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1. Introduction

The development of computers since the middle of the last century allows their

gradual integration into the problems of aerodynamics. Before the arrival of

sufficiently powerful computers, a wind tunnel or knowledge gained from practical

tests had been a major source of information. Of course, these experiments were

supported by various theoretical models used to understand the principles of the

fluid flow. The Navier-Stokes equations describing the flow of viscous fluids, which

we still come out from, were derived in the original form already in 1822. The

Euler equations for an ideal fluid were derived even a century before. However,

their complexity did not allow their direct use in solving general problems of

aerodynamics. From these reasons, simplified flow models, which could be solved

analytically if possible, were developed.

Only with the increase in computational power, it was possible to solve these

equations numerically. A new field called Computational Fluid Dynamics, CFD,

was established. Step by step, numerical simulations of the flow began to be

applied and they allowed obtaining new ideas about the complexity of the flow.

Their development still continues as computers are faster and faster. And also

the quality of the methods is improving. They became an equivalent variant to

experimental measurements and in some cases even replaced them. However, the

need for a comparison of the obtained results with experimental data is still here.

The development of numerical methods is also reflected in the design of airfoils.

Previously, individual shapes had to be tested in a wind tunnel and on the basis

of measurements of pressure and forces acting on the airfoil and using a flow

visualization, convenient designs were selected. This meant a real manufacture

of experimental airfoils and therefore from the financial and time reasons, it was

possible to test only a few candidates. Today, this process can be replaced just

by numerical simulations. This eliminates the consuming production of many

modified airfoils and also the preparation of their measurements. Using the speed

of computers, much more designs can be tested during the same time. The

experimental verification is thus left only for promising candidates.

The problem of an aerodynamic design can be hold from two different per-

spectives. One is a shape optimization, when we require achievement of optimal

values of variables describing the performance of an airfoil. The second way is to

find a shape of an airfoil which corresponds to predetermined properties. This

approach is called an inverse problem.

In the case of the shape optimization, an initial shape is iteratively changed

to achieve the desired improvements. These may be for example a reduction of

the drag coefficient while maintaining the constant lift coefficient. To do this it

is necessary to add some constraints on the geometry, such as a minimum and

maximum thickness of the final airfoil. Otherwise an infeasible shape could be

obtained. A shape optimization uses various optimization algorithms to search

through the design space, such as gradient-based methods, simplex methods,
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genetic algorithms or other techniques. These algorithms usually require large

number of evaluating of airfoil characteristics, i.e. evaluations of the flow. In the

case of more complex CFD models, it leads to a large time demands. In addition,

for most of these algorithms it is not guaranteed they find the global optimum.

For a shape optimization it is also extremely important to choose the right cost

function or optimization criteria. Their determination usually requires some expe-

rience from previous similar problems. As shown for example in [1], a single-point

optimization can indeed improve the performance for the selected flow regime,

but for other regimes may be considerably worse. To overcome this drawback,

a multipoint optimization can be involved, which requires meeting optimization

criteria for multiple regimes. However, this may lead to a slower convergence and

also when given mutually incompatible criteria, it may result in an unaccept-

able shape of the airfoil. On the other hand, if the optimization problem is well

defined, the resulting airfoil has better properties than the original shape.

1.1 Inverse problem

In the case of an inverse problem we are trying to find a shape of an airfoil that

corresponds to some prescribed requirements. These requirements are usually

a given velocity or pressure distribution along the surface of the airfoil. Then

using iterative methods a new shape is searched for, which corresponds to this

distribution. Most of inverse methods use some relationship between a shape and

the corresponding distribution which specifies the further changes of the shape.

In the result, much less computations of the flow are required than in the case

of a shape optimization which searches through the entire design space. That

means a reduction of the time consumption.

The main problem of inverse methods is determining the desired distribution

of velocity or pressure. Although when using optimization methods the opti-

mization criteria must be correctly specified, their determining is still easier. The

prescribed distribution must agree to required properties of the new airfoil and

that requires some previous experience in this field. In addition, it is difficult

to determine in advance whether for the chosen distribution an appropriate air-

foil shape exists or whether it has reasonable geometric properties. The inverse

problems are often ill-posed. More preferred than design an entirely new velocity

or pressure distribution is to come out from an already known distribution of

an existing airfoil. Then using appropriate adjustments, for example using an

optimization process, a new shape with enhanced performance is obtained.

First attempts to solve an inverse problem of a flow around an airfoil were

based on a solution of potential flow using a conformal mapping, where the shape

of the airfoil was transformed into a unit circle and using a complex analysis a

problem for a velocity potential was solved. With a convenient formulation of

Theodorsen [2] this method could be rewritten for the purpose of the inverse

method. For example, some NACA airfoils [3] were designed on that basis. The
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method was further developed by many authors, including Lighthill [4], who

showed in his work that the prescribed velocity or pressure distribution cannot

be completely arbitrary. He derived three integral conditions to ensure the uni-

formity of the free stream and that the corresponding airfoil will be of a closed

shape.

In the following time, more sophisticated methods appeared such as Takanashi

[5] using the approach of a predictor/corrector type, which is based on the differ-

ence between the specified and calculated distribution that determines the way

the geometry is modified. The correction is defined by the solution of the Dirich-

let boundary value problem which is solved by using a transonic integral equation

method. Takanashi used a three-dimensional full potential equation written in

a form for a perturbation velocity potential. The method is thus able to design

airfoils in a transonic regime. A quite similar method was suggested by Campbell

and Smith [6].

A possible disadvantage of some inverse methods is that they are single-point.

This means that the shape corresponds to a given distribution for a particular

angle of attack. In practice, however, operation in a wider range of angles is

usually required. We thus have the same problem as the single-point optimiza-

tion tasks, for which the performance in an off-design regime can degrade. This

fact should be taken into account and it is recommended to analyse the resulting

design. Some inverse methods are therefore trying to do a multi-point design,

e.g. Eppler [7]. In this particular case, the surface of the airfoil is divided in-

to several parts on which individual distributions for different angles of attack

are prescribed. Also mixed methods were derived, which combine already given

parts of the airfoil along with parts that are designed using the specified velocity

distribution, such as proposed by Drela [8].

An another approach for solving inverse problems suggested Garabedian and

McFadden [9]. In this method, the change of airfoil coordinates is determined

by using a differential equation based on the difference between the current and

target pressure. At the end of the last century the inverse problem started to

be also combined with minimization algorithms, such as control theory [10] using

gradient methods or even methods using genetic algorithms, which can provide

a very comprehensive shape design. However, genetic algorithms, for example,

are very time consuming, especially when combined with CFD methods, and so

they should be used only when it is really needed. From the newer methods it is

possible to mention the method of constrained direct iterative surface curvature

(CDISC) by Campbell [11].

1.2 Presented method

The method described in this work is intended to solve an inverse problem of

a subsonic flow. Like other inverse methods, it uses the difference between the

calculated and the target distribution of velocity or pressure to identify further
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changes. The main idea is to derive an approximate inverse operator that assigns

to a given distribution a corresponding shape of the airfoil. Because this inversion

is based on a simplified flow model, the resulting shape does not completely

comply with the required properties. Therefore, using an iterative process, the

whole procedure is repeated until a correct result is achieved. A parameter that

controls the shape of the airfoil is thus a so-called fictitious distribution of velocity

or pressure.

The method consists of two main parts, an approximate inverse operator and

direct operator that evaluates the velocity/pressure distribution along the airfoil

surface. The advantage is that these two operators are independent and it is

thus possible to consider different flow models according to our needs. Thus, we

can solve the problem for incompressible potential flow or an improved model for

compressible viscous flow with a turbulence model.

The initial principle of this method was proposed in a work by Pelant [12].

Later, the author of this thesis adapted this method for solving incompressible

and compressible flow in the master thesis [13]. The method in that formulation

allowed the design of symmetric and asymmetric airfoils for a potential flow and

of symmetric airfoils for a compressible inviscid flow described by the Euler equa-

tions [14]. The main problem was in the coupling of the inverse operator with the

angle of attack. The direct operator was later modified to allow determination

of the suitable angle of attack and thus to be able to design asymmetric airfoils

[15]. Modification of the approximate inverse operator in such a way that it al-

lowed design from a specified pressure distribution, made us possible to deal with

problems of viscous laminar flow [16] and finally using a suitable model to solve

turbulent flow problems [17].

This thesis summarizes and extends results obtained so far on this method.

It allows us to solve inverse problems of a flow around an airfoil for subsonic

turbulent flow. By eliminating somewhat restrictive conditions on the angle of

attack, we can prescribe a pressure or velocity distribution for the selected angle

of attack, as shown in the practical part.
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2. Solution of the flow

The crucial part in the mentioned inverse design method is the prediction of the

flow on the modelled surface. Based on these values, parameters describing the

quality of the resulting airfoil can be evaluated. The expected properties of the

method are reliability, robustness and speed.

2.1 Potential flow

The simplest model of a flow that can be used for our purposes, is a potential

flow model. This model represents a very simplified description of a steady in-

compressible flow where the fluid viscosity is neglected. Another characteristic

of this model is the neglecting of the vorticity. It is clear that this model is able

to describe the physical nature of the air flow around an airfoil only to a limited

extent. Under the assumption of the incompressibility it is applicable mainly to

lower speed flows. In practice, there is usually stated a limit of the airflow to

the free stream Mach number M∞ = 0.3 up to which the model gives adequate

results. The Mach number is the ratio of the local speed and the local speed of

sound. This means, in its basic form, it is impossible to detect density changes

such as shock waves. Moreover, the assumption of zero viscosity leads to entirely

neglect the boundary layer, which influences the estimate of the drag of the air-

foil. Also, the flow separation cannot be captured. From these reasons, the basic

model was extended by many authors. In the literature, there can be found all

sorts of modifications and corrections using additional equations which can more

or less reliably capture these phenomena. The potential flow model is used for

example by the software XFOIL by M. Drela [18], which is aimed at the analysis

and design of subsonic isolated airfoils. It uses the panel method to simulate

the inviscid flow and an integral boundary layer formulation to capture viscous

effects on the airfoil surface.

On the other hand, the advantage of this model is its simplicity. The potential

flow model allows us to obtain solutions in much less time than the commonly

used more complex models. Therefore, in some cases it may happen that this

model is the best candidate to use. A typical example is a task of optimization

when it is necessary to test a large number of designed candidates and the time

saving is more than welcome.

2.1.1 Solution using a Fredholm integral equation

Our goal is to determine a velocity field v = (vx, vy) in an area around a given

airfoil. Suppose that at a sufficient distance from the given airfoil, the flow is

unaffected by this airfoil and therefore the velocity vector could be considered as

a constant. Let us denote it as v∞. This free stream velocity, as we call it, can
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also be written in the form

v∞ = v∞ (cosα∞, sinα∞) , (2.1.1)

where the symbol α∞ is the angle of attack of the airfoil.

Due to finding the solution, we convert our problem into the field of complex

numbers. A complex number z is typically defined as z = x + iy. The real and

imaginary part of z are denoted by Re(z) and Im(z). The set of all complex

numbers will be denoted by C and the closed complex plane will be denoted

as S = C ∪ {∞}. The airfoil exposed to the flow is represented by a complex-

valued curve ψ : R → C, ψ(t) = ψ1(t) + iψ2(t) for t ∈ [0, d]. The symbol d

is the length of ψ. About this curve, we assume that it is a closed positively

oriented (counterclockwise) Jordan curve. The image of this curve is denoted by

〈ψ〉 = {ψ(t); t ∈ [0, d]}. Further assume that it is continuous up to the second

order derivatives including the curve endpoints. The domain of the flow is then

the exterior of the curve, i.e. Ω = Extψ. Further, we will define the complex-

valued function σ(z) on 〈ψ〉 such that

σ (ψ (t)) = ψ′(t), ∀t ∈ [0, d] . (2.1.2)

Due to the choice of parametrization of the curve it is necessarily true that

|ψ′(t)| = 1.

By converting the velocity vectors v and v∞ into the complex field we obtain

complex-valued velocity functions

F (z) = vx(x, y)− ivy(x, y), z ∈ Ω, (2.1.3)

w∞ = v∞ cosα∞ − iv∞ sinα∞. (2.1.4)

According to our assumptions that we put on the flow, the following relationships

derived from the continuity equation and the condition for an irrotational flow

are true,

∂vx
∂x

+
∂vy
∂y

= 0, (2.1.5)

∂vy
∂x

− ∂vx
∂y

= 0, in Ω. (2.1.6)

Hence F is necessarily a holomorphic function in Ω (because the so-called Cauchy-

Riemann conditions are satisfied) and it is also continuous on Ω = Ω ∪ 〈ψ〉.
For the next steps we will need the following definition:

Definition. We define a set H(µ,D) of complex-valued functions defined on a

subset D ⊂ C such that for every ϕ ∈ H(µ,D), µ > 0 the following is true:

(∃A > 0) (∀z, z0 ∈ D) (|ϕ(z)− ϕ(z0)| ≤ A |z − z0|µ) .

The set H(D) =
⋃

µ∈(0,1]H(µ,D) is called a class of Hölder’s functions.
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The problem we need to solve can be formulated:

Find a function F defined on Ω, satisfying the following conditions:

F is continuous on Ω, (2.1.7)

F is holomorphic on Ω, (2.1.8)

F |〈ψ〉 ∈ H(〈ψ〉), (2.1.9)

F (∞) = w∞, (2.1.10)

Im (F (z)σ(z)) = 0 on 〈ψ〉 . (2.1.11)

The condition (2.1.11) says that the velocity in the normal direction to the airfoil

is zero.

Due the validity of the conditions (2.1.7) and (2.1.8), this function can be

written according to [19] in the form

F (ζ) = F (∞)− 1

2πi

∫

ψ

F (z)

z − ζ
dz, ζ ∈ Ω. (2.1.12)

Further it is possible to introduce a function f defined on 〈ψ〉 which represents

the tangential component of the velocity on the airfoil. This function satisfies

f(z) = F (z)σ(z), z ∈ 〈ψ〉 due to the condition (2.1.11). We require that this

function is real-valued and also f ∈ H(〈ψ〉). In addition, if this function satisfies

that

lim
ζ→z0

(

w∞ − 1

2πi

∫

ψ

f(z)

σ(z)(z − ζ)
dz

)

=
f(z0)

σ(z0)
(2.1.13)

for ζ ∈ Ω, z0 ∈ 〈ψ〉, it is possible to extend the function F defined by (2.1.12)

onto the closure of the domain Ω as follows,

F (ζ) =

{

w∞ − 1
2πi

∫

ψ
f(z)

σ(z)(z−ζ)
dz in Ω,

f(ζ)
σ(ζ)

on 〈ψ〉 . (2.1.14)

The function F defined in this way will necessarily satisfy the given conditions

(2.1.7)–(2.1.11). The flow field in the whole region Ω is thus determined only by

the velocity distribution on the airfoil and by the free-stream velocity.

To continue, we need the following statement from [20]:

Theorem 1. Let ψ be a smooth positively oriented Jordan curve and z0 ∈ 〈ψ〉.
Let ϕ ∈ H(〈ψ〉) be a function defined on the curve ψ. Then the Cauchy type

integral

H(ζ) =
1

2πi

∫

ψ

ϕ(z)

z − ζ
dz, ζ ∈ C− 〈ψ〉

has the limits

H i(z0) = lim
ζ→z0
ζ∈Intψ

H(ζ) =
1

2
ϕ(z0) +

1

2πi

∫

ψ

ϕ(z)

z − z0
dz

and

He(z0) = lim
ζ→z0
ζ∈Extψ

H(ζ) = −1

2
ϕ(z0) +

1

2πi

∫

ψ

ϕ(z)

z − z0
dz.
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The Cauchy type integrals are considered in the sense of the Cauchy principal

value:

(PV )

∫

ψ

ϕ(z)

z − ζ
dz = lim

ǫ→0

∫

ψ−B(ζ,ǫ)

ϕ(z)

z − ζ
dz, ζ ∈ 〈ψ〉 , (2.1.15)

where B(ζ, ǫ) = {z ∈ C; ‖z − ζ‖ ≤ ǫ}. If the integral exists in the usual sense,

then its value equals the principal value. From this reason we will omit the (PV )

notation.

