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Tests of statistical hypotheses in
measurement error models

Department of Probability and Mathematical Statistics

Supervisor of the doctoral thesis: prof. RNDr. Jana Jurečková, DrSc.
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Introduction

Measurement error models (also called errors-in-variables models) are regression
models that account for measurement errors in the independent variables (regres-
sors). These observed regressors are called manifest, indicator, or proxy variables,
while the original unobserved regressors are called latent or true variables. They
may be regarded either as unknown constants (in which case the model is called
a functional model), or as random variables (correspondingly a structural model).

These models occur very commonly in practical data analysis, where some
variables cannot be observed exactly, usually due to instrument or sampling error.
Sometimes ignoring measurement error may lead to correct conclusions, however
in some situations it may have dramatic consequences.

Let us mention some motivational examples to illustrate where one may meet
measurement error models and what problems one has to solve when dealing with
such models. This first example is from Nummi and Möttönen (2004).

Example. Finland is Europe’s most heavily-forested country, they cover 74.2%
of the land area. Forests have been Finland’s most important natural resource for
centuries. In the harvesting technique used in Finland, tree stems are converted
into smaller logs (usually 2–3) immediately at harvest.

One of the tasks harvesters have to deal with is to find optimal cutting points
on the stems. They are given data from high class measuring and computing
equipment - length and diameter data from a sensor. In 1980s techniques for
the situation if the measurements of the entire stem are known were developed.
However, in a real harvesting situation it is not possible to measure the whole
stem before crosscutting. In practice the first cutting point must be made under
incomplete information about the stem. Therefore some prediction or estimation
method is needed for the unknown part of the stem. In addition both stem diameter
and stem height are measured only with measurement errors.

Example (Misclassification). Fleiss (1981) conducted a study to estimate the
proportion of heavy smokers in a population. 200 respondents were randomly
selected and asked if they would classify themselves as a heavy smoker, 88 of
them did. However, such a classification was based only on a subjective opinion
of a respondent. Hence a random subsample of 50 subjects was selected and the
individuals were subjected to a blood test that is able to determine the true status
(heavy smoker or not).

We know for 50 observations both the true and reported status, but for the
rest of 150 observations only the reported. Why do we not know it for all the
observations? Since the blood test is very expensive and the testing procedure
might be time demanding. Anyway, we would like to combine both types of the
information to estimate the proportion of heavy smokers in a population.

Example (Simple linear regression). DeGracie and Fuller (1972) examined the
relationship between corn yield (response variable) and soil nitrogen content (re-
gressor) measured on eleven sites in Marshall County, Iowa. The yields are as-
sumed to be measured without error, but the nitrogen content associated with the
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spatial area that comprises a unit is measured with error caused by spatial subsam-
pling and instrument error in assessing nitrogen content of the soil. Measurement
errors are assumed to be additive with a constant known variance 57.

We still want to describe the relation between corn yield and soil nitrogen
content with a simple linear regression model, although the regressors are measured
with an additive error. We want to estimate the slope parameter and test if it is
zero (if there is a linear relation between corn yield and soil nitrogen content).

Importance of measurement error models was first considered by Adcock at
the end of the nineteenth century. In Adcock (1877) and Adcock (1878) he showed
that in the model of regression line with measurement error least squares esti-
mate of the slope parameter is downwarded in magnitude. One year later Kummel
(1879) generalized his work, unlike Adcock that considered model and measure-
ment errors to be equal, Kummel assumed their ratio to be known. Pearson
(1901) extended previous results into multiple linear regression model. Deming
(1931) and Lindley (1947) used two different methods for minimizing projections
other than orthogonal.

Wald (1940) suggested completely different approach. He did not need any
knowledge of the error structure, he split the observations into two groups, where
the first group contained the first half of ordered observations and the second
group the rest of the observations. Bartlett (1949) further developed this idea
by adding one more group. Theoretically the splitting should be based on true
values that are unobservable. However, Wald showed that approximate splitting
with respect to the observed values gives the same results as splitting with respect
to the true values. This method is in the literature known as grouping and was
further developed and generalized. Pakes (1982) criticized this approach and
showed that Wald’s estimate underestimates the true value of the parameter. On
the other hand, if the measurement errors are not too large, this grouping method
may provide a reasonable estimator of the slope parameter. Wald’s grouping
method may be considered as a special case of instrumental value method that
is very popular in econometrics.

Theil (1950) and Durbin (1954) were probably the first who used ranks of
observed values for constructing an estimate. Anyway, there is the same problem
as for grouping method, because the ranks of the observed values may differ from
the real ones and the estimate will be inconsistent. Teissier (1948) suggested
a method of geometric mean, for implementing this estimate it was necessary
to have some knowledge about the measurement errors, moreover this estimate
may have in some situations infinite variance. An interesting way how to look at
geometric mean regression was done by Barker et al. (1988). He considered least
triangles method, where minimized the sum of right angled triangles similarly as
in the least squares method. Finally he proved a connection between his method
and method of geometric mean.

Some authors tried to implement the method of moments into measurement
error models, see for instance Scott (1950), Drion (1951). Presence of measure-
ment errors will increase the number of equations needed for estimation and
hence higher moments need to be considered. An approach closely related to the
method of moments was proposed by Geary (1942) using so called cumulants.
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The most popular method for dealing with measurement errors is a maximum
likelihood approach, the normality assumption or any other knowledge of the error
distribution is crucial for this method. Lindley (1947) was one of the first authors
that used maximum likelihood method and pointed out that it is necessary to
have some prior information about measurement error to be able to construct a
consistent estimator.

Recently, total least squares method has became very popular. Originally it
was introduced by Golub and Van Loan (1980) and has grown rapidly in many
areas such as engineering and computed science.

There are several books devoted entirely to measurement error models, let us
mention among others Fuller (1987), Cheng and Van Ness (1999), Carroll et al.
(2006), Buonaccorsi (2010). The literature about measurement error models is
very rich, we could not cover all the relevant paper, we just wanted to give an
overview about the history and various methods that can be used for dealing with
measurement error models.

The majority of the papers about measurement error model deals with the
estimation problem. There is almost no mention of testing in these models in
the literature, although this problem might be as important as estimation and
sometimes we are more interested in identification of regressors that have in-
fluence on the response variable rather than the actual magnitude of regression
coefficients. Hence our main aim will be an introduction of testing procedures
in measurement error models. The most of the little literature about tests uses
parametric approach with its restrictive normality assumptions or a knowledge
of some additional information about error distribution (see e.g. Fuller (1987)).
We will avoid this and introduce a class of rank tests that will be valid even if
measurement errors are present.

Rank tests form a class of statistical procedures which have the advantage of
simplicity combined with surprising power. The first application of rank tests
mentioned in the literature may have been done by Arbuthnot (1710) who first
used the sign test. Modern development of rank tests began in the 1930’s. Let
us mention articles of Hotteling and Pabst (1936), Friedman (1937) and Kendall
(1938). Well known is also Wilcoxon (1945) who introduced popular Wilcoxon
test for comparing two treatments. At first, it was believed that we have to pay
a heavy price in loss of efficiency when using rank tests. However, it turned out
that efficiency of rank tests behaves quite well under the classical assumption of
normality. In addition these tests remain valid and have high efficiency when the
assumption of normality is not satisfied. These facts were first brought out by
Pitman (1948).

Several books about rank tests were written, among others Hájek and Šidák
(1967), Puri and Sen (1971), Lehmann (1975) and Puri and Sen (1985). For
location and shift parameters the idea of using rank tests to derive some estima-
tors was done by Hodges and Lehmann (1963), this concept was later generalized
by Jurečková (1971) into linear regression model. Gutenbrunner and Jurečková
(1992) and Gutenbrunner et al. (1993) introduced ranks into regression models
as so called regression rank scores and tests and estimates based on them.

The idea to use rank tests and estimates in measurement error models is
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relatively new. Only a few years ago Jurečková et al. (2010) first used rank tests
and regression rank score tests for testing about regression parameters when both
response and regressors are subject to measurement errors. Sen and Saleh (2010)
and Saleh et al. (2012) considered some R-estimates of regression parameters
under measurement errors.

Main goal of this thesis is to investigate the behavior of standard rank pro-
cedures in measurement error models - both tests and estimates. We will also
try to modify these procedures to stay valid in measurement error models. This
thesis is like a cookbook proposing rank tests and estimates for various models
affected by measurement errors.

In the first chapter we summarize existing results about rank tests and R-
estimates in linear regression model under measurement errors, especially based
on articles Jurečková et al. (2010) and Saleh et al. (2012). These results will
be then generalized in Chapter 2, where we propose a new rank test for slope
parameter in regression and an aligned rank test for intercept, where the nuisance
slope parameter is replaced with its estimate. However, these rank estimates are
biased as it is shown in Chapter 3; their asymptotic bias corresponds to that for
least square estimate in normal measurement error model.

In Chapter 4 the problem of heteroscedasticity in linear models is discussed.
Regression rank score tests of homoscedasticity with nuisance regression and tests
for regression under nuisance heteroscedasticity are proposed. Chapters 5 and 6
deal with location model. Rank tests and R-estimates of the shift parameter are
investigated under various measurement errors.

All the theoretical results are accompanied by numerical examples, where the
performance of tests and estimates for finite sample situation is studied.
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1. Rank tests in regression

This chapter is an overview of rank-based methods in the linear model, with
or without presence of measurement errors. The main results are cited without
proofs, the illustrating examples and simulations are original.

1.1 Tests about slope parameter

1.1.1 Model without measurement errors

Consider classical linear regression model

Yi = β0 + x⊤
i β + ei, i = 1, . . . , n, (1.1)

where β0 ∈ R and β ∈ Rp are unknown parameters, model errors ei are assumed
to be independent identically distributed (i.i.d.) with an unknown distribution
function F and density f , xi are vectors of known regressors, such that

Qn =
1

n

n∑
i=1

(xi − x)(xi − x)⊤, with x =
1

n

n∑
i=1

xi

is a positive definite matrix (further on we will tacitly assume that this holds).
Our aim is to test the hypothesis

H0 : β = 0 against K0 : β ̸= 0.

Choose a nondecreasing, nonconstant, square integrable score function
φ : (0, 1) 7→ R and define

an(i) = φ

(
i

n+ 1

)
, i = 1, . . . , n, (1.2)

A2(φ) =

∫ 1

0

(φ(t)− φ)2dt, φ =

∫ 1

0

φ(t)dt. (1.3)

Remark. The scores an(i) are called approximate scores, instead of them one
may use so-called exact scores

ãn(i) = Eφ
(
U(i)

)
, i = 1, . . . , n,

where U(1) ≤ . . . ≤ U(n) are the ordered statistics from a sample of size n from
uniform U(0, 1) distribution.

Let Ri be the rank of Yi among Y1, . . . , Yn and define vector of linear rank
statistics

Sn = n−1/2

n∑
i=1

(xi − x)an(Ri).

Test criterion for H0 is
T 2
n = A−2(φ)S⊤

nQ
−1
n Sn. (1.4)

7



RANK TESTS IN REGRESSION Tests about slope parameter

Lemma 1.1. Let Y1, . . . , Yn be i.i.d. with absolutely continuous distribution and
ranks R1, . . . , Rn. Then for each permutation (r1, . . . , rn) of numbers (1, . . . , n)
it holds

P (R1 = r1, . . . , Rn = rn) =
1

n!
.

Proof. See Hájek et al. (1999).

The previous lemma gives us a clue how to find critical value for test based
on T 2

n . Under H0 model (1.1) reduces to

Yi = β0 + ei, i = 1, . . . , n, (1.5)

hence we may compute for all permutations (r1, . . . , rn) values of T 2
n and order

these n! values in the increasing magnitude. The critical region is then formed by
k = ⌊αn!⌋ largest values of T 2

n (α being prescribed level of significance). (k+1)-st
largest value might be randomized to achieve exactly level α.

However, this approach becomes computationally demanding for large values
of n, hence we shall use asymptotic approximation. For that we will need to
add some assumptions on model errors and regressors. Assume that f has finite
Fisher information with respect to the location

0 < I(f) =

∫ (
f ′(x)

f(x)

)2

f(x)dx <∞ (1.6)

and there exists a positive definite matrix Q, such that as n→ ∞

Qn → Q, (1.7)
1

n
max

i=1,...,n
(xi − x)⊤Q−1

n (xi − x) → 0. (1.8)

Theorem 1.1. Assume that (1.6) – (1.8) hold. Then in model (1.1) under H0

test statistic T 2
n has asymptotically as n → ∞ χ2 distribution with p degrees of

freedom.

Proof. See Puri and Sen (1985, Theorem 5.3.1).

We are able to describe asymptotic behavior of T 2
n under alternatives close to

the hypothesis. Hence consider a sequence of local alternatives

K0,n : β = n−1/2β∗, 0 ̸= β∗ ∈ Rp fixed. (1.9)

Theorem 1.2. Assume that (1.6) – (1.8) hold. Then in model (1.1) under K0,n

test statistic T 2
n has asymptotically as n → ∞ noncentral χ2 distribution with p

degrees of freedom and noncentrality parameter

η2 = β∗⊤Qβ∗γ
2(φ, f)

A2(φ)
,

γ(φ, f) =

∫ 1

0

φ(t)φ̃(t, f)dt, φ̃(t, f) = −f
′(F−1(t))

f(F−1(t))
. (1.10)

Proof. See Puri and Sen (1985, Theorem 5.5.2).
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RANK TESTS IN REGRESSION Tests about slope parameter

1.1.2 Model with errors in responses

Suppose that we observe regressors xi accurately, while instead of Yi we observe
Zi = Yi + Wi, where Wi are i.i.d. random variables independent with ei with
(unknown) distribution function G and density g. We have

Yi = β0 + x⊤
i β + ei, (1.11)

Zi = Yi +Wi, i = 1, . . . , n.

We may rewrite model (1.11) for observed responses as

Zi = β0 + x⊤
i β + e∗i , i = 1, . . . , n,

where e∗i = ei +Wi are i.i.d. random variables with density

h(x) =

∫ ∞

−∞
f(x− y)g(y)dy (1.12)

and finite Fisher information as it will be proven in the following lemma.

Lemma 1.2. Let X, Y be independent absolutely continuous random variables,
X with finite Fisher information with respect to the location. Then X + Y has
finite Fisher information with respect to the location.

Proof. According to Hölder’s inequality∫ ∞

−∞
|f ′(x)|dx ≤

{∫ ∞

−∞

(
f ′(x)

f(x)

)2

f(x)dx

}1/2

= [I(f)]1/2 <∞.

Hence ∫ ∞

−∞

∫ ∞

−∞
|f ′(x− y)|dxg(y)dy <∞

and

h(x) =

∫ ∞

−∞
f(x− y)g(y)dy

h′(x) =

∫ ∞

−∞
f ′(x− y)g(y)dy

Finally, by Cauchy-Schwarz inequality

[h′(x)]2

h(x)
≤
∫ ∞

−∞

[f ′(x− y)]2

f(x− y)
g(y)dy

and integrating both sides dx we get I(h) ≤ I(f) <∞.

Denote T 2
Z,n test statistic (1.4) based on observed values (Zi,xi). The presence

of measurement errors may change ranks Ri, fortunately this change does not
affect hypothetical distribution of T 2

Z,n, because under H0 we have

Zi = β0 + e∗i

9



RANK TESTS IN REGRESSION Tests about slope parameter

and according to Lemma 1.1 distribution of (R1, . . . , Rn) remains uniform over
all permutations. Hence the exact distribution of T 2

Z,n under H0 is the same as
T 2
n . Similarly, as a direct consequence of (1.12) and Lemma 1.2, for asymptotic

distribution of T 2
Z,n we have the following theorem.

Theorem 1.3. Assume that (1.6) – (1.8) hold. Then in model (1.11) under H0

test statistic T 2
Z,n has asymptotically as n → ∞ χ2 distribution with p degrees of

freedom and under K0,n asymptotically noncentral χ2 distribution with p degrees
of freedom and noncentrality parameter

η2 = β∗⊤Qβ∗γ
2(φ, h)

A2(φ)
.

Remark (Asymptotic relative efficiency). Complete information on the limiting
properties of tests is provided by their asymptotic power. If all considered statis-
tics have asymptotically χ2 distribution under both hypothesis and alternative, a
number called asymptotic relative efficiency independent of the level of significance
may be defined for comparing powers of two various tests.

Definition. Let T1 and T2 be two tests for H against K that are asymptotically
χ2 distributed with p degrees of freedom under H and under K asymptotically χ2

distributed with p degrees of freedom and noncentrality parameters δ21, δ
2
2 respec-

tively. Then the number

ARE(T1, T2) =
δ21
δ22

will be called asymptotic relative efficiency of T1-test relative to T2-test.

Remark. The number ⌊(1−ARE(T1, T2)) ·n⌋ can be interpreted as a number of
observations ”wasted” when using T1-test instead of T2-test (Pitman’s interpreta-
tion of ARE). In other words, the number ⌊ARE(T1, T2) · n⌋ gives us a number
of observations needed for reaching asymptotically the same power when using
T2-test instead of T1.

In our situation asymptotic relative efficiency of the test with measurement
errors relative to the test without measurement errors is

ARE(T 2
Z,n, T

2
n) =

(
γ(φ, h)

γ(φ, f)

)2

.

1.1.3 Model with errors in regressors

This model assumes that regressors xi are not observed accurately, but only with
an additive, unobservable, error vi, i.e. we observe wi = xi + vi instead of xi,
where v1, . . . ,vn are i.i.d. random vectors independent of e1, . . . , en. In other
words, we may write

Yi = β0 + x⊤
i β + ei, (1.13)

wi = xi + vi, i = 1, . . . , n.

10



RANK TESTS IN REGRESSION Tests about slope parameter

Assume that observed regressors wi satisfy (similarly as in model without
measurement errors):

Dn =
1

n

n∑
i=1

(wi −w)(wi −w)⊤, with w =
1

n

n∑
i=1

wi

is a positive definite matrix.
Denote T 2

w,n test statistic (1.4) based on observed values (Yi,wi). The pres-
ence of measurement errors does not change ranks Ri, hence nor hypothetical
distribution of T 2

w,n, because under H0 we have

Zi = β0 + ei.

For deriving asymptotic properties we need to put more assumptions on wi.
Assume that there exists a positive definite matrix C, such that as n→ ∞

Cn =
1

n

n∑
i=1

(vi − v)(vi − v)⊤ → C, (1.14)

1

n

n∑
i=1

(vi − v)(xi − x)⊤ → 0, (1.15)

1

n
max

i=1,...,n
(wi −w)⊤D−1

n (wi −w) → 0. (1.16)

Then we state a theorem about asymptotic properties of T 2
w,n.

Theorem 1.4. Assume that (1.6), (1.14) – (1.16) hold. Then in model (1.13)
under H0 test statistic T 2

w,n has asymptotically as n → ∞ χ2 distribution with p
degrees of freedom and under K0,n has asymptotically noncentral χ2 distribution
with p degrees of freedom and noncentrality parameter

η2 = β∗⊤Q(Q+C)−1Qβ∗γ
2(φ, f)

A2(φ)
.

Proof. See Jurečková et al. (2009).

Hence we have the expression for asymptotic relative efficiency of the test
with measurement errors relative to the test without measurement errors:

ARE(T 2
w,n, T

2
n) =

β∗⊤Q(Q+C)−1Qβ∗⊤

β∗⊤Qβ∗⊤ .

Remark. Numerical illustration of the performance of the above tests may be
found in Navrátil (2010).
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RANK TESTS IN REGRESSION Tests about slope parameter

1.1.4 Possible complications due to measurement errors

In model (1.1) without measurement errors it is easy to see that when we want
to test the hypothesis H0,∗ : β = β0 ̸= 0,β0 ∈ Rp known, we may transform this
problem into problem of testing H0 : β = 0 subtracting x⊤

i β
0 from both sides of

(1.1):
Y ∗
i = Yi − x⊤

i β
0 = β0 + ei. (1.17)

Testing H0 : β = 0 in model (1.1) is then equivalent to testing H0,∗ : β = β0 in
model (1.17).

Will this approach work also in measurement error models (1.11) and (1.13)?
For model (1.11) it is evident that it will work, but in model (1.13) it does not
work. Using the same technique, i.e. subtracting w⊤

i β
0 from both sides of (1.13),

we get
Y ∗
i = Yi −w⊤

i β
0 = β0 − v⊤

i β
0 + ei. (1.18)

Unlike the previous case we did not get rid of β0 from the right side of equa-
tion (1.18) and the test will not work. We may illustrate it with the following
simulation example.

Example. Consider model of regression line passing through the origin

Yi = xiβ + ei, i = 1, . . . , 50.

The regressors xi were once generated from independent sample of size n = 50
from uniform U(−2, 10) distribution and then taken as fixed design points, the
model errors ei were generated from standard normal distribution. The empirical
power of the Wilcoxon test for regression was computed as a percentage of rejec-
tions of H0,∗ : β = 2 among 10 000 replications, at significance level α = 0.05.
The results are summarized in Table 1.1.

β \ vi 0 N (0, 1) N (0, 1/2) U(−1, 1) U(−0.5, 0.5) U(−2, 2)
2.00 5.06 39.73 19.92 13.48 5.98 53.69
1.80 99.41 97.15 96.84 97.01 98.80 97.44
1.85 93.02 91.41 88.51 87.96 90.62 93.72
1.90 63.20 79.06 69.15 65.66 62.93 85.28
1.95 22.06 60.73 42.89 36.52 25.17 72.34
2.05 21.71 21.86 7.84 5.14 10.81 35.80
2.10 63.94 9.38 5.81 9.22 39.16 20.00
2.15 92.98 4.72 14.30 25.75 76.05 9.56
2.20 99.50 2.20 31.96 51.81 94.92 4.66

Table 1.1: Percentage of rejections of hypothesis H0,∗ : β = 2 for various mea-
surement errors vi for Wilcoxon test for regression; n = 50.

To be able to deal with this problem one would need some additional knowl-
edge about distribution of measurement errors.

12
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1.2 Aligned rank tests

We are often more interested in testing hypothesis only about a component of the
parameter β, identify regressors that have influence on response variable. Denote

β = (β⊤
1 ,β

⊤
2 )

⊤,

xi = (x⊤
1,i,x

⊤
2,i)

⊤,

vi = (v⊤
1,i,v

⊤
2,i)

⊤,

wi = (w⊤
1,i,w

⊤
2,i)

⊤,

where β1 ∈ Rp−q, β2 ∈ Rq, x1,i ∈ Rp−q, x2,i ∈ Rq, v1,i ∈ Rp−q, v2,i ∈ Rq,
w1,i ∈ Rp−q, w2,i ∈ Rq, 1 ≤ q < p. Then model (1.13) can be rewritten as

Yi = β0 + x⊤
1,iβ1 + x⊤

2,iβ2 + ei,

w1,i = x1,i + v1,i, (1.19)

w2,i = x2,i + v2,i, i = 1, . . . , n.

Our goal is to test the hypothesis

H1 : β2 = 0 against K1 : β2 ̸= 0,

considering β0 and β1 as nuisance parameters.
Rank tests are invariant with respect to the location, but not to the nuisance

regression. That is why we have to first estimate the nuisance parameter β1

and then apply the standard test on residuals. Due to the absence of knowledge
of distribution of model errors and to preserve robust properties we use an R-
estimator of parameter β1.

Model (1.19) under H1 reduces to

Yi = β0 +w⊤
1,iβ1 + e∗i ,

where e∗i = ei − v⊤
1,iβ1 are i.i.d. random variables with density f ∗ = f ∗

β1
.

