.89534 0.92984 0.97332 0.98994
SAD - non. 0.73094 0.61942 0.52058 0.76730
avg 0.49852 0.53468 0.65274 0.76812
Wald 0.93264 0.86132 0.86794 0.89246
LR 0.86746 0.81612 0.84390 0.88586
asymp 0.79022 0.66132 0.69950 0.73342
rank 0.16986 0.21478 0.31288 0.36860

α = 0.15 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.93020 0.95528 0.98672 0.99654
SAD - non. 0.57688 0.69702 0.68992 0.79936
avg 0.61382 0.64946 0.77426 0.88530
Wald 0.85406 0.82828 0.89502 0.94220
LR 0.81456 0.81826 0.90008 0.95244
asymp 0.77392 0.61636 0.73314 0.81408
rank 0.25696 0.28798 0.38790 0.44756

α = 0.25 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.95498 0.97672 0.99546 0.94000
SAD - non. 0.69776 0.77640 0.91566 0.99950
avg 0.75000 0.77996 0.92000 0.97334
Wald 0.83992 0.89362 0.95428 0.98180
LR 0.84472 0.91216 0.96846 0.98996
asymp 0.75088 0.72272 0.83446 0.91800
rank 0.31342 0.35198 0.46460 0.54018

α = 0.5 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.96418 0.98670 0.99846 0.99988
SAD - non. 0.85648 0.95336 0.99102 0.99862
avg 0.89870 0.93790 0.98906 0.99844
Wald 0.90090 0.95058 0.98858 0.99794
LR 0.94126 0.97554 0.99594 0.99950
asymp 0.74492 0.79934 0.92808 0.98280
rank 0.34978 0.40204 0.52424 0.61698

Table 3.7: Percentage of rejected hypotheses at significance level 0.05, normal dis-
tribution, hypothetical value βα0

= (3+F−1(α), 0, 0), real value (3+F−1(α), 1, 1)
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α = 0.1 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.90232 0.9271 0.94694 0.96056
SAD - non. 0.40086 0.25676 0.18138 0.31622
avg 0.32664 0.27944 0.28244 0.31106
Wald 0.90910 0.85158 0.82626 0.81212
LR 0.77278 0.72556 0.70558 0.71012
asymp 0.58904 0.46606 0.43816 0.41598
rank 0.14552 0.17772 0.23228 0.25988

α = 0.15 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.91756 0.93794 0.96718 0.98088
SAD - non. 0.31484 0.35970 0.33162 0.42580
avg 0.39644 0.33128 0.39394 0.48732
Wald 0.83682 0.79736 0.82634 0.87516
LR 0.73366 0.71620 0.76536 0.82802
asymp 0.57142 0.46296 0.48540 0.51524
rank 0.21062 0.24036 0.30880 0.35352

α = 0.25 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.94094 0.96584 0.98914 0.99678
SAD - non. 0.50066 0.54836 0.73920 0.76134
avg 0.51160 0.52012 0.66588 0.7618
Wald 0.80398 0.84622 0.90860 0.95100
LR 0.76582 0.83392 0.90780 0.94998
asymp 0.58312 0.5720 0.63112 0.68688
rank 0.27856 0.31986 0.42128 0.49090

α = 0.5 n = 21 n = 31 n = 41 n = 51
SAD - par. 0.94912 0.97446 0.99486 0.99934
SAD - non. 0.69662 0.85218 0.94766 0.98370
avg 0.69274 0.77808 0.92720 0.98020
Wald 0.78084 0.86438 0.94938 0.98458
LR 0.83438 0.90558 0.97136 0.99260
asymp 0.54622 0.61292 0.76170 0.88856
rank 0.28530 0.33158 0.42996 0.51590

Table 3.8: Percentage of rejected hypotheses at significance level 0.05, contami-
nated normal distribution, hypothetical value βα0

= (3 +F−1(α), 0, 0), real value
(3 + F−1(α), 1, 1)



Chapter 4

Saddlepoint approximation for
the density based on I-divergence

In this chapter we will not work with classical setup of n i.i.d. random variables
and will consider n independent but not necessarily identically distributed random
variables instead. Let us assume Y1, . . . , Yn are independent and the distribution
of Yi depends on the parameter γi. We will specifically deal with Yi from the
exponential family. The form of pdf of exponential family will allow us to write
the saddlepoint approximation to the density of sufficient statistic and MLE in
the explicit form. The inference will be based on a special case of Kullback-Leibler
divergence, called I-divergence. Part of this chapter was submitted, see Sabolová
et al. (2014).