According to this theorem, it is possible to take the limit in the condition

(2.1.13). Thus, we obtain the condition

f(z0) +
1

πi

∫

ψ

f(z)

σ(z)

σ(z0)

z − z0
dz = 2σ(z0)w∞, z0 ∈ 〈ψ〉 . (2.1.16)

This equation for the unknown function f can be split in the real and imagi-

nary part. It can be proven that f is the solution of the real part of the equation

if and only if f is the solution of the imaginary part (see [21]). Therefore it is

quite sufficient to be concerned further only with the real part

f(ψ(τ)) +
1

π

∫ d

0

Im

(

ψ′(τ)

ψ(t)− ψ(τ)

)

f (ψ(t)) dt = Re
(

2w∞ψ
′(τ)
)

, τ ∈ [0, d] .

(2.1.17)

This equation is the Fredholm integral equation of the second kind with the

continuous kernel. The imaginary part forms the Fredholm integral equation of

the first kind, which is more difficult to solve. With this step we moved back into

the field of real numbers.

The solution of the equation (2.1.17) can be written in the form f = f0+αf1,

where f0 is a particular solution to this equation, f1 is a non-zero solution of

the corresponding homogeneous equation and α is a real parameter. From this

it also follows that the solution under the given conditions (2.1.7)–(2.1.11) is not

unique. To achieve uniqueness it still needs to add some additional condition.

One possibility, which is based on natural requirements for the flow around an

airfoil, is a condition prescribing circulation,

Re

(
∫

ψ

F (z)dz

)

=

∫ d

0

f (ψ(t)) dt = Γ, Γ ∈ R. (2.1.18)

The value of this parameter Γ will be determined later in Section 2.1.3.

2.1.2 Potential of the velocity

Since the function F defined by (2.1.14) is continuous in Ω and holomorphic in

Ω, there is a complex function Φc defined on Ω such that Φ′
c(ζ) = F (ζ). This

primitive function to F is called a potential to the velocity. Because of the

properties of primitive functions, it follows that

Φc(z2)− Φc(z1) =

∫

ψz1,z2

F (z)dz =

∫ b

a

F (ψ(t))σ(ψ(t))dt (2.1.19)
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for arbitrary two points z1, z2 ∈ 〈ψ〉, z1 = ψ(a), z2 = ψ(b). As a result of the

condition (2.1.11) we get Im (Φc(z)) = const. on 〈ψ〉. Therefore,

dRe (Φc(ψ(t)))

dt
= f(ψ(t)). (2.1.20)

In other words, the velocity distribution on the airfoil is determined by the real

part of the complex-valued potential Φc. In the following we will denote this real

part by the symbol Φ.

The potential Φc can also be expressed as

Φc(ζ) = w∞ζ +
1

2πi

∫

ψ

F (z) log(z − ζ)dz. (2.1.21)

Since the logarithm of a complex number can be written as log(z) = ln |z| +
i arg(z), where the function arg denotes the argument (angle) of a complex num-

ber, the real part of the potential can be expressed as

Φ(ζ) = Re (w∞ζ) +
1

2π

∫ d

0

f(ψ(t)) arg (ψ(t)− ζ) dt, ζ ∈ Ω. (2.1.22)

Now it is better to stop here for a moment. The complex-valued logarithm is

generally defined as a set logw = {z ∈ C; w = exp z}. It is clear that for given

w it yields infinitely many values, each differing by multiples of 2πi. This is why

the principal value of the complex-valued logarithm is usually defined: logw =

{z = x+ iy; x ∈ R, y ∈ (−π, π] , w = exp z}. The function arg (ψ(t)− ζ) in a

variable t is generally discontinuous and may contain jumps. Nevertheless, it is

relatively easy to overcome this problem with a suitable choice of the logarithm

values and hence consider it as a continuous function of t ∈ [0, d].

The integral in equation (2.1.22) can be reformulated by the use of the per-

partes method,

∫ d

0

f(ψ(t)) arg (ψ(t)− ζ) dt =
(

Φ(ψ(d))− Φ(ψ(0))
)

arg (ψ(0)− ζ)

−
∫ d

0

(

Φ(ψ(t))
d arg (ψ(t)− ζ)

dt

)

dt (2.1.23)

and further by the limit to the airfoil,

Φ(ψ(τ)) = 2Re (w∞ψ(τ)) +
1

π
Γ arg (ψ(0)− ψ(τ))

− 1

π

∫ d

0

(

Φ(ψ(t))
d arg (ψ(t)− ψ(τ))

dt

)

dt, τ ∈ [0, d] . (2.1.24)

The circulation Γ =
(

Φ(ψ(d)) − Φ(ψ(0))
)

fully complies with the previously

specified condition (2.1.18). Due to the continuity of the second derivative ψ′′(τ),

the derivative
d arg (ψ(t)− ψ(τ))

dt
=

1

2
Im

(

ψ′′(t)

ψ′(t)

)

(2.1.25)
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is also continuous. The solution of the equation (2.1.24) is again unique.

The function arg(ψ(t)−ψ(τ)) is continuous on the set [0, d]× [0, d] except the

points t = τ . At these points the function has a jump of size −π. Therefore, the
continuous kernel of the integral equation is defined as

K
(

ψ(t), ψ(τ)
)

=



































































































1

π
arg
(

ψ(t)− ψ(τ)
) for t < τ, t, τ ∈ [0, d),

or τ = d, t ∈ (0, d),

lim
τ1→0+
τ2→d−

1

π
arg
(

ψ(τ1)− ψ(τ2)
)

for t = 0, τ = d,

1

π
arg
(

ψ(t)− ψ(τ)
)

+ 1
for t > τ, t, τ ∈ (0, d],

or τ = 0, t ∈ (0, d),

lim
τ1→d−
τ2→0+

1

π
arg
(

ψ(τ1)− ψ(τ2)
)

+ 1 for t = d, τ = 0,

lim
τ1→τ−

1

π
arg
(

ψ(τ1)− ψ(τ)
)

for t = τ ∈ (0, d],

lim
τ2→0+

1

π
arg
(

ψ(0)− ψ(τ2)
)

for t = τ = 0.

(2.1.26)

It is obvious that

dK(ψ(t), ψ(τ))

dt
=

1

π

d arg(ψ(t)− ψ(τ))

dt
. (2.1.27)

The solution of the equation (2.1.24) for the unknown velocity potential Φ on

the airfoil can be written by the superposition of potentials in the form

Φ(ψ(τ)) = Φx(ψ(τ))v∞ cosα∞ + Φy(ψ(τ))v∞ sinα∞ + ΓΦΓ(ψ(τ)) (2.1.28)

using the fact that the complex-valued velocity at infinity is given by (2.1.4).

The respective equations for solving the individual components have the form

Φx(ψ(τ)) = 2Re (ψ(τ))−
∫ d

0

(

Φx(ψ(t))
dK(ψ(t), ψ(τ))

dt

)

dt, (2.1.29)

Φy(ψ(τ)) = 2 Im (ψ(τ))−
∫ d

0

(

Φy(ψ(t))
dK(ψ(t), ψ(τ))

dt

)

dt, (2.1.30)

ΦΓ(ψ(τ)) = K(ψ(0), ψ(τ))−
∫ d

0

(

ΦΓ(ψ(t))
dK(ψ(t), ψ(τ))

dt

)

dt. (2.1.31)

Meaning of these components is such that the first one represents a velocity

potential for a unit velocity of the free stream in the direction of the axis x, the

next one for a unit velocity in the direction of the axis y and finally the last

component is a velocity potential for a zero velocity of the free stream and with

the unit circulation.

In the text above, the solution of the velocity potential on a given airfoil

using Fredholm integral equations was briefly derived. In the next section, the

numerical method of finding the solution will be shown.
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2.1.3 Computation of the solution

In the previous section, integral equations for the velocity potential on the spec-

ified airfoil were derived. Now it is needed to show how these equations can be

effectively solved. To establish a method for finding the numerical solution, it is

convenient to rewrite the equations in a vector form

Φ(ψ(τ)) = p(τ)−
∫ d

0

(

Φ(ψ(t))
dK(ψ(t), ψ(τ))

dt

)

dt, τ ∈ [0, d] , (2.1.32)

where the vectors have components

Φ(ψ(τ)) =
(

Φx(ψ(τ)),Φy(ψ(τ)),ΦΓ(ψ(τ))
)T
, (2.1.33)

p(τ) = (2Re(ψ(τ)), 2 Im(ψ(τ)), K(ψ(0), ψ(τ)))T . (2.1.34)

The easiest way how to evaluate the integral contained in this equation is

the application of a quadrature formula. First, we choose m+ 1 points from the

interval [0, d], where m ∈ N is an even number. These points will be denoted by

0 = t′0 < t′1 < . . . < t′m = d. Then the integral in (2.1.32) can be approximated

by the sum

∫ d

0

(

Φ(ψ(t))
dK(ψ(t), ψ(τ))

dt

)

dt ≈
m−1
∑

e=1
e is odd

Φ(ψ(t′e))

∫ t′e+1

t′e−1

(

dK(ψ(t), ψ(τ))

dt

)

dt =

=
m−1
∑

e=1
e is odd

Φ(ψ(t′e))∆e(τ), (2.1.35)

where ∆e(τ) = K(ψ(t′e+1), ψ(τ))−K(ψ(t′e−1), ψ(τ)).

If we now denote

φi = Φ(ψ(t′i)), (2.1.36)

pi = p(t′i), (2.1.37)

∆e,i = ∆e(t
′
i) for e 6= i, (2.1.38)

∆i,i = ∆i(t
′
i) + 1, (2.1.39)

then it is possible to convert the integral equation (2.1.32) into a system of linear

algebraic equations. This will be achieved by substituting for τ = t′1, t
′
3, . . . , t

′
m−1,

so we get a system for a total of m/2 unknowns φi. The system has the form

m−1
∑

e=1
e is odd

φe∆e,i = pi, i = 1, 3, . . . , m− 1. (2.1.40)

Solving this system, we get values of individual components of the velocity

potential at the airfoil points ψ(t′1), ψ(t
′
3), . . . , ψ(t

′
m−1). Because of the potential

properties (2.1.20), the sought velocity distribution f on the surface of the airfoil

is obtained by the differentiation of the individual components of Φx, Φy, ΦΓ with
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respect to the variable t (i.e. dΦx/dt = fx, dΦy/dt = f y, dΦΓ/dt = fΓ). Putting

them together, we get

f(ψ(t)) = fx(ψ(t))v∞ cosα∞ + f y(ψ(t))v∞ sinα∞ + ΓfΓ(ψ(t)), (2.1.41)

where t ∈ [0, d].

From this equation it is clear that the magnitude of the velocity on the airfoil

depends among other on the size and direction of the free stream velocity and

also on the circulation Γ. Free stream parameters are the part of the assignment,

it remains to determine the parameter Γ. Its determination is related to the

geometrical shape of the airfoil, because the circulation determines the position

of stagnation points. For a completely natural condition it can be set that the

stagnation point is located on the trailing edge of the airfoil. In the case that the

ending points of the curve ψ are located on the trailing edge, we are interested in

the point ψ(0). In the case of an airfoil with a rounded trailing edge we require

that f(ψ(0)) = 0, in the case of an airfoil with a sharp trailing edge that the

velocity at this point is bounded (finite). This condition is called the Kutta

condition.

Under this condition, the following relationship can be derived for the circu-

lation Γ:

Γ = −v∞
(

fx(ψ(t′1)) + fx(ψ(t′m−1))
)

cosα∞ +
(

f y(ψ(t′1)) + f y(ψ(t′m−1))
)

sinα∞

fΓ(ψ(t′1)) + fΓ(ψ(t′m−1))
,

(2.1.42)

which ensures the correct position of the stagnation point.

The coordinates of the airfoil ψ in the R2-plane are given by ψ1(t) and ψ2(t),

t ∈ [0, d]. For the purpose of the inverse design method, we suppose that the

chord line of the airfoil lies on the x-axis and that the leading edge is situated in

the origin. That means ψ(t0) = 0 for some t0 ∈ (0, d) and this point divides the

airfoil into the upper and lower part. The length of the chord line will be denoted

by C (i.e. ψ(0) = ψ(d) = C). We define two functions fu, fl : [0, C] → R such

that

fu(ψ1(t)) = f(ψ(t)) for t ∈ [0, t0] , (2.1.43)

fl(ψ1(t)) = f(ψ(t)) for t ∈ [t0, d] . (2.1.44)

The absolute values |fu|, |fl| will be called a velocity distribution on the upper

and lower part of the airfoil. We can similarly define fxu , f
x
l , f

y
u , f

y
l , f

Γ
u , f

Γ
l . The

procedure described in this section that assigns the velocity distribution to the

airfoil ψ is called the direct operator P.

Examples of individual particular solutions to the NACA0012 airfoil are shown

in Figure 2.1. Composing them according to the formula (2.1.41), it is possible

to get the velocity distributions on the airfoil for different angles of attack and

free stream velocity. Comparison of the obtained results with the results of the

compressible inviscid flow model (see Section 2.2) is in Figure 2.2.
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Figure 2.1: Particular solutions of velocity distribution fx, f y and fΓ correspond-

ing to NACA0012 airfoil.
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Figure 2.2: Velocity distribution on NACA0012 airfoil for M∞ = 0.3 obtained

by a composition of particular solutions, compared with a solution of the Euler

equations for a compressible flow.

2.1.4 Compressibility correction

At higher speeds, the effect of compressibility of air starts to be significant and

thus the incompressible model exhibits an increased error. The pressure on the

airfoil is usually expressed as the dimensionless pressure coefficient cp which re-

lates the local static pressure p with the dynamic pressure of the free stream and

is defined as

cp =
p− p∞
ρ∞v2∞/2

. (2.1.45)

The symbols p∞ and ρ∞ are static pressure and density of the free stream. We

are dealing with an incompressible, irrotational and steady flow. Therefore we

can use the Bernoulli equation to express the incompressible pressure coefficient
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Figure 2.3: Comparison of pressure coefficient cp of a compressible and a potential

incompressible flow (cp, c
PG
p , cKSp ) around NACA0012 airfoil, α∞ = 3◦,M∞ = 0.3.

directly from the local speed v =
√

v2x + v2y and the free stream:

cp = 1−
(

v

v∞

)2

. (2.1.46)

At speeds up toM∞ = 0.3 this compressibility effect is negligible, as shown by

comparing the results with the results of the compressible model of an inviscid flow

described by the system of the Euler equations (described in the next section) in

Figure 2.3. It describes the flow around the NACA0012 airfoil at the free stream

velocity v∞ = 102.05 m · s−1 and the angle of attack α∞ = 3◦. This corresponds

exactly to the value of M∞ = 0.3.

However, when the velocity increases the compressibility affects the flow more

and more. Its influence can be imitated using empirically derived corrections [22].

One of them is the Prandtl-Glauert compressibility correction,

cPGp =
cp

√

1−M2
∞

. (2.1.47)

Another possibility is the compressibility correction by Karman-Tsien,

cKSp =
cp

√

1−M2
∞ + cp

2

(

1−
√

1−M2
∞

) . (2.1.48)

Comparison of the results of incompressible flow with results of the compressible

flow (inviscid Euler equations and viscous turbulent flow, see Sections 2.2 and 2.3)
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with the free stream velocity v∞ = 198.9 m · s−1 and α∞ = 3◦ (corresponding to

M∞ = 0.6) is shown in Figure 2.4. The results show a fairly good agreement

when using a correction. The correction by Karman-Tsien shows better results,

although it tends to slightly overestimate pressure in the area of large compression

near the leading edge. Both corrections behave quite well until the minimum

value of the local pressure coefficient (given by (2.1.47) and (2.1.48)) comes close

to the critical value c∗p. In this situation, the compressible flow approaches locally

the sonic flow and thus the corrections are no longer valid. The value c∗p for air

(γ = 1.4) is given by:

c∗p =
1

0.7M2
∞

(

(

1

1.2
+
M2

∞

6

)3.5

− 1

)

. (2.1.49)

In our cases, for M∞ = 0.3 is c∗p = −6.95 and for M∞ = 0.6 is c∗p = −1.29.
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Figure 2.4: Comparison of cp, c
PG
p , cKSp pressure coefficients of a compressible and

a potential incompressible flow around NACA0012, α∞ = 3◦, M∞ = 0.6.
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potential incompressible flow around RAE2822, α∞ = 1.96◦,M∞ = 0.604, results

compared with data from AGARD test case 3 [23].
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2.2 Description of a motion of a viscous fluid

The model described in the previous chapter is a simplification of the reality.

