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Vedoućı disertačńı práce: prof. RNDr. Petr Hájek, PhD., DrSc., Matematický
ústav AV ČR, v.v.i.
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Introduction

This thesis is based on the following original research work:

• (with G. Lancien) Approximation properties and Schauder decompositions
in Lipschitz-free spaces, J. Funct. Anal. 264 (10) (2013) 2323–2334 ([14]).

• (with P. Hájek) On Schauder bases in Lipschitz-free spaces, J. Math. Anal.
Appl. 416 (2) (2014) 629–646 ([11]).

• On uniformly differentiable mappings, preprint ([21]).

The first paper is presented in Chapter 1, the second paper forms Chapter 2 and
the last study constitutes Chapter 3.

Let us now outline the content of the chapters.
In Chapter 1 and Chapter 2, we deal with Lipschitz-free spaces in terms of

their approximation properties. Consider the space Lip0(M) of all real-valued
Lipschitz functions on a metric space M which vanish at a fixed point of M ,
equipped with the norm given by the Lipschitz constant of a function. Then the
Lipschitz-free space F(M) over the metric space M is the canonical predual of
Lip0(M).

Lipschitz-free spaces provide a way to abstractly linearize Lipschitz mappings
in the following sense. If we use the Dirac map to identify metric spaces M
and N with subsets of the corresponding Lipschitz-free spaces F(M) and F(N),
respectively, then any Lipschitz map from the metric space M into the metric
space N can be extended to a continuous linear map from F(M) into F(N) with
the same Lipschitz constant (see [23] or Lemma 2.2 in [7]).

Although Lipschitz-free spaces are relatively simply defined, their linear struc-
ture is more difficult to analyse and is not thoroughly understood yet. Hence this
subject provides a rich field to investigate and has become an active area of study.
One can easily see that F(R) is isometric to L1. On the other hand, F(R2) is
not isomorphic to any subspace of L1 as Naor and Schechtman showed in [19]
by adapting a Theorem of Kislyakov [13]. Then in [6] Godard characterized the
metric spaces whose Lipschitz-free space is isometric to a subspace of L1.

Chapter 1, consisting of paper [14], focuses on metric spaces M for which
the Lipschitz-free space F(M) has the bounded approximation property (BAP)
or a finite-dimensional Schauder decomposition (FDD). Research in this area
was initiated in the seminal publication of Godefroy and Kalton [7]. One of
their main results states that a Banach space X has the λ-BAP if and only if
F(X) has the λ-BAP. In particular, every Lipschitz-free space F(E), where E is
a finite-dimensional Banach space, has the metric approximation property (MAP).
In [7] Godefroy and Kalton also prove the so-called isometric lifting property
for any separable Banach space. A modification of this proof along with Enflo’s
fundamental result on the existence of a separable Banach space not admitting
the approximation property (AP) was later used by Godefroy and Ozawa in [8]
to establish the existence of a compact metric space M such that F(M) does
not have AP. The presence of both positive and negative examples motivates the
search for a description of the metric spaces over which the Lipschitz-free spaces
have the BAP. Several related questions were raised in [8].
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Section 1.2 is devoted to this problem. The key ingredient is the existence of
linear extension operators of Lipschitz functions. Our general result concerning
BAP for Lipschitz-free spaces, Theorem 1.2.1, uses the notion of K-gentle partition
of unity introduced by Lee and Naor in [15]. For a K > 0 and a metric space Y
having a K-gentle partition of unity with respect to some separable closed subset
X of Y (the partition being a function from the product of Y and a measure
space into [0,∞) of certain properties), they construct a linear extension operator
from Lip0(X) into Lip0(Y ) with norm not greater than 3K. In Theorem 1.2.1, by
composing such extension operators with restriction operators, we show that if
M is a separable metric space such that there exists a constant K > 0 satisfying
that for any closed subset X of M , M admits a K-gentle partition of unity with
respect to X, then F(M) has the 3K-BAP. By [15], a doubling metric space M
with a doubling constant D(M) has a K(1 + log(D(M)))-gentle partition of unity
with respect to any closed subset X, where K is a universal constant. Therefore
the Lipschitz-free space F(M) has the C(1 + log(D(M)))-BAP with a universal
constant C. This is the statement of Corollary 1.2.2. For a natural number
n, the space Rn with the Euclidean norm is a doubling metric space with the
doubling constant bounded above by Kn, where K is a universal constant. Since
this property is inherited by metric subspaces, Corollary 1.2.2 yields that for any
closed subset F of the Euclidean space Rn, the Lipschitz-free space F(F ) has
the Cn-BAP for some universal constant C. But in fact, the constant can be
improved as is presented in Proposition 1.2.3. Indeed, applying results from [15],
we obtain that if F is a closed subset of Rn equipped with the Euclidean norm,
then the Lipschitz-free space F(F ) is isometric to a C

√
n-complemented subspace

of the Lipschitz-free space F(Rn) for a universal constant C. This combined with
the fact that F(Rn) has MAP, proved in [7], gives that F(F ) has the C

√
n-BAP,

where C is a universal constant.
This result now gives rise to further interesting questions. As suggested by

Gilles Godefroy, one may ask whether the constant C
√
n is optimal, or, whether

there exists λ > 0 such that for every n ∈ N and every closed subset M of Rn,
the Lipschitz-free space F(M) has the λ−BAP.

Another very recent positive result, which says that the Lipschitz-free space
over a countable compact metric space has the MAP, is due to Dalet [3].

In Section 1.3 we proceed by looking for Banach spaces such that the corre-
sponding Lipschitz-free spaces have stronger approximation properties. The study
in this direction began with the work of Borel-Mathurin [1], where the existence
of an FDD for the Lipschitz-free space F(Rn) is proved. The decomposition con-
stant in this result depends on the dimension n. In Theorem 1.3.1 we show that
the Lipschitz-free spaces F(`n1 ) and F(`1) admit a monotone finite-dimensional
Schauder decomposition, i.e. an FDD with the decomposition constant equal to 1.
Let us just mention here that later, in Chapter 2, refining the technique of the
proof we improve this result and obtain even a Schauder basis for the spaces F(`1)
and F(`n1 ). The proof of Theorem 1.3.1 is based on finding a sequence (Tk)

∞
k=1 of

projections on the considered Lipschitz-free space F(X) (here X standing for `n1 or
`1) which yields FDD. To this end, we construct a sequence (Pk)

∞
k=1 of projections

on F(X)∗ = Lip0(X) so that they are adjoint and that the sequence (Tk)
∞
k=1 of

projections on F(X) given via the relation T ∗k = Pk has desired properties. The
crucial tool for building (Pk)

∞
k=1 is a particular method for interpolating Lipschitz
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functions defined on the vertices of a hypercube in `n1 to the whole hypercube
preserving the Lipschitz constant of the function. Let us now sketch the con-
struction. We consider an increasing sequence of finite-dimensional hypercubes
in X, growing both in the dimension and the size, which are decomposed into
smaller hypercubes (we call this decomposition tiling) that are, on the other hand,
shrinking. Then we define the corresponding projections on Lip0(X) by fixing the
values of the original function at all the vertices of all hypercubes forming the
tiling, applying the interpolation method inside these hypercubes and finally by
using a 1−Lipschitz retraction outside the big hypercube.

The paper [11], forming Chapter 2, is a continuation of the work [14]. In
Theorem 2.3.1 we show that if X is a product of countably many closed (possibly
unbounded or degenerate) intervals with endpoints in Z∪{−∞,∞}, considered as
a metric subspace of `1 equipped with the inherited metric, then the Lipschitz-free
space F(X) has a Schauder basis. This implies in particular that the Lipschitz-free
spaces F(`1) and F(`n1 ) have a Schauder basis, strengthening thus the result on
the existence of FDD in these spaces formulated in 1.3.1. In view of this positive
example, it might be interesting to ask if an analogue of the aforementioned result
on equivalence of BAP for a Banach space and BAP for its Lipschitz-free space [7]
can be obtained for Schauder basis. That is, in general, is it true that a Banach
space X has a Schauder basis if and only if the Lipschitz-free space F(X) has a
Schauder basis?

The main idea of the proof of Theorem 2.3.1 is similar to that followed in
1.3.2 (see above). However, there, when we pass from a projection Pk to Pk+1, we
increase the dimension of the big hypercube by one, double the length of its edge,
refine the tiling by splitting each of its hypercubes, and define Pk+1(f) so that it
coincides with f at all the vertices in the tiling. This way the growth of the ranks
of the differences of two consecutive projections is not controlled and we only
arrive at FDD. In order to achieve a basis, one must obviously proceed slower.
We do so in [11]. Here, when we go from step k to step k + 1, we always include
only at most one more vertex given by the tiling to the set of points at which
Pk+1(f) agrees with the original function f . Then we need to define Pk+1(f) at
the remaining vertices in the tiling in a way which does not ruin the Lipschitz
constant. For that purpose we either use a 1-Lipschitz retraction to assign a value
to Pk+1(f) at a treated vertex, or we inductively compute the value as an average
of the values at the neighbouring vertices in a careful order.

The proof of Theorem 2.3.1 is rather technical and special to the metric of `1,
and does not seem to generalise in its present form to any infinite dimensional
Banach space non-isomorphic to `1.

We conclude the chapter by raising an open problem.
Preprint [21], in the thesis introduced as Chapter 3, is concerned with the

rigidity of the spaces `∞ and `n∞ with respect to uniformly differentiable mappings.
Recently, it has been shown that if Y is a Banach space and if f is a

non-compact uniformly differentiable mapping from the unit ball of c0 into Y ,
then Y ∗∗ contains a copy of `∞ and, when Y is a dual space, then even Y
contains a copy of c0 ([4], [10, Theorem 6.45]). This work addresses, in special
case, the question of generalization of a classical Pe lczyński theorem for linear
operators to uniformly differentiable mappings. The linear result due to Pe lczyński
(see [20], [5, Theorem 4.51]) says that if T is a non-compact linear operator from
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c0 into a Banach space Y , then c0 contains a linear subspace X isomorphic to c0

such that T |X is an isomorphism. Hence, Y contains a copy of c0. The consid-
ered problem is whether the existence of a non-compact uniformly differentiable
mapping from the unit ball of c0 into a Banach space Y implies that Y contains a
copy of c0. The general case remains open.

In our study we are interested in an analogous question for the space `∞ and
show that it can be answered in positive. In the result by Deville and Hájek
[4], roughly speaking, the isomorphism taking `∞ into Y ∗∗ is the derivative of
the bidual extension of f at some point ot the unit ball of the bidual c∗∗0 . We
generalise this to uniformly differentiable mappings which are not necessarily
bidual extensions of uniformly differentiable mappings. Namely, Theorem 3.2.1
implies that if Y is a Banach space and f is a uniformly differentiable mapping
from the unit ball of `∞ into Y such that {f(ek), k ∈ N} is not relatively compact
in Y , then there exists a linear subspace Z of `∞ isometric to `∞ and a point x ∈ Z
such that the operator Df(x)|Z is an isomorphism. In particular, Y contains a
copy of `∞. This, in some way, transfers a well-known linear result by Rosenthal
(see [16, Proposition 2.f.4]) to non-linear setting. He proved that if Y is a Banach
space and T is a non-weakly compact linear operator from `∞ into Y , then `∞
contains a linear subspace X isomorphic to `∞ such that T |X is an isomorphism,
thus, Y contains a copy of `∞. Moreover, Theorem 3.2.1 generalises the classical
result on non-complementability of c0 in `∞ due to Phillips (see [5, Theorem 5.6])
since it implies that there does not exist any uniformly differentiable mapping
from `∞ into c0 which fixes the basis.

In Section 3.1 we also discuss why the same method cannot lead to a solution
of the problem in the case of c0.

Finally, we give attention to `n∞ spaces. Using ultrapowers, we obtain a
finite-dimensional result, Theorem 3.2.3, as a corollary of Theorem 3.2.1.
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1. Approximation properties and
Schauder decompositions in
Lipschitz-free spaces

joint work with G. Lancien

(Published in J. Funct. Anal. 264 (10) (2013) 2323–2334.)

1.1 Introduction

For (M1, d1) and (M2, d2) metric spaces and f : M1 →M2, we denote by Lip(f)
the Lipschitz constant of f given by

Lip(f) = sup

{
d2(f(x), f(y))

d1(x, y)
, x, y ∈M1, x 6= y

}
.

Consider (M,d) a pointed metric space, i.e. a metric space equipped with a dis-
tinguished element (origin) denoted 0. Then, the space Lip0(M) of all real-valued
Lipschitz functions f on M which satisfy f(0) = 0, endowed with the norm

‖f‖Lip0(M) = Lip(f)

is a Banach space. The Dirac map δ : M → Lip0(M)∗ defined by 〈g, δ(p)〉 = g(p)
for g ∈ Lip0(M) and p ∈M is an isometric embedding from M into Lip0(M)∗. The
closed linear span of {δ(p), p ∈M} is denoted F(M) and called the Lipschitz-free
space over M (or free space in short). It follows from the compactness of the
unit ball of Lip0(M) with respect to the topology of pointwise convergence, that
F(M) can be seen as the canonical predual of Lip0(M). Then the weak∗-topology
induced by F(M) on Lip0(M) coincides with the topology of pointwise convergence
on the bounded subsets of Lip0(M). Lipschitz-free spaces are a very useful tool
for abstractly linearizing Lipschitz maps. Indeed, if we identify through the Dirac
map a metric space M with a subset of F(M), then any Lipschitz map from the
metric space M to a metric space N extends to a continuous linear map from
F(M) to F(N) with the same Lipschitz constant (see [23] or Lemma 2.2 in [7]).
A comprehensive reference for the basic theory of the spaces of Lipschitz functions
and their preduals, which are called Arens-Eells spaces there, is the book [23] by
Weaver.

Despite the simplicity of their definition, very little is known about the linear
structure of Lipschitz-free spaces over separable metric spaces. It is easy to see
that F(R) is isometric to L1. However, adapting a theorem of Kislyakov [13], Naor
and Schechtman proved in [19] that F(R2) is not isomorphic to any subspace of
L1. Then the metric spaces whose Lipschitz-free space is isometric to a subspace
of L1 have been characterized by Godard in [6].

The aim of this paper is to study metric spaces M such that F(M) has the
bounded approximation property (BAP) or admits a finite-dimensional Schauder
decomposition (FDD). This kind of study was initiated in the fundamental paper
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by Godefroy and Kalton [7], where they proved that a Banach space X has the
λ-BAP if and only if F(X) has the λ-BAP. In particular, for any finite-dimensional
Banach space E, F(E) has the metric approximation property (MAP). Another
major result from [7] is that any separable Banach space has the so-called isometric
lifting property. Refining the techniques used in the proof of this result, Godefroy
and Ozawa have proved in their recent work [8] that any separable Banach space
failing the BAP contains a compact subset whose Lipschitz-free space also fails
the BAP. It is then natural, as it is suggested in [8], to try to describe the metric
spaces whose Lipschitz-free space has BAP. We address this question in Section
1.2. Our main result of this section (Corollary 1.2.2) is that for any doubling
metric space M , the Lipschitz-free space F(M) has the BAP.

Then we try to find Banach spaces such that the corresponding Lipschitz-free
spaces have stronger approximation properties. The first result in this direction is
due to Borel-Mathurin, who proved in [1] that F(RN ) admits a finite-dimensional
Schauder decomposition. The decomposition constant obtained in [1] depends on
the dimension N . In Section 1.3 we show that F(`N1 ) and F(`1) admit a monotone
finite-dimensional Schauder decomposition. For that purpose, we use a particular
technique for interpolating Lipschitz functions on hypercubes of RN .

1.2 BAP for Lipschitz-free spaces and K-gentle

partitions of unity

We first recall the definition of the bounded approximation property.
Let 1 ≤ λ <∞. A Banach space X has the λ-bounded approximation property

(λ-BAP) if, for every ε > 0 and every compact set K ⊂ X, there is a bounded
finite-rank linear operator T : X → X with ‖T‖ ≤ λ and such that ‖T (x)−x‖ ≤ ε
whenever x ∈ K. We say that X has the BAP if it has the λ−BAP for some
1 ≤ λ <∞.

Obviously, if there is a bounded sequence of finite-rank linear operators on a
Banach space X converging in the strong operator topology to the identity on X,
then X has the BAP. For further information on the approximation properties of
Banach spaces we refer the reader to [16] or [5].