4.1 Information theory, I-divergence

In order to connect the information theory with the statistical decision theory
we study the measures of difference between statistical models used in informa-
tion theory. These are usually referred to as information divergences and their
development started after the introduction of information entropy in (Shannon,
1948). Entropy is commonly viewed as the measure of the amount of uncertain-
ty contained in a random variable Y based on its pdf (continuous case) or pmf
(discrete case). The entropy of a continuous random variable Y having pdf f(y)
with respect to Lebesgue measure is defined as

H(Y ) = −
∫
Y

f(y) log f(y)dx. (4.1)

In this chapter we concentrate on the Kullback-Leibler (KL) divergence. This
divergence was introduced as a generalization of Shannon’s entropy in (Kullback
and Leibler, 1951). Its ”creation” was initiated by a need to solve the statistical
problems of discrimination while satisfying the additional criterion – the chosen
statistic has to contain all relevant information provided by the sample. The
KL-divergence is defined as the mean information in observation y (on the state
space Y ) for discrimination between f1 and f2, where these stand for pdfs w.r.t.
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probability measures µi, i = 1, 2 .

DKL(f1, f2) =

∫
Y

f1(y) log
f1(y)

f2(y)
dy. (4.2)

Remark 8. Symmetry and triangle inequality are not satisfied for KL-divergence,
thus it is not a distance. Notice positive semidefinitness, i.e. DKL(f1, f2) ≥ 0
with equality only if f1(y) = f2(y) a.e. (see (Kullback and Leibler, 1951)).

We will specifically deal with the exponential family that includes many com-
mon distributions and its pdf has a convenient form that will enable us to rewrite
KL-divergence in a form suitable for consequent computations (i.e. derivation of
saddlepoint approximation to the density of sufficient statistic and MLE).

Definition 2. Probability density function for the exponential family has the form

h(yi|γi) = exp {log f(yi) + γiT (yi) + log g(γi)} i = 1, . . . , n. (4.3)

Joint density for y1, . . . , yn has the form

h(y|γ) =
n∏
i=1

f(yi)g(γi) exp {γiT (yi)}

= exp

{∑
i

log(f(yi)) +
∑
i

γiT (yi) +
∑
i

log(g(γi))

}
= exp

{
−ψ(y) + t(y)Tγ − κ(γ)

}
, (4.4)

where

ψ(y) =−
∑
i

log(f(yi)),

κ(γ) =−
∑
i

log(g(γi)). (4.5)

In the following, we will work with the setup used in (Pázman, 1993) where
certain smoothness and regularity assumptions on the exponential family have
been considered, see p. 217–218. In particular, we will suppose that

{t(y) : y ∈ Y } ⊆ {Eγ[t(y)] : γ ∈ Γ}

and
∂κ(γ)

∂γ
= Eγ[t(y)]

(see Barndorf-Nielsen (1978)). These two properties together with (4.5) imply

∂κ(γ)

∂γi
|γ=γ̂y = −

g′γi(γ̂i)

g(γ̂i)
= T (yi) (4.6)

where γ̂i is a MLE of the parameter γi and γ̂y = (γ̂1, . . . , γ̂n) (see Stehĺık (2003)).
Let us now introduce a special case of KL-divergence based on (4.6).



CHAPTER 4. SADDLEPOINT APPROXIMATION FOR THE DENSITY
BASED ON I-DIVERGENCE 73

Definition 3. The I-divergence of h(y|γ) from h(y|γ∗) has the form

In(γ∗, γ) =
∑
i

−
g′γi(γ̂i)

g(γ∗i )
(γ∗i − γi) +

∑
i

log

(
g(γ∗i )

g(γi)

)
(4.7)

and I-divergence of the canonical parameter γ from sampled vector y has the form

In(y, γ) = I(γ̂y, γ) =
∑
i

(T (yi)γ̂i + log g(γ̂i))−
∑
i

(T (yi)γi + log g(γi)) . (4.8)

4.2 Testing hypotheses based on I-divergence

I-divergence in the exponential family can be rewritten as a sum of two random
variables, each one representing a test statistic.