The real flow of fluid is compressible, it contains vortices from microscopic to

macroscopic scales and of course, it is influenced by the internal friction of gas

molecules. Furthermore, the flow is generally non-stationary although it can be,

under certain circumstances, regarded as constant in time.

The general description of a flow is commonly based on the formulation of

the law of conservation of mass, conservation of momentum and conservation

of energy. The flow is generally a three-dimensional problem, however, it can

be simplified for the needs of our inverse problem. We assume an idealized,

sufficiently long wing of a constant cross-section, situated perpendicular to the

stream. Let the x3-axis of the Cartesian coordinate system be parallel to the

wing. Then the region in the middle of the wing span is not influenced by the

flow at the wing tip. Hence, the derivatives ∂/∂x3 can be considered zero and

the flow treated as a two-dimensional problem. This greatly simplifies the task

from the perspective of the computational complexity. To preserve the generality,

however, the mathematical model is derived for a fully three-dimensional flow.

Due to the nature of our problem, we can neglect any external forces acting

on the fluid, such as gravity, and also neglect heat sources within the flow. The

only heat sources, which are considered, are caused by the internal friction or by

the airfoil itself. This leads to the expression of the continuity equation

∂ρ

∂t
+ div(ρv) = 0, (2.2.1)

the equations of motion (Navier-Stokes eqs.)

∂(ρvi)

∂t
+ div(ρviv) = − ∂p

∂xi
+ div(T )i, i = 1, 2, 3 (2.2.2)

and finally the energy equation

∂E

∂t
+ div ((E + p)v) = div(T v)− div qL. (2.2.3)

We use the following notation: x = (x1, x2, x3) are spatial coordinates, t

denotes time, ρ density, v = (v1, v2, v3) velocity vector, p static pressure, E total

energy, e specific internal energy, T absolute temperature, qL thermal flux, T

viscous stress tensor, kc coefficient of thermal conductivity, R gas constant, Cp
specific heat at constant pressure, Cv specific heat at constant volume, γ Poisson

adiabatic constant, λ and µ are the first and second viscosity coefficients.

The heat transfer inside the fluid is expressed by the Fourier law

qL = −kc∇T. (2.2.4)

The air can be regarded as a perfect gas, so it is a Newtonian fluid. For

Newtonian fluids, the viscous stress tensor T is proportional to the deformation

velocity tensor D and thus can be expressed by the relation

T = (λ div v) I + 2µD, (2.2.5)
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where I is an identity matrix. For monoatomic gases, λ = −2/3µ and this con-

dition is usually used even for more complicated gases. The viscosity coefficient

µ is also called the dynamic viscosity. The deformation velocity tensor depends

on the velocity gradients and can be written in the form

D =
1

2

(

∇v + (∇v)T
)

. (2.2.6)

In order to complete the system (2.2.1)–(2.2.3), additional equations from the

thermodynamics have to be included. The gas is characterized by the equation of

state p = p(ρ, T ) and by the relation for the specific internal energy e = e(ρ, T ).

Since we consider a perfect gas, these equations have the form

p = RTρ (2.2.7)

and

e = CvT. (2.2.8)

From this, it is possible to derive the expression for the total energy

E =
p

γ − 1
+

1

2
ρ |v|2 . (2.2.9)

The experiments show that the coefficients Cp and Cv are almost constant for a

wide range of temperatures. They are related to the gas constant R by

R = Cp − Cv (2.2.10)

and to the Poisson constant by

γ =
Cp
Cv

≥ 1. (2.2.11)

The dynamic viscosity coefficient µ depends on the temperature of the air.

One possibility how to relate the viscosity and temperature is by the Sutherland’s

law

µ = µref

(

T

Tref

)3/2
Tref + S

T + S
, (2.2.12)

where Tref is a reference temperature, µref is the dynamic viscosity at the refer-

ence temperature and finally S = 110.6 is the Sutherland temperature.

The character of the whole system is mixed parabolic-hyperbolic. Since the

viscosity of the air is relatively small in comparison with other fluids, it may have

a negligible effect in some cases. This leads to a new model, whose solution is

generally easier. If we neglect the internal friction, then µ = 0 and at the same

time, the heat conduction inside the fluid can also be neglected. The system of
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the equations (2.2.1)–(2.2.3) then simplifies into the form

∂ρ

∂t
+

3
∑

j=1

∂ρvj
∂xj

= 0, (2.2.13)

∂(ρvi)

∂t
+

3
∑

j=1

∂ (ρvivj + δijp)

∂xj
= 0, i = 1, 2, 3, (2.2.14)

∂E

∂t
+

3
∑

j=1

∂(E + p)vj
∂xj

= 0. (2.2.15)

The symbol δij is the standard Kronecker delta. This system is called the Euler

equations. It is a hyperbolic system of differential equations.

2.3 Turbulence model

The description of the fluid motion by the system of conservation laws includes

all important structures of the flow. However, it is very difficult to capturue

all of them using numerical methods. The smallest turbulent eddies are much

smaller than the largest eddies. Similarly, the time scales for the existence of the

vortices are very different. The spatial discretization should be fine enough to

capture the smallest eddies (the Kolmogorov length scale) and, of course, cover

the entire area of interest. In addition, the scales depend on the Reynolds number

so the demands grow rapidly when it is increasing. The length of the time step

used in the numerical method should also respect the smallest time scales (the

Kolmogorov time scale) present in the flow. Since the turbulence is generally a

three-dimensional structure, this approach represents a very demanding task for

common engineering applications. Their solution would take months on the most

powerful computers. From this reason, the turbulence in practical problems is

usually modeled by some statistical approach.

2.3.1 Averaged Navier-Stokes equations

In this standard approach [24] we can assume that the flow consists of a mean

flow part and fluctuations caused by the turbulence. The mean flow is computed

by the standard way and the fluctuations are modeled by a statistical model. Let

θ be a time dependent flow variable. Since we assume a compressible flow, we

will use two types of averaging, the Reynolds time averaging and the Favre mass

averaging.

The flow variable θ is decomposed by the Reynolds averaging as θ = θ + θ′,

where θ′ is the fluctuation part and the mean average is given by

θ(x) = lim
T ′→∞

1

T ′

∫ t+T ′

t

θ(x, τ)dτ. (2.3.1)
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Using the Favre averaging we get θ = θ̃+ θ′′, where θ′′ represents the fluctuations

and the mean average is given by

θ̃(x) =
1

ρ
lim
T ′→∞

1

T ′

∫ t+T ′

t

ρ(x, τ)θ(x, τ)dτ, (2.3.2)

where ρ is the Reynolds averaged density. The averages θ and θ̃ are strictly

speaking time independent. Hence the use of the averaged equations (2.2.1)–

(2.2.3) has sense only for steady solutions (which is our case). However, the

averaged equations are commonly used even for unsteady problems. In that case,

the time interval T ′ is chosen such that T ′
1 ≪ T ′ ≪ T ′

2, where T
′
1 denotes the time

scale of turbulent fluctuations and T ′
2 denotes the large-scale fluid motions. Us-

ing this approach, the averaged variables θ and θ̃ are treated as time-dependent.

Unfortunately, it is usually difficult to set the right time scale T ′ separating the

turbulence from the main flow. From this reason, the time accuracy of the un-

steady model should be taken with care. We will formulate the averaged equations

as time-dependent because it helps us to obtain the steady solution.

It is good to mention, that the average of a fluctuating part is zero. Using

the Reynolds averaging, we decompose the instantaneous density and pressure,

ρ = ρ+ ρ′, p = p+ p′ (2.3.3)

and by the Favre averaging we decompose the instantaneous velocity and specific

internal energy,

vi = ṽi + v′′i , e = ẽ+ e′′. (2.3.4)

We denote by N the number of dimensions, which could be 2 or 3. Using the

above mentioned, we obtain the averaged mean conservation equations

∂ρ

∂t
+ div (ρṽ) =0, (2.3.5)

∂ρṽi
∂t

+ div (ρṽiṽ) =− ∂p

∂xi
+ div

(

T
)

i
−

N
∑

j=1

∂

∂xj

(

ρv′′j v
′′
i

)

, i = 1, 2, . . . , N

(2.3.6)

∂Ẽ

∂t
+ div

(

(Ẽ + p)ṽ
)

=div
(

T ṽ
)

− div (qL + qT )

+
N
∑

j=1

∂

∂xj

(

N
∑

i=1

v′′i τji −
N
∑

i=1

ṽiρv′′j v
′′
i −

1

2

N
∑

i=1

ρv′′j v
′′
i v

′′
i

)

.

(2.3.7)

These equations are called the compressible Reynolds-Averaged Navier-Stokes

equations (RANS, also termed the Favre-Averaged Navier-Stokes equations).

Here τ ij = 2µS∗
ij are components of the averaged viscous stress tensor T . The

strain rate tensor S∗ used in this expression is defined as

S∗
ij =

1

2

(

∂ṽi
∂xj

+
∂ṽj
∂xi

− δij

N
∑

k=1

2

3

∂ṽk
∂xk

)

. (2.3.8)
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It is easy to show that this expression is in the correspondence with (2.2.5) and

(2.2.6).

Symbols qL and qT are laminar and turbulent heat fluxes, qL is given by

(2.2.4) and qT will be given bellow. The averaged total energy is given by

Ẽ = ρẽ+
1

2
ρ |ṽ|2 + ρk, (2.3.9)

ρk =
1

2

N
∑

i=1

ρv′′i v
′′
i , (2.3.10)

where k is the so-called turbulence kinetic energy. The term −ρv′′i v′′j in (2.3.6)

and (2.3.7) is called the Reynolds stress tensor.

The turbulence modeling is in fact a way how to represent the unknown terms

containing fluctuations by known quantities. The most important seems to be

the matter of finding an expression for the Reynolds stress. This will be carried

out in the following sections.

Unfortunately, the equations (2.3.5)–(2.3.7) still contain some unknown terms,

so additional approximations of these terms are necessary in order to close the

system. The turbulent heat flux vector is approximated as

(qT )j = − µT
PrT

γ
∂ẽ

∂xj
(2.3.11)

which is of the same form as the laminar heat flux qL. The turbulent Prandtl

number PrT is assumed to be constant (e.g around 0.9 for air). The symbol µT
denotes the so-called eddy viscosity (or turbulent viscosity) and its expression

depends on the chosen turbulence model. The contribution of the turbulence ki-

netic energy to the total energy can be assumed very small. This is true especially

for flows up to supersonic regimes. Therefore, the molecular diffusion, v′′i τji, and

turbulence transport, ρv′′j v
′′
i v

′′
i , terms are neglected in the energy equation (2.3.7)

and also the turbulence energy k can be neglected in (2.3.9).

2.3.2 The k − ω model

One of the most widespread turbulence models is the two-equation k − ω model

developed by Wilcox [24]. This model adds to the conservation equations (2.3.5)–

(2.3.7) two additional transport equations to describe the turbulent properties of

the flow. One equation for the turbulence kinetic energy k and the other for the

specific dissipation rate ω. The first variable, k, specifies the amount of energy

in the turbulence and the second one, ω, specifies the rate of dissipation of this

energy in unit volume and time. These extra transport equations are

∂ρk

∂t
+ div (ρkṽ) = Pk − β∗ρωk + div ((µ+ σkµT )∇k) , (2.3.12)

∂ρω

∂t
+ div (ρωṽ) = Pω − βρω2 + div ((µ+ σωµT )∇ω) + CD. (2.3.13)
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The terms Pk and Pω represent the production of the turbulence kinetic energy

and the production of the specific dissipation, respectively. They are defined as

Pk = −
N
∑

i,j=1

ρv′′i v
′′
j

∂ṽi
∂xj

(2.3.14)

and

Pω = αωωPk/k. (2.3.15)

The determination of the eddy viscosity µT is based on the Boussinesq approx-

imation. The k − ω model formulates the Reynolds stresses and eddy viscosity

coefficient as

− ρv′′i v
′′
j = 2µTS

∗
ij −

2

3
ρkδij , µT =

ρk

ω
. (2.3.16)

If we are interested in the turbulence length scale l, it can be expressed as l =√
k/ω.

The values of the remaining parameters for the standard Wilcox model are

β∗ = 0.09, β = 5β∗/6, αω = β/β∗ − σωκ
2/
√

β∗,

σk = 0.5, σω = 0.5 and CD = 0, (2.3.17)

where κ = 0.41 is the Von Kármán constant.

Originally, the cross-diffusion term CD was not included in the standard

Wilcox model. However, this model suffers from the sensitivity on the free stream

level of the turbulent dissipation ω. From this reason, Kok in his work [25] sug-

gested to include a cross-diffusion term and to reset the model parameters. The

cross-diffusion is defined by

CD = σD
ρ

ω
max

(

N
∑

i=1

∂k

∂xi

∂ω

∂xi
, 0

)

. (2.3.18)

The new Kok TNT (turbulent/non-turbulent) model has the following parame-

ters:

β∗ = 0.09, β = 5β∗/6, αω = β/β∗ − σωκ
2/
√

β∗,

σk = 2/3, σω = 0.5 and σD = 0.5. (2.3.19)

In practice, the turbulence production term defined by (2.3.14) may cause an

unphysical growth of the turbulence level. Therefore, it is a good idea to limit

the maximum value of the production by some proper limiter, for example

P lim
k = ρk

√

√

√

√

N
∑

i,j=1

S∗
ijS

∗
ji. (2.3.20)
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2.3.3 EARSM

The k−ω turbulence model based on the eddy viscosity assumption behaves well

in many engineering applications. However, it can fail to predict true results in

flows with strong adverse pressure gradients (i.e. the static pressure increases

in the direction of the flow). In this case the fluid inside the boundary layer is

slowed down and it can lead even to a reversion of the flow direction and to the

separation of the boundary layer from the surface.

The Boussinesq approximation, which is used in the k − ω model, assumes

that the eddy viscosity is isotropic, which is not generally true. An improvement

is to incorporate individual Reynolds stresses into the transport equations. The

Explicit Algebraic Reynolds-Stress Model (EARSM) according to Wallin [26] is

formulated in the terms of the standard k− ω turbulence model. Therefore, this

model can be considered as an extension to the standard model. The main differ-

ences are the expressions for the turbulent viscosity and Reynolds stresses. We

will use the superscripts (EARSM) and (k−ω) to distinguish between the quantities

from the standard k − ω model (Sec. 2.3.2) and from the new EARSM.

An extra anisotropy aij is introduced, which is added to the standard Reynolds

stress formulation

− ρv′′i v
′′
j = 2µ

(EARSM)
T S∗

ij −
2

3
ρkδij − ρkaij . (2.3.21)

The new eddy viscosity is formulated as

µ
(EARSM)
T = −1

2
(β1 +ΠΩβ6)max

(

ρk

β∗ω
, cτ

√

µρk

β∗ω

)

(2.3.22)

with cτ = 6 a model constant. The other parameters are given bellow.

The modifications of the original model involves equations in the same form

as (2.3.12)–(2.3.13) with new expressions of the turbulent viscosity coefficient

µ
(EARSM)
T , the production term

P
(EARSM)
k = P

(k−ω)
k −

N
∑

i,j=1

ρkaij
∂ṽi
∂xj

(2.3.23)

and the stress tensor

τ
(EARSM)
ij = τij − ρkaij , τij = 2(µ+ µ

(EARSM)
T )S∗

ij −
2

3
ρkδij . (2.3.24)

The extra anisotropy tensor is given by the relation

a =β3(Ω
2 − ΠΩ

3
I) + β4(SΩ−ΩS) + β6(SΩ

2 +Ω2
S − ΠΩS − 2

3
ΠI)

+ β9(ΩSΩ2 −Ω2
SΩ). (2.3.25)

Here S and Ω are normalized strain and rotation rate tensors,

S = τS∗, Ω = τΩ∗, (2.3.26)
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where τ = max
(

1/(β∗ω), cτ
√

µ/(ρβ∗ωk)
)

is the turbulent time scale 1/(β∗ω)

limited by the Kolmogorov time scale. The strain rate tensor S∗
ij is given by

(2.3.8) and

Ω∗
ij =

1

2

(

∂ũi
∂xj

− ∂ũj
∂xi

)

. (2.3.27)

The strain rate tensor S is symmetric and the rotation rate tensor Ω is antisym-

metric. These properties can be employed with success in the evaluation of the

equation (2.3.25).