We now detail a construction due to Lee and Naor [15] that we shall use. Let
(Y, d) be a metric space, X a closed subset of Y , (Ω,Σ, µ) a measure space and
K > 0. Following [15] we say that a function ψ : Ω× Y → [0,∞) is a K-gentle
partition of unity of Y with respect to X if it satisfies the following:
(i) For all x ∈ Y \X, the function ψx : ω 7→ ψ(ω, x) is in L1(µ) and ‖ψx‖L1(µ) = 1.
(ii) For all ω ∈ Ω and all x in X, ψ(ω, x) = 0.
(iii) There exists a Borel measurable function γ : Ω→ X such that for all x, y ∈ Y∫

Ω

|ψ(ω, x)− ψ(ω, y)|d(γ(ω), x) dµ(ω) ≤ Kd(x, y).

Then, for Y having a K-gentle partition of unity with respect to a separable
subset X and for f Lipschitz on X, Lee and Naor define E(f) by E(f)(x) = f(x)
if x ∈ X and

E(f)(x) =

∫
Ω

f(γ(ω))ψ(ω, x) dµ(ω) if x ∈ Y \X

7



and show that Lip(E(f)) ≤ 3K Lip(f) ([15] Lemma 2.1).
The proof of this lemma is quite elementary. However, let us emphasize that

building a K-gentle partition of unity is highly non-trivial. The approach of Lee
and Naor in [15] is to first construct random partitions of unity. Then, the key
idea, as we understand it, is that a single smooth or “gentle” partition of unity
can emerge by averaging a “good” random distribution of partitions of unity.

Our general result is then the following.

Theorem 1.2.1. Let (M,d) be a pointed separable metric space such that there
exists a constant K > 0 so that for any closed subset X of M , M admits a
K-gentle partition of unity with respect to X. Then F(M) has the 3K-BAP.

Proof. Our objective is to find a sequence of finite-rank linear operators on F(M)
with norms bounded by 3K and converging to the identity on F(M) in the strong
operator topology. To this end, we first construct a sequence of operators of
appropriate qualities on the dual space Lip0(M) so that they are adjoint operators
and then pass to F(M). To be more precise, we build a sequence (Sn)∞n=1 of
3K-bounded finite-rank linear operators on Lip0(M) that are pointwise continuous,
and therefore weak∗ to weak∗-continuous, on bounded subsets of Lip0(M) and
such that for all f ∈ Lip0(M), (Sn(f))∞n=1 converges pointwise to f . This will
imply that Sn = T ∗n , where Tn is a finite-rank operator on F(M) (see [5], Corollary
3.94 for instance) and such that (Tn)∞n=1 is converging to the identity for the weak
operator topology on F(M). Recall now that M is assumed to be a separable
metric space. So using the fact that the Dirac map δ is an isometry from M into
F(M) whose image has a dense linear span, we see that F(M) is also separable.
Then Mazur’s Lemma and a standard diagonal argument will yield the existence
of a bounded sequence of finite-rank operators converging to the identity for the
strong operator topology on F(M). Note that the operators obtained in this last
step are made of convex combinations of the Tn’s. This preserves our control on
their norms.

So, let (xn)∞n=1 be a dense sequence in M and 0 be the origin of M . Put
Xn = {0, x1, .., xn}. For f ∈ Lip0(M) we denote Rn(f) the restriction of f to
Xn. The operator Rn, defined from Lip0(M) to Lip0(Xn), is clearly of finite rank,
pointwise continuous and such that ‖Rn‖ ≤ 1.

Thanks to our assumption that M admits a K-gentle partition of unity with
respect to Xn, we can apply Lee and Naor’s construction to obtain an extension
operator En from Lip0(Xn) to Lip0(M). Note that it follows immediately from
the definition of En and Lebesgue’s dominated convergence theorem that En is
pointwise continuous on bounded subsets of Lip0(Xn).

Finally, we set Sn = EnRn. The sequence (Sn)∞n=1 is indeed a sequence of
finite-rank linear operators from Lip0(M) to Lip0(M) that are pointwise continuous
on bounded subsets of Lip0(M) and so that ‖Sn‖ ≤ 3K for all n ∈ N. To finish the
proof, we only need to show that for any f ∈ Lip0(M), the sequence (Sn(f))∞n=1

converges pointwise to f . So let us fix x ∈ M , f ∈ Lip0(M) and ε > 0. Let
n0 ∈ N such that d(x, xn0) ≤ ε. Then, for any n ≥ n0,

|f(x)− f(xn0)| ≤ ε‖f‖Lip0(M) and |Sn(f)(x)− f(xn0)| ≤ 3Kε‖f‖Lip0(M).

Therefore |Sn(f)(x)− f(x)| ≤ (1 + 3K)ε‖f‖Lip0(M). This concludes our proof.
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We recall that a metric space (M,d) is called doubling if there exists a constant
D(M) > 0 such that any open ball B(p,R) in M can be covered with at most
D(M) open balls of radius R

2
. We can now state the main application of Theorem

1.2.1.

Corollary 1.2.2. Let (M,d) be a pointed doubling metric space. Then the
Lipschitz-free space F(M) has the C(1+log(D(M)))-BAP, where C is a universal
constant.

Proof. We combine some of the important results from [15]. Namely, it follows from
Lemma 3.8, Corollary 3.12 and Theorem 4.1 in [15] that if M is a doubling metric
space and X is a closed subset of M , then M admits a K(1 + log(D(M)))-gentle
partition of unity with respect to X (where K is a universal constant). The
conclusion is now a direct application of Theorem 1.2.1.

Remarks. 1) Let us mention that an extension operator with these properties
could also be obtained from a later construction due to A. Brudnyi and Y. Brudnyi
in [2], where they use the notion of metric space of homogeneous type. A Borel
measure µ on a metric space (M,d) is called doubling if the measure of every open
ball is strictly positive and finite and if there is a constant δ(µ) > 0 such that
µ(B(p, 2R)) ≤ δ(µ)µ(B(p,R)) for all p ∈M and R > 0. A metric space endowed
with a doubling measure is said to be of homogeneous type. Clearly, a space of
homogeneous type is doubling. Conversely, Luukkainen and Saksman proved in
[17] that every complete doubling metric space (M,d) carries a doubling measure
µ such that δ(µ) ≤ c(D(M)), where c(D(M)) is a constant depending only on
D(M). More on doubling metric spaces and spaces of homogeneous type can be
found in [22] and [12].

2) We refer the reader to Lee and Naor’s paper [15] for other examples of
metric spaces admitting K-gentle partitions of unity such as negatively curved
manifolds, special graphs or surfaces of bounded genus.

Let us conclude this section with a few words on the Lipschitz-free spaces
over subsets of RN . It is easily checked that for N ∈ N, the space RN with the
Euclidean norm is a doubling metric space with doubling constant bounded above
by KN , where K is a universal constant. This property is inherited by metric
subspaces. So, it follows from Corollary 1.2.2 that for any closed subset F of the
Euclidean space RN , F(F ) has the CN -BAP for some universal constant C. It
turns out that a better result can be derived from [15] and [7].

Proposition 1.2.3. Let N ∈ N and F be a closed subset of RN equipped
with the Euclidean norm. Then the Lipschitz-free space F(F ) is isometric to
a C
√
N-complemented subspace of the Lipschitz-free space F(RN). In particular,

F(F ) has the C
√
N-BAP.

Proof. We may assume, after translating F , that 0 ∈ F . The restriction to
F defined from Lip0(RN) to Lip0(F ) is the adjoint operator of an isometry J
from F(F ) into F(RN). We can now apply a more precise result on extensions
of Lipschitz functions coming from [15]. Indeed, it follows from Lemma 3.16
and Theorem 4.1 in [15] that RN equipped with the Euclidean norm admits a
K
√
N -gentle partition of unity with respect to F , where K is a universal constant.

So, there exists a linear operator E : Lip0(F ) → Lip0(RN) which is weak∗ to
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weak∗-continuous on bounded subsets of Lip0(F ) and such that E(f)|F = f for
every f ∈ Lip0(F ) and ‖E‖ ≤ 3K

√
N . Due to the weak∗-continuity of E, there

exists a bounded linear operator P : F(RN )→ F(F ) satisfying P ∗ = E. Moreover,
thanks to the fact that E is an extension operator and by the Hahn-Banach
theorem, JP (µ) = µ for every µ ∈ J(F(F )). Hence JP is a linear projection
from F(RN) onto J(F(F )) such that ‖JP‖ ≤ 3K

√
N . This shows that F(F ) is

isometric to a C
√
N -complemented subspace of F(RN), where C is a universal

constant. On the other hand, it is proved in [7] that F(RN) has the MAP.
Therefore F(F ) has the C

√
N -BAP.

1.3 FDD of the Lipschitz-free space F(`1)

We recall the notion of finite-dimensional Schauder decomposition following the
monograph of Lindenstrauss and Tzafriri [16].

Let X be a Banach space. A sequence (Xn)∞n=1 of finite-dimensional subspaces
of X is called a finite-dimensional Schauder decomposition of X (FDD) if every
x ∈ X has a unique representation of the form x =

∑∞
n=1 xn with xn ∈ Xn for

every n ∈ N.
If (Sn)∞n=0, where S0 ≡ 0, is a sequence of projections on X satisfying

SnSm = Smin{m,n} such that 0 < dim(Sn − Sn−1)(X) < ∞ and converging in
the strong operator topology to the identity on X, then

(
(Sn − Sn−1)(X)

)∞
n=1

is an FDD of X, for which the Sn’s are the partial sum projections. Then the
sequence (Sn)∞n=1 is bounded and K = supn∈N ‖Sn‖ is called the decomposition
constant. If K = 1, then the decomposition is called monotone.

For N ∈ N, the space RN equipped with the norm ‖x‖1 =
∑N

i=1 |xi| is
denoted `N1 . The space

{
x = (xi)

∞
i=1 ∈ RN,

∑∞
i=1 |xi| <∞

}
equipped with the

norm ‖x‖1 =
∑∞

i=1 |xi| is denoted `1. We write 0N for the origin in `N1 and 0 for
the origin in `1. Our result is the following.

Theorem 1.3.1. The Lipschitz-free spaces F(`1) and F(`N1 ) admit monotone
finite-dimensional Schauder decompositions.

Let X be `1 or `N1 . It follows from the classical theory that we only need to
build a sequence of contractive finite-rank linear projections (Sn)∞n=1 on F(X) such

that SnSm = Smin{m,n} for all m,n ∈ N and that
∞⋃
n=1

Sn(F(X)) = F(X). As in the

proof of Theorem 1.2.1 we shall work on the dual space and construct a sequence of
contractive finite-rank linear projections on Lip0(X), that are pointwise continuous
on bounded subsets of Lip0(X), possess the commuting property and converge
to the identity on Lip0(X) in the weak∗-operator topology. The general idea will
be to take an increasing sequence of closed bounded subsets of X and associate
with each of these sets a finite-rank linear operator on Lip0(X) so that the image
of a function under this operator has values close to the values of the original
function at the points of the considered closed set. However, unlike the situation
in our previous section, we have the linear structure of the metric space X at our
disposal. This will enable us to work accurately enough to obtain a monotone
FDD for F(X).
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1.3.1 Notation and interpolation lemma

Put N0 = N ∪ {0} and fix N ∈ N. We denote by C (y,R), where y ∈ RN and
0 < R <∞, the hypercube

C(y,R) =

{
x ∈ RN , sup1≤i≤N |xi − yi| ≤

R

2

}
.

For y ∈ RN , 0 < R < ∞ and δ ∈ {−1, 1}N , the symbol Aδ(y,R) stands for the
vertex y + R

2
δ of the hypercube C (y,R).

The following interpolation on C(y,R) of a function defined on its vertices will
be the crucial tool for our proof. Let y ∈ RN , 0 < R <∞, x ∈ C (y,R) and let
f : dom(f) → R satisfy

{
Aδ (y,R) , δ ∈ {−1, 1}N

}
⊂ dom(f) ⊂ RN . We define

inductively:

Λγ (f, C (y,R)) (x) =
x1 − y1 + R

2

R
f
(
A(1,γ1,...,γN−1) (y,R)

)
+

(
1−

x1 − y1 + R
2

R

)
f
(
A(−1,γ1,...,γN−1) (y,R)

)
for each γ = (γ1, . . . , γN−1) ∈ {−1, 1}N−1,

Λγ (f, C (y,R)) (x) =
xj − yj + R

2

R
Λ(1,γ1,...,γN−j) (f, C (y,R)) (x)

+

(
1−

xj − yj + R
2

R

)
Λ(−1,γ1,...,γN−j) (f, C (y,R)) (x)

for each j ∈ {2, . . . , N − 1} and γ = (γ1, . . . , γN−j) ∈ {−1, 1}N−j, and

Λ (f, C (y,R)) (x) =
xN − yN + R

2

R
Λ(1) (f, C (y,R)) (x)

+

(
1−

xN − yN + R
2

R

)
Λ(−1) (f, C (y,R)) (x). (1.1)

Let us use the following convention: {−1, 1}0 := {∅} and Λ∅ = Λ.
Let I1, . . . , IN be closed intervals in R. We shall say that a function Φ from

I1× · · · × IN into R has the property (AF) on I1× · · · × IN ⊂ RN if its restriction
to any segment lying in I1 × · · · × IN and parallel to one of the coordinate axes is
affine. A function having the property (AF) on I1×· · ·×IN is uniquely determined
by its values at the vertices of I1 × · · · × IN . Observe that Λ (f, C (y,R)) has the
property (AF) on C(y,R) and coincides with the function f at the vertices of
C (y,R).

We now state and prove our basic interpolation lemma.

Lemma 1.3.2. Let y ∈ RN , 0 < R < ∞ and let f : dom(f) → R be a function
satisfying

{
Aδ (y,R) , δ ∈ {−1, 1}N

}
⊂ dom(f) ⊂ RN . Consider RN equipped

with the `1-norm. Then

Lip (Λ (f, C (y,R))) = Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.
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Proof. It follows clearly from its definition that Λ (f, C (y,R)) is differentiable in
the interior of C (y,R). We shall prove that for any 1 ≤ i ≤ N and any x in the
interior of C (y,R)∣∣∣∣∂Λ (f, C (y,R))

∂xi
(x)

∣∣∣∣ ≤ Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

Since RN is equipped with ‖ ‖1, the conclusion of our lemma will then follow
directly from the mean value theorem.

So let x be an interior point of C (y,R), that is x so that yi− R
2
< xi < yi + R

2

for all 1 ≤ i ≤ N . Consider first γ, γ̃ ∈ {−1, 1}N−1 such that there exists a unique
k ∈ {1, . . . , N − 1} satisfying γk 6= γ̃k. Then∣∣Λγ (f, C (y,R)) (x)− Λγ̃ (f, C (y,R)) (x)

∣∣
=

∣∣∣∣∣
(

1−
x1 − y1 + R

2

R

)(
f
(
A(−1,γ1,...,γN−1) (y,R)

)
− f

(
A(−1,γ̃1,...,γ̃N−1) (y,R)

))
+
x1 − y1 + R

2

R

(
f
(
A(1,γ1,...,γN−1) (y,R)

)
− f

(
A(1,γ̃1,...,γ̃N−1) (y,R)

)) ∣∣∣∣∣
≤ R Lip

(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

Further, one shows by induction on j ∈ {1, . . . , N − 1} that for every couple
γ, γ̃ ∈ {−1, 1}N−j such that there exists a unique k ∈ {1, . . . , N − j} satisfying
γk 6= γ̃k we have∣∣Λγ (f, C (y,R)) (x)− Λγ̃ (f, C (y,R)) (x)

∣∣
=

∣∣∣∣∣
(

1−
xj − yj + R

2

R

)(
Λ(−1,γ1,...,γN−j) (f, C (y,R)) (x)

− Λ(−1,γ̃1,...,γ̃N−j) (f, C (y,R)) (x)
)

+
xj − yj + R

2

R

(
Λ(1,γ1,...,γN−j) (f, C (y,R)) (x)

− Λ(1,γ̃1,...,γ̃N−j) (f, C (y,R)) (x)
)∣∣∣∣∣

≤ R Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
. (1.2)

Now, for γ ∈ {−1, 1}N−1 and i ∈ {1, . . . , N},

∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ =



∣∣∣∣f(A(1,γ1,...,γN−1)
(y,R))

R

−
f(A(−1,γ1,...,γN−1)

(y,R))
R

∣∣∣∣ if i = 1,

0 if i > 1.