In(y, γ) =
∑
i

(T (yi)γ̂i + log g(γ̂i))−
∑
i

(T (yi)γi + log g(γi))

=
∑
i

(T (yi)γ̂i + log g(γ̂i))−
∑
i

(T (yi)γi + log g(γi))

±
∑
i

(T (yi)γ̂MLE + log g(γ̂MLE))

=

[∑
i

(T (yi)γ̂MLE + log g(γ̂MLE))−
∑
i

(T (yi)γi + log g(γi))

]

+

[∑
i

(T (yi)γ̂i + log g(γ̂i))−
∑
i

(T (yi)γ̂MLE + log g(γ̂MLE))

]
=Rn + Sn

where γ̂MLE is the MLE of the parameter γ based on the whole observed sample
y1, ldots, yn.

Sn represents test statistics of a likelihood ratio test for

H0 : γ1 = . . . = γN vs. H1 : arbitrary suitable γ, γ ∈ Γ.

Rn represents test statistics of a likelihood ratio test for

H0 : γ1 = . . . = γN = γ0 vs. H1 : γ 6= γ0.

4.2.1 Independence of Rn and Sn

Independence of Rn and Sn for gamma-distributed random variables was proved
in Stehĺık (2003). Pareto-distributed random variable with known threshold xm
belongs to the exponential family (unlike Pareto-distributed random variable with
unknown xm), its pdf being

fY (y) =α
xαm
yα+1

, xm > 0, α > 0. (4.9)
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Now let us consider the twodimensional sample from Pareto distribution and the
transformation

log
y1

xm
= ts, log

y2

xm
= t(1− s),

where t ∈ (0,∞), s ∈ (0, 1), having Jacobian equal to

|J | = x2
mte

t.

Thus, the density of the transformed vector has form

gS,T (s, t) = α1α2te
−α1tse−α2t(1−s).

We obtain radial and spherical components of the form

R2H0 = −2 + 2 log 2− 2 log t+ (−γ0 − 1)t

S2 = − log s− log(1− s)− 2 log 2

Thus we have independence of Rn and Sn.

4.2.2 Graphical method for testing H0 : γ = γ0 in the ex-
ponential distribution

Suppose that {Yi}ni=1 is a random sample from exponential distribution with rate
γ and corresponding pdf

h(yi|γ) = γe−γyi , yi ≥ 0.

For testing the hypothesis about the unknown parameter γ = (γ1, . . . , γn)T

H0 : γ = γ0 (H1 : γ 6= γ0)

based on available observations y = (y1, . . . , yn)T we exploit the I-divergence
introduced in Stehĺık (2003):

In(y, γ0) = n ln
∑
i

yi −
∑
i

ln yi + γ0

∑
i

yi − n ln(γ0

∑
i

yi)− n.

For the exponential case, the exact form of cdf for In, n ≤ 4 is derived in (Stehĺık
et al., 2014). For n = 1 and y ∼ Exp(γ) the cdf of I1(γ̂, γ) is equal to

F1(x) =

{
exp{γ̂−1γW0(− exp{−1− x}} − exp{γ̂−1γW−1(− exp{−1− x}}, x > 0

0 x ≤ 0,

whereW0,W−1 are the two real-valued branches of Lambert-W function. Quantile
plot of F1(I1) under H0 : γ = 1 against quantiles of uniform distribution U(0,1)
is displayed in Fig. 4.1. In this example we generated M = 1000 random samples
each consisting of 1 random variable from the distribution Exp(1). The plotted
points form the diagonal in the plot, thus we do not reject the hypothesis.
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Figure 4.1: Simulations for exponential case with exact F1, number of samples
1000 and γ = 1

As formulas for n ≥ 2 are rather complicated, we exploit the deconvolution
of In to two independent parts Rn and Sn as follows:

In(y, γ0) = Rn + Sn

Rn = γ0

∑
i

yi − n ln(γ0

∑
i

yi)− n+ n lnn

Sn = n ln
∑
i

yi − n lnn−
∑
i

ln yi.