The symbols ΠS = tr(S2), ΠΩ = tr(Ω2) and Π = tr(SΩ2) denote traces (e.g.

sums of the diagonal elements). The coefficients β are given by the relations

β1 = −A(2A
2 − 7ΠΩ)

Q
, β3 = −12Π/A

Q
, β4 = −2(A2 − 2ΠΩ)

Q
,

β6 = −6A

Q
, β9 =

6

Q
, Q =

5

6
(A2 − 2ΠΩ)(2A

2 −ΠΩ). (2.3.28)

The parameter A is evaluated as

A =

{

c1/3 + (P1 +
√
P2)

1/3 + (P1 −
√
P2)

1/3 for P2 ≥ 0

c1/3 + 2(P 2
1 − P2)

1/6 cos
(

arccos
(

P1/
√

P 2
1 − P2

)

/3
)

for P2 < 0

(2.3.29)

where

P1 =

(

c21
27

+
9

20
ΠS −

2

3
ΠΩ

)

c1, (2.3.30)

P2 = P 2
1 −

(

c21
9
+

9

10
ΠS +

2

3
ΠΩ

)3

, (2.3.31)

c1 =
9

4
(c2 − 1), c2 = 1.8. (2.3.32)

If we are dealing with a two-dimensional model, then the coefficients β are

β1 = −6

5

A

A2 − 2ΠΩ

, β3 = 0, β4 = −6

5

1

A2 − 2ΠΩ

,

β6 = 0, β9 = 0. (2.3.33)

This means that the expression (2.3.25) for a two-dimensional flow simplifies to

the relation

a = β4(SΩ−ΩS). (2.3.34)

Values of the turbulence model parameters β∗, β, αω, σk, σω and σD are the

same as for the k − ω model (see (2.3.17) or (2.3.19)).

The comparison of the turbulence models is shown in Figure 2.6. This test

case represents a flow around the RAE2822 airfoil with the free stream parameters

M∞ = 0.754 and α∞ = 2.57◦. A shock wave arises on the upper surface of the

airfoil (Figure 2.7). Behind this shock wave, the boundary layer separates from

the surface and reattaches again. Even though it is a transonic flow, which

our inverse method is not concerned with, this example shows the ability to
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correctly capture the area of separation. Comparison of the results obtained

by the software, which was developed by the author during his work on this

thesis, with the data from the wind tunnel measurement [23] shows that EARSM

turbulence model can quite accurately capture the position of the shock wave.

The other models indicate its position further towards the trailing edge.

x/c

cp

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

experiment
EARSM
Kok k-omega
Wilcox k-omega

Figure 2.6: Comparison of cp coefficient for flow around RAE2822, α∞ = 2.57◦,

M∞ = 0.754. Obtained results for different turbulence models (Kok EARSM,

Kok k − ω, Wilcox k − ω) compared with data from AGARD test case 10.
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Figure 2.7: The Mach number and turbulence kinetic energy distribution around

RAE2822, α∞ = 2.57◦, M∞ = 0.754 (Kok EARSM model).

2.4 Numerical solution

In the text above, the mathematical formulation of the flow model is presented.

It can be seen that the system of conservation equations (2.2.1)–(2.2.3) has a

similar form as the averaged equations (2.3.5)–(2.3.7). Due to the needs of our

problem we will deal only with the two-dimensional model. We denote by Ω the

bounded region around the airfoil, where the flow needs to be computed. In the

following text, we will consider only the mean values of the state variables, so

we will use the standard notation without overline and tilde. For the purpose of

the numerical solution, it is useful to write the equations (2.3.5)–(2.3.7) and the

turbulence model equations (2.3.12)–(2.3.13) in the vector form

∂w

∂t
+

2
∑

i=1

∂Fi(w)

∂xi
=

2
∑

i=1

∂Ri(w,∇w)

∂xi
, (2.4.1)

∂q

∂t
+

2
∑

i=1

∂Gi(q)

∂xi
=

2
∑

i=1

∂Qi(q,∇q)

∂xi
+ S (q,∇q) , (2.4.2)

where

w =(ρ, ρv1, ρv2, E)
T , (2.4.3)

Fi(w) = (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (E + p)vi)
T , (2.4.4)

Ri(w,∇w) =

(

0, τi1, τi2, τi1v1 + τi2v2 +

(

µ

Pr
+

µT
PrT

)

γ
∂e

∂xi

)T

, (2.4.5)

q =(ρk, ρω)T , (2.4.6)

Gi(q) = (ρkvi, ρωvi)
T , (2.4.7)

Qi(q,∇q) =

(

(µ+ σkµT )
∂k

∂xi
, (µ+ σωµT )

∂ω

∂xi

)T

, (2.4.8)

S(q,∇q) =
(

Pk − β∗ρωk, Pω − βρω2 + CD
)T
. (2.4.9)
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The symbol Pr denotes the Prandtl number which can be expressed as Pr =

µCp/kc.

The components of the stress tensor T can be written as

τ11 = (µ+ µT )

(

4

3

∂v1
∂x1

− 2

3

∂v2
∂x2

)

− 2

3
ρk,

τ22 = (µ+ µT )

(

−2

3

∂v1
∂x1

+
4

3

∂v2
∂x2

)

− 2

3
ρk, (2.4.10)

τ12 = τ21 = (µ+ µT )

(

∂v1
∂x2

+
∂v2
∂x1

)

.

It follows from the above that if we set k = 0, the system (2.4.1) will be

independent of the turbulence model (2.4.2). Therefore, we can solve only the

first system in this situation. The mean flow equations thus describe a laminar

flow. In addition, if we set µ = 0, the resulting system will represent the Euler

equations describing the inviscid flow.

We can obtain the requested velocity or pressure distribution needed for the

solution of the inverse problem from the values w on the airfoil Γw. We deal either

with the velocity distribution or with the pressure distribution so we will denote

both by f . The velocity distribution on the airfoil surface can be expressed as

f =

√

(

w2

w1

)2

+

(

w3

w1

)2

(2.4.11)

and the pressure distribution as

f = (γ − 1)

(

w4 −
w2

2 + w2
3

2w1

)

. (2.4.12)

2.4.1 Dimensionless model

In practice, it is useful to deal with a dimensionless model. In order to do that,

it is necessary to suitably transform all considered variables to new variables,

denoted by hat, with respect to some specified reference values. These values are

obtained with the use of the following relations for an isentropic flow. The Mach

number M is defined as the ratio of the local speed of flow to the local speed of

sound:

M =

√

v21 + v22
c

. (2.4.13)

The speed of sound in a perfect gas can be expressed as

c =
√

γp/ρ. (2.4.14)

Then it is possible to express the density and static pressure by the formulae [27]:

ρ =ρ0

(

1 +
γ − 1

2
M2

)−1/(γ−1)

, (2.4.15)

p =p0

(

1 +
γ − 1

2
M2

)−γ/(γ−1)

, (2.4.16)
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where the index zero denotes total values (values of a nonmoving gas). Using the

previous relations we can also get the following expression for the speed of sound:

c2 = c20

(

1 +
γ − 1

2
M2

)−1

. (2.4.17)

Now using (2.4.15) and (2.4.16), we can define the critical values ρ∗ and c∗ of

the density and the speed of sound for the unit Mach number. We get

ρ∗ = ρ0

(

2

γ + 1

)1/(γ−1)

, c∗ = c0

√

2

γ + 1
. (2.4.18)

Next, let us set

λ =

√

v21 + v22
c∗

. (2.4.19)

We call this quantity the Laval number. The relation between the Laval number

λ and the Mach number M is

λ2 =
γ + 1

2/M2 + γ − 1
. (2.4.20)

Now we can transform the velocity vector v as

v̂1 =
v1
c∗
, v̂2 =

v2
c∗
. (2.4.21)

According to this, the Laval number is the transformed speed of flow,
√

v̂21 + v̂22 = λ. (2.4.22)

Further we define ρ̂ = ρ/ρ∗:

ρ̂ = ρ̂0

(

1− γ − 1

γ + 1
λ2
)1/(γ−1)

, ρ̂0 =

(

2

γ + 1

)−1/(γ−1)

. (2.4.23)

It is necessary to preserve the equation for the speed of sound c2 = γp/ρ in

order to have the same form of the system of equations. Hence the pressure is

transformed as

p̂ =
p

ρ∗c2∗
, thus p̂ = p̂0

(

1− γ − 1

γ + 1
λ2
)γ/(γ−1)

, (2.4.24)

where

p̂0 =

(

(

2

γ + 1

)1/(γ−1)
2γ

γ + 1

)−1

. (2.4.25)

Using this normalization we also get

Ê =
E

ρ∗c2∗
, ê =

e

c2∗
,

x̂ =
x

l∗
, ŷ =

y

l∗
, t̂ =

c∗t

l∗
, (2.4.26)

k̂ =
k

c2∗
, ω̂ =

ωl∗
c∗
,
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where l∗ is a characteristic length. In our case it is the real length of the chord

of the airfoil. The coefficients of viscosity are normalized as

µ̂ =
µ

ρ∗c∗l∗
, µ̂T =

µT
ρ∗c∗l∗

(2.4.27)

and the stress tensor

τ̂ij =
τij
ρ∗c2∗

. (2.4.28)

Using the mentioned transformation to a dimensionless system of equations,

the formal notation of the system remains unchanged. Thus we can omit the hat

symbol to simplify the notation in the following text.

2.4.2 Boundary and initial conditions

In order to use the differential equations (2.4.1) and (2.4.2) for a solution of a

flow field inside the domain Ω, they should be completed with suitable boundary

and initial conditions. Boundary conditions must be specified on all parts of the

boundary Γ. In our case, it means conditions at the airfoil surface and at the

far-field boundary.

Initial conditions

The biggest changes in the flow field are around the airfoil, with its increasing

distance they go to zero. As a perfectly natural initial condition, it is suggested

to use the free stream values.

Wall boundary conditions

The conditions on the wall depend on the selected flow model. If we consider the

inviscid flow (the Euler equations), we require that the velocity vector is tangent

to the boundary, i.e.

v · n = 0 on Γw, (2.4.29)

where n is the unit normal vector to the boundary.

In the case of a viscous flow, the velocity very close to the wall can be con-

sidered to be zero. Therefore, we prescribe the so-called no-slip condition

v = 0 on Γw. (2.4.30)

Since the equations contain heat fluxes, it is necessary to specify some boundary

condition for the temperature. It can be given by the Dirichlet or Neumann

boundary condition,

T = Tw or ∇T · n = 0 on Γw, (2.4.31)

where Tw is a prescribed temperature.
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Furthermore, in the case of a turbulent flow, it is necessary to specify con-

ditions for k and ω. It follows from the physical properties of the flow that the

values on the wall are

kw = 0 and ωw → 6µ

βρy2
, (2.4.32)

where y is the distance from the wall. We assume smooth walls hence the value

of the dissipation on the airfoil in the numerical method is given by

ωw = 120
µ

ρy2c
. (2.4.33)

Here yc is the distance between the wall and the centre of the current grid cell

next to the wall from the considered discretization mesh.

Far-field boundary conditions

On the outer boundary of the domain Ω, which should be far enough, we prescribe

the values of the free stream. To respect the mathematical properties of the

equations we divide the boundary into two parts, the inlet and outlet part. This

partitioning is performed on the basis of the free stream velocity direction.

Since we consider a subsonic flow, we prescribe the density and the velocity

components of the free stream at the inlet part. If we solve a turbulent flow, it

is necessary to prescribe the free stream turbulence intensity I∞ and the ratio of

the turbulent and molecular viscosity ReT (the turbulent Reynolds number),

I∞ =

√

2

3

k∞
v2∞

, (2.4.34)

ReT = µT/µ. (2.4.35)

From these relations, we can derive the boundary conditions for k and ω:

k∞ =
3

2
(v∞I∞)2 , (2.4.36)

ω∞ =
ρk

µ

(

µT
µ

)−1

. (2.4.37)

The other state variables are extrapolated from inside the computational domain.

On the outlet boundary, we prescribe only the free stream static pressure

p = p∞ (2.4.38)

and we extrapolate the remaining variables from inside the domain.

The values of the free stream can also be specified in the form of the total

pressure p0, total temperature T0, Mach number M∞ and the angle of attack α∞.

Then we determine the values of p∞ and ρ∞ using the equations for an isentropic

flow (2.4.15) and (2.4.16). The velocity v∞ is determined from the definition of

the Mach number.

32



2.4.3 Boundary layer

Boundary layer is a thin layer of fluid near surfaces where the viscous effects are

significant. To correctly capture the boundary layer near a wall, it is necessary to

have a sufficiently refined discretization grid in the direction towards the wall. A

typical velocity profile (magnitude of the velocity) across a turbulent boundary

layer on a wall is shown in Figure 2.8. We can clearly distinguish four areas with

different velocity behaviour, the viscous sublayer, buffer layer, logarithmic layer

and the defect layer. The velocity profile is usually expressed using the dimen-

sionless wall distance y+ and the dimensionless velocity v+ in order to eliminate

the dependence on the position on the surface. These dimensionless variables

are defined using the friction velocity vτ =
√

τw/ρ, where τw is the surface shear

stress. For a flat plate in the direction of the x1-axis, τw = µ(∂v1/∂x2)|x2=0.
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Figure 2.8: Typical velocity profile across a turbulent boundary layer.

Quantities y+ and v+ are expressed as

v+ =
v

vτ
, (2.4.39)

y+ =
ρvτy

µ
. (2.4.40)

In the viscous sublayer, where the turbulence effects are negligible compared

to the molecular viscosity effects, the velocity varies almost linearly with y+. In

the log layer, the velocity behaves according to the well-known law of the wall

(for smooth surfaces) [24],

v+ =
1

0.41
ln y+ + 5. (2.4.41)
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Therefore, the precision of capturing the boundary layer depends on the cov-

erage of the viscous sublayer and the following regions by a sufficient number

of grid cells. The height of the first row of cells is also very important. It is

commonly recommended to set the height of the first layer of cells at y+ ≈ 1.

2.4.4 Finite volume method

The presented problem (2.4.1) and (2.4.2) is solved by a finite volume method

(FVM). We discretize the computational domain Ω ⊂ R2 by a mesh Dh =

{Di, i = 1, . . . , Ne} formed by quadrilateral elements (cells). These elements sat-

isfy the standard conditions, i.e.

• Ωh =
⋃Ne

i=1Di, where Ωh is the closure of a polygonal approximation of Ω,

• ∀i 6= j, 1 ≤ i, j ≤ Ne : Di ∩Dj is empty or a common vertex or a common

edge.

The equations (2.4.1) and (2.4.2) are expressed as integral identities and using

the Green’s theorem rewritten into the form

∂

∂t

∫

Dj

wdx+

∫

∂Dj

2
∑

i=1

niFi(w)dS −
∫

∂Dj

2
∑

i=1

niRi (w,∇w)dS = 0 (2.4.42)

and

∂

∂t

∫

Dj

qdx+

∫

∂Dj

2
∑

i=1

niGi(q)dS −
∫

∂Dj

2
∑

i=1

niQi (q,∇q) dS =

∫

Dj

S (q,∇q) dx.

(2.4.43)

These equations are valid on each element Dj ∈ Dh.

The symbol wi will denote the integral average of the vector w on the element

Di and it will represent the value of the approximate solution on this element.

The vector wh, wh|Di
= wi will denote the approximate solution of the problem

for the entire domain Ωh. The symbols qi and qh are defined in the same way.

Then we can define the vector functions Φ(wh) and Φt(qh) as

Φi(wh) =
1

|Di|

(

∑

j∈S(i)

H (wi,wj ,nij) |Γij | −

∑

j∈S(i)

2
∑

s=1

(nij)sRs

(

w|Γij
, (∇w) |Γij

)

|Γij|
)

, (2.4.44)

Φt
i(qh) =

1

|Di|

(

∑

j∈S(i)

Ht (qi,qj ,nij) |Γij | −

∑

j∈S(i)

2
∑

s=1

(nij)sQs

(

q|Γij
, (∇q) |Γij

)

|Γij |
)

− S(qi,∇qi). (2.4.45)

By the symbol S(i) we denote here the index set of neighbouring elements, |·|
denotes the area of the element Di, respectively the length of the common edge
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Figure 2.9: Scheme for higher order reconstruction.

Γij between elements Di and Dj , nij is the unit normal to Γij pointing towards

Dj and H(wi,wj,nij), H
t(qi,qj ,nij) denote numerical fluxes.