Therefore ∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ ≤ Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.
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Further, for j ∈ {2, . . . , N}, γ ∈ {−1, 1}N−j and i ∈ {1, . . . , N},

∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ =



∣∣∣∣R−(xj−yj+R
2 )

R

∂Λ(−1,γ1,...,γN−j)(f, C(y,R))

∂xi
(x)

+
xj−yj+R

2

R

∂Λ(1,γ1,...,γN−j)(f, C(y,R))

∂xi
(x)

∣∣∣∣ if i < j,∣∣∣∣Λ(1,γ1,...,γN−j)(f, C(y,R))(x)

R

−
Λ(−1,γ1,...,γN−j)(f, C(y,R))(x)

R

∣∣∣∣ if i = j,

0 if i > j.

Consequently, using (1.2) and an induction on j, one gets that for all j ∈ {1, . . . , N},
i ∈ {1, . . . , N} and γ ∈ {−1, 1}N−j,∣∣∣∣∂Λγ (f, C (y,R))

∂xi
(x)

∣∣∣∣ ≤ Lip
(
f |{Aδ(y,R), δ∈{−1,1}N}

)
.

This concludes the proof.

We now finish setting our notation. Provided that ε = (ε1, . . . , εN ) ∈ {−1, 1}N ,
y ∈ RN , h = (h1, . . . , hN) ∈ NN

0 and k ∈ N0, we denote

xε,yh,k = y + 2−k−1ε+ 2−k(ε1h1, . . . , εNhN).

Next, if 0 < R < ∞ and t ∈ R, we define πR(t) to be the nearest point to t in
[−R

2
, R

2
]. Then we define ΠN

R (x) = (πR(x1), . . . , πR(xN )) for all x ∈ RN . It is easily
checked that ΠN

R is a retraction from `N1 onto C
(
0N, R

)
and that Lip(ΠN

R ) = 1.
In fact, ΠN

R is the nearest point mapping to C
(
0N, R

)
and is 1-Lipschitz in both

‖ ‖1 and ‖ ‖2 on RN .

Finally, we define ρN to be the canonical projection from `1 onto `N1 and τN to
be the canonical injection from `N1 into `1. Namely ρN(x) = (x1, . . . , xN) for any
x = (xi)

∞
i=1 ∈ `1 and τN(x) = (x1, . . . , xN , 0, . . . ) for every x = (x1, . . . , xN) ∈ `N1 .

1.3.2 Proof of Theorem 1.3.1

We detail the argument for F(`1). As we have announced in the note below
the formulation of Theorem 1.3.1, we perform first a construction of projections
having the desired qualities on Lip0(`1).

So, for f ∈ Lip0(`1), n ∈ N and x ∈ `1 we define

Qn(f)(x) = Pn(f ◦ τn)(ρn(x)),

with

Pn(g)(u) = Λ
(
g, C

(
xε,0

n

h,n−1, 2
1−n
))

(Πn
2n(u)), for g ∈ Lip0(`n1 ) and u ∈ Rn,

where ε ∈ {−1, 1}n and h ∈ {0, . . . , 22n−2 − 1}n are chosen so that

Πn
2n(u) ∈ C

(
xε,0

n

h,n−1, 2
1−n
)
.
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Note that the symbols xε,0
n

h,n−1, C
(
xε,0

n

h,n−1, 2
1−n
)

and Λ
(
g, C

(
xε,0

n

h,n−1, 2
1−n
))

in the above construction are meant in Rn, or acting on Rn. In the sequel, the
information on the dimension considered for hypercubes or for points xε,yh,k shall be
carried by the centre of a hypercube or by y respectively, which most of the time

will be 0n. Finally, we denote Vn the set of all vertices of all cubes C
(
xε,0

n

h,n−1, 2
1−n
)

for ε ∈ {−1, 1}n and h ∈ {0, . . . , 22n−2 − 1}n.
Before we proceed with the proof, let us describe the operator Qn. The

hypercube C(0n, 2n) of Rn is split into small hypercubes of edge length equal to
21−n. If x belongs to one of the small hypercubes, then Qn(f)(x) is the value
obtained by performing the interpolation Λ for the restriction of f to the vertices
of this small hypercube. If x does not belong to C(0n, 2n), then Qn(f)(x) is
defined to be Qn(f)(rn(x)), where rn = Πn

2n ◦ ρn is the natural retraction from
`1 onto C(0n, 2n). In rough words, let us say that as we go from step n to step
n+ 1, we perform the three following operations: we add one dimension to our
hypercubes, we double the edge length of the large hypercube and divide by two
the edge length of the small hypercubes.

We now make a simple observation.

Lemma 1.3.3. Let m > n in N. Assume that g ∈ Lip0(`
n
1 ). Then the func-

tion Pn(g) has the property (AF) on each hypercube C
(
xε,0

n

h,m−1, 2
1−m
)

where

ε ∈ {−1, 1}n and h ∈ Nn
0 (note here that these hypercubes are considered in Rn).

Proof. The assertion is clear if the hypercube C
(
xε,0

n

h,m−1, 2
1−m
)

lies inside the

hypercube C (0n, 2n). Assume now that it is not the case. First, it is easily checked

that Πn
2n has the property (AF) on C

(
xε,0

n

h,m−1, 2
1−m
)

. Besides, the image by Πn
2n

of a segment in C
(
xε,0

n

h,m−1, 2
1−m
)

that is parallel to a coordinate axis is either a

point or a segment parallel to a coordinate axis. Finally, Πn
2n

(
C
(
xε,0

n

h,m−1, 2
1−m
))

is included in a face of one of the hypercubes in the tilling of C (0n, 2n). On this
face Pn(g) has the property (AF). The conclusion follows.

Let us proceed with the proof of Theorem 1.3.1. Fix n ∈ N. First, it is clear
that

Qn(f)(0) = f(0) = 0.

Then, using Lemma 1.3.2 and the fact that 1 = Lip(τn) = Lip(ρn) = Lip(Πn
2n), we

get that for all x, y ∈ `1

|Qn(f)(x)−Qn(f)(y)| ≤ ‖f ◦ τn‖Lip0(`1) ‖Πn
2n(ρn(x))− Πn

2n(ρn(y))‖1

≤ ‖f‖Lip0(`1) ‖x− y‖1 .

The map f 7→ Λ (f, C (y,R)) is clearly linear. Then, the linearity of Qn follows
easily. Moreover, Qn(f) is uniquely determined by the values of f at the elements
of the finite set Vn. Hence Qn : Lip0(`1)→ Lip0(`1) is a well defined finite-rank
linear operator with ‖Qn‖ ≤ 1.

Consider now m,n ∈ N so that m ≤ n. Then Qn(f) ◦ τm = f ◦ τm on Vm.
Indeed, for A = (A1, . . . , Am) ∈ Vm, we have that ρn(τm(A)) ∈ Vn. So

Qn(f)(τm(A)) = f(τn(A1, . . . , Am, 0, . . . , 0︸ ︷︷ ︸
n−m

)) = f(τm(A)).
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Thus Qm(Qn(f)) = Qm(f) on `1 by definition.
Suppose now m > n and assume that j ∈ {1, . . . ,m}, λ ∈ [0, 1] and that

x, x̃ ∈ C
(
xε,0

m

h,m−1, 2
1−m
)

, where ε ∈ {−1, 1}m and h ∈ {0, . . . , 22m−2 − 1}m, are

such that xi = x̃i for i 6= j. Then

Qn(f)(τm(λx+ (1− λ)x̃)) = Pn(f ◦ τn)(ρn(τm(λx+ (1− λ)x̃)))

= Pn(f ◦ τn)(λρn(τm(x)) + (1− λ)ρn(τm(x̃)))

= λPn(f ◦ τn)(ρn(τm(x)))

+ (1− λ)Pn(f ◦ τn)(ρn(τm(x̃)))

= λQn(f)(τm(x)) + (1− λ)Qn(f)(τm(x̃)).

In the above we have used that ρn and τm are affine, that

ρn

(
τm

(
C
(
xε,0

m

h,m−1, 2
1−m
)))

= C
(
x

(ε1,...,εn),0n

(h1,...,hn),m−1, 2
1−m
)

and the fact that Pn(f ◦ τn) has the property (AF) on C
(
x

(ε1,...,εn),0n

(h1,...,hn),m−1, 2
1−m
)

(see Lemma 1.3.3). So, Qn(f) ◦ τm has the property (AF) on each hypercube

C
(
xε,0

m

h,m−1, 2
1−m
)

, where ε ∈ {−1, 1}m and h ∈ {0, . . . , 22m−2 − 1}m. It follows

by the uniqueness of the function admitting property (AF) on a hypercube

C
(
xε,0

m

h,m−1, 2
1−m
)

and coinciding with Qn(f) ◦ τm at the vertices of this hypercube

that for all f ∈ Lip0(`1) and x ∈ `1

Pm(Qn(f) ◦ τm)(ρm(x)) = Qn(f) (τm (Πm
2m (ρm(x)))) .

Therefore, we obtain that for all x ∈ `1 and f ∈ Lip0(`1)

Qm(Qn(f))(x) = Pm(Qn(f) ◦ τm)(ρm(x))

= Qn(f) (τm (Πm
2m (ρm(x))))

= Pn(f ◦ τn) (ρn (τm (Πm
2m (ρm(x)))))

= Pn(f ◦ τn) (π2m(x1), . . . , π2m(xn))

= Pn(f ◦ τn) (Πn
2n (π2m(x1), . . . , π2m(xn))) .

We now use the fact that π2nπ2m = π2n to get

Qm(Qn(f))(x) = Pn(f ◦ τn) (π2n(x1), . . . , π2n(xn))

= Pn(f ◦ τn) (Πn
2n (ρn(x))) = Qn(f)(x).

Hence the formula QmQn = Qmin{m,n} is also satisfied for m > n.
By construction, for each n in N, Qn is pointwise continuous and therefore

weak∗ to weak∗-continuous on bounded subsets of Lip0(`1).
Furthermore,

(
Qn(f)

)∞
n=1

converges pointwise to f for every f ∈ Lip0(`1).
Indeed, for given f ∈ Lip0(`1), x ∈ `1 and η > 0, we can find n0 ∈ N such that for
all n ≥ n0

‖f‖Lip0(`1)

∞∑
i=n+1

|xi| <
η

4
, ρn(x) ∈ C(0n, 2n) and n21−n‖f‖Lip0(`1) <

η

4
.
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Thus, for any n ≥ n0, we get

|Qn(f)(x)− f(x)| ≤ |Qn(f)(x)−Qn(f)(τn(ρn(x)))|
+ |Qn(f)(τn(ρn(x)))− f(τn(A))|
+ |f(τn(A))− f(τn(ρn(x)))|+ |f(τn(ρn(x)))− f(x)|,

where A ∈ Rn is a vertex of a hypercube C
(
xε,0

n

h,n−1, 2
1−n
)

, with ε ∈ {−1, 1}n and

h ∈ {0, . . . , 22n−2 − 1}n, containing ρn(x).
Since f and Qn(f) are ‖f‖Lip0(`1)-Lipschitz and ‖τn(A)− τn(ρn(x))‖1 ≤ n21−n,

we deduce that

|Qn(f)(x)− f(x)| ≤ 2‖f‖Lip0(`1) (‖τn(ρn(x))− x‖1 + ‖τn(A)− τn(ρn(x))‖1)

≤ 2‖f‖Lip0(`1)

(
∞∑

i=n+1

|xi|+ n21−n

)
< η.

Now, it follows from the weak∗-continuity of Qn on bounded subsets of Lip0(`1)
that Qn = S∗n, where (Sn)∞n=1 is a sequence of finite-rank bounded linear projections
on F(`1). The sequence (Sn)∞n=1 satisfies that ‖Sn‖ ≤ 1 for each n ∈ N and that
SmSn = Smin{m,n} for every m,n ∈ N.

The convergence of (Qn)∞n=1 to the identity with respect to the weak∗-operator
topology then implies that (Sn(µ))∞n=1 converges weakly to µ for every µ ∈ F(`1).

Therefore
∞⋃
n=1

Sn(F(`1)) = F(`1). In view of these properties, the sequence

(Sn)∞n=1 determines a monotone FDD of F(`1). The proof of Theorem 1.3.1 is now
complete.

Remark. The proof for `N1 is clearly simpler and the sequence (Qn)∞n=1 can be
directly given by

Qn(f)(x) = Λ
(
f, C

(
xε,0

N

h,n−1, 2
1−n
)) (

ΠN
2n(x)

)
,

where ε ∈ {−1, 1}N and h ∈ {0, . . . , 22n−2 − 1}N are such that

ΠN
2n(x) ∈ C

(
xε,0

N

h,n−1, 2
1−n
)
.
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2. On Schauder bases in
Lipschitz-free spaces

joint work with P. Hájek

(Published in J. Math. Anal. Appl. 416 (2) (2014) 629–646.)

2.1 Introduction

Let (M1, d1) and (M2, d2) be metric spaces and f : M1 → M2 be a Lipschitz
mapping. By Lip(f) we denote the Lipschitz constant of f defined as

Lip(f) = sup

{
d2(f(x), f(y))

d1(x, y)
, x, y ∈M1, x 6= y

}
.

For a given metric space (M,d) and a fixed point in M , for convenience denoted
by 0, we will consider the space Lip0(M) of all real-valued Lipschitz functions f
on M which satisfy f(0) = 0, endowed with the norm

‖f‖Lip0(M) = Lip(f).

This is easily seen to be a Banach space. The Dirac map δ : M → Lip0(M)∗

defined by 〈g, δ(p)〉 = g(p) for g ∈ Lip0(M) and p ∈M is an isometric embedding
from M into Lip0(M)∗. The closed linear span of {δ(p), p ∈M} is denoted F(M)
and called the Lipschitz-free space over M (or free space in short). It follows
from the compactness of the unit ball of Lip0(M) with respect to the topology of
pointwise convergence, that F(M) can be seen as the canonical predual of Lip0(M).
The weak∗-topology induced by F(M) on Lip0(M) coincides with the topology of
pointwise convergence on the bounded subsets of Lip0(M). Lipschitz-free spaces
serve for linearizing Lipschitz maps. Indeed, identifying the metric space M with
a subset of F(M) (through the Dirac map), any Lipschitz map from the metric
space M to a metric space N extends to a continuous linear map from F(M)
to F(N) with the same Lipschitz constant (see [23] or Lemma 2.2 in [7]). We
refer the reader to the book [23] by Weaver for the basic theory of the spaces of
Lipschitz functions and their preduals, which are called Arens-Eells spaces there.

The linear structure of Lipschitz-free spaces over metric spaces has recently
become a rather active field of study. It is easy to see that F(R) is isometric to
L1. However, adapting a theorem of Kislyakov [13], Naor and Schechtman proved
a surprising result in [19] that F(R2) is not isomorphic to any subspace of L1.
Then the metric spaces whose Lipschitz-free space is isometric to a subspace of L1

have been characterized by Godard in [6].
Recently, a number of interesting results were obtained in the direction of the

(bounded) approximation property of F(M) for various metric and in particular
Banach spaces. In the seminal paper of Godefroy and Kalton [7] it is proved that
a Banach space X has the λ-BAP if and only if F(X) has the same property. It is
known thanks to the fundamental work of Enflo that there are separable Banach
spaces which fail to have the AP. Combining this fact with some analytic work,
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Godefroy and Ozawa [8] construct metric compact spaces M such that F(M) has
no AP. On the positive side, one of the results in [1] shows that F(Rn) have an
FDD, strengthening the results in [7]. Finally, in [14] the BAP was shown for all
doubling metric spaces M , so in particular for all subsets of Rn.

Our present paper focuses on finding Schauder bases for F(M). Our main
result, Theorem 2.3.1, implies in particular that the Lipschitz-free spaces F(`1)
and F(Rn), have a Schauder basis.

Our proof is rather technical and special to the metric of `1, and does not
seem to generalize in its present form to any infinite dimensional Banach space
non-isomorphic to `1.

2.2 Preliminaries

Notation 2.2.1. In the sequel, `1 denotes the vector space{
x = (xi)

∞
i=1 ∈ RN,

∞∑
i=1

|xi| <∞

}
equipped with the norm ‖(xi)∞i=1‖ =

∑∞
i=1 |xi|, and `d1, where d ∈ N, denotes the

vector space Rd endowed with the norm ‖(xi)di=1‖ =
∑d

i=1 |xi|. The symbols 0,
‖·‖ and ei stand for the origin, the norm and the unit vector (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . ),

respectively, in the space `1 or `d1 for some d ∈ N.
By a degenerate interval [a, a] ⊂ R we mean the singleton {a} ⊂ R.
A hypercube H in `d1, where d ∈ N, is a product of d bounded closed intervals

in R such that there exists t ∈ (0,∞) so that each interval is either degenerate or
has length t. The set of all vertices of H in `d1 is denoted UH .