Choose a nondecreasing, nonconstant, square integrable score function
ψ : (0, 1) 7→ R that is skew-symmetric, i.e.

ψ(1− t) = −ψ(t), ∀ 0 < t < 1

and define as in (1.2)

ãn(i) = ψ

(
i

n+ 1

)
, i = 1, . . . , n.

Following Jaeckel (1972) we define the rank (pseudo)estimator β̂1,n of β1 as a
minimizer of

Dn(b) =
n∑

i=1

(
Yi −w⊤

1,ib
)
ãn(Ri(b)) (1.20)

with respect to b ∈ Rp−q, where Ri(b) is the rank of (Yi −w⊤
1,ib) among

(Y1 −w⊤
1,1b), . . . , (Yn −w⊤

1,nb).
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RANK TESTS IN REGRESSION Aligned rank tests

Remark. By Jaeckel (1972), the function Dn(b) is convex and piecewise linear
in b ∈ Rp−q, with the subgradient

−n1/2Sn(b) = −
n∑

i=1

(w1,i −w1)ãn(Ri(b)),

hence its minimizer exists.
Jurečková (1969) and Koul (1969) defined an estimate β̂1,n of β1 in a different

way, as
β̂1,n = argmin{∥Sn(b)∥,b ∈ Rp−q},

where ∥·∥ might be L1 or L2 norm in Rp−q. However, all these estimates admit the
same asymptotic representation and hence they have under very mild assumptions
the same asymptotic distribution.

Now, consider residuals

êi = Yi −w⊤
1,iβ̂1,n, i = 1, . . . , n

and proceed the same way as in Section 1.1.1, when applying the test on resid-
uals ê1, . . . , ên. Note that unlike the situation in Section 1.1.1 residuals êi are
not independent, because they depend on the R-estimate of nuisance parameter
β1. However under some assumptions this fact does not affect the asymptotic
distribution.

Hence choose a nondecreasing, nonconstant, square integrable score function
φ : (0, 1) 7→ R (it may differ from ψ) and define

an(i) = φ

(
i

n+ 1

)
, i = 1, . . . , n

and compute

Ŝn = n−1/2

n∑
i=1

(w2,i −w2)an(Ri(β̂1,n)),

where Ri(β̂1,n) is the rank of êi among ê1, . . . , ên.
Denote

D1,n =
1

n

n∑
i=1

(w1,i −w1)(w1,i −w1)
⊤,

D2,n =
1

n

n∑
i=1

(w2,i −w2)(w2,i −w2)
⊤.

Finally, consider test statistic

T̂ 2
n = A−2(φ)Ŝ⊤

nD
−1
2,nŜn.
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RANK TESTS IN REGRESSION Aligned rank tests

Assume that there exist positive definite matrices Q1,Q2,C1,C2, such that
as n→ ∞

Q1,n =
1

n

n∑
i=1

(x1,i − x1)(x1,i − x1)
⊤ → Q1, (1.21)

C1,n =
1

n

n∑
i=1

(v1,i − v1)(v1,i − v1)
⊤ → C1, (1.22)

1

n
max

i=1,...,n
(w1,i −w1)

⊤D−1
1,n(w1,i −w1) → 0, (1.23)

Q2,n =
1

n

n∑
i=1

(x2,i − x2)(x2,i − x2)
⊤ → Q2, (1.24)

C2,n =
1

n

n∑
i=1

(v2,i − v2)(v2,i − v2)
⊤ → C2, (1.25)

1

n
max

i=1,...,n
(w2,i −w2)

⊤D−1
2,n(w2,i −w2) → 0. (1.26)

Finally, we are able to describe asymptotic distribution of T̂ 2
n .

Theorem 1.5. Assume that (1.6), (1.21) – (1.26) hold. Then in model (1.19)

under H1 test statistic T̂ 2
n has asymptotically as n → ∞ χ2 distribution with q

degrees of freedom and under local alternative

K1,n : β2 = n−1/2β∗
2, 0 ̸= β∗

2 ∈ Rq fixed

T̂ 2
n has asymptotically noncentral χ2 distribution with q degrees of freedom and

noncentrality parameter

η̂2 = β∗⊤
2 Q2(Q2 +C2)

−1Q2β
∗
2

γ2(φ, f ∗)

A2(φ)
.

Proof. See Jurečková et al. (2010).

Remark. Recall that f ∗ depends on unknown nuisance parameter β1 and distri-
bution of measurement errors v1,i, hence the asymptotic power of the test does
depend on the nuisance parameter β1 unlike the situation without measurement
errors.

Remark. Although it may seem at first glance that the previous procedure could
be used for estimation of regression parameters in measurement error models, but
it could not. As pointed out in Saleh et al. (2012) estimate β̂1,n is not consistent
estimator of β1, but in fact it estimates (Q1 +C1)

−1Q1β1.
For the testing procedure it does not matter and when considering residuals

this ”inconsistency” disappears because of multiplying β̂1,n by w1,i.
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RANK TESTS IN REGRESSION Regression rank score tests

1.3 Regression rank score tests

Under certain assumptions on measurement errors Jurečková et al. (2010) solved
the previous problem without an estimation of nuisance parameter β1 with the
aid of regression rank scores. They are invariant to the nuisance regression and
hence we can avoid estimation of β1 and use directly test based on them. To be
able to do it we have to assume that corresponding regressors x1,i are measured
exactly, while x2,i may be affected by some measurement errors:

Yi = β0 + x⊤
1,iβ1 + x⊤

2,iβ2 + ei,

w2,i = x2,i + v2,i, i = 1, . . . , n. (1.27)

Under H1 it reduces to

Yi = β0 + x⊤
1,iβ1 + ei. (1.28)

Hence we compute regression rank scores in model (1.28). Regression rank scores
were introduced in Gutenbrunner and Jurečková (1992) as a solution of the dual
form of the linear program required for computing regression quantiles.

Remark. Koenker and Basset (1978) introduced regression quantiles in model
(1.28), α - regression quantile is any solution of the minimization

min
n∑

i=1

ρα(Yi − t0 − x⊤
1,it)

with respect to (t0, t) ∈ R× Rp−q, where

ρα(u) = |u| · [(1− α)I{u < 0}+ αI{u > 0}] .

Koenker and Basset (1978) also showed that α - regression quantile β̂n(α)
can be computed as a component β of optimal solution (β, r+, r−) of the linear
program

min α1⊤
n r

+ + (1− α)1⊤
n r

−

with respect to

X∗
1,nβ + r+ − r− = Yn (1.29)

(β, r+, r−) ∈ Rp−q+1 × R2n
+ ,

where Yn = (Y1, . . . , Yn)
⊤,1n = (1, . . . , 1)⊤ ∈ Rn and X∗

1,n = (1n,X1,n) with
X1,n = (x1,1, . . . ,x1,n)

⊤.

Hence regression rank score ân(α) = (ân,1(α), . . . , ân,n(α))
⊤ may be found as

a solution of the maximization

max Y⊤
n a

with respect to
X∗⊤

1,na = (1− α)X∗⊤
1,n1n, a ∈ [0, 1]n.
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RANK TESTS IN REGRESSION Regression rank score tests

Gutenbrunner et al. (1993) pointed out that ân(α) are regression invariant
with respect to X∗

1,n, i.e. ân(α) is unchanged if Yn is transformed to Yn +X∗
1,nγ

for all γ ∈ Rp−q+1. This property is crucial for constructing the test statistic.
As in the classical rank tests theory, we shall consider a score function

φ : (0, 1) 7→ R that is supposed to be nondecreasing, nonconstant, square inte-
grable. And similarly define scores

b̂n,i = −
∫ 1

0

φ(t)dân,i(t), b̂n = (b̂n,1, . . . , b̂n,n)
⊤,

vector of linear regression rank scores statistics and the test statistic, respectively:

Sn = n−1/2

n∑
i=1

(w2,i − ŵ2,i)b̂n,i = n−1/2(W2,n − Ŵ2,n)
⊤b̂n,

W2,n = (w2,1, . . . ,w2,n)
⊤,

Ŵ2,n = (ŵ2,1, . . . , ŵ2,n)
⊤ = X∗

1,n(X
∗⊤
1,nX

∗
1,n)

−1X∗⊤
1,nW2,n,

D̂2,n = n−1(W2,n − Ŵ2,n)
⊤(W2,n − Ŵ2,n),

T 2
n = A−2(φ)S⊤

n D̂
−1
2,nSn.

Again, to prove some asymptotic properties we have to put some assumptions
on distribution of model errors and observed regressors. Let us start with the
imposed conditions on F :

(F.1) f(x) > 0 is absolutely continuous, bounded and monotonically decreasing
as x ↓ A and x ↑ B, where

−∞ ≤ A = sup{x : F (x) = 0}, ∞ ≥ B = inf{x : F (x) = 1},

and

sup
0<u<1

u(1− u)
|f ′(F−1(u))|
f 2(F−1(u))

= α, (1.30)

where 1 ≤ α ≤ 1 + 1
4
− ε, ε > 0.

(F.2)
∣∣∣f ′(x)
f(x)

∣∣∣ ≤ c|x|, for |x| ≥ K ≥ 0, c > 0.

Remark. Distributions satisfying (1.30) were studied by Csörgő and Révész (1978)
and Parzen (1979), among others. The class covers the tail monotone distribu-
tions not lighter than normal and lighter than the t-distribution with 4 degrees
of freedom. Parzen (1979) showed that then f(F−1(u)) = (1 − u)αL(1 − u)
as u ↑ 1, where the function L(·) is slowly varying at 0. Moreover, then also
|F−1(u)| ≤ c(1 − u))1−αL(1 − u) for 1 − u0 ≤ u < 1, c > 0. Numerical stud-
ies show that the tests work well even under more general conditions than those
considered here. The conditions which are the most general for the asymptotic
distribution of regression rank score tests is still an open question.
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Further denote

X2,n = (x2,1, . . . ,x2,n)
⊤, X̂2,n = (x̂2,1, . . . , x̂2,n)

⊤ = X∗
1,n(X

∗⊤
1,nX

∗
1,n)

−1X∗⊤
1,nX2,n,

V2,n = (v2,1, . . . ,v2,n)
⊤, V̂2,n = (v̂2,1, . . . , v̂2,n)

⊤ = X∗
1,n(X

∗⊤
1,nX

∗
1,n)

−1X∗⊤
1,nV2,n,

Q̂2,n =
1

n

n∑
i=1

(x2,i − x̂2,i)(x2,i − x̂2,i)
⊤ =

1

n
(X2,n − X̂2,n)

⊤(X2,n − X̂2,n),

Ĉ2,n =
1

n

n∑
i=1

(v2,i − v̂2,i)(v2,i − v̂2,i)
⊤ =

1

n
(V2,n − V̂2,n)

⊤(V2,n − V̂2,n)

and the corresponding conditions on regressors

(X1) There exists a positive definite matrix Q̂2 such that limn→∞ Q̂2,n = Q̂2.

(X2) There exists a positive definite matrix Ĉ2 such that limn→∞ Ĉ2,n = Ĉ2.

(X3) There exists a positive definite matrix M1 such that
limn→∞ n−1X∗⊤

1,nX
∗
1,n = M1.

(X4) maxi=1,...,n ∥x1,i∥ = O(1) and n−1
∑n

i=1 ∥x1,i∥4 = O(1) as n→ ∞.

Theorem 1.6. Assume that (F1) – (F2) and (X1) – (X4) hold. Then in model
(1.27) under H1 test statistic T 2

n has asymptotically as n → ∞ χ2 distribution
with q degrees of freedom and under K1,n asymptotically noncentral χ2 distribution
with q degrees of freedom and noncentrality parameter

η2 = β∗⊤
2 Q̂2(Q̂2 + Ĉ2)

−1Q̂2β
∗
2

γ2(φ, f)

A2(φ)
.

Proof. See Jurečková et al. (2010).

Remark. In this situation the asymptotic distribution of the test statistic does
not depend on the nuisance parameter β1 unlike the aligned rank test considered
in the previous section.

Jurečková et al. (2010) derived the previous test in model (1.27), where some
regressors are measured accurately. What if they are not? What will happen
with this test in model (1.19)?

Consider the model

Yi = β0 + x1,iβ1 + x2,iβ2 + ei, i = 1, . . . , 30,

where β0, β1, β2 ∈ R and test the hypothesis

H1 : β2 = 0 against K1 : β2 ̸= 0.

Since the nuisance parameter β1 is one-dimensional we will consider test statistic

S̃n =
Sn√

D̂2,nA2(φ)
(1.31)
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that has under assumptions of Theorem 1.6 under H1 asymptotically standard
normal distribution.

Now, we will add measurement errors to both regressors x1,i and x2,i and use
the previous test (1.31). We will illustrate here some simulation results how the
test based on Wilcoxon scores (φ(u) = u− 1/2) perform in general measurement
error model (1.19). For simplicity xi = (x1,i, x2,i)

⊤ were once generated from
two-dimensional normal distribution N2(0,Bk) and then considered fixed, model
errors ei were generated from standard normal distribution and measurement
errors vi were generated also from two-dimensional normal distributionN2(0, B̃k),
where

Bk =

(
3 k

10
k
10

2

)
, B̃k =

(
1 k

10
k
10

1

)
.

In Table 1.2 empirical error of the first kind is computed as percentage of
rejections of H1 at significance level α = 0.05 (when β0 = 1, β1 = 2, β2 = 0)
based on 10 000 replications. Mean of the test statistic (1.31) is also added in
parentheses.

xi\vi 0 N2(0, B̃0) N2(0, B̃1) N2(0, B̃2) N2(0, B̃5) N2(0, B̃9)
N2(0,B0) 5.42(0.026) 4.68(0.144) 4.34(−0.077) 5.14(−0.300) 14.81(−0.980) 52.35(−1.954)

N2(0,B1) 5.47(−0.024) 4.62(0.178) 4.02(−0.039) 4.58(−0.261) 14.41(−0.942) 50.46(−1.919)

N2(0,B2) 5.34(−0.021) 4.97(0.222) 4.03(0.008) 4.63(−0.214) 13.22(−0.894) 48.22(−1.873)

N2(0,B5) 5.36(−0.015) 5.89(0.380) 4.31(0.166) 3.86(−0.056) 10.26(−0.744) 42.36(−1.750)

N2(0,B7) 5.31(−0.012) 7.36(0.513) 5.13(0.298) 3.90(0.074) 8.31(−0.625) 38.62(−1.658)

N2(0,B9) 5.24(−0.011) 9.35(0.662) 6.27(0.446) 4.55(0.220) 6.61(−0.488) 34.16(−1.556)

Table 1.2: Empirical error of the first kind of RRS test and mean of S̃n (in
parentheses) for various measurement errors vi and regressors xi; n = 30.

According to our simulation results if components of xi or vi are (highly)
correlated, then the test is biased. In addition, in Table 1.3 we will show that the
error of the first kind depends on unknown nuisance parameter β1. Simulation
design remains the same, xi once generated from N2(0,B7) and then considered
fixed. We may conclude this example that in general RRS test in not applicable
in measurement error model (1.19). However, it is still an open problem to find
the asymptotic distribution of the test in model (1.19), at least for some local
values of nuisance parameter.
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β1\vi 0 N2(0, B̃0) N2(0, B̃1) N2(0, B̃5) N2(0, B̃7) N2(0, B̃9)
0 5.31(−0.012) 5.60(0.003) 5.39(−0.011) 5.47(−0.015) 5.55(−0.016) 5.62(−0.017)

1 5.50(−0.011) 5.33(0.239) 4.52(0.073) 8.64(−0.609) 15.17(−0.965) 26.06(−1.336)

−1 5.91(−0.014) 7.63(−0.500) 6.17(−0.353) 5.93(0.285) 9.05(0.627) 16.10(0.993)
2 5.29(−0.008) 4.91(0.288) 4.22(0.059) 11.84(−0.850) 24.94(−1.326) 45.74(−1.826)

−2 5.35(−0.017) 9.18(−0.677) 6.63(−0.443) 7.08(0.487) 15.30(0.994) 33.07(1.538)
3 5.28(−0.003) 4.06(0.025) 4.81(−0.234) 22.32(−1.219) 41.75(−1.732) 67.38(−2.264)

−3 5.96(−0.003) 13.83(−0.994) 9.27(−0.781) 2.87(0.121) 6.15(0.617) 16.61(1.157)
4 5.55(−0.008) 8.37(0.631) 5.36(0.360) 11.42(−0.801) 28.98(−1.430) 60.35(−2.109)

−4 5.31(−0.001) 5.60(−0.343) 3.91(−0.062) 17.13(1.067) 38.78(1.667) 69.37(2.301)

Table 1.3: Empirical error of the first kind of RRS test and mean of S̃n (in paren-
theses) for various measurement errors vi, regressors xi fixed from N2(0,B7);
n = 30.
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2. Another rank tests in
measurement error models

2.1 Tests based on minimum distance estimates

Koul (2002) considered a class of estimates in linear regression model based on
minimization of certain type of distances, he also proved their asymptotic proper-
ties and derived their asymptotic representation. However, he did not considered
the problem of testing hypotheses about these parameters.

Consider model of regression line

Yi = β0 + xiβ + ei, i = 1, . . . , n, (2.1)

where β0 and β are unknown parameters, x1, . . . , xn are stochastic regressors,
e1, . . . , en are assumed to be i.i.d. with an unknown distribution function F and
uniformly continuous density f independent with x1, . . . , xn and our aim is to
test the hypothesis

H0 : β = 0 against K0 : β ̸= 0.

The situation here is just a special case of that considered in Section 1.1.1. The
motivation for the following approach is that the corresponding test may have
greater power than classical rank test for some model errors (Koul (2002) proved
similar property for corresponding estimates). In addition, these tests might be
robust to departures in the assumed design variables.

Let us introduce a class of test statistics based on Cramér - von Mises type
of distance involving various weighted empirical processes. Define

Tg,n(s) =
1√
n

n∑
i=1

g(xi)I{Ri ≤ ns}, 0 ≤ s ≤ 1, (2.2)

K∗
g,n =

∫ 1

0

T 2
g,n(s)dL(s), (2.3)

where Ri is the rank of Yi among Y1, . . . , Yn, L a distribution function on [0, 1]
and g a real (weight) function such that

∑n
i=1 g(xi) = 0.

Discuss some computation aspects of (2.3). First, have a look at the formula
(2.3) for K∗

g,n. Inserting (2.2) into (2.3) we have

K∗
g,n =

1

n

n∑
i=1

n∑
j=1

g(xi)g(xj)

∫ 1

0

I{Ri ≤ ns}I{Rj ≤ ns}dL(s)

=
1

n

n∑
i=1

n∑
j=1

g(xi)g(xj)

∫ 1

max
{

Ri
n
,
Rj
n

} 1dL(s).
L is a distribution function, hence L(max{a, b}) = max{L(a), L(b)}, it also re-
mains true for limits from the left, hence

K∗
g,n =

1

n

n∑
i=1

n∑
j=1

g(xi)g(xj)

(
1−max

{
L

(
Ri

n
−
)
, L

(
Rj

n
−
)})

.
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Using
∑n

i=1 g(xi) = 0 we get

K∗
g,n = − 1

n

n∑
i=1

n∑
j=1

g(xi)g(xj)max

{
L

(
Ri

n
−
)
, L

(
Rj

n
−
)}

.

Using the fact that

2max{a, b} = a+ b+ |a− b|, ∀ a, b ∈ R

and
∑n

i=1 g(xi) = 0 we get

K∗
g,n = − 1

2n

n∑
i=1

n∑
j=1

g(xi)g(xj)

∣∣∣∣L(Ri

n
−
)
− L

(
Rj

n
−
) ∣∣∣∣,

which is much more convenient for practical computations.
Under H0 model (2.1) reduces to

Yi = β0 + ei, i = 1, . . . , n. (2.4)

As distribution of model errors ei is absolutely continuous, there cannot be any
ties in ranks with probability 1 and thanks to invariance of ranks with respect
to the location, distribution of R1, . . . , Rn under hypothesis is uniform over all n!
permutations of numbers {1, . . . , n} (see Lemma 1.1). Therefore distribution of
K∗

g,n given x1, . . . , xn under H0 will be distribution-free and may be even comput-
ed directly. To do it we have to compute all values of test statistic K∗

g,n for each
of n! permutations of numbers {1, . . . , n} and order these values in the increas-
ing magnitude. The critical region is then formed by M = ⌊αn!⌋ largest values
and the combination which leads to the (M + 1)-st largest value can be possibly
randomized.

However, for large sample size n computation of exact (conditional) distribu-
tion may be computationally demanding, that is why we will investigate asymp-
totic distribution of K∗

g,n.
Let us introduce for s ∈ [0, 1] some empirical processes

Vg,n(s) =
1√
n

n∑
i=1

g(xi)I{ei ≤ F−1
n (s)},

V̂g,n(s) =
1√
n

n∑
i=1

g(xi)I{ei ≤ F−1(s)},

where Fn(s) =
1
n

∑n
i=1 I{ei ≤ s)} is empirical distribution function.

Now, we state assumptions under which we will be able to prove asymptotic
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properties of K∗
g,n

n∑
i=1

(xi − x̄) > 0 a.s. ∀ n > 1, (2.5)

max
i=1,...,n

(xi − x̄)2∑n
j=1(xj − x̄)2

p−→ 0, (2.6)

g(xi) ̸= 0 a.s. for some i = 1, . . . , n, (2.7)

0 < |Eg(X1)(X1 − EX1)| <∞, (2.8)

xig(xi) ≥ 0 a.s. ∀i = 1, . . . , n or xig(xi) ≤ 0 a.s. ∀i = 1, . . . , n, (2.9)

max
i=1,...,n

g2(xi)
p−→ 0, (2.10)

sup
n∈N

max
i=1,...,n

|g(xi)| ≤ c a.s. for some 0 < c <∞, (2.11)

0 < γ =
√

Eg2(X1) <∞. (2.12)

Lemma 2.1. Under (2.5) – (2.8) it holds∣∣∣K∗
g,n −

∫
V 2
g,n(s)dL(s)

∣∣∣ = op(1), as n→ ∞.

Proof. For convenience we will drop off an index g in K∗
g,n and Vg,n. Adding

and subtracting Vn(s) in the first integral, squaring and using Cauchy-Schwarz
inequality we get∣∣∣ ∫ T 2

n(s)dL(s)−
∫
V 2
n (s)dL(s)

∣∣∣
=
∣∣∣ ∫ [Tn(s)− Vn(s)]

2 dL(s) + 2

∫
Vn(s)(Tn(s)− Vn(s))dL(s)

∣∣∣
≤ sup

0≤s≤1
|Tn(s)− Vn(s)|2 + 2

√∫
V 2
n (s)dL(s)

∫
(Tn(s)− Vn(s))2dL(s).

The fact that

sup
0≤s≤1

|Tn(s)− Vn(s)| ≤ 2 max
i=1,...,n

|g(xi)| = op(1)

together with
∫
V 2
n (s)dL(s) = Op(1) proves the Lemma.

Lemma 2.2. Under (2.5) – (2.8) it holds∣∣∣K∗
g,n −

∫
V̂ 2
g,n(s)dL(s)

∣∣∣ = op(1), as n→ ∞.