The gradients on the common edges Γij are approximated from the values of

wh or qh on the neighbouring elements to Γij. More details about this evaluation

is presented in Section 2.4.5. The numerical flux H is expressed according to

Osher and Solomon and the turbulent numerical flux Ht is expressed by the

Vijayasundaram scheme [28]:

Ht(qi,qj,nij) =

(

2
∑

s=1

(nij)s
(vi)s + (vj)s

2

)+
(

ρiki
ρiωi

)

+

(

2
∑

s=1

(nij)s
(vi)s + (vj)s

2

)−
(

ρjkj
ρjωj

)

, (2.4.46)

where (·)+ and (·)− are the positive and negative parts of (·).
The numerical fluxH (resp. Ht) computes the flux across the edge Γij from the

values of w (resp. q) on the left and right side of Γij. The mentioned formulation

of Φ uses the values wi and wj because these are the approximate values of w on

the corresponding elements. However, this formulation yields only a first order

of accuracy. To increase the order of accuracy it is necessary to reconstruct the

values of the solution on the edges. If we consider the situation in Figure 2.9

where Cj are centres of elements, Ij+1/2 centres of edges, qj values on elements

and ∇q|j+1/2 approximations of gradients on edges, then the reconstructed edge

values qleftj+1/2 and qrightj+1/2 can be approximated using the following:

qleftj+1/2 = qj +Ψ(Rj)∇q|j−1/2(Ij+1/2 − Cj), (2.4.47)

qrightj+1/2 = qj+1 +Ψ

(

1

Rj+1

)

∇q|j+3/2(Ij+1/2 − Cj+1), (2.4.48)

where

Rj =
∇q|j+1/2(Cj+1 − Ij+1/2)

∇q|j−1/2(Ij+1/2 − Cj)
. (2.4.49)
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We substitute for q the values of ρ, v1, v2, p, k and ω. The function Ψ : R → R

is called a (slope) limiter. If we choose the limiter in the form

Ψ(R) =
1 + 2R

3
, (2.4.50)

we obtain the Van Leer κ-scheme for κ = 1/3, which yields a third order of

accuracy in 1-D. However, this scheme suffers from spurious oscillations near

discontinuities. Another possibility is to choose the limiter according to Van

Albada, which eliminates this problem:

Ψ(R) =
R2 +R

R2 + 1
. (2.4.51)

Using the newly reconstructed values on the edges in the expressions of numerical

fluxes, we obtain a scheme with a second order of accuracy in space.

The numerical solution of both systems (2.4.1) and (2.4.2) is carried out in

the similar way so we will describe only the solution of the first system.

The semi-discrete formulation (the method of lines) of the FVM for the equa-

tion (2.4.1) can be written in the form

∂wi

∂t
+Φi(wh) = 0, 1 ≤ i ≤ Ne. (2.4.52)

This system of ordinary differential equations can be solved by explicit meth-

ods, such as the forward Euler or the Runge-Kutta method, or by implicit meth-

ods. It is known that the stability region of explicit methods is rather limited. It

means that the maximum possible time step τ is small.

We are interested in the steady state solution w∗
h. This solution will be ob-

tained by the pseudo-transient method, which solves the steady state problem as

an unsteady problem for a sufficiently long time period, i.e. wh → w∗
h for t→ ∞.

Therefore, the computation with a small time step can be very time consuming.

This is why an implicit method was chosen, which allows us to use a considerably

larger time step without loosing the numerical stability.

If we know the solution wk
h at the time tk, k ∈ N0, we can obtain the solution

at the new time level tk+1 = tk + τk as

wk+1
i = wk

i − τkΦi(w
k+1
h ). (2.4.53)

This is the backward Euler method, which has a first-order accuracy. The length

of the time step τk is given by the modified CFL-stability condition:

τk = min
1≤i≤Ne

{

CFLk · |Di|
maxj∈S(i)

{

λmax(w
k
i ,nij)

}
∑

j∈S(i) |Γij |+ µ

}

, (2.4.54)

where CFLk is a positive number and

λmax(w,n) = max(|v · n− c| , |v · n| , |v · n+ c|). (2.4.55)
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We define the residuum

resk+1(ρh) =
1

τk

√

√

√

√

1

Ne

Ne
∑

i=1

(

ρk+1
i − ρki

)2
(2.4.56)

which will serve as the measure of convergence. In the beginning of the iteration

process (2.4.53), we start with CFL0 ∼ 1 and determine the value of CFLk+1 from

the value in the previous time level tk and the progress of the residuum res(ρh).

The CFL number is increased in a favourably converging situation and reduced

otherwise, e.g.

CFLk+1 = CFLk
resk(ρh)

resk+1(ρh)
. (2.4.57)

Of course, it is necessary to imply limits on the rate of change and set the mini-

mum and maximum CFL values. The CFL number can grow up to the order of

104 and the ratio CFLk+1/CFLk should not be larger than 1.2.

For a given time level tk, the expression (2.4.53) represents a nonlinear system

of equations which is solved by the Newton method. Hence the approximate

solution at tk+1 can be obtained as a result of another iterative process

w
k+1,0
h = wk

h, (2.4.58)
(

I + τk
DΦ(wk+1,r

h )

Dw

)

(

w
k+1,r+1
h −w

k+1,r
h

)

= wk
h −w

k+1,r
h − τkΦ(wk+1,r

h ),

(2.4.59)

for r = 0, 1, 2, . . . , s, s ∈ N. The symbol DΦ(w)/Dw denotes the Jacobi matrix

of the function Φ.

The result is the sequence
{

w
k+1,r
h

}s

r=0
and we set wk+1

h = w
k+1,s
h . For the

sake of the speed of computation, only one iteration of this method is used. It

has of course an impact on the time precision of the solution, but since we are

interested in the steady state solution, this drawback can be neglected. Hence

setting s = 1, we get the following linearization of (2.4.53):

(

I + τk
DΦ(wk

h)

Dw

)

(

wk+1
h −wk

h

)

= −τkΦ(wk
h). (2.4.60)

The values of k and ω needed to evaluate the function Φ(wk
h) are taken from the

solution of the system (2.4.2) at the time tk.

We solve the system of linear algebraic equations in the form

(I + τA)x = b. (2.4.61)

The matrix A is sparse and non-symmetric. This leads us to the use of iterative

Krylov methods, namely GMRES. As the implementation of GMRES the software

SPARSKIT2 [29] is used. Since it is an iterative method, it is necessary to

determine a stopping criterion when a sufficient precision is reached. One possible

choice of this criterion is ‖residuum‖ < 10−2
∥

∥Φ(wk
h)
∥

∥.
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It is useful to precondition the system in order to accelerate the convergence of

GMRES. The preconditioning used in this case is an incomplete LU factorization,

ILU.

The pseudo-transient method allows us to escape local minima or to cross

regions where the residuum is rising. When the residuum resl(ρh) at the time

level tl, l ∈ N is sufficiently low, we can speed up the convergence by switching

to the steady problem

w
l,0
h = wl

h, (2.4.62)

DΦ(wl,m
h )

Dw

(

w
l,m+1
h −w

l,m
h

)

= −Φ(wl,m
h ), m = 0, 1, . . . . (2.4.63)

If the sequence
{

w
l,m
h

}

m
converges, we will put w∗

h = limm→∞w
l,m
h . Otherwise

we return back to the pseudo-transient method and try to switch again after the

residuum achieves a lower value.

2.4.5 Implementation in a computer code

The implicit formulation of the method needs a construction of the Jacobi ma-

trices for the functions (2.4.44) and (2.4.45). In the first case, the contribution

of inviscid fluxes is computed by forward differences. The viscous terms contri-

bution is derived by an analytical way. In the case of turbulence equations, the

Jacobi matrix of inviscid fluxes (2.4.46) is easily evaluated. The contribution of

viscous part is derived by an analytical way. Since we are interested in the steady

state solution, it is sufficient to use some approximation of the Jacobi matrix.

Hence the contribution of source terms is very simplified, it is approximated by

a diagonal matrix

DS(wi,∇wi)

Dw
= −

(

2β∗ω 0

0 2βω + CD/(ρω)

)

. (2.4.64)

The values of gradients of the state variables on the edges of the elements

Di, i = 1, . . . , Ne are evaluated by the following technique. We construct a dual

mesh D̃h =
{

D̃j, j = 1, . . . , Ñe

}

by connecting the centres of the elements Di

with their vertices. An example of a part of this dual mesh is shown in Figure 2.10

for an edge inside the domain and in Figure 2.11 for a part of the boundary. Then

we evaluate the average value of the gradient in each dual element D̃j. This value

will be used as an approximation of the gradient on the edge in the FVM method

(e.g. in (2.4.44) and (2.4.45)).

If the considered edge is inside the domain, we denote the vertices of the dual

element D̃j according to the Figure 2.10, i.e. V 1, V 2, V 3, V 4. Let q be some

function defined in the domain Ω and q1, q2, q3, q4 be the values of q in these

vertices. We will denote by qx1 |D̃j
and qx2|D̃j

the average value of derivatives
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Figure 2.10: Scheme for a derivative

inside the domain

[V 1
1 , V

1
2 ]

[V 2
1 , V

2
2 ][V 3

1 , V
3
2 ]

Figure 2.11: Scheme for a derivative

on a wall

∂q/∂x1 and ∂q/∂x2 on D̃j . These approximations should satisfy:

(V 2
1 − V 4

1 )qx1|D̃j
+ (V 2

2 − V 4
2 )qx2 |D̃j

= q2 − q4, (2.4.65)

(V 1
1 − V 3

1 )qx1|D̃j
+ (V 1

2 − V 3
2 )qx2 |D̃j

= q1 − q3. (2.4.66)

The solution of this system for the unknowns qx1|D̃j
and qx2|D̃j

is given by:

qx1|D̃j
=

(q3 − q1)(V 4
2 − V 2

2 )− (q4 − q2)(V 3
2 − V 1

2 )

|(V 3
1 − V 1

1 )(V
4
2 − V 2

2 )− (V 4
1 − V 2

1 )(V
3
2 − V 1

2 )|
,

qx2|D̃j
= − (q3 − q1)(V 4

1 − V 2
1 )− (q4 − q2)(V 3

1 − V 1
1 )

|(V 3
1 − V 1

1 )(V
4
2 − V 2

2 )− (V 4
1 − V 2

1 )(V
3
2 − V 1

2 )|
. (2.4.67)

If the considered edge is on a boundary, we get by a similar approach the

expressions for derivatives:

qx1|D̃j
≈ − (V 3

2 − V 2
2 )
(

q1 − qwall
)

|(V 2
1 − V 1

1 )(V
3
2 − V 1

2 )− (V 3
1 − V 1

1 )(V
2
2 − V 1

2 )|
,

qx2|D̃j
≈ (V 3

1 − V 2
1 )
(

q1 − qwall
)

|(V 2
1 − V 1

1 )(V
3
2 − V 1

2 )− (V 3
1 − V 1

1 )(V
2
2 − V 1

2 )|
, (2.4.68)

where qwall is a prescribed value.

Thus, the gradients of the values of state variables ρ, v1, v2, e, k and ω on an

edge of the element Di are obtained by substitution for q in the above expressions.

The values q2 and q4 are values of state variables in these cells. The values q1

and q3 are obtained as an arithmetic mean of values from the four neighbouring

cells.
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3. Operator equation

Our goal is to find a geometric curve ψ which represents the shape of an airfoil.

This airfoil should correspond to the given velocity or pressure distribution f =

(fu, fl), where fu, fl are distributions along the upper and lower side of the

airfoil, parametrized along the chord line (x ∈ [0, C]). In the Chapter 2 two

different direct operators f = P(ψ) were derived (potential model and Navier-

Stokes equations), which map an airfoil ψ to a velocity/pressure distribution f

on its surface. As it will be shown in the next chapter, it is possible to consider

a simplified potential flow model and use the presented algorithm to construct

an operator L, which maps a velocity/pressure distribution f to some airfoil ψ,

ψ = L(f). The operator L is explicitly given and is also continuous, as can be

shown. We compose these two operators P and L together and solve the operator

equation

P(Lu) = f (3.0.1)

for an unknown velocity/pressure distribution u. If the operator L was a precise

inversion to P, it would be true that u = f . But L is only an inexact inversion,

so the solution u is different from f . The distribution u will be called a fictitious

distribution. From the equation (3.0.1) it is clear, that if we apply the operator

L on u, we obtain an airfoil, whose velocity/pressure distribution on its surface

corresponds to the given f . The solution is based on the fixed point theorem.

Definition. Let F : X → X be some mapping in a space X. Then we say that

u is a fixed point of the mapping F , if the following holds true:

F (u) = u.

Definition. The mapping F : X → X is a contractive mapping with respect to

the norm ‖.‖ in a space X, if there exists some constant q ∈ [0, 1) such that

‖F (x)− F (y)‖ ≤ q ‖x− y‖ ∀x, y ∈ X.

Theorem 2. Let X be a Banach space, F : X → X be a contractive mapping.

Than there exists a unique fixed point u ∈ X of the mapping F . This fixed point

can be constructed with the following algorithm:

u = lim
k→∞

uk,

where u0 is an arbitrary starting point and

uk+1 = F (uk) for k ≥ 0.

Our equation P(Lu) = f can be rewritten in the form

u = u+ η (f −PLu) , η ∈ (0, 1] . (3.0.2)
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If we choose the coefficient η such that the sequence

{uk}∞k=0 , uk+1 = uk + η (f −PLuk) , u0 = f (3.0.3)

converges, the sought fictitious velocity/pressure distribution u will be the limit

of this sequence. The resulting airfoil ψ = L(u) will satisfy the equation

P(ψ) = f. (3.0.4)

It needs to be said that due to the complexity of the mentioned operators

it is difficult to determine the right value of the coefficient η analytically. From

this reason, the value of the parameter η ∈ (0, 1] is chosen on the basis of the

experimental results.

If we choose a small value of η, the probability of convergence is higher. On

the other hand, the convergence speed can be slower. Practical results suggest

that the value η = 0.6 is sufficient for the most cases. Some of the examples

presented in this work even use the value η = 0.9.

According to the formulation of the inversion, it is necessary to deal with ve-

locity/pressure distributions which are represented by continuous functions. This

is achieved by assuming a subsonic flow. In order to have an airfoil with an accept-

able geometry, the distributions uk should be smooth. From the numerical point

of view, this restriction is not so strong. However, the new fictitious distribution

uk+1 is created from the pointwise difference between the target distribution f

and the computed distribution PLuk. So it may happen after a few iterations

that some spurious oscillations occur. From this reason it is good to use some

kind of smoothing. For example a method based on moving averages which shifts

the value at some point towards the average of its neighboring points.
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4. Approximate inverse operator

As mentioned in the previous chapter, the method of solving the inverse problem

of the flow around an airfoil described in this thesis is based on finding an approx-

imate inverse operator, denoted by L. This operator assigns an airfoil shape to

a given velocity or pressure distribution. The operator is derived on the basis of

the thin airfoil theory, proposed by Max Munk and Hermann Glauert [30]. The

theory given bellow serves only as a basis for the development of the operator L.

Although it is capable to solve the flow to some extent, it uses a lot of simplifica-

tions and therefore it is worse comparing to other models described in this work,

namely the integral formulation in Section 2.1 and the Navier-Stokes equations

in Section 2.2.

4.1 Thin airfoil theory

The thin airfoil theory describes an idealized two-dimensional flow, which is as-

sumed to be stationary, inviscid, incompressible and potential. Therefore, a po-

tential Φ can be constructed to the velocity V = (Vx, Vy) and this potential

satisfies the Laplace equation

∆Φ = 0 (4.1.1)

in the domain Ω which is the exterior of an airfoil. We suppose, that the airfoil is

given by a pair of functions ψyu(x) and ψ
y
l (x) for x ∈ [0, C]. These functions rep-

resent the y-coordinates of the upper and lower airfoil parts. Here C is again the

length of the chord line. The description of the geometry is shown in Figure 4.1.

We will assume that the airfoil has a small thickness and that the camber line

has a small curvature.

Since the Laplace operator is linear, we can write the potential Φ as the sum of

the free stream potential and the perturbation potential φ arising due to insertion

of the airfoil into the free stream. The free stream velocity will be denoted again

as v∞ = v∞(cosα∞, sinα∞). So we can write

Φ(x, y) = v∞x cos(α∞) + v∞y sin(α∞) + φ(x, y), (x, y) ∈ Ω. (4.1.2)

Due to the definition of the potential, velocity components are the partial deriva-

tives of the potential,

∂Φ(x, y)

∂x
= Vx(x, y),

∂Φ(x, y)

∂y
= Vy(x, y), similarly, (4.1.3)

∂φ(x, y)

∂x
= vx(x, y),

∂φ(x, y)

∂y
= vy(x, y). (4.1.4)

As well as for the total potential Φ, the Laplace equation is true for the

induced potential,

∆φ = 0 in Ω. (4.1.5)
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ψu(x)

ψl(x)
chord line

camber line

C

0

Figure 4.1: Description of an airfoil.