If d ∈ N and if F ⊂ `d1 is a product of d closed bounded intervals in R, i.e.
F = Πd

i=1[pi, qi], where pi, qi ∈ R for all i ∈ {1, . . . , d}, then we define πF to be
the nearest point mapping from `d1 to F . Note that πF is single-valued and that

πF (x) =
(
π[pi,qi](xi)

)d
i=1
∈ F for x = (xi)

d
i=1 ∈ `d1. Moreover, Lip(πF ) = 1.

Consider d ∈ N and the lexicographic ordering ≺ on `d1, which means that for
vectors x = (xi)

d
i=1 ∈ `d1 and y = (yi)

d
i=1 ∈ `d1, x ≺ y whenever either x = y or

xmin{i∈{1,...,d}, xi 6=yi} < ymin{i∈{1,...,d}, xi 6=yi}. Then ≺ is a linear ordering on `d1 and we
denote by ≺max (Z) (resp. by ≺min (Z)) the maximal (resp. the minimal) element
of a finite set Z ⊂ `d1 with respect to ≺.

We now recall the key ingredient of the proof of Theorem 3.1 in [14], an
interpolation formula for functions defined on the vertices of a hypercube. Let
d ∈ N and let H be a hypercube in `d1. A function g : H → R is said to have the
property (AF) on H if its restriction to any segment lying in H and parallel to
one of the coordinate axes is affine. For a function f : dom(f) → R such that
UH ⊂ dom(f) ⊂ `d1, we define Λ (f, H) : H → R to be the unique function which
has the property (AF) on H and coincides with the function f on UH . Note that
the uniqueness of Λ (f, H) is obvious from the definition. For the existence we
refer to the explicit formula given in Section 3.1 of [14].

An important feature of the function Λ (f, H) is observed in Lemma 3.2 in
[14], which reads

Lip (Λ (f, H)) = Lip (f |UH ) .
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Lemma 2.2.2 is rather technical but will be crucial in the proof of Theorem
2.3.1. It shows that with our construction of projections on the space of Lipschitz
functions we can keep control over the Lipschitz constants of the images of
functions. We sketch the situation by a few words before a precise formulation.
Consider a hypercube in `d1 for some d ∈ N split into hypercubes with half edge
length and a function defined on a subset V of the set M of all vertices of the
smaller hypercubes, where V satisfies that it contains all vertices of the big
hypercube and that if a point from M lying on a j dimensional face of the big
hypercube for some j ∈ {1, . . . , d} belongs to V , then also all points from M lying
on the faces with dimension less than j belong to V . We extend the function
to whole M inductively by taking the convex combinations of the values on the
neighbouring predecessors, by which we mean the neighbouring points from M
lying on a face of the big hypercube with one less dimension. And the lemma
says that the extension preserves the Lipschitz constant up to multiplication by a
universal numerical constant.

Lemma 2.2.2. Let d ∈ N, z ∈ `d1 and t ∈ (0,∞). Denote

G0 =
{
z + tδ, δ ∈ {−1, 1}d

}
=
{
z + tδ, δ ∈ {−1, 0, 1}d, card ({i ∈ {1, . . . , d}, δi = 0}) = 0

}
,

G1 =
{
z + tδ, δ ∈ {−1, 0, 1}d, card ({i ∈ {1, . . . , d}, δi = 0}) = 1

}
,

...

Gd = {z} =
{
z + tδ, δ ∈ {−1, 0, 1}d, card ({i ∈ {1, . . . , d}, δi = 0}) = d

}
and, for x ∈ Gj for some j ∈ {1, . . . , d}, put

Ax =
{
x′ ∈ Gj−1, ‖x′ − x‖ = t

}
.

Further, let V ⊂
⋃d
i=0G

i satisfy that G0 ⊂ V and that if V ∩ Gj 6= ∅ for any

j ∈ {1, . . . , d}, then
⋃j−1
i=0 G

i ⊂ V . If f is a real-valued function on V and if Φ(f)

is the real-valued function on
⋃d
i=0G

i given by

Φ(f)(x) =

{
f(x) if x ∈ V,∑

x′∈Ax
Φ(f)(x′)
card(Ax)

if x ∈
⋃d
i=0G

i \ V,

then
Lip (Φ(f)) ≤ 3 Lip(f).

Note that Φ(f) is well-defined since it is constructed on Gi’s by induction on i
and since G0 ⊂ V .

Proof. For simplicity, we will perform the proof for a particular case when z = 0
and t = 1. In a general case, the proof can be carried out along the same lines.

Let us begin with estimating Lip(Φ(f)|Gk) for all k ∈ {0, . . . , d}. We proceed
by induction on the index k. As G0 ⊂ V , we have that Lip(Φ(f)|G0) ≤ Lip(f). For
the inductive step take k ∈ {1, . . . , d} and suppose that Lip(Φ(f)|Gk−1) ≤ 3

2
Lip(f).

The choice of the constant 3
2

on the right-hand side will become clear immediately.
Certainly, the estimate holds for G0. Let x, y ∈ Gk and x 6= y. Observe that then
‖x− y‖ ≥ 2. We distinguish three cases.
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The first one is when both x ∈ V and y ∈ V . Then

|Φ(f)(x)− Φ(f)(y)| = |f(x)− f(y)| ≤ Lip(f)‖x− y‖.

The second situation is when x ∈ V and y /∈ V . Then Gk−1 ⊂ V according to
the assumption on V . Therefore

|Φ(f)(x)− Φ(f)(y)| =

∣∣∣∣∣∣f(x)−
∑
y′∈Ay

f(y′)

card (Ay)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
y′∈Ay

f(x)− f(y′)

card (Ay)

∣∣∣∣∣∣
≤
∑
y′∈Ay

|f(x)− f(y′)|
card (Ay)

≤
∑
y′∈Ay

Lip(f)‖x− y′‖
card (Ay)

≤
∑
y′∈Ay

Lip(f) (‖x− y‖+ ‖y − y′‖)
card (Ay)

= Lip(f) (‖x− y‖+ 1)

≤ 3

2
Lip(f)‖x− y‖.

The last case is when x, y /∈ V . If Ix = {i ∈ {1, . . . , d}, xi = 0} and
Iy = {i ∈ {1, . . . , d}, yi = 0}, then card (Ix) = k = card (Iy) and by definition,

Φ(f)(x) =
∑
x′∈Ax

Φ(f)(x′)

card (Ax)
=
∑
i∈Ix

Φ(f)(x+ ei) + Φ(f)(x− ei)
2k

and

Φ(f)(y) =
∑
y′∈Ay

Φ(f)(y′)

card (Ay)
=
∑
i∈Iy

Φ(f)(y + ei) + Φ(f)(y − ei)
2k

.

Let m = card (Ix ∩ Iy) and let (ixj )
k−m
j=1 and (iyj )

k−m
j=1 be the increasing sequences

formed by the elements of the sets Ix \ Iy and Iy \ Ix respectively. Denote by Jx,y
the set consisting of those indices j ∈ {1, . . . , k −m} for which yixj = −xiyj (note

that |yixj | = 1 = |xiyj | because ixj /∈ Iy and iyj /∈ Ix). A straightforward computation

yields
‖x+ eixj − y − eiyj ‖ = ‖x− y‖ = ‖x− eixj − y + eiyj ‖

for j ∈ Jx,y, and

‖x+ eixj − y + eiyj ‖ = ‖x− y‖ = ‖x− eixj − y − eiyj ‖
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for j ∈ {1, . . . , k −m} \ Jx,y. So, we obtain

|Φ(f)(x)− Φ(f)(y)| =

∣∣∣∣∣ ∑
i∈Ix∩Iy

Φ(f)(x+ ei)− Φ(f)(y + ei)

2k

+
∑

i∈Ix∩Iy

Φ(f)(x− ei)− Φ(f)(y − ei)
2k

+
∑
j∈Jx,y

Φ(f)
(
x+ eixj

)
− Φ(f)

(
y + eiyj

)
2k

+
∑
j∈Jx,y

Φ(f)
(
x− eixj

)
− Φ(f)

(
y − eiyj

)
2k

+
∑

j∈{1,...,k−m}\Jx,y

Φ(f)
(
x+ eixj

)
− Φ(f)

(
y − eiyj

)
2k

+
∑

j∈{1,...,k−m}\Jx,y

Φ(f)
(
x− eixj

)
− Φ(f)

(
y + eiyj

)
2k

∣∣∣∣∣
≤

∑
i∈Ix∩Iy

Lip
(
Φ(f)|Gk−1

)
‖(x+ ei)− (y + ei)‖
2k

+
∑

i∈Ix∩Iy

Lip
(
Φ(f)|Gk−1

)
‖(x− ei)− (y − ei)‖
2k

+
∑
j∈Jx,y

Lip
(
Φ(f)|Gk−1

) ∥∥∥(x+ eixj

)
−
(
y + eiyj

)∥∥∥
2k

+
∑
j∈Jx,y

Lip
(
Φ(f)|Gk−1

) ∥∥∥(x− eixj)− (y − eiyj)∥∥∥
2k

+
∑

j∈{1,...,k−m}\Jx,y

Lip
(
Φ(f)|Gk−1

) ∥∥∥(x+ eixj

)
−
(
y − eiyj

)∥∥∥
2k

+
∑

j∈{1,...,k−m}\Jx,y

Lip
(
Φ(f)|Gk−1

) ∥∥∥(x− eixj)− (y + eiyj

)∥∥∥
2k

≤ Lip
(
Φ(f)|Gk−1

)
‖x− y‖ ≤ 3

2
Lip(f)‖x− y‖.

Hence

Lip (Φ(f)|Gk) ≤
3

2
Lip(f)

for every k ∈ {0, . . . , d}.
We now examine the behaviour of Φ(f) on two sets with consecutive indices

Gk−1 and Gk and afterwards we will derive an upper estimate for the Lipschitz
constant of Φ(f) on the whole union

⋃d
i=0G

i.
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So, let k ∈ {1, . . . , d}, x ∈ Gk−1 and y ∈ Gk. Such x and y satisfy that
‖x− y‖ ≥ 1. If y ∈ V , then, thanks to the properties of V , also x ∈ V and

|Φ(f)(x)− Φ(f)(y)| = |f(x)− f(y)| ≤ Lip(f)‖x− y‖.

If y /∈ V , then

Φ(f)(y) =
∑
y′∈Ay

Φ(f)(y′)

card(Ay)

and

|Φ(f)(x)− Φ(f)(y)| =

∣∣∣∣∣∣Φ(f)(x)−
∑
y′∈Ay

Φ(f)(y′)

card(Ay)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y′∈Ay

Φ(f)(x)− Φ(f)(y′)

card(Ay)

∣∣∣∣∣∣
≤
∑
y′∈Ay

|Φ(f)(x)− Φ(f)(y′)|
card(Ay)

≤
∑
y′∈Ay

Lip (Φ(f)|Gk−1) ‖x− y′‖
card(Ay)

≤
∑
y′∈Ay

Lip (Φ(f)|Gk−1) (‖x− y‖+ ‖y − y′‖)
card(Ay)

= Lip (Φ(f)|Gk−1) (‖x− y‖+ 1)

≤ 2 Lip (Φ(f)|Gk−1) ‖x− y‖
≤ 3 Lip(f)‖x− y‖.

We show next that the foregoing estimate implies that for k, l ∈ {0, . . . , d}
such that k < l and for x ∈ Gk, y ∈ Gl, we have that

|Φ(f)(x)− Φ(f)(y)| ≤ 3 Lip(f)‖x− y‖.

Indeed, for each j ∈ {k, . . . , l − 1} choose uj ∈ Gj so that

∥∥x− uk∥∥+
l−2∑
j=k

∥∥uj − uj+1
∥∥+

∥∥ul−1 − y
∥∥ = ‖x− y‖.

Such a criterion is met for instance by
(
uj =

(
uji
)d
i=1

)l−1

j=k
given as

ul−1
i =

{
xi if i = min {h ∈ {1, . . . , d}, yh = 0 6= xh} ,
yi otherwise

and

uji =

{
xi if i = min

{
h ∈ {1, . . . , d}, uj+1

h = 0 6= xh
}
,

uj+1
i otherwise

22



for j ∈ {k, . . . , l − 2}. Then

|Φ(f)(x)− Φ(f)(y)| ≤
∣∣Φ(f)(x)− Φ(f)

(
uk
)∣∣+

l−2∑
j=k

∣∣Φ(f)
(
uj
)
− Φ(f)

(
uj+1

)∣∣
+
∣∣Φ(f)

(
ul−1

)
− Φ(f)(y)

∣∣
≤ 3 Lip(f)

(∥∥x− uk∥∥+
l−2∑
j=k

∥∥uj − uj+1
∥∥+

∥∥ul−1 − y
∥∥)

= 3 Lip(f)‖x− y‖.

Hence,
Lip (Φ(f)) ≤ 3 Lip(f).

Hereby we finished the proof of the lemma.

2.3 Schauder basis of the Lipschitz-free space

over a product of closed intervals in `1.

In this section we state and prove a theorem on the existence of a Schauder basis
in Lipschitz-free spaces over products of closed intervals in R understood as metric
subspaces of `1. In order to do so, we first recall the definition of a Schauder basis.

Let X be an infinite-dimensional Banach space. A sequence (xn)∞n=1 ⊂ X is
called a Schauder basis of X if for every x ∈ X there is a unique sequence of
scalars (an)∞n=1 such that x =

∑∞
n=1 anxn.

From the classical theory it follows that if there is a sequence of uniformly
bounded linear projections (Tn)∞n=1 on a Banach space X which satisfies that

TmTn = Tmin{m,n} for all m,n ∈ N,
⋃∞
n=1 Tn(X) = X and that dim(T1(X)) < ∞

and dim((Tn+1 − Tn)(X)) = 1 for all n ∈ N, then X has a Schauder basis.
A comprehensive reference for the basic theory of Schauder bases and other

related notions are the monographs [16] and [5].
Our main result is the following.

Theorem 2.3.1. Let X be a product of countably many closed (possibly unbounded
or degenerate) intervals in R with endpoints in Z ∪ {−∞,∞}, considered as a
metric subspace of `1 equipped with the inherited metric. Then the Lipschitz-free
space F(X) has a Schauder basis.

In particular, the Lipschitz-free spaces F(`1) and F
(
`d1
)
, where d ∈ N, have a

Schauder basis.

Notation 2.3.2. By the assumption,

X = Π∞i=1Xi ⊂ `1,

where for all i ∈ N, Xi = [ai, bi] with ai, bi ∈ Z (possibly ai = bi), or Xi = (−∞, bi]
with bi ∈ Z, or Xi = [ai,∞) with ai ∈ Z. For d ∈ N we consider Πd

i=1Xi and its
subsets as metric subspaces of `d1. Denote O = (Oi)∞i=1 the unique nearest point to
the origin 0 of `1 in X and let it be assigned the role of the origin of X. Observe
that for every i ∈ N we have that Oi ∈ {0, ai, bi}, in particular O ∈ ZN.
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For d,D ∈ N∪ {∞}, d < D, let ρD,d be the canonical projection from `D1 onto
`d1 given by ρD,d(x) = (xi)

d
i=1 for any x = (xi)

D
i=1 ∈ `D1 , and let τd,D be an injection

from `d1 into `D1 defined by τd,D(x) = (yi)
D
i=1, where

yi =

{
xi if 1 ≤ i ≤ d,

Oi otherwise,

for every x = (xi)
d
i=1 ∈ `d1. Suppose, furthermore, that d and D are such that

card({i ∈ {1, . . . , D}, Xi is non-degenerate}) = d. Denote (jk)
d
k=1 the increasing

sequence formed by the elements of the set {i ∈ {1, . . . , D}, Xi is non-degenerate}.
We define ψD,d to be the projection from `D1 onto `d1 given by ψD,d(x) = (xjk)

d
k=1

for any x = (xi)
D
i=1 ∈ `D1 , and σd,D to be the injection from `d1 into `D1 defined by

σd,D(x) = (yi)
D
i=1, where

yi =

{
xk if i = jk for some 1 ≤ k ≤ d,

Oi otherwise,

for every x = (xi)
d
i=1 ∈ `d1.