Proof. ∣∣∣ ∫ T 2
n(s)dL(s)−

∫
V̂ 2
n (s)dL(s)

∣∣∣
=
∣∣∣ ∫ [Tn(s)− V̂n(s)

]2
dL(s) + 2

∫
V̂n(s)(Tn(s)− V̂n(s))dL(s)

∣∣∣. (2.13)
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Using Minkowski inequality∫
[Tn(s)− V̂n(s)]

2dL(s) =

∫
[Tn(s)− Vn(s) + Vn(s)− V̂n(s)]

2dL(s)

≤ 2

∫
[Tn(s)− Vn(s)]

2dL(s) + 2

∫
[Vn(s)− V̂n(s)]

2dL(s). (2.14)

By Cauchy-Schwarz inequality∣∣∣ ∫ V̂n(s)(Tn(s)− V̂n(s))dL(s)
∣∣∣ ≤

√∫
V̂ 2
n (s)dL(s)

∫
[Tn(s)− V̂n(s)]2dL(s)

= op(1), (2.15)

because
∫
V̂ 2
n (s)dL(s) = Op(1) and

∫
[Tn(s)− V̂n(s)]

2dL(s) = op(1).
Observe that

V̂n(FF
−1
n (s)) =

n∑
i=1

g(xi)I{ei ≤ F−1FF−1
n (s)} =

n∑
i=1

g(xi)I{ei ≤ F−1
n (s)} = Vn(s).

Therefore

sup
0≤s≤1

|Vn(s)− V̂n(s)| = sup
0≤s≤1

|V̂n(FF−1
n (s))− V̂n(s)| = op(1),

because

sup
0≤s≤1

|FF−1
n (s)− s| = sup

0≤s≤1
|FF−1(s)− FnF

−1
n (s) + FnF

−1
n (s)− s|

≤ sup
x∈R

|F (x)− Fn(x)|+ sup
0≤s≤1

|FnF
−1
n (s)− s| = op(1).

Now, combining previous result, Lemma 2.1 and (2.13), (2.14) and (2.15) we have
proven the Lemma.

The previous lemma states that the asymptotic distribution of K∗
g,n will be

the same as
∫
V̂ 2
g,n(s)dL(s) that is easier to investigate. Hence we are now able

to state the theorem about asymptotic null distribution of K∗
g,n.

Theorem 2.1. Under (2.5) – (2.12) in model (2.1) under H0

K∗
g,n

d−→ γ2 · YL, with YL =

∫ 1

0

B2(s)dL(s),

where B(s) is a Brownian bridge in C[0, 1].

Proof. Recall that

V̂g,n(s) =
1√
n

n∑
i=1

g(xi)I{ei ≤ F−1(s)} =
1√
n

n∑
i=1

g(xi)I{F (ei) ≤ s}

=
1√
n

n∑
i=1

g(xi)I{Ui ≤ (s)},
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where U1, . . . , Un are i.i.d. random variables with uniform U(0, 1) distribution.
By Koul (2002) we have

V̂g,n(s) ⇒ γ ·B(s) in D[0, 1]

and therefore
∫
V̂ 2
g,n(s)dL(s)

d−→ γ2
∫
B2(s)dL(s). That together with Lemma

2.2 proves the Theorem.

Distribution of random variable YL for L(s) = s was first investigated by
Smirnov (1936), values of its distribution function may be found for example in
Anderson and Darling (1952) or in Tolmatz (2002) and Tolmatz (2003). For other
choices of function L one has to use simulated values of quantiles. That gives us
a clue how to use asymptotic version of proposed test. Since γ is unknown we
have to estimate it. The most natural way is to estimate it by

√∑n
i=1 g

2(xi).
Finally compute test statistic

K̃∗
g,n =

1√∑n
i=1 g

2(xi)
K∗

g,n

and reject H0 if K̃∗
g,n is greater than (1− α) - quantile of distribution YL. Some

quantiles for distribution function L(s) = s are listed in Table 2.1.

(1− α) 0.90 0.95 0.99 0.999
(1− α) - quantile 0.34730 0.46136 0.74346 1.16786

Table 2.1: Quantiles of distribution YL for L(s) = s.

Now, we will investigate behavior of K∗
g,n under local alternative

K0,n : β = n−1/2β∗, 0 ̸= β∗ ∈ R fixed.

For t ∈ R define

K∗
g,n(t) =

∫ 1

0

(
1√
n

n∑
i=1

g(xi)I{Ri,t ≤ ns}

)2

dL(s), (2.16)

K̂∗
g,n(t) =

=

∫ 1

0

(
1√
n

n∑
i=1

g(xi))I{Ui ≤ s} − t√
n

n∑
i=1

g(xi)(xi − x̄)f(F−1(s))

)2

dL(s),

(2.17)

where Ri,t is the rank of Yi −xit among Y1 − x1t, . . . , Yn −xnt and U1, . . . , Un are
i.i.d. random variables with uniform U(0, 1) distribution.

Remark. Koul (2002) defined an estimator of β as a minimizer of (2.16). Hence
proposed test statistic K∗

g,n is K∗
g,n(t) computed in the hypothetical value t = 0,

i.e. K∗
g,n = K∗

g,n(0) is the test statistic under H0, while K
∗
g,n(n

−1/2β∗) is the test
statistic under K0,n.
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Lemma 2.3. Assume that (2.5) – (2.8) hold. Then for every 0 < b <∞

sup
|u|≤b

|K∗
g,n(n

−1/2u)− K̂∗
g,n(n

−1/2u)| = op(1), as n→ ∞.

Proof. See Koul (2002, Theorem 5.5.5).

Remark. Particularly, if u = 0 in Lemma 2.3, we get K∗
g,n(0) = K̂∗

g,n(0)+ op(1),
i.e.

K∗
g,n =

∫ 1

0

(
1√
n

n∑
i=1

g(xi))I{Ui ≤ s}

)2

dL(s) + op(1).

Hence Lemma 2.2 is a special case of Lemma 2.3.

Now, let (2.5) – (2.12) be satisfied. Rewrite (2.17) as

K̂∗
g,n(t) = K̂∗

g,n(0)−
2t

n

n∑
j=1

g(xj)(xj − x̄)
n∑

i=1

g(xi)

∫ 1

0

I{Ui ≤ s}f(F−1(s))dL(s)

+
t2

n

(
n∑

i=1

g(xi)(xi − x̄)

)2 ∫ 1

0

f 2(F−1(s))dL(s)

= K̂∗
g,n(0) +

2t

n

n∑
j=1

g(xj)(xj − x̄)
n∑

i=1

g(xi)φ(Ui) +
t2

n
σf,L

(
n∑

i=1

g(xi)(xi − x̄)

)2

,

where φ(u) =
∫ u

0
f(F−1(s))dL(s) and σf,L =

∫ 1

0
f 2(F−1(s))dL(s). From Lemma

2.3, (2.16) and (2.17) we finally get

K∗
g,n(n

−1/2β∗) = K∗
g,n(0) + 2β∗ 1

n

n∑
j=1

g(xj)(xj − x̄)
1√
n

n∑
i=1

g(xi)φ(Ui)

+ (β∗)2σf,L

(
1

n

n∑
i=1

g(xi)(xi − x̄)

)2

+ op(1). (2.18)

Right hand side of (2.18) converges to convolution of two (dependent) random
variables γ2 · YL and Z ∼ N (a, b), where

a = (β∗)2σf,L(E{g(X1) · (X1 − EX1)})2,
b = 4(β∗)2 [E{g(X1) · (X1 − EX1)}]2 Eg2(X1) varφ(Ui).

Hence under (2.5) – (2.12) asymptotic distribution of K∗
g,n under local alternative

K0,n is the above convolution of dependent random variables.
For practical application it arises a natural question how to choose functions

g and L. The function g is in fact a weight function for regressors, so it can
downweight outlying observations to robustify these tests against extreme values
of xi (if g is bounded for example). The function L has similar interpretation as
score-function φ in standard rank tests theory, hence L should be chosen based on
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the distribution of unknown model errors. Anyway, the simplest choice L(s) = s
gives very reasonable results (see the simulations).

Now, return back to our problem with measurement errors in model

Yi = β0 + βxi + ei, (2.19)

wi = xi + vi, i = 1, . . . , n,

where x1, . . . , xn are unobserved stochastic regressors and v1, . . . , vn are i.i.d. mea-
surement errors (independent with xi and ei).

We would like to use our test although actual regressors are not observable.
We apply our test based on observed regressors wi and will show that the test will
still work. Actually, it does work, because under H0 : β = 0 measurement error
model (2.19) reduces to model (2.4) – the same model as in the case without
measurement errors. That means that we may apply exactly the same setup
and all the results will remain valid (under H0 considering use of wi instead of
xi). Similarly, if (2.5) – (2.12) hold for wi, then asymptotic null distribution will
be the same as in model without measurement errors. The only difference is
in the asymptotic distribution under alternative, that namely depends on both
regressors xi and wi. Intuitively and supported by simulation study the presence
of measurement errors will only decrease the power of our test.

Remark. Extension of this test into multiple regression model is straightforward,
the conditional distribution under null hypothesis is again distribution-free and
may be computed in similar way. Unfortunately, asymptotic null distribution
is difficult to express, it is a convolution of dependent random variables with
distribution same as YL multiplied by some positive constants.

To support previous theoretical results we conducted a large simulation study,
let us present a few interesting results. Start with model without measurement
errors (2.1) for moderate sample size n = 30. We have compared empirical power

of our test based on the test statistic K̃∗
g,n with g(xi) = xi − x̄ and L(s) = s (call

it minimum distance test) with Wilcoxon test for regression (see Section 1.1.1)
and standard t-test for regression.

The regressors x1, . . . , x30 were generated from uniform U(−2, 10) distribu-
tion. The model errors ei were generated from normal, logistic, Laplace and
t-distribution with 6 degrees of freedom, respectively, always with 0 mean a vari-
ance 3/2. The empirical powers of the tests were computed as a percentage of
rejections of H0 among 10 000 replications, at significance level α = 0.05. The
results are summarized in Table 2.2.

Now, let us compare the three previous tests in measurement error model
(2.19) with the same simulation setup as before. Empirical error of the first kind
for various measurement errors are summarized in Table 2.3, empirical power for
various measurement errors are summarized in Table 2.4 (with a true value of
parameter β = 0.2).

According to Table 2.3 minimum distance test preserves error of the first
kind at prescribed α even if measurement errors are present. For normal model
errors t-test achieves the largest power, for distributions with lighter tails than

27



ANOTHER RANK TESTS IN MEASUREMENT ERROR MODELS Tests about an intercept

β \ ei N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 4.98 4.42 5.00 5.06 4.55 5.00 5.00 4.55 5.04 5.00 4.32 4.93
0.1 28.7 28.3 31.5 32.7 31.4 32.0 42.4 39.0 33.5 34.6 33.1 32.9

−0.1 28.3 28.2 30.9 32.7 31.2 32.2 42.5 39.0 33.7 33.3 32.1 31.9
0.2 78.2 78.8 82.3 82.5 81.8 81.9 88.3 86.6 82.0 84.5 83.9 82.6

−0.2 78.3 78.7 82.9 83.3 82.7 82.9 89.2 87.5 83.1 84.0 83.4 82.5

Table 2.2: Percentage of rejections of hypothesisH0 : β = 0 of minimum distance
test, Wilcoxon test for regression and t-test for regression; n = 30.

vi \ ei N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 4.98 4.42 5.00 5.06 4.55 5.00 5.00 4.55 5.04 5.00 4.32 4.93
N (0, 4) 4.45 3.94 4.39 4.90 4.29 5.03 4.90 4.29 5.04 4.99 4.66 4.92
N (0, 6) 4.53 3.97 4.44 4.81 4.41 5.05 4.81 4.41 5.06 4.77 4.59 4.95

U(−
√
18,

√
18) 5.49 4.78 5.36 5.13 4.53 4.97 5.13 4.53 4.81 4.51 3.85 4.34

2t(6) 5.09 4.63 5.04 5.11 4.59 4.94 5.11 4.59 4.96 5.17 4.51 4.81
U(−6, 6) 5.50 4.73 5.42 5.18 4.62 5.12 5.18 4.62 4.85 4.87 4.19 4.55

Table 2.3: Percentage of rejections of hypothesisH0 : β = 0 of minimum distance
test, Wilcoxon test for regression and t-test for regression; true β = 0, n = 30.

normal our test has the largest power even for logistic distribution due to slow
convergence of rank test statistic to its asymptotic distribution. The presence of
measurement errors only decreases the power of all tests – the larger variance of
measurement errors the smaller power.

2.2 Tests about an intercept

Consider linear regression model with possible measurement errors (1.13):

Yi = β0 + x⊤
i β + ei,

wi = xi + vi, i = 1, . . . , n,

where β0 ∈ R and β ∈ Rp are unknown parameters, model errors ei are assumed
to be independent identically distributed with an unknown distribution function
F , symmetric density f and finite Fisher information I(f) and xi are vectors of
known (unobserved) regressors and wi are observed regressors affected by some
measurement errors vi, such that v1, . . . ,vn are i.i.d. random vectors independent
of e1, . . . , en with an unknown, but symmetric distribution.

Now, our aim is to test the hypothesis

H0 : β0 = 0 against K0 : β0 > 0,

while β is vector of nuisance parameters.
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vi \ ei N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 78.2 78.8 82.3 82.5 81.8 81.9 88.3 86.6 82.0 84.5 83.9 82.6
N (0, 4) 64.1 63.8 68.2 69.1 67.9 68.2 76.4 74.0 68.8 71.5 70.4 69.6
N (0, 6) 58.1 57.8 61.7 63.0 62.2 62.6 71.0 68.0 63.5 65.9 64.7 63.5

U(−
√
18,

√
18) 58.4 58.4 62.5 62.7 61.9 62.8 70.7 67.8 63.8 65.8 64.3 63.6

2t(6) 59.0 59.0 62.5 63.8 62.5 63.0 71.4 68.6 64.1 66.8 65.8 64.6
U(−6, 6) 45.2 44.7 48.0 49.8 48.4 49.4 57.0 54.1 50.3 51.6 50.2 49.6

Table 2.4: Percentage of rejections of hypothesisH0 : β = 0 of minimum distance
test, Wilcoxon test for regression and t-test for regression; true β = 0.2, n = 30.

Without any further information about regressors xi it is impossible to make
statistical inference about parameter β0 (problem of identifiability). To be able
to test H0, we will assume that regressors xi are centered, i.e.

∑n
i=1 xi,j = 0 for

all j = 1, . . . , p.
Similarly as in Section 1.2 we shall take a recourse to the aligned rank test,

replacing the nuisance slope parameter β with its estimator β̂n and then con-
structing the signed rank test based on aligned ranks and signs of the residuals.

As an estimator β̂n we take the R-estimator based on the hypothetical model
affected by the measurement errors

Yi = w⊤
i β + e∗i ,

where e∗i = e∗i (β) = ei − v⊤
i β are model errors – i.i.d. random variables with

symmetric distribution function F ∗
β and density f ∗

β and finite Fisher information.
Hence we are in the same situation as in Section 1.2 and we will just repeat the
estimation procedure. Recall briefly that we choose a nondecreasing, nonconstant,
square integrable skew-symmetric score function ψ : (0, 1) 7→ R and define scores

ãn(i) = ψ

(
i

n+ 1

)
, i = 1, . . . , n.

The R-estimator β̂n of β is then a minimizer of

Dn(b) =
n∑

i=1

(
Yi −w⊤

i b
)
ãn(Ri(b))

with respect to b ∈ Rp, where Ri(b) is the rank of (Yi −w⊤
i b) among

(Y1 −w⊤
1 b), . . . , (Yn −w⊤

nb).

Now, consider residuals êi = êi(β̂n) = Yi −w⊤
i β̂n, i = 1, . . . , n. The signed-

rank test about β0 will be then based on these residuals. Note that ê1, . . . , ên are
not independent (the classical case with i.i.d. errors will be further discussed in
Chapter 5).

Having chosen a nondecreasing, nonconstant, square integrable score function
φ : (0, 1) 7→ R (it may differ from ψ) define φ+(u) = φ(u+1

2
), approximate scores

a+n (i) = φ+

(
i

n+ 1

)
29



ANOTHER RANK TESTS IN MEASUREMENT ERROR MODELS Tests about an intercept

and compute

Ŝ+
n (β̂n) = n−1/2

n∑
i=1

a+n (R
+
i (β̂n)) sign(êi),

where R+
i (β̂n) is the rank of |êi| among |ê1|, . . . , |ên|.

Now, state the assumptions needed for the proof of asymptotic normality of
Ŝ+
n (β̂n). Suppose that there exist positive definite matrices Q,V such that as
n→ ∞

Qn =
1

n

n∑
i=1

(xi−x)(xi−x)⊤ → Q, Vn =
1

n

n∑
i=1

(vi−v)(vi−v)⊤ → V (2.20)

and moreover

1

n
max
1≤i≤n

(xi − x)⊤Q−1
n (xi − x) → 0,

1

n
max
1≤i≤n

(vi − v)⊤V−1
n (vi − v) → 0. (2.21)

Theorem 2.2. Assume that (2.20)–(2.21) hold. Let f be symmetric with finite

Fisher information. Then in model (1.13) under H0 test statistic Ŝ+
n (β̂n) has

asymptotically as n → ∞ normal distribution N (0, σ2) with σ2 = A2(φ+) and
under local alternative

K0,n : β0 = n−1/2β∗
0 , 0 < β∗

0 fixed

Ŝ+
n (β̂n) has asymptotically normal distribution N (µ, σ2) with

µ = β∗
0 · γ(φ+, f ∗

β). (2.22)

Proof. As in Jurečková et al. (2009) we have

√
n(β̂n − β) =

1

γ(ψ, f ∗
β)
(Q+V)−1Ln(β) + op(1), as n→ ∞, (2.23)

where

Ln(b) =
1√
n

n∑
i=1

(wi −w)ãn(Ri(b)).

The signed rank statistic Ŝ+
n is uniformly asymptotically linear, i.e. for any

fixed K > 0 and as n→ ∞

sup
∥t∥≤K

{
|Ŝ+

n (n
−1/2t)− Ŝ+

n (0)|
}

p−→ 0. (2.24)

Inserting t =
√
n(β̂n − β) into (2.24) and together with (2.23) and the fact that

Ŝ+
n (β̂n) = Op(1) we get

|Ŝ+
n (β̂n)− Ŝ+

n (β)|
p−→ 0, as n→ ∞. (2.25)

Now, asymptotic distribution of Ŝ+
n (β) under H0 is N (0, σ2) (see Hájek et al.

(1999, Theorem 1, Section 6.1.7)) and under K0,n is N (µ, σ2) (see Hájek et al.
(1999, Theorem 1, Section 7.2.5)). That together with (2.25) completes the proof.
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Remark. Recall that f ∗
β depends on unknown nuisance parameter β and distribu-

tion of measurement errors vi, hence the asymptotic power of the test does depend
on the nuisance parameter β unlike the situation without measurement errors.

Again, we made an extensive simulation study to illustrate how the proposed
procedures work in finite sample situation and indicate influence of the measure-
ment errors for test about an intercept.

Consider model of regression line

Yi = β0 + xiβ + ei, i = 1, . . . , 50.

and test H0 : β0 = 0 against β0 > 0. The regressors xi were once generated from
independent sample of size n = 50 from uniform U(−6, 6) distribution and further
on considered fixed and the model errors ei were generated from standard normal
distribution. We considered Wilcoxon aligned signed rank test that corresponds
to the score function φ(u) = u − 1/2. For the estimation of nuisance parameter
score function ψ(u) = u − 1/2 was used. The empirical powers of the tests
were computed as a percentage of rejections of H0 among 10 000 replications, at
significance level α = 0.05.

Empirical powers of Wilcoxon aligned signed rank test for various measure-
ment errors vi are summarized in Table 2.5 (value of nuisance parameter β was
taken β = 1). Empirical power of Wilcoxon aligned signed rank test for vari-

β0 \ vi 0 N (0, 1) N (0, 2) U(−1, 1) U(−2, 2) t(4)
0 5.59 5.53 5.51 5.41 5.70 5.48

0.1 17.40 13.36 11.91 15.58 12.54 11.97
0.2 38.74 25.40 20.74 32.28 23.54 23.09
0.3 65.10 43.71 34.55 55.30 39.20 38.93
0.4 86.22 62.51 50.14 76.65 56.23 54.04
0.5 96.36 79.60 66.81 90.68 73.87 70.86
0.6 99.14 90.72 80.27 96.76 85.69 83.70

Table 2.5: Percentage of rejections of hypothesis H0 : β0 = 0 for various mea-
surement errors vi for Wilcoxon aligned signed rank test; β = 1, n = 50.

ous measurement errors vi and for various values of nuisance parameter β are
summarized in Table 2.6 (the true value of β0 was taken β0 = 0.3).

We performed more simulations for other choices of regressors xi, model errors
ei, measurement errors vi, score functions φ and ψ, sample size n and model
parameters β and β0. However, corresponding results are similar to those in
Tables 2.5 and 2.6. Our simulation shows that proposed test actually works,
error of the first kind is under control (it is about prescribed α = 0.05); only
its power decreases with increasing variance of measurement errors. Unlike the
model without measurement errors, power of proposed test does depend on the
nuisance parameter β - the greater value of β the smaller power. This is not
surprising, because greater value of β means greater influence of measurement
errors.
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β \ vi 0 N (0, 1) N (0, 2) U(−1, 1) U(−2, 2) t(4)
0 66.14 65.17 65.29 65.91 65.79 66.21

−0.5 65.85 58.56 53.02 62.79 56.11 54.70
0.5 65.68 57.92 52.71 62.44 55.57 54.65
−1 65.21 44.66 35.64 55.36 38.95 37.66
1 66.40 43.08 34.69 55.10 38.90 37.16

−2 66.05 24.72 18.43 37.65 20.83 21.42
2 66.08 24.62 18.36 38.09 20.94 21.30

Table 2.6: Percentage of rejections of hypothesis H0 : β0 = 0 for various mea-
surement errors vi for Wilcoxon aligned signed rank test; β0 = 0.3, n = 50.
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3. Rank estimates in
measurement error models

In Sections 1.2 and 2.2 we already needed to “somehow” estimate the slope pa-
rameter β. In fact we used a naive estimator based on observed regressors wi

ignoring the fact that there are some measurement errors involved. As pointed
out in the Introduction classical least squares estimate (and others) will be bi-
ased. However, nobody has proven similar fact for R-estimates, yet. Although
Sen and Saleh (2010) and Saleh et al. (2012) considered some estimates based on
ranks, they did not computed the formula for asymptotic bias of R-estimates. In
this chapter we will show that the asymptotic bias of R-estimates coincides with
bias of LSE in classical measurement error model.

3.1 Model and preliminary considerations

Recall that we deal with the model (1.13):

Yi = β0 + x⊤
i β + ei,

wi = xi + vi, i = 1, . . . , n,

where β0 ∈ R and β ∈ Rp are unknown parameters, model errors ei are assumed
to be i.i.d. with an unknown distribution function F and density f , original
regressors xi are either deterministic or random and affected by additive random
measurement errors v1, . . .vn that are assumed to be i.i.d. with an unknown
distribution and independent of the errors e1, . . . , en.

We are interested in R-estimator of the slope vector β, considering β0 as
nuisance parameter. Anyway, it might be considered without loos of generality
to be equal 0 (due to invariance of ranks with respect to the location). Remind
briefly the approach already used in Sections 1.2 and 2.2. Let Ri(b) be the rank
of the residual

Yi −w⊤
i b = ei + x⊤

i β −w⊤
i b = ei −w⊤

i b
0 − v⊤

i β, i = 1, . . . , n,

where b0 = b− β and denote the vector of linear rank statistics

Sn(b) = Sn(b
0,β) = n−1/2

n∑
i=1

(wi −w)an(Ri(b)), (3.1)

where the scores an(i) = φ
(

i
n+1

)
are generated by score function φ that is skew-

symmetric on (0, 1). Jaeckel (1972) defined the rank estimator β̂n of β as a
minimizer of

Dn(b) =
n∑

i=1

(
Yi −w⊤

i b
)
an(Ri(b)) (3.2)

with respect to b ∈ Rp.
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Remark. In the absence of measurement errors the estimator β̂n is consis-
tent and asymptotically normal. However, unlike the rank test of hypothesis
H0 : β = 0, studied in Section 1.1.3, β̂n is biased in the presence of mea-
surement errors.

