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Abstrakt:

Charakteristika vykonu podobnostného vyhladdvania v nestruktirovanych
databazach zalezi od pouzitého podobnostného modelu. Vlastnosti met-
rickych priestorov ndm umoziuji efektivne indexovat déta pomocou tzv.
metrickych pristupovych metod. Ale pre pripad nemetrickych priestorov,
ktoré su typické pre multimedidlne, medicinske a vedecké databazy, a v
ktorych neplatia axiémy metrickych priestorov, zatial nepozname vieobecné
riesenie.

Na zéklade uspesnej aplikacie ptolemaického modelu indexovania, pred-
stavujeme SIMDEX Framework, univerzalny nastroj, ktory dokdze objavit
alternativne metédy indexacie dat za ucelom efektivneho podobnostného
vyhladévania pre lubovolny podobnostny model. Na pozadi prehladéva
priestor platnych axiéom tak, aby nasiel nové techniky uréené pre indexo-
vanie databaz. Preskimame vSetky existujice varianty (prosty I-SIMDEX;
GP-SIMDEX a PGP-SIMDEX vyuzivajuce genetické programovanie) a zhod-
notime ich prinos a pouzitie v praxi pre profesiondlov v rozlicnych doménach.

Nakoniec opiSeme konkrétnu aplikaciu SIMDEX Framework-u v praxi na
vytvorenie indexu Smart Pivot Table s pokrocilym filtrovanim pre metrické
priestory (Triangle™ filtering) spoloéne s technikou na zlepsovanie kvality
filtrovania (LowerBound Tightening). Vo vSetkych pripadoch uvadzame aj
experimentalne vyhodnotenie a porovnanie spominanych metod.
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podobnostné vyhladéavanie a indexovanie, metrické a nemetrické pristupové
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Chapter 1

Introduction

Finding the right information in large or growing databases within the acceptable
time frame is crucial in almost every area. For structured data (e.g., data stored
to tables in relational databases with the predefined structure) and simple un-
structured content types such as text documents, the efficient querying methods
are known for decades. On the other hand, the currently popular unstructured
databases such as multimedia databases, social network data, biometric, medical
or scientific databases, which affects our daily lives to a considerable extent, are
more difficult to search or explore due to the higher complexity of stored objects.

Therefore, we use content-based retrieval [Il, 2], which for querying purposes
converts the objects from their native formats to more appropriate forms. This
approach extracts the important information and creates object descriptors which
provide the form of object representations usable for searching models. A popular
type of such a mechanism is the similarity search principle [3] in which, given a
sample query object (e.g., an image), the database engine searches for the most
similar objects (images). In fact, searching collections of a priori unstructured
data entities requires a kind of aggregation that ranks the data as more or less
relevant to a query — the similarity function which depends on the type of dataset
and on the application we deal with.

During the querying, users explore the underlying database and handle the
database objects in different ways which results in the range of simple to complex
similarity models. The current trends such as Big Data [4, 5] leads us to the
challenge of finding information in large-scale databases of unstructured data. We
know how to model data, how to store it, and which similarity model provides the
best results for specific databases when searching for the most similar objects to
the given query. However, we still struggle with the speed of query evaluations and
need to optimize the query efficiency with respect to the quality of results. With
the increasing number of users trying to find information in growing collections
of unstructured data, there is a huge pressure on the database performance, so
efficient indexing techniques for similarity search are required.

For quite a long time, the database-oriented research of similarity search em-
ployed the definition of similarity restricted to the metric space model [6, 3] [7].
Due to the fixed properties of identity, positivity, symmetry, and especially the
triangle inequality, metric similarity functions enable to index the given database
for efficient querying using metric access methods or metric indezes [6, [T, [3],
preventing thus from searching the whole database sequentially.
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Together with the increasing complexity of data types across various domains
and due to very specific user demands, recently there also appeared many non-
metric or unconstrained similarity functions [8, 9, [I0]. As the nonmetric similarity
functions are generally not constrained by any properties that need to be satis-
fied (unlike the metric ones), they allow us to better model the desired concept of
similarity, better address particular issues in some domains, and therefore lead to
more precise retrieval. While metric models usually lack some of the anticipated
features, the nonmetric models provides simply a better fit.

Because these functions rarely fit the strong assumptions of the metric space,
there is a question how to handle distinct (generally nonmetric) similarity models
in a unified way in order to achieve superior performance during query evaluations
[8, 10]. If we do not address this issue, each query will finally degrade to slow
sequential scanning which is applicable only to small-sized datasets. For growing
datasets, long waiting time (hours or days) in order to obtain the anticipated
results is simply unacceptable.

In summary, the increasing diversity of unstructured databases leads to the
development of advanced indexing techniques as the metric indexing model does
not fit to the general similarity models. Once the most critical metric postulate,
namely the triangle inequality, does not hold in these models, any metric access
method produces notable errors during the query evaluation. To overcome this
situation and to obtain better qualitative results, we want to discover better
indexing models for databases using arbitrary similarity measures. However,
each database is unique in a specific way, so we do not consider manual methods
and would prefer an automatic way of exploring the best indexing method. In
our work, we introduce and compare several variants of the recently developed
SIMDEX Framework which allows the automatized discovery of new indexing
methods in a consistent way:.

1.1 Motivation

Nowadays, we identify two types of research groups concerned with different
aspects of similarity search — database experts and domain experts. The database
experts deal with performance issues of similarity search and (mostly) do not
care of particular domain applications. They just assume a similarity model that
is constrained by some specific properties useful for database indexing, such as
the metric space axioms, because these properties provide the ways of indexing
the database for efficient similarity search. But these researchers typically do not
investigate the applicability of their techniques to specific domains.

On the other hand, there are much larger domain expert communities of differ-
ent kinds (e.g., computational biologists or various scientists), people who use the
specialized similarity search applications and are ready to apply any method in
order to get expected results quickly. These experts model similarities for specific
practically oriented applications, while they do not (like to) care of any database-
specific requirements such as applicable indexing techniques or performance issues
to a certain extent, as this is completely outside of their expertise. As the result,
the best approach for them is to use the simplest (possibly inefficient) database
methods as they are easy to implement.



(a) Image similarity (b) Protein similarity

Figure 1.1: Sample similarity models

Besides the simple similarity models for which there exist suitable indexing
techniques, domain experts often develop or come up with similarity models in-
volving more sophisticated features or complex similarity functions. Such models
better reflect the desired concept of similarities and lead to more effective/precise
retrieval. For example, see Fig. for a sketch of robust matching using local
image features. Naturally, the more complex similarity function the domain ex-
perts come with, the lower the likelihood is that it will be a metric model which
satisfies metric space postulates. Therefore, we need to focus generally on both
metric and nonmetric similarity models.

More complex and nonmetric similarities allow to design models that cannot
be formalized into a closed-form equation. They could be defined as heuristic
algorithms such as a specific alignment or a transformational procedure, while
the enforcement of metric axioms could be very difficult or even impossible. For
example, alignment algorithms for measuring functional similarity of the protein
sequences [11] or protein structures [12] (see Fig. for sample alignments of
proteins).

Therefore only the simplest similarity models comply with the objectives of
both expert groups. However, in the long term and with large-scale databases, the
efficiency will become a critical factor when choosing suitable indexing methods
for similarity search. Because of the not really integrated research efforts, both
groups (database experts and domain experts) head into trouble in the near future
due to these reasons:

e Database research — Current efficient solutions for constrained similarity
models (e.g., based on the metric space model) might not be applicable to
the future state-of-the-art similarity search problems. Simply, the database
technology might provide only solutions for trivial or obsolete models.

e Research in various domains — assumes the slow sequential search as
more-or-less sufficient. As the models become very complex and/or the
databases become so large-scale, an efficient database solution would be
one of the most critical requirements.

Although both research communities have different perspectives, perceptions,
and objectives, there is a common goal to get/extract the relevant information
from the database quickly and efficiently. This ultimate goal is our main objective
and provides the basis of our research.



The major challenge is to discover a complex solution in terms of general ap-
plicability that provides various domain experts with database techniques that
speedup similarity search yet that do not require any database-specific interven-
tion to the generally unconstrained similarity models.

We start with the database perspective of finding and building a general
and easy-to-use tool that employ state-of-the-art techniques for general similarity
models. Then we explore additional improvement possibilities for the specific do-
mains regarding the database indexing efficiency. We will focus on cross-domain
applicability of complex (yet effective and efficient) methods also to researchers
outside the database area.

Before we outline the fundamental steps towards creating the algorithmic
framework for flexible similarity searching applicable to general similarity models
(Section {4]) and describe the ground-breaking nature of the SIMDEX Framework,
we shortly summarize the state of the art techniques (Section [3) and the previous
attempts to unconstrained similarity search (Section [3.2)).

1.2 Contributions

In our research, we revisit the existing state-of-the-art techniques for indexing
unstructured databases with the aim of efficient and effective similarity searching
and present the foundation for indexing general and unconstrained similarity
models not necessary limited to metric space. We describe SIMDEX Framework,
our recently introduced algorithmic framework for flexible indexing/similarity
searching of various similarity models together with all its existing variants and
provide extensive experimental evaluations that validates its feasibility.

Hence, our contribution and impact are twofold depending on the point of
view. First, from the technical point of view, the most beneficial outcome is for
the database research because we introduce the framework for the discovery of
new indexing methods. It is applicable to any database and it will enable large-
scale similarity search in many applications where content-based retrieval is the
essential component, e.g., multimedia retrieval, time series databases, biometric
databases, etc.

Consequently, other domain experts such as computational biologists could
benefit from while creating models for practically oriented applications using
database techniques. Since applications come from different domains outside the
computer science, the contribution of our outcomes is truly multi-disciplinary.

We describe into details the theoretical concept of the proposed algorithmic
framework SIMDEX (Section , apply and validate the theoretical principles by
implementing three different SIMDEX variants, namely:

e I-SIMDEX — naive implementation of the iterative exploration (Section
e GP-SIMDEX — guided exploration using the genetic programming (Section @
e PGP-SIMDEX — exploring with parallelized genetic programming (Section

Moreover, with the implemented and working prototypes of all framework
variants, we not only validate the theoretical concept but also provide the exten-
sive experimental evaluations for real-world data with various similarity models.
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Afterwards, we outline a specific application of SIMDEX Framework and use it
to improve Pivot Table [3] query evaluation. As the result, we obtain Smart Pivot
Table concept (Section together with Triangle™ lowerbounding (Section .

As an additional outcome, we introduce LowerBound Tightening approach
(Section which can be applied orthogonally to any of the existing SIMDEX
variants as the post-processing phase in order to improve resulting lowerbounds.
Nevertheless, this technique is empowered by ezpression tightening algorithm (see
Section and experimental evaluations validate that it provides a superior
performance compared to existing methods (such as triangle lowerbounding or
TriGen) also by simply tightening the standard triangle lowerbound LBa (see

Section |8.4.4)).

Secondly, from the philosophical point of view, the newly discovered indexing
methods (or azioms) contribute to the theoretic foundations of data engineering,
data mining and disciplines beyond, such as computational geometry, geometric
topology, and related disciplines. If a discovered axiom is general enough, it
could open new horizons or research interests in many disciplines related to data
engineering, similarity search, data mining, etc. and so SIMDEX Framework
exhibits substantial inter-disciplinary nature.

Finally, our consolidated review leads towards universal and flexible indexing
of unconstrained similarity models.
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Chapter 2

Similarity Search Essentials

The principles of the similarity search [3] are based on the extraction of important
objects features (object descriptors) combined with the similarity measure which
we use for query evaluations. Here, the general concept is called content-based
retrieval [1, 2] which uses the query object (could be outside of the database) and
searches for most similar objects from the database.

As the first (pre-processing) step we need to obtain the mapping function ¢
that converts the complex data objects into the n-dimensional (typically real-
valued vector) representations of object features

¢ :0bj — R"

Then, instead of dealing with complex objects, we work with simpler object
features. If we take the multimedia objects, the most popular conversion functions
transform them into global MPEG-7 visual descriptors [13] or use domain-specific
features such as color, textures, and shapes for image [2]. Mostly due to the
increased interest of end-users, there continually appears new representations
of multimedia objects, that are suitable for specific problems such as the feature
signatures for images [14} (15 [16] in order to allow visual image search (see Fig.
for the graphical overview of derived signatures for sample images).

We put a strong emphasis on the query performance while retrieving the
objects. We prefer the effectiveness (qualitative and precise query results) and the
efficiency (the speed of evaluation). While the first attribute depends mainly on
the employed similarity model, we can tweak the query performance by choosing
fast but approximate results over slow yet exact results.

2.1 Similarity Queries

The most popular similarity queries are the range query (see Figure [2.2a)) that
for a given query object g returns all database objects o; that are similar to the
query object to some extent which is defined by the radius r

RQ;(q,7) ={o€D:d(q,0) <r} (2.1)

and the kNN queries (see Fig. [2.2b)) that return & most similar objects from the
database:

ENNs(q) ={RCD:|R|=kNVre RyeD—R:q,zx)<d(q,y)} (2.2)

13
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Figure 2.1: Deriving the representational object features (signatures) from the
complex object (images) for similarity searching

While the latter similarity query specifies exactly the size of the result set to be
k, in general we are not able to estimate or predict the result size for the range
queries RQy(+, ) with a radius 7.

For completeness, we distinguish two approaches regarding the precision of
the result set. First, there is a category of exact similarity search for which
queries are usually slower but always give precise results. The other category of
approzimate similarity search include queries that trade off the precision for the
speed of the evaluation, so they are faster but might produce errors.

2.2 Similarity Models

To properly rank the results, we need a similarity function that specifies the
relevancy between any pair of database objects. Here, we follow the notion of
similarities as previously defined [17].

Definition 2.1 (Similarity function). With the database D, we define the simi-
larity function s on D as s : D x D — R which for any two objects x,y € D
quarantees

non-negativity s(z,y) >0
symmetry s(z,y) = s(y,x)
self-superiority s(x,z) > s(x,y)

where s(z,x) = s(x,y) if and only if x = y.

With such a definition of similarity functions, we are able to rank the database
objects accordingly, as the function result s(x,y) gives us the similarity score of
two complex database objects z and y. The higher the value, the more similar
the objects are. Usually, we assume similarity function to be normalized and to
return values from the interval (0, 1).

In some cases, we require a dissimilarity or distance function ¢ instead of
similarity functions.

14



04 04
] |
O e ] 0, 7]
et 0g Og 03 0Og
0y 05 . O5
0, 9 01 0,/
"-. =
[ PR -
0g o s o
0, o,
(a) Range query RQ;(q,r) (b) 3NN query for kNNj;(q)

Figure 2.2: Sample similarity queries

Definition 2.2 (Dissimilarity, Distance function). With the database D, we de-
fine the dissimilarity or distance function 0 on D as 6 : D x D — R for the
equivalent similarity function s if for any three objects q,x,y € D it holds

s(q, ) > s(q,y) & (g, z) < d(q,y)

Note that distance functions assign higher scores for less similar objects and
vice versa which follows the typical notion of distances (closer objects are better).

So, the problematic challenge is how to select a good mapping that con-
verts the similarity s into the equivalent distance function §. There exist several
approaches [3, [I7] how to define the dissimilarity measure for the normalized
similarity functions (those with values limited to s € (0,1)) such as § = 1 — s,
0=+1—5,0=—Ins,ord = % even though these transformations might suffer
from the inefficient performance due to the (bi)directional distance-to-similarity
conversions [18| [19].

The opposite transformation (from distance to similarity) is more complex,
as the widely adopted distance / dissimilarity measures typically do not come
from the limited interval range (0,1). The basic solution is to normalize the dis-
tances before we use the inverted version of the previously mentioned similarity-
to-distance transformation functions.

In the following text, we might often interchangeably use distances and simi-
larities, as the increasing similarity (s) gives decreasing distance (§) between any
two objects from the database. To avoid any confusion, we will use the similarity
in the context of similarity models (for more formal explanation see Def. ,
however, we will work primarily with normalized distances such that § € (0, 1).

2.2.1 Metric Space Model

For many applications, the widely known metric space model [3] has been con-
sidered as the best choice for indexing, mainly because of its simplicity and fixed
properties. We represent the metric space as (U,d) where U is the set of ob-
jects with the corresponding dissimilarity function ¢ which for any three objects
z,y, z € U satisfies the metric space properties specified in Table [2.1]

15



identity d(z,y) =0 ST =Y
positivity d(z,y) >0 Srty
symmetry 5z, y) = 8(y. )
triangle inequality  d§(z,y) + (y, 2) > d(z, 2)

Table 2.1: Metric space (U, §) postulates for any three objects z,y,z € U

If a distance function 0 satisfies all metric properties, we denote it as a metric
distance or simply metric. We assign the metric distances into two groups based
on the character of returned values [3]: discrete or continuous distances.

In the following text, we depict some of the well-known and commonly used
metric distances for multidimensional vectors, strings, or sets. Typically, the
domains for such distances is the domain of real numbers R.

Minkowski L, Distances

One of the typical metric distances is the family of metric Minkowski L,, distances
designed for n-dimensional real-valued vector data u, v € R™:

n 1/p
L,(a,7) = <Z |u; — vi|p> ,p>1 (2.3)

We provide the graphical representation of 2-dimensional space for some L,
distances in Fig. The selection of most famous representatives [3] includes

e Manhattan (L) distance for p =1
= Ju; — vy (2.4)
i=1

o Mazimum (L.) distance, infinite distance, or also chessboard distance

Loo(t, V) = max |u; — vy (2.5)

i=1,...,n

e Fuclidean (Ly) distance that is widely used for general purposes, e.g., for
comparing various histogram representations of extracted image features:

For n-dimensional feature histograms derived from the original images and
represented by their individual histogram bins w;, v; as n-dimensional vec-
tors u, U, we are supposed to compute the distances between any two database
objects u,v € D.

16



Figure 2.3: Sets of points within the same distances from the center point using
various L, distances

Quadratic Form Distance

Another example of a metric distance, the Quadratic Form Distance (QFD)
known also as Mahalanobis distance [8], 20], is the generalized case of Euclidean
(Ly) distance :

dqrp, (€, 7) = /(@ — 0)A(d — )" (2.7)

where A is n xn positive-definite matrixﬂ (called the QFD matriz or the similarity
matriz) and 4’ is the vector transposition.

The identity matrix A reduces QFD to the ordinary Euclidean distance, while
with the diagonal matrix A’, we get the reduction to weighted Euclidean distance:

Saep , (I, 5) = (| > wi(u— )2 (2.8)
=1

Particularly, we use QFD as an effective way of searching for similarities in a
set of color images [21, [, 22]. In this case the QFD matrix stores correlations
between individual dimensions of image descriptors, provides better applicability,
and contributes to more robust similarity measuring.

For example, consider a 3-dimensional space, where the dimensions represent
the number of red (R), green (G), and blue (B) pixels in an image. Because
the human perception views green and blue colors as more similar than reds and
blues or reds and greens, the matrix A could be set as follows:

R G B

Rf{f1 0 0

A= G0 1 05
B\0 05 1

A number of algorithms and image retrieval methods using QFD were devel-
oped within the QBIC project [2, 22 [I]. Other applications of QFD similarity
search include 2D & 3D shapes [23] 24], protein structures [25, 26, 27], or flow
cytometry [28]. In almost all the cited applications, the QFD matrix A is static
(not changing from query to query), while the correlations between dimensions
are defined based on a scoring function related to the particular domain.