Proof of Theorem 2.3.1. In view of the comment below the definition of a Schauder
basis, it is enough to prove the existence of a bounded sequence of finite-rank
linear projections on F(X) with so-called commuting property such that the
union of their ranges is dense in F(X) and, moreover, that the ranges of the
differences of two consecutive projections are one-dimensional. We will do so
by finding an appropriate sequence of adjoint operators (Pn)∞n=1 on the dual
space Lip0(X). The sought projections on the predual F(X) will then be the
corresponding operators to which Pn’s are adjoint. Precisely, we are looking
for a sequence (Pn)∞n=1 of uniformly bounded finite-rank linear projections on
Lip0(X) that are weak∗ to weak∗-continuous on bounded subsets of Lip0(X),
hence adjoint, and that converge to the identity on Lip0(X) in the weak∗-operator
topology and such that dim ((Pn+1 − Pn)(Lip0(X))) = 1 for all n ∈ N and that
PmPn = Pmin{m,n} for all m,n ∈ N. Such a sequence then gives rise to a sequence
(Tn)∞n=1 of operators on F(X) via the relation T ∗n = Pn. Furthermore, (Tn)∞n=1

shares some properties with (Pn)∞n=1, namely, it is a bounded sequence (with the
same bound) of finite-rank linear projections admitting the commuting property
and satisfying that dim ((Tn+1 − Tn)(F(X))) = 1 for all n ∈ N. In addition, the
convergence of (Pn)∞n=1 to the identity operator with respect to the weak∗-operator
topology implies the convergence of (Tn)∞n=1 to the identity operator with respect

to the weak-operator topology. Therefore,
⋃∞
n=1 Tn(F(X))

w
= F(X). But thanks

to the commuting property of Tn’s, we have that

T1(F(X)) ⊂ T2(F(X)) ⊂ · · · ,

thus
⋃∞
n=1 Tn(F(X)) = F(X) as wanted.

So, we devote the rest of the proof to building a suitable sequence (Pn)∞n=1.
We divide this work into two parts - construction of a sequence and verification of
its properties.

Construction of projections on Lip0(X). Before rigorous definitions, we
will outline the way we proceed. We would like to improve the method used for
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proving the monotone FDD for F(`1) in [14] so that we obtain even a Schauder
basis. That means that we want the sequence (Pn)∞n=1 to satisfy one more con-
dition in this case, which is that dim ((Pn+1 − Pn)(Lip0(X))) = 1 for all n ∈ N.
The main idea is the same, namely, to exhaust X with an increasing sequence
of products of intervals, growing both in the length and number of intervals,
decomposed into hypercubes that are, on the other hand, shrinking (we call this
decomposition tiling) and to define the corresponding projections on Lip0(X) by
asking that the image of a function has the property (AF) on the hypercubes of
the tiling, coincides with the original function on growing subset of their vertices
and does not ruin the Lipschitz constant at the remaining vertices, and by using
the retraction π outside the product of intervals. Then we can apply Lemma 3.2
from [14] and the fact that π is 1-Lipschitz. In [14], one step consisted of adding
one dimension, doubling the edge length of the big hypercube and refining its
tiling by bisecting the sides of all hypercubes in the tiling, and the control on the
Lipschitz constant of the image of a function under a projection at the vertices
of the hypercubes of the tiling was guaranteed by simply assigning directly the
values of the original function. This natural definition however causes ranks of the
differences of two consecutive projections to tend to infinity. Therefore, here, in
one step we always include only at most one more vertex given by the tiling to the
set of vertices at which the image of a function agrees with the original function
and to the remaining vertices we apply either retraction π (when enlarging the
set) or the function Φ from Lemma 2.2.2 (when refining the tiling). So, in the
construction, we alternate the processes of adding one dimension, gradual enlarg-
ing the product of the intervals until the length of the intervals for which it is still
possible doubles and gradual raising the accuracy of the projections by assigning
the original values to the vertices of the tiling of the product of intervals which is
half as fine as the one at the end of enlarging. Each enlarging and refining process
consists of several steps, whose number increases with every iteration. Note that in
our construction below we obtain in fact dim ((Pn+1 − Pn)(Lip0(X))) ≤ 1. Hence,
by passing to a suitable infinite subsequence, we may assume without loss of
generality that dim ((Pn+1 − Pn)(Lip0(X))) = 1, for all n ∈ N.

Now, we start building the sequence (Pn)∞n=1. We proceed inductively, begin-
ning with the projection P1 by setting the following objects: d1 = 1, M1 = Z∩X1,

p1
1 =

{
O1 − 1 if O1 − 1 ∈ X1,

O1 otherwise,

q1
1 =

{
O1 + 1 if O1 + 1 ∈ X1,

O1 otherwise,

F1 = [p1
1, q

1
1] and V1 = M1 ∩ F1. Then, for f ∈ Lip0(X) and x = (xi)

∞
i=1 ∈ X, we

define

P1(f)(x) =

{
Λ (f ◦ τd1,∞, [p1,O1]) (πF1(x1)) if x1 ≤ O1,

Λ (f ◦ τd1,∞, [O1, q1]) (πF1(x1)) otherwise.

Let us describe the roles of the appearing objects in a general step l. The
natural number dl stands for the dimension in which we work in the l−th step.
The set Fl is a subset of Πdl

i=1Xi given as a product of closed bounded intervals
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Πdl
i=1[p

i
l, q

i
l ]. The set Ml is a mesh in Πdl

i=1Xi determining how fine the tiling of
Fl is. So, from now on, by the tiling of Fl we will always mean the family of
hypercubes delimited by the uniformly discrete set Ml ∩ Fl, that is the family
of hypercubes H in Πdl

i=1Xi such that UH = Ml ∩ Fl ∩H. The set Vl ⊂ Ml ∩ Fl
consists then of those vertices of hypercubes in the tiling of Fl at which a function
mapped by the projection Pl coincides with its image.

Further, having a projection Pn−1 and all objects necessary for its definition
that are listed above, we want to build a projection Pn. As we already mentioned
in the brief description of the construction, it is based on repeating three main
actions, namely, increasing the dimension, enlarging the set and refining its tiling.
Therefore the definition of Pn differs with respect to the fact into which of these
three stages of the process the step n falls. We discuss the three variants of the
definition of Pn separately.

Increasing the dimension. Assume that we have just finished one iteration of
increasing the dimension, enlarging the set and consecutive refining the projections
and we are about to begin the next one. This can be more precisely expressed by
saying that the identity

Vl−1 =
{
ρ∞,dl−1

(O) + 21−dl−1ξ, ξ ∈ Zdl−1
}
∩ Fl−1 (2.1)

holds for l = n. This is the case for instance when n = 2. Set

dn = dn−1 + 1

and
Mn =

{
ρ∞,dn(O) + 22−dnξ, ξ ∈ Zdn

}
∩ Πdn

i=1Xi.

The set Fn ⊂ Πdn
i=1Xi will be the product of intervals with the end points pin = pin−1,

qin = qin−1 for all i ∈ {1, . . . , dn−1}, and pdnn = qdnn = Odn . That is

Fn = Πdn
i=1

[
pin, q

i
n

]
= Fn−1 × {Odn}.

Further, put rin = pin and sin = qin for all i ∈ {1, . . . , dn} and

En = Πdn
i=1

[
rin, s

i
n

]
⊂ Πdn

i=1Xi.

So, En = Fn in this case. Now, let Vn contain all the vertices of the hy-
percubes in the tiling of Fn, i.e. Vn = Mn ∩ Fn = Vn−1 × {Odn}, and let
Wn = (Mn ∩ Fn) \ Vn = ∅. Finally, for f ∈ Lip0(X) and x ∈ X, let

Pn(f)(x) = Λ (f ◦ τdn,∞, H) (πFn (ρ∞,dn(x))) ,

where H is a hypercube in the tiling of Fn such that πFn(ρ∞,dn(x)) ∈ H.

Enlarging the set. We gradually enlarge the set Fn−1 first in the direction
−edn−1 until we reach max{adn−1 ,Odn−1 − 2−1+dn−1}, then in the direction edn−1

until we reach min{bdn−1 ,Odn−1 + 2−1+dn−1} and so on for −e−1+dn−1 , . . . , e1. We
do it by adding points from the mesh Mn−1 to the set Vn−1 one at a time in
individual steps.
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So, suppose now that we are in the enlarging phase of an iteration, that is, for
l = n,

Vl−1 (
({
ρ∞,dl−1

(O) + 22−dl−1ξ, ξ ∈ Zdl−1
}
∩ Yl−1

)
, (2.2)

where
Yl−1 = Π

dl−1

i=1

[
Oi − 2−1+dl−1 ,Oi + 2−1+dl−1

]
∩ Π

dl−1

i=1 Xi.

Then we put
dn = dn−1

and
Mn = Mn−1.

The rest of the definition is divided into two cases according to if we have
already exhausted the set Wn−1 in the previous step or not.

If Wn−1 = ∅, set kn = max{k ∈ {1, . . . , dn}, qkn−1 < min{bk,Ok + 2−1+dn}}.
Note that by virtue of the order in which we enlarge the set Fn−1, described in
brief above, along with the assumptions, namely that (2.2) is true for l = n and
that Wn−1 = ∅, the set on the right hand side is nonempty. Put pin = pin−1

and qin = qin−1 for all i ∈ {1, . . . , dn} \ {kn}. Besides, let rin = pin−1 and
sin = qin−1 for all i ∈ {1, . . . , dn}. Provided that pknn−1 > max{akn ,Okn − 2−1+dn},
define pknn = pknn−1 − 22−dn and qknn = qknn−1. Otherwise, i.e. on condition that
pknn−1 = max{akn ,Okn − 2−1+dn}, put pknn = pknn−1 and qknn = qknn−1 + 22−dn . Having
the endpoints of the intervals, we continue defining

Fn = Πdn
i=1

[
pin, q

i
n

]
and

En = Πdn
i=1

[
rin, s

i
n

]
.

To conclude setting the objects important for establishing Pn, let

Vn = Vn−1 ∪ {≺max (Mn ∩ (Fn \ En))} ,

and
Wn = (Mn ∩ Fn) \ Vn.

Next, for f ∈ Lip0(X), define Φn(f) : Mn ∩ Fn = Vn ∪Wn → R by

Φn(f)(x) =

{
f(τdn,∞(x)) if x ∈ Vn,
f (τdn,∞ (πEn(x))) otherwise.

(2.3)

Finally, Pn is for f ∈ Lip0(X) and x ∈ X given by

Pn(f)(x) = Λ (Φn(f), H) (πFn(ρ∞,dn(x))),

where H is a hypercube in the tiling of Fn such that πFn(ρ∞,dn(x)) ∈ H.
If Wn−1 6= ∅, then for all i ∈ {1, . . . , dn} let pin = pin−1, q

i
n = qin−1, r

i
n = rin−1

and sin = sin−1. Thus Fn and En will agree with Fn−1 and En−1 respectively.
Further, set

Vn = Vn−1 ∪ {≺max (Wn−1)}
and

Wn = Wn−1 \ Vn = ((Mn−1 ∩ Fn−1) \ Vn−1) \ Vn = (Mn ∩ Fn) \ Vn.
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For f ∈ Lip0(X), define Φn(f) : Mn ∩ Fn = Vn ∪Wn → R again by

Φn(f)(x) =

{
f(τdn,∞(x)) if x ∈ Vn,
f (τdn,∞ (πEn(x))) otherwise.

(2.4)

Then, the mapping Pn is for f ∈ Lip0(X) and x ∈ X given by the same formula
as before, namely

Pn(f)(x) = Λ (Φn(f), H) (πFn(ρ∞,dn(x))),

where H is a hypercube in the tiling of Fn such that πFn(ρ∞,dn(x)) ∈ H.

Refining the projections. We add vertices from the tiling of Fn−1 to Vn−1 one
by one in separate steps in a way which allows us to apply Lemma 2.2.2. So,
assume that it is time to begin the refining process of an iteration or that we are
already in the middle of it. To be precise, suppose that for l = n,({

ρ∞,dl−1
(O) + 22−dl−1ξ, ξ ∈ Zdl−1

}
∩ Yl−1

)
⊂ Vl−1 (2.5)

and
Vl−1 (

({
ρ∞,dl−1

(O) + 21−dl−1ξ, ξ ∈ Zdl−1
}
∩ Yl−1

)
, (2.6)

where
Yl−1 = Π

dl−1

i=1

[
Oi − 2−1+dl−1 ,Oi + 2−1+dl−1

]
∩ Π

dl−1

i=1 Xi.

Then we define
dn = dn−1,

Mn =
{
ρ∞,dn(O) + 21−dnξ, ξ ∈ Zdn

}
∩ Πdn

i=1Xi (2.7)

and pin = pin−1 and qin = qin−1 for all i ∈ {1, . . . , dn}. Hence

Fn = Πdn
i=1

[
pin, q

i
n

]
= Fn−1 = Π

dn−1

i=1

[
Oi − 2−1+dn−1 ,Oi + 2−1+dn−1

]
∩ Π

dn−1

i=1 Xi.

Denote G0
n the set of those elements of Mn∩Fn, whose distance from the originO in

every direction parallel to some coordinate axis is an even multiple of 21−dn . Next,
the set G1

n consists of those elements of Mn∩Fn, whose every but one coordinate is
of the stated form, and so on for increasing index j of the sets Gj

n. In other words,
consider the decomposition of Fn given by

{
ρ∞,dn(O) + 22−dnξ, ξ ∈ Zdn

}
∩Fn. The

set Gj
n contains exactly the centres of all j−dimensional faces of all hypercubes in

the decomposition. In detail,

G0
n =

{
x ∈Mn ∩ Fn, card

({
i ∈ {1, . . . , dn}, 2−1+dn(Oi − xi) ∈ 2Z

})
= dn

}
G1
n =

{
x ∈Mn ∩ Fn, card

({
i ∈ {1, . . . , dn}, 2−1+dn(Oi − xi) ∈ 2Z

})
= dn − 1

}
...

Gdn
n =

{
x ∈Mn ∩ Fn, card

({
i ∈ {1, . . . , dn}, 2−1+dn(Oi − xi) ∈ 2Z

})
= 0
}
.

So, we have that
⋃dn
i=0 G

i
n = Mn ∩ Fn. However, note that there might exist

l ∈ {1, . . . , dn} such that
⋃dn
i=lG

i
n = ∅. Given x ∈ Gj

n for some j ∈ {1, . . . , dn},
we put

Ax =
{
x′ ∈ Gj−1

n , ‖x′ − x‖ = 21−dn
}
.
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By the assumption that (2.6) is satisfied by l = n, we have that{
i ∈ {0, . . . , dn}, Gi

n 6⊂ Vn−1

}
6= ∅.

Let kn be its minimal element and let

Vn = Vn−1 ∪
{
≺min

(
Gkn
n \ Vn−1

)}
.

For f ∈ Lip0(X) define Φn(f) : Mn ∩ Fn =
⋃dn
i=0 G

i
n → R by

Φn(f)(x) =

{
f (τdn,∞(x)) if x ∈ Vn,∑

x′∈Ax
Φn(f)(x′)
card(Ax)

otherwise.
(2.8)

Function Φ(f) is well-defined because it is constructed on Gi
n’s by induction on i

and G0
n ⊂ Vn. Similarly to the previous cases, for f ∈ Lip0(X) and x ∈ X, define

Pn(f)(x) = Λ (Φn(f), H) (πFn (ρ∞,dn(x))) ,

where H is a hypercube in the tiling of Fn such that πFn(ρ∞,dn(x)) ∈ H.

Properties of projections on Lip0(X). Now, we shall verify that the
sequence (Pn)∞n=1 meets the requirements stated at the beginning of the proof. In
order to make this part more clear, we organize it into several claims.

Claim 2.3.3. The sequence (Pn)∞n=1 is a bounded sequence of finite-rank linear
operators on Lip0(X).

Proof. To begin with, we shall show that for each n ∈ N, Pn is a well-defined
bounded linear operator from Lip0(X) to Lip0(X). Fix n ∈ N and f ∈ Lip0(X).

First, observe that Pn(f)(O) = 0 because ρ∞,dn(O) ∈ Vn and f(O) = 0. Next,
we shall prove that for a hypercube H in the tiling of Fn,

Lip (Pn(f) ◦ τdn,∞|UH ) ≤ 3‖f‖Lip0(X).

Then, by virtue of the definition of Pn, Lemma 3.2 in [14] and the fact that
Lip(πFn) = 1 = Lip(ρ∞,dn), also

Lip(Pn(f)) ≤ 3‖f‖Lip0(RN ).

So, assume that n = 1 or that n > 1 and (2.1) is true for l = n. Then UH ⊂ Vn,
therefore Pn(f) ◦ τdn,∞|UH = f ◦ τdn,∞|UH , hence

Lip (Pn(f) ◦ τdn,∞|UH ) ≤ ‖f‖Lip0(X).