To construct the cdf of In and thus the quantile plot we use asymptotic distri-
bution of Rn and Sn. According to (Stehĺık, 2003), Rn is asymptotically χ2

1-
distributed. Asymptotic distribution of Sn was derived in (Bartlett and Kendall,
1946) and is equal to

1

2

(
1 +

1 + 1
n

6

)
χ2
n−1.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) γ = 1, γ0 = 1
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(b) γ = 1, γ0 = 2
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Figure 4.2: Simulations for exponential case for 1000 samples with n = 50.

Quantile plots of F̂n(In) for F̂n being the asymptotic cdf of In for M = 1000
samples of size n = 50 from Exp(1) against quantiles of uniform distribution
U(0,1) for different hypotheses H0 : γ = γ0 can be found in Fig. 4.2a, 4.2b and
4.2c.

In case when the data were drawn from Exp(1) and the hypothetical value
for the unknown parameter γ was set to 1, the plotted points form a diagonal
in the quantile plot for asymptotic cdf of In against cdf of uniform distribution
U(0, 1). When testing the hypothesis that the unknown parameter γ equals 2 or
1/2 (see Fig. 4.2b and 4.2c), the results in the plots differ significantly from the
straight line forming diagonal. Thus we reject hypotheses in both cases.
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4.3 Saddlepoint approximations for linear expo-

nential family

The derivation of saddlepoint approximation for density of a sufficient statistic
and density of MLE will be based on theory introduced in Pázman (1993).

Theorem 13. (Saddlepoint approximation of the density of a sufficient statistics
T ) The saddlepoint approximation of the density of the vector of a sufficient
statistic T is equal to

qT (t|γ) =(2π)−n/2

(∏
i

g′(γ̂i)
2 − g′′(γ̂i)g(γ̂i)

g2(γ̂i)

)−1/2∏
i

g(γi)

g(γ̂i)
exp{ti[γi − γ̂i]}.

(4.10)

and the saddlepoint approximation of the density of MLE γ̂ is equal to

qMLE(γ̂|γ) =(2π)−n/2

(∏
i

g′(γ̂i)
2 − g′′(γ̂i)g(γ̂i)

g2(γ̂i)

)1/2∏
i

g(γi)

g(γ̂i)
exp{ti[γi − γ̂i]}.

(4.11)

Proof. The saddlepoint approximation of the density of the vector T is equal to
(see (Pázman, 1993), definition 9.3.1):

qT (t|γ) = (2π)−k/2|Σγ̂(t)|−1/2 exp{−In(γ̂(t), γ)},

where

Σγ =
∂2κ

∂γ∂γT
,

In(., .) is given in (4.8) and γ̂(t) is a solution of maximization problem

γ̂(t) = arg max
γ∈Γ

[tTγ − κ(γ)].

∂2κ

∂γi∂γj
=

1

g2(γi)

(
g′(γi)g

′(γj)− g′′(γi)g(γj) I[i=j]

)
Matrix Σγ is diagonal and equals

∂2κ

∂γ∂γT
= diag

{
g′(γi)

2 − g′′(γi)g(γi)

g2(γi)

}

and its determinant therefore can be rewritten as a product of its diagonal ele-
ments ∣∣∣∣ ∂2κ

∂γ∂γT

∣∣∣∣ =
∏
i

g′(γi)
2 − g′′(γi)g(γi)

g2(γi)
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The other part of the saddlepoint approximation of the density can be expressed
in a following way

exp{−In(γ̂(t), γ)} = exp

{∑
i

(tiγi + log g(γi))−
∑
i

(tiγ̂i + log g(γ̂i))

}

=

∏
i exp{tiγi}g(γi)∏
i exp{tiγ̂i}g(γ̂i)

=
∏
i

g(γi)

g(γ̂i)
exp{ti[γi − γ̂i]}

Finally we get the saddlepoint approximation of the density of sufficient statistic
in exponential family of the form (4.10).

Formula for saddlepoint approximation of the density of MLE follows from

q(γ̂, γ) = det (Σγ̂) qT (t, γ)|t=t(γ̂),

see (Pázman, 1993).