We are able to study asymptotic properties of β̂n in the presence of mea-
surement errors and find its local asymptotic bias only in a neighborhood of true
value of the parameter β, i.e. under local alternative βn = n−1/2β∗ with a fixed
β∗ ∈ Rp.

In the sequel, all limits are taken as n→ ∞, unless mentioned otherwise. We
shall now describe the needed assumptions on the underlying entities.

A.1 The score generating function φ : (0, 1) 7→ R is nonconstant, nondecreasing,
square-integrable and skew-symmetric on (0,1), i.e. satisfies
φ(1− t) = −φ(t), 0 < t < 1.

F.1 F has an absolutely continuous density f and derivative f ′ a.e. and has
positive and finite Fisher information I(f).

F.2 For every u ∈ R,
∫ (

|f ′(x− tu)|j/f j−1(x))dx→
∫ (

|f ′(x)|j/f j−1(x))dx <∞,
as t→ 0, j = 2, 3.

V.1 The measurement errors vi are independent of ei and have p-dimensional
distribution function G with a continuous density g.

V.2 ECn → C, where Cn = n−1
∑n

i=1(vi − v)(vi − v)⊤ and C is a positive
definite matrix. Moreover, supn≥1 E

(
∥vn∥3 + ∥xn∥3

)
<∞.

V.3 E
[
n−1

∑n
i=1(vi − v)(xi − x)⊤

]
→ 0.

X.1 If the regressors xi are nonrandom, then assume that Qn → Q, where

Qn =
1

n

n∑
i=1

(xi − x)(xi − x)⊤,

and Q is a positive definite matrix. Moreover,

1

n
max
1≤i≤n

(xi − x)⊤Q−1
n (xi − x) → 0.

X.2 If the regressors xi are random, then assume that they are independent of
ei, vi, i = 1, . . . , n, and

E

[
1

n

n∑
i=1

(xi − x)(xi − xn)
⊤

]
→ Q,

where Q is a positive definite matrix.
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3.2 Asymptotic distribution of R-estimate

The following theorem gives the asymptotic distribution of the estimator β̂n under
the local alternative to the hypothesis β = 0 :

βn = n−1/2β∗, β∗ ∈ Rp fixed. (3.3)

Theorem 3.1. Under the conditions A.1, F.1−F.2, V.1−V.3,X.1−X.2 and
under the local alternative (3.3), the R-estimator β̂n in model (1.13) is asymp-
totically normally distributed with the bias B = −(Q+C)−1C β∗, i.e.

n1/2(β̂n − βn)
d→ Np

(
B, (Q+C)−1 A2(φ)

γ2(φ, f)

)
. (3.4)

We shall prove Theorem 3.1 in several steps:

(1) Asymptotic representation of the linear rank statistic

Sn(0,0) = n−1/2

n∑
i=1

(wi −wn)an(Ri(0)) (3.5)

with the sum of independent summands.

(2) Contiguity of the sequence {Qn} of distributions of (ei−(wi−w)⊤b0
n−(vi−

v)⊤βn), with b0
n = n−1/2b0∗, βn = n−1/2β∗ for b0∗, β∗ ∈ Rp fixed, with

respect to the sequence {Pn} of distributions of ei, i = 1, . . . , n.

(3) Asymptotic representation of the linear rank statistic (3.1) under contiguous
sequence of distribution {Qn}, and the resulting asymptotic linearity of
(3.1) in parameters b∗,β∗.

(4) Uniform asymptotic quadraticity of Dn in parameters b∗,β∗ under {Qn}, as
a result of (3) and of the convexity of Dn.

(5) Resulting asymptotic distribution and bias of β̂n.

We will start with the following lemma.

Lemma 3.1. Under the conditions of Theorem 3.1, the statistic Sn(0,0) admits
the asymptotic representation

Sn(0,0) = Zn + op(1), as n→ ∞, (3.6)

where

Zn = n−1/2

n∑
i=1

(wi −w)φ(F (ei)).

35
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Proof. The proof is adapted from Picek (1996). If b = β = 0, then (Y1, . . . , Yn) =
(e1, . . . , en). Let R1, . . . , Rn denote their ranks. Further denote ri = an(Ri) −
φ(F (ei)), i = 1, . . . , n. Let σ2

j be the variance of wi,j, i = 1, . . . , n, for j = 1, . . . , p
and let s2 =

∑p
j=1 σ

2
j .

Notice that (r1, . . . , rn) and (w1, . . . ,wn) are independent. Consider the con-
ditional squared distance

EG

{
(Sn(0,0)− Zn)

⊤(Sn(0,0)− Zn)
∣∣∣e1, . . . , en}

= n−1 EG

{
n∑

i=1

n∑
k=1

(wi −w)⊤(wk −w)rirk

∣∣∣e1, . . . , en}

= n−1

n∑
i=1

n∑
k=1

rirk EG

{
p∑

j=1

(wi,j − w̄j)(wk,j − w̄j)
∣∣∣e1, . . . , en}

= n−1

{
n∑

i=1

n∑
k=1

rirk

p∑
j=1

(xi,j − x̄j)(xk,j − x̄j) + s2
n∑

i=1

(ri − r̄)2

}

=

p∑
j=1

[
n−1/2

n∑
i=1

(xi,j − x̄j)ri

]2
+ s2

n∑
i=1

(ri − r̄)2.

Then (3.6) follows from Hájek and Šidák (1967, Theorems V.1.4.a,b, V.1.6.a).

Definition. For any two probability measures P and Q, absolutely continuous
with respect to a σ-finite measure µ with p = dP/dµ, q = dQ/dµ, let

H(P,Q) =
[ ∫

(
√
p−√

q)2 dµ
]1/2

=
[
2

∫
(1−√

pq) dµ
]1/2

denote the the Hellinger distance between P and Q.

Definition. Let {Pn,1, . . . , Pn,n} and {Qn,1, . . . , Qn,n} be two triangular arrays of
probability measures, Pn,i and Qn,i defined on measurable space (Xn,i,An,i) with

densities pn,i, qn,i with respect to σ-finite measures µi. Denote P
(n)
n =

∏n
i=1 Pn,i

and Q
(n)
n =

∏n
i=1Qn,i the product measures, n = 1, 2, . . .. The sequence {Q(n)

n } is

said to be contiguous with respect to the sequence {P (n)
n } if

lim
n→∞

P (n)
n (An) = 0 ⇒ lim

n→∞
Q(n)

n (An) = 0

for any sequence of measurable sets An.

The previous definition of contiguity of two sequences is difficult to verify.
Anyway, Oosterhoff and van Zwet (1979) proved that it is sufficient to verify
more convenient conditions.

Lemma 3.2. The sequence {Q(n)
n } is contiguous with respect to {P (n)

n } if and
only if

lim sup
n→∞

n∑
i=1

H2(Pn,i, Qn,i) <∞, (3.7)

lim
n→∞

n∑
i=1

Qn,i

{
qn,i(Xn,i)

pn,i(Xn,i)
≥ cn

}
= 0, ∀ cn → ∞, (3.8)

36
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where Xn,i is the identity map from (Xn,i,An,i) onto (Xn,i,An,i).

Note that in the case Pn,i ≡ Pn, pn,i ≡ pn, and Qn,i ≡ Qn, qn,i ≡ qn, not
depending on i,

n∑
i=1

H2(Pn,i, Qn,i) = n

∫ [√
qn(z)−

√
pn(z)

]2
dz

= n

∫
(qn(z)− pn(z))

2

[
√
qn(z) +

√
pn(z)]2

dz ≤ n

∫ (
qn(z)− pn(z)

)2
pn(z)

dz.

(3.9)

Moreover, for cn > 1 and with dn = cn − 1,

n∑
i=1

Qn,i

{
qn,i(Xn,i)

pn,i(Xn,i)
≥ cn

}
= nQn

{
qn(Xn,1)− pn(Xn,1)

pn(Xn,1)
≥ dn

}

≤ d−2
n n

∫ ∣∣qn(x)− pn(x)
∣∣2

p2n(x)
qn(x)dx

≤ d−2
n n

∫ ∣∣qn(x)− pn(x)
∣∣3

p2n(x)
dx+ d−2

n n

∫ ∣∣qn(x)− pn(x)
∣∣2

pn(x)
dx. (3.10)

Now, get back to the residuals (here add the subscript n to b0 and β)

Yi − (wi −w)⊤bn = ei + (xi − x)⊤βn − (wi −w)⊤bn

= ei − (wi −w)⊤b0
n − (vi − v)⊤βn,

where bn = n−1/2b∗, βn = n−1/2β∗, b0
n = n−1/2b0∗, b0∗ = b∗ − β∗, with fixed

b∗, β∗ ∈ Rp and with the aid of Lemma 3.2 we shall prove the following lemma.

Lemma 3.3. Under the conditions of Theorem 3.1, the sequence {Q(n)
n } is con-

tiguous with respect to {P (n)
n }, where Q(n)

n =
∏n

i=1Qn,i, P
(n)
n =

∏n
i=1 Pn,i, where

Pn,i is the distribution of ei and Qn,i is the distribution of (ei − (wi −w)⊤b0
n −

(vi − v)⊤βn), i = 1, . . . , n.

Proof. We shall distinguish the two cases: the xi are either i.i.d. random vectors
or nonrandom vector components.

We start with the first case, where w1, . . . ,wn are i.i.d. random vectors. Note
that

Ui = (wi −w)⊤b0∗ + (vi − v)⊤β∗, i = 1, . . . , n,

are i.i.d. random variables. Let k1 denote the common density of Ui. Then,
Qn,i, Pn,i do not depend on i and qn(x) ≡

∫
f(x− n−1/2u)k1(u)du, pn(x) ≡ f(x).
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Hence, by the Cauchy-Shwarz inequality and the Fubini Theorem, ∀n ≥ 1

n

∫ (
qn(x)− pn(x)

)2
pn(x)

dx = n

∫ {∫ [
f(x− n−1/2u)− f(x)

]
k1(u)du

}2
dx

f(x)

≤ n

∫ ∫ [
f(x− n−1/2u)− f(x)

]2 k1(u)
f(x)

dudx

≤ n

∫ ∫ [ ∫ n−1/2

−n−1/2

|u f ′(x− tu)|dt
]2k1(u)
f(x)

dudx

≤ 2n1/2

∫ ∫ ∫ n−1/2

−n−1/2

|f ′(x− tu)| 2dt u2k1(u)
f(x)

dudx

≤ 2n1/2

∫ ∫ n−1/2

−n−1/2

∫
|f ′(x− tu)|2

f(x)
dx u2k1(u)du dt.

Hence, by (3.9), (F.2) applied with j = 2, and by (V.2), which guaranteed∫
u2k1(u)du <∞,

lim sup
n→∞

n∑
i=1

H2(Pn,i, Qn,i) ≤ 2I(f)

∫
u2k1(u)du <∞. (3.11)

Similarly, ∀n ≥ 1 the bound

n

∫ (
qn(x)− pn(x)

)3
p2n(x)

dx ≤ 2n1/2

∫ ∫ n−1/2

−n−1/2

∫
|f ′(x− tu)|3

f 2(x)
dx |u|3k1(u)du dt

together with (3.10), (F.2) applied with j = 3, and (V.2), which guaranteed∫
|u|3k1(u)du <∞, yield

lim
n→∞

n∑
i=1

Qn,i

{
qn,i(Yi)

pn,i(Yi)
≥ cn

}
≤ 2 lim

n→∞
d−2
n

{∫ ( |f ′(x)|
f(x)

)3
f(x)dx

∫
|u|3k1(u)du+ I(f)

∫
u2k1(u)du

}
= 0.

This ensures the validity of (3.8), and completes the proof of the contiguity in
present case.

Next, consider the case where x1, . . . ,xn are nonrandom, and we observe
wi = xi+vi, i = 1, . . . , n. Let k2 denote the density of (vi−v)⊤b0, i = 1, . . . , n.
Again, to prove (3.7) we have

n∑
i=1

H2(Pn,i, Qn,i)

≤
n∑

i=1

∫ {∫ [
f(e− n−1/2u)− f(e)

]
k2(u+ (xi − x)⊤b0∗)du

}2
de

f(e)

≤
n∑

i=1

∫ {∫ [
f(e− n−1/2u)− f(e)

]2
k2
(
u− (xi − x)⊤b∗

0

)
du

}
de

f(e)

≤ 2n1/2

∫ ∫ n−1/2

−n−1/2

∫
|f ′(e− tu)|2

f(e)
de dt n−1

n∑
i=1

u2 k2
(
u− (xi − x)⊤b0∗) du.
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Hence, by (F.2) and by the change of variable formula,

lim sup
n→∞

n∑
i=1

H2(Pn,i, Qn,i) ≤ K
[ ∫

u2k2(u)du+ b0∗⊤Cb0∗
]
<∞.

Similarly one verifies (3.8) here.

Lemmas 3.1 and 3.3 enable us to extend the approximation of the rank statis-
tic Sn(b

0
n,βn) by a sum of independent random variables under the contiguous

sequence of distributions. Let

Tn(b
0
n,βn) = n−1/2

n∑
i=1

(wi −w)φ
(
F (ei − (wi −w)⊤b0

n − (vi − v)⊤βn)
)
.

We have the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.1 and under {Q(n)
n }

Sn(b
0
n,βn) = n−1/2

n∑
i=1

(wi −w)an (Ri(bn)) = Tn(b
0
n,βn) + op(1). (3.12)

Hence,
Sn(b

0
n,βn)− Sn(0,0) = Tn(b

0
n,βn)−Tn(0,0) + op(1).

Lemma 3.4. Under the assumptions of Theorem 3.1

∥Sn(b
0
n,βn)− Sn(0,0) + γ(φ, f)[(Q+C)b0∗ +Cβ∗]∥ p→ 0, (3.13)

Proof. Consider the sequence of functions
{
φ(k)(·)

}∞
k=1

defined on (0, 1)

φ(k)(u) = φ

(
1

k + 1

)
I
[
u <

1

k

]
+ φ(u)I

[
i− 1

k + 1
< u ≤ i

k + 1

]
, i = 2, . . . , k.

(3.14)
Then, by Hájek and Šidák (1967, Lemma V.1.6.a) φ(k) is nondecreasing and
bounded on (0,1) and

lim
n→∞

∫ 1

0

[φ(k)(u)− φ(u)]2du = 0. (3.15)

The function φ(k) has at most countable set Bk of discontinuity points. The
convergence

F (e− n−1/2(wi −w)⊤b0∗ − n−1/2(vi − v)⊤β∗) → F (e)

is uniform in e ∈ (−∞,∞) and i = 1, . . . , n, n→ ∞. Hence the convergence

lim
n→∞

φ(k)
(
F (e− n−1/2(wi −w)⊤b0∗ − n−1/2(vi − v)⊤β∗) = φ(k) (F (e))

holds uniformly for i = 1, . . . , n almost surely with respect to F. It implies that
the conditional expectation

E
[(
φ(k)

(
F (ei − n−1/2(wi −w)⊤b0∗ − n−1/2(vi − v)⊤β∗)

)
− φ(k) (F (ei))

)2∣∣∣vi,xi

]
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converges to 0 as n→ ∞ uniformly for vi,xi, i = 1, . . . , n and k fixed.
Let S

(k)
n (b0,β) and T

(k)
n (b0,β) be analogous to Sn(b

0,β), Tn(b
0,β) respec-

tively, with φ replaced with φ(k). Then we can bound the norm of the covariance
matrix of T

(k)
n (b0,β)−T

(k)
n (0,0) for any fixed k in the following way. Denote

A(k)
n = E

{
[T(k)

n (b0
n,βn)−T(k)

n (0,0)][T(k)
n (b0

n,βn)−T(k)
n (0,0)]⊤

}
.

Then

A(k)
n = E

{
n−1

n∑
i=1

(wi −w)(wi −w)⊤ ·

·
[
φ(k)

(
F (ei − (wi −w)⊤b0

n − (vi − v)⊤βn)
)
− φ(k)(F (ei))

]2 }
(3.16)

= n−1

n∑
i=1

E
{
(wi −w)(wi −w)⊤ ·

·E
[(
φ(k)

(
F (ei − (wi −w)⊤b0

n − (vi − v)⊤βn)
)
− φ(k) (F (ei))

)2∣∣∣vi,xi

]}
Hence,∥∥∥A(k)

n

∥∥∥ ≤

{∥∥∥n−1

n∑
i=1

(wi −w)(wi −w)⊤ − (Q+C)
∥∥∥+ ∥Q+C∥

}
· o(1)

= {∥Q+C∥+ o(1)} · o(1), as n→ ∞.

This implies

∥T(k)
n (b0

n,βn)−T(k)
n (0,0)− ET(k)

n (b0
n,βn)∥

p→ 0 (3.17)

when taking into account that ET(k)
n (0,0) = 0.

Further, for any fixed k and for fixed b0∗,β∗,

T(k)
n (b0

n,βn)−T(k)
n (0,0) + γk[(Q+C)b0∗ +Cβ∗]

p→ 0, (3.18)

where

γk = γ(φ(k), f) = −
∫ 1

0

φ(k)(u)
f ′(F−1(u))

f(F−1(u))
du.

Indeed, (we put x = v = 0, without loos of generality for the sake of brevity)

n−1/2

n∑
i=1

E
{
wi

(
E
[
φ(k)(F (ei − n−1/2(w⊤

i b
0∗ − n−1/2v⊤

i β
∗)− φ(k)(F (ei))

−γk(n−1/2[w⊤
i b

0∗ + v⊤
i β

∗]
∣∣∣vi,xi

])}
= n−1/2

n∑
i=1

E
{
wi

(∫ ∞

−∞
φ(k)(F (z))d[F (z + n−1/2w⊤

i b
0∗ + n−1/2v⊤

i β
∗)− F (z)]

−n−1/2[w⊤
i b

0∗ + v⊤
i β

∗]

∫ ∞

−∞
φ(k)(F (z))f ′(z)dz

)}
= n−1/2

n∑
i=1

E
{
wi

(∫ ∞

−∞
φ(k)(F (z))

·d
[
F (z + n−1/2w⊤

i b
0∗ + n−1/2v⊤

i β
∗)− F (z)− n−1/2(w⊤

i b
0∗ + v⊤

i β
∗)f(z)

])}
,
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that converges to 0 as n→ ∞. Moreover, we have

(γ(φ(k), f)− γ(φ, f))2 =

⟨
(φ(k) − φ),−f

′(F−1(·))
f(F−1(·))

⟩2

(3.19)

≤ ∥φ(k) − φ∥2
∥∥∥− f ′(F−1(·))

f(F−1(·))

∥∥∥2 = I(f) ∥φ(k) − φ∥2 → 0 as k → ∞.

Using (3.18), (3.19), Lemma 3.1, Lemma 3.3, Corollary 3.1 and Lemma 3.5 in
Jurečková (1969), we obtain that

P
(
∥Sn(b

0
n,βn)− S(k)

n (b0
n,βn)∥ > ε

)
< ε,

∀ε > 0, ∀k > k(ε), ∀n > n(k) and finally we arrive at (3.13).

Now, rewrite the Jaeckel dispersion

Dn(b) =
n∑

i=1

(
Yi −w⊤

i b
)
an(Ri(b))

in the presence of measurement errors in the form

Dn(b
0,β) =

n∑
i=1

[
ei − (wi −w)⊤b0 − (vi − v)⊤β

]
an(Ri(b

0 + β)). (3.20)

By Jaeckel (1972), the partial derivatives of Dn(b) exist for almost all b, and
where they exist, are equal to

∂

∂bj
Dn(b) = −n1/2Sn,j(b) = −

n∑
i=1

(wi,j − w̄j)an(Ri(b)), j = 1, . . . , p.

Otherwise speaking,

∇Dn(b) = −n1/2Sn(b) = −
n∑

i=1

(wi −w)an(Ri(b)),

∇Dn(b
0,β) = −n1/2Sn(b

0,β) = −
n∑

i=1

(wi −w)an(Ri(b
0 + β)),

where ∇ denotes the subgradient.
Consider the quadratic function

Cn(b) = Cn(b0,β) =
1

2
γ(φ, f)b0⊤(Q+C)b0 −b0⊤Sn(0)+ γ(φ, f)b0Cβ+Dn(0).

(3.21)
Then Dn(b) and Cn(b) are both convex functions and Dn(0) = Cn(0). Moreover,
for b0

n = n−1/2b0∗, βn = n−1/2β∗ we have

∇[Dn(n
−1/2b0∗, n−1/2β∗)− Cn(n−1/2b0∗, n−1/2β∗)]

= Sn(b
0
n,βn)− Sn(0,0) + γ(φ, f)(Q+C)b0∗ + γ(φ, f)Cβ∗.
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Hence it follows from (3.13) for b0∗,β∗ ∈ Rp fixed that

∥∇[Dn(n
−1/2b0∗, n−1/2β∗)− Cn(n−1/2b0∗, n−1/2β∗)]∥ p→ 0.

Using the convexity arguments in Appendix of Heiler and Willers (1988) and
Convexity lemma in Pollard (1991), we conclude that ∀K > 0

sup
{∣∣∣Dn(n

−1/2b0∗, n−1/2β∗)− 1

2
γ(φ, f)b0∗⊤(Q+C)b0∗ + b0∗⊤Sn(0)

−γ(φ, f)b0∗Cβ∗ +Dn(0)
∣∣∣ : ∥b0∗∥ ≤ K, ∥β∗∥ ≤ K

}
= op(1) as n→ ∞.

Hence, following the arguments in the proof of Theorem 1 in Pollard (1991),
we conclude that, under the local alternative βn = n−1/2β∗,

argmin
b0∗

Dn(n
−1/2b0∗, n−1/2β∗)

is asymptotically equivalent to

argmin
b0∗

[
1

2
γ(φ, f)b0∗⊤(Q+C)b0∗ − b0∗⊤Sn(0) + γ(φ, f)b0∗Cβ∗

]
(3.22)

The minimizer of (3.22) equals to

b0∗ = b∗ − β∗ = n1/2(β̂n − βn) = γ−1(φ, f)(Q+C)−1Sn(0)− (Q+C)−1Cβ∗.

Hence, in the linear model with local value of regression parameter β, when

Yi = x⊤
i βn + ei, βn = n−1/2β∗,

when we observe only wi = xi +vi instead of xi, i = 1, . . . , n, the R-estimator is
asymptotically normally distributed with a bias B = −(Q+C)−1C β∗, i.e.

n1/2(β̂n − n−1/2β∗)
d→ Np

(
B, (Q+C)−1 A2(φ)

γ2(φ, f)

)
.

This completes the proof of Theorem 3.1.

3.3 Generalization for errors in response vari-

ables

The previous result may be generalized for model where there are also additive
measurement errors in response variables:

Yi = β0 + x⊤
i β + ei,

wi = xi + vi, i = 1, . . . , n, (3.23)

Zi = Yi +Wi,

where Wi are i.i.d. random variables independent with ei (and xi if they are
random) with (unknown) distribution function H and density h.
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Let m, M be the density and distribution function of ei +Wi, i = 1, . . . , n,
i.e. m(z) =

∫
f(z − t)h(t)dt. The density is absolutely continuous and has finite

Fisher information I(m) (see Lemma 1.2). Notice that if we observe Zi = Yi+Wi

instead of Yi, then e∗i = ei + Wi, i = 1, . . . , n are still i.i.d. random variables
(new model errors) with density m. Hence the measurement errors in responses
Yi affect only the asymptotic variance, not the bias, as stated in the following
corollary of Theorem 3.1.