Providing that l = n satisfies (2.2), let Φn(f) be the auxiliary function on
Mn ∩ Fn = Vn ∪Wn defined by (2.4) and let x, y ∈ UH be two distinct vertices of
the hypercube H, whose edge length in this case is 22−dn . Then, by the definition
of Φn, we have that

Φn(f)(x) = f(τdn,∞(x̃)) and Φn(f)(y) = f(τdn,∞(ỹ)),

where

x̃ =

{
x if x ∈ Vn,
πEn(x) if x ∈ Wn
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and similarly

ỹ =

{
y if y ∈ Vn,
πEn(y) if y ∈ Wn.

Note that ‖ỹ − y‖, ‖x̃− x‖ ∈ {0, 22−dn}. Therefore

|Φn(f)(x)− Φn(f)(y)| ≤ ‖f‖Lip0(RN )‖τdn,∞(x̃)− τdn,∞(ỹ)‖
= ‖f‖Lip0(RN )‖x̃− ỹ‖
≤ ‖f‖Lip0(RN ) (‖x̃− x‖+ ‖x− y‖+ ‖y − ỹ‖)
≤ ‖f‖Lip0(RN )

(
22−dn + ‖x− y‖+ 22−dn

)
≤ 3‖f‖Lip0(RN )‖x− y‖.

Hence,
Lip (Pn(f)|UH ) = Lip (Φn(f)|UH ) ≤ 3‖f‖Lip0(X).

If l = n satisfies conditions (2.5) and (2.6), we can use Lemma 2.2.2. For
that purpose, let C stand for the unique hypercube lying in Πdn

i=1Xi such that
UC = {ρ∞,dn(O) + 22−dnξ, ξ ∈ Zdn} ∩ Fn ∩ C and that H ⊂ C. We apply Lemma
2.2.2 to card{i ∈ {1, . . . , dn}, Xi is non-degenerate} assigned to the parameter
d, the image of the centre of the hypercube C under the mapping ψdn,d as the
parameter z, the edge length of H, equal 21−dn , as t, the set ψdn,d(Vn ∩ C) as V
and to the function f ◦ τdn,∞ ◦ σd,dn|V (see Notation 2.3.2 and Lemma 2.2.2) and
we obtain again that

Lip (Pn(f)|UH ) ≤ 3‖f‖Lip0(X).

Thus, for all n ∈ N, Pn is a well-defined bounded mapping from Lip0(X) to
Lip0(X). The linearity of Pn is straightforward.

Since for every n ∈ N and any f ∈ Lip0(X) the function Pn(f) is uniquely
determined by the values of f on the finite set τdn,∞(Vn), the operator Pn is of
finite rank.

Moreover, the sequence (Pn)∞n=1 is bounded because ‖Pn‖ ≤ 3 for every n ∈ N
by the above.

4
We continue with proving the commuting property of the sequence (Pn)∞n=1.

Claim 2.3.4. For every m,n ∈ N, we have that PmPn = Pmin{m,n}.

Proof. Take m,n ∈ N so that m ≤ n and f ∈ Lip0(X). Then Pm(Pn(f)) = Pm(f)
on X because the image of a function under the operator Pm is uniquely determined
by the values of this function at the elements of the set τdm,∞(Vm) and Pn(f)
coincides with f on τdn,∞(Vn) ⊃ τdm,∞(Vm) by definition.

Assume now that m,n ∈ N satisfy the inequality m > n. Let f ∈ Lip0(X).
We want to prove that then Pm(Pn(f)) = Pn(f) on X. To this end, it suffices
to show that Pn(f) ◦ τdm,∞ has the property (AF) on every hypercube in the
tiling of Fm and that Pm(Pn(f)) ◦ τdm,∞ = Pn(f) ◦ τdm,∞ at the vertices of these
hypercubes. Indeed, we obtain thus that Pm(Pn(f)) = Pn(f) on τdm,∞(Fm) as the
function Pm(Pn(f)) ◦ τdm,∞ has the property (AF) on each hypercube in the tiling
of Fm by definition and such a function is uniquely determined by its values at the
vertices of the hypercubes. Then, using this identity (for the second equality in
the following equation) and due to formula π[a,b]π[c,d] = π[a,b] = π[c,d]π[a,b] holding
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for any real numbers c ≤ a ≤ b ≤ d (applied to the argument in the fourth line),
we obtain that

Pm (Pn (f)) (x)

= Pm (Pn (f)) (τdm,∞ (πFm (ρ∞,dm (x))))

= Pn (f) (τdm,∞ (πFm (ρ∞,dm (x))))

= Pn (f) (τdn,∞ (πFn (ρ∞,dn (τdm,∞ (πFm (ρ∞,dm (x)))))))

= Pn (f)
(
τdn,∞

(
π[p1n,q

1
n]

(
π[p1m,q

1
m] (x1)

)
, . . . , π[pdnn ,qdnn ]

(
π[pdnm ,qdnm ] (xdn)

)))
= Pn (f)

(
τdn,∞

(
π[p1n,q

1
n] (x1) , . . . , π[pdnn ,qdnn ] (xdn)

))
= Pn (f) (τdn,∞ (πFn (ρ∞,dn (x))))

= Pn (f) (x)

for all x ∈ X as desired.
So, we now study the function Pn(f) ◦ τdm,∞ on hypercubes in the tiling of Fm

and at their vertices.
Since the n−th step precedes the m−th one, the edge length of the hypercubes

in the tiling of Fn is greater than or equal to the edge length of the hypercubes
in the tiling of Fm. Therefore the function Pn(f) ◦ τdn clearly has the property
(AF) on every hypercube H ⊂ Πdn

i=1Xi with UH = ρdm,dn(Mm) ∩ Fn ∩ H. The
retraction πFn has the property (AF) on every hypercube H ⊂ Πdn

i=1Xi such
that UH = ρdm,dn(Mm) ∩ H. In addition, if a subset L of such a hypercube H
is a segment parallel to one of the coordinate axes, then πFn(L) is a segment
parallel to a coordinate axis or a point lying on the face of some hypercube
C ⊂ Fn satisfying that UC = ρdm,dn(Mm) ∩ Fn ∩ C. Hence Pn(f) ◦ τdn,∞ has the
property (AF) on every hypercube H ⊂ Πdn

i=1Xi, where UH = ρdm,dn(Mm) ∩ H
(cf. the proof of Lemma 3.3 in [14]). Let now H ⊂ Πdm

i=1Xi be a hypercube in
the tiling of Fm and let L ⊂ H be a segment parallel to one of the coordinate
axes. Then ρdm,dn(L) is a point or a segment parallel to one of the coordinate
axes in the hypercube C ⊂ Πdn

i=1Xi satisfying that C = ρdm,dn(H) and therefore
that UC = ρdm,dn(Mm) ∩ C. Finally, the property (AF) possessed by the function
Pn(f) ◦ τdn,∞ on the hypercube C along with the linearity of ρdm,dn yields that

Pn(f) ◦ τdm,∞ = Pn(f) ◦ τdn,∞ ◦ ρdm,dn
has the property (AF) on H. So, the function Pn(f) ◦ τdm,∞ has the property
(AF) on all hypercubes in the tiling of Fm.

Thus, to finish the proof of the commuting property for (Pn)∞n=1, we are left
with showing that Pm(Pn(f)) ◦ τdm,∞ = Pn(f) ◦ τdm,∞ on the set Mm ∩ Fm. The
definition of Pm gives that Pm(Pn(f))(τdm,∞(x)) = Pn(f)(τdm,∞(x)) for all x ∈ Vm.

We are done if l = m satisfies (2.1) because in such case Mm ∩ Fm = Vm.
If l = m satisfies condition (2.2) and if x ∈ Wm (recall that the set Wm is

defined as the complement of Vm in Mm ∩ Fm), then

Pm(Pn(f)) (τdm,∞(x))

= Pn(f) (τdm,∞ (πEm(x)))

= Pn(f) (τdn,∞ (πFn (ρdm,dn (πEm(x)))))

= Pn(f)
(
τdn,∞

(
π[p1n,q

1
n]

(
π[r1m,s

1
m](x1)

)
, . . . , π[pdnn ,qdnn ]

(
π[rdnm ,sdnm ](xdn)

)))
.
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The first equality is merely the definition of Pm, the second one the definition of Pn
and the last one holds because the retractions πFn and πEm act coordinatewise. In
order to obtain the desired expression on the right hand side, i.e. Pn(f) (τdm,∞(x)),
one should observe that by construction necessarily either [pin, q

i
n] ⊂ [rim, s

i
m] for

all i ∈ {1, . . . , dn} or there exists an i0 ∈ {1, . . . , dn} such that [ri0m, s
i0
m] ( [pi0n , q

i0
n ]

and [pin, q
i
n] = [rim, s

i
m] for all i ∈ {1, . . . , dn} \ {i0}. In the first case we get by the

commuting property of the retractions π that

Pm(Pn(f)) (τdm,∞(x)) = Pn(f) (τdn,∞ (πFn (ρdm,dn(x)))) = Pn(f) (τdm,∞(x)) .

The second situation implies that dn = dm, Fn = Fm, Wm ⊂ Wn and En = Em.
Therefore, applying the commuting property of π’s again,

Pm(Pn(f)) (τdm,∞(x)) = Pn(f) (τdn,∞ (πEn (ρdm,dn(x)))) = Pn(f) (τdm,∞(x)) .

Thus
Pm(Pn(f)) ◦ τdm,∞ = Pn(f) ◦ τdm,∞

on the set Mm ∩ Fm if l = m satisfies (2.2).
Now, assume that (2.5) and (2.6) is true for l = m and that H is a hypercube

in Πdm
i=1Xi such that

UH =
{
ρ∞,dm(O) + 22−dmξ, ξ ∈ Zdm

}
∩ Fm ∩H

(recall that the tiling of Fm is finer, see (2.7)). We proceed by induction on the
index k of sets Gk

m ∩H in order to show that Pm(Pn(f)) ◦ τdm,∞ = Pn(f) ◦ τdm,∞
on the set Mm ∩ Fm ∩H =

⋃dm
i=0G

i
m ∩H. By definition,

Pm(Pn(f)) ◦ τdm,∞ = Φm(Pn(f))

holds on Mm ∩ Fm, where Φm is given by formula (2.8). We know that

Φm(Pn(f)) = Pn(f) ◦ τdm,∞

holds on G0
m because G0

m ⊂ Vm. Suppose that this equality is true on Gk−1
m ∩H and

that x ∈
(
Gk
m ∩H

)
\Vm for a given k ∈ {1, . . . , dm}. If the function Pn(f) ◦ τdm,∞

has the property (AF) on H and

Ix =
{
i ∈ {1, . . . , dm}, 2−1+dm(Oi − xi) ∈ Z \ 2Z

}
,

then

Pm(Pn(f)) (τdm,∞(x))

= Φm(Pn(f))(x) =
∑
x′∈Ax

Φm(Pn(f))(x′)

card(Ax)
=
∑
x′∈Ax

Pn(f) (τdm,∞(x′))

card(Ax)

=
2

card(Ax)

∑
i∈Ix

1

2
Pn(f)

(
τdm,∞(x+ 21−dmei)

)
+

1

2
Pn(f)

(
τdm,∞(x− 21−dmei)

)
= Pn(f) (τdm,∞(x))

as Ax = {x + ε21−dmei, ε ∈ {−1, 1}, i ∈ Ix}. If the function Pn(f) ◦ τdm,∞ does
not have the property (AF) on the whole H (recall that it does have it on the
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hypercubes of half the size as shown above), then necessarily dn = dm, Mn = Mm,
Fn = Fm and the n−th step is also a refining step, i.e. l = n satisfies (2.5) and
(2.6). Thus, according to the induction assumption and the fact that Vn ⊂ Vm,
we obtain

Pm(Pn(f)) (τdm,∞(x)) = Φm(Pn(f))(x) =
∑
x′∈Ax

Φm(Pn(f))(x′)

card(Ax)

=
∑
x′∈Ax

Pn(f) (τdm,∞(x′))

card(Ax)
=
∑
x′∈Ax

Φn(f)(x′)

card(Ax)

= Φn(f)(x) = Pn(f) (τdm,∞(x)) .

This concludes the proof of the identity

Pm(Pn(f)) ◦ τdm,∞ = Pn(f) ◦ τdm,∞

on Mm ∩ Fm ∩ H and, since H was chosen arbitrarily, also on the whole set
Mm ∩ Fm provided that l = m meets conditions (2.5) and (2.6).

The property (AF) of Pn(f) ◦ τdm,∞ on the hypercubes of the tiling of Fm
along with the identity Pm(Pn(f)) ◦ τdm,∞ = Pn(f) ◦ τdm,∞ on their vertices yield
Pm(Pn(f)) = Pn(f) on X for m > n and f ∈ Lip0(X).

Altogether, for any m,n ∈ N we have that PmPn = Pmin{m,n}. Thus also Pn is
a projection for all n ∈ N.

4
Further, we show that the identity operator on Lip0(X) is the limit of the

sequence (Pn)∞n=1 with respect to the weak∗-operator topology.

Claim 2.3.5. For every f ∈ Lip0(X), the sequence (Pn(f))∞n=1 converges weak∗

to f .

Proof. The uniform boundedness of operators Pn combined with the inclusions

τd1,∞(V1) ⊂ τd2,∞(V2) ⊂ τd3,∞(V3) ⊂ . . .

and the identity
⋃∞
n=1 τdn,∞(Vn) = X implies that (Pn(f))∞n=1 converges pointwise

to f for every f ∈ Lip0(X). Since the topology of pointwise convergence agrees
with the weak∗-topology on bounded subsets of Lip0(X), the sequence (Pn)∞n=1

converges to the identity on Lip0(X) in the weak∗-operator topology.
4

Now, we observe that Pn’s are adjoint operators.

Claim 2.3.6. For every n ∈ N, the operator Pn is weak∗ to weak∗-continuous on
bounded subsets of Lip0(X).

Proof. One can see from its definition that the operator Pn is continuous on Lip0(X)
with the topology of pointwise convergence for every n ∈ N. Therefore it is weak∗ to
weak∗-continuous on bounded subsets of Lip0(X) as the weak∗-topology coincides
with the topology of pointwise convergence on bounded subsets of Lip0(X).

4
To conclude, we prove that the growth of the dimensions of the ranges of the

operators Pn is controlled.
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Claim 2.3.7. For every n ∈ N, the operator Pn+1 − Pn is of rank 0 or 1.

Proof. Thanks to the commuting property of the sequence (Pn)∞n=1 and the linearity
of the operators Pn,

Pn+1(f)− Pn(f) = Pn+1(f − Pn(f))

on X for every n ∈ N and every f ∈ Lip0(X). Recall that the function
Pn+1(f − Pn(f)) is determined by the values of the function f − Pn(f) on the set
τdn+1,∞(Vn+1). But, since by definition Pn(f) agrees with f on the set τdn,∞(Vn),
these values are zero except possibly on τdn+1,∞(Vn+1) \ τdn,∞(Vn), which is either
a singleton or an empty set. Therefore

dim ((Pn+1 − Pn)(Lip0(X))) ≤ 1

for all n ∈ N.
4

By the discussion at the beginning of the proof, Theorem 2.3.1 follows.

2.4 Final remarks.

It is easy to see that F(M) has a Schauder basis whenever M is a bounded and
convex subset of some Rn. Indeed, suppose that M is a bounded and convex
subset of Rn. We may assume without loss of generality that M is closed, and it
contains the origin as an interior point (by considering the smallest n for which
there exists an imbedding of M into Rn). Now the mapping taking the boundary
points of the unit hypercube [−1, 1]n in Rn onto the boundary points of M is
bi-Lipschitz, and extends into a unique homothetic and bi-Lipschitz mapping
between M and the hypercube [−1, 1]n. It is a general fact which follows from the
definition that if two metric spaces are bi-Lipschitz equivalent then their respective
Lipschitz-free spaces are linearly isomorphic. Hence the existence of a Schauder
basis in one of them ensues the existence of a Schauder basis in the other.

It is not clear to us which subsets M of Rn share the above bi-Lipschitz
condition, in particular we pose the following open problem.

Problem 2.4.1. Does the space F(M) have a Schauder basis for every M ⊂ Rn?

Aknowledgements. The work was supported in part by GAČR P201/11/0345,
Project Barrande 7AMB12FR003, RVO: 67985840 and SVV-2013-267316.
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3. On uniformly differentiable
mappings

3.1 Introduction

We begin by recalling some classical results in linear Banach space theory. Accord-
ing to Pe lczyński, if Y is a Banach space and T : c0 → Y is a non-compact linear
operator, then c0 contains a linear subspace X isomorphic to c0 such that T |X is
an isomorphism (see [20], [5, Theorem 4.51]). In particular, Y contains a copy
of c0. Similarly, Rosenthal showed that if Y is a Banach space and T : `∞ → Y
is a non-weakly compact linear operator, then `∞ contains a linear subspace X
isomorphic to `∞ such that T |X is an isomorphism (see [16, Proposition 2.f.4]).
In particular, Y contains a copy of `∞.