I Positive-definiteness is defined for an m x n matrix A and n-dimensional vectors z as:
2AzT > 0,Vz # 0, where 0 represents the zero vector [20].
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Hence, the matrix A is not a query parameter and also it is not data-dependent.
For RGB image histograms, the matrix A might be defined according to [22] as:
where 0;; is the Euclidean Lo distance between representatives of colors ¢ and j
in the RGB color space and 6,,x = maxi<; j<n{d;;}-

Although most of the approaches employ static QFD matrix, there appear
also applications that use dynamic QFD matrix or even a kind of generalized
QFD distance. A characteristic usage of a dynamic similarity matrix in QFD is
shown in several papers such as [29] 30, 23].

In [29] authors propose a general method of iteratively guessing the distance
function based on user preferences (i.e., MindReader). This concept uses QFD
and tries to determine which attributes are important and to find correlations
between them to satisfy the user query. The principle of finding the ideal distance
function (changing the QFD matrix) is similar to relevance feedback techniques.

Signature Quadratic Form Distance

The recently proposed QFD variant, Signature Quadratic Form Distance (SQFD)
[31, [15], enables to use feature signatures (vectors of variable dimensionality)
instead of just feature histograms (vectors of fixed dimensionality). In fact, the
SQFD concatenates the compared signatures represented as vector , 7 into a

vector (u| — ¥/), followed by the usual QFD computation:

dsqrp , (7, 0) = v/ (t] — ) A(u] — 0)7 (2.9)

This also requires a dynamic QFD matrix A that fits the particular features in-
cluded in the signatures u,v. In other words, the SQFD constitutes a dynamic
extension over the original QFD function, and it has proved a superior effective-
ness in image classification applications based on feature signatures [15].

Edit Distance

The strings domain very often include the edit distance also known as Leven-
shtein distance [3], to compute the dissimilarities between two given sequences
of characters. The resulting distance conforms to the minimum number of basic
(single-character) edit operations that consist of insert, delete, and substitute that
are required to convert one sequence into another.

With a string s = $155. .. $,, we define the operations as follows [3]:

e insert the character x into the string s at the position 7
insert(s,i,T) = $1S8y -+ SiTSiy1 " Sp
e delete the character from the string s at the position ¢
delete(s,i) = $189 -+ 8i_18i11" " Sn
e replace the character in the string s at the position ¢ with character x

replace(s,i,x) = S18g -+ $;_1TSj11" " Sp
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Algorithm 1 Levenshtein(a, b)

Require: string a = aqas - - - a,,, string b = biby - - - b,,

1. dist = new empty Matriz(m,n)

2: for i =1 tom do

3. dist[i,0] =i

4: end for

5: for j =1 ton do

6 dist]0,5] = j

7: end for

8 for j=1tondo

9: foriv=1tomdo

10: if a; = bj then

11 distli, j] = dist[i —1,j — 1]

12: else

13: del = distli—1,j] +1 {delete}
14: ins = dist[i,j — 1] +1  {insert}
15: repl = distli —1,j — 1]+ 1  {replace}
16: dist[i, j] = min(del, ins, repl)

17: end if

18: end for

19: end for

20: return dist[m,n]

We can further apply weights for individual operations to get the generalized
edit distance. Nevertheless, if the weights of insert and delete operations differ,
we do not obtain a symmetric distance, therefore we do not have a metric.

Algorithm [1] shows an effective way of computing the edit distance between
two arbitrary strings a, b of lengths len(a) = m,len(b) = n using the bottom-up
dynamic programming technique [32]. We apply this distance to various areas in
which strings encapsulate the original data objects such as DNA sequences [33].

Tree Edit Distance

A very similar approach applied to the domain of trees gives us the tree edit
distance [3] in which we replace the basic single-character string operations with
basic tree operations of inserting, deleting, or replacing a node. This way, we are
able to measure the proximity of any two tree structures. The useful application
is when comparing structures of XML documents [34}, [35], 36].

Jaccard’s Coefficient

The similarity between two finite sets A, B we gives Jaccard’s coefficient [3]:

AN B
SJaccard =
Jaccard 1 AU B

(2.10)

It returns the ratio between the intersection of same objects in both sets and the
union of all objects from both sets. For example, we use this to compare user
preferences expressed as individual sets.
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Because Jaccard’s Coefficient is a similarity measure, we very often use the
Jaccard distance instead:

ANB
5Jaccard =1- SJaccard = 11— :A U B: (211)

Hausdorff Distance

So far, we considered simple evaluations of a single distance function. In real
world scenarios, there appear more complicated distances such as the Hausdorff
distance [3,137). Similarly to Jaccard’s Distance (see Section [2.2.1]), it is defined
for finite sets but it is more flexible. We do not compare objects in a binary way
with {0,1}, {true, false}, or {same, different} return values but we provide a
more granular approach.

For two sets of objects A = {a;}, B = {b;}, we define the greatest partial
distance h over objects in A to their nearest neighbors in B as

h(A, B) = rélea}{rbré%l{ég(a, b)}}
where 9, is the ground distance function which provides the dissimilarity between
two complex objects. Then, we compute Hausdorff distance as
dup (A, B) = max{h(A, B),h(B,A)} (2.12)

In order for duyp to be a metric, the ground distance J, must be a metric.

2.2.2 Non-Metric Spaces

There are also distances that hold only some (but not all) of the metric space
postulates such as

e semi-metric functions satisfy identity, positivity, and symmetry but violate
the problematic triangle inequality;

e pseudo-metrics do not satisfy the identity;

e quasi-metric distances are not symmetric, so the triangle inequality must
be oriented;

e and stronger ultra-metric distances which require the ultrametric inequality:
d(z,y) < max{d(z,z2),0(z,9)}

Generally, we will denote such distances as nonmetric distances; they provide the
basis of nonmetric spaces. In the following sections, we introduce some of the
famous nonmetric distances.

Fractional L, Distances

The problem of "nonmetricity” is not limited just to the complex distances be-
cause even a slight change of a well-known metric distance could lead to a non-
metric one. For example, the family of L, distances (see Eq. with fractional
values p € (0, 1) are generally nonmetric and are mostly used for robust matching
of histograms [38].

20



Cosine Distance

As another example, we choose the semi-metric cosine distance which is based
on the cosine similarity measure [39]. The cosine measure computes the angle
between two N-dimensional vectors &, i for which the magnitude is not relevant:

N
izt Tl (2.13)
\/Zz 1'2;2 Zz lyz

Afterwards, we define the equivalent cosine distance as dcos(,y) = 1 — Seos(, ).

Seos(Z, V)

Kullback-Leibler Divergence

For comparing images, we apply Kullback-Leibler Divergence (KLD) [40] to the
image histogram representations with /N bins and get the inefficiency of coding
one histogram using the other:

N

X

dxLp(z,y) = sz . log(;) (2.14)
i=1 '

Jeffrey-Divergence

For a similar purpose of image histograms matching, there exists Jeffrey-divergence

(JD) distance [§] defined as

Sy0(z, y) :i log( Z )—I—y, log (y_) (2.15)

i=1 2

Dynamic Time Warping

The interest in time series, especially in financial data and market trading, high-
lights another specific distance which violates the triangle inequality postulate,
the Dynamic Time Warping (DTW) distance [41]. It has been proposed primarily
for speech recognition processes with the main goal to minimize the dissimilarity
between a speech sample and speech patterns in order to find a ”perfect” match.
Over time, DTW has become a popular technique for measuring the similarity
between general time series.

For two time series represented as vectors () € R™ and S € R™, we build
the n x m cumulative matrix M in which each item MTi, j] corresponds to the
alignment between elements ¢; and s; (see Fig. [2.4a)). The alignment is computed
by the ground distance d,. We usually apply the LQ or L; from the Minkowski L,
distances as the ground distances [42, 143].

Then, we examine various warping paths W = {wy, ..., wx} which provide
mappings or alignments between elements in time series () and S. The warping
path W (see Fig. has a limited length of max{n,m} < X <n+m+1
and represents a sequence of elements from the matrix M. Each element in the
matrix wy = (7, j)r must satisfy several criteria [42], namely
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(a) Sample time series alignment (b) Warping path cumulative matrix

Figure 2.4: Dynamic Time Warping distance

1. Boundary conditions to restrict the searching space for warping paths:

wy = MJ[1,1] and  wyxy = M[n,m]

2. Monotonicity ensures that the element pairing is monotonous according to
the time. If we have wy, = M|a,b] and wy_; = M|d, V], then

a—a >0 and b—b >0

3. Continuity assures that neighboring elements in the warping path corre-
spond to adjacent cells in the matrix. Let wy = M[a,b] and wy_1 = M|d’, V],
then

a—a <1 and b—V <1

Finally, for the ground distance ¢,, we define the DT'W as a minimized warping
path from the universe of all acceptable warping paths as

prw (@, S, 6y) = minw{gdg(wk)} (2.16)

Because there is an exponential number of possible warping paths, we employ
a method of dynamic programming for evaluating DTW [44].

Specific domains such as speech recognition require alignments between time
series to have some additional constraints — to avoid warping paths with excessive
time stretch, to avoid sequence distortions, or to discard "non-interesting” warp-
ing paths [45]. These include the Slope constraint to restrict the slope of warping
paths or Warping window (denoted by the integer w) known also as Sakoe-Chiba
band, in which elements of the warping path must fit [44],

Finally, our previous work [43] generalizes the slightly different definitions of
DTW [41], 146, [47] and defines the generalized DTW distance for an arbitrary
ground distance

Saptw(Q, S, 64, w, f) = minw{f(z 5g(wk,w))} (2.17)

where wy, , is the kth item in the working path W with the corresponding warping
window constraint w and f is a monotonic function.
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Some authors [46] use f = /- because if we take the zero warping window
together with the ground distance Ly, the result distance corresponds to Ly (Eu-
clidean) distance

daprw(*; 5 L2,0, /) = La(+, )

In all cases, notice that the magnitude of metric/nonmetric behavior is heavily
determined by the selection of the ground distance function d.

Other Nonmetric Distances

We already mentioned some other more complex nonmetric distances such as
the various alignment algorithms for measuring functional similarity of protein
sequences [I1] or structures [I12]. For a more precise overview of existing nonmetric

spaces and their application domains, we refer the readers to the extensive survey
[10].
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Chapter 3

Indexing Similarity Models

The basic task concerning similarity search is to increase the performance of these
queries by means of indexing. Compared to traditional relational databases where
the I/O cost represents the standard measure of real-time performance, here the
major component is assumed to be the number of distance computations (DCs)
we use during the query evaluation for ranking the database.

The reason is because the time complexity of computing a single distance
score between two (complex) objects ranges from O(n) to O(2") where n denotes
the complexity of a single object (e.g., the length of the vector data). Hence, with
the increasing complexity of distance evaluations, the total performance largely
depends on the number of DCs.

Even though, in the real world scenarios we would definitely prefer measuring
the real-time performance, using the number of DCs over real response times
eliminates the requirements for a specific hardware used for query evaluations,
gives us a better basis for comparing different indexing methods, and therefore it
is more general.

However, we acknowledge that for very simple similarity models with ”cheap”
distance computations (e.g., O(1) or O(n)) we could accomplish better efficiency
if we do not use any indexing method. But this applies only to small-sized data
and therefore it is only an extra-ordinary and marginal situation. So, in the
following text, we will consider the query performance as the number of DCs
that are required for ranking the database.

3.1 Lowerbounding Techniques

To eliminate as many DCs as possible, we leverage cheaper measures for distance
value estimations — the lowerbounds. These expressions allow us to filter out non-
interesting and irrelevant database objects o; for the given query ¢. For any valid
lowerbound expression LB it holds

LB((q,0)) < d(q,0) (3.1)

where ¢ is the query object, o is a database object, d(q, 0) is the distance between
g and o, and LB is its estimation. The tighter/better the lowerbound is, the more
objects it filters out without computing the generally expensive distance 6(q, o)
and thus saves the evaluation time.
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To compute the lowerbound, we often use reference objects p; called pivots
which create the basis for various indexes, e.g. AESA or LAESA known as pivot
tables [48].

Observe that the main characteristics of the lowerbound is that its value is
always smaller than the real distance (no matter of the pivot selection), so it
provides true distance estimations. Any situation in which there exists objects ¢
and o such that LB(6(q,0)) > d(q, 0) will discard LB from being the lowerbound.

While evaluating range or kNN queries, we use the ball partitioning [49] to
break the database D into subsets using a spherical cut with respect to the query
object q. Then, we build the query ball with a radius » which corresponds to the
set of all objects o; such that

query_bally(q,r) ={o; € D | d(q,0;) <7} (3.2)

For the range query RQjs(q, r), this already presents the result set but for kNN
queries, we can either transform the ANN search to finding the value of radius r
for which the range query returns the result set of size k; or we typically maintain
the distance to the kth nearest neighbor found so-far as the radius r in order to
eliminate irrelevant results. Then, we use the priority queue for processing.

While using the lowerbounding mechanism, we very often follow the filter-
and-refine principle which suggests how to process the objects in two subsequent
steps. The first step of filtering stands for the lowerbound pruning which just
eliminates the non-interesting objects yet it does not form the final result set.
After discarding irrelevant objects, we can still get relatively large set of candi-
date results to be inspected. The second phase of refining the obtained results
conforms to computing the distance to objects that were not filtered out and
thus forming the final results by comparing the distances between the query and
candidate objects.

There are two well-known lowerbounds that we use in metric / ptolemaic
spaces, namely triangle (Section and ptolemaic (Section lowerbounds
that we will describe into more details in the following sections.

3.1.1 Triangle Lowerbound

The well-known triangle (metric) lowerbound LBa applies to the metric spaces,
as it relies on the triangle inequality and uses a single pivot p:

LBA(d(q,0)) = 16(q,p) —d(p,0)| < d(q,0) (3.3)

It is a cheap and effective lowerbound for metric spaces, however for nonmetric
distances in which the triangle inequality is violated, it usually leads to false
dismissals and only approximate results [§].

We build the region balls for query object ¢ and database object o for which
the distances §(q,p) and (o, p) are (pre)computed and the triangle inequality
guarantees the minimal distance §(q,0). If the object o is outside of the query
ball (given by the radius r or by the already computed distance to the kth nearest
neighbor from the result set), we immediately filter out the object o (see Fig. [3.1]).
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Figure 3.1: Triangle lowerbound LBa((q,0)) using a single pivot p

Naturally, having multiple pivots p; € [P, we combine the lowerbounds in order
to obtain tighter or better distance approximation, as we take the maximum of
all estimations:

LBA(6(q,0)) = max 6(q, pj) — 6(pj,0)| < d(q;0) (3.4)

Example 1. Assume we have two database objects o1, 05, the pivot p, and the
distance measure 0 which produces distances §(01,p) = 1, §(o7,p) = 7. When we
evaluate a range query RQy(q,2) for the query object q while 6(q,p) = 2, we get
the lowerbounds

LBA(3(g,00) = [2— 1] = 1

LBa(0(q,07)) =2 =7 =5

The latter lowerbound allows us to eliminate the object o; without computing
the distance from the query, as the actual distance d(q,07) > 5 which is definitely
outside of the query_balls(q,2). However, we need to propagate the first object to
the second phase of refining and compute the distance §(q,01) to find out whether
it lies within the actual query ball or not.

3.1.2 Ptolemaic Lowerbound

Another specific approach uses Ptolemy’s inequality [17, 50, 15] to construct
lowerbounds. Ptolemy’s inequality defines for any four database objects z, vy,
u, and v the following relation

d(z,v) -3y, u) < o(z,y) - 0(u,v) + 0(z,u) - §(y,v) (3.5)

In order to form a lowerbound based on this relation, the distance function ¢
must be Ptolemaic distance. This applies when it holds the properties of identity,
positivity, symmetry, and satisfies Ptolemy’s inequality.

To construct the ptolemaic lowerbound (LBypo1), we first define the candidate
bound J¢ using two pivots p and s:

6(q,p) - 6(0,5) — 6(g, ) - 6(0,p)|
dc(q,0,p,8) = (3.6)
) 5(.5)

For simplicity, we let dc(q,0,p,s) = 0 if d(p,s) = 0. Considering a set of
pivots P, we maximize the candidate bound dc over all pairs of distinct pivots
which results in the final Ptolemaic lowerbound LBp¢e1:

LBptol(é(qa O)) - ;2%}1% 5C(Q7 o,p, S) S 6<Q7 0) (37)
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Figure 3.2: Ptolemaic lowerbound LByo1(0(g, 0)) using two distinct pivots p, s
compared to two estimations provided by triangle lowerbounds LBa ,(d(g,0))
and LB 4(d(g; 0))

Similarly as for the triangle inequality, we filter out irrelevant objects using the
query ball as with LBA. Figure shows a situation when neither the triangle
lowerbound for pivot p LBa ,(6(q,0)) nor the triangle lowerbound for pivot s
LBn s(6(q,0)) discards object o. But, the ptolemaic lowerbound LBpo1(6(g, 0))
better estimates the real query-object distance and filters out object o.

The concept of ptolemaic indexing with the employed ptolemaic lowerbound
LByto1 was successfully used with signature quadratic form distance [14, [15] that
was proved to be suitable for effective matching of image signatures [14]. This
lowerbound provides the basis for ptolemaic access methods (see Section
which is a solid alternative to metric access methods if they fail to work properly
[51].

Example 2. Assume we have two database objects o1, 05, two pivot p, s, and the
distance measure 6 which produces distances 6(o1,p) = 1, §(05,p) = 5, d(01,5) =
10, 6(0s,s) = 5, and §(p,s) = 2. When we evaluate a range query RQ(q,2) for
the query object q while 6(q,p) = 2 and 0(q,s) = 3, we get the lowerbounds

C2-10-3-1] 17

LBptoZ(6<anl)) = f ? =8.5
2:5—-3-5 b}
LBptol<5(q?05>> = % = 5 =25

In this case, we can simply prune both objects, as their distances to the query
object will be outside of the query_balls(q,2). Here, the selection of good pivots
15 essential and affects the overall filtering.

3.2 Similarity Indexing Techniques

In addition to the modeling of domain-specific similarity search problems in simi-
larity spaces, there are substantial efforts spent on developing indexing techniques
that speed up the similarity queries in large databases. We distinguish two basic
classes of database indexing methods that are used predominantly for the similar-
ity search in vector spaces— the Spatial Access Methods (SAMs; see Section
and Metric Access Methods (MAMs; see Section , together with emerging
Ptolemaic Access Methods (PtoAMs; see Section
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Figure 3.3: The visualization of minimum bounding rectangles (MBRs) for the
selected database objects (a) with the corresponding R-tree index structure (b)

The trend towards nonmetric or unconstrained similarity models is not a
marginal experience but rather a rule however the response of the database re-
search is inappropriate. Almost all of the general-purpose database techniques
that are designed to support nonmetric similarity models map the problem to the
metric ones and use MAMs or SAMs.

Older approaches directly map the data into some L, space (see Section
while this mapping often suffers from an unpleasant trade-off. If the mapping pre-
serves the similarity orderings, i.e., provides same query results as the nonmetric
version, then it usually suffers from high intrinsic dimensionality [6].

Particularly, TriGen algorithm [52) 8] applies a system of concave functions
to the nonmetric distances in order to obtain an approximately metric behavior

(see Section [3.2.5]).

3.2.1 Spatial Access Methods

The spatial access methods (SAM) [53] mostly treat the vector space indepen-
dently of the distance function used for the similarity search. Hence, a SAM
index is constructed using the vectorial structure of the descriptor (we use the
values in individual dimensions). In particular, we consider the family of R-tree
variants [54], namely X-tree [55] or VA-file [50], as representative SAMs.

The basic R-tree is a dynamic indexing structure based on similar principles
as B-tree [57]. It is a height-balanced tree structure which does not index the
object features but the minimum bounding rectangle (MBR) instead. In the leaf
nodes, we store the object identifier together with its MBR, while in the inner
(non-leaf) nodes, we save the pointers to child nodes together with the MBR
that covers MBRs of all descendant nodes in the subtree. Then, the searching
algorithm traverses the index tree while we are looking for MBRs that intersect
the query MBR (see the sample visualization of the index structure in Fig. 3.3)).
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As the SAM index is not dependent on a particular distance function, a dis-
tance function could be provided right at the query time as a parameter, allowing
thus flexible similarity searching. This is especially important for applications
when the distance function needs to be adjusted either occasionally or regularly
from query to query, for example, when user preferences have to be incorporated
into the distance function.