Corollary 3.2. Under the conditions A.1, F.1−F.2, V.1−V.3,X.1−X.2 and
under the local alternative (3.3), the R-estimator β̂n in model (3.23) is asymp-
totically normally distributed with the bias B = −(Q+C)−1C β∗, i.e.

n1/2(β̂n − βn)
d→ Np

(
B, (Q+C)−1 A2(φ)

γ2(φ,m)

)
. (3.24)

3.4 Numerical illustration

The following simulation study illustrates the effect of measurement errors in
regressors on the finite-sample performance of R-estimates. Empirical bias (and
variance) of R-estimates are computed and compared for various measurement
error models. For the sake of comparison, the bias and variance are computed
for the least squares estimate (LSE) and 0.5 - regression quantiles (L1-estimates)
under the same setup.

The results illustrate that the bias of R-estimate is surprisingly stable with
respect to the sample size; the bias corresponding to small n is comparable to the
asymptotic one derived in Theorem 3.1. Not only that the bias of R-estimator
depends neither on the choice of the rank score function nor on the distribution
of the model errors; generally it only slightly differs from the bias of LSE and
L1-estimators (if the expectation of the estimator exists). Moreover, the deter-
ministic and random regressors are compared.

3.4.1 Regression line

Consider first the model of regression line

Yi = β0 + xiβ + ei, i = 1, . . . , n,

where the Yi are measured accurately, while instead of xi we observe only wi =
xi+ vi, i = 1, . . . , n. The R-estimator of parameter β is based on Wilcoxon scores
generated by score function φ(u) = u− 1/2.

All the simulation results are based on 10 000 replications, parameters were
chosen as β0 = 1, β = 2, and model errors ei follow the logistic distribution. In
Tables 3.1 and 3.2 the empirical bias of R-estimator based on Wilcoxon scores
is compared for various sample sizes (n = 10, . . . , 1000) and with the theoretical
asymptotic result (n = ∞). The regressors xi are deterministic in Table 3.1;
they were generated from uniform U(−3, 9) distribution once for all experiment
and then considered as fixed. The regressors in Table 3.2 are random; each time
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they were generated also from uniform distribution U(−3, 9). This enables to
see the difference between deterministic and random regressors: The bias differs
more from its asymptotic value in case of deterministic regressors than in case
of random regressors; it can be caused by the slower rate of convergence. The
measurement errors vi are either uniformly or normally distributed.

vi\n 10 20 50 100 200 500 1000 ∞
0 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
U(−5, 0) −0.264 −0.295 −0.305 −0.297 −0.302 −0.306 −0.307 −0.296
U(0, 9) −0.684 −0.727 −0.732 −0.714 −0.719 −0.727 −0.728 −0.720
U(−3, 9) −0.982 −1.013 −1.006 −0.983 −0.986 −0.995 −0.995 −1.000
N (0, 1) −0.128 −0.148 −0.150 −0.146 −0.148 −0.151 −0.152 −0.154
N (0, 2) −0.440 −0.483 −0.488 −0.476 −0.480 −0.487 −0.488 −0.500
N (0, 3) −0.790 −0.836 −0.837 −0.819 −0.822 −0.832 −0.833 −0.857

Table 3.1: Empirical bias of R-estimator for various n and measurement errors
vi; nonrandom regressors xi.

vi\n 10 20 50 100 200 500 1000 ∞
0 0.004 −0.001 0.000 0.000 0.000 0.000 0.000 0.000
U(−5, 0) −0.283 −0.297 −0.305 −0.306 −0.307 −0.309 −0.309 −0.296
U(0, 9) −0.711 −0.722 −0.728 −0.730 −0.730 −0.732 −0.732 −0.720
U(−3, 9) −0.998 −1.000 −0.999 −1.000 −0.999 −1.000 −1.000 −1.000
N (0, 1) −0.138 −0.149 −0.150 −0.153 −0.153 −0.153 −0.153 −0.154
N (0, 2) −0.462 −0.481 −0.487 −0.489 −0.491 −0.492 −0.492 −0.500
N (0, 3) −0.813 −0.830 −0.833 −0.835 −0.837 −0.837 −0.838 −0.857

Table 3.2: Empirical bias of R-estimator for various n and measurement errors
vi; random regressors xi.

Table 3.3 compares empirical bias and variance (in parenthesis) of R-estimator
based on Wilcoxon scores, of LSE and L1-estimator under sample size n = 50
and under random regressors xi generated from uniform U(−3, 9) distribution;
model errors ei generated from normal, logistic, Laplace, Pareto with parameter
α = 0.9 and Cauchy distributions. The measurement errors vi follow various
distributions, similarly as in Tables 3.1 and 3.2.

3.4.2 Model of two regressors

Consider the model

Yi = β0 + xi,1β1 + xi,2β2 + ei, i = 1, . . . , n,

where again the Yi are measured accurately, but instead of xi we observe only
wi = xi + vi, i = 1, . . . , n. The R-estimator of parameter β = (β1, β2)

⊤ is based
on Wilcoxon scores generated by score function φ(u) = u− 1/2.
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vi \ ei N (0, 1) Log(0, 1) Lap(0, 1) P(0.9, 0) C(0, 1)
0.002(0.182) 0.008(0.527) −0.002(0.254) 0.000(0.416) 0.018(0.672)

0 0.004(0.172) 0.009(0.567) −0.003(0.355) 5.047(89200) −3.289(85700)
0.002(0.274) 0.010(0.708) −0.002(0.249) 0.000(1.191) 0.018(0.526)

−0.399(0.155) −0.398(0.438) −0.396(0.214) −0.401(0.422) −0.404(0.568)
U(−3, 3) −0.395(0.147) −0.396(0.466) −0.394(0.283) −7.137(604000) 22.62(4000000)

−0.401(0.232) −0.400(0.591) −0.400(0.235) −0.422(0.932) −0.405(0.456)
−0.995(0.101) −1.006(0.278) −0.997(0.142) −1.001(0.309) −1.010(0.397)

U(−6, 6) −0.995(0.096) −1.009(0.294) −0.998(0.182) −7.259(401000) 0.933(36400)
−0.995(0.151) −1.006(0.376) −0.995(0.157) −1.001(0.587) −1.014(0.320)
−0.153(0.174) −0.161(0.493) −0.145(0.243) −0.149(0.439) −0.147(0.638)

N (0, 1) −0.152(0.163) −0.158(0.523) −0.145(0.328) −2.136(281000) −7.380(739000)
−0.153(0.261) −0.159(0.675) −0.147(0.259) −0.165(1.092) −0.138(0.510)

Table 3.3: Empirical bias (variance) of R-estimator, LSE and L1-estimator for
various measurement errors vi and model errors ei; n = 50.

Let n = 50, parameters β0 = 1, β1 = 2, β2 = 1, random regressors xi =
(xi,1, xi,2)

⊤ were generated from 2-dimensional normal distribution N2(µ,S1) and
vi = (vi,1, vi,2)

⊤ were generated from distributions N2(µ,Sν), ν = 1, 2, 3, where
µ = (0, 1)⊤ and

S1 =

(
4 0.5
0.5 2

)
, S2 =

(
2 0.2
0.2 2

)
, S3 =

(
1 0.9
0.9 1

)
.

Table 3.4 compares empirical bias and variance (in parenthesis) of R-estimator
based on Wilcoxon scores, of the least squares estimator and of L1-estimator for
various measurement errors vi and model errors ei.

We have also computed R-estimates generated by other score functions, e.g.
van der Waerden, median; also another simulation design was considered – various
sample sizes n, values of the parameters, distributions of regressors, measurement
errors vi and model errors. It is of interest that the results for corresponding R-
estimates are quite similar to those presented in the previous tables.

The simulation study confirms that R-estimates in measurement error models
are biased, as well as other usual estimates. The bias is relatively stable with
respect to the sample size and to distribution of model errors. The R-estimates
provide meaningful results as long as the ei have a finite Fisher information; even
under the normal errors are their empirical variances only slightly greater than
that of LSE. The bias and other properties of R-estimates are comparable with
those of the least squares and of L1-estimates unless the distribution of model
errors ei is heavy-tailed, where the LSE fails. Generally, the reduction of the
bias is rather a matter of measurement precision, of calibration and repeated
measurements. See Jurečková et al. (submitted) for more details and simulation
results.
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vi\ei N (0, 1) Log(0, 1) Lap(0, 1) P(0.9, 0) C(0, 1)

0

β̂1

0.000(0.600) −0.015(1.688) 0.002(0.821) −0.002(0.017) 0.026(2.326)
−0.001(0.569) −0.019(1.789) 0.006(1.120) 21.73(5330000) −3.698(48700)
−0.007(0.864) −0.008(2.295) 0.002(0.857) −0.003(0.034) 0.035(1.843)

β̂2

0.020(1.176) 0.026(3.497) 0.001(1.678) −0.003(0.033) 0.037(4.634)
0.014(1.117) 0.027(3.725) −0.001(2.250) −29.28(9770000) 0.695(66200)
0.031(1.744) 0.017(4.588) −0.001(1.758) −0.005(0.067) 0.007(3.618)

N2(µ,S3)

β̂1

−0.362(0.554) −0.379(1.603) −0.379(0.798) −0.372(0.087) −0.347(2.161)
−0.359(0.528) −0.385(1.693) −0.376(1.030) 22.81 (6270000) −4.118(48500)
−0.365(0.823) −0.369(2.134) −0.375(0.881) −0.370(0.102) −0.338(1.758)

β̂2

−0.774(0.936) −0.738(2.662) −0.754(1.295) −0.770(0.136) −0.738(3.618)
−0.776(0.881) −0.734(2.832) −0.757(1.696) −26.76(7920000) −0.268(78500)
−0.769(1.402) −0.754(3.366) −0.754(1.409) −0.769(0.164) −0.752(2.935)

N2(µ,S2)

β̂1

−0.643(0.419) −0.652(1.155) −0.648(0.579) −0.649(0.076) −0.626(1.622)
−0.640(0.399) −0.655(1.216) −0.653(0.750) 14.66(3070000) −3.987(47200)
−0.647(0.615) −0.645(1.573) −0.642(0.657) −0.650(0.089) −0.623(1.317)

β̂2

−0.495(0.643) −0.474(1.730) −0.477(0.866) −0.494(0.107) −0.466(2.426)
−0.497(0.605) −0.469(1.843) −0.471(1.139) −17.59(3660000) −0.646(55900)
−0.489(0.948) −0.477(2.282) −0.486(0.944) −0.492(0.129) −0.478(1.992)

N2(µ,S1)

β̂1

−0.997(0.329) −1.013(0.879) −1.010(0.448) −1.005(0.071) −0.987(1.264)
−0.999(0.311) −1.015(0.931) −1.011(0.577) 9.435(1260000) −2.474(40500)
−0.994(0.484) −1.009(1.192) −1.011(0.509) −1.005(0.086) −0.998(1.037)

β̂2

−0.505(0.670) −0.493(1.797) −0.496(0.917) −0.499(0.141) −0.482(2.489)
−0.505(0.630) −0.486(1.883) −0.487(1.168) −21.75(5680000) 0.106(49600)
−0.501(0.980) −0.520(2.374) −0.504(1.024) −0.500(0.170) −0.501(2.064)

Table 3.4: Empirical bias (variance) of R-estimator, LSE and L1-estimator for
various measurement errors vi and model errors ei; n = 50.
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4. Heteroscedasticity in linear
models

In previous chapters we dealt with linear models where the regressors were mea-
sured only with an additive error. Now, we will consider different situation that
might be also considered in a broader sense as some measurement error model
(model where some classical assumptions for liner models are not satisfied).

Homoscedasticity is often tacitly assumed in the analysis of linear models,
both classical and robust. To avoid a negative consequence of ignored het-
eroscedasticity, we should either analyze its possibility before starting an inference
on the parameters of the model, or look for an approach invariant to heteroscedas-
ticity, if there is one.

Testing the heteroscedasticity in linear model was studied by a host of au-
thors. Koenker (1981) studied the efficiency of the Breusch and Pagan (1979)
test, and extended it to more general distributions. Carroll and Ruppert (1981)
constructed robust test for heteroscedasticity, extending test of Bickel (1978).
Koenker and Bassett (1982) constructed a test of heteroscedasticity in linear
model based on regression quantiles. Dette and Munk (1998) proposed a sim-
ple test for heteroscedasticity in nonparametric regression model based on an
estimate of the best L2-approximation of the variance function. Lyon and Tsai
(1996) compared eight likelihood ratio and score tests for heteroscedasticity, main-
ly their sizes, powers and sensitivities to high leverage and outliers. Lin and Qu
(2012) constructed a consistent test for heteroscedasticity for nonlinear semi-
parametric regression models with nonparametric variance function based on the
kernel method. Lewbel (2012) used the heteroscedasticity to identify and estimate
mismeasured and endogenous regression models.

4.1 Preliminaries

The usual heteroscedastic linear model has the form

Yi = β0 + x⊤
i β + σiUi, i = 1, . . . , n, (4.1)

where β0 ∈ R, β ∈ Rp and (σ1, . . . , σn)
⊤ ∈ Rn

+ are unknown parameters, and
U1, . . . , Un are the i.i.d. errors with (unknown) distribution function F.

To test for significance of β or for heteroscedasticity in model (4.1), we should
assume some structure of σi, i = 1, . . . , n, as an alternative to the homoscedas-
ticity. Various scale models were considered in the literature. Ali and Giaccotto
(1984) considered the model (4.1) with σ1 = . . . = σn = σ and

(σUi)
2 = 1 + θg(zTi a) +Wi,

σUi = [exp{θg(zTi a)}]Wi, i = 1, . . . , n

with (zi, a) known, unknown parameters σ, θ, and random Wi, i = 1, . . . , n.
In this model they studied rank tests of H : θ = 0, with eventual estimation of
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unknown entities. The heteroscedasticity is often modeled as regression in scale
in the form

σi = exp{z⊤i γ}, i = 1, . . . , n (4.2)

with known or observable zi ∈ Rq, i = 1, . . . , n and unknown parameter γ ∈ Rq.
Such model was considered by Akritas and Albers (1993), who constructed an
aligned rank test on some components of parameter β, with γ replaced with
a suitable estimator (further not specified). Gutenbrunner (1994) considered
testing homoscedasticity H : γ = 0 when zi in (4.2) is partitioned as z⊤i =
(1,x⊤

i , ξ
⊤
i )

⊤, with xi from (4.1) and ξi an external vector, i = 1, . . . , n. His test
was based on a combination of regression rank scores for the ξi and regression
quantile estimator of β. This test was then modified in Gutenbrunner et al.
(1995); see also the review paper by Koenker (1997). Dixon and McKean (1996)
considered an estimation problem in model (4.1) with σi = exp{θh(x⊤

i β)}, i =
1, . . . , n with a known function h; they estimated β and θ iteratively by means
of suitable R-estimates.

In testing either for β with nuisance γ or for γ with nuisance β, the typical
approach is to replace the nuisance parameter with an estimator. However, in
some cases we are able to find an ancillary statistic for the nuisance parameter
and avoid its estimation; then we reduce a risk of an inconvenient estimator.

We will benefit by the ancillarity of regression rank scores in model (4.1) with
scales (4.2), and construct the tests of hypotheses

H1 : γ = 0, β unspecified,

H2 : β = 0, γ unspecified.

The tests are asymptotically equivalent to the pertinent rank tests with the
same score functions, used in the situation where the value of the nuisance pa-
rameter is known.

4.2 Rank tests of homoscedasticity

We shall start with testing of homoscedasticity

H1 : γ = 0 against K1 : γ ̸= 0.

We propose a test based on regression rank scores for β in the hypothetic model
(see (4.5) below). The concept of regression rank scores was studied in Section
1.3. Write the model (4.1) in the form

Yi = β0 + x⊤
i β + exp{z⊤i γ}Ui, i = 1, . . . , n, (4.3)

where β0 ∈ R, β ∈ Rp, γ ∈ Rq and model errors U1, . . . , Un are i.i.d. with
distribution function F that has an absolutely continuous density f and finite
Fisher information with respect to the location and scale

0 < I(f) <∞,

0 < I1(f) =

∫ [
−1− x

f ′(x)

f(x)

]2
f(x)dx <∞. (4.4)
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For brevity of notation, we shall further denote

Xn = (x1, . . . ,xn)
⊤, X∗

n = (1n,Xn),

Zn = (z1, . . . , zn)
⊤, Z∗

n = (1n,Zn).

Yn = (Y1, . . . , Yn)
⊤

Under H1, model (4.3) reduces to

Yi = β0 + x⊤
i β + Ui, i = 1, . . . , n. (4.5)

The main tool for testing H1 is the vector ân(α) = (ân,1(α), . . . , ân,n(α))
⊤ of

regression rank scores corresponding to model (4.5). This is an optimal solution
of the parametric linear programming problem

ân(α) = argmax{Y⊤
n a | X∗⊤

n a = (1− α)X∗⊤
n 1n, a ∈ [0, 1]n}, 0 < α < 1. (4.6)

Unlike the score-generating functions used in previous chapters for testing for
regression, the score-generating function, suitable for testing the scale, is typically
a “U-shaped” function φ : (0, 1) 7→ R, square-integrable on (0, 1).

Remark. Remind that the locally optimal score function for model errors Ui with
distribution function F and density f (satisfying some regularity conditions) is

φ̃1(t, f) = −1− F−1(t)
f ′(F−1(t))

f(F−1(t))
. (4.7)

Particularly, φ̃1(t) = (Φ−1(t))2 − 1 is locally optimal for normal and φ̃1(t) =
(2u− 1) log(u/(1− u))− 1 for logistic model errors.

Having chosen φ, we calculate the rank scores

b̂n = (b̂n,1, . . . , b̂n,n)
⊤, b̂n,i = −

∫ 1

0

(φ(t)− φ̄)dân,i(t), i = 1, . . . , n (4.8)

and consider the rank statistic

Sn = n−1/2

n∑
i=1

zib̂n,i. (4.9)

The proposed test criterion for H1 is

T 2
n =

1

A2(φ)
S⊤
n D̂

−1
n Sn, where (4.10)

D̂n = n−1(Zn − Ẑn)
⊤(Zn − Ẑn)

and Ẑn = X∗
n(X

∗⊤
n X∗

n)
−1X∗⊤

n Zn is the projection of Zn on the space spanned by
the columns of X∗

n.
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Remark. Notice that X∗⊤
n b̂n = 0, due to the constraints in (4.6); hence

n∑
i=1

ẑib̂n,i = 0,

where ẑi is the i-th row of Ẑn, i = 1, . . . , n. It implies that Sn automatically
reduces to

Sn = n−1/2

n∑
i=1

(zi − ẑi)b̂n,i

and only the orthogonal complement Zn − Ẑn to X∗
n plays a role in testing. The

situation Zn = X∗
n needs an estimation of the unknown regression parameter; see

Gutenbrunner (1994), Koenker and Zhao (1994), Gutenbrunner et al. (1995) and
Koenker (1997) for some attempts.

The asymptotics for T 2
n is proven under the following conditions on matrices

D̂n and X∗
n. Assume that there exist positive definite matrices D̂, M such that

lim
n→∞

D̂n = D̂, lim
n→∞

n−1X∗⊤
n X∗

n = M. (4.11)

In addition, let regressors x∗
i = (1,x⊤

i )
⊤ satisfy:

max
1≤i≤n

∥x∗
i ∥ = o(n

1
4
−η) for any η > 0, as n→ ∞. (4.12)

Remark. In (1.10) we defined a characteristic γ(φ, f). In this chapter γ stands
for heteroscedastic parameter. To avoid confusion we will change a notation for
γ(φ, f); instead we denote

τ(φ, f) = γ(φ, f) =

∫ 1

0

φ(t)φ̃(t, f)dt, φ̃(t, f) = −f
′(F−1(t))

f(F−1(t))
.

We will also define

τ1(φ, f) =

∫ 1

0

φ(t)φ̃1(t, f)dt

with φ̃1(t, f) defined in (4.7).

The behavior of the test criterion under H1 and under the local alternative is
summarized in the following theorem.

Theorem 4.1. Assume that F satisfies conditions (F.1)–(F.2) stated in Section
1.3, and has finite Fisher information with respect to the location and scale (1.6)

and(4.4). Let matrices D̂n and X∗
n satisfy (4.11) and (4.12). Then in model (4.1)

the test statistic T 2
n has under H1 asymptotically χ2 distribution with q degrees

of freedom.
Under the local alternative

K1,n : γ = n−1/2γ∗, 0 ̸= γ∗ ∈ Rq fixed

T 2
n has asymptotically χ2 with q degrees of freedom and noncentrality parameter

η2 =
τ 21 (φ, f)

A2(φ)
· γ∗⊤D̂γ∗. (4.13)
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Proof. Following the lines of Gutenbrunner et al. (1993), the linear rank statistic
(4.9) admits, under (F.1)–(F.2), (4.12) and under validity of K1,n, the asymptotic
representation

Sn = n−1/2(Zn − Ẑn)
⊤φ
(
F (exp{n−1/2z⊤i γ

∗}Ui)
)
+ op(1), as n→ ∞. (4.14)

This implies the asymptotic normality and the covariance structure of Sn under
H1 as well as under the contiguous alternative K1,n. This, in turn, gives the
asymptotic distribution of the test criterion under hypothesis H1 and under local
alternative K1,n.

Remark. Notice that both the asymptotic null distribution and the power of the
test coincide with those of the corresponding rank test, used under known β.

4.3 Rank tests for regression under local

heteroscedasticity

Let us proceed to testing hypothesis

H2 : β = 0 against K2 : β ̸= 0.

We speak on the local heteroscedasticity, when

γ = n−1/2γ∗, 0 ̸= γ∗ ∈ Rq fixed. (4.15)

Hence we have the following model

Yi = β0 + x⊤
i β + exp{n−1/2z⊤i γ

∗}Ui, i = 1, . . . , n.

We intend to use standard rank test for regression based on the test statistic T 2
n

defined in (1.4); we simply ignore the local heteroscedasticity. The behavior of T 2
n

in the absence of heteroscedasticity was discussed in Section 1.1.1. It was shown
that T 2

n is distribution-free and under some regularity conditions under H2 has
asymptotically χ2 distribution with p degrees of freedom. However, the problem
of our interest is how an eventual heteroscedasticity affects the validity of the
test.