There has been a recent attempt ([4], [10, Theorem 6.45]) to generalise the
first mentioned result into non-linear setting, namely, for uniformly differentiable
mappings from the unit ball of c0 in the sense of the following definitions. Our
principal reference for the theory of smooth mappings on Banach spaces is the
monograph [10].

Let X, Y be normed linear spaces and let V ⊂ X be convex with non-empty
interior IntV . Then C1(V ;Y ) denotes the locally convex space of continuous
mappings f : IntV → Y with continuous Fréchet derivative Df : IntV → Y such
that f and Df have a continuous extension to the whole V and are bounded
on closed convex bounded subsets of V , endowed with the topology of uniform
convergence of f and Df on closed convex bounded subsets of V . The subspace
of C1(V ;Y ) consisting of mappings f such that Df is uniformly continuous on
closed convex bounded subsets of V is denoted by C1,+(V ;Y ). In scalar case, we
use shortened notation C1,+(V ) = C1,+(V ;R).

If f ∈ C1,+(BX ;Y ) for some Banach spaces X and Y , then there exists a bidual
extension f ∗∗ of the mapping f such that f ∗∗ ∈ C1,+(BX∗∗ ;Y

∗∗). The construction
uses the Converse Taylor theorem and the powerful ultrapower construction based
on the principle of local reflexivity, and can be found in Section 6.2 of [10].

Theorem 6.45 in [10] implies that if Y is a Banach space and if f ∈ C1,+(Bc0 ;Y )
is a non-compact mapping, then there exists a point x∗∗ ∈ Bc∗∗0

such that
D (f ∗∗) (x∗∗) is a non-weakly compact bounded linear operator from `∞ into
Y ∗∗. In particular, Y ∗∗ contains a copy of `∞.

In some special cases, e.g. when Y is a dual space, this result implies that
Y contains a copy of c0. The general case, however, remains an open question.
That is, does for any Banach space Y the existence of a non-compact uniformly
differentiable mapping from the unit ball of c0 into Y imply that Y contains a
copy of c0? It should be noted that the problem cannot be solved by means of
differentiation, in view of the next simple example. Indeed, choosing a surjective
increasing C∞-smooth function φ : R → R such that φ(0) = 0 and Dφ(0) = 0,
one can show that the mapping Φ: c0 → c0 defined by Φ((xk)

∞
k=1) = (φ(xk))

∞
k=1

belongs to C1,+(c0; c0), it is surjective, but DΦ(x) is a compact linear operator
from c0 into c0 for every x ∈ c0.

In the present note we will consider a variant of this problem when the initial
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space is `∞ and show that in this case the analogous question has positive answer,
introducing thus an approach to Rosenthal’s result in non-linear setting. In
addition, by passing to infinite-dimensional case via ultrapowers, we will derive a
finite-dimensional counterpart of the result.

To this end we will generalise Theorem 6.45 from [10] for uniformly dif-
ferentiable mappings which are not necessarily bidual extensions of uniformly
differentiable mappings.

In order to find the right assumptions, recall that `2 is a linear quotient of
`∞. Therefore, by Theorem 6.68 in [10], there exists a surjective second degree
polynomial from `∞ onto `1. So the non-compactness (or non-weak compactness)
of the image of the unit ball B`∞ is not sufficient for concluding that Y contains
a copy of `∞.

The proper generalization is presented in Section 3.2 as Theorem 3.2.1 and
followed by a finite-dimensional version of the statement, Theorem 3.2.3.

3.2 Uniformly differentiable mappings from `∞
and `n∞

Let us first fix some notation that will be used throughout this section. The
linear space

{
x = (xi)

∞
i=1 ∈ RN, sup{|xi|, i ∈ N} <∞

}
equipped with the norm

given as sup{|xi|, i ∈ N} is denoted by `∞. Similarly, if n ∈ N, then `n∞
is the linear space {x = (xi)

n
i=1 ∈ Rn, sup{|xi|, i ∈ {1, . . . , n}} <∞} with the

norm defined as sup{|xi|, i ∈ {1, . . . , n}}. For x ∈ `∞ (resp. x ∈ `n∞), we put
supp(x) = {i ∈ N, xi 6= 0} (resp. supp(x) = {i ∈ {1, . . . , n}, xi 6= 0}). The
symbol ei stands for the unit vector (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . ) in the space `∞ or `n∞.

We write ‖ · ‖ for the norm in any normed linear space. For a normed linear space
X, we use standard notation BX , UX and SX for the closed unit ball, open unit
ball and the unit sphere of X, respectively. The set B+

`∞
(resp. B+

`n∞
) is then the

subset of B`∞ (resp. B`n∞) consisting of vectors with non-negative coordinates. If
X, Y are Banach spaces and f : X → Y has the Fréchet derivative Df at x ∈ X,
we denote by Df(x)[u] ∈ Y the evaluation of Df(x) at u ∈ X.

The key ingredient of the proof of the main result, Theorem 3.2.1, will be
Lemma 6.27 from [10] (see also [9]). Before stating its formulation, let us recall
the notion of modulus of continuity of a uniformly continuous mapping.

Let (P, ρ) and (Q, σ) be metric spaces. The minimal modulus of continuity ωf
of a uniformly continuous mapping f : P → Q is for δ ∈ [0,+∞) defined as

ωf (δ) = sup{σ(f(x), f(y)), x, y ∈ P, ρ(x, y) ≤ δ}.

Clearly, ωf is continuous at 0. A non-decreasing function ω : [0,+∞)→ [0,+∞]
continuous at 0 with ω(0) = 0 is called a modulus. The set of all moduli is denoted
by M. We say that ω ∈M is a modulus of continuity of a uniformly continuous
mapping f : P → Q if ωf ≤ ω.

Lemma 6.27 in [10] says that for each ω ∈M with ω(1) <∞, for every L > 0
and every ε > 0, there is an N(ω, L, ε) ∈ N such that if n ≥ N(ω, L, ε) and if
f ∈ C1,+(B+

`n∞
) is an L−Lipschitz function whose derivative Df has modulus of

continuity ω, then there exists j ∈ {1, . . . , n} for which |f(ej)− f(0)| < ε.
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Our main result is the following.

Theorem 3.2.1. Let Y be a Banach space and let f ∈ C1,+(B`∞ ;Y ) be such
that {f(ek), k ∈ N} is not relatively compact in Y . Then there exists an infi-
nite subset K of N and a closed interval I ⊂ (0, 1) such that for the subspace
Z = {z ∈ `∞, supp(z) ⊂ K} of `∞ and for every point x ∈ Z satisfying that xk ∈ I
for all k ∈ K, the operator Df(x)|Z is an isomorphism. In particular, Y contains
a copy of `∞.

Proof. Applying a translation in Y , we may without loss of generality assume
that f(0) = 0.

Let ω be the modulus of continuity of Df and let L = sup {‖Df(x)‖, x ∈ B`∞}.
By the assumption, L <∞.

After possible passing to a subsequence of the sequence (ek)
∞
k=1, we can find a

bounded sequence (ϕk)
∞
k=1 of functionals lying in Y ∗ satisfying that ϕk(f(ek)) = 1.

Denote C the real number sup {‖ϕk‖, k ∈ N}.
Now, we show that we may also assume that for every k ∈ N, the value of

ϕk ◦ f at any x ∈ B+
`∞

is determined only by the k−th coordinate of x, up to a
fixed error.

Claim 3.2.2. Let f , (ϕk)
∞
k=1 and (ek)

∞
k=1 be as above. For any ε > 0 there exists

an increasing sequence of natural numbers (ki)
∞
i=1 such that for every l ∈ N and

every x = (xk)
∞
k=1 ∈ B+

`∞
with supp(x) ⊂ {ki, i ∈ N}, the inequality

|ϕkl (f (x))− ϕkl (f (xklekl))| < ε (3.1)

holds.

Proof. Let ε > 0. When C and L are the constants defined earlier, take q ∈ N
such that

1

q
<

ε

4CL
. (3.2)

Lemma 6.27 in [10] says that there exists N
(
Cω,CL, ε

4

)
∈ N, where ω is the

modulus of continuity of Df , satisfying that for every n ≥ N
(
Cω,CL, ε

4

)
and

every g ∈ C1,+(B+
`n∞

) which is CL-Lipschitz and such that Dg has modulus of
continuity Cω, there is j ∈ {1, . . . , n} for which |g(ej)− g(0)| < ε

4
. Put

n1 = qN
(
Cω,CL,

ε

4

)
− q + 1

and
N1 = qn1N

(
Cω,CL,

ε

4

)
− qn1 + 1.

Consider arbitrary N1 infinite mutually disjoint subsets A1
1, . . . , A

1
N1

of N contain-
ing only elements greater than n1.

There must be M1 ∈ {1, . . . , N1} such that for every u = (uk)
∞
k=1 ∈ B+

`∞
with

supp(u) ⊂ A1
M1

, the inequality

|ϕj (f (β1ej + u))− ϕj (f (β1ej))| <
ε

4

holds for each j ∈ {1, . . . , n1} and each β1 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

. Indeed, for a

contradiction suppose that for every i ∈ {1, . . . , N1} there is u(i) ∈ B+
`∞

with
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supp(u(i)) ⊂ A1
i and there is j(i) ∈ {1, . . . , n1} and β1(i) ∈

{
1
q
, 2
q
, . . . , q−1

q
, 1
}

such that ∣∣ϕj(i) (f (β1(i)ej(i) + u(i)
))
− ϕj(i)

(
f
(
β1(i)ej(i)

))∣∣ ≥ ε

4
.

Then there is an h ∈ {1, . . . , n1}, γ1 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

and an increasing

sequence (im)
N(Cω,CL, ε4)
m=1 of elements of the set {1, . . . , N1} for which h = j(im)

and γ1 = β1(im) for all m ∈
{

1, . . . , N
(
Cω,CL, ε

4

)}
. Thus we get a contradiction

with Lemma 6.27 in [10] by considering the function g : B+

`
N(Cω,CL, ε4 )
∞

→ R defined

by

g(α) = ϕh

f
γ1eh +

N(Cω,CL, ε4)∑
m=1

αmu(im)




for α = (αm)
N(Cω,CL, ε4)
m=1 ∈ B+

`
N(Cω,CL, ε4 )
∞

. So, hereby we proved the existence of the

M1.
Next, for every i ∈ A1

M1
there is a j(i) ∈ {1, . . . , n1} such that∣∣ϕi (f (β1ej(i) + β0ei

))
− ϕi (f (β0ei))

∣∣ < ε

4

for all β1, β0 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

. Indeed, if there were i ∈ A1
M1

such that for

every j ∈ {1, . . . , n1} there exist β1(j), β0(j) ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

for which

|ϕi (f (β1(j)ej + β0(j)ei))− ϕi (f (β0(j)ei))| ≥
ε

4
,

then by the value of n1 there exists a γ0 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

and an increasing

sequence (jm)
N(Cω,CL, ε4)
m=1 of indices belonging to the set {1, . . . , n1} such that

γ0 = β0(jm) for all m ∈
{

1, . . . , N
(
Cω,CL, ε

4

)}
. Hence, we arrive at a contradic-

tion with Lemma 6.27 in [10] applied to the function g : B+

`
N(Cω,CL, ε4 )
∞

→ R defined

by

g(α) = ϕi

f
N(Cω,CL, ε4)∑

m=1

αmβ1(jm)ejm + γ0ei




for α = (αm)
N(Cω,CL, ε4)
m=1 ∈ B+

`
N(Cω,CL, ε4 )
∞

. So, as A1
M1

is infinite, we can find an

infinte subset A1 of A1
M1

and a k1 ∈ {1, . . . , n1} satisfying that

|ϕi (f (β1ek1 + β0ei))− ϕi (f (β0ei))| <
ε

4

for every β0, β1 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

and for every i ∈ A1.

We construct the sought sequence of indices (ki)
∞
i=1 by induction. Let l ∈ N.

Suppose that we have an increasing sequence of natural numbers (ki)
l
i=1 and
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an infinite subset Al of N \ {1, . . . , kl}. Then, using Lemma 6.27 from [10] now
for parameters Cω, CL and ε

2l+2 we obtain a natural number N
(
Cω,CL, ε

2l+2

)
such that for every n ≥ N

(
Cω,CL, ε

2l+2

)
and every CL−Lipschitz function

g ∈ C1,+(B+
`n∞

) whose derivative Dg has modulus of continuity Cω, there exists
j ∈ {1, . . . , n} such that |g(ej)− g(0)| < ε

2l+2 . Set

nl+1 = ql+1N
(
Cω,CL,

ε

2l+2

)
− ql+1 + 1

and
Nl+1 = ql+1nl+1N

(
Cω,CL,

ε

2l+2

)
− ql+1nl+1 + 1.

Denote (al+1
j )

nl+1

j=1 the increasing sequence of the first nl+1 elements of Al and

consider some Nl+1 infinite mutually disjoint subsets Al+1
1 , . . . , Al+1

Nl+1
of Al whose

elements are greater than al+1
nl+1

.
Then, based on the same argument as above, there exists Ml+1 ∈ {1, . . . , Nl+1}

satisfying that for every u ∈ B+
`∞

with supp(u) ⊂ Al+1
Ml+1

, every j ∈ {1, . . . , nl+1}
and all coefficients β1, . . . , βl+1 ∈

{
1
q
, 2
q
, . . . , q−1

q
, 1
}

, we have that∣∣∣∣∣ϕal+1
j

(
f

(
l∑

h=1

βhekh + βl+1eal+1
j

+ u

))

− ϕal+1
j

(
f

(
l∑

h=1

βhekh + βl+1eal+1
j

))∣∣∣∣∣ < ε

2l+2
. (3.3)

Besides, for every i ∈ Al+1
Ml+1

there is a j(i) ∈ {1, . . . , nl+1} satisfying that for

all β0, . . . , βl+1 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

, we have that∣∣∣∣∣ϕi
(
f

(
l∑

h=1

βhekh + βl+1eal+1
j(i)

+ β0ei

))

− ϕi

(
f

(
l∑

h=1

βhekh + β0ei

))∣∣∣∣∣ < ε

2l+2
. (3.4)

This can be proved by a contradiction again. So, assume that it is not true.
That is, there exists i ∈ Al+1

Ml+1
such that for every j ∈ {1, . . . , nl+1}, there are

coefficients β0(j), . . . , βl+1(j) ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

for which∣∣∣∣∣ϕi
(
f

(
l∑

h=1

βh(j)ekh + βl+1(j)eal+1
j

+ β0(j)ei

))

− ϕi

(
f

(
l∑

h=1

βh(j)ekh + β0(j)ei

))∣∣∣∣∣ ≥ ε

2l+2
.

The definition of nl+1 implies that we can find γ0, . . . , γl ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

and a sequence (jm)
N(Cω,CL, ε

2l+2 )
m=1 of indices from the set {1, . . . , nl+1} so that
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γh = βh(jm) for each h ∈ {0, . . . , l} and each m ∈
{

1, . . . , N
(
Cω,CL, ε

2l+2

)}
.

Then the function g : B+

`
N(Cω,CL, ε

2l+2 )
∞

→ R given by

g(α) = ϕi

f
 l∑

h=1

γhekh +

N(Cω,CL, ε

2l+2 )∑
m=1

αmβl+1(jm)eal+1
jm

+ γ0ei




for α = (αm)
N(Cω,CL, ε

2l+2 )
m=1 ∈ B+

`
N(Cω,CL, ε

2l+2 )
∞

is CL−Lipschitz and its derivative

Dg has modulus of continuity Cω, but the conclusion of Lemma 6.27 in [10]
does not hold for g. This is a contradiction. Thus we have established (3.4).
Since Al+1

Ml+1
is infinite, there is an infinite subset Al+1 of Al+1

Ml+1
and an index

kl+1 ∈
{
al+1

1 , . . . , al+1
nl+1

}
such that∣∣∣∣∣ϕi

(
f

(
l+1∑
h=1

βhekh + β0ei

))
− ϕi

(
f

(
l∑

h=1

βhekh + β0ei

))∣∣∣∣∣ < ε

2l+2
(3.5)

for all i ∈ Al+1 and all β0, . . . , βl+1 ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

.

We now combine the foregoing results to show (3.1) for the constructed sequence
(ki)

∞
i=1. So, let l ∈ N and let x = (xi)

∞
i=1 ∈ B+

`∞
be such that supp(x) ⊂ {ki, i ∈ N}.