On the other hand, the independence from the distance function is also the
main drawback of SAMs. Since a SAM indexes the database objects within
(rectangular) regions minimizing the volumes, surfaces and overlaps (e.g., the
volume of MBRs in case of R-tree), the objects in regions do not form tight
clusters with respect to the distance function that will be used for querying.
In consequence, the regions could be unnecessarily large, which leads to poor
filtering ability and thus slower query processing. This negative effect is even
magnified with the increasing dimensionality of the space (the so-called curse
of dimensionality [50] 0, 58]). It was many times proved that the data of the
dimensionality beyond 10-20 cannot be efficiently searched by SAMs specially for
uniformly distributed data and exact search, i.e. a search not allowing any false
dismissals, regardless of the distance function used for queries [59, [60].

3.2.2 Metric Access Methods

The metric access methods (MAMs) or metric indexes [3|, 6] represent a different
indexing concept, treating the vector space together with the distance function
as a black-box metric space. That is, only the distances between vectors can be
utilized to build the index, not the particular vector coordinates.

Here the pros and cons are exactly opposite as for SAMs. Since MAMs build
the index using a particular static distance function, they are not suitable when
the distance function has to be modified after indexing (e.g., at the query time).
For example, changing the QFD matrix A in the QFD distance (see Section
results in a different distance function than the one used for indexing. Such a
change would require the reorganization of the metric index, making thus the
actual index (and the distance values stored within) invalid.

To name the advantages, MAM index regions are more compact than those
of SAMs, since the database objects are organized in clusters gathering objects
close with respect to the distance function. In turn, MAMs are more successful in
the fight with the curse of dimensionality, because the embedding (vector) dimen-
sionality is irrelevant. Instead, the complexity of MAM indexing is determined
by the distance distribution, namely, the intrinsic dimensionality [6], 8], which is
usually smaller than the embedding dimensionality.

In particular, we name the M-Tree family [61], M-Index [62], Vantage-Point
(vp-tree) [63], Pivot tables [64, 65 6], GNAT (Geometric Near-neighbor m-ary
Access Tree) [66], or SAT (Spatial Approximation Tree) [67] as representative
MAMs.

In the following sections, we will introduce and describe some of the basic
MAMSs into more details to get an overview how they work and handle different
data in a consistent way.

30



0,
0,

O3

LAESA — Index

Pivots

Objects with
computed distance

3(d;, 0)

Pruned objects

Pk 2 9 Objects to evaluate

Oy | S | Ono Snk

a) b)

Figure 3.4: Sample pivot table (LAESA) index structure with pre-computed dis-
tances d(o,p) between objects o1,...,0x and pivots pi,...,p, while evaluating
the range query given by ¢; and r (a); query_bally(g;,r) with processed ob-
jects 01 — o3, the pruned object oq, the discarded object o3, and object o; being
evaluated (b).

Sequential File

The sequential file is a very naive MAM that is represented by a flat binary file
that is built from a series of dynamic insertions by just appending the inserted
objects at the end of the file. Any query involves a sequential scan over all the
objects in the binary file. For a query object ¢ and every data object o;, the dis-
tance d(q, 0;) must be computed (regardless of the query selectivity). Although
this kind of “MAM?” is not very smart, it is a baseline structure mostly for qual-
itative comparisons, as it does not make any mistakes in terms of false negatives
or false positives. Moreover, it does have a predicted behavior and in any case,
the time complexity remains the same: O(N - C') where N denotes the number
of database objects and C' conforms to the distance computation complexity.

Pivot Tables

A simple but efficient solution to the similarity search in metric spaces represent
methods called Pivot tables, such as AESA [64] or LAESA [65]. In general, we
select a set of pivot objects p € P,P = k and create for every database object
o € D the k-dimensional vector of distances to the pivots. The distance vectors
belonging to the database objects then form a limited distance matrix — the pivot
table.

Choosing |P| pivots from the database sample of a size N depends on a pivot
selection technique which takes D distance computations (usually D < N). The
total time to construct a pivot table and insert N database objects depends on
the distance computation complexity C' and belongs to O(D + N - C - |P|).

There are various pivot selection techniques and each method affects the over-
all performance during query evaluations [68]. We choose the pivot sets based on
the given algorithms starting with basic random selection through incremental
selections to various heuristic models [69]. But in general, we try to select pivots
that are not close to each other.
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Figure 3.5: M-tree index structure with ball-shaped regions of routing objects

When performing a range query RQ;(q, ) with the radius r, we determine a
distance vector for the query object ¢ the same way as for a database object, i.e.
the overhead is in O(C - |P|). From the distance vector of the query ¢ and the
query radius r we create a k-dimensional hyper-cube, centered in the query and
with edges of length 2r.

Then, we process the range query RQ;(q, ) within the pivot table and the
k-dimensional vectors of database objects o; that do not fall into the query cube
are filtered out from the further processing. The database objects that cannot be
filtered have to be subsequently checked by the usual sequential search.

Similarly, for kNN queries, the preprocessing remains unchanged and we main-
tain the priority queue of resulting objects with the object with maximum dis-
tance at the top. This corresponds to the radius r from the previous case. When-
ever an object o; falls into the query cube, we compute the distance §(q, o;),
update the result set and the radius for subsequent evaluations.

Figure depicts a sample instance of the query evaluation using the triangle
lowerbound (see Section in metric spaces. The first part (a) reveals the
way of storing the index, while the latter part (b) displays the query_balls(q,r)
with sample range query evaluation steps. While we are able to immediately add
some objects (e.g., 01) to the result set, others might be easily discarded with the
distance estimations using pivots. Then, we check the rest of objects sequentially
and prune objects that are not in the query ball, such as the object os.

M-tree

The M-tree [61] is a dynamic index structure that provides a good performance in
the secondary memory (i.e., in database environments). M-tree is a hierarchical
index, where we select some of the data objects and mark them as centers of ball-
shaped regions (local pivots), while we partition the remaining objects among the
regions in order to build up a balanced and compact hierarchy of data regions.

We end up with two types of nodes — the routing (internal) objects we use for
navigating within the index structure and the leaf (ground) objects that store
indexed database objects (see Fig. [3.5)). The structure of any internal routing
object o, consists of

e pointer to the root of the object’s covering tree T (o,) denoted as ptr(T(o,))

e covering radius r(o,) > 0 which encapsulates all objects in the covering tree
within this distance: Yo; € T'(o,) : 0(0;,0,) < 7(0;)

e distance to object’s parent node Par(o,): 6(o,., Par(o,))
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This structure forms the following routing entry:
rout(o,) = [o., ptr(T(o,)),r(0.), (0., Par(o,))]

For the leaf nodes o; which are in some cases equivalently considered as ground
entries (grnd), the situation is less complex. Here, we do not need any covering
radius; the pointer either contains the object or includes the identifier (id) which
references the object directly to the separated data file. This simplifies the leaf
entry to:

leaf(o;) = [0y, id(0y), 6 (o1, Par(op))]

In its original version, the M-tree is built by dynamic insertions in the same
way as B-tree [70]. First, we have to find a suitable leaf for the newly inserted
object, which takes O(log(m)) time where m is the number of objects stored in
the tree. This time is guaranteed as the M-tree is a paged, dynamic and balanced
index structure.

Next, the insertion into a leaf could cause an overfill of the node, which results
in splitting bottom-up along the path to the root based on the split policy. If we
split a node n;, we create a new internal node n; and divide all routing objects into
disjoint sets that are stored within these two nodes. The only criterion we need to
ensure is that the covering radius is computed as the maximal distance between
the new node n; and its direct descendants. Simply said, the time complexity of
the dynamic insertion in the M-tree is analogous to the insertion complexity in
B-trees, hence leading to O(mlog(m)).

The similarity queries are implemented by traversing the tree, starting at
the root level. We recursively access the internal nodes that cannot be directly
excluded until we reach the leaf nodes. During the traversal, we can prune whole
sub-trees without computing any new distances based on the adjusted form of the
triangle inequality (see Eq. [61]. In general, we process such M-tree nodes
whose regions are overlapped by the query ball.

Since its introduction, there appeared several variants and modifications of
M-tree index resulting in a whole family of indexing methods based on M-tree,
such as M2-tree [T1], M*-tree [72], M3-tree [73], PM-tree [74], or NM-tree [75].

Mapping Approaches

Another way to ensure metric searching is to directly map the data into some low-
dimensional vector space and apply the existing SAMs to index the transformed
data. Several techniques use mappings or embeddings such as FastMap [76],
BoostMap [77], MetricMap [7§], or SparseMap with Lipschitz embeddings [79)].

Formally, we represent the mapping as a function F' : S — R* which converts
the input metric space (U, §) into k-dimensional vector space (R¥,§*) with the
new (and cheaper) distance measure §* : R* x R¥ — RT.

The mapping F' might be contractive

5 (F(01). F(0;)) < 6(01,07) (3.8)

which enables us to filter out some irrelevant objects just by using ¢* and for
remaining objects, we refine the search by computing the original distance ¢.
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Figure 3.6: The idea of QMap — homeomorphic transformation of a QFD space
into the Fuclidean space.

We previously mentioned a sample contractive mapping that is employed in
pivot table index, namely LAESA (see Section . There, we use k pivots to
embed the metric space into (R, L,). The mapping F' transforms each object o,
into the vector data [§(o;, p1), d(04, p2) - .. 0(0;, pr)] and each range query RQs(q, )
into RQs-(F(q),r).

The reason why we are able to apply embeddings for (finite) metric spaces
(U,0) is that we can find a function F' which maps all objects o; € U to the
k-dimensional vector space (k is sufficiently large) such that we approximately
preserve the distance values between the objects when using a distance function

0* in the k-dimensional space: 6*(F'(0;), F'(0;)) =~ (04, 0;) [80].

If the metric space (U, d) is however infinite, we approach this by selecting a
finite set of objects S C U for which we find a suitable mapping. This mapping
often suffers from an unpleasant trade-off. If the mapping preserves the similarity
orderings, i.e., provides query results exactly the same as the nonmetric version,
then it usually suffers from high intrinsic dimensionality [6].

Nevertheless, not all mapping methods guarantee the exact similarity search
on the embedded objects and thus result in false dismissals and approximate
searching [80]. In this case, the mapping is only approximate and the search is
fast but simultaneously introduces a retrieval error. In multimedia retrieval, the
trade-off provides satisfactory results. In many other situations, however, any
loss in retrieval precision is unacceptable. For example, in medical or biometric
applications every percent of precision counts heavily.

One of the concrete examples is the mapping of QFD space into L,y space with
QMap approach [20] that utilizes the process of decomposing the QFD matrix A
into matrices B and BT by so called Cholesky decomposition or Cholesky factor-
ization [81] as outlined in Fig. [3.6] We depict the theoretically proved superior
performance with corresponding time complexity analysis which we depict in the
consolidated view in Table (for more details, see the original work [20]).

The basic idea of mapping objects to vector spaces provides a solid alternative
to lowerbounding because the distances between the embedded objects approx-
imates the actual distances. If this holds, we can run queries on the embedded
objects and use the original distance measure only for the refinement. Here, we
expect that computing the distances on embedded objects is more efficient, so we
actually speedup the query evaluation by embedding (refer to Appendix for
QMap evaluations on real-world data, as shown in Fig. |A.2]).
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Method (model) Action Time complexity | Better
Sequent?al file (QFD) indexing O(mn) QFD
Sequential file (QMap) O(mn?)
Pi 1 FD 2

?VOt tables (QFD) indexing O(cn® + mn(pn)) QMap
Pivot tables (QMap) O(en+ mn(p +n))
M- FD 2]

tree (QFD) indexing O(mn~log(m)) QMap
M-tree (QMap) O(mn? + mnlog(m)))
ial fil F 2

Sequent%a file (QFD) querying O(mn?) QMap
Sequential file (QMap) O(mn)

- 2
P?vot tables (QFD) querying O(n(pn) + mp + xn?) QMap
Pivot tables (QMap) O(n(p+n)+mp+ xn)

; 2
M-tree (QFD) querying O(zn?) QMap
M-tree (QMap) O(n? + zn)

Table 3.1: Indexing and Time Complexity Comparison for QMap mapping ap-
plied to the database of size m that contains n-dimensional vectors with p pivots
(we require ¢ distance computations to select those) and with x as the number of
non-filtered objects for which we need to evaluate the original QFD.

M-Index

The introduction of M-Index structure is motivated by the efficiency issues the
metric-based indexes face [82 [62]. It combines the existing metric approaches
for pruning and filtering the metric space. With a fixed costs of building the
index and efficient exact and approximate similarity search, M-Index provides
the best-of-breed solution and a superior alternative to other MAMs [62].

Its efficiency comes from the static set of reference points (pivots), from the
reliance on storing the data with B*-trees or in a distributed storage, and the
potential for distributing the index if required.

First, it takes the concept of iDistance [83] built for efficient kNN query pro-
cessing in high-dimensional metric spaces in order to partition the data in clusters.
More formally, iDistance partitions the given sample S C D into n clusters and
for each cluster Cy,i € {0,1,...,n — 1}, it selects the global reference point (piv-
ot) p;. Because any object o € S belongs to exactly one cluster C;, we assign the
object a numeric key according to the distance to the cluster’s reference point p;
which is at the same time its closest pivot:

iDist(o) = 6(o,p;) +i-c (3.9)

where c is a sufficiently large constant that separates individual clusters.

The partitioning process corresponds to mapping the objects from the uni-
verse U to a fixed m-dimensional space represented by the set of global pivots
P1,---,Pm- Note that, like other mapping approaches, also iDistance provides a
lossy transformation and two different objects o0;, 0; might be mapped to a single
(and identical) numeric value x = iDist(o;) = iDist(0;), as we map all objects
from a single cluster C; to the interval (i - ¢, (i + 1) - ¢).
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The originally proposed iDistance approach serves only vector spaces, however
the M-Index removes this restriction and generalizes this concept to general metric
spaces. M-Index picks a set of m pivots pq, ..., p, beforehand and then applies
Voronoi-like partitioning which finally partitions the space into m partitions,
clusters in this context. It also eliminates the separation constant c as it assumes
normalized distances for which it suffices to use ¢ = 1.

Additionally, authors suggest multi-level variant that is more scalable for the
increasing amounts of data. For this purpose, we apply recursive partitioning of
clusters using distance permutations [84] or referred as pivot permutations [85 [86].

Definition 3.1 (Pivot permutation). For the fized set of pivots P = {p1,pa, ..., Pm}
and the database object o € D, we define the permutation function

()o:4{1,2,....m} = {1,2,...,m}
such that for Vi, j € {1,2,...,m} we have

(i)o S (j)o < (5(0,]’)(1')0) S 5
5(O’p(i)0> = 5(Oap(j)o) and 7 < ]

The resulting sequence of pivots pay,, P@),, - --»P(m), 15 ordered based on the dis-
tances between pivots and the database object o and forms the pivot permutation.

Having 0 < L < m levels, we partition the space into m-(m—1)-...-(m—L+1)
clusters by recursively applying Voronoi partitioning. As the first step, we assign
objects o € D to their closest pivot p; representing the cluster C;, so we get (0), =
1 for Yo € C;. Then, we subsequently partition each cluster C; into n — 1 clusters
with the same approach but using only n — 1 pivots {p1,...,Pi—1,Pit1,-- -, Pm}-
As the result, we create clusters C; ; where j denotes the second closest pivot to
object o € C; ; which gives us (1), = j. Then, we proceed similarly further.

We have the mapping keyr, : D — R such that for any object 0o € D we get

h
—

keyL(O) = 5(0719(0)0) + (i>o -m

i

(L—1—4)

Il
=)

where (+), is a permutation of indexes:

5(07])(0)0) < 5(071)(1)0) <...< 5<07p(m—1)o)

The integral part of the obtained key value keyy (o) represents the assigned
cluster from Voronoi partitioning (cluster Cy, ;,_, is identified by the number
ipiy . . .11 in a numeral system with base m), while the fractional part provides
the distance between the object o and its closest pivot p(),. We depict such a
partitioning in Fig. [3.7]

Authors also introduce M-Index with dynamic levels which dynamically in-
crease the number of levels only for large clusters in order to increase the search
efficiency. For the description of this modification, we refer to papers [82, [62].

Similarity searching with M-Index starts by computing the distances between
the query object ¢ and global pivots p; € P while sorting them accordingly in
order to build the pivot permutation (-),. Then, we traverse the cluster tree
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Figure 3.7: Assigning the key mapping values keyy (o) for Yo € D (a), together

with the recursive partitioning of objects into clusters (b); and minimal /maximal
distances to the closest pivot (c) used for Ptolemaic M-Index (see Section |3.2.4)).

using the breadth-first search (BFS) [87] and try to prune whole branches using
the metric double-pivot distance constraint [3] which allows to skip clusters C; if

(g, pi) — 0(q,p;) > 2r (3.10)

where p; € P is any pivot and r represents the radius of the range query RQ;(gq, 7).
To maximize the left-hand side of the inequality, we use p; = p(), and further
apply this rule L-times for each level.

For remaining cluster tree nodes, we apply the range-pivot distance constraint
[3] which skips the cluster C; . if any of the following holds

5(Q7pl) +r< T'min
5(‘171’1) — 7 > Thmax

where 7y, and rp.y is minimum/maximum distance in the leaf cluster C; .

Fmin = min{d(o,p;) | 0 € C; .}
Tmax = max{0(o,p;) | 0 € C;.}

We get these values by storing the minimal (keym;,) and maximal (keymax) keys
in all clusters, as they are the fractional part of the keys: rpax = frac(keymax)
and 7y, = frac(keymin ).

Next, if the cluster C; . is not pruned by neither of the previous methods, we
take the adequately shifted key interval

(0(g,pi) = 7,0(q,pi) +7)

to be searched which applies the object-pivot distance constraint [3] combined
with iDistance filtering [83].

Finally, we apply the standard metric filtering with the triangle lowerbound
(see Section to avoid as many distance computations as possible, i.e. by
employing the pivot filtering [3]. After all these steps, the remaining non-filtered
objects o comprise the final result set.
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Although we consider and describe the evaluation of range queries RQy(q, ),
the ENN queries are quite similar and authors provide three strategies for their
execution [82 62].

According to the evaluation and comparison, authors claim that the superior
performance of M-Index on the tested datasets outperforms the selected state-
of-the-art metric indexing methods in terms of 1/0O, computational costs, and
response times for similarity queries. They provide not only exact but also ap-
proximate search strategy for M-Index.

3.2.3 Indexability Indicators of Metric Access Methods

The metric postulates give the basis for various MAMs, they do not guarantee
the efficiency of the proposed indexes due to the ubiquity in high-dimensional
spaces [0]. For example, the performance of vector-data indexing methods is to
a high extent affected by the growing dimensions, very often as much as the
exponential dependency. To estimate the efficiency of a selected MAM in metric
spaces, we describe two existing indicators, that provide good estimations of
the data indexability of the input similarity model: Intrinsic Dimensionality
[6] and Ball-Overlap Factor [52]. These approaches allow us to qualitatively
compare individual datasets and reveal the problematic issue called the curse of
dimensionality.