4.4 Application to real data - methane emis-

sions

Methane is a product of anaerobic decomposition processes of the organic matter
cycles mainly in water-saturated soils. These processes require the synergy or
syntrophic cooperation between anaerobic bacteria and methanogenic archaea.
Organic matter is firstly hydrolysed and fermented, and the products that are
formed are the compounds used for methanogenesis (Le Mer and Roger, 2001).
Methane production can be described as dissipative process of entropy in which
highly organized organic structures are decomposed to basic simple compounds.
The process of releasing the methane from soil and plant stand is highly de-
termined by its production. Methane production depends on the occurrence of
methanogenic bacteria, the amount of decomposed organic matter and suitable
anaerobic conditions. Methane releasing from deeper soil layers is influenced
by many processes, including methane oxidation by the methanetrophic bacteria
(see Shukla et al. (2013)) and also by its means of being released from the soil
environment.

Methane emissions are typically modelled via trend process fitting, which
makes the amount of stochasticity and chaos present in the system questionable.
In Jordanova et al. (2013b), this dependence has been modelled by a time se-
ries model. The trend component has been estimated by the Ordinary Least
Squares technique. The noise component is represented by sum of an infinite
moving average model with Pareto-like positive and negative parts of the inno-
vations and independent identically distributed (i.i.d.) innovations with similar
tail behaviour. Pareto tails have been also justified by robust tests for normal-
ity against Pareto tails (see Stehĺık et al. (2013)). Such moving average time
series could be considered as born by a point process, which is not homoge-
neous (see Jordanova et al. (2013a)). The process of methane release from soil
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is both chaotic and stochastic. In Jordanova et al. (2013b) the relation between
stochastic and chaotic model was outlined: The parameters typically associated
with chaos (both deterministic and stochastic) are measures of dimension, rate
of information generated (entropy), and the Lyapunov spectrum. Entropies, as
a measure of self-organization (or level of chaos of the system) in our case corre-
spond to heavy tail parameters (in our stochastic model these are Pareto tails of
lower and upper exceedances over thresholds, respectively). In Jordanova et al.
(2013b), large tail parameters of the underlying stochastic process for both upper
and lower exceedances were observed. This confirms that the amount of chaos
measured through correlation dimension or entropy is not large.

As we have already mentioned the Pareto tails are proved to be suitable
for modelling the release of methane by bacteria. To measure the amount of
unpredictability or chaos involved in such system we exploit the information en-
tropy (4.1). If we assume strict parametric assumption of the Pareto distribution
Pareto(xm, α) with scale parameter xm and shape parameter α having the prob-
ability density function (pdf) (4.9) then we can derive the theoretical relationship
between the tail parameter and its entropy (see Yari and Borzadaran (2010)):

H(Y ) = log
(xm
α

)
+

1

α
+ 1. (4.12)

This is always decreasing function for increasing α independent of the value of
xm:

∂H(Y )

∂α
= − 1

α
− 1

α2
< 0 (α > 0).

Jordanova et al. (2013b) observed that large values of tail parameters α confirming
moderate level of chaos in the system, justifying underlying biochemical intuition.

For real data on methane emissions the value of threshold xm is usually not
provided explicitly. We shall treat xm as a nuisance parameter, which is however
substantial for interpretation since it distinguishes between normal diffusion and
anomalous diffusion (chaos). Our conjecture for the source of the chaos are various
interactions (e.g. way of escaping of methane). The process of diffusion and other
non-specific ways of methane releasing (e.g. ebullition) occur simultaneously.
Normal diffusion relates to stochasticity, non-specific ways of releasing of methane
relate to chaotical behavior of the system.

Both parts, stochastic and chaotic are hardly separable. Therefore the simu-
lated process compared via I-divergence (4.8) to real data process can be taken
only in upper tails of real data. Thus peaks of methane emissions can correspond
to various spontaneous releases of methane which we understand to be chaotic in
its nature.

Real methane data

We will analyze the residuals Z,Z−, Z+ of methane emissions taken from infinite
moving average model (8) in Jordanova et al. (2013b), where only time is taken
as a regressor. We trimmed the original data sets with sample sizes MZ+ = 998,
MZ− = 971 by 30%, thus we obtained Pareto distributed samples of sample sizes
M+, M−.
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Before we proceed to testing the null hypothesis about the parameter γ =
(γ1, . . . , γn) it is necessary to deal with the unknown nuisance parameter xm. To
obtain the desired value of xm we exploit a maximum entropy principle (Shore
and Johnson (1980), Jaynes (1982)). This principle states that from the set of all
possible distributions, now represented by a set of Pareto distributions with fixed
α and unknown xm, we should choose the distribution with the highest entropy.
For fixed γ, (γ = −α − 1), and xm on the interval (0, ymin), where ymin is the
minimal value from the sample y1, . . . , yn, the entropy is an increasing function of
xm, see (4.12). Thus, the value of xm chosen for the proposed graphical method
should be close to the minimal value of the sample y1, . . . , yn. Since data are
Pareto distributed, xm < yi ∀i, we set xm = 0.99× ymin.