Put u = x −
∑l

i=1 xkieki . We choose β1, . . . , βl ∈
{

1
q
, 2
q
, . . . , q−1

q
, 1
}

so that

|xki − βi| ≤ 1
q

for all i ∈ {1, . . . , l} and write

|ϕkl(f(x))− ϕkl(f(xklekl))|

≤

∣∣∣∣∣ϕkl(f(x))− ϕkl

(
f

(
l∑

i=1

βieki + u

))∣∣∣∣∣
+

∣∣∣∣∣ϕkl
(
f

(
l∑

i=1

βieki + u

))
− ϕkl

(
f

(
l∑

i=1

βieki

))∣∣∣∣∣
+

∣∣∣∣∣ϕkl
(
f

(
l∑

i=1

βieki

))
− ϕkl(f(βlekl))

∣∣∣∣∣
+ |ϕkl(f(βlekl))− ϕkl(f(xklekl))| .

The fact that ϕkl ◦ f is CL−Lipschitz along with the choice of q (see (3.2)) gives
that ∣∣∣∣∣ϕkl(f(x))− ϕkl

(
f

(
l∑

i=1

βieki + u

))∣∣∣∣∣ < ε

4

and
|ϕkl(f(βlekl))− ϕkl(f(xklekl))| <

ε

4
.

Moreover, since supp(u) ⊂ Al ⊂ AlMl
and as kl ∈

{
al1, . . . , a

l
nl

}
(here we put

a1
j = j for all j ∈ {1, . . . , n1}), (3.3) yields that∣∣∣∣∣ϕkl

(
f

(
l∑

i=1

βieki + u

))
− ϕkl

(
f

(
l∑

i=1

βieki

))∣∣∣∣∣ < ε

2l+1
.
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Thus, if l = 1, we conclude that

|ϕk1(f(x))− ϕk1(f(xk1ek1))| <
3

4
ε < ε.

If l > 1, then kl ∈ Ai for all i ∈ {1, . . . , l − 1}. Hence, due to (3.5),∣∣∣∣∣ϕkl
(
f

(
l∑

i=1

βieki

))
− ϕkl(f(βlekl))

∣∣∣∣∣
≤

l−1∑
j=1

∣∣∣∣∣ϕkl
(
f

(
l−j∑
i=1

βieki + βlekl

))
− ϕkl

(
f

(
l−j−1∑
i=1

βieki + βlekl

))∣∣∣∣∣
≤

l−1∑
j=1

ε

2l−j+1
,

where we set
∑0

i=1 βieki = 0. Finally,

|ϕkl(f(x))− ϕkl(f(xklekl))| ≤
ε

4
+

ε

2l+1
+

(
l−1∑
j=1

1

2l−j

)
ε

2
+
ε

4
< ε

as desired.
4

Let us continue with the proof of Theorem 3.2.1. Find ∆ ∈ (0, 1
2
) so that

ω(∆) < 1
16C

. According to Claim 3.2.2, by passing to a subsequence of the
sequence (ek)

∞
k=1 we may without loss of generality assume that for every k ∈ N

and every x = (xi)
∞
i=1 ∈ B+

`∞
,

|ϕk (f (x))− ϕk (f (xkek))| <
∆

32
. (3.6)

For each k ∈ N,

1 = ϕk(f(ek)) =

∫ 1

0

ϕk (Df (tek) [ek]) d t.

Therefore there exists an r ∈ [0, 1] such that ϕk(Df(rek)[ek]) ≥ 1. Then for every
t ∈ [r−∆, r+ ∆]∩ [0, 1], ‖Df(tek)−Df(rek)‖ ≤ 1

16C
. Hence, there is an interval

[ak, bk] ⊂ [0, 1] of length ∆ such that

ϕk(Df(tek)[ek]) ≥
15

16
(3.7)

for each t ∈ [ak, bk].
Passing to a subsequence of (ek)

∞
k=1, we may assume that there is an interval

[a, b] ⊂ [0, 1] such that b − a = ∆
2

and that (3.7) holds for every t ∈ [a, b] and
every k ∈ N.
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Fix k ∈ N and x = (xi)
∞
i=1 ∈ B+

`∞
. Thanks to (3.6) and (3.7) we get the

following.∫ b

a

ϕk

(
Df

(
k−1∑
i=1

xiei + tek + x−
k∑
i=1

xiei

)
[ek]

)
d t

= ϕk

(
f

(
k−1∑
i=1

xiei + bek + x−
k∑
i=1

xiei

))

− ϕk

(
f

(
k−1∑
i=1

xiei + aek + x−
k∑
i=1

xiei

))
> ϕk(f(bek))− ϕk(f(aek))−

∆

16

=

∫ b

a

ϕk(Df(tek)[ek]) d t− ∆

16
≥ 15

32
∆− ∆

16
=

13

32
∆.

The foregoing lower estimate yields the existence of an s ∈ [a, b] for which

ϕk

(
Df

(
k−1∑
i=1

xiei + sek + x−
k∑
i=1

xiei

)
[ek]

)
≥ 13

16
.

As b− a = ∆
2

, and ∆ was chosen to satisfy that ω(∆) < 1
16C

, we derive that for
all t ∈ [a, b],

ϕk

(
Df

(
k−1∑
i=1

xiei + tek + x−
k∑
i=1

xiei

)
[ek]

)

≥ ϕk

(
Df

(
k−1∑
i=1

xiei + sek + x−
k∑
i=1

xiei

)
[ek]

)
− 1

16
≥ 3

4
. (3.8)

We show that Df(x) is an isomorphism on `∞ for any x = (xi)
∞
i=1 ∈ `∞ with

xi ∈ [a+ λ, b− λ] for all i ∈ N, where λ = ∆
5

.
So, take any x = (xi)

∞
i=1 ∈ `∞ with xi ∈ [a + λ, b − λ] for all i ∈ N. Let

z = (zi)
∞
i=1 ∈ λS`∞ be such that zk ≥ 11

12
λ for some k ∈ N. By virtue of the

assumption (3.6), we can write∫ 1

0

ϕk (Df(x+ tz)[z]) d t = ϕk(f(x+ z))− ϕk(f(x))

≥ ϕk(f(x+ z))− ϕk(f(x+ z − zkek)−
∆

16

=

∫ 1

0

ϕk(Df(x+ z − zkek + tzkek)[zkek]) d t− ∆

16
.

Denote y(t) = x+ z − zkek + tzkek. Since y(t)i ∈ [a, b] for every i ∈ N and every
t ∈ [0, 1], (3.8) implies that

ϕk (Df(x+ z − zkek + tzkek)[zkek]) ≥
3

4
zk.
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Therefore there exists an s ∈ [0, 1] satisfying that

ϕk (Df(x+ sz)[z]) ≥ 3

4
zk −

∆

16
.

Finally, as

‖Df(x)−Df(x+ sz)‖ ≤ ω

(
∆

5

)
≤ 1

16C
,

we obtain that

ϕk(Df(x)[z]) ≥ ϕk (Df(x+ sz)[z])− λ

16

≥ 3

4
zk −

∆

16
− λ

16

≥ 11

16
λ− ∆

16
− λ

16
=

∆

16
.

Now take any z ∈ `∞ and choose k ∈ N so that |zk| ≥ 11
12
‖z‖. Then

‖Df(x)[z]‖ ≥ 1

‖ϕk‖

∣∣∣∣ϕk (Df(x)

[
sgn(zk)λ

z

‖z‖

])∣∣∣∣ 1

λ
‖z‖ ≥ 5

16C
‖z‖.

So, Df(x) is an isomorphism and the proof of the theorem is finished.

As a corollary, it follows that there does not exist any uniformly differentiable
mapping from `∞ into c0 which fixes the basis. This generalises the classical theo-
rem of Phillips which claims that c0 is not complemented in `∞ (see [5, Theorem
5.6]).

In view of Corollary 3.2.4, Theorem 3.2.3 below can be seen as a vector version
of Lemma 6.27 from [10], which played a crucial role in the previous proof. We
obtain it from Theorem 3.2.1 by applying the ultrapower construction.

We now recall the notion of ultrapower following Section 4.1 of [10]. Let X be
a Banach space and let `∞(N;X) be the Banach space

{(xn)∞n=1, xn ∈ X, sup{‖xn‖, n ∈ N} <∞}

with the norm given by sup{‖xn‖, n ∈ N}. If U is an ultrafilter on N, we define
the ultrapower of X as the quotient space

(X)U = `∞(N;X)
/{

(xn)∞n=1 ∈ `∞(N;X), lim
U
‖xn‖ = 0

}
endowed with the canonical quotient norm. Here limU ‖xn‖ ∈ R is the limit with
respect to the ultrafilter U . Then, (X)U is a Banach space and ‖(xn)U‖ = limU ‖xn‖
for every (xn)U ∈ (X)U represented by (xn)∞n=1 ∈ `∞(N;X).

Here comes the finite-dimensional result.

Theorem 3.2.3. For each ω ∈ M with ω(1) < ∞, L > 0, m ∈ N and ε > 0,
there is N(ω, L,m, ε) ∈ N such that if n ≥ N(ω, L,m, ε), Y is a separable Banach
space and f ∈ C1,+(B`n∞ ;Y ) is an L-Lipschitz mapping whose derivative Df has
modulus of continuity ω and for which ‖f(ei)− f(ej)‖ ≥ ε for all i, j ∈ {1, . . . , n},
i 6= j, then there exists J ⊂ {1, . . . , n} with card(J ) = m and x ∈ `n∞ such that
Df(x)|span{ej ,j∈J} is an isomorphism.
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Proof. Let ω ∈ M be finite at 1, let L > 0, m ∈ N and ε > 0. Suppose that
(fn)∞n=1 is a sequence of mappings such that for every n ∈ N, fn ∈ C1,+(B`n∞ ;Yn) for
some separable Banach space Yn, fn is L-Lipschitz, fn(0) = 0, Dfn has modulus
of continuity ω, and ‖fn(ei)− fn(ej)‖ ≥ ε for each i, j ∈ {1, . . . , n}, i 6= j. We
show that then there exists n0 ∈ N, a set J ⊂ {1, . . . , n0} of cardinality m and a
point x ∈ `n0

∞ such that Dfn0(x)|span{ej ,j∈J} is an isomorphism. Since (fn)∞n=1 is
an arbitrary sequence with the listed properties, the statement of the theorem
follows.

We may regard all fn’s as mappings from B`∞ into `∞ by composing with the
projections Pn : `∞ → `n∞ given by Pn ((xi)

∞
i=1) = (xi)

n
i=1 and by identifying Yn

with a subspace of `∞. Let U be a free ultrafilter on N. We can define a mapping
f : B`∞ → (`∞)U by

f (x) = (fn(x))U

for x ∈ B`∞ . Since the mappings fn are equi-Lipschitz, f is well-defined.
Moreover, f ∈ C1,+(B`∞ ; (`∞)U). Indeed, Corollary 1.99 in [10] says in particu-

lar that

‖g(x+ u)− g(x)−Dg(x)[u]‖ ≤ supt∈[0,1] ‖Dg(x+ tu)−Dg(x)‖‖u‖

for every g ∈ C1(U ;Y ), where U is an open convex subset of a Banach space
X and Y is a Banach space, and for every x ∈ U and every u ∈ X such that
x+ u ∈ U . Applying it to the functions fn, we obtain that∥∥fn(x+ u)− fn(x)−Dfn(x)[u]

∥∥ ≤ ω(‖u‖) ‖u‖ (3.9)

for every x ∈ U`∞ and u ∈ `∞ such that x + u ∈ U`∞ , and every n ∈ N. Take
x ∈ U`∞ . Define S : `∞ → (`∞)U by S(u) =

(
Dfn(x)[u]

)
U for u ∈ `∞. It is easy

to see that S is a bounded linear operator from `∞ into (`∞)U . Let u ∈ `∞ be
such that x+ u ∈ U`∞ . Then by (3.9),

‖f(x+ u)− f(x)− S(u)‖ =
∥∥(fn(x+ u)− fn(x)−Dfn(x)[u]

)
U

∥∥
≤ ω(‖u‖) ‖u‖ .

From Theorem 1.114 in [10] it follows that f ∈ C1,+(B`∞ ; (`∞)U) and that the
modulus of continuity of Df is τω for some constant τ ≥ 1.

Besides, {f(ek), k ∈ N} is not relatively compact in (`∞)U as

‖f(ek)− f(el)‖ = ‖(fn(ek)− fn(el))U‖ ≥ ε

for all k, l ∈ N, k 6= l.
So, we can apply Theorem 3.2.1 to the mapping f . We obtain an infinite

set K of natural numbers and a point x ∈ U`∞ such that supp(x) = K and that
Df(x)|Z , where Z = {z ∈ `∞, supp(z) ⊂ K}, is an isomorphism. From the proof
of Theorem 3.2.1 it follows that there exists ξ ≥ 5

32
ε such that ‖Df(x)[z]‖ ≥ ξ‖z‖

for every z ∈ Z. Denote J ⊂ K the set of the first m elements of K.
If ζ > 0 satisfies that ω(ζ) < ξ

4τ
and that x + ζB`∞ ⊂ U`∞ and if u ∈ ζSZ ,

then by Corollary 1.99 in [10],

‖f(x+ u)− f(x)‖ ≥ ‖Df(x)[u]‖ − τω(‖u‖)‖u‖ ≥ (ξ − τω(ζ))ζ >
3

4
ξζ.
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Choose q ∈ N so that 1
q
< ξ

4L
. Denote

Q =

{∑
j∈J

σjβjej, σj ∈ {−1, 1} and βj ∈
{

0,
1

q
ζ, . . . ,

q − 1

q
ζ, ζ

}
for all j ∈ J

}
.

For each v ∈ Q ∩ ζSZ , the set

Nv =

{
n ∈ N, ‖fn(x+ v)− fn(x)‖ > 3

4
ξζ

}
belongs to the ultrafilter U . Therefore the intersection

⋂
v∈Q∩ζSZ Nv is an infinite

set. Take n0 ∈
⋂
v∈Q∩ζSZ Nv such that n0 ≥ maxJ . Then, given u ∈ ζSspan{ej ,j∈J},

we find v ∈ Q ∩ ζSZ so that ‖u− v‖ ≤ 1
q
ζ and obtain that

‖fn0(x+ u)− fn0(x)‖ ≥ ‖fn0 (x+ v)− fn0(x)‖ − ‖fn0(x+ u)− fn0 (x+ v)‖

>
3

4
ξζ − L1

q
ζ >

1

2
ξζ.

In view of the Corollary 1.99 in [10] again, for u ∈ ζSspan{ej ,j∈J} we have that

‖Dfn0(x)[u]‖ ≥ ‖fn0(x+ u)− fn0(x)‖ − ω(ζ)ζ >
1

2
ξζ − 1

4τ
ξζ ≥ 1

4
ξζ ≥ 5

128
εζ.

Hence, Dfn0(x)|span{ej ,j∈J} is an isomorphism. This finishes the proof.

We conclude by deriving a corollary that witnesses the relation between just
proved Theorem 3.2.3 and Lemma 6.27 in [10].

Corollary 3.2.4. Let ω ∈M with ω(1) <∞, L > 0, ε > 0 and let Y be a Banach
space with non-trivial cotype. Then there is an N(ω, L, ε, Y ) ∈ N such that if
n ≥ N(ω, L, ε, Y ) and if f ∈ C1,+(B`n∞ ;Y ) is an L−Lipschitz mapping whose
derivative Df has modulus of continuity ω, then there exist i, j ∈ {1, . . . , n},
i 6= j, for which ‖f(ei)− f(ej)‖ < ε.

Proof. Suppose that the statement does not hold. Then for every m ∈ N there
is n ≥ N(ω, L,m, ε), where N(ω, L,m, ε) is the constant obtained in Theorem
3.2.3, and there is f ∈ C1,+(B`n∞ ;Y ) which is L−Lipschitz and such that its
derivative Df has modulus of continuity ω and that ‖f(ei)− f(ej)‖ ≥ ε for all
i, j ∈ {1, . . . , n}, i 6= j. So, according to Theorem 3.2.3, Y contains a subspace
Ym isomorphic to `m∞. Moreover, from the proof of Theorem 3.2.3 it follows that
d(Ym, `

m
∞) ≤ C(ω, L, ε), where d(Ym, `

m
∞) is the Banach-Mazur distance of Ym and

`m∞ and C(ω, L, ε) is a constant which depends on ω, L, ε but does not depend on
m. This is by Maurey and Pisier’s characterization [18] a contradiction with the
non-trivial cotype of Y .
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