Intrinsic Dimensionality

We use the Intrinsic Dimensionality (IDim) to indicate the efficiency limits of
any MAM index. It describes the underlying data and gives some meaningful
insight about object clusters or how close to each other the objects in average
are. We compute the IDim value p using the distance distribution histogram [66]
for pair-wise distances of any two database objects. With a database D and a
metric distance d, we compute the mean p and the variance o2 of the distance
distribution as

po= ﬁ Z Z §(0;,05) (3.11)

0;€D o;€D

7= o 2 (1= 000,)) (312)

0;€D o;€D

Then, we define the IDim value p as

2
p(D,5) = 1 (3.13)
207

In Fig. we see the distance distribution histograms with various IDim
values. The low values p cover datasets with tight object clusters far from the
others. This gives a good perception for pruning because the query ball is sup-
posed to overlap only a small number of clusters that we will need to examine.
On the other hand, if all objects are equally distant and the clusters overlap each
other, which gives higher values of p, it is difficult to distinguish the individual

objects/clusters in general.
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Figure 3.8: Distance distribution histograms for sample datasets with low IDim
values of p =2.39 (a), p =5.23 (b) and a high IDim value of p = 84.87 (c)

As the result, we need to evaluate all clusters which decreases the query per-
formance no matter of the employed indexing scheme and subsequently degrades
to sequential scanning. This illustrates the problem with high intrinsic dimen-
sionality as the generalized case of the curse of dimensionality [50).

Ball-Overlap Factor

As the promising alternative to IDim which gives only indirect prediction of
indexing efficiency, there appeared another indicator of indexing, the Ball-Overlap
Factor (BOF) that uncovers the relationships between regions of data clusters
[52, 8]. For the database D with the distance J, we define the ball region for
the object o; with the radius r; that conforms to the distance to its k-th nearest
neighbor as

ballk(oi) = (0i7 Tk) = <0ia 6(02'7 kNN(OZ>>>

Two ball regions bally(o;), ballg(o;) overlap in the geometric meaning if
5(01', k’NN(OZ» + (S(Oj, kaN(O])) Z 5(02', Oj)
To determine whether two ball regions overlap, we use operators sgn and N:

1 ball regions overlap
sgn(|balli(o;) N balli(o;)]) =
0  otherwise

Then, we define the BOF as

BOFk(D,(S):m S sgn(balli(o) T balli(o))) (3.14)

Yo; ,05 €D,i>j

The resulting value contains the ratio of overlapping ball regions where each
ball region contains at least k+ 1 objects including the database object itself. We
can view these ball regions as indexing regions. Observe that similarly as IDim,
also BOF returns index-independent measure of the underlying data indicating
its indexing efficiency.
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3.2.4 Ptolemaic Access Methods

While metric access methods use the triangle inequality axiom (see Table as
the basic property, there has been recently proposed the class of Ptolemaic Access
Methods (PtoAMs) which employ the ptolemaic inequality (see Section as
the basic stone for indexing [51], 50]. In general, authors adapt the selected metric
indexes to the ptolemaic indexing and create Ptolemaic Pivot tables, Ptolemaic
PM-Tree, and Ptolemaic M-Index. Moreover, a recent study shows how to effi-
ciently handle the computationally expensive signature quadratic form distance
[14, [15] by these indexes. In the following text, we shortly summarizes the prin-
ciples of the proposed Ptolemaic Access Methods.

Ptolemaic Pivot Tables

The proposed Ptolemaic Pivot Table (PtoPT) indexing structure is capable of
filtering and pruning objects by either triangle inequality and/or ptolemaic in-
equality which provides an additional filtering power. For the latter method, we
will use pivot permutations [84], 88| to provide good pivot pairs for any database
object o (for more details see Def. [3.1).

With the formed pivot permutations, we have to employ the way of using it
with a specific heuristic [15, [51]. Except for the naive method, authors propose
the unbalanced and balanced heuristics which provides the best results.

To work properly, PtoPT maintains two components:

e the pivot file which stores the set of pivots P with the pivot distance matriz
of |P| x |P| pairwise distances between any two pivots p, s € P

e the index file that encapsulates the distances between database objects
0; € D and pivots p € P. It also saves the pivot permutation for the object
0; based on the proposed heuristics. Each entry contains:

[0, (+)o,0(0,P(1),), 0(0, P2),) - - - (0, P(e)), )]

where o is the database object, (), is the pivot permutation sequence for
the object o, and 6(o,p(;),) is the distance between the object o and p,
which is the i-th pivot from the pivot permutation sequence (-),.

Note that the pivot permutation is a special sorting of pivots typically
based on the computed distances d(o, p;) from the object o and given by
the heuristics method. Therefore, it is generally different for each object o.

With additional information stored in the PtoPT index structure, we eval-
uate any similarity query as follows. We traverse the stored database objects
sequentially and apply triangle / ptolemaic / both filtering options for each ob-
ject o; with the enabled early termination flag. This means, that the first filtering
options which prunes the object o;, stops the subsequent computations and we
proceed with the next object 0;,1. For ptolemaic filtering, we limit the maximum
number of pivot pairs to be examined by the value k resulting in the total com-
plexity of O(k). If we set k = |P|, we will achieve the same time complexity as
with metric indexes, i.e. O(|P|).
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Figure 3.9: Comparing M-tree ball-shaped regions (a) and PM-tree regions with
additional pruning by ring regions using two pivots p; and py (b)

Ptolemaic PM-tree

Before we describe the ptolemaic approach to the pivoted M-Tree (PM-Tree), we
outline the original PM-Tree structure and its fundamentals. The PM-Tree index
combines the principles of pivot tables and M-Trees into a single index that is
dynamic, persistent, paged, and extensible [89] 90, [74]. It enhances the M-tree
index with extra information given by a static set of global pivots p; € P. These
pivots allow us to cut off the hierarchy of M-Tree ball-shaped metric regions with
a set of rings. This way, the regions become more compact and provides better
pruning than rigid M-tree ball-shaped regions (see the comparison in Fig. |3.9)).
To achieve this performance, we modify and enhance the routing and leaf
entries of M-tree (see Section . We adjust the routing entry of PM-tree to

routey(0,) = o, ptr(T(o,)), (0, 1), (0, Par(o,)), HR]

where HR is an additional attribute which stands for the array of kj. < |P|
intervals. The ¢-th interval item HR,, represents the smallest interval HR,, =
(HR;?“, HR7™) that covers distances between the pivot p; and each of the database
objects o; stored in the leaf nodes of the subtree T'(o,) where

HR;}?“: min §(o0j, pr)

0;€T(or
HR)™ = Ojréﬂ:;%r) d(0j,pt)

The combination of the interval HR,, with the pivot p, creates the (hyper)ring
region (p;, HR,,) which is defined as the ball region (p;, HR};**) reduced by the
corresponding "hole” (p;, HR}™) as stated in [51].

Adequately, we amend the leaf (ground) entry of PM-Tree to be

leafon(or) = [on, id(or), 8(01, Par(ay)), PD]

where PD is an array of k,q < |P| pivot distances such that PD,, = 6(o, pt).

The main advantage comes with similarity queries when we map the query ob-
ject ¢ to the k = |P|-dimensional pivot space. In this case, the query_ball,(q,r,)
is represented as the hyper-cube:

(6(q, 1) — 74,0(q, 1) +7¢) X ... X (6(q, Pr) — 74, 0(q, Pk) + 7g)

which we use for checking the overlaps with minimum bounding rectangles of the
routing and leaf nodes produced by the global pivots p; € P. If the MBRs do not
overlap, we prune and filter out the whole sub-tree.
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The modification of the existing PM-Tree to become Ptolemaic PM-Tree
(PtoPM-Tree) includes a new filtering method based on the ptolemaic lower-
bounds (see Section . Again, as with ptolemaic pivot tables, we can use
both (triangle and ptolemaic) lowerbounds in synergy. The index structure holds

e the pivot file which stores the set of pivots P with the pivot distance matriz
of |P| x |P| pairwise distances between any two pivots p, s € P

e the index file that conforms to PM-Tree index structure. We modify the
leaf nodes to include the pivot permutation:

lea fpeopu(0r) = [o1,1d(0;), 0(0, Par(or)), PD, (+)o,]

While evaluating similarity queries, we use the array of pivots PD which
employ the naive heuristics only. Two additional filtering options are discussed
further [51]:

e Faxtra pivot for ptolemaic filtering — using the parent node as the dynamic
but local pivot for filtering leave nodes

e Ptolemaic shell filtering — using intersections of hyper-rings (shells) stored
in routing nodes

The residual parts of the original PM-Tree index structure remain unchanged
and work as described previously.

Ptolemaic M-Index

The extended version of the original M-Index metric index (see Section [3.2.2)) for
ptolemaic filtering, the Ptolemaic M-Index (PtoM-Index), is a minor modification
of its basis which contains

e the pivot file which stores the set of pivots P with the pivot distance matriz
of |P| x |P| pairwise distances between any two pivots p, s € P

e the index file that conforms to M-Index structure while storing Ptolemaic
Pivot Table instead of the metric variant

The process of building the PtoM-Index is identical except for the fact that
we build and maintain the ptolemaic pivot table instead of a regular pivot table.
The querying still considers the metric filtering as the initial step to determine the
relevant buckets from the cluster tree and prune the non-interesting ones. Then,
we also apply the ptolemaic indexing to filter out additional irrelevant objects.
The rest of objects is scanned sequentially, as usual for pivot tables.

Applicability of Ptolemaic Access Methods

The extensive evaluation of individual ptolemaic access methods [51] reveals their
superiority over standard metric access methods if the distance measure is ptole-
maic metric. There are factors that highly affect the overall performance such as
the pivot selection methods, heuristic methods for best pivot pairs, or the num-
ber of candidate pairs to be considered. However, for other distances, it seems
that the MAMs will perform better in general. It still remains an open question
whether there exist any ptolemaic distance which is non-metric.
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3.2.5 TriGen — Framework for Nonmetric Searching

While the previous methods require the validity of metric space or ptolemaic
space postulates, there are lots of distance measures that do not conform to them
and violate one or more of the properties. If we limit the distance § to symmetric
and non-negative distances, we are able to transform it to the metric distance
algorithmically using the TriGen algorithm [52] [§].

TriGen provides an automated way of finding the optimal solution for exact
or approximate indexing and similarity searching for nonmetric spaces in which
the triangle inequality is violated. Its flexibility allows to search for solutions
that provide exact but slower or approximate but faster retrieval using the input
distances as the black-box functions. Because it is relatively trivial, yet complete
solution for nonmetric distances, we take it as the standard base for indexing
nonmetric similarity models. Before we sketch the idea of TriGen algorithm, we
provide assumptions for applying it correctly.

TriGen Fundamentals

As the basis for the algorithm, we will use similarity-preserving (SP) modification,
SP-modifier, and similarity ordering [8].

Definition 3.2 (SP-modifier). For the normalized distance § : D x D — (0, 1),
we define the similarity-preserving modification of § as the transformation 6

(5f(0i,0j) = f(0(04,05)) (3.15)

where f 1 (0,1) — (0, 1) is a strictly increasing function called similarity-preserving
(SP) modifier for which f(0) = 0.

Definition 3.3 (Similarity Ordering). We define thesimilarity ordering SOy :
U — 29U as the function that orders objects by their distances to the query
object q:

Voi, 05, €U (0;,05) € SO5(q) <> 6(q,0;) < 6(q,05) (3.16)

It has been proved that any SP-modification of the distance ¢ gives us the
same similarity ordering SO [8]. This results in the fact that while performing
the sequential scan, we can use either § or 6/ for pruning, as they produce the
same similarity ordering.

There is a special group of metric-preserving SP-modifiers, e.g., concave SP-
modifiers. If we have a strictly concave SP-modifier, we call it triangle-generating
modifier (TG-modifier). TG-modifiers provide the basis for the TriGen, as it
always exists TG-modifier f for which the SP-modification ¢/ is a metric.

For completeness, we introduce also triangle-violating (TV) modifiers (e.g.,
convex SP-modifiers) which provide the backward sequence — while TG-modifiers
turn semi-metric into metric, TV-modifiers transform metric into semi-metric.

Definition 3.4 (Triangular triplet, Distance triplet). We take the triangular
triplet or simply triplet as the 3-tuple [a,b,c| of real numbers a,b,c € Ry such
that a+b > ¢, a+c > b, and b+c > a. With a metric distance §, we define distance
triplets for any three database objects 0;,0;, 0, € D as [6(0;,05),6(0;,0x),(0;, 01)].
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We use the triangular triplets for measuring the retrieval error of (nonmetric)
distances in terms of the number of violated triangle inequalities, T-error or the
triangle-error.

Definition 3.5 (T-error). We define T-error as the ratio between the number of
distance triplets that violate the triangle inequality and are non-triangular (m*)
and the number of sampled triplets (m) from the database sample S C D:

mX

€5, = (317)

Because computing the T-error value for the whole database D and thus
evaluating all m = (137) triplets is very extensive and not applicable in most cases,
we employ sampling approaches and examine only a sample of the database S C D
[52), §]. The sampling approaches minimizes the difference between €55 and €5p
while keeping the total triplets count m as low as possible.

We will use this measurement over the triangle-violation error [§] even though
it depends on both — the distance  and the selected data sample S. The main
reason is, that it better corresponds to the expected behavior of the optimal
T-Modifier (TV- or TG-modifier) with the rest of the data.

As we will describe later, for automation purposes of the TriGen algorithm,
we put an extra parameter to the T-modifiers with a concavity/convexity weight
w and mark it as the T-base.

Definition 3.6 (T-base). The function g : (0,1) x R — R} is a base of T-
modifiers or T-base with the concativity—convexity weight w € R if

1. g(x,0) ==z

2. g(z,w),w >0 is a TG-modifier

3. g(z,w),w <0 is a TV-modifier

4. wi,wy >0 and wy > wy, then g(z,wy) > g(x,wsy) for Vo € (0,1)
5. wy,wy < 0 and wy > wy, then g(x,wy) < g(x,wy) for Vo € (0,1)
6. g is continuous: limy,, ., g(x,wy) = g(x,ws) for Vo € (0,1)

The concativity—convexity weight w serves as the parameter for continuously
adjusting the T-modifier to increase/decrease the resulting T-error ratio. The
increasing value of w > 0 gives more concave function g which lowers T-error of
§9()  while decreasing the value of w < 0 produces the convex function ¢ which
raises T-error value of 69*). As an example, authors suggest two T-bases [§]:

e simple Fractional-power (FP-base) pictured in Fig. |3.10a defined as:
zTw for w >0

FP(z,w) =
v for w <0
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Figure 3.10: Fractional-power T-base (FP-base) (a) and Rational Bézier-
Quadratic T-base (RBQ-base) (b) values for distances § € (0, 1)

e and more sophisticated Rational Bézier-Quadratic (RBQ—baseE[} depicted in
Fig. [3.10p which we define as

rbq(xz,w,a,b) for w >0

RBQ g (2, w) =
rbg(z, —w,a,b) for w <0

Figure shows how a specific T-base modifies the original distance values
within the interval (0,1). Observe the behavior for positive values w > 0 which
inflate the distances and for negative values w < 0 that decrease the distances.

TriGen Algorithm

Having all the prerequisites, we describe the overall process of finding the optimal
T-modifier for the given distance § with respect to the given database sample S.
Together with these two inputs, we provide also T-error threshold ratio € which
represents the acceptable number of violated triangle inequalities.

First, we sample a predefined number of triplets for measuring the T-error of
the candidate T-modifiers, and create the T-bases. The algorithm selects the T-
modifier and tunes the weight parameter w in order to find the optimal value. We
start by setting the right direction either for TG-modifiers (w = 1) for nonmetric
(triangle inequality-violating) distances, or for TV-modifiers (w = —1) for metric
distances. To do this, we compute the initial T-error for the given model.

Then, we perform a fixed number of iterations to find the target w value. In
each iteration, we either increase or decrease the value of w based on the current
T-error compared to the threshold value 6. To help us with bounding the w
value, we use previously computed lower- (wig) and upper- (wys) bounds of the
parameter w. We use these bounds regularly for adjusting the next w value by
either halving or doubling the interval in order to accelerate the computation.

Finally, we compute the indexability of the final T-modifier which stands for
computing the intrinsic dimensionality [6], or the ball-overlap factor [52] using the
previously sampled distance triplets (see Section . We depict the generalized
TriGen process with all individual steps in Algorithm

IFor a detailed description of 7bg function, we refer readers to [§].
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Algorithm 2 TriGen (S, 4, 6)

Require: database sample S, (semi-)metric distance §, T-error threshold 6
1: T < SampleTriplets(S, ¢)

2: F < CreateT-Bases()

3: for all f € F do

4 w=0;w" =0

5. error < ComputeT-Error(f,w,T)

6: if error <6 then

7: wpg = —oo;wyg = 0;w = —1

8: else

9: wig = 0; wyg = ooy w =1

10:  end if

11:  for (i = 0; ¢ < MaxIterations; i++) do
12: error < ComputeT-Error(f,w,T)
13: if error <6 then

14: w* = w; wyg = W

15: else

16: Wrg = W,

17: end if

18: if wp = —00 or wyg = 0o then
19: w=2 w

20: else

21: w = (wLB + UJUB)/2

22: end if

23:  end for
24: if w* # oo then

25: idz = Computelndexability(f, w*, T');
26: if ¢dxr > maxIndexability then

27 fbest = fa Wpest = W™

28: maxIndexability = idx;

29: end if

30:  end if

31: end for

32: return T-Modifier( fyest, Wrest) {return the best T-base fyest }

TriGen Time Complexity

We acknowledge that TriGen seems perfect for converting semi-metric distances
to metric ones, even though we need to study its time complexity to reveal its
potential for real-world applications. The total time complexity of TriGen is

O(|S]* - O(8) + Maxlterations - | F| - m)

where |S|? is required for building the distance matrix for the sample S C D,
O(0) is the time complexity of evaluating a single distance value between any two
objects, Maxlterations parameter defines the number of iterations when searching
for the appropriate T-modifier, |F| is the size of all tested T-bases, and m is the
number of sampled triplets.
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With TriGen, we are able to handle efficiently some of the nonmetric similarity
models in a unified way. The biggest advantage of TriGen is that its conversion
from semi-metric to metric distances allows us to consider any suitable metric
access method for indexing of the transformed models.

3.2.6 NM-Tree

The introduction of TriGen has provided a great motivation for further research
of nonmetric spaces. With a clear goal of finding the optimal value w for the
parametrized T-modifier, we can handle any semi-metric space and subsequently
use any suitable MAMs for indexing. However, this has proved to be a limiting
factor for various cases due to the strong requirement of computing w value and
applying it before indexing. For approximated queries, we need to known prior
to the indexing the levels of user-defined error tolerance and the query precision.

To overcome this challenge and to provide higher degree of the flexibility
during the processing of similarity queries, the nonmetric tree (NM-tree) has
been proposed [75]. It combines M-Tree index with TriGen algorithm in order
to provide flexible approximate (non)metric search. It allows users to specify the
precision at the query time which gives a benefit of tuning the trade-off between
the efficiency and the precision for each performed query.

Regarding the structure of NM-tree index, if follows the original structure
of M-Tree, with a slightly modified insertion algorithm. We assume the input
distance ¢ to be semi-metric (see Section that violates the triangle inequal-
ity property (see Table . We turn this distance J into a metric §/7 with a
T-modifier f); for the threshold value # = 0 using standard TriGen algorithm
(see Section [3.2.5]). With zero T-error, we store the modified distances under the
metric 0¥ (-, -) to the underlying M-tree structure.

To function properly, we need to obtain inversely symmetric T-bases f; such
that for Vw € R and for Vz € (0, 1)

filfilz,w), —w) = x

Following the proposed notation, we mark these inversed functions as f; (-, w).
As authors state, both previously introduced T-bases (FP-base and RBQ-base;
see Def. hold this condition [75].