Let us still assume the shape parameter α is known. Thus the uncertainty
of the current system, represented by entropy (4.12), now depends on the value
of the scale parameter xm. If the chemometrician is expecting the system to
be more deterministic, one should choose the value of xm close to zero. This
coincides with the fact that then the exceedances over threshold xm are assigned
with lower probability. On the other hand, if the system can be more chaotic,
that is the exceedances over the threshold xm occur with high probability, the
value of xm should be close to the minimal value of the sample y1, . . . , yn. For our
Pareto data Z+ with α = 1.3 and the minimal value of the sample 2.05×10−6 the
relation between entropy and value of xm is shown in Fig.4.3. For lower values of
entropy the value of xm is really close to zero, the maximum achievable entropy
is obtained for xm close to ymin.
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Figure 4.3: The relation between entropy and scale parameter xm, fixed parameter
α.

For chosen hypotheses H0 : γ = γ0 we transformed the both data samples
using the relationship between Pareto and exponential distribution and used the
procedure described in Section 4.2.2.
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Based on expert’s opinion, we set α0 = 1.3 for trimmed data set Z+ and
α0 = 1.2 for trimmed data set Z−. Proposed graphical method confirms these
hypotheses as we can see in Fig. 4.4a and Fig. 4.4b.

(a) Pareto methane data - Z+ (b) Pareto methane data - Z-

Figure 4.4: Pareto real data case: γ0 = 1.3 for Z+, γ0 = 1.2 for Z-.

In order to derive a saddlepoint approximation it is first necessary to compute
density of a sufficient statistic t, that for Pareto distribution has the form t =
log y. Using results from Pázman (1993) we get the saddlepoint approximation
for the density of t

qT (t|γ) = (2π)−n/2
∏
i

(−γi − 1)x
−γi−1+ 1

log xm−ti
m exp

{
ti

(
γi −

1

log xm − ti
+ 1

)}
.

Saddlepoint aproximation for the density of MLE is based on the density of
the sufficient statistic (see Pázman (1993))

γ̂i =
1

log xm − ti
− 1, i = 1, . . . , n

and its formula reads

qMLE(γ̂|γ) =(2π)−n/2
∏
i

(log xm − ti)2(−γi − 1)x
−γi−1+ 1

log xm−ti
m

× exp

{
ti

(
γi −

1

log xm − ti
+ 1

)}
|t=t(γ̂)

=(2π)−n/2
∏
i

−γi − 1

(γ̂i + 1)2
x−γi+γ̂im exp

{
(γi − γ̂i)

(
log xm −

1

γ̂i + 1

)}
.



CHAPTER 4. SADDLEPOINT APPROXIMATION FOR THE DENSITY
BASED ON I-DIVERGENCE 81

In order to illustrate the applicability of the above derived formulas we exploit
the trimmed data Z+ and Z−.

Firstly, we concentrate on the density of the sufficient statistic, MLE estimate
and confidence areas, the I-divergence for trimmed data Z+. We will consider two
independent Pareto distributed variables y1, y2 with scale parameter xm = 2.03×
10−6. To study aforementioned properties with respect to changes in the unknown
parameters γi, i = 1, 2, we randomly chose two observations y1 = 1.45×10−5 and
y2 = 4.24×10−6 within the admissible area: γi < −1, i = 1, 2. Results are shown
in Fig. 4.5a, 4.5b and 4.5c.
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Figure 4.5: Pareto real data Z+ with saddlepoint densities for sufficient statistic
t, MLE estimate and I-divergence.

In case of the I-divergence I2(γ̂y, γ), we expect that as a function of two
variables it reaches its minimum value, zero, for the arguments:

γ̂i =
1

log yi − log xm
− 1, i = 1, 2

(see properties of the KL-divergence). Thus, in this case in the point γ̂1 = −1.51
and γ̂2 = −2.36, which can be seen in 4.5c also brings the view on the changes
of the I-divergence with respect to γ1, γ2. We can see that plotted I-divergence
reaches minimum value for values γ̂1 and γ̂2. From the principle of maximum
likelihood, we expect that the approximated density reaches its maximum values
for these values of γ̂1 and γ̂2 (Fig. 4.5a, 4.5b, 4.5c).