Denote

Qn =
1

n

n∑
i=1

(xi − x)(xi − x)⊤, with x =
1

n

n∑
i=1

xi,

Un =
1

n

n∑
i=1

ziz
⊤
i ,

Cn =
1

n

n∑
i=1

(xi − x)z⊤i ,
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Assume that these exist a positive definite matrix U and a matrix C , such that
as n→ ∞

Un → U, (4.16)

Cn → C, (4.17)

max
1≤i≤n

∥xi∥ = o(n1/2), (4.18)

max
1≤i≤n

∥zi∥ = o(n1/2), (4.19)

1

n
max

i=1,...,n
z⊤i U

−1
n zi → 0. (4.20)

Theorem 4.2. Let conditions (1.7) – (1.8) and (4.16) – (4.18) in model (4.3)
be satisfied. Assume that f has finite Fisher information with respect to the
location and scale. Then the test statistic T 2

n has under H2 and under the local
heteroscedasticity (4.15) asymptotically χ2 distribution with p degrees of freedom
with noncentrality parameter

η2 = γ∗⊤C⊤Q−1Cγ∗ τ
2
1 (φ, f)

A2(φ)
. (4.21)

Proof. The test T 2
n is invariant with respect to the location parameter β0, hence

we may further on without any loos of generality assume that β0 = 0. Under H2

and (4.15) Yi has distribution function

P (Yi ≤ y) = F (y exp{−n1/2z⊤i γ
∗})

and density
exp{−n1/2z⊤i γ

∗}f(y exp{−n1/2z⊤i γ
∗})

Hence the distribution of Y = (Y1, . . . , Yn)
⊤ under H2 has density

qn,γ∗(y1, . . . , yn) =
n∏

i=1

exp{−n1/2z⊤i γ
∗}f

(
yi exp{−n1/2z⊤i γ

∗}
)
. (4.22)

The sequence of densities {qn,γ∗} is contiguous to {qn,0} corresponding to γ = 0
(see Hájek and Šidák (1967, Chapter VI)). It implies that the asymptotic distri-

bution of Sn under H2 and under (4.15) is normal Np

(
µγ∗ ,QA2(φ)

)
, where

µγ∗ = C γ∗
∫ 1

0

φ(u)φ̃1(u, f)du = C γ∗τ1(φ, f).

Hence, the criterion T 2
n = A−2(φ)S⊤

nQ
−1
n Sn has under H2 and under local het-

eroscedasticity asymptotically noncentral χ2(p) distribution with the parameter
of noncentrality η2.

Remark. Particularly, the noncentrality parameter vanishes if f is symmetric
and φ is skew-symmetric, i.e.

f(x) = f(−x), x ∈ R and φ(u) = −φ(1− u), 0 < u < 1.
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Hence, because a skew-symmetric score generating function is our possible choice,
the local heteroscedasticity then does not affect the asymptotic null distribution of
the rank test under symmetric parent distribution.

The noncentrality parameter also vanishes if (xi−x) and zi are asymptotically
orthogonal, i.e.

1

n

n∑
i=1

(xi − x)z⊤i → 0, as n→ ∞. (4.23)

Consider a sequence of local alternatives

K2,n : β = n−1/2β∗, 0 ̸= β∗ ∈ Rp fixed. (4.24)

Again, as in proof of Theorem 4.2 without loos of generality assume that β0 =
0. The distribution function and density of Yi under H2 and under the local
heteroscedasticity are

Pn,i(y) = F
(
y exp{−n−1/2z⊤i γ

∗}
)
, (4.25)

pn,i(y) = exp{−n−1/2z⊤i γ
∗} f

(
y exp{−n−1/2z⊤i γ

∗}
)
, i = 1, . . . , n.

The distribution function and density of Yi under the local regression alternative
K2,n in the presence of the local heteroscedasticity are

Qn,i(y) = F
(
(y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)
,

qn,i(y) = exp{−n−1/2z⊤i γ
∗} f

(
(y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)
, i = 1, . . . , n.

Using the result of Oosterhoff and van Zwet (1979) stated in Lemma 3.2, we
are able to prove the contiguity of the sequence {

∏n
i=1Qn,i}∞n=1 with respect to

the sequence {
∏n

i=1 Pn,i}∞n=1
.

Lemma 4.1. Let conditions (1.7) – (1.8) and (4.16) – (4.20) in model (4.3) be
satisfied. Assume that f has finite Fisher information with respect to the loca-
tion and scale. Then the sequence of distributions {

∏n
i=1Qn,i}∞n=1

is contiguous
with respect to the sequence {

∏n
i=1 Pn,i}∞n=1

for every fixed β∗, ∥β∗∥ < ∞ and
γ∗, ∥γ∗∥ <∞.

Proof. Thanks to Lemma 3.2 we need to verify (3.7) and (3.8). Actually

n∑
i=1

H2(Pn,i, Qn,i) =
n∑

i=1

∫
exp{−n−1/2z⊤i γ

∗}
{[
f
(
y exp{−n−1/2z⊤i γ

∗}
)] 1

2

−
[
f
(
(y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)] 1

2

}2

dy

=
n∑

i=1

exp{−n−1/2z⊤i γ
∗}
∫ {[

f
(
y exp{−n−1/2z⊤i γ

∗}
)] 1

2

−
[
f
(
(y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)] 1

2

}2

dy.
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If n−1/2x⊤
i β

∗ = ηi > 0, then{[
f
(
y exp{−n−1/2z⊤i γ

∗}
)] 1

2 −
[
f
(
(y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)] 1

2

}2

≤

{
1

2
exp{−n−1/2z⊤i γ

∗}
∫ ηi

0

∣∣f ′ ((y − t) exp{−n−1/2z⊤i γ
∗}
)∣∣

f
1
2

(
(y − t) exp{−n−1/2z⊤i γ

∗}
) dt

}2

≤
(
1

2
exp{−n−1/2z⊤i γ

∗}
)2

ηi

∫ ηi

0

[
f ′ ((y − t) exp{−n−1/2z⊤i γ

∗}
)]2

f
(
(y − t) exp{−n−1/2z⊤i γ

∗}
) dt

similarly for n−1/2x⊤
i β

∗ = −ηi < 0. Hence,

n∑
i=1

H2(Pn,i, Qn,i) ≤ 1

4

n∑
i=1

η2i exp{−n−1/2z⊤i γ
∗}I(f)

=
1

4n
I(f)

n∑
i=1

(x⊤
i β

∗)2 exp{−n−1/2z⊤i γ
∗}

what confirms (3.7). It remains to prove (3.8). Actually, for any cn → ∞

lim
n→∞

n∑
i=1

Qn,i

{
qn,i(Yi)

pn,i(Yi)
≥ cn

}

= lim
n→∞

n∑
i=1

∫ ∞

−∞
I
[f((y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)

f
(
y exp{−n−1/2z⊤i γ

∗}
) ≥ cn

]
·

exp{−n−1/2z⊤i γ
∗}f
(
(y − n−1/2x⊤

i β
∗) exp{−n−1/2z⊤i γ

∗}
)
dy

= lim
n→∞

n∑
i=1

∫ ∞

−∞
I
[

f(t)

f(t+ n−1/2x⊤
i β

∗ exp{−n−1/2z⊤i γ
∗})

≥ cn

]
f(t)dt

= lim
n→∞

n∑
i=1

∫ ∞

−∞
I
[

f(t)

f(t+ n−1/2x̃⊤
i β

∗)
≥ cn

]
f(t)dt = 0,

applying the fact that {
∏n

i=1 Q̃n,i} is contiguous with respect to {
∏n

i=1 P̃n,i} with

q̃n,i(y) = f(y − n−1/2x̃⊤
i β

∗), p̃n,i(y) = f(y), i = 1, . . . , n

for x̃i = xi(1 + o(1)), i = 1, . . . , n.

Theorem 4.3. Let conditions (1.7) – (1.8) and (4.16) – (4.20) in model (4.3) be
satisfied. Assume that f has finite Fisher information with respect to the location
and scale. Then the test statistic T 2

n has under local alternative (4.24) and under
the local heteroscedasticity (4.15) asymptotically χ2 distribution with p degrees of
freedom and noncentrality parameter

η̃2 = A−2(φ) · (4.26){
γ∗⊤C⊤Q−1Cγ∗τ 21 (φ, f) + β∗⊤Qβ∗τ 2(φ, f) + 2γ∗⊤C⊤β∗τ1(φ, f)τ(φ, f)

}
.
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RRS tests for regression under

heteroscedasticity

Proof. Lemma 4.1 and Hájek and Šidák (1967, Chapter VI) imply that under
the local regression alternative, in presence of the local heteroscedasticity, Sn has

asymptotically normal distribution Np

(
µγ∗,β∗ ,QA2(φ)

)
, where

µγ∗,β∗ = C γ∗τ1(φ, f) +Q β∗τ(φ, f). (4.27)

Hence, the criterion T 2
n has under the local regression alternative, in presence of

the local heteroscedasticity, asymptotically noncentral χ2
p distribution with the

noncentrality parameter (4.26).

Hence if φ is skew-symmetric and f symmetric or if (4.23) is satisfied, then
the local heteroscedasticity affects neither the critical region nor the asymptotic
power of the test T 2

n . In general case we may get a formula for the asymptotic
relative efficiency this test in presence of the local heteroscedasticity with respect
to the test in the homoscedastic case. It is given by

ARE =
β∗⊤Qβ∗τ 2(φ, f)

γ∗⊤C⊤Q−1Cγ∗τ 21 (φ, f) + β∗⊤Qβ∗τ 2(φ, f) + 2γ∗⊤C⊤β∗τ1(φ, f)τ(φ, f)
.

However, if we are not sure that the heteroscedasticity is only local, we must
replace the unknown γ by an appropriate estimate and use the aligned rank test
for testingH2, see Akritas and Albers (1993). We may also use suitable regression
rank score test to avoid an estimation of nuisance γ.

4.4 RRS tests for regression under

heteroscedasticity

Recall that we test the hypothesis

H2 : β = 0 against K2 : β ̸= 0

in model (4.3). Without estimating the unknown γ, we are able to construct
the tests for H2 only under symmetric F. The symmetrization of the form Y ∗

i =
Yi − Y ′

i , where Y
′
i is an independent copy of Yi, would not bring a convenient

extension to asymmetric F, because it would eliminate even the regression, the
object of study. When symmetric F cannot be assumed, the unknown γ should
be replaced with an estimate and some aligned test should be used.

Remark. Without loss of generality we will assume that there is no intercept
in model (4.3), i.e. β0 = 0. Otherwise one would include it in the parameter

β̃ = (β0,β
⊤)⊤.

Under validity of H2, we can write the following identity:

|Yi| = exp{z⊤i γ} |Ui|, i = 1, . . . , n. (4.28)

Consider the statement (4.28) as an hypothesis H′
2, asserting that Y1, . . . , Yn

satisfy (4.28). We shall verify the hypothesis H′
2 instead of H2. If H

′
2 is not true,
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RRS tests for regression under

heteroscedasticity

then H2 is not true, either. For this purpose, put Wi = ln |Yi|, Vi = ln |Ui|, i =
1, . . . , n (notice that Yi ̸= 0, Ui ̸= 0 with probability 1, i = 1, . . . , n), and rewrite
(4.28) in the form

Wi = z⊤i γ + Vi, i = 1, . . . , n. (4.29)

Then V1, . . . , Vn are i.i.d. random variables with distribution function G(v) and
density g(v), satisfying the following relations:

G(v) = P (ln |Ui| ≤ v) = 2F (ev)− 1, v ∈ R

G−1(α) = ln
(
F−1

(α+ 1

2

))
, 0 < α < 1

g(v) = 2 ev f(ev), v ∈ R (4.30)

g(G−1(α)) = 2F−1
(α + 1

2

)
f
(
F−1

(α + 1

2

))
, 0 < α < 1

−g
′(v)

g(v)
= −1− ev

f ′(ev)

f(ev)
, v ∈ R

−g
′(G−1(α))

g(G−1(α))
= −1− F−1

(α + 1

2

)
·
f ′(F−1(α+1

2
))

f(F−1(α+1
2
))
, 0 < α < 1.

The following lemma shows that G has positive and finite Fisher information
with respect to the shift location, which coincides with Fisher information for F
with respect to the scale:

Lemma 4.2. Let F have an absolutely continuous symmetric density with finite
Fisher information, then distribution function G in (4.30) has an absolutely con-
tinuous density g and finite Fisher information with respect to the location and
I(g) = I1(f).

Proof. Indeed,

I(g) =

∫ ∞

−∞

(
1 + ev

f ′(ev)

f(ev)

)2

2 ev(f(ev)dv

=

∫ ∞

0

(
1 + y

f ′(y)

f(y)

)2

2f(y)dy = I1(f) <∞.

If F has an absolutely continuous symmetric density f > 0 with nondegenerate
tails, finite Fisher information with respect to the location and scale, and satisfies
conditions (F.1)–(F.2) in Section 1.3, then G has an absolutely continuous density
g satisfying (4.30) with finite Fisher information for location. Moreover, (4.30)
implies that ∣∣∣∣−g′(v)g(v)

∣∣∣∣ = ∣∣∣∣−1− ev
f ′(ev)

f(ev)

∣∣∣∣ ≤ e2v −1 for |v| > K1. (4.31)

Then G fulfills conditions (F.1)–(F.2) in Section 4.2, hence the regression rank
scores for model (4.29) with error distribution G have a sense.
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RRS tests for regression under

heteroscedasticity

We replace testing H2 with testing H′
2 corresponding to a class of distribu-

tion functions G, related to a symmetric F according to (4.30). Because of the
symmetry of F, we shall use the signed rank test of H′

2, using the regression rank
scores corresponding to the model (4.29). We shall assume that, as n→ ∞,

(Z.1) zi,1 = 1, i = 1, . . . , n and max1≤i≤n ∥zi∥ = O(1) as n→ ∞.

(Z.2) Un = 1
n

∑n
i=1 ziz

⊤
i → U, where U is a positive definite matrix.

(Z.3) Q̃n(γ) = n−1
∑n

i=1 e
−z⊤i γ(xi − x̂i)(xi − x̂i)

⊤ → Q̃(γ), ∀γ ∈ Rq,

where Q̃(γ) is a positive definite matrix. Here x̂⊤
i is the i-th row of X̂n =

Zn(Z
⊤
nZn)

−1Z⊤
nXn.

For simplicity, denote Q̃n(0) ≡ Q̃n and Q̃(0) ≡ Q̃, respectively. Let ân(α) =
(ân,1(α), . . . , ân,n(α))

⊤ be the α-regression rank scores for the model (4.29), i.e.
the optimal solution of the linear programming problem

ân(α) = argmax{W⊤
n a | Z⊤

na = (1− α)Z⊤
n1n, a ∈ [0, 1]n}, 0 < α < 1, (4.32)

where Wn = (W1, . . . ,Wn)
⊤. Then ân(α) is invariant to the transformations

Wi 7→ Wi + z⊤i γ, γ ∈ Rq. (4.33)

Let φ : (0, 1) 7→ R be a nonconstant, nondecreasing, square-integrable, skew-
symmetric score function, whose derivative φ′(u) exists and satisfies for all 0 <
u < α0, 1− α0 < u < 1 (for some α0 > 0):

|φ′(u)| ≤ c(u(1− u))−1−δ for some δ > 0. (4.34)

Remark. The class of functions satisfying (4.34) covers the Wilcoxon- and van
der Waerden-type tests, among others.

Regarding the symmetry of F, we use the signed regression rank scores test
of H2 with the statistic

S̃n = n−1/2

n∑
i=1

(xi − x̂i) sign Yi b̂
+
n,i,

b̂+
n = (b̂+n,1, . . . , b̂

+
n,n)

⊤, b̂+n,i = −
∫ 1

0

φ+(u) dân,i(u), i = 1, . . . , n.

φ+(u) = φ
(u+ 1

2

)
, 0 < u < 1 (4.35)

Remark. Notice that sign Yi and b̂
+
n,i are independent under H2, i = 1, . . . , n,

due to the symmetry of F. Moreover, Wi in (4.32) can be replaced with i.i.d.
Vi, i = 1, . . . , n, free of γ, due to the invariance of regression rank scores.

Finally, we propose the following test criterion for H2 :

T̃ 2
n =

1

A2(φ)
S̃⊤
n Q̃

−1
n S̃n. (4.36)

The asymptotic behavior of T̃ 2
n is stated in the following theorem.
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RRS tests for regression under

heteroscedasticity

Theorem 4.4. Assume that F is symmetric, satisfies conditions (F.1)–(F.2)
and has finite Fisher information with respect to the location and scale. The
regressors in model (4.1) let satisfy conditions (Z.1)–(Z.3). Then in model (4.1)

T̃ 2
n has under H2 asymptotically χ2 distribution with p degrees of freedom and

under the local alternative (4.24) the asymptotic distribution of T̃ 2
n is noncentral

χ2 with p degrees of freedom and noncentrality parameter

η̃2(γ) =
τ 21 (φ, f)

A2(φ)
β∗⊤Q̃⊤(γ)Q̃−1Q̃(γ)β∗. (4.37)

Proof. Indeed, it follows from Gutenbrunner et al. (1993), Hušková (1970) and

Puri and Sen (1985), that under H′
2, the statistic S̃n admits the asymptotic

representation

S̃n = n−1/2

n∑
i=1

(xi − x̂i) sign Yi φ
+(2F (| e−z⊤i γ Yi|)− 1) + op(1)

= n−1/2

n∑
i=1

(xi − x̂i)φ(F (e
−z⊤i γ Yi)) + op(1) (4.38)

= n−1/2

n∑
i=1

(xi − x̂i)φ(F (Ui)) + op(1)

as n → ∞, (notice that e−z⊤i γ Yi = Ui, i = 1, . . . , n). This further implies that

the asymptotic null distribution of S̃n under H′
2 is normal Np

(
0, A2(φ)Q̃

)
.

Consider the local alternative K2,n for H′
2 defined in (4.24), which is contigu-

ous to H′
2 for every fixed γ (see Hájek and Šidák (1967, Chapter VI)).

The distribution function of Yi under K2,n and under a fixed γ ∈ Rq is
F
(
(y − n−1/2x⊤

i β
∗) exp{−z⊤i γ}

)
. The representation (4.38) is true also under

K2,n and under any fixed γ. Regarding the invariance (4.33), it can be expressed
as

S̃n = n−1/2

n∑
i=1

(xi − x̂i)φ
(
F (Ui + n−1/2x⊤

i β
∗ e−z⊤i γ)

)
+ op(1). (4.39)

Hence S̃n is asymptotically normal under K2,n and under a fixed γ ∈ Rq :

Np

(
τ1(φ, f)Q̃(γ)β∗, A2(φ)Q̃

)
. (4.40)

Hence, the asymptotic distribution of T̃ 2
n under H′

2 is central χ2 with p degrees
of freedom, while under K2,n and fixed γ it is noncentral χ2 with p degrees of
freedom and noncentrality parameter (4.37).

The behavior of test (4.36) is in accord with the signed rank tests of H2 under
γ known; such tests were studied by Hušková (1970) and Puri and Sen (1985).
The numerical study in the following section illustrates the finite sample behavior
of all proposed tests from previous sections, for more details and other simulations
see Jurečková and Navrátil (2012) and Jurečková and Navrátil (2014).
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γ \ Ui N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 5.16 3.99 3.17 4.77 3.62 2.86 4.78 3.65 2.87 5.53 4.21 3.39

0.1 17.79 20.69 18.32 16.54 16.86 14.09 13.02 12.48 10.33 16.23 16.10 13.57

−0.1 18.61 20.90 18.21 15.91 16.05 13.63 12.85 11.88 10.11 15.93 15.33 12.87

0.2 53.77 63.88 59.91 48.16 52.36 47.95 36.76 38.84 34.16 46.98 50.28 45.50

−0.2 53.98 63.44 59.69 47.95 52.87 48.11 36.67 38.99 34.53 47.32 51.04 45.52

0.3 84.71 91.54 89.97 80.27 85.51 81.91 67.32 71.68 67.08 79.08 83.78 79.80

−0.3 84.43 91.48 89.78 81.17 85.99 82.38 67.80 72.14 67.10 79.25 83.29 79.17

Table 4.1: Percentage of rejections of hypothesis H1 : γ = 0 for various model
errors Ui and for three choices of the score function φ (absolute value of Wilcoxon
scores for location, Wilcoxon scores for scale and van der Waerden scores for
scale); n = 100.

4.5 Numerical illustration

4.5.1 Test of H1 : γ = 0

Consider the model of regression line with a possible heteroscedasticity,

Yi = β0 + βxi + exp {ziγ}Ui, i = 1, . . . , n

and the problem of testing the homoscedasticity H1 : γ = 0 against two-sided
alternative γ ̸= 0, considering β0 and β as nuisance parameters. The nuisance
parameters do not affect power of the tests (as it was shown in Section 4.2 and
confirmed in the simulation study); thus these parameters will be further consid-
ered as fixed: β0 = 2 and β = 1.

First we compare the regression rank score test (4.10) for three different choic-
es of score function φ:
φ(1)(t) = |t− 1

2
| absolute value of Wilcoxon scores

for location,
φ(2)(t) = −1 + (2t− 1) log t

1−t
Wilcoxon scores for scale,

φ(3)(t) = (Φ−1(t))2 − 1 van der Waerden scores for scale.

The regressors xi and zi were once generated from independent samples of
sizes n = 100 from uniform (−2, 10) distribution, eventually the zi from standard
normal distribution and then considered fixed. The model errors Ui were gener-
ated from normal, logistic, Laplace and t-distribution with 6 degrees of freedom,
respectively, always with 0 mean and variance 3/2 The empirical powers of the
tests were computed as a percentage of rejections of H1 among 10 000 replica-
tions, at significance level α = 0.05. The results are summarized in Table 4.1;
they show a good performance for all three scores.

Next we shall compare the regression rank score tests with their classical rank
test counterparts; we consider Wilcoxon scores with score function φ(2)(t). The
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γ \ Ui N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 2.84 3.93 2.91 4.14 2.72 4.14 3.00 3.97

0.1 17.96 20.62 13.74 16.97 10.70 12.85 13.49 15.81

−0.1 18.02 20.72 13.90 16.51 10.62 12.69 13.80 16.13

0.2 60.40 62.96 49.99 52.62 36.50 39.8 48.37 50.74

−0.2 60.60 63.27 50.53 53.30 36.72 40.13 48.63 51.70

0.3 91.23 91.60 84.73 85.44 69.81 71.74 82.96 84.14

−0.3 91.98 92.56 84.94 85.65 69.76 71.57 82.72 83.78

Table 4.2: Percentage of rejections of hypothesis H1 : γ = 0 for various errors Ui,
for classical rank test for the scale alternative and regression rank score test (in
this order), both with Wilcoxon scores for scale; n = 100.

value of β is fixed as β = 1 in the rank test, for the purpose of comparison, though
β is typically unknown. Anyway, the theoretical as well as simulation studies in-
dicate that the regression rank score test (with parameter β unspecified) achieves
the same asymptotic power as the classical rank test for the scale with β known.

The regressors xi and zi were once generated from independent samples of sizes
n = 100 from the standard normal distribution and then considered fixed. The
model errors Ui were generated from normal, logistic, Laplace and t-distributions
with 6 degrees of freedom, respectively, all with 0 mean a variance 3/2. The
empirical powers of the tests were again computed as a percentage of rejections
of H1 among 10 000 replications, at significance level α = 0.05. The results are
summarized in Table 4.2.

4.5.2 Test of H2 : β = 0

Again, consider the model of regression line with a possible heteroscedasticity,

Yi = βxi + exp {γ0 + γ1zi}Ui, i = 1, . . . , n

and the problem of testing H2 : β = 0 against two-sided alternative β ̸= 0,
considering γ = (γ0, γ1)

⊤ as a nuisance parameter.
We start with a comparison of the signed regression rank score test (4.36) for

three choices of score function φ:
φ(1)(t) = t− 1

2
Wilcoxon scores,

φ(2)(t) = Φ−1(t) van der Waerden scores,
φ(3)(t) = sign(t− 1

2
) sign scores.

The regressors xi and zi were once generated from independent samples of sizes
n = 100 from uniform (−2, 10) distribution and then considered fixed. The
model errors Ui were generated from normal, logistic, Laplace and t-distribution
with 6 degrees of freedom, respectively, always with 0 mean and variance 3/2.