The main difference from the M-Tree is the algorithm for query evaluation.
The ezact search is simple as we use the standard M-Tree algorithm for traversing
the tree-based index structure. We only update the value of the query radius r
before evaluating any range query RQs(g,7) and use the value fy/(r) instead.
After the execution, if we want to return also the distances to the query object g,
we need to reverse the distances of returned objects 67 (q, 0;) to f1,' (6 (q, 0;)).

The approzimate search with the accepted error threshold of 8 > 0 for which
we compute adequate T-modifier f? is more complex as we need to modify all
distances 6/ (-,-) in two ways. We apply the inversed T-modifier f;;' followed
by the required T-modifier ¢ which results in:

F(fad (67 ()

Besides the direct distances between objects (and their parents), the index
structure of NM-tree includes also radii which consists of aggregation.
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Figure 3.11: Dynamic modification of distances in NM-tree at the query time on
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Except for the two lowest levels (leaf and pre-leaf level), we cannot apply
the distance modifications due to the inherited direct distances produced as the
consequence of node splitting (see Fig. . So we perform exact metric search
at higher levels and the approximation on the two lowest levels.

The experiments show that the NM-tree performs as fast as multiple M-Tree
indexes for specific approximation levels, overall with greater flexibility options.

3.2.7 Fuzzy Similarity

Another specific idea of fuzzy indexing [18, 9], [19] reveals a method that combines
the similarity search domain with the fuzzy logic. In their work, authors focus
on pure similarity models which conform to the prerequisites of the fuzzy logic
and so they diminish the necessity of bi-directionally converting similarities to
distances and vice versa which might provide a lossy transformation. Here, the
loss of information within the conversion could lead to the perfect behavior in
distance-model, however the backward transformation to similarities inherently
conduces to increased error rates [19].

To overcome issues that nonmetric similarities bring, authors replace the stan-
dard metric model with the fuzzy similarity and fuzzy logic model. Instead of
transforming or modifying the non-metric spaces (distances/data), we use a suit-
able function or fuzzy operators which is one of the first attempts to apply fuzzy
concepts to similarity indexing. Previously, authors proposed a utilization of
fuzzy sets to reason about distance measures but only to user-perceived real-
world distances [92]. Also, much more interest has been on the indexing in fuzzy
databases [93], 04]. However, the authors deal with the fuzzy data stored in a
database, while this approach uses crisp data interpreted with fuzzy operators.

Fuzzy Logic Model Introduction

The concept of using fuzzy logic for indexing non-metric data [I8] leads to the
data indexing with fuzzy operators. Instead of modifying the distances or data,
we tune the “+” operator and thus replace the traditional triangle inequality
condition in metric filtering by so called parameterized T-norm operators [95].

48



Definition 3.7 (T-norm, Fuzzy T-norm). A parameterized triangular norm (T-
norm) T\ is a binary operation Ty : (0,1) x (0,1) — (0, 1), such that for a fized
A value and Yz, y, z € (0,1), the following conditions are satisfied:

(T1) Ta(z,y) =Ti(y, ) commutativity
(T2) Ta(T\(z,y),2) = Th(x,T\(y, 2)) associativity
(T3) Ti(z,y) < Th(z,z) whenever y < z  monotonicity
(T4) Ty(z,1)==x boundaries

In all cases, we work with similarities, so it is natural to limit the boundaries
of any T-norm to the interval (0,1). Moreover, the similarity between objects
s(0;,0;) represents the degree of the fuzzy predicate "o; and o; are the same”.
The aim of T-norms is to provide an alternative to the triangle inequality (see
Table [2.1)) which is forthwith replaced by the triangle transitivity or simply T-
transitivity.

Definition 3.8 (T-transitivity). With a similarity function s that returns the
value of a similarity between any two objects, we define the T-transitivity as

s(0,q) = Ty (s(0, p), s(p, q)) (3.18)

where 0,p,q € D are objects from the database D and T is a T-norm conjunction.
We denote s as T-transitive if the T-transitivity holds for it.

There is an obvious duality between the triangle inequality and the T-transitivity
for any three database objects o, p, ¢ € D with respect to the corresponding (dual)
similarity (s) and distance () functions

d(q,0) < é(q,p) + 0(p o) (3.19)
s(q,0) > Ty (s(q,p). s(p, 0)) (3.20)

This duality maps the inequality operator ”<” from the inequality to 7 >7
in the inequality , and similarly the operator ”+” to operator "T%”. While
the + operator is fixed in the metric spaces, in the fuzzy model, we have a flexible
and parameterizable conjunction 7%

Fuzzy Similarity Searching

The similarity searching within the introduced fuzzy logic model uses the same
object-pivot distance constraints [3] in terms of lower /upper bounds for distances.
However, we need to use the residuation from the fuzzy logic [95], namely the
fuzzy implication T, residual to the conjunction 73 for any three real values
z,y,z € (0,1):

Ny <z — Ty(z2) >y

If we have a T-transitive similarity function s according to the Def. 3.8 use
objects ¢ (query), p (pivot), and o (object) from the database D, and replace
z,y, z for ¥ = s(q,p), y = s(q,0), and z = s(p,0), we will get

15" (s(a,p), 5(p, 0)) = s(g, 0)
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Algorithm 3 LTA — Lambda Tuning Algorithm (¢,6, 5)

Require: T-norm 7', T-error threshold 6, database sample S
L Apest = —1; Amin = 0; Anax = T.getLambdaMax()
2 A= ()\min + )\max)/Q
3: triplets <— SampleTriplets(.S, )
4: for (i = 0; i < MaxIterations; i++) do

5. error = ComputeT-TransitivityError(T, A, triplets); {violating triplets}
6 if error < 6 then {worsen the operator by increasing A}

T Abest = Amin = )‘7

8:  else {improve the operator by decreasing A}

9: Amax = A;

10:  end if

11: A= (Amin + Amax)/2;

12: end for

13: return A\esr; {Return the best A found for the T-norm 7'}

Then, we can use the following lower- and upper- bounds for the estimation
of the similarity between the query ¢ and any object o.

Ty (s(q,p), s(p,0)) < s(q,0)
s(q,0) < min{Ty"(s(q,p),s(p,0)), T\ (5(p,0),s(q,p))}

This gives us a method of evaluating similarity queries using the parametrized
T-norms. The only challenge is to find the optimal A value for a given T-norm 7'
that will behave efficiently for the database D with a similarity function s.

Lambda Tuning Algorithm

Finding the optimal value of A parameter for a parametrized T-norm operator T'
is the most crucial point when using fuzzy logic for data indexing. Inspired by
the TriGen algorithm [8] described in Section there emerged the Lambda
Tuning Algorithm (LTA) [19] which aims to address this challenge.

Initially, authors normalize all T-norms T to accept A € (0, 00) in which A = 0
is the most flexible (with the minimal error) and A = oo is the most strict (with
the maximal error). The LTA returns the most suitable A parameter for the given
fuzzy T-norm operator T, error threshold #, and the given database sample S. It
works as follows.

First, we sample the triplets from the database sample S to be used for the
tuning mechanism and initialize the minimum/maximum values of A parameter,
as they might differ for various families of T-norms.

Then, in each iteration we compute the error ratio (the number of violating
triplets) for the sample S and the current A value of the T-norm 7. While in
TriGen we compute triplets violating the triangle inequality (T-error ratio, see
Def. , here we count triplets for which the T-transitivity does not hold (see
Def. 3.8 especially Eq. [3.18)). According to the resulting error value, we modify
the A parameter and continue with the next iteration. At all times, we maintain
the current interval of suitable and applicable A values (Amin, Amax). We return
the best Apesy for the given T-norm T as depicted in Algorithm

20



L, distance
60,000 u Metric filtering

Euzzy filtering using T-norm:

50,000

m AczelAlsina
40,000 = Dombi

u Frank
30000 || mHamacher
20,000 | = MayorTorrens

I Metric

Average Distance Computations

10,000 11 | w=SchweizerSklar

0 = Sugeno-Weber
25,000 50,000

Yager
Database Size

Figure 3.12: Average Distance Computations of Fuzzy T-Norms

L, distance o
100.00% u Metric filtering

90.00%
80.00%
70.00%

Fuzzy filtering using T-norm:

u AczelAlsina
u Dombi

60.00% u Frank
50.00%
40.00%

30.00%

® Hamacher

Average Error

' MayorTorrens

20.00% I Metric

10.00% SchweizerSklar

0.00% = Sugeno-Weber

25,000 50,000
Database Size

Yager

Figure 3.13: Average Error of Fuzzy T-Norms

Evaluation of Lambda Tuning Algorithm

The authors of the proposed LTA algorithm verified its validity while studying
the behavior of nine different fuzzy families of T-norms defined in [95], name-
ly AczelAczina, Dombi, Frank, Hamacher, MayorTorrens, Metric, SugenoWeber,
SchweizerSklar, and Yager. The major focus is put on upper bound limits and
how they adapt to the error threshold 6 changes which provides the efficien-
cy/effectiveness of selected fuzzy T-norms.

For the purpose of experimental evaluations, they use the CoPhIR database
[96] with up to 50,000 images represented by the normalized vectors with 512
dimensions. They apply the fractional L, functions (see Eq. with p = 0.5

. . . . . . . 1
(semi-metrics), and the distance-to-similarity conversion s(gq,0) = TG0

Fuzzy Pivot Tables

For experimental evaluation, we replace the conventional Pivot table filtering
[3, 48] by the fuzzy filtering in which the distance lowerbound is substituted for
the corresponding similarity upperbound obtained by the specific T-norm T using

their duality (see Section [3.2.7]).
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Then, we examine the efficiency (the average number of distance computa-
tions required to evaluate the similarity query; see Fig. and the effectiveness
(the precision of the result together with the average error; see Fig. . We
measure the error rate as the difference between the result sets obtained by the
sequential scanning (SEQ) and by the pivot table for the given query. We take
into account the presence of actual identifiers of the objects id(0) within the result
set, not their distances to the query. We evaluate the results on range queries
using 50 randomly selected objects with maximum error rate of 0.001%.

The closer look reveals that even though the fuzzy T-norms supposed to be
flexible and more adaptable compared to the classic non-metric searching, the
best results showed only a small speed up of the query evaluation for the price of
higher error rate (e.g. Hamacher, SchweizerSklar).

This means that the proposed usage of T-norms is not applicable to the ex-
amined data. The reason is the discrepancy between the A parameter of T-norm
T evaluated (found) for the given error threshold ratio # and the (considerable)
error rate that T\ produces when applied for fuzzy filtering of similarity queries.

Moreover, there continuously occur bi-directional distance-to-similarity con-
versions which are required for the fuzzy filtering to be working in pivot tables.
This is a major drawback for any distance measure and might degrade the overall
performance and efficiency. But as authors notice, this is still only an uncon-
firmed speculation which needs to be examined into more details by applying
fuzzy T-norms to pure similarity models. Then, we can definitely determine
whether indexing similarity models with fuzzy logic brings any advantages which
again remains as the future work.

3.2.8 Specific and Alternative Techniques

Besides the mainstream SAMs, MAMs, PtoAMs or the specific fuzzy similarity
approach, sometimes there also appears completely different methods that try
to handle (non)metric data efficiently. The majority of these approaches focus
on domain-specific tasks such as the non-metric similarity searching in the area
of tandem mass spectra [37] or in the area of protein databases [12]. There are
many of such solutions primarily targeted to a specific domain which employ a
customized version of an existing indexing method. This is however their main
advantage (specifically tuned for a particular problem) and disadvantage (they
could not be generally applied) at the same time.

Indexing Time Series with Dynamic Time Warping Distance

One example is the research of time series together with DTW distance (see
Section . The simplest idea of speeding up expensive DTW distance com-
putations is to use the early abandoning method. Given a radius r¢ of a query
that is being evaluatedﬂ we can stop the DTW computation if we know that the
final distance will be greater than rg [97]. This eliminates further computations
of the DTW matrix, discards inappropriate objects early enough, and provides
not approximate but exact results. In fact, the early abandoning makes DTW a
lowerbounding function to itself.

2Either the fixed radius of a range query, or the current radius of a kNN query.
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Furthermore, we study additional specific time series lowerbound approaches
named according to their authors as proposed in [46]:

1. LB_Yi computes the lowerbound of the distance between two time series
@, S depending on the arrangements of their ranges (min(@), max(Q)) and
(min(.S), max(S)) [47].

2. LBKim provides guaranteed lowerbounds when the ground distance d, is
any L, distance function (see Section which, in our terms, applies
to any DTW(-,-, L,). The mechanism is based on extracting and using
4-tuple vectors consisting of (1) first, (2) last, (3) smallest (min), and (4)
largest (max) elements of two time series @, S [98]. To compute the lower-
bound value, authors consider the maximum value of all absolute values of
differences

LB,Kim(Q, S) = maX(|Q1 - 51|a |q1ast - 81ast|7 |qmin - 5min|a |Qmax - Smax|)

It is a simple observation, that for long time series this typically does not
give a very tight lowerbound. On the other hand, the method works with
time series with different lengths.

3. LB_Keogh is considered to be the best lowerbounding method for constrained
DTW distance and fixed-length time series [46]. With the warping window
constraint w, this method encapsulates any time series S of length n into
two additionally computed time series Ug and Lg (upper and lower part):

w; = max(Si_w, - Sitw), Li=min(Si_w,. .., Sitw)

Given a query object () together with time series Ug, Lg that correspond to
Keogh’s envelope for an input time series S (all with the same length n),
the proposed lower bound LB_Keogh is defined as

LB Keogh(Q, S) = Z (qi —1;)? if g; <l
i=1 0 otherwise

Several experiments verified claims that this lowerbound is the tightest one
compared to other approaches [46]. The same research group led by Ea-
monn Keogh makes an enormous effort in speeding DTW-based similarity
search. In famous papers [46, 42] introducing LB_Keogh, authors consider
additional dimensionality reduction of the time series using piecewise aggre-
gate approximation and indexing of reduced envelopes by R-tree, together
with high-level indexing solutions such as iISAX framework [99, [100].

4. LB_Tight as the generalized method of LB_Keogh applicable to a wider range
of ground distance functions in generalized GDTW(-, -, d,,w, f) [43]. Giv-
en a query object ) together with time series Ug, Lg that correspond to
Keogh'’s envelope for an input time series S (all with the same length n), us-

ing w as the warping window parameter, the proposed lowerbound LB_Tight
for GDTW(Q, S, 04, w, f) is defined as

n dg(qi, u;) if ¢; > w;
LB Tight(Q, S, 05, f) = f | D4 lainl)  ifai <l

i=1 0 otherwise
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Figure 3.14: Average number of Distance Computations for DTW lowerbounds

With the introduction of LB-compliant distance function, we can easily
prove that LB_Tight is a true lowerbound — for any two time series ) and
S of the same length n, for any value of the warping window w such that
(j —w) <1< (j+w), and for any ground distance ¢ that is LB-compliant,
the following inequality holds’}

LB Tight(Q, S, 4, f) < GDTW(Q, S, d,w, f)

As was later discovered [43], not all lowerbounds are applicable to generalized
DTW (GDTW; see Eq. . This study shows also specific counter-examples for
which the methods does not provide the guaranteed lowerbounds. Authors also
provide experimental evaluations and comparison of the described lowerbounding
methods on real-world-data known as UCR Time Series [101] collected by Keogh.

As the results were similar for most datasets, we explicitly show 50words
dataset (Fig. followed by average results over all fixed-length datasets
(Fig. [3.14b). The obtained test results confirm that LB_Tight outperforms all
other methods for ground distance L; in terms of the number of DCs. So it is
the tightest lowerbound that achieves up to two orders of magnitude speedup over
competitors. For ground distance Ly, LB Keogh, which equals to LB_Tight(-, -, Ls),
remains the dominant lowerbounding mechanism.

3For more details and the proof of this theorem, we refer readers to the work which introduces
this lowerbound [43]
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Figure 3.15: Average query time and average speed-up compared to sequential
scanning for DTW lowerbounds

We show average query response times (Fig. and the average speed-
up of the query efficiency in terms of the compared to the sequential scanning
(Fig. for the fixed-length databases. For the comparison of variable-length
time series (e.g., DNA sequences of genes of Listeria monocytogenesﬁ using the
technique suggested in [I00]), we refer to the original study [43].

Efficient Index-Free Similarity Search

From time to time, authors also come with novel indexing methods like the idea
of index-free D-file [102], [103] suitable for data mining, streaming data, and other
domains that produce large amounts of data. Authors remove the expensive oper-
ation required for building the index and apply the sequential scanning enhanced
with D-cache. It tracks the previously evaluated distances in the main memory
and thus provide the basis for computing future lowerbounds which results in
faster query processing.

4For details see Metric Spaces Library at http://sisap.org/
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Approximate Search

So far, we have been dealing mostly with exact searching in (non)metric spaces.
There are also other approximate searching techniques that usually trade-off the
precision for the speed of query evaluations. These methods include but are not
limited to approximate (1 + €¢) kNN searching with M-trees using the relative
distance error € > 0 [104], contractive mapping mechanisms when we omit or
discard the second step of refining candidates with the original distance measure,
clustering methods in which we access a limited number of nearest clusters [105]
106], or the probabilistic method such as the probabilistic LAESA index [107].

3.3 Indexing Challenges

No matter whether we apply exact or approximate similarity search, we always
face some challenges when it comes to indexing the data. If we knew some specific
properties of the input similarity model we deal with, it would be easier to propose
the lowerbounding method for indexing and querying customized for the given
scenario such as the cases of metric triangle lowerbounding (see Section or
ptolemaic lowerbounds (see Section [3.1.2). Whether we will be able to achieve
this depends purely on the complexity of the given similarity model. Without any
a priori constraints, selecting the best indexing method for a general similarity
model which assumes only a black-box similarity /distance function with a former
unknown universe of object descriptors is a challenging task. Here, the only
valuable information we could use is the computed distance between any two
arbitrary objects.

Having this in mind, we want to derive more information and insight about
the data only through the distance matriz — a matrix which on ith row and jth
column contains the distance 6(o;,0;) between two objects o; and o; that belong
to the database D:

M(;,D[Z',j] = 5(01', Oj), 04, 0 D

This means that no previous knowledge of the similarity model is required to
provide a good indexing technique for any given data.

If we obtain any results from such a matrix (positive or negative) it would
give us some information about the whole domain D. However, sometimes even
evaluating D x D distance computations is infeasible, especially for large data
volumes. So, we apply a specific way of data sampling to build a smaller yet usable
sample S C D in terms that it holds the same properties as the overall dataset
D. This approach of sampling data has been already proven by TriGen algorithm
(see Section and employed also by LTA algorithm (see Section [3.2.7).

Although we can find ways to sample good data in order to build a suitable
database sample S, we still do not know what the next steps will and should be.
How to process such data to get valuable insights? What to search for in order to
obtain efficient yet effective indexing model? How do we know that the acquired
results are applicable? To continue further, we need to go beyond these questions
and ask ourselves whether there exist an automated process of discovery selected
(analytical) properties for given data samples.
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3.3.1 Can We Automate the Axiom Exploration?

The ideas of ptolemaic indexing (see Section and ptolemaic access meth-
ods (see Section show that finding novel techniques suitable for database
indexing could be a solution to speeding up (exact) similarity search in other
way than mapping the problem to the metric space model (see Section
or transforming the nonmetric distances to metric ones (see Section [3.2.5). On
the other hand, doing so manually would be even harder than forcing a domain
expert to implant the metric axioms into her/his generally nonmetric similari-
ty model. Note that even proving the "simple” triangle inequality property in
the "simple” Euclidean distance is quite a complicated task, let alone proving the
complex Ptolemy’s inequality for a nonmetric distance implemented by a complex
heuristic algorithm.

Hence, the challenging question that remains open here is whether we are
able to automate the whole process of aziom explomtz’onﬂ for specific databases
and similarity models in which the newly discovered axioms will provide the
fundamental parts for novel indexing methods and structures.