The similar analysis was carried out for trimmed data set Z− with values
xm = 2× 10−6, y1 = 4.85× 10−6 and y2 = 7.38× 10−6. The results are shown in
Fig. 4.6a, 4.6b, 4.6c and corresponding MLE are γ̂1 = −2.13, γ̂2 = −1.77.

Once we have derived the approximation for the density of γ̂, it enables us to
do more statistical inference on this parameter. One of the biggest advantages
of saddlepoint approximation based on I-divergence is that it provides analytical
formula for approximation of the density of MLE. Therefore there is no need for
any other numerical procedures and the density may be used straighforwardly. In
this case not only the density is tractable in explicit form, but also distribution
function possesses this desirable property.
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Figure 4.6: Pareto real data Z- with saddlepoint densities for sufficient statistic
t, MLE estimate and I-divergence.

4.5 Comparison to the general saddlepoint ap-

proximations

Once we have derived the saddlepoint approximation for the density of MLE
in exponential family, it is of interest to compare these results to the original
saddlepoint approximations developed in Field and Ronchetti (1990). In order to
do so, it is necessary to consider a slightly different setup. Let Y1, . . . , Yn be i.i.d
with distribution Fθ and corresponding pdf fθ. MLE is an M -estimator with

ψ(y, θ) = −f
′(y, θ)

f(y, θ)
.

In order to make comparison to our setup we need to restrict ourselves to the
situation γ1 = γ2 = . . . = γn.

From the computational point of view, the biggest difference between original
saddlepoint approximations and those based on I-divergence is in the existence
of approximation for the density in a closed form. When using saddlepoint ap-
proximations for M -estimators, it is often not possible to derive explicit formula
of the approximation for the density. It is viable only in special cases already
mentioned in the previous chapters, for example for normally distributed random
variable. In this case, both methods yield the exact density of MLE. The closed
form of the approximation based on I-divergence enables us to compute integrals
of the density more precisely. In this case, saddlepoint approximations developed
in Field and Ronchetti (1990) yield just a set of values of density in specified
points.

Therefore we are not usually able to compare formulae using these two meth-
ods and we will present the results of the numerical comparison for different
sample sizes. Let us now consider a random sample of size n = 5, 10 and 20
from exponential distribution with γ = 1. In the following figures, for these given
sample sizes the saddlepoint approximations based on I-divergence are plotted
in blue, approximations based on Field and Ronchetti (1990) are plotted by red
line. These two approximations differ, but for growing sample size they begin to
coincide.
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Figure 4.7: Comparison of saddlepoint approximations for MLE in exponential
distribution.



Conclusion

Although saddlepoint methods were introduced into statistic 60 years ago, they
still prove to be useful in many fields of statistical inference. The focus point
of this thesis was the derivation of the distribution of estimators and testing hy-
potheses based on saddlepoint methods in quantile regression. This approach
yields not only precise approximations to the density of the estimators, but also
tests with excellent accuracy in small sample sizes as well as good robustness
properties. We derived test statistics for parametric and nonparametric setup
(unspecified error distribution in the linear regression model) and compared in
a numerical study their performacne to other available alternatives. Unlike vast
majority of results based on saddlepoint techniques, the test statistics and ap-
proximations of the density introduced in this work are given by explicit formulae,
and hence easy to implement.

Beside procedures based on the saddlepoint methods, a test on the value of
a regression quantile based on the asymptotic distribution of averaged regression
quantiles was proposed. Although this test statistic requires estimation of quan-
tile density function, in a numerical study it proved to be much more precise than
classical parametric tests based on likelihood. Also approach to saddlepoint ap-
proximations to the density of MLE and sufficient statistic based on information
theory was studied. I-divergence as a special case of Kullback-Leibler divergence
can be decomposed into a sum of two independent tests based on likelihood ra-
tio, and provides a convenient way of testing the hypothesis on the value of a
parameter in exponential family. The results based on I-divergence were applied
to real data on methane ebullition.
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