Boundary conditions are added to this equation,

∂φ

∂x
→ 0, at ∞,

∂φ

∂y
→ 0, at ∞,

∂φ(x, y)

∂y

∣

∣

∣

∣

y=ψy
u(x)

= v∞
(

ψyu
′(x)− tan(α∞)

)

, for x ∈ [0, C] ,

∂φ(x, y)

∂y

∣

∣

∣

∣

y=ψy

l
(x)

= −v∞
(

ψyl
′(x)− tan(α∞)

)

, for x ∈ [0, C] .

(4.1.6)

The last two conditions on the airfoil surface ensure that the flow is tangential to

the surface and thus the airfoil forms an impermeable boundary. In the context of

the thin airfoil, these conditions can be linearized and be considered for y → 0±

instead of on the actual surface. Thus

vy(x, 0
+) = v∞

(

ψyu
′(x)− tan(α∞)

)

, for x ∈ [0, C] , (4.1.7)

vy(x, 0
−) = −v∞

(

ψyl
′
(x)− tan(α∞)

)

, for x ∈ [0, C] . (4.1.8)

Further, we express a function describing the mean camber line s(x) and a

thickness function t(x) for x ∈ [0, C]. We measure the airfoil thickness perpendic-

ular to the camber line. However, we suppose that this line has small curvature

and thus we can express the thickness as perpendicular to the chord line with

small error. Hence, the functions s(x) and t(x) are given by the relations

s(x) =
(

ψyu(x) + ψyl (x)
)

/2 (4.1.9)

and

t(x) =
(

ψyu(x)− ψyl (x)
)

/2. (4.1.10)
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This makes it possible to define the linearized problem for the induced potential

∆φ = 0 in R
2 − {(x, 0), x ∈ [0, C]} ,

∂φ

∂x
→ 0, at ∞,

∂φ

∂y
→ 0, at ∞,

(4.1.11)

∂φ(x, y)

∂y

∣

∣

∣

∣

y=0+
= v∞s

′(x) + v∞t
′(x)− v∞ tanα∞, x ∈ [0, C] , (4.1.12)

∂φ(x, y)

∂y

∣

∣

∣

∣

y=0−
= v∞s

′(x)− v∞t
′(x)− v∞ tanα∞, x ∈ [0, C] . (4.1.13)

We may notice that the conditions (4.1.12)–(4.1.13) contain terms represent-

ing the influence of the camber line, thickness and angle of attack α∞. Therefore,

we can use the principle of superposition and decompose the potential φ into in-

dependent potentials φs, φα∞
and φt corresponding to the camber, angle of attack

and thickness:

φ = φs + φα∞
+ φt. (4.1.14)

These potentials are solved as three independent problems, described further.

The influence of the mean camber line s(x) is determined by assuming a flow,

which is parallel to the x-axis, around an airfoil with an infinitesimal thickness.

The effect of the angle of attack is studied by assuming a flow, which forms the

angle α∞ with the x-axis, around the chord line. Finally, to determine the effect

of the airfoil thickness, we consider a flow parallel to the axis x, which goes around

a symmetrical airfoil with the corresponding thickness t(x). The scheme of these

three problems is in Figure 4.2.

0
c

v∞

Φs

Φ�
∞

v∞

∞

Φt

v∞

Figure 4.2: New problems solved in the thin airfoil theory: the flow around

the camber line, flow around the chord line with α∞ and flow around the thick

symmetric airfoil.
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4.1.1 Potential induced by the camber

To determine the velocity potential induced by the camber we solve the problem

(4.1.11) for the unknown function φs with boundary conditions

∂φs(x, y)

∂y

∣

∣

∣

∣

y=0+
= v∞s

′(x), (4.1.15)

∂φs(x, y)

∂y

∣

∣

∣

∣

y=0−
= v∞s

′(x), x ∈ [0, C] . (4.1.16)

That means we consider a flow around the mean camber line representing the

airfoil with a zero angle of attack α∞. The chord line of an infinitesimally thin

airfoil, as shown in the upper part of Figure 4.2, lies on the axis x. The velocity

field corresponding to the mean camber line will be imitated by a velocity field

caused by some distribution of vortices on the chord.

0 c

x

y

γ(x)

v

Figure 4.3: Velocity induced by a system of vortices.

The solution of our problem is solved by the use of the Biot-Savart law. In

two dimensions, the velocity potential φes excited by an elementary vortex of an

intensity Γe, located at some point ξ ∈ [0, C] on the chord, can be expressed in

the form

φes(x, y) = −Γe

2π
arctan

(

y

x− ξ

)

, x, y ∈ R. (4.1.17)

If we consider a continuous distribution of vortices along the chord line, we

obtain the following expression for the velocity potential:

φs(x, y) = − 1

2π

∫ C

0

γ(ξ) arctan

(

y

x− ξ

)

dξ, x, y ∈ R, (4.1.18)

where γ(ξ) is the specific circulation of the vortex distribution per unit length.

The function γ(ξ), ξ ∈ [0, C] is unknown at this moment. It needs to be deter-

mined from the conditions (4.1.15)–(4.1.16).

Since we are interested in the velocity more than in the potential, we differ-

entiate the potential φs with respect to x and y. We obtain expressions for the
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induced velocity components

v̂x(x, y) =
1

2π

∫ C

0

γ(ξ)
y

(x− ξ)2 + y2
dξ, (4.1.19)

v̂y(x, y) = − 1

2π

∫ C

0

γ(ξ)
x− ξ

(x− ξ)2 + y2
dξ. (4.1.20)

The integrated functions have singularities on the interval [0, C]. From this rea-

son, the integration process is defined in the sense of the Cauchy principal value.

Definition. Let f(x) be a function defined on the interval [a, b]. Let c ∈ [a, b]

be a point where the function f has a singularity. Then we define the Cauchy

principal value of the integral as

(PV )

∫ b

a

f(x)dx = lim
ǫ→0+

(
∫ c−ǫ

a

f(x)dx+

∫ b

c+ǫ

f(x)dx

)

. (4.1.21)

All the integrals are treated in this way. The commonly used sign (PV ) will

be omitted for the simplicity of notation.

From the boundary conditions (4.1.15)–(4.1.16) we get the following condi-

tions for the y-component of the perturbation velocity:

lim
y→0±

v̂y(x, y) = v∞s
′(x), x ∈ [0, C] (4.1.22)

This corresponds to the requirement that the velocity vector is tangent to the

airfoil surface, i.e. the mean camber line s(x). Since it is assumed that the mean

camber line has a small curvature and therefore its points lie near the axis x, the

error arising from the shift to the chord line (i.e. y → 0±) is negligible.

Taking the limit in the relation (4.1.22) we get

s′(x) =
1

2πv∞

∫ C

0

γ(ξ)

ξ − x
dξ, x ∈ [0, C] . (4.1.23)

This important relation will also be further used to derive the equation describing

the mean camber line in the searched inverse operator.

We can also derive a relation between the specific circulation γ and the per-

turbation velocity. We start from the expression (4.1.19) for the perturbation

velocity v̂x and evaluate it for y → 0±. It can be seen that the only significant

contribution to the integral comes from a very close neighbourhood of x. For this

reason, it is possible to approximate the function γ by its value at x and move it

in front of the integral. For the remaining integral we get

lim
y→0±

∫ C

0

y

(x− ξ)2 + y2
dξ = ±π. (4.1.24)

The result is

lim
y→0±

v̂x(x, y) = ±γ(x)
2

, x ∈ [0, C] . (4.1.25)
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Hence, we get the relation

γ(x) = v̂x(x, 0
+)− v̂x(x, 0

−). (4.1.26)

Now we have enough information to derive one part of the inverse operator

L, which describes the construction of the mean camber line. Nevertheless, we

will finish the solution of the problem stated at the beginning of this section.

To evaluate the velocity increments (4.1.19) and (4.1.20) (or the potential

(4.1.18)) caused by the camber we have only to determine the specific circulation

γ(x). This means to solve the equation

∫ C

0

γ(ξ)

ξ − x
dξ = 2πv∞s

′(x), x ∈ [0, C] (4.1.27)

for the unknown γ. Like in the Chapter 2.1 about the potential flow, it is necessary

to ensure the uniqueness of the solution by adding a condition for the circulation.

The Kutta condition ensuring the correct position of the stagnation point at the

trailing edge requires γ(C) = 0.

The equation (4.1.27) is solved using the coordinate transformation

x =
C

2
(1− cos(θ)), ξ =

C

2
(1− cos(ζ)), (4.1.28)

x, ξ ∈ [0, C], θ, ζ ∈ [0, π]. Using this transformation, we convert the equation to

the form

1

2π

∫ π

0

γ(ζ) sin(ζ)

cos(ζ)− cos(θ)
dζ = −v∞

ds(θ)

dx
, θ ∈ [0, π] . (4.1.29)

We use the same notation for the original and transformed functions γ and s here.

In the next step, the distribution of vorticity is expressed through the expansion

into a Fourier sine series with an additional term ensuring a non-zero value on

the leading edge [22]

γ(ζ) = 2

(

A0 cot
ζ

2
+

∞
∑

n=1

An sinnζ

)

. (4.1.30)

The trailing edge is due to the coordinate transformation located at ζ = π and

it is obvious that γ(π) = 0. Hence, the Kutta condition is automatically satisfied

in this expansion.

This expansion is substituted into the equation (4.1.29), where each integral,

after some necessary adjustments, is evaluated using the Glauert integral [31]

∫ π

0

cosnζ

cos ζ − cos θ
dζ = π

sinnθ

sin θ
. (4.1.31)

The result is

A0 −
∞
∑

n=1

An cosnθ = −v∞
ds(θ)

dx
, (4.1.32)
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from which the values of the series coefficients can be determined. To do this,

the orthogonality of the basis functions cosnθ will be used. Then we get

A0 = −v∞
π

∫ π

0

ds(θ)

dx
dθ, (4.1.33)

An =
2v∞
π

∫ π

0

ds(θ)

dx
cos nθ dθ. (4.1.34)

4.1.2 Potential induced by the angle of attack

The effect of the angle of attack on the velocity potential is determined by as-

suming a flow with the given angle α∞ around an airfoil represented by its chord

line. The layout of the problem is in the middle part of Figure 4.2.

The problem we are solving is the problem (4.1.11) for the potential φα∞
with

boundary conditions

∂φα∞
(x, y)

∂y

∣

∣

∣

∣

y=0+
= −v∞ tan(α∞), (4.1.35)

∂φα∞
(x, y)

∂y

∣

∣

∣

∣

y=0−
= −v∞ tan(α∞), x ∈ [0, C] . (4.1.36)

The solution of this problem can be transformed to the problem dealt with in

the previous section. For this moment we denote the straight line representing

the airfoil by s(x). The coordinate system is rotated so that the flow is parallel

to the axis x, and thus the line s(x) is rotated by an angle −α∞. So we have the

same problem as was solved above, now with

s′(x) = − tanα∞. (4.1.37)

By substituting into relations (4.1.33)–(4.1.34), the expression for the circulation

corresponding to the potential φα∞
is obtained,

γα∞
(θ) = 2v∞ tanα∞ cot

θ

2
. (4.1.38)

4.1.3 Potential induced by the thickness

To determine the velocity potential φt, which is caused by the influence of the

airfoil thickness, a symmetric airfoil is considered. Its thickness is given by the

thickness function t(x) defined by (4.1.10). The flow is, as previously mentioned,

considered with a zero angle of attack, i.e. parallel to the axis x.

The problem can be formulated as follows: Find a function φt satisfying

(4.1.11) with conditions

∂φt(x, y)

∂y

∣

∣

∣

∣

y=0+
= v∞t

′(x), (4.1.39)

∂φt(x, y)

∂y

∣

∣

∣

∣

y=0−
= −v∞t′(x), x ∈ [0, C] . (4.1.40)
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As in the previous cases where the velocity field was imitated by a continuous

distribution of vortices along the chord line, this time the approach is similar.

Instead of the distribution of vortices, however, the distribution of sources is

considered.

0 c

x

y

q(x)

v

Figure 4.4: Velocity induced by a system of sources.

It is known that an elementary point source of an intensity Qe located at a

point [ξ, 0], ξ ∈ R, induces by its presence a velocity potential

φet (x, y) =
Qe

2π
ln
√

(x− ξ)2 + y2, x, y,∈ R. (4.1.41)

Therefore, if considering the continuous distribution of sources along the chord

of the length C, the resulting potential is equal to

φt(x, y) =
1

2π

∫ C

0

q(ξ) ln
√

(x− ξ)2 + y2dξ, x, y ∈ R, (4.1.42)

where q(ξ) is a specific source intensity per unit length.

Differentiating φt by individual variables, we obtain velocity components along

the axis x and y, denoted again by v̂x, v̂y:

v̂x(x, y) =
1

2π

∫ C

0

q(ξ)
x− ξ

(x− ξ)2 + y2
dξ, (4.1.43)

v̂y(x, y) =
1

2π

∫ C

0

q(ξ)
y

(x− ξ)2 + y2
dξ. (4.1.44)

Based on the requirements (4.1.39)–(4.1.40), the surface condition

v̂y(x, 0
±) = ±v∞t′(x), x ∈ [0, C] (4.1.45)

is prescribed.

Now, we take the limit in the equation (4.1.44) for y → 0±. We use the

same approximation as was used in the derivation of (4.1.25). That means we
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approximate the function q by its value at x and move it in front of the integral.

This leads to the relation between the induced velocity and source intensity:

v̂y(x, 0
±) = ±q(x)

2
, x ∈ [0, C] . (4.1.46)

Substituting the condition (4.1.45) into this relation, we obtain the relation be-

tween the derivative of the thickness function and the source intensity. It is also

clear that the total source intensity is zero because
∫ C

0

q(ξ)dξ =

∫ C

0

2v∞t
′(ξ)dξ = 0 (4.1.47)

by the fact that the airfoil is closed (t(0) = t(C) = 0).

The induced potential can be written in the form

φt(x, y) =
v∞
π

∫ C

0

t′(ξ) ln
√

(x− ξ)2 + y2dξ, x, y ∈ R. (4.1.48)

4.2 Derivation of the inverse operator

In the previous section, the thin airfoil theory was described. Its primary use is to

calculate the velocity of the flow in the vicinity of the given airfoil or to determine

its relevant characteristics. In the case of thinking about the inverse problem,

however, the shape of the airfoil is of course not known. On the contrary, the

velocity distribution or pressure distribution (in case of viscous flow) along the

surface is known. The corresponding airfoil shape is the searched unknown.

Knowing the velocity distribution on the surface of the airfoil, we will use

the same procedure as in the above-mentioned theory. The airfoil can thus be

described using the camber line s(x) and the thickness function t(x). The deriva-

tion of relations defining these functions will use the already obtained results. In

the case when a pressure distribution instead of a velocity distribution is given,

we need to evaluate an equivalent velocity. This transformation will be described

at the end of this chapter.

The inverse operator L is applied on the fictitious velocity distribution u. This

distribution is given by a pair of functions uu and ul, which represent the velocity

magnitude on the upper and lower part of the airfoil along the chord line. By an

airfoil we understand a closed curve ψ, which has its beginning and end located

at the trailing edge and which is oriented counterclockwise. To the prescribed

velocity distribution we assign a sign plus or minus, according to the direction of

flow. If the velocity is in the opposite direction of the curve ψ, then we consider

the minus sign and otherwise the plus sign. Hence, on the upper surface, the

velocity is mostly negative and on the lower surface mostly positive. The sign is

changing at the stagnation point near the leading edge.

4.2.1 Mean camber line

To derive the relation determining the mean camber line s(x) we start from

the equations (4.1.23) and (4.1.37). Their sum leads to an expression for the
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derivative of the camber line, depending on the circulation,

s′(x) = tanα∞ +
1

2πv∞

∫ C

0

γ(ξ)

ξ − x
dξ, x ∈ [0, C] . (4.2.1)

This equation for the unknown function s(x) will be completed by the boundary

conditions s(0) = s(C) = 0. Since this is a first order differential equation, the

requirement of two conditions is generally impossible. In order to achieve that, it

is necessary to consider the angle of the free stream α∞ as an unknown parameter.