5In this case, we use the term aziom to denote an important property that holds in the
given similarity model for the given database. For more details, see the proper and more formal

Def.
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Chapter 4

Flexible Indexing Framework

To address the challenge of exploring suitable indexing techniques for specific
databases, we introduce and outline SIMDEX Framework concept [108]. We can
describe SIMDEX as a universal framework that is capable of revealing alternative
indexing methods that will serve for efficient yet effective similarity searching for
any similarity model. This framework offers a complex solution that provides
various domain experts with database techniques that speedup similarity search
yet do not require any database-specific intervention to existing similarity models.

As there continuously appear new variants of SIMDEX Framework [108 109,
110] since its first release, we first generalize the whole concept, describe the
existing variants in more details, and consolidate the SIMDEX portfolio.

In our work, we follow the initial ideas of developing the general and flexible
algorithmic framework for automatic exploration of aziom spaces. We focus on a
precise description of all existing variants (Sections [} [6] and [7)) while highlighting
their pros or cons, and provide the comparison of individual SIMDEX variants
between each other (Section @ We append the experimental evaluations on real-
world datasets (exploration and indexing tasks) and show how SIMDEX results
behave with respect to other existing methods.

The main objective of our research is to provide the feasibility study of
SIMDEX Framework — validate its functionality, compare the variants between
each other, and extensively examine all variants on various databases. Finally, we
describe a concrete application of SIMDEX Framework for building Smart Pivot
Table (Section [g).

4.1 General Overview

Before we formally define SIMDEX Framework, we describe the fundamental yet
very simple idea of how the framework really works. As the main input, we
consider a particular similarity space described by

1. a black-box distance function 6 and
2. a database sample S C D

The "mining field” for the framework is the distance matrix M;g that we
obtain by computing the pair-wise distances between all 2-tuples of objects from
the database sample S using the black-box distance function 9.
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Figure 4.1: General SIMDEX Framework high-level schema

Then, based on the chosen variant, we select a set of mathematical expressions
in specific forms to be tested within the distance matrix M;g. If all evaluations
of a single expression pass the test, we have discovered a new aziom valid in the
similarity model and applicable as a new indexing method.

Using this simple idea, we are able to algorithmically explore axiom spaces
specified in a syntactic way — that is, we are not using a single canonized form and
a tuning parameter as TriGen [8], Lambda Tuning Algorithm in fuzzy similarity
approach [19], or other mapping approaches do (see Section . Consequently,
the triangle inequality (Eq. and Ptolemy’s inequality (Eq. could be
rediscovered as two instances in the axiom universe.

The resulting set of analytical properties (axioms) will be obtained in specific
forms which we name as the analytic indexing models. These models can be im-
planted in various suitable indexing structures, e.g., using the pivot table (AESA
or LAESA [6]) in the same way as ptolemaic indexing was implemented [I5].
Thus, we immediately use the output indexing models for database indexing.

Note that this process gives only empirical testing of the expressions using
multiple interpretations of object-to-object distances ¢(o;,0;) from the distance
matrix Ms ¢ which leads just to the empirical evidence that an expression holds for
the given model. Nevertheless, this cannot be replaced by an analytical resolution
that absolutely confirms the evidence, although for our case, a large number of
positive tests could be treated as a sufficient confirmation.

Figure depicts the high-level schema of the general SIMDEX Framework
which is common and followed by all its existing variants. It shows individual
steps towards the common goal, how they are connected, and how the frame-
work works. The arrows outline the basic data flow. Besides the described items
(DB sample S, black-box similarity function §, analytic indexing models, index-
ing structures), the "Requirements” item let us set further conditions that the
resulting axiom must hold in order to be considered as the resulting indexing
technique. These restrictions include but are not limited to the axiom complexi-
ty, axiom form, the number of variables within the axiom, mandatory objects or
variables within the axiom, etc.
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4.2 Breaking the Metric Paradigm

The idea of SIMDEX Framework is based on the ground-breaking fundamental
research at least within the scope of data engineering and database systems. To
the best of our knowledge, there has never been proposed such a complex frame-
work for mining properties from similarity data as in this case. Although there
have been many proposals introducing alternative perspectives on data index-
ing and mining, they were always based on a single mathematical model (such
as the metric space model, ptolemaic indexing, multidimensional scaling, neural
networks, etc.). In SIMDEX Framework, we do not a priori select a particular
mathematical foundation, as we will analytically discover the foundation itself.

Hence, the impact of the proposed framework is two-fold. First, from the
technical point of view, the discovery of new axioms will enable large-scale sim-
ilarity search in many practical applications where the content-based retrieval
is the essential component, e.g., multimedia retrieval, biometric databases, time
series databases, etc. Since applications come from different domains outside the
computer science, the contribution of these outcomes is truly multi-disciplinary.

On the other hand, from the philosophical point of view, "newly discovered”
mathematical expressions (or axioms) will contribute to the theoretic foundations
of data engineering, data mining, and disciplines beyond such as computational
geometry, geometric topology, and related disciplines. If a discovered axiom is
general enough, it could open new horizons or research interests in many disci-
plines related to data engineering, similarity search, data mining, etc. and so the
framework exhibits substantial inter-disciplinary nature.

Therefore, we set the main goal of our research to find alternative methods
for indexing specific or unusual data. We get inspired by the previous research
[52, 8, 50l 51] that showed that it is possible to find other models that for some
databases might increase the efficiency and provide better results than the metric
space model. We also develop the potential of our recent work [108] in which we
introduce SIMDEX Framework and suggest to explore the universe of expressions
(so called axioms) with the proposed SIMDEX Framework in order to reveal new
and unknown indexing possibilities.

We set the boundaries of our research by defining the ideal outcome — data-
specific (or similarity model-specific) indexing method (or a specific lowerbound
inequality) that provides efficient yet effective similarity searching based on the
inter-object distances in the data space given by the input similarity model.

4.3 Framework Methodology

In this section we formalize and describe into more details the methodology of
the SIMDEX Framework. We outline general requirements together with spe-
cific options applicable to the implementation of the framework. We give the
step-by-step tutorial of how to create and use SIMDEX in different environments
as the methodology is generally applicable regardless of the selected program-
ming language or platform because it forms the theoretical basis and foundation.
Furthermore, SIMDEX might be modified, customized, or extended for specific
purposes if necessary, as we later depict by future variants (I-SIMDEX, GP-SIMDEX,
or PGP—SIMDEX).
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Symbol Description

D database D
SCD database sample S
8(0;,05) distance between database objects o; and o; (0 : D x D — R)
M s distance matrix for a sample S and distance 6 where
’ M;; = 6(0;,05) for each 0;,0; € S
M the universe of distance matrices Ms g
LB; lowerbound expression LB;

R;, R, R® | relation R;, candidate relation R}, compound relation R®
R, Ry, Ry | all (R), validated (Ry), and successfully tested (R) relations

A A axiom A;, set of all axioms A valid for a given model

Table 4.1: SIMDEX Framework basic notation

As we mentioned in the previous section, the input for the framework consists
of a database sample S C D, |S| = n that is a subset of the given database D, and
a black-box distance function 6. We want to obtain a set of azioms A = {A;} C A
that is a subset of all axioms A valid in the given model. The proper definition
of the term aziom will follow shortly (see Def. [4.6)).

There are two extreme cases — in the worst case, the resulting set will be empty
(no axiom has been revealed and |A| = 0); in the ideal situation, we will discover
all axioms (A = A). Therefore, we want to develop or select such exploration
method that will maximize the size of the resulting set of axioms |A|.

In order to proceed with the methodology and the framework structure, we
need to properly define all commonly used terms such as a lowerbound, a relation,
or an aziom. We summarize all terms and symbols that we use in the text in

Table 411

Definition 4.1 (Similarity model). The distance matriz Msg or the combination
of the distance function § with the database sample S define the similarity model.

Definition 4.2 (Lowerbound). In our context, any valid mathematical expression
maght be considered as a lowerbound LB.

Definition 4.3 (Relation, Candidate relation). A relation R; (or a candidate
relation RY) is a mathematical inequality in a standardized form:

R, = {5@,0) > LBZ} (4.1)

where 6(q, 0) is the real distance between the query object q and a database object
0, and LB; is a lowerbound.

Definition 4.4 (Relation cardinality). The cardinality card of the relation R;
equals the number k of distinct variables used within the relation: card(R;) = k.
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Definition 4.5 (Evaluation function). The evaluation function evaly is defined
for any relation R; with the cardinality card(R;) = k and for any selection of k
objects from the database sample S. It returns true if the relation holds for the
gwen k-tuple and false otherwise:

evaly : R; x S* — {true, false} (4.2)

k

.

where R; is a relation and S* =S x S x ... x S stands for k-tuple of different
objects from S.

Definition 4.6 (Axiom). If we have a relation R; with cardinality card(R;) = k
and evaly(R;, S*) returns true for any k-tuple objects from the database sample
S, we say that R; is an axiom A;:

R; is axiom A; <= Vt € S*: eval(R;,t) = true (4.3)

More precisely, A; is an empirical axiom for the given similarity model as it
holds within the database sample S only and probably in D. In order for A; to
become a "real” axiom, it must be theoretically proved which is out-of-scope for
our work. Nevertheless, we will primarily focus on finding axioms.

Definition 4.7 (Axiom space). Axiom space A is the set of all axioms A; valid
for the given similarity model: A = {A;}.

Now and then, it might be useful to obtain relations that are not always true,
but are valid for majority of k-tuples, to obtain approximate values. For this
purpose, we define the probability values P; (for relations R;).

Definition 4.8 (Relation probability value). The relation probability value P;
for the given relation R; (with the cardinality card(R;) = k) determines the ratio
of positive occurrences of R; to all results for the set of k-tuple objects from the
sample S':

|evaly(R;,t) returns true

P, = Prob;cgr (e’ua,lk(Ri?t) = true) = (4.4)

~ |evaly(R;,t) returns any value|

The resulting value of P; depends purely on the number |S*| of tuples t we use for
the evaluation of the relation R;.

These terms introduce the formal background for various SIMDEX variants
that we will individually describe and compare in the following text. Besides
the general overview and common features, they all differ at least in the way the
exploration phase is implemented — the way the we generate and test relation
candidates. We focus on the complete description of the exploration phases and
always highlight both the advantages and the disadvantages.

Beforehand, we would like to depict the principles that are in common for any
exploration process no matter which variant we select.
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( Terminals ) — 0,1,2,3,4,5,6,7,8,9,var,g,
(varpgo) — war, | ¢ | o
<Uarp> — pMaXPivots
( MaxPivots ) — [0 — 4] (5 pivots at most)
( Distance ) —  d(vary, vary)
(E) - E+T | E-T | T (expressions)
(T) - TxF | £ | F (terms)
(F) —  Number | Distance | abs(E) | —F (factors)
( Number ) — ([0 —9])+

Table 4.2: SIMDEX Mathematical Expression Grammar

4.4 Exploration Process

The axiom exploration phase is the most critical part of the whole framework.
It defines how we search for the most promising candidates (deterministic or
random-based methods of generating and validating the set of candidates), how
we evaluate each single expression, and how we determine the success of tested
candidates. Although each SIMDEX variant defines its own exploration method,
some principles remain common, namely the evaluation and fitness functions.
We describe the common fundamentals in the following sections.

4.4.1 Grammar for Mathematical Expressions

The initial step in the exploration is to create or load a grammar definition
G. Although we can use any grammar, in SIMDEX Framework we apply the
grammar theory specifically modified for the purpose of generating lowerbounds.
This means to define the grammar that generates good candidate relations (RY).
The language defined by the grammar contains:

1. a reasonable number of terminals, such as

(a) object descriptor variables (q,0,p1,ps...) and constants (¢;) where
some of them are fixed and act as global reference points (such as
pivots p;); while others could stand for any object

(b) functions f; modifying the whole expressions or particular distances.
Here we allow specific functions such as the the triangle generating
(TG) and triangle violating (7'V) modifiers from TriGen algorithm
[8], however we have not included those yet.

(c) standard arithmetic operators (+,*,—, /), numeric constants, etc.

2. a limited number of their combinations

As the grammar is concerned, we refer to regular languages or L3/ Type-3
grammar in Chomsky hierarchy [I111] which is sufficient for this case. These
languages are basically handled by a finite state automaton. For most cases, we
will use the grammar as depicted in Table [4.2]
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Using the grammar, we are able to guarantee that each candidate relation R}
is in the standardized form as outlined in Eq. [£.] What remains as the main
concern is to verify that evaluating the lowerbound value in candidate relation R}
which is in Oy g is computationally more efficient compared to the direct distance
computation between two objects Os: Orp < Os. Otherwise, the estimation of
the distance d(-, -) with the lowerbound LB will not speedup the querying.

Also, other existing lowerbounds indicate that it is good to use some reference
objects p; (called pivots), for which the distances (o, p;) might be pre-computed
and 0(q, p;) is computed just once before the query evaluation starts. In this case,
we expect the existence of combinations 6(g, p;) and é(p;, 0) within the generated
lowerbound. However, the expanded lowerbound form cannot at any case include
or reference d(q,0), as we try to estimate this distance. Therefore, we prohibit
recursive references within the lowerbound.

4.4.2 Evaluation Functions

Having the set of candidates ready for the inspection, we evaluate each mathe-
matical expression individually using the evaluation function. It determines how
good the expression is in terms of correct estimation of real distances (formally
see Def. . There are multiple options for choosing the appropriate evaluation
function such as

1. sampling random k-tuples
With the fixed number N of tests to be performed, we randomly select N
different k-tuples for each candidate relation R}. If we set a maximum kyax
such that V& : k < k., we can determine the k,,..-tuples once before the
evaluation.

2. testing the whole data sample
With the fixed size N x N of the input distance matrix Ms g, we test all
distinct k-tuples for each candidate relation R;. Even for small values of k,
this approach is resource-demanding as we need to evaluate (]Z ) tuples.

3. LAESA-like evaluation
Here, we simulate the query evaluation as it is present in LAESA index
[65], [48] by choosing a small set of queries ) C S and pivots (reference
objects) P € S,PNQ = 0. If it holds Vk : k < |P|, we evaluate each
candidate relation R} with respect to every object 0o € S;0 ¢ Q,0 ¢ P and
a respective query ¢q € ().

Also, we would suggest to consider one more method which combines the pro-
posed approaches and it uses a multi-level evaluation. In this case, each level
L defines the maximum number of randomly selected k-tuples to be evaluated
maxy. At the next level L + 1, the maximum number maxy ,; is always consider-
ably higher than the previous level (maxy,; > maxy ), while the final/top level
corresponds to all k-tuples. The candidate relation R} is taken to the next level
(L + 1) only if it passes the evaluation at the current level L. This way, only the
best candidate relations will be extensionally tested.

In all cases, the value k represents the cardinality of the candidate relation
Ry: card(R;) =k (see Def. [£.4).

(2
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Note that the result of any evaluation function just shows how the candidate
relation R} performs on the tested database sample S. Therefore we can only
estimate its performance on the rest of the database D because it does not guar-
antee the same results as with the sample data. A good relation minimizes or
removes such a difference in the query performance.

4.4.3 Fitness Functions

Occasionally, we will have to figure out the next steps of the exploration towards
better results. This usually means to discard weakest and promote/enhance most
promising candidate relations. For this purpose, we use the fitness functions that
allow us to designate the future of a candidate based on its actual test results.
To do so, we engage several properties to build the adequate metrics. Among
others, we consider properties such as

e success ratio - the ratio of successful tests compared to the total number of

tests (see Def.

e lowerbound tightness - how good the estimation is based on the average
difference between the lowerbound and the real distance values

e cardinality of the candidate relation

There are couple more options we might consider in the future work such as
to include expression tree height / width or complexity of the expression among
the others. Including these properties might lead to better fitness.

4.5 Framework Summary

In the previous sections, we summarized the theoretical foundation for SIMDEX
Framework and describe the shared basis that we will be referencing to. Now,

we are ready to continue with the introduction of the first real implementation
of SIMDEX concept — the Iterative SIMDEX.
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Chapter 5

Iterative SIMDEX

Initially, we implemented the axiom discovery trivially as the incremental explo-
ration of axiom spaces [108]. We will refer to this method as Iterative SIMDEX or
I-SIMDEX and in this chapter, we provide the detailed overview of this technique.

5.1 I-SIMDEX Overview

In order to implement the incremental exploration process, we divide technically
the exploration phase into several stages that cover specific functionalities

e (S1) Grammar Definition
We follow the general grammar definition G (for details see Section
for generating valid SIMDEX lowerbounds that form candidate relations in
the standardized forms.

e (S2) Expression Generation
Because the grammar-based generation of expressions leads to an infinite
universe, we need to optimize the set of tested lowerbound inequalities in
order to discover the most promising candidates first.

e (S3) Expression Testing
Once a candidate relation is generated, we test it with selected evaluation
function within the distance matrix Msg. Only such candidate relations R}
pass, for which their probability value P; in the given model is higher than
the required threshold probability value T': P, > T.

e (S4) Expression Reduction/|
We propose the optional step that investigates and applies the heuristic
techniques of expression combinations and pruning.

The original concept defines two more stages. First, it expects the stage (55)
Indexing Structures that validates the resulting set within the indexing structure.
In this case, we want to implant the outputs directly to the indexing phase to
validate the theoretical results. Secondly, we assume (S6) Parallelization in order
to speedup the overall testing. This is easily achievable with multi-threaded
evaluations or multi-CPU testing and does not need a special attention. The
complete overview of stages is depicted in Fig. [5.1]

!This stage was not implemented in the initial I-SIMDEX prototype
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Figure 5.1: Iterative SIMDEX schema

Definition 5.1 (Iterative SIMDEX). The Iterative SIMDEX is defined as a tuple
I-SIMDEX(G,C,T) where G is a grammar definition, C' is a set of conditions for
generating lowerbound expressions, and T is a threshold probability value. Then,
for a universe M of distance matrices Msg, the Iterative SIMDEX acts as a
function:

I-SIMDEX(G,C,T) : M — {(R,Rpp1))} (5.1)

where R s a set of all relations that could be defined by lowerbounds generated
by the grammar G and R 1y covers real numbers within the interval (0, 1).

The result consists of a set of pairs (R;, P;) where each relation from the
resulting set R; € Ry 1s valid for the sample S with the corresponding probability
P, (Vi: P, €(0,1),P, > T). The set of all resulting relations Ry is a subset of
all valid relations R: Ry = {R;} C R.

If the threshold probability value T = 1, we can omit all probabilities P; and
simplify the framework definition to

I-SIMDEX(G,C) : M — {A} (5.2)

where A is a set of all axioms valid for the given model. Then, the result will be

a set of azioms Ry = {A;} C A.

In the following sections, we describe the important stages (S1-S4) into details
and show how they together form the exploration phase.

5.1.1 Grammar Definition (S1)

Regarding the grammar for generating valid candidates, in I-SIMDEX we follow all
the previously mentioned principles and apply the general grammar introduced

in Section 4411

5.1.2 Expression Generation (S2)

With the defined grammar G, we can start generating expressions that will form
relation candidates R;. Even if we limit the language and expansion recursion,
grammar-based generation is an exponential problem. Therefore our main objec-
tive is to guide the exploration to the most promising candidate relations first.
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Then, we are able to discard inappropriate relation classes at early stage, so that
early termination of the exploration will end up with nonempty result set.

For this purpose, we use two options for limiting the set of tested relations.
First, there is a finite set of conditions C' = {¢y, ¢, ..., ¢y} for generating the
candidate relations where each ¢; stands for a specific condition (e.g., discarding
lowerbound expressions £, —x).