60



HETEROSCEDASTICITY IN LINEAR MODELS Numerical illustration

The empirical powers of tests were computed as a percentage of rejections of H2

among 10 000 replications, at α = 0.05. Table 4.3 compares empirical powers of
tests under a fixed value of nuisance parameter γ = (0, 0.1)T , while Table 4.5
compares empirical powers of tests under fixed values β = 0.05 and γ0 = 0, and
various γ1. Table 4.4 illustrates the situation where the regressors in the linear
regression and in the nuisance heteroscedasticity coincide, i.e. zi = xi; the rest of
the simulation setup remains the same as in Table 4.3.

β \ Ui N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 5.21 4.95 5.33 5.21 4.96 5.01 5.21 4.97 5.01 5.18 5.24 5.45

0.05 15.85 15.51 12.38 16.65 15.95 13.77 20.86 18.18 20.74 18.29 17.22 14.58

−0.05 15.67 15.80 12.37 17.20 16.38 14.25 20.82 18.34 21.55 17.54 16.72 14.27

0.1 46.17 46.30 32.11 49.30 47.44 38.37 57.82 52.48 51.57 51.40 49.09 40.53

−0.1 45.20 46.02 31.68 49.31 47.88 38.48 58.52 53.42 52.21 51.27 49.13 39.74

0.2 93.06 93.84 77.77 94.65 94.18 82.58 96.52 95.24 87.67 95.06 94.74 84.23

−0.2 93.32 94.06 78.02 94.83 94.37 83.02 96.75 95.34 88.67 95.30 94.40 84.56

Table 4.3: Percentage of rejections of hypothesis H2 : β = 0 for various model
errors Ui and for three choices of score function φ (Wilcoxon, van der Waerden,
sign scores), under fixed γ = (0, 0.1)⊤; n = 100.

β \ Ui N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

0 4.77 4.60 4.61 4.71 4.32 5.03 4.72 4.32 5.03 4.84 4.48 5.26

0.05 7.90 7.80 7.02 8.50 8.22 7.66 9.72 8.94 10.25 8.80 8.27 7.88

−0.05 8.02 7.89 7.07 8.43 8.06 7.83 9.56 8.77 10.45 8.54 8.36 7.69

0.1 17.58 17.16 13.65 19.42 17.78 16.14 23.18 20.35 23.71 19.81 18.43 16.73

−0.1 17.17 16.76 13.61 18.48 17.43 15.71 22.42 19.74 23.78 19.85 18.63 16.60

0.2 43.80 42.77 35.63 46.32 43.88 40.50 49.88 45.71 49.29 46.32 43.26 41.54

−0.2 43.72 42.80 35.30 45.61 43.27 40.78 49.23 45.23 49.45 46.68 44.14 41.92

Table 4.4: Percentage of rejections of hypothesis H2 : β = 0 for various model
errors Ui and for three choices of score function φ (Wilcoxon, van der Waerden,
sign scores), under fixed γ = (0, 0.1)⊤; zi = xi, n = 100.

The powers depend on nuisance parameter γ, in accordance with (4.37). The
powers increase for γ1 negative and decrease for γ1 positive, due to influence of zi
on the variance. Similarly as in the previous subsection, we observe that the van
der Waerden scores achieve approximately the same power as Wilcoxon scores,
even for normal model errors. The performance of the sign scores is the best for
the Laplace model errors, but with approximately the same power as Wilcoxon.
Apart from their simple form, the Wilcoxon scores generally achieve the best re-
sults for all model errors.
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γ1 \ Ui N
(
0, 3

2

)
Log

(
0,

√
2π
3

)
Lap

(
0,

√
3
2

)
t(6)

−0.3 97.07 97.68 83.82 97.76 98.00 86.11 98.65 98.41 90.42 97.71 97.93 86.72

−0.2 85.60 87.02 66.75 88.70 88.14 72.43 91.68 89.65 80.52 89.53 88.75 73.92

−0.1 57.03 54.66 38.04 57.43 55.54 44.54 66.22 61.11 58.28 59.60 57.27 46.91

0 26.32 26.45 19.27 29.12 27.65 22.88 36.00 31.53 34.54 30.40 28.90 24.77

0.1 15.62 15.85 11.90 17.02 16.43 13.85 20.89 18.47 21.40 18.08 16.83 14.55

0.2 11.62 11.18 9.63 12.21 11.90 10.54 14.63 13.22 15.10 13.13 12.25 11.18

0.3 9.50 9.49 8.08 9.86 9.53 8.70 11.67 10.46 11.93 10.73 10.23 9.14

Table 4.5: Percentage of rejections of hypothesis H2 : β = 0 for various model
errors Ui and for three choices of score function φ (Wilcoxon scores, van der
Waerden scores, sign scores), under fixed β = 0.05 and γ0 = 0, and for various
γ1; n = 100.

Next we shall compare the regression rank score tests with their classical rank
test counterparts: namely with the rank tests for regression ignoring the hetero-
scedasticity, and the rank tests for regression considering the nuisance parameter
γ to be known. We consider Wilcoxon scores generated by score function φ(1)(t),
and model errors Ui generated from standard normal distribution. The remaining
design is the same as in the previous cases.

γ1 \ β 0 0.01 0.02 0.03

−0.3 5.26 4.79 5.21 18.64 85.42 34.86 53.40 99.96 73.65 81.48 100 90.90

−0.2 4.85 4.82 4.99 10.58 24.38 14.54 29.22 73.75 40.15 54.57 96.39 67.32

−0.1 5.19 4.82 5.26 7.23 8.70 7.94 16.42 22.26 17.91 31.32 42.39 33.51

0 4.55 4.55 4.55 6.13 6.13 6.34 9.75 9.75 9.95 16.74 16.74 16.36

0.1 4.84 5.07 5.31 5.71 5.40 5.73 7.03 8.16 7.52 9.77 11.83 10.64

0.2 4.70 4.69 4.91 5.35 5.56 5.48 5.88 8.57 6.64 6.97 12.57 9.01

0.3 4.63 5.06 5.02 5.02 5.75 5.27 4.99 9.13 5.72 5.56 13.09 6.79

Table 4.6: Percentage of rejections of hypothesis H2 : β = 0 for classical rank test
ignoring the heteroscedasticity, classical rank test considering γ to be known, and
regression rank score test with Wilcoxon scores (in this order) for normal model
errors and for fixed γ0 = 0; n = 100.

For small values of parameters γ and β, the regression rank score test and the
classical rank test, considering γ to be known, have very similar powers. The
power of regression rank score test is a bit smaller for larger values γ and β.
The classical rank test ignoring heteroscedasticity has probability of the error of
the first kind equal to prescribed α, but its power is smaller than the power of
proposed signed regression rank score test.
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4.5.3 Application to real data

Consider the data from Ezekiel and Fox (1959), giving the speed of n = 63 cars
and the distances taken to stop.

Denote Yi the distance (ft) taken to stop and zi the speed (mph) of the i-th car,
i = 1, . . . , n. Due to the physical nature of the situation, the relationship between
Yi and zi is quadratic, in addition zero speed means zero stopping distance, hence
there is no intercept in our model:

Yi = βz2i + eγziUi, i = 1, . . . , n. (4.41)

Figure 4.1 illustrates the relation between the data, when parameter β is
estimated by an R-estimator generated by Wilcoxon scores. We also plot a graph
of fitted values and speed in Figure 4.1; that indicates that there might be a
heteroscedasticity in our data.
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Figure 4.1: Data and their quadratic relationship; relationship between residuals
and speed.

Let us start with test of homoscedasticity H1 : γ = 0 against γ > 0. Com-
pute test statistic (4.10) with Wilcoxon scores for scale, i.e. generated by score
function φ(t) = −1 + (2t− 1) log t

1−t
. The corresponding p-value is 0.043; hence,

at usual level of significance α = 0.05 we reject H1 and heteroscedasticity has to
be admitted.

On the other hand, consider the test of significance of regression with nuisance
heteroscedasticity, H2 : β = 0 against β > 0, with the test statistic (4.36) with
Wilcoxon scores generated by score function φ(t) = t− 1

2
. It leads to the p-value

0.0085, hence the regression is really present in model (4.41).
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5. Rank tests for location
parameter

Unlike the previous chapters, where we dealt with linear regression model, in the
following chapters we will discuss a bit simpler model with no regressors, namely
location model.

Let X1, . . . , Xn be i.i.d. random variables with an unknown continuous distri-
bution function F (x−∆) and continuous density f(x−∆), where f is supposed
to be symmetric around zero, i.e. f(y) = f(−y) for all y, and has finite Fisher
information with respect to the location I(f). We want to test the hypothesis

H0 : ∆ = 0, against K0 : ∆ > 0.

One may rewrite the model as

Xi = ∆+ ei, i = 1, . . . , n, (5.1)

where ei are i.i.d. random variables with an unknown symmetric density f with
finite Fisher information I(f).

Remark. According to the terminology used by Hájek and Šidák (1967) we will
call the following tests as rank tests of symmetry, although they actually do not
test symmetry of underlying distribution, but they only assume it.

5.1 Rank tests of symmetry

Again, we choose a nondecreasing, nonconstant, square integrable score function
φ : (0, 1) 7→ R, consider

φ+(u) = φ

(
u+ 1

2

)
, 0 < u < 1

and define approximate scores based on φ+ as

a+n (i) = φ+

(
i

n+ 1

)
.

Let R+
i be the rank of |Xi| among |X1|, . . . , |Xn| and finally consider test statistic

S+
n = n−1/2

n∑
i=1

a+n (R
+
i ) sign(Xi). (5.2)

For deriving the exact distribution of S+
n under null hypothesis denote N+

number of positive components of (X1, . . . , Xn). Then the distribution of N+

under H0 is binomial Bi(n, 1/2). Further denote R
+

1 < . . . < R
+

N+
the ordered

ranks corresponding to (X1, . . . , Xn) which signs are positive. Then it holds

P (R
+

1 = r1, . . . , R
+

N+
= rN+ , N+ = n+|H0) =

(
1

2

)n
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for any n+-tuple (r1, . . . , rn+), 1 ≤ r1 < . . . < rn+ ≤ n. Hence we can get the
critical region of the test of the size α. For each 0 ≤ m ≤ n and for each of

(
n
m

)
possible choices of positive signs of n-tuple (r1 = 1, . . . , rn = n) we calculate the
value of the statistic S+

n and order these values in the increasing magnitude. The
critical region is formed by k = ⌊α · 2n⌋ largest sums and the combination leads
to (k+1)-st largest value can be possibly randomized.

Theorem 5.1. Assume that f is symmetric with I(f) < ∞. Then in model
(5.1) under H0 test statistic S

+
n has asymptotically as n→ ∞ normal distribution

N (0, A2(φ+)).

Proof. See Hájek et al. (1999, Theorem 1, Section 6.1.7).

Consider a sequence of local alternatives

K0,n : ∆ = n−1/2∆∗, 0 < ∆∗ fixed.

Theorem 5.2. Assume that f is symmetric with I(f) <∞. Then in model (5.1)
under K0,n test statistic S+

n has asymptotically as n → ∞ normal distribution
N (µ,A2(φ+)), where

µ = ∆∗γ(φ+, f).

Proof. See Hájek et al. (1999, Theorem 1, Section 7.2.5).

From the previous theorem we can obtain asymptotic power of this test:

β = β(∆∗) = 1− Φ

(
Φ−1(1− α)− ∆∗γ(φ+, f)

A(φ+)

)
, (5.3)

where Φ(x) denotes the distribution function of standard normal distribution.
This procedure is mainly used for testing homogeneity in two populations. For

example we want to compare two treatments — we divide experimental objects
into n homogeneous pairs (to exclude effects due to the inhomogeneity of the
data) and apply the new treatment to one unit of the pair while the other one is
control.

We may restate the previous problem as: (X
(T )
1 , X

(C)
1 ), . . . , (X

(T )
n , X

(C)
n ) being

i.i.d. two-dimensional random vectors with the distribution function F (x, y);

X
(T )
i being treatment observations and X

(C)
i control observations. Our aim is to

test the hypothesis that the distribution function F (x, y) is symmetric around
the straight line y = x, i.e.

H : F (x, y) = F (y, x), ∀x, y ∈ R,

against the alternative that the distribution of random vector (X(T ), X(C)) is
shifted toward positive half-plane y > x.

Now, introduce new random variables Xi = X
(C)
i −X(T )

i and G(z) its distribu-
tion function. Suppose that these exists a continuous density g(z). The problem
of testing H is then equivalent to stating that the distribution G is symmet-
ric around 0, against the alternative, that the distribution is symmetric around
∆ > 0.
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5.2 Rank tests of symmetry with additive

measurement errors

Now, suppose that we observe instead of Xi random variables Zi = Xi + Wi,
i = 1, . . . , n, where Wi are i.i.d. random variables independent with X1, . . . , Xn

with an unknown continuous density g symmetric around 0. We have

Xi = ∆+ ei,

Zi = Xi +Wi.

Hence we may rewrite it as

Zi = ∆+ e∗i , i = 1, . . . , n, (5.4)

where e∗i = ei +Wi are i.i.d. random variables with density h.

Lemma 5.1. Density of e∗i is

h(x) =

∫ ∞

−∞
f(x− v)g(v)dv, (5.5)

it is symmetric and has finite Fisher information with respect to the location.

Proof. Formula for density h follows from the convolution theorem and finiteness
of Fisher information from Lemma 1.2.

Thanks to symmetry of f and g we have

h(−x) =

∫ ∞

−∞
f(−x− v)g(v)dv =

∫ ∞

−∞
f(x+ v)g(−v)dv

= −
∫ −∞

∞
f(x− u)g(u)du = h(x), ∀x ∈ R.

Denote S+
Z,n test statistic (5.2) based on observed values Zi. The presence of

measurement errors may change both ranks R+
i and signs of Xi, fortunately this

change does not affect hypothetical distribution of S+
Z,n. Actually, under H0 we

have
Zi = e∗i

that has a continuous and symmetric density. Hence the exact distribution of
S+
Z,n under H0 is the same as S+

n . We can also formulate analogies of Theorems
5.1 and 5.2. Their proofs are immediate corollaries of Theorem 5.1, resp. 5.2 and
Lemma 5.1.

Theorem 5.3. Assume that f and g are symmetric and I(f) < ∞. Then in
model (5.4) under H0 test statistic S+

Z,n has asymptotically as n → ∞ normal
distribution N (0, A2(φ+)).

S+
Z,n has under K0,n asymptotically normal distribution N (µZ , A

2(φ+)), where

µZ = ∆∗γ(φ+, h).
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RANK TESTS FOR LOCATION PARAMETER Tests of symmetry with measurement errors

Definition. Let T1 and T2 be two tests for H against K such that T1 has asymp-
totically N (0, σ2

1) distribution under H and N (µ1, σ
2
1) distribution under K and

T2 has asymptotically N (0, σ2
2) distribution under H and N (µ2, σ

2
2) distribution

under K. Then the number

ARE(T1, T2) =

(
µ1σ2
µ2σ1

)2

will be called asymptotic relative efficiency of T1-test relative to T2-test.

Hence for our case we get

ARE(S+
Z,n, S

+
n ) =

(
µZ

µ

)2

=

(
γ(φ+, h)

γ(φ+, f)

)2

. (5.6)

According to the Cauchy-Schwarz inequality

ARE(S+
Z,n, S

+
n ) ≤

I(h)A2(φ+)

γ2(φ+, f)
.

If the test S+
n with score function φ+ is asymptotically optimal for f , i.e. if

φ+(u) = φ̃+(u, f), then

ARE(S+
Z,n, S

+
n ) ≤

I(h)

I(f)
≤ 1.

We can look easily that the case of testing effects of two treatments with
measurement errors is a special case of the previous one. Suppose that instead
of X

(T )
i we observe X̃

(T )
i = X

(T )
i + Ai, where Ai are i.i.d. random variables

independent with X
(T )
1 , . . . , X

(T )
n with a continuous density symmetric around

0. And analogously instead of X
(C)
i we observe X̃

(C)
i = X

(C)
i + Bi, where Bi

are i.i.d. random variables independent with X
(C)
1 , . . . , X

(C)
n and A1, . . . , An with

a continuous density symmetric around 0. Denote X̃i = X̃
(T )
i − X̃

(C)
i = X

(T )
i −

X
(C)
i +(Ai−Bi) for i = 1, . . . , n. We can see that we are in the same situation as at

the beginning of the section: we test the symmetry of r.v. Xi = X
(T )
i −X(C)

i with
the presence of measurement errors Wi = Ai − Bi. Note that this case contains
also the situation when both measurement errors Ai, Bi have distribution (not
necessarily the same) symmetric about the same point δ > 0, or generally when
the distribution of Wi is symmetric.

The following example comes from Lehmann (1975), but the original data are
from Ury and Forrester (1970).

Example. In a study of the comparative tensile strength of tape-closed and su-
tured wounds, the following results were obtained on 10 rats, 40 days after in-
cisions made on their backs had been closed by suture or by surgical tape. The
results are summarized in Table 5.1.
We test the hypothesis of no difference between tape-closed and sutured wounds
against the alternative that the tape-closed wounds are stronger. We illustrate
it on the Wilcoxon scores φ(u) = u − 1/2. Because the sample size is small
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Rat 1 2 3 4 5 6 7 8 9 10
Tape 659 984 397 574 447 479 676 761 647 577
Suture 452 587 460 787 351 277 234 516 577 513

Difference 207 397 −63 −213 96 202 442 245 70 64

Table 5.1: Comparative tensile strength (lb. per sq. in.) of tape-closed and
sutured wounds of rats.

Error 0 N (0,100) N (0,400) U(−30,30) C(0,5) C(0,20)
p-value 0.0244 0.0271 0.0285 0.0283 0.0346 0.0564

Table 5.2: Effect of the measurement errors on p-value of Wilcoxon signed-rank
test.

(n = 10), we use the exact distribution of S+
n and because we want to know exact

p-value of this test, we use the non-randomized test. The p-value of this test is
25/210

.
= 0.0244, that means that at the level of significance α = 0.05 we reject

the hypothesis of no difference between this two treatments.
Now, suppose that we observe the differences of both treatments with a mea-

surement error (it can arise from both measurement simultaneously). We produce
10 000 replications, every time we contaminate the original data with random er-
rors and compute respective p-value. Finally we estimate the p-value as the mean
of p-values of these 10 000 replications. The results are summarized in Table 5.2.

We can see that measurement errors increase the p-value and even errors with
large variance can mask the effect of new treatment, so that we would not reject
the hypothesis H0.

5.3 Rank tests of symmetry with additive

shifted measurement errors

In the previous section we assumed that the measurement errors are symmetric
around 0 – errors are random and not systematic. That assumption was crucial
for construction of the test. Now, let the measurement errors W̃i be symmetric
around ∆0 ̸= 0 with density g̃(x) = g(x−∆0). Again, we consider model

Xi = ∆+ ei,

Z̃i = Xi + W̃i.

With the aid of the notation from the previous section, we can write

Z̃i = ∆+∆0 + e∗i , i = 1, . . . , n, (5.7)

where e∗i = ei +Wi are i.i.d. random variables with density h given in (5.5).
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Denote S+

Z̃,n
test statistic (5.2) based on observed values Z̃i. Again, the pres-

ence of measurement errors may change both ranks R+
i and signs of Xi, unfor-

tunately in this case this change does affect hypothetical distribution of S+

Z̃,n
.

Actually, under H0 we have
Z̃i = ∆0 + e∗i .

Distribution of Z̃i is then symmetric around ∆0 that is generally unknown. Hence
we are unable to do any statistical inference about the parameters. We are only
able to describe the situation where the systematic errors are close to zero, in
that sense that they are only local:

∆0 = n−1/2∆∗
0. (5.8)

Theorem 5.4. Assume that f and g are symmetric and I(f) < ∞. Then in
model (5.7) the test based on statistic S+

Z,n under (5.8) achieves asymptotically
error of the first kind

α∗ = 1− Φ

(
Φ−1(1− α)− ∆∗

0γ(φ
+, h)

A(φ+)

)
. (5.9)

Proof. Combining results from Theorem 5.3 for K0,n : ∆0 = n−1/2∆∗
0 and (5.3)

we get the expression (5.9) for the asymptotic error of the first kind for the test
S+

Z̃,n
.

From the previous formula we can see that if ∆0 < 0, then α∗ < α (the real
value of the error of the first kind is lower than prescribed) and if ∆0 > 0, then
α∗ > α (the real value is greater than prescribed).

Remark. If we consider the opposite alternative K′
0 : ∆ < 0, the situation is

symmetric and for the both-sided alternative K′′
0 : ∆ ̸= 0 the real value is always

greater than prescribed.

5.4 Rank tests of symmetry with additive asym-

metric measurement errors

The situation with asymmetric measurement errors is more complicated than the
previous cases. Hence we will first discuss the model without measurement errors
(5.1). Recall that it is

Xi = ∆+ ei, i = 1, . . . , n,

where here ei are i.i.d. random variables with an unknown asymmetric density f
with finite Fisher information I(f) and median 0.

The symmetry assumption is crucial for rank tests of symmetry, see the fol-
lowing lemma.

Lemma 5.2. Let X be a symmetric random variable with density f , then signX
and |X| are independent.
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RANK TESTS FOR LOCATION PARAMETER Tests of symmetry with asymmetric errors

Proof. Thanks to symmetry of X

P (signX = 1) = P (signX = −1) =
1

2
,

P (−x < X < 0) = P (0 < X < x), ∀x > 0.

Then for any x > 0

P (signX = 1, |X| < x) = P (0 < X < x) =
1

2
P (−x < X < x)

= P (signX = 1)P (|X| < x).

and analogously

P (signX = −1, |X| < x) = P (signX = −1)P (|X| < x), ∀x > 0

that completes the proof.

Hence if the symmetry assumption is not satisfied Lemma 5.2 will not be
valid and the test statistic S+

n from (5.2) will not have required properties. Only
exception it might be the choice φ(u) = sign(2u− 1), so called sign test. Then

φ+(u) = φ

(
u+ 1

2

)
= sign(u) = 1, 0 < u < 1.

Hence corresponding test statistic S+
n is

S+
n = n−1/2

n∑
i=1

sign(Xi).

Anyway, more known is an equivalent test statistic

Tn =
n∑

i=1

I{Xi > 0}

number of positive components of (X1, . . . , Xn). Actually

S+
n =

1√
n

[
n∑

i=1

I{Xi > 0} −
n∑

i=1

I{Xi < 0}

]
=

2Tn√
n
−
√
n,

where we used
n∑

i=1

I{Xi < 0}+
n∑

i=1

I{Xi > 0} = n.

According to Theorem 5.1 S+
n has asymptotically standard normal distribution

N (0, 1), because A2(φ) = 1. In general this test will work for all distributions
with 0 median (and finite Fisher information).

Anyway, return back to our problem. The problem here is that if we add in-
dependent asymmetric measurement error (with 0 median) to symmetric random
variable, it is not assured that median of the resultant distribution will be 0, see
the following example.
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Example. Let X and Y be independent random variables, X with uniform dis-
tribution U(−1/2, 1/2) and Y with shifted exponential distribution with density

g(y) = e−(y+log 2)I {y > − log 2} .

Denote Z = X+Y their convolution. Apparently X is symmetric around 0 while
Y is asymmetric but with median 0.

According to well-known formula for density of Z we have

h(z) =
(
1− e−z− 1

2
−log 2

)
I
{
− log 2− 1

2
< z < − log 2 +

1

2

}
+

(
e−z+ 1

2
−log 2 − e−z− 1

2
−log 2

)
I
{
z > − log 2 +

1

2

}
.