As already mentioned in the previous chapter, the circulation can be expressed

as a difference of velocities on both sides of the surface. These velocities are the

given velocity distribution uu and ul. If we consider the sign of the velocity, the

specific circulation can be expressed as

γ(x) = −(uu(x) + ul(x)). (4.2.2)

To meet the Kutta condition, it is necessary uu(C) = −ul(C), i.e. γ(C) = 0.

For simplicity, we will consider the unit velocity at infinity, v∞ = 1, in the

following text. This can be done without loss of generality by normalizing the

velocity distribution. We denote here a = tanα∞ for this moment. The solution

of (4.2.1) is written in the form

s(x) = ax− 1

2π

∫ x

0

(
∫ C

0

γ(ξ)

t− ξ
dξ

)

dt, (4.2.3)

where we used the requirement s(0) = 0.

Further, we change the order of integrations and evaluate the newly formed

integral
∫ x

0

1

t− ξ
dt = ln

∣

∣

∣

∣

x− ξ

ξ

∣

∣

∣

∣

. (4.2.4)

It remains to determine the parameter a so as to fulfil the second condition

s(C) = 0. This is determined by substituting into the equation (4.2.3), which

gives

a =
1

2πC

∫ C

0

γ(ξ) ln

∣

∣

∣

∣

C − ξ

ξ

∣

∣

∣

∣

dξ. (4.2.5)

Thus we finally derive the equation for the mean camber line and its derivative

s′(x) =
1

2πC

∫ C

0

γ(ξ) ln

∣

∣

∣

∣

C − ξ

ξ

∣

∣

∣

∣

dξ − 1

2π

∫ C

0

γ(ξ)

x− ξ
dξ, (4.2.6)

s(x) =
x

2πC

∫ C

0

γ(ξ) ln

∣

∣

∣

∣

C − ξ

ξ

∣

∣

∣

∣

dξ − 1

2π

∫ C

0

γ(ξ) ln

∣

∣

∣

∣

x− ξ

ξ

∣

∣

∣

∣

dξ. (4.2.7)

4.2.2 Thickness function

To derive the thickness function, we come out again from relations previously

derived in Chapter 4.1. Specifically, differentiating the relation (4.1.48) with

respect to x gives us the expression of the induced velocity:

v̂x(x, 0) =
v∞
π

∫ C

0

t′(ξ)
1

x− ξ
dξ, x ∈ [0, C] . (4.2.8)
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Figure 4.5: Velocity distribution uu(x) = −ul(x) evaluated from NACA0012

airfoil (v∞ = 1).

To derive this expression, we considered a symmetric airfoil at a zero angle

of attack. Therefore, we can expect that the velocity along both sides of the

airfoil will be of the same size. However, in our case we have a general velocity

distribution that is either desired by engineers or obtained by the direct operator

P. Thus, we define a new function vt obtained by averaging the velocities on both

sides of the airfoil and subtracting the free stream velocity. While respecting the

signs, as described above, this function can be expressed in the form

vt(x) =
−uu(x) + ul(x)

2
− v∞. (4.2.9)

In the following, for simplicity, we will again consider a unit velocity at infinity,

v∞ = 1.

Substituting (4.2.9) into the relation (4.2.8) we obtain the integral equation

vt(x) =
1

π

∫ C

0

t′(ξ)
1

x− ξ
dξ, x ∈ [0, C] (4.2.10)

for an unknown function t′(x).

An illustrative example how function uu(x) = −ul(x) can look can be found

in Figure 4.5. This function is determined on the basis of this equation for an

existing airfoil. It is a symmetric airfoil NACA0012, whose analytical expression

is given in Appendix 6. The figure shows that there is a singularity on the leading

edge, which causes that the velocity goes to infinity. This is caused besides other

by the fact that the derivative of the thickness at the point 0 is equal to infinity.

In practice, using a discrete distribution of points and numerical integration, this

problem is avoided.

Our goal is to express the unknown function t′(x) using the given function

vt(x). This can be achieved if we realize that the equation (4.2.10) can be consid-

ered as a special case of a more general integral equation in the complex domain.

The solution will use the following statement [20]:
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Theorem 3. Let L be a smooth simple curve in the complex domain and ϕ, f ∈
H(〈L〉) (see Definition in Sec. 2.1.1) are complex functions defined on this curve.

Let a and b be the endpoints of the curve L and α, β ∈ C satisfy α2 − β2 6= 0.

Then the singular integral equation

αϕ(ϑ) +
β

πi

∫

L

ϕ(z)

z − ϑ
dz = f(ϑ), ϑ ∈ 〈L〉

for the unknown function ϕ has a solution

ϕ(ϑ) =
α

α2 − β2
f(ϑ)−

β

πi(α2 − β2)(ϑ− a)1−m(ϑ− b)m

∫

L

(z − a)1−m(z − b)m

z − ϑ
f(z)dz+

A

(ϑ− a)1−m(ϑ− b)m
,

where ϑ ∈ 〈L〉, A is an arbitrary constant and the coefficient m is given by

m =
1

2πi
log

α + β

α− β
.

In our case, α = 0, β = −i and the curve L is the chord line. Thus, we obtain

the solution

t′(x) = −1

π

∫ C

0

vt(ξ)

x− ξ

√

ξ(C − ξ)

x(C − x)
dξ +

A
√

x(C − x)
. (4.2.11)

In this expression an arbitrary constant A occurs, which must be further defined.

In the next step, we will integrate with respect to the variable x. After

changing the order of integration we obtain

t(x) =− 1

π

∫ C

0

(

vt(ξ)
√

ξ(C − ξ)

∫ x

0

dy
√

y(C − y)(y − ξ)

)

dξ+

+ A arctan

(

x− C/2
√

x(C − x)

)

−B, (4.2.12)

where B is a new integration constant.

The second integral in the expression can be calculated as

∫ x

0

dy
√

y(C − y)(y − ξ)
= − 1

√

ξ(C − ξ)
ln

∣

∣

∣

∣

∣

∣

∣

1 +
√

ξ
C−ξ

√

C−x
x

1−
√

ξ
C−ξ

√

C−x
x

∣

∣

∣

∣

∣

∣

∣

. (4.2.13)

Substituting into (4.2.12) we obtain the equation determining the thickness func-

tion of the airfoil,

t(x) =
1

π

∫ C

0

vt(ξ) ln

∣

∣

∣

∣

∣

∣

∣

1 +
√

ξ
C−ξ

√

C−x
x

1−
√

ξ
C−ξ

√

C−x
x

∣

∣

∣

∣

∣

∣

∣

dξ + A arctan

(

x− C/2
√

x(C − x)

)

+B.

(4.2.14)
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All these integrals are understood as improper integrals in the sense of the Cauchy

principal value, defined in Section 4.1.1.

Finally, it remains to determine the values of the parameters A and B. To

do this, we use the requirements on the thickness, i.e. that at both ends of the

chord the thickness is zero. If we put x = 0 or x = C, the above integral is always

equal to zero. The second term containing A is a monotone function that takes

the value −Aπ/2 at the origin and the value Aπ/2 at the trailing edge for x = c.

Therefore, we set A = B = 0.

This choice is entirely consistent with the case when the velocity function vt(x)

is zero. Then the velocity on the surface is equal to the free stream velocity and

for a symmetric airfoil, it must be of a zero thickness. If we, purely theoretically,

prescribe vt(x) = 1 along the chord, we get an airfoil in the shape of a circle, as

1

π

∫ C

0

ln

∣

∣

∣

∣

∣

∣

∣

1 +
√

ξ
C−ξ

√

C−x
x

1−
√

ξ
C−ξ

√

C−x
x

∣

∣

∣

∣

∣

∣

∣

dξ =

√

(

C

2

)2

−
(

x− C

2

)2

. (4.2.15)

Under these assumptions, the mapping between the velocity distribution vt(x)

and the thickness function t(x) is well defined. Although our method deals with

airfoils which have a sharp trailing edge, from the above it is evident that a

suitable choice of parameters A and B can give a description of airfoils with a

non-zero thickness of their trailing edge t(C).

The resulting equation for the thickness function is therefore

t(x) =
1

π

∫ C

0

vt(ξ) ln

∣

∣

∣

∣

∣

∣

∣

1 +
√

ξ
C−ξ

√

C−x
x

1−
√

ξ
C−ξ

√

C−x
x

∣

∣

∣

∣

∣

∣

∣

dξ. (4.2.16)

Finally, it is worth to mention one comment. The thickness function should,

of course, be positive on the whole range of the chord line, except its endpoints.

However, the above-described equation cannot guarantee this property for any

arbitrary distribution vt(x). It could happen that at some points the resulting

airfoil thickness will be negative. During the iterative process of the inverse

method, this problem is fortunately not so frequent. If it happens, it is mainly

during the first iterations and it occurs mostly in the vicinity of the trailing edge.

For this reason, it is necessary to implement a control mechanism to check the

positivity of the thickness. If the thickness at some point is negative then the

magnitude of the fictitious velocity distribution u is raised at this point to achieve

a positive thickness.

4.2.3 Construction of the airfoil

Points belonging to the airfoil surface are constructed from the camber line func-

tion s(x) and the thickness function t(x). Both functions depend on the velocity

distribution, denoted as u = {uu, ul}. The airfoil ψ can be replaced by a pair of
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Figure 4.6: Example of airfoil shapes according to distribution vt(x).

curves ψu(x) and ψl(x), x ∈ [0, C], representing the upper and lower part of the

airfoil parametrized along the chord line.

The construction of the airfoil geometry is shown in Figure 4.7. The thickness

is measured perpendicular to the mean camber line s(x) (notice we use a simpli-

fication in Section 4.1). Therefore, the coordinates of the upper and lower airfoil

surface are written as:

ψxu(x) = x− t(x)
s′(x)

√

1 + s′2(x)
, ψyu(x) = s(x) + t(x)

1
√

1 + s′2(x)
, (4.2.17)

ψxl (x) = x+ t(x)
s′(x)

√

1 + s′2(x)
, ψyl (x) = s(x)− t(x)

1
√

1 + s′2(x)
, (4.2.18)

where x ∈ [0, C].

By the above procedure, an airfoil can be designed according to the given

velocity distribution. The approximate inverse operator L is thus the mentioned

mapping L(u) = L(uu, ul) = (ψu, ψl).

It is possible to prove that the operator L is continuous. To prove this state-

ment it is sufficient to swap the limits and integrals, as well as use the relations

for the sum and product of limits.

4.3 Numerical realization

The computation of the curves ψu(x), ψl(x), respectively s(x) and t(x) from

(4.2.7) and (4.2.16), includes the evaluation of integrals, which is carried out

with the aid of a suitable numerical quadrature. The integrands are functions

of two variables x and ξ and have singularities for x = ξ. From this reason it
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Figure 4.7: Construction of the airfoil

is necessary to avoid these points. The quadrature used in this method is the

Chebyshev-Gauss quadrature [32], formulated for some function f(x) as:

∫ 1

−1

f(x)√
1− x2

dx =

N/2
∑

k=1

wkf(x̂k) +RN , (4.3.1)

where N is an even number and wk = 2π/N are quadrature weights. The points

x̂k are roots of the Chebyshev polynomial

TN/2(x) = cos

(

N

2
arccosx

)

(4.3.2)

and are given by

x̂k = cos

(

(2k − 1)π

N

)

. (4.3.3)

The error of the quadrature formula is expressed as

RN =
2π

2NN !
f (N)(η). (4.3.4)

Hence, if we denote the integrands in (4.2.6), (4.2.7) and (4.2.16) by g(x, ξ),

the integrals can be computed as

∫ C

0

g(x, ξ) dξ ≈
N/2
∑

k=1

wkg(x, ξk)
√

ξk(C − ξk), (4.3.5)

where x ∈ [0, C] and ξk = (C + Cx̂k)/2 are the quadrature nodes.

Based on this we can define the sequence {xi}Ni=0 as

xi =
C

2

(

1 + cos
iπ

N

)

. (4.3.6)

Thus the nodes of the quadrature formula (4.3.5) are xi, i = 1, 3, . . . , N − 1,

and if we put for x the values xi, i = 0, 2, . . . , N , we avoid the problems with
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singularities. The resulting formula for the evaluation of the integrals is of the

form

∫ C

0

g(xi, ξ) dξ ≈
2π

N

N/2
∑

k=1

g(xi, x2k−1)
√

x2k−1(C − x2k−1), i = 0, 2, 4 . . . , N.

(4.3.7)

The distribution of nodes using the Chebyschev polynomial has a favourable

property. The density of nodes is higher near the ends of the chord. From this

reason the shape of the airfoil is expressed more precisely. The velocity is needed

to be known at points xi, i = 1, 3, . . . , N − 1 and the approximation of the airfoil

is obtained at points xi, i = 0, 2, 4, . . . , N . The number of evaluated points along

one side of the airfoil is N/2 + 1 and the total number of different points of the

airfoil is 2(N/2 + 1)− 2 = N.

4.4 Pressure distribution

The so far derived approximate operator L assigns a new airfoil shape to a speci-

fied velocity distribution along the chord line. This can be in many cases sufficient.

But if we consider, for example, viscous flow, this approach should be changed

appropriately. Because of the molecular viscosity, the adhesion of particles on

the surface of the airfoil occurs and so there is a zero velocity. For this reason, it

does not make sense to consider a velocity distribution. As more appropriate it

appears to prescribe a pressure distribution. In addition, the pressure is associat-

ed with many significant features such as the lift, drag and moment. Therefore,

the ability to design the shape of the airfoil with a given pressure distribution is

much more important.

In order to make maximum use of the so far obtained results, it is necessary to

determine the relationship between the velocity and pressure. The approximate

inversion L, defined by (4.2.17) and (4.2.18), was derived on the basis of a sim-

plified model for a potential incompressible flow. It is therefore possible to use

the Bernoulli’s equation for the incompressible, irrotational, steady flow, through

which the relationship for the velocity is

v2 =
2(p∞ − p)

ρ∞
+ v2∞. (4.4.1)

However, because the determination of the pressure on the airfoil is mainly done

by models based on the solution of the Navier-Stokes equations for a compressible

flow, this relationship is burdened with an error.

The pressure is assumed to be constant across the boundary layer in the

normal direction to the airfoil. Hence, the velocity on the edge of a boundary

layer is computed from the pressure on the airfoil. The transformation is derived
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from relations for the pressure, density, Mach number and speed of sound [27],

p = p0

(

1 +
γ − 1

2
M2

)−γ/(γ−1)

,

ρ = ρ0

(

1 +
γ − 1

2
M2

)−1/(γ−1)

,

c2 = γp/ρ.

The derived formula for the velocity related to the velocity in the free stream is

(

v

v∞

)2

=
2/M2

∞ + γ − 1

γ − 1

(p0/p)
(γ−1)/γ − 1

(p0/p)
(γ−1)/γ

, (4.4.2)

where p0 is the stagnation pressure at zero velocity, M∞ is the Mach number of

the free stream, γ is the Poisson adiabatic constant and p is the given pressure

distribution. The velocity defined by (4.4.2) will be used to design the airfoil

shape. This transformed inverse operator, which maps a pressure distribution to

an airfoil shape, will be denoted, for simplicity, again by L.
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5. Numerical validation of the

method

The developed method is based on several ideas. It is well-known that the in-

verse problems belong to the class of the ill-posed problems. Therefore, in or-

der to obtain physically applicable results, it was necessary to combine rigorous

mathematical techniques with heuristic ideas based on the combination of several

models. Therefore, it is necessary to carry out the validation of the developed

technique which would guarantee its reliability and give bounds and limitations

of its applicability. To this end, we present several numerical examples of the

solution of inverse problems using various models of flow.

To remind, we solve the iteration process

uk = uk−1 + η (f −PLuk−1) , (5.0.1)

where uk denotes the fictitious distribution of the velocity or pressure on the up-

per and lower airfoil surface, given along the chord line. The direct operator P is

either the potential flow model described in Section 2.1 or the compressible turbu-

lent model described in Sections 2.2 and 2.3. The operator L is the approximate

inversion derived in Chapter 4, either mapping a velocity distribution or a pres-

sure distribution to an airfoil shape. The initial distribution u0 is set equal to the

target distribution f . In each step, we determine the airfoil shape ψk−1 = Luk−1

and then compute the velocity/pressure distribution u = P(Luk−1).