Second, we introduce a technique called fingerprints which enables to elim-
inate multiple forms of the same mathematical expression. For each expression
(or relation), it returns the string representation (signature) which allows us to
divide relations into equivalent classes. For example, lowerbounds §(ps, ps) and
d(ps, ps), where p; is a variable, contribute to the fingerprint with the same value
[0(vary,vary)] and are equivalent for testing. So, we test only one of them as the
second one gives the same results.

To apply such conditions, we define a corresponding validating function that
decides whether the given relation is suitable for further testing and refinement
(returns true) or whether it will be discarded from further testing (returns
false). This function relies on the set of fingerprints for previously considered
relations.

Definition 5.2 (Validation function). Suppose F = {F;} is the sel of existing
fingerprints in which F; is the fingerprint for a previously tested relation R;, C
represents the set of conditions, and R, conforms to the set of all candidate
relations generated from the grammar G. Then, we set the validation function to

validatec r : R, — {true, false} (5.3)

Note that the set of fingerprints F is initialized with an empty set and dynam-
ically changes during the evaluation. Thus the result of the validation function
for any input candidate relation depends on the current state of F.

The best situation is if the validating function validatec r reduces the set
R{ to a large extent and eliminates all non-azioms because we try to maximize
the number of azioms in the resulting set.

We further mark the output set of successfully validated candidate relations
as Ry = {R}|R; € R¢ : validatec r(R}) = true}. We want to maximize
the intersection (Ry N .A) while minimizing the set size |Ry|, so the number of
candidates to be tested does not exceed too much all the relations / axioms valid
in the given model.

5.1.3 Expression Testing (S3)

In this stage, we test all validated candidate relations R; € Ry from the previous
step within the input distance matrix M; ¢ using one of the evaluation functions
depicted in Section [£.4.2] For clarity, we mark the successfully validated candi-
date relations (or simply relations) as R; as opposed to all generated candidate
relations R}.

Suppose the cardinality of the relation R; is card(R;) = k and the size of the
database sample is |S| = N, we need to test the given expression for up to (]IZ )
k-tuples. We have to ensure the integrity and the consistency, so the selection of
distance values for variables must be consistent and equally named variables get

the same values.
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Definition 5.3 (Relation probability). We define the relation probability testing
function as
relation_probability: Ry x M — R

where Ry, is a set of validated relations to be tested, M is the universe of distance
matrices Msg. The resulting real number determines the relation probability
value P; with which the relation holds in the specified model (see Def. @)

If the probability value P; is greater than the threshold probability value T’
(P, > T), the relation R; is valid and we add it to the result set of successfully
tested relations Ry. If P, =1, then R; is an axiom A; (see Def. [4.6)).

In the two stages (S2 and S3) where we generate and test the list of can-
didate relations, we employ combinatorial grammar coverage [112] and modern
techniques from the constraint logic programming [113]. These approaches allow
us to reduce the exponential size of the hierarchy using the standard methods
such as expansion, inference, or pruning.

5.1.4 Expression Reduction (S4)

The last (but not yet implemented) step is to reduce the resulting relations from
the previous stages in order to refine the final result. The goal is to retain only
the best relations / axioms. However, at this moment we do not provide a clear
description of how we would like to achieve this because we skip this part and
push it towards future enhancements.

We propose the blueprint of how to combine multiple valid relations R; € Ry
into a compound relation R®. This should bring the tightest possible lowerbound
values for reasonable costs even though we get a more complex relation.

Definition 5.4 (Compound relation). The compound relation R® is defined as
R® = |6(q,0) > MazLB{LB;}

where {LB;} is a non-empty set of lowerbounds while each LB; corresponds to a
valid relation R;, and the function MazLB selectively returns the lowerbound LB;
which for the given set of variables gives the maximal numeric value.

Moreover, MaxLB function might select a different lowerbound LB; for different
selections of variable values which improves its filtering power yet at the same
time increases the complexity.

5.2 I-SIMDEX Algorithm

Having all the stages ready, we depict the main algorithm of I-SIMDEX prototype
in Algorithm [ which navigates us through the whole computation. We expect
the grammar G for generating expressions as one of the parameters (see Def. .

Afterwards, we generate candidate relations R} and validate each R} using
the validation function validatec  (Def. to identify duplicates during the
execution. We iteratively build the set of fingerprints F for validated relations
for further usage. Then, we compute the relation probability value P; (Def.
that decides whether R} passes the test (P; > T') and will be in the resulting set
or not. At last, the set of remaining candidate relations conforms the output.
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Algorithm 4 Iterative SIMDEX (G,C, T, S,9)

Require: Grammar definition G, validation conditions C', threshold probability
value T', database sample S, distance function ¢

1. F < new empty set {initialize the set of valid fingerprints}
2: My s < new distance matrix (0, .5)

3: lowerbounds <— ExpressionGeneration(G, C)

4: relations < BuildCandidateRelations(lowerbounds)

5: for all R} in relations do {test all candidate relations}

6: if validatec r(R}) equals false then

7 relations.Remove(R}) {validity check fails}

8: continue {skip further testing of the relation R;}

9: end if

10:  fp < CreateFingerPrint(RY)

11:  F.Add(fp) {store the fingerprint of R} for future validations}
12:  if relation probability(R}, Mss) < T then

13: relations.Remove(R}) {probability test fails}

14:  end if

15: end for

16: return relations {remaining relations compose the result set}

5.3 I-SIMDEX Evaluation

To validate the potential of I-SIMDEX, we developed a prototype that covers
stages S1-S3 and S6 and employs iterative exploration of the axiom space [10§].
First, we describe the output from the exploration (Section and then verify
the results with indexing tasks (Section [5.3.2)). We evaluate following datasets:

e Corel Image Features [114] with non-metric L, distance (p = 0.5)
e CoPhIR [96] - for simplicity, we also use L, distance (p = 0.5)

e Movie rating&ﬂ — we take the movie ratings as sets and employ Jaccard
coefficients (see Section [2.2.1)) to model similarities between them

Listeria [115] using Levenshtein (edit) distance (see Section [2.2.1))

Spectometry [37] with parameterized Hausdorff distance (see Section[2.2.1])

5.3.1 I-SIMDEX Exploration Evaluation

The previously depicted Algorithm |4 gives an overview of the whole expression
generating / validating / testing process. All steps are straightforward and cor-
respond to stages S1 through S3 as we present in previous sections.

We take five different datasets, each comprised of a distance matrix computed
for 20 random database objects. We normalize each input distance matrix, so that
the values fit to interval (0, 1) and the individual results can be easily compared
between each other. For the grammar G, we use standard arithmetic operators
+, %, —, / together with three pivots.

Zhttp://www.grouplens.org/node/73
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Dataset Expression MIN | MAX | AVG
triangle inequality 0.0034 | 0.9983 | 0.3764
|0(q,p) - 6(0,p) - (0(0,p) —d(q,p))| | 0.1059 | 0.9991 | 0.5020
Corel (6(q,p) — 6(0,p))? 0.1352 | 0.9999 | 0.5054
(6(g,p1) = 8(op)) 0.0420 | 0.9999 | 0.5161

(6(g,p1) — (0, p2))|
triangle inequality 0.0021 | 0.9736 | 0.2696
CoPhIR (6(q,p) — d(0,p))? 0.0718 | 0.9979 | 0.3808
6(g,p1) = 8(op)) 0.0845 | 0.9969 | 0.3935

(6(g; p2) — 6(0, p2))|
triangle inequality 0.6067 1.0 0.9037
Ratings m 0.0119 0.5 0.4254
W -6(q, 1) 0.0103 | 0.5845 | 0.4254
triangle inequality 0 0.9559 | 0.1388
Listeria d(p1,p2) - m 0.0075 | 0.9994 | 0.2393
d(q,p1)*- m 0.0008 | 0.9985 | 0.2401
(0(q,p1) + (5(0,p1))% 0.0032 | 0.9970 | 0.2555
triangle inequality 0.1823 0.93 0.7329
Spectometry 5(o,p) — 6(0,p)? 0.0009 | 0.8758 | 0.6638
|(6(q, p1) - (0, p2)) — 0(q, p2)?| 0.0148 | 0.9399 | 0.7054

Table 5.1: I-SIMDEX exploration initial evaluation results

We test 25,000 relations and for each relation we examine all possible variable
assignments from the datasets’ objects. This process is very time-consuming, so
we have to pick a very small size of the distance matrices. During the tests,
we look for lowerbound tightness — min / max / avg difference between the real
distance value compared to the lowerbound value.

We exhibit the results in Table [5.1] and for better transparency, we present
only the expanded LB non-terminals of standardized forms d(q,0) > LB (see
Def. and omit the repeating left-hand sides, d(g, 0), of the resulting relations.

The output from these experiments shows that after we explore several ex-
pressions for different datasets, we are able to find axioms that might be directly
used for indexing purposes. However, we still need to evaluate the quality of the
obtained expressions compared to existing models based on triangle / ptolemaic
inequalities (see Section . Then, we can detect which axioms are applicable
and could become efficient variants for real-world situations.

74



CoPhIR with Ly
1000000

100000 -
10000 -

1000 - E Triangle

H Ptolemaic
M Triangle”1.85

100 4

10 -

1 -

Distance Computations (log scale)

100000 250000 400000 550000 700000 850000

Database Size

Figure 5.2: CoPhIR - Distance computations (log scale)

CoPhIR with Ly

o 8 s Ptolemaic

5 18.8% .

G ¢ Triangle

© 6 76.4%

o

N 5

o ©

,E & 4 =e=Triangle

~3 3 Triangle~1.85 #-Ptolemaic
0 5 | .

S G 2 100% ~A-Triangle*1.85

o2 | A

()

2 o0 : : : , , ,

o 0%  20%  40%  60%  80%  100% 120%

<

Average Precision (in %)
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5.3.2 I-SIMDEX Indexing Tasks

After the naive implementation of the framework’s exploration process, we com-
bine the results with the real-world datasets focusing on nonmetric similarity
models in which metric postulates used for indexing and querying produced no-
table errors. This step moves our theoretical concept little bit further and as a
proof we present convincing results.

Observe that the best resulting axioms (Fig. in this case are slightly
different than the theoretical outputs from the exploration. The reason for this
is the fact that evaluating a real indexing task is quite different than examining
all potential combinations of dataset objects.

Index Test Settings

For this task, we pick two of the previously tested datasets, namely CoPhIR, [96]
dataset with nonmetric Ly 5 distance and color histograms from Corel Image Fea-
tures [114] dataset but with nonmetric Jeffrey Divergence distance measure [10].

Using a sample database, we verify the outcomes (resulting axioms) on in-
dexing processes with Pivot Table [3] while studying (1) the precision compared
to results of the sequential scan (SEQ), (2) the number of distance computations
d(+, ) as the basic efficiency measure, and (3) the average speedup.
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Note that we do not study whether the similarity model is valid and whether
the resulting items make any sense. We suppose that the SEQ scan always returns
correct results and take them as the ground truth.

CoPhlIR results
The best result for CoPhIR was the relation
8(q,0) > Triangle"*(8,q,p, 0) = 8¢, p) — 8(p, 0)|"*
which does not dominate in number of DCs (Fig. but it clearly produces no

errors (Fig. together with 1.1x speedup vs. SEQ scan. This brings a good
indexing alternative for queries where precision is crucial.

Corel Image Features results

For Corel, we found the following relations

#18690 d(q,0) > Triangle*(d,q,p,0) = |6(¢,p) — (0, p)[>
#18906 5<Q7 0) > (5((]7])1) - 5(07])1)) ' (5<q7p2) - 5(0,]92))
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While the squared triangle inequality (#18690) is only slightly more precise than
the triangle lowerbound LBx (Fig. , we achieve an enormous success with the
next expression (#18906) — 99.8% precision together with 1.2x speedup compared
to the sequential scan. Although LB still dominates in the number of DCs
(Fig. p.4)), it produces notable error rates (up to 59%).

5.4 I-SIMDEX Challenges

The preliminary experimental evaluations verify the viability of the straightfor-
ward exploration approach, however they also reveal challenges we need to address
in order to improve the performance of SIMDEX Framework:

1. The basic concept of generating expressions iteratively covers all candidate
relations (which is the advantage), however, the discovery of a more complex
axiom valid in the given space could take enormous time to be revealed.

2. Despite using various enhancements such as fingerprints or the validation
function validatec r, we struggle with testing only unique lowerbounds
and skipping the various forms of the similar ones, as there exist infinite
forms of a single math expression

3. In this context, there is always a trade-off between testing larger samples
(for more precise results) or testing more candidates. Testing the whole
sample S does not have to be always appropriate and we could select only
some interesting objects from the sample.

4. To validate that resulting axioms could be used for indexing purposes, we
need to run a separate indexing process on the data outside the sample
which is correct but time-consuming. This feedback is however important.

In conclusion, the initial implementation of I-SIMDEX provides the basis for all
future SIMDEX variants, as the proposed algorithmic framework is (after some
tweaking) capable of exploring the analytical properties, i.e. axioms.

7



78



Chapter 6
GP-SIMDEX

Inspired by previous relatively successful results and driven by the investigation
of other possibilities to further enhance the performance, we come up with the
next variant of the SIMDEX Framework named GP-SIMDEX [116} [109]. It connects
the existing theoretical concept together with genetic programming algorithms to
enrich SIMDEX with the real and applicable context and to gain a powerful tool
for axiom exploration. The great potential comes from creating multiple popula-
tions of candidate relations based on the feedback from the previous evaluation,
so we modify the candidate relations to improve their efficiency accordingly.

In our work, we decide to apply the principles of genetic algorithms [117, 118]
to the exploration phase and we introduce the modified version of the symbolic
regression algorithm [T17, [IT9] customized for discovering inequality relations, i.e.
inequality symbolic regression [109]. According to the experimental evaluation,
this approach helps GP-SIMDEX to find appropriate results that in most cases
outperform the best-known indexing methods.

Here, the motivation comes from the success of genetic programming (GP)
in various domains [117, [118], as GP proves to be useful for finding relatively
good results from a very large domain within the limited time frame which is
exactly our case. Also, the recently introduced Eureqa tool [120] demonstrates
the viability of such a solution in a very similar domain.

6.1 Genetic Programming

One of the first approaches that apply the (purely biological) evolutionary process
to the artificial systems [12I] reveals the potential of using genetic algorithms
(GA) also to other domains. In general, GA transforms a set of objects into a
new population using genetic operations.

Genetic programming (GP) is a specific extension of the traditional evolution-
ary genetic algorithm which was developed for the computer programs [117]. GP
is a unified and domain-independent technique which searches a relatively large
space of possible computer programs for such a program that provides the best
fit to the problem, as it either solves, or approximately solves the problem.

The concept of GP is not new and has been studied for several years since one
of the first inspiring books was published [117]. In general, GP applies evolution-
ary patterns to a particular problem to achieve a specific goal using operations
such as selection, crossover, or mutation [122].
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Another advantage is that GP is studied and applied widely to lots of different
areas and there exists multiple variations how to perform each operation in order
to obtain the next population [123]. Therefore we can pick the method that will
be mostly related and suitable to mathematical expressions.

6.1.1 Instance of GP Problem

Before we build the GP instance for a specific problem, we need to follow the
recommended preparatory steps [I18]. This means to specify

1. the set of terminals such as independent variables of the problem, zero-
argument functions, and random constants

2. the set of primitive functions for our particular problem. Typically, we use
the standard arithmetic operations such as addition (+), subtraction (—),
multiplication (), and division (/) together with problem-specific custom
functions such as cos, exp, min, max... A good choice of function set leads
to faster detection of good results.

3. the fitness function for explicitly / implicitly computing the fitness values
for individuals within the population, i.e., how good or bad an individual
performs. While the previous two points define the search space, the fitness
function imply the main goal we want to achieve. Here, we will be using
higher fitness values for individuals that provide better solutions.

4. certain parameters that control the program execution. These include the
population size, the probabilities of how often the genetic operations occur,
the mazimum size of the result, and other program-specific details.

5. the termination criterion which specifies when the algorithm finishes. This
is either a maximum number of populations or when a particular condition
holds (e.g., the fitness value is greater than a given threshold).

6. and the method for identifying results of the run. This returns the single
best-so-far individual as the result.

Then, within a single GP execution (the run) we create multiple populationsﬂ
(sets of possible solutions) while each population contains a predefined number
of individuals (individual solutions to the problem). Starting with randomly
generated initial population, we build the subsequent populations by applying
the genetic operations to the individuals in the current population. We randomly
select one or more individuals (depending on the operation) and perform the
genetic operation, while the output is automatically added to the next population.
Here, the selection process usually leverages the given fitness function which
determines the viability of each individual, so only best individuals are selected
as arguments to the genetic operations or propagated to further populations. We
continue with building and evaluating further populations until we satisfy the
termination criterion. Afterwards, we stop the execution and return the best-so-
far individual as the final result.

'In this context, populations are also known as generations.
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Figure 6.1: Genetic programming — main loop for general execution

For clarity, we depict in Fig. the general overview of the execution for any
GP problem with focus on building subsequent populations within the GP main
loop. Although we outline the general evaluation rules for GP problems, we study
the GP execution main loop more closely to find out the principles of inner steps
— how to select individuals to create the intermediate populations, which genetic
operations to use, and how to build the subsequent population.

6.1.2 Selection Process

Starting with the selection process, there exist several selection methods to be
employed within the GP execution in order to select individuals for genetic oper-
ations. We illustrate three most famous categories of selection methods, just to
have sense how they determine which individuals will be reproduced to further
populations or will participate in the genetic operations.

e Fitness-proportionate selection [121] is the best-known and most popular
category of selection methods which select the individuals based on their
computed or normalized fitness values. Suppose the fitness value of ¢-th
individual is f; within the p-th population, then the probability that this
individual will be propagated to the next population p + 1 is

fi
N
Zj:l [ J
where N is the size of the population. It is like repeatedly spinning the
roulette wheel that contains (multiple) instances of individuals proportion-
ally to their fitness values — also known as stochastic sampling with replace-
ment [123]. Similarly, stochastic universal sampling [123] applies a single

spin of the roulette wheel with N equally spaced pointers. The underlying
values are distributed randomly but proportionally as the pie graph.

e Tournament selection [124] 117, [T18] is the most straightforward approach.
We randomly select a set of individuals (typically two) and propagate the
one with the higher fitness value.
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e Compared to previous categories, techniques that employ Rank selection
[125], [124] do not consider the numerical values but take into account their
ranking positions amongst all individuals. This way, we partially reduce
the dominating individuals with high fitness values.

The selection process is random and if we enable re-selection of individuals,
the best individuals could be duplicated several times in the next population.

6.1.3 Genetic Operations

With the randomly selecting the individuals, we create the intermediate popula-
tion. It includes individuals selected for genetic operations and the size of this
population might be larger than regular populations. We process this popula-
tion and apply the genetic operations, each with the assigned probability value
of whether or how often the operation occurs. In general, genetic operations in a
GP program correspond to genetic operations on chromosomes in terms of Dar-
win evolution theory even though they are customized for GP programs. They
simply allow us to generate new individuals based on the existing ones in order
to search further the large space of potential results. The list of standard genetic
operations [118, [126] involves:

e Reproduction (with probability Pg) picks the individual that will be copied
without any further modifications to the next population.

e Mutation (with probability Pys) chooses a random position within the in-
dividual‘s representation and replaces the item at that position with a new
random value. If we represent individuals as fixed-length strings, this mod-
ifies the randomly selected position of the string to a different value.

e Crossover (with probability P¢) also known as Recombination randomly
selects two individuals from the intermediate population and picks a random
split point in the representation of each individual. Then, we recombine the
individual parts and create two new offsprings. Having individuals A and
B with string representations A = ajas...a, and B = biby...b,,, with
split points ¢ and j respectively, we work with four elements A; = a; ... a;,
Ay =aiq1... 0y, By = by ...bj, and By = bj ... b,,. We generate offsprings
as O1 = A1 By and Oy = By A; (see the visualization in Fig. [6.2)).