Thus, Z is not symmetric and its median is approximately 0.042.

Hence, even if we used the sign test and ignored measurement errors it would
be biased. We do not put any assumption of the knowledge of the distribution
of errors, that is why, it is difficult to express mathematically the influence of
measurement errors. Anyway, our simulations indicate that measurement errors
may change error of the first kind of the corresponding test. If we ignore the
measurement errors and use the critical value for the test without measurement
errors, the error of the first kind will be less (greater) than α (here, it depends
on the shape of distribution of measurement errors).

5.5 Simulations

We have made a simulation study to show how the previous tests perform in
finite sample situation (n = 20). We tested the hypothesis ∆ = 0 against the
alternative ∆ > 0. We have also compared power of t-test and considered rank
tests for various choices of the score function φ:

(T1) sign test φ(u) = sign
(
u− 1

2

)
A2(φ+) = 1

(T2) Wilcoxon test φ(u) = u− 1
2

A2(φ+) = 1
12

(T3) normal scores test φ(u) = Φ−1(u) A2(φ+) = 1
In Tables 5.3 – 5.6 power of the tests is estimated based on percentage of

rejections (based on 10 000 replications) for various distributions of the random
variablesXi as well as for various distributions of measurement errors Vi. In Table
5.7 actual error of the first kind is estimated the same way for normal distributed
variables Xi for various shifted measurement errors. The level of significance was
α = 0.05.

The simulation study indicates the influence of measurement errors on the
power of used tests. For distributions with short tails t-test arises similar results
as rank tests, but for heavy-tailed distributions the power of t-test is much lower
than the power of rank tests. The power of tests decreases with increasing vari-
ance of measurement errors and it also depends on the choice of score function φ.
Wilcoxon scores arise the best results for short-tailed distributions, but sign test
arises the best results for heavy-tailed distributions. Normal scores do not arise
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Test \ Wi 0 N (0, 0.5) U(−2, 2) Log(0, 0.5) Lap(0, 0.5) C(0, 0.5) t(2)
t 70.13 54.03 40.84 48.50 54.72 22.02 26.56
T1 58.49 45.50 31.25 41.43 47.24 36.73 30.56
T2 67.88 52.69 38.27 47.08 53.28 36.27 31.14
T3 64.59 48.74 35.64 43.06 49.20 29.41 26.23

Table 5.3: Percentage of rejections based on 10 000 replications for various dis-
tributions of measurement errors Wi and various tests, sample size n = 20 and
the original variables Xi with N (0.5, 1).

Test \ Wi 0 N (0, 0.5) U(−2, 2) Log(0, 0.5) Lap(0, 0.5) C(0, 0.5) t(2)
t 44.62 38.19 30.79 34.71 37.76 18.04 21.96
T1 51.32 39.14 26.96 35.54 40.99 32.25 26.98
T2 51.92 41.39 30.86 37.37 41.72 29.50 26.21
T3 44.34 35.48 27.11 32.05 35.90 23.63 21.40

Table 5.4: Percentage of rejections based on 10 000 replications for various dis-
tributions of measurement errors Wi and various tests, sample size n = 20 and
the original variables Xi with t(3) + 0.5.

Test \ Wi 0 N (0, 0.5) U(−2, 2) Log(0, 0.5) Lap(0, 0.5) C(0, 0.5) t(2)
t 34.15 30.36 26.68 28.93 30.34 16.30 20.85
T1 32.95 28.60 24.10 27.10 28.74 24.27 22.12
T2 34.94 30.58 26.19 28.68 30.82 23.35 22.15
T3 30.41 26.60 23.03 24.92 26.26 19.13 19.05

Table 5.5: Percentage of rejections based on 10 000 replications for various dis-
tributions of measurement errors Wi and various tests, sample size n = 20 and
the original variables Xi with Log(0.5, 1).

Test \ Wi 0 N (0, 0.5) U(−2, 2) Log(0, 0.5) Lap(0, 0.5) C(0, 0.5) t(2)
t 49.28 40.64 33.26 37.59 40.98 18.77 28.04
T1 59.88 41.65 27.76 37.96 44.77 34.75 30.10
T2 56.24 43.09 32.74 39.80 44.31 30.43 30.13
T3 48.31 37.25 29.11 34.14 38.15 24.50 25.29

Table 5.6: Percentage of rejections based on 10 000 replications for various dis-
tributions of measurement errors Wi and various tests, sample size n = 20 and
the original variables Xi with Lap(0.5, 1).
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Test\Wi 0 C(0, 1) t(2) Log(0.2, 1) Log(−0.4, 1) Log(0.4, 1) U(−1.8, 2.2) Lap(0.2, 1)

t 5.16 3.17 4.95 10.93 21.74 1.93 13.96 13.18
T1 5.99 5.76 5.84 11.52 20.67 2.53 12.98 13.74
T2 5.02 4.98 5.33 11.10 21.66 1.88 13.56 13.19
T3 4.06 3.94 4.23 9.06 18.21 1.37 11.37 10.75

Table 5.7: Percentage of rejections based on 10 000 replications for various dis-
tributions of measurement errors Wi and various tests, sample size n = 20 and
the original variables Xi with N (0, 1).

good results nor for the normal distribution. It is caused by the small sample
size (convergence for normal scores is very slow), for large n it has similar pow-
er as t-test for short-tailed distributions, but it is more robust for heavy-tailed
distributions.
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6. R-estimates of location
parameter

In this chapter we will stay at the location model and we will try to estimate the
location parameter ∆.

6.1 R-estimates in model without measurement

errors

Again, let us start with the model without measurement errors. Remind that we
study model (5.1):

Xi = ∆+ ei, i = 1, . . . , n,

where ei are i.i.d. random variables with an unknown symmetric density f with
finite Fisher information I(f). The problem of estimation of location parameter ∆
is in fact dual to the testing problem, hence there will be a lot of similarities with
the previous chapter.

Analogously as in Section 5.1 we choose a nondecreasing, nonconstant, square
integrable score function φ : (0, 1) 7→ R, consider

φ+(u) = φ

(
u+ 1

2

)
, 0 < u < 1

and define approximate scores based on φ+ as

a+n (i) = φ+

(
i

n+ 1

)
.

For t ∈ R define R+
i (t) the rank of |Xi − t| among |X1 − t|, . . . , |Xn − t| and

consider

S+
n (t) = n−1/2

n∑
i=1

a+n (R
+
i (t)) sign(Xi − t). (6.1)

Remark. Note that for t = 0 (6.1) reduces to (5.2) used for testing the hypothesis
∆ = 0.

As an estimator of ∆ it is proposed the value of t which solves the equation
S+
n (t) = 0. Since S+

n (t) is discontinuous, such an equation may have no solution;
then we define the R-estimator of ∆ as

∆̂
(R)
n,(X) = ∆̂(R)

n =
1

2

[
sup{t : S+

n (t) > 0}+ inf{t : S+
n (t) < 0}

]
.

Remark. In general, the value of ∆̂
(R)
n cannot be expressed by a formula, that’s

why we have to use some numerical method for finding ∆̂
(R)
n , but for special choices

of the scores a+n we can get the accurate expression. If a+n (i) = 1 for all i =

1, . . . , n, then ∆̂
(R)
n = ∆̂

(med)
n = med{X1, . . . , Xn} and if a+n (i) = i

n+1
we have

∆̂
(R)
n = ∆̂

(H−L)
n = med

{
Xi+Xj

2
, 1 ≤ i ≤ j ≤ n

}
(Hodges–Lehmann estimator).
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Theorem 6.1. Assume that f is symmetric with I(f) <∞. Then

√
n(∆̂(R)

n −∆)
d→ N

(
0,

A2(φ+)

γ2(φ+, f)

)
.

Proof. The proof follows from asymptotic representation for ∆̂
(R)
n (see Jurečková

and Sen (1996, page 244)):

√
n(∆̂(R)

n −∆) =
1√

nγ(φ+, f)

n∑
i=1

φ+(F (Xi −∆)) + op(1), n→ ∞.

With the aid of Theorem 6.1 we can also express the asymptotic confidence in-
terval for ∆ with (asymptotic) confidence level (1− α):(

∆̂(R)
n − n− 1

2Φ−1
(
1− α

2

) A(φ+)

γ(φ+, f)
, ∆̂(R)

n + n− 1
2Φ−1

(
1− α

2

) A(φ+)

γ(φ+, f)

)
. (6.2)

However, this confidence interval has one disadvantage – we do not know the
density f and for practical computations it is necessary to estimate it, respectively
one has to estimate γ(φ+, f).

Anyway, it also exists another approach based on the knowledge of distribution
of S+

n (t). Let Cn,α be the smallest value for which the following inequality holds

P (|S+
n (0)| ≤ Cn,α|∆ = 0) ≥ 1− α.

We can compute Cn,α from the exact distribution of S+
n (0) = S+

n , or we can
use the asymptotic normal approximation mentioned in Section 5.1, i.e. we use

C̃n,α =
√
nA(φ+)Φ−1(1− α/2). (6.3)

And finally define the confidence interval
(
∆̂

(R)
L,n, ∆̂

(R)
U,n

)
such that

∆̂
(R)
L,n =

1

2

[
sup{t : S+

n (t) > C̃n,α}+ inf{t : S+
n (t) < C̃n,α}

]
,

∆̂
(R)
U,n =

1

2

[
sup{t : S+

n (t) > −C̃n,α}+ inf{t : S+
n (t) < −C̃n,α}

]
. (6.4)

The previous approach might be summarized in the following theorem.

Theorem 6.2. Assume that f is symmetric with I(f) < ∞. Then confidence

interval
(
∆̂

(R)
L,n, ∆̂

(R)
U,n

)
for ∆ has asymptotic coverage probability (1− α).

Remark. Jurečková and Sen (1996) proved a connection between confidence in-
terval (6.4) and the previous one (6.2), namely for n→ ∞(

∆̂
(R)
L,n, ∆̂

(R)
U,n

)
=

(
∆̂(R)

n − n−1/2Φ−1
(
1− α

2

) A(φ+)

γ(φ+, f)
+ o

(
n−1/2

)
,

∆̂(R)
n + n−1/2Φ−1

(
1− α

2

) A(φ+)

γ(φ+, f)
+ o

(
n−1/2

))
.

In this case we do not need to estimate the variance A2(φ+)/γ2(φ+, f), nor to

use the point estimator ∆̂
(R)
n . Disadvantage of this procedure is that the solutions

for ∆̂
(R)
L,n and ∆̂

(R)
U,n cannot be expresses and must be computed iteratively.
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6.2 R-estimates of location parameter under ad-

ditive measurement errors

Now, suppose that we observe instead of Xi random variables Zi = Xi + Wi,
i = 1, . . . , n, where Wi are i.i.d. random variables independent with X1, . . . , Xn

with an unknown continuous density g(v) symmetric around 0. We still want to
estimate the parameter ∆.

Recall that h(w) =
∫∞
−∞ f(w − v)g(v)dv is density of Zi and define

S̃+
n (t) = n−1/2

n∑
i=1

a+n (R̃
+
i (t)) sign(Zi − t),

where R̃+
i (t) are the ranks of |Zi− t| among |Z1− t|, . . . , |Zn− t| and an estimator

of ∆ is

∆̂
(R)
n,(Z) =

1

2

[
sup{t : S̃+

n (t) > 0}+ inf{t : S̃+
n (t) < 0}

]
. (6.5)

Theorem 6.3. Assume that f and g are symmetric and I(f) <∞. Then

√
n(∆̂

(R)
n,(Z) −∆)

d→ N
(
0,

A2(φ+)

γ2(φ+, h)

)
.

Proof. Lemma 5.1 assures symmetry and finiteness of Fisher information of h.
The proof then follows from Theorem 6.1.

It also means that if we use the same setup for confidence interval as for mod-
el without measurement errors, the resulting confidence interval for ∆ in mea-
surement error model will remain valid. Hence define the confidence interval(
∆̂

(Z,R)
L,n , ∆̂

(Z,R)
U,n

)
as

∆̂
(Z,R)
L,n =

1

2

[
sup{t : S̃+

n (t) > C̃n,α}+ inf{t : S̃+
n (t) < C̃n,α}

]
,

∆̂
(Z,R)
U,n =

1

2

[
sup{t : S̃+

n (t) > −C̃n,α}+ inf{t : S̃+
n (t) < −C̃n,α}

]
,

where C̃n,α was defined in (6.3).

Theorem 6.4. Assume that f and g are symmetric and I(f) <∞. Then confi-

dence interval
(
∆̂

(Z,R)
L,n , ∆̂

(Z,R)
U,n

)
for ∆ has asymptotic coverage probability (1−α).

As well as for the tests, for comparing two estimates one may define asymptotic
relative efficiency.

Definition. Let ∆̂1 and ∆̂2 be two estimates of parameter ∆ such that ∆̂1 has
asymptotically N (∆, σ2

1) distribution and ∆̂2 has asymptotically N (∆, σ2
2).

Then the number

ARE(∆̂1, ∆̂2) =
σ2
2

σ2
1

will be called asymptotic relative efficiency of ∆̂1 relative to ∆̂2.
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The ARE ∆̂
(R)
n,(W ) relative to ∆̂

(R)
n,(X) (R-estimate in model with measurement errors

relative to R-estimate in model without measurement errors) is

ARE
(
∆̂

(R)
n,(W ), ∆̂

(R)
n,(X)

)
=
γ2(φ+, h)

γ2(φ+, f)
=

∫ 1
1
2
φ(u)φ̃(u, h)du∫ 1

1
2
φ(u)φ̃(u, f)du

2

. (6.6)

Remark. Since estimation and testing are dual problems, it is not very surpris-
ing that formula for asymptotic relative efficiency of two tests in model with and
without measurement errors (5.6) coincides with the formula for asymptotic rel-
ative efficiency of two estimates in model with and without measurement errors
(6.6).

6.3 R-estimates of location parameter under ad-

ditive shifted measurement errors

Now, as in Section 5.3 let the measurement errors W̃i be symmetric around ∆0 ̸= 0
with density g̃(x) = g(x−∆0). Again, we may write

Z̃i = ∆+∆0 + e∗i , i = 1, . . . , n,

where e∗i = ei +Wi are i.i.d. random variables with symmetric density h given in
(5.5).

Because of the form of Z̃i without any knowledge about ∆0 it is impossible to
estimate parameter ∆. If we try to consider the R-estimate given by the equation
(6.5), we have to realize that the estimate ∆̂

(R)

n,(Z̃)
does not estimate parameter ∆,

but ∆+∆0, hence ∆̂
(R)

n,(Z̃)
is not consistent estimate of ∆. This result is stated in

the following theorem.

Theorem 6.5. Assume that f and g are symmetric and I(f) <∞. Then

√
n(∆̂

(R)

n,(Z̃)
−∆)

d→ N
(
∆0,

A2(φ+)

γ2(φ+, h)

)
.

Remark (Asymmetric measurement errors). The symmetry assumption was very
important in this chapter due to identifiability of parameter ∆. Using the same
arguments as in Section 5.4 we conclude that if the measurement errors are asym-
metric, corresponding R-estimator will be biased. The bias depends on the shape
of underlying distribution of measurement errors. This result was further sup-
ported in the simulation study.

6.4 Simulations

We have also made a simulation study to show how the estimates perform for
finite sample situation (n = 20). We compared mean (∆̂

(LSE)
n ), median (∆̂

(med)
n ),
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R-ESTIMATES OF LOCATION PARAMETER Simulations

Est.\Wi 0 N (0, 1) U(−3, 3) C(0, 1) Lap(0, 1) t(2)

∆̂
(LSE)
n 0.004 (0.152) 0.000 (0.201) 0.001 (0.300) 1.041 (4287) 0.000 (0.250) 0.014 (1.061)

∆̂
(med)
n 0.004 (0.224) 0.000 (0.294) 0.004 (0.491) 0.003 (0.518) 0.002 (0.335) 0.005 (0.386)

∆̂
(H−L)
n 0.006 (0.161) 0.000 (0.212) 0.002 (0.332) 0.005 (0.518) 0.001 (0.252) 0.006 (0.312)

∆̂
(Φ)
n 0.005 (0.156) 0.000 (0.206) 0.001 (0.311) 0.008 (0.630) 0.000 (0.251) 0.007 (0.326)

Table 6.1: Estimates of ∆ = 0 and their variance based on 10 000 replications
for various distributions of measurement errors Wi, sample size n = 20 and the
original variables Xi with N (0, 3).

Est.\Wi 0 U(−3, 3) C(0, 1) Lap(0, 1) t(2)

∆̂
(LSE)
n 0.005 (0.145) 0.000 (0.292) 3.483 (77861) −0.002 (0.243) 0.019 (1.104)

∆̂
(med)
n 0.005 (0.090) 0.002 (0.443) −0.003 (0.355) 0.003 (0.209) 0.006 (0.252)

∆̂
(H−L)
n 0.004 (0.082) −0.002 (0.277) 0.001 (0.417) −0.002 (0.181) 0.005 (0.232)

∆̂
(Φ)
n 0.005 (0.091) −0.003 (0.262) 0.002 (0.532) -0.003 (0.194) 0.005 (0.260)

Table 6.2: Estimates of ∆ = 0 and their variance based on 10 000 replications
for various distributions of measurement errors Wi, sample size n = 20 and the
original variables Xi with t(3).

Hodges–Lehmann estimator (∆̂
(H−L)
n ) and R-estimate based on the score function

φ(u) = Φ−1(u) (denote it ∆̂
(Φ)
n ). The last one has not been mentioned yet, because

it cannot be expressed by some formula, but it must be computed iteratively (we
used Newton’s method).

In Tables 6.1 – 6.5 the estimates of parameter ∆ = 0 based on 10 000 replica-
tions are computed for various distributions of the random variables Xi as well
as for various distributions of measurement errors Wi. For each estimator the es-
timate of its variance based on performed simulations is added (in parentheses).

The simulation study indicates that all considered estimators estimate param-
eter ∆ approximately the same except from the mean in heavy-tailed distribu-
tions. If the original distribution Xi or the distribution of errors Wi is heavy-
tailed, then mean fails. Much more interesting is the comparison of variances of

Est.\Wi 0 N (0, 1) U(−3, 3) C(0, 1) Lap(0, 1) t(2)

∆̂
(LSE)
n 0.006 (0.156) 0.003 (0.200) 0.005 (0.308) 2.170 (57258) 0.005 (0.257) 0.014 (1.104)

∆̂
(med)
n 0.007 (0.404) 0.005 (0.397) 0.008 (0.485) 0.007 (0.653) 0.005 (0.453) 0.001 (0.488)

∆̂
(H−L)
n 0.007 (0.189) 0.003 (0.234) 0.006 (0.350) 0.004 (0.555) 0.007 (0.281) 0.007 (0.330)

∆̂
(Φ)
n 0.006 (0.139) 0.003 (0.205) 0.005 (0.318) 0.005 (0.657) 0.007 (0.259) 0.009 (0.331)

Table 6.3: Estimates of ∆ = 0 and their variance based on 10 000 replications
for various distributions of measurement errors Wi, sample size n = 20 and the
original variables Xi with U(−3, 3).
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R-ESTIMATES OF LOCATION PARAMETER Simulations

Est.\Wi 0 N (0, 1) U(−3, 3) C(0, 1) Lap(0, 1) t(2)

∆̂
(LSE)
n 0.007 (0.417) 0.003 (0.448) 0.003 (0.569) 2.168 (57260) 0.003 (0.518) 0.014 (1.116)

∆̂
(med)
n 0.006 (0.280) 0.005 (0.403) 0.009 (0.699) 0.008 (0.732) 0.006 (0.475) −0.001 (0.518)

∆̂
(H−L)
n 0.009 (0.305) 0.003 (0.366) 0.008 (0.526) 0.001 (0.816) 0.008 (0.432) 0.007 (0.495)

∆̂
(Φ)
n 0.009 (0.343) 0.004 (0.394) 0.007 (0.536) 0.001 (0.997) 0.007 (0.461) 0.010 (0.548)

Table 6.4: Estimates of ∆ = 0 and their variance based on 10 000 replications
for various distributions of measurement errors Wi, sample size n = 20 and the
original variables Xi with Lap(0, 2).

Est.\Wi 0 N (0, 1) U(−3, 3) C(0, 1) Lap(0, 1) t(2)

∆̂
(LSE)
n 0.005 (0.172) 0.002 (0.214) 0.004 (0.324) 2.168 (57258) 0.003 (0.273) 0.014 (0.880)

∆̂
(med)
n 0.005 (0.199) 0.005 (0.276) 0.007 (0.506) 0.006 (0.512) 0.005 (0.328) 0.001 (0.363)

∆̂
(H−L)
n 0.006 (0.161) 0.003 (0.212) 0.006 (0.347) 0.002 (0.537) 0.006 (0.261) 0.007 (0.309)

∆̂
(Φ)
n 0.006 (0.165) 0.002 (0.212) 0.005 (0.330) 0.003 (0.662) 0.006 (0.265) 0.009 (0.332)

Table 6.5: Estimates of ∆ = 0 and their variance based on 10 000 replications
for various distributions of measurement errors Wi, sample size n = 20 and the
original variables Xi with Log(0, 1).

R-estimates. It depends on the choice of score function φ and the distributions
of measurement errors and it increases with increasing variance of measurement
errors. Hodges–Lehmann estimator and R-estimator based on normal scores arise
the best accuracy for short-tailed distributions, median arises the best accuracy
for heavy-tailed distributions. But in general we can say that Hodges–Lehmann
estimator arises the best accuracy among other estimates for any measurement
errors. More simulation results might be found in Navrátil and Saleh (2011) and
Navrátil (2012).
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Conclusion

In a broader sense all statistical problems involve measurement errors. In this
thesis measurement errors occur when we cannot observe some variable of our
interest exactly. Most often that might be caused by instrument or sampling
error. Application of these models is wide in many branches from physics and
chemistry to social science.

We studied the behavior of rank procedures in measurement error models.
Although both measurement error models and rank tests and estimates are rel-
atively old and well-known, their combination (application of rank procedures
to measurement error models) is only a couple of years old. Hence most of the
results are original, generalizations of those in Jurečková et al. (2010) and other
applications of rank procedures in various measurement error models.

The main goal of the thesis was to investigate if classical rank tests and
estimates stay valid and applicable when there are some measurement errors
present and if not how to modify these procedures to be still able to do some
statistical inference.

First, we proposed a new rank test for the slope parameter in regression model
based on minimum distance estimator and an aligned rank test for an intercept.
We also investigated the bias of R-estimator in measurement error model; the
results correspond to those for least squares estimate, but R-estimates are more
robust to departures from normal model. Besides measurement errors we also
dealt with the problem of heteroscedastic model errors. We proposed regression
rank score tests of heteroscedasticity with nuisance regression and tests of regres-
sion with nuisance heteroscedasticity without estimation of nuisance parameters.
Finally, in location model tests and estimates of shift parameter were studied for
various measurement errors.

Anyway, the idea of using rank tests in measurement error model is quite new.
Hence there is still a lot of open problems that remain to be solved (and proven),
some of them have been already mentioned in the thesis, some are still waiting
to be found. This thesis should have demonstrated that it is reasonable to use
rank tests due to their simplicity and only a weak set of assumptions for their
validity together with the robustness and high efficiency characteristics, relative
to the parametric methods. All the results were derived theoretically and then
demonstrated numerically with examples or simulations.
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Gutenbrunner, C., Jurečková, J., Koenker, R. Regression rank test for het-
eroscedasticity. Technical report, Charles University in Prague, 1995.
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