5.1 Potential flow

5.1.1 NACA0012

One of the ways to validate the new method is to consider a problem with a known

solution and to see if using this method we obtain the same solution. To start with

the simplest problem, we consider flow around the symmetric NACA0012 airfoil,

with the potential flow model described in Section 2.1, yet without compressibility

corrections. The target velocity distribution f on the airfoil is obtained by the

calculation for a given velocity of the free stream and the selected angle of attack.

The initial fictitious velocity distribution u0 is chosen the same as the target

distribution f .

First, we test a case for a symmetric flow with the angle α∞ = 0◦. Figure 5.1

shows in the left part the initial fictitious distribution u0 and the newly evaluated

velocity distribution PLu0 corresponding to the newly created airfoil. On the

right side, there is a comparison of the new design with the original shape. The

scales of the image were adjusted to highlight the differences between the shapes.

It can be seen that the initial design of the shape of the airfoil is very close to
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the target shape. After ten iterations we get the NACA0012 original shape with

the corresponding velocity distribution (see Figure 5.2).
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Figure 5.1: NACA0012, α∞ = 0◦, M∞ = 0.3 - after first iteration.
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Figure 5.2: NACA0012, α∞ = 0◦, M∞ = 0.3 - after 10th iteration.

Another test is then a flow with a non-zero angle of attack. For selected

different angles α∞ we determine the velocity distribution, from which we create

first approximations of the airfoil shapes using the inverse operator. Using an

iterative process, we should get back the original symmetric NACA0012 airfoil.

Figure 5.3 shows the result after the first iteration for the angle α∞ = −2.5◦. It

can be seen that the initial approximation already has a different shape. This

is due to the fact that we use the asymmetric velocity distribution as the initial

distribution u0. Therefore, it is necessary to do more iterations to converge than

in the previous case, when the fictitious target distribution was very close to

the desired distribution. After fifteen iterations we obtain a shape which is very

close to the original one. After thirty iterations we finish with the desired result

(Figure 5.4).
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Comparison of different choices for angles of attack can be found in Figure 5.5.

The results show that the number of iterations depends on how large is the

difference between each target velocity distribution (and hence initial fictitious

distribution) and the fictitious distribution corresponding to the target shape.

The speed of convergence, therefore, depends on how is the prescribed angle of

attack distant from the so-called ideal angle of attack. This is such an angle,

when the stagnation point is located in the beginning on the leading edge. For a

symmetric NACA0012 airfoil, the ideal angle of attack is zero and therefore this

configuration has the highest rate of convergence. The value of the parameter is

η = 0.9.

The solution of the inverse problem using the potential flow model is very

fast. It takes few seconds to get the results.
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Figure 5.3: NACA0012, α∞ = −2.5◦, M∞ = 0.3 - after first iteration.
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Figure 5.4: NACA0012, α∞ = −2.5◦, M∞ = 0.3 - after 15th and 30th iteration.
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Figure 5.5: NACA0012, various angles of attack, M∞ = 0.3 - results from the

inverse method.
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5.1.2 Eppler e337

The next example is an asymmetric airfoil Eppler e337, whose shape is shown

in Figure 5.6. This test case illustratively shows the ability of convergence even

x

y
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0
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0.2

Figure 5.6: Shape of the Eppler e337 airfoil.

for asymmetric airfoils. Every time, the initial shape is obtained from the target

distribution, which turns during iterations into the desired target shape.
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Figure 5.7: Eppler e337, various angles of attack, M∞ = 0.3 - results from the

inverse method.
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Figure 5.8: Eppler e337, various angles of attack, M∞ = 0.3 - results from the

inverse method.

5.2 Viscous flow

Now it is necessary to test the method for the viscous, compressible, turbulent

flow described in Sections 2.2 and 2.3. Since the velocity on the airfoil surface is

zero, we consider the pressure distribution instead of this.

5.2.1 NACA0012

At first, we test again a symmetric NACA0012 airfoil at zero angle of attack.

The free stream velocity was selected so that M∞ = 0.6. The Reynolds number

for the presented examples has the value Re = 6300000. In Figure 5.9 we can

see the initial design of the airfoil shape. Unlike for the incompressible flow,

there is a much greater difference caused by the compressibility effects of the air.

Also, the greater thickness near the trailing edge caused by the boundary layer

is noticeable. After a few dozen iterations, we get again the original shape of the
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Figure 5.9: NACA0012, α∞ = 0◦, M∞ = 0.6, viscous flow - after first iteration.
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airfoil. The result is shown in Figure 5.11, the following pictures show the rate

of convergence of the solution and the flow field around the airfoil.
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Figure 5.10: NACA0012, α∞ = 0◦, M∞ = 0.6, viscous flow - after 10th iteration.
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Figure 5.11: NACA0012, α∞ = 0◦, M∞ = 0.6, viscous flow - after 30th iteration.

The relative error of the solution is defined as the L2-norm of the difference

between the target and calculated pressure distribution, divided by the norm of

the target distribution and evaluated on each airfoil side separately. Recall that

the distribution on the upper and lower part is denoted by uu and ul (resp. fu and

fl). The error on the upper part after (k+1)-th iteration is computed according

to the formula

ǫrel,u =

√

∫ C

0
(fu(x)−PLuk,u(x))

2 dx
√

∫ C

0
fu(x)2dx

. (5.2.1)

The maximum of ǫrel,u and ǫrel,l for our test case is shown in Figure 5.12.

The iteration process (5.0.1) is stopped when a sufficiently low error is achieved

or the maximum number of iterations is exceeded. As a check of the result, the

comparison of the target and calculated distributions can also serve.
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The solution of the inverse problem using the model of the flow based on the

Navier-Stokes equations take more time than using the potential model. However,

depending on the number of elements in the FVM method, it is possible to get

the solution in half an hour.
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Figure 5.12: NACA0012, α∞ = 0◦, M∞ = 0.6, viscous flow - history of conver-

gence for different η.

Figure 5.13: NACA0012, α∞ = 0◦, M∞ = 0.6, viscous flow - pressure and Mach

number field.

The next step is to verify the method by solving problems for non-zero angles

of attack. These angles were selected as 2 and 4 degrees, the free stream velocity

and the Reynolds number remained the same. For smaller angles of attack the

method works as expected, as in the case of a symmetric pressure distribution. In

the first iteration, an airfoil corresponding to the specified pressure distribution

is created. This shape is asymmetric, and as indicated above, has a greater

thickness. Then it transforms step by step by the iterative process back into the

initial symmetric shape (see Figure 5.14). The history of convergence is shown

in Figure 5.15.

The case with the angle of attack α∞ = 4◦ is more complicated. Due to the

free stream velocity and the angle of attack and also because the initial airfoil

design has a greater thickness, a transonic region on the upper surface occurs.
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Figure 5.14: NACA0012, α∞ = 2◦,M∞ = 0.6, viscous flow - pressure distribution

development.
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Figure 5.15: NACA0012, α∞ = 2◦, M∞ = 0.6, viscous flow - history of conver-

gence.
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This leads to the formation of a shock wave. The shock wave in Figure 5.16 is

not so sharply captured because it is not our intention and so the computational

grid is quite coarse in this area. The thin airfoil theory, of course, does not allow

for the existence of shock waves that cause jumps in the pressure and velocity

distribution. These jumps must be, according to this theory caused only by

changing the thickness or the mean camber line of the airfoil. This leads to the

fact that the designed airfoils could have very non-aerodynamic shapes, as shown

in Figures 5.17 and 5.18. Fortunately, if the effect of shock waves is not too

strong, the method is able to smooth slowly these bumps and return the airfoil

back into the subsonic flow regime. Thus, we again finish with the NACA0012

airfoil, whose pressure distribution corresponds to the specified one (Figure 5.20).

The history of convergence is in Figure 5.21. The relative error ceased to decrease

after 85 iterations because it apparently reached the limit given by the number

of discretization points.
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Figure 5.16: NACA0012, α∞ = 4◦, M∞ = 0.6, viscous flow - arising of transonic

region.

x/c

y/
c

0 0.2 0.4 0.6 0.8 1
-0.2

-0.1

0

0.1

0.2

Figure 5.17: NACA0012, α∞ = 4◦, M∞ = 0.6, viscous flow - shape after two

iterations.
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Figure 5.18: NACA0012, α∞ = 4◦, M∞ = 0.6, viscous flow - after second itera-

tion.
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Figure 5.19: NACA0012, α∞ = 4◦, M∞ = 0.6, viscous flow - after 30th iteration.
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Figure 5.20: NACA0012, α∞ = 4◦, M∞ = 0.6, viscous flow - after final iteration.
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Figure 5.21: NACA0012, α∞ = 4◦, M∞ = 0.6, viscous flow - history of conver-

gence, η = 0.6.

5.2.2 RAE2822

Another example is the pressure distribution obtained from RAE2822 airfoil for

the selected flow regimeM∞ = 0.604, α∞ = 1.96◦ and Re = 6300000. The results

are on the following Figures 5.22–5.24.
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Figure 5.22: RAE2822, α∞ = 1.96◦, M∞ = 0.604, viscous flow - after first

iteration.
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Figure 5.23: RAE2822, α∞ = 1.96◦, M∞ = 0.604, viscous flow - after final

iteration.

Figure 5.24: RAE2822, α∞ = 1.96◦, M∞ = 0.604, viscous flow - pressure and

Mach number field.
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5.2.3 Modification of the given pressure

So far, we have been looking for airfoil shapes with a velocity/pressure distribution

that exactly match a known shape. Now, we need to validate that the method is

able to find shapes with other distributions. Since the inverse problem is generally

ill-posed, it is necessary to specify the target pressure distribution with caution.

The first test case represents a slight modification of an existing airfoil. The

initial distribution is obtained from the NACA0012 airfoil for the angle of attack

α∞ = 2◦, M∞ = 0.6 and Re = 6300000. This distribution was then manually

modified so that the peak on the upper surface at the leading edge was cut. The

results are on the following Figures 5.25–5.27.
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Figure 5.25: Modified distribution, α∞ = 2◦, M∞ = 0.6, viscous flow - after first

iteration.
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Figure 5.26: Modified distribution, α∞ = 2◦, M∞ = 0.6, viscous flow - after 10th

and 20th iteration.

The other test case shows the ability of the presented method to design an

airfoil shape to a completely new pressure distribution. We would like to obtain
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Figure 5.27: Modified distribution, α∞ = 2◦, M∞ = 0.6, viscous flow - final

iteration.

a shape meeting the target cp distribution with the angle of attack α∞ = 1◦

and the free stream Mach number M∞ = 0.6. We can also obtain a shape

which satisfies the same cp distribution for a different Reynolds number and Mach

number M∞ = 0.5.

The obtained results show a good agreement. The computed pressure coef-

ficient distribution corresponds to the target distribution, except at the trailing

edge where it is slightly distorted. This is caused by the fact that the new airfoil is

rather thick near the trailing edge and the target pressure seems to be unrealistic

in this area.

Figure 5.28: Mach number and pressure around the airfoil (newly prescribed

distribution, α∞ = 1◦, M∞ = 0.5, Re = 5 · 106).
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Figure 5.29: Completely new prescribed distribution, α∞ = 1◦, M∞ = 0.6, Re =

12.8 · 106.
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Figure 5.30: Completely new prescribed distribution, α∞ = 1◦, M∞ = 0.5, Re =

5 · 106. Comparison with the airfoil designed with the same cp distribution for

M∞ = 0.6.
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Conclusion

A novel method for a solution of an inverse problem of a flow around an airfoil

was described in this work. Its purpose is to determine the shape of an airfoil

based on the specified velocity or pressure distribution on its surface, given along

the chord line. Therefore, it can be used in modifications of existing airfoils or

be applied in optimization methods.

The presented method consists of two parts. The first part solves the flow

problem and the second part is responsible for the shape design. The advantage

of this method is that these parts may be independent of each other. Therefore, it

is possible to combine the various models of flow depending on which suits better

our requirements. The potential flow model solved by the Fredholm integral

equation represents a fast solution which is suitable for problems with low velocity

and small angles of attack. Thanks to its speed it is used mostly in applications

where it is necessary to evaluate many airfoils. The integral formulation allows

an effective solution of the problem.

On the other hand, the flow described by the system of the averaged Navier-

Stokes equations with the k−ω turbulence model provides a sufficiently accurate

description of the reality. The use of the EARSM turbulence model significantly

improves the accuracy of the numerical simulation at the cost of a slight increase

in computational demands. The numerical method of the solution is fast enough

due to the implicit formulation and also robust for the considered problem. The

way of solving the systems of the Navier-Stokes equations and the turbulence

equations in a sequential approach makes the implementation of the turbulence

model into the existing source code easier.

The approximate inverse operator is derived on the basis of the thin airfoil

theory. This allows us to create the initial approximation of the airfoil shape

directly from the prescribed velocity or pressure distribution. If the angle of at-

tack is close to the ideal angle of attack, the initial approximation will be very

close to the desired shape. Thanks to this, the major shape changes are done

within a few iterations. In the subsequent iterations, only the shape refinement

is performed. The solution of the flow problem is considered as a restarted prob-

lem with changing geometry. Hence due to small changes in the shape in later

iterations, only a few dozen of time steps in the CFD solver are necessary.

The examples given at the end of this work demonstrate the ability of the

method. Based on the known airfoil shapes and their velocity/pressure distri-

butions, the presented method designed the corresponding airfoil shapes. By

comparing these shapes the method was validated. Also the examples of new

pressure distributions were presented, where the method was also successful.

The iterative process is treated as a fixed point problem. Although the practi-

cal results proved the correctness of this approach, it is not optimal with respect

to the convergence speed. A more sophisticated technique would better utilize

the potential of the method.
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The method is intended for subsonic problems. However, as the presented ex-

amples indicate, the method can also handle the situations when the flow changes

to transonic during the iteration process. On the other hand, the method may

have problems if there would be a significant flow separation.
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6. NACA airfoils

Under the name NACA airfoils we mean a group of airfoil shapes developed by the

National Advisory Committee for Aeronautics since the first half of the previous

century. Each of the shapes is labelled by NACA letters and an appropriate code

number, which means particular design parameters. Generally, these airfoils are

designed using a mean camber line and an appropriate thickness. Expressions of

these functions are analytic.

One of the first shape groups are the so-called four-digit series airfoils, which

were designed from given geometrical properties. The first digit indicates a max-

imum camber expressed as a percentage of the chord line. Then the second digit

indicates a position of the camber maximum on the chord away from the leading

edge, given in tenths of the chord length. Finally, the last two digits indicate the

maximum thickness of the airfoil, indicated as a percentage of the chord.

Airfoils are specified using the formulas for the camber line s(x) and the

thickness function t(x) [33] normalized on the chord,

s(x) = m
x

p2
(2p− x) , 0 ≤ x ≤ p, (6.0.1)

s(x) = m
1− x

(1− p)2
(1 + x− 2p) , p ≤ x ≤ 1 (6.0.2)

and

t(x) =
q

0.2

(

0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)

. (6.0.3)

The thickness for x = 1 is not zero. If we would like to have a zero thickness

trailing edge, the last coefficient is changed to −0.1036. Individual points on the

top and bottom sides are then obtained as

ψxu = x− t sin θ, ψyu = s+ t cos θ, (6.0.4)

ψxl = x+ t sin θ, ψyl = s− t cos θ, (6.0.5)

where θ = arctan (ds/dx).

The parameter meanings are as follows:

m - maximum camber (100 m is the first digit),

p - position of the maximum camber (10 p is the second digit),

q - maximum thickness (100 q are the last two digits).

Another group of airfoils include a five-digits series [34], where the camber

line is determined by the formula

s(x) =
1

6
k1
(

x3 − 3mx2 +m2(3−m)x
)

, 0 ≤ x ≤ p, (6.0.6)

s(x) =
1

6
k1(1− x)m3, p ≤ x ≤ 1. (6.0.7)
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The thickness function is the same as in the previous case. The first digit deter-

mines after multiplying by 0.15 the desired theoretical lift coefficient, the second

two digits divided by two give the value of p and finally the last couple of digits

determines the thickness q. The coefficient k1 is to be determined so as to achieve

the desired theoretical lift coefficient for an ideal angle of attack.

There are other groups of NACA airfoils, such as modified 4-/5-digits series

or 6-digits, 7-digits and 8-digits series. Their description is beyond the scope of

this work, but it can be found in the literature, if necessary. See, e.g. [35].
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