For completeness, there also exist other domain-specific genetic operations
such as customized Alter-architecture operations [127] for classifying protein seg-
ments [128].

We build the next population by applying the operations on selected individ-
uals from the intermediate population while maintaining the population size, so
the next one does have the same size N. Then, we return back to the beginning
of the main loop and iterate further. After the termination criterion is satisfied,
we return the best-so-far individual and finish.

Note that the described algorithms use random data for many operations
such as building the initial population, or selecting the individuals for genetic
operations. Therefore, the algorithm is from its nature non-deterministic and we
do not have to get the same results after every execution. So, we generally repeat
the GP algorithm execution several times to obtain acceptable results.
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Figure 6.2: Crossover operation for individuals A and B with string representa-
tions A = aqas...a, and B = b1bs ... b,,, random split points ¢ and j respectively
marked with gray background color, producing new offspring O; and O,.

6.2 Symbolic Regression

In our case, we are dealing with numeric data together with mathematical ex-
pressions which leads us to the existing GP problem with known solutions — the
algorithms of symbolic regression [117,119]. Symbolic regression (SR) or function
identification, is an example of error-driven evolutionary algorithms which were
introduced to solve computationally intensive problems for which simpler algo-
rithms or random optimizations do not work. Because we work with an instance
of the GP problem, all GP principles apply here, so we highlight only differences.

We acknowledge that GP is not the only way we solve SR problems, although
there exist various successful applications in several domains such as finance [129],
developing stock selection models [130], robotics [I31], industrial processing [132]
133], or the area of designing integrated circuits [134].

However, there also exist deterministic algorithms such as Fast Function Ex-
traction (FFX) [135] or Prioritized Grammar Enumeration (PGE) [136]. The first
one applies machine learning techniques (path-wise regularized learning), while
the second one deals with non-linear regression and uses abstract parameters dur-
ing the computations. As stated in the author’s work, FFX suffers from the lack
of coefficients or parameters in the basis functions which restricts its abilities to
some extent. Also, individuals in summations are with limited complexities [136].
Yet, in our case, we will deal prevalently with GP-based symbolic regression.

6.2.1 Symbolic Regression Overview

In symbolic regression, we deal with independent and dependent variables with
a fixed set of constant numerical values. The main goal is to find the perfect or
best fit — a perfect model which provides a linear combination of the independent
variables and numeric constants with corresponding coefficients that minimizes
the measured error rate.
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If we take the candidate relation R} as the model, we can see the parallelism
with SIMDEX Framework. To follow the mentioned preparatory steps, we define

1. the set of terminals T as the set that includes the applicable independent
variables from appropriate domain z; € X and constant numeric values in
a reasonable small interval range Z of real values such as (—10.0,+10.0)

2. the set of primitive functions F = {+, —, %, /,min, max, sin, cos,powﬂ}

3. the fitness measure as the inverted mean absolute error. Because we typi-
cally consider multiple evaluations of a single individual, each producing a
numeric value, we would like to compare the result value (v) with the ex-
pected value (v*). We assume that individuals for which the result is closer
to the expected value would behave better and provide better fit. So, we
compute the mean absolute error (MAE) as the sum of differences between
the result value and expected value: MAE; = . [v; — v}|. Then the fitness
value for an individual 7 is

1 1
MAE; ~ 3,10, — o]

fi=

To avoid potential divisions by zero, we explicitly define f; = oo if MAE; = 0
which is exactly the perfect fit, so in this case, we can immediately terminate
the execution. Otherwise, the closer the value of MAE; is to 0, the better
the individual performs.

4. certain parameters that control the run such as probabilities of genetic
operations.

5. the termination criterion as the maximum number of iterations or when
the MAE; value of individual i is smaller than the given threshold value :

Zj |v; —vj] < t.

6. the method for identifying results which outputs the best-so-far individual.

The genetic operations consider expression trees instead of strings but the
principles remain unchanged. Mutation selects and modify a random node in
the expression tree; Crossover selects random nodes in two expression trees and
swap the subtrees defined by these nodes between each other; and Reproduction
is without modifications. The new Alter-Architecture operation picks and alters
a node, e.g., changing the constant value of the node or switching the current
function to another primitive function from the set F.

During the execution, we maintain a set of M tuples of numeric values, for
which we would like to find the equation that perfectly describes these tuples.
Having the set of primitive functions F', we build the initial population with
random expressions. Then, we perform the main GP loop (Fig until we find
an acceptable solution.

2We denote pow as the power function: pow(x,n) = z"
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6.2.2 Existing Solutions for Symbolic Regression

There already exists an implemented solution based on the concepts of symbolic
regression which is the software tool Eureqa [120] that revealed and ”reinvented”
some interesting analytical laws mainly for physics. In another paper [137], the
same authors provide a method for solving implicit equations with SR, however
the main reason why we cannot apply this approach immediately to our case,
is that their main focus is on 2-dimensional vector space. For general feature
representations of complex database objects, this is far too limiting.

So, the idea that comes to the mind is to reuse Eureqga tool also for the
purpose of SIMDEX framework and incorporates it within the exploration phase.
However, there are two issues that prevent us from doing so straightforwardly.
The first one is that based on the input values, Eureqa tries to find the equations
which in our case means relations d(q,0) = LB;. This provides a very strong
requirement because we speak about a perfect distance estimation that is in
most cases unreal to find. So, to be able to use a tool similar to Eureqa, we will
need to modify the process to consider also inequalities.

Secondly, there is a problem with the error rate measurement. Generally, the
symbolic regression takes the mean absolute error (MAE) which is totally unac-
ceptable for us. It computes the absolute error and do not distinguish whether
the expected value is smaller or bigger than the computed value. But during
query evaluations and object filtering, we always require that the lowerbound is
smaller or equal to the real distance between the query ¢ and the database object
0. Any occurrence 6(q,0) < LB; leads to incorrect filtering, as we generate a
false negative, and thus we cannot consider LB; as the proper lowerbound. To
overcome this, we need to adjust the error measure.

6.3 Inequality Symbolic Regression (ISR)

As the answer to the two major limitations of the standard symbolic regression
approach, namely (1) validating only equations and (2) providing absolute error
measurements, we introduce a customized version of symbolic regression designed
for inequalities - inequality symbolic regression [109]. It solves these domain-
specific limitations and provides a basis for the exploration phase implantable to
GP-SIMDEX which stands for GP-driven SIMDEX Framework.

ISR replaces the mean absolute error with a specific error measurement that
incorporates checking for the lowerbound correctness. To quickly determine and
dismiss inappropriate candidate relations, we require all evaluations to comply
with 0(q,0) > LB;. Furthermore, we also do not consider and skip candidate
relations for which LB < 0, as their power to filter out any objects during the
query evaluation is minimal or none.

The proposed error measure takes the average difference between the expected
value which is the real distance d(q,0) and the computed value of LB; for all

evaluations of the relation R; = |d(q,0) > LB;|. This means to evaluate multiple

k-tuples t while each one comprises of k objects from the sample S (¢t € S*) and
k = card(R;) is the cardinality of the relation R; which corresponds to the number
of different object variables persistent in LB; (see Def. [4.4).
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We do this for all tuples ¢ in the set of tuples T" that the relation R; is tested
with and get the average error:
1 :
mz<5(q,o) - LBZ-(t)) if VteT:0(q,0) > LB;(t)

ISR AvgError(R;) = teT

00 otherwise
(6.1)
where LB;(t) corresponds to the lowerbound value computed based on the giv-
en tuple t. To follow the lowerbound correctness criterion, any negative result
d(q,0) < LB; immediately informs us that the relation R; must be dismissed from
the result set, as it provides an incorrect distance estimation.

It is quite clear that in all cases we would like to minimize the error that the
given relation R; produces in order to obtain a good lowerbound with a perfect
distance approximation.

In summary, the lowerbound correctness criterion together with the error mea-
surement ISR_AvgError allow us to search for relations in the form of inequalities
(see Def. [4.3) and define GP-SIMDEX.

6.4 GP-SIMDEX Architecture

The innovative nature of I-SIMDEX together with promising results from Eureqa
tool result in GP-SIMDEX [109] which combines and enhances these two meth-
ods. We completely rely on inequality symbolic regression (Section during
the exploration phase while GP-SIMDEX still conforms to the rules of genetic pro-
gramming. Using GP-based method within the axiom exploration requires several
customizations of individual framework stages. Figure [6.3| outlines the general
overview of GP-SIMDEX architecture.

Regarding inputs and outputs (for more details see Sections and ,
GP-SIMDEX follows the requirements of SIMDEX Framework and differentiates
only in the way the new axioms are discovered. For the exploration purposes
we use the corresponding distance matrix obtained by computing the pair-wise
distances between objects in the database sample.

The first modification is that the Grammar definition (see Section is
replaced by the Terminal set and the Function set, so it better corresponds to
the genetic programming principles (see Sections and [6.3). As the Terminal
set, we choose real-valued and integer numeric constants from the interval (-5, 5)
together with distance expressions d(+, -) between random pairs of six independent
database objects (query g, object o, and pivots p; — py).

The Function set consists of unary functions (abs, sqlﬂ) and binary operations
(min, max, +, -, %, /). We customize and modify both sets as they are included
in general ISR settings.

3sqr(x) = a2
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Figure 6.3: General overview of GP-SIMDEX implementation

6.4.1 GP-SIMDEX Exploration Process

We start with the initial population of randomly generated lowerbounds LB; with
limited complexity that produce corresponding candidate relations ;. Then, we
iterate through the GP main loop until the termination criterion holds while
population evolves with each iteration of the program.

Whenever we compose a new population, we evaluate it with the selected
evaluation function (see Section within the input distance matrix Msg.
While I-SIMDEX considers only a single evaluation method, in GP-SIMDEX we test
two different options:

1. to evaluate all different k-tuples for each candidate relation R; where k
denotes its cardinality: k = card(R})

2. to evaluate a fixed number |T'| of randomly selected k-tuples

Although the first method validates the whole sample S and is dominant, we
prefer the second approach as it suits better in this case, The whole GP-SIMDEX
relies on the randomness and we feel that taking a fixed (but not complete)
number of tuples from the sample S equals to taking a smaller-sized sample S.

At all times, we measure the success of evaluating a single candidate relation
Ry with the relation probability value P; (see Def. [1.8). For the optimization
purposes, we also track the success iteratively and provide early abandoning when
there is no potential that the candidate relation R; will provide acceptable results
(e.g., P; would not reach the required probability threshold T') or when lowerbound
correctness criterion does not hold.

After evaluating the population, we compute fitness values with the specific
fitness function. We compute the generic fitness value for a relation R; as:

P,
otherwise
= ISR_AvgError (6.2)
0 if ISR_AvgError = oo
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where P; denotes the percentage of successful tuple evaluations, and ISR_AvgError
is the average error (see Eq. . Observe that we try to maximize P; while min-
imizing ISR_AvgError at the same time which guarantees higher fitness values
for better candidate relations and follows our interest.

Genetic Operations

Having selected right individuals based on their fitness values, we perform the
slightly customized genetic operations with given probabilities on expression trees
built for the lowerbounds L B;:

e Reproduction (with probability Pg)

e Mutation (with probability Pys) that picks a random node in the expression
tree of an individual (except for the root) and replaces the node’s subtree
with a new random expression tree

e Crossover (with probability P¢) that randomly selects a node in each ex-
pression tree of two given individuals (except for the root) and mutually
swap their subtrees.

o Alter-Architecture (with probability P,4) that selects a random node in the
expression tree of an individual and changes the operator in the unary/binary
function or replaces the current terminal (numeric constant or distance)
with another random terminal

The offspring of these operations provide us the next population which is
ready for the next iteration of evaluation and selection processes. At all times,
we maintain a set of top k individuald’] with the highest fitness values which
represent the best-so-far results. When the termination criterion holds, this set
contains k best individuals that we further validate with the indexing/querying
tests. This extension allows us to output multiple items as the final result.

6.4.2 GP-SIMDEX Algorithm

After the initialization, we build the initial population of randomly generated
candidate relations R; with the limited complexity based on the given criteria
(terminal set, function set, population size). Then, we iterate through subsequent
populations until the termination criterion 7T is satisfied.

For each population, we evaluate the candidate relations, compute fitness
values for all individuals, select individuals for genetic operations, and apply
those. We include all settings necessary to perform these steps in the algorithm’s
input parameter I.SR. At the end, we return the set of best-so-far individuals for
the current run, as depicted in Algorithm

During the execution, we maintain the current population (population vari-
able) and the set of best-so-far individuals (topIndividuals) throughout the whole
execution, as the set might evolve with each population and the best results do
not have to reside in the last population that we evaluate.

4For efficiency purposes the set is implemented as the fixed-size heap with the minimal fitness
value in the root which guarantees the optimal insertion of additional best results
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Algorithm 5 GP-SIMDEX (ISR, T, S,0)

Require: Inequality Symbolic Regression properties I SR, termination criterion

T, database sample S, distance function ¢

Ms s < new distance matrix (6, 5)

population < RandomPopulation(ISR.Terminals, [ISR.Functions, ISR.Size)

topIndividuals <— new empty fixed-size set(ISR.TopIndividualsCount)

while not T.IsSatisfied(1SR, population, topIndividuals) do
Evaluate(population, Mss) {evaluate candidate relations}
ComputeFitnessValues(population, ISR.FitnessFunction)
topIndividuals.Add (population.GetBestIndividuals())  {best-so-far}
intermediate < SelectIndividuals(population, ISR)
population < ApplyGeneticOperations(intermediate, ISR)

end while

: return topIndividuals {return the set of best-so-far individuals}

— =
—_ O

6.5 GP-SIMDEX Evaluation

To verify the usability of the previously introduced concept of GP-SIMDEX in
practice, we extensively test it by applying the implemented prototype to the real-
world datasets. Although we focus our research primarily on similarity models in
which indexing and querying with metric postulates produce notable errors, we
employ similarity models which involve nonmetric distances and also show how
GP-SIMDEX behaves in metric spaces.

During the experiments, we traced several parameters in order to find out
how vital GP-SIMDEX is, namely

e Fitness evolution — how the fitness value of the best-so-far individual
changes over time

e Average Precision — during the query evaluation with a chosen lower-
bounding method, we study the precision averaged over all queries. We
understand the precision as the success rate which is the number of items
in the query result identical to items in the result from the sequential scan
divided by the total number of items in the query result:

Result M Result
| LB SEQ| (6. 3)

SuccessRatio =
|Resultspg]

e Average DC ratio — we take the average number of distance computations
compared to the DCs produced by the SEQ scanning. The reason why we
select the average number of distance computations is that it is a relatively
good measurement for query efficiency not dependent on the hardware used.

Inequality Symbolic Regression Settings

Before we present the results, we will provide background information about
framework settings we use to get the results that we will present.

The function set consists of the unary functions (abs, sqr) and the binary
functions (min, max, +, -, *, /).
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As the terminal set, we use distances between random pairs of six independent
database objects (query ¢, object o, and pivots p; — ps) and random numeric
constants from the interval (—5,5).

As the evaluation function, we apply the random sampling of k-tuples with
a fixed number of 8000 tuples for each k which corresponds to the number of
independent variables in a relation, the relation cardinality (see Def. . We
enable the lowerbound correctness testing (see Section [6.3)).

Regarding ISR settings, we use the population size of 800 individuals with a
limited complexity (the maximal depth of all initial expression trees is six levels)
that evolve in 1,000 generations using the standard tournament selection with
re-selection enabled (this provides the best results compared to others). The
genetic operations occur with probabilities: Py = 5%, Pr = 10%, P4 = 10%,
and Pc = 75%.

We generate the initial population iteratively by randomly building the ex-
pression trees with respect to the terminal and function sets together with limited
complexity settings. We do not put any further restrictions on creating the can-
didate relations.

Because we are interested in tight lowerbounds (which we expect to be most
powerful in the distance estimations and object filtering), we put a strong focus
on the value of the average difference (see ISR_AvgError in Eq. [6.1]). Therefore,
we define the fitness function as

SuccessRatio
itness = 6.4
/ 5 - ISR_AvgError (64)

For completeness, we accept only lowerbound candidates with 100% success
ratio and use a maximal number of 100 threads for ISR evaluation.

Datasets

Regarding the datasets, we test more than 10 different similarity models with var-
ious data. However, for presenting results, we pick two representational datasets
that provide the most promising results. More precisely, we depict results for

e PolygonSet — a synthetic dataset of 250,000 polygons in 2D space, each
consisting of 5 to 15 vertices measured with Hausdorff distance using Lo as
the ground distance (see Section [2.2.1))

e color histograms from Corel Image Features [114] with nonmetric Jeffrey
Divergence distance measure [10]. While the first dataset is representational
for metric similarity models, this one belongs to nonmetric ones.

For the experimental evaluations, we create a distance matrix for each dataset
by computing pair-wise distances between 1,000 randomly selected objects from
the database.

6.5.1 GP-SIMDEX Fitness Evolution

Our first task is to track how the candidates evolve during the time in subsequent
generations. For this purpose, we log and audit the fitness values of the best-so-
far candidate relations. This provides us a good feedback whether the evolution is
converging to a better result, or whether it is just randomly testing new relations.
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Figure 6.4: PolygonSet — best fitness value evolution
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Figure 6.5: Corel Image Features — best fitness value evolution

PolygonSet Fitness Evolution

In Fig. [6.4] we study the fitness evolution for the dataset PolygonSet. Although
it might not be clear at the first sight, we notice that in the 14th generation
GP-SIMDEX rediscovers (as the candidate #6) the triangle lowerbound LB (see
Eq. which is the best-known indexing method for general metric spaces.

However, in the 75th generation, it slightly improves the fitness value by
finding the candidate #b5:

—4.9608
5(07 p1)2

Within the top 10 individuals, we find also interesting candidate #10 with a
similar fitness value as LBA:

d(g,0) > |min ¢ 2.3192, — (6(0,p2) — 6(p2,q))
" |

d(q,0) > |min {d(p2, p1) - 3.2683, (0, p1) — 0(p1,9) }|

Corel Image Features Fitness Evolution

For the nonmetric similarity model represented by Corel Image Features, we de-
pict the fitness evolution in Fig. We highlight two generations (21 and 366)
in which the huge improvements occur.
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The responsibility for these improvements hold the following candidates, name-

ly the candidates #49 and #50

3(p1,q) - (6(0,p2) = d(p2, ) 5(07]93)}

49 : ) > mi
749 (g,0) = mm{ 2.0993 ’

. . 6(o,p1) — 6(p1,q)
#50 : og,0) 2 mm{ max(4.3194,6(p2, q)) ,(5(q,p1)}

In following sections, we will explain how the discovered candidate relations
act in the indexing tasks.

6.5.2 GP-SIMDEX Indexing Tasks

To verify the outcomes (resulting lowerbounds), we run several indexing tests
using Pivot Table indexing method [3] with 10 pivots. We employ the lowerbounds
in the same way as ptolemaic indexing has been applied [15].

To evaluate the effectiveness of the lowerbounds, we compare the newly found
lowerbound expressions with traditional triangle (see Section and ptolemaic
(see Section lowerbounds.

We focus our observation on (1) the number of distance computations of the
lowerbound method, (2) the number of distance computations of the sequential
scan, (3) the error rate, and (4) the average precision (refer to Section [6.5).

We perform 100 randomly chosen ENN queries with £ = 10 and average the
results over two database sizes (10,000 and 20,000) for Corel Image Features and
over three database sizes (100,000; 150,000; and 200,000) for PolygonSet.

Corel Image Features Indexing

Because Corel Image Features dataset with Jeffrey divergence distance is non-
metric, we also take into account the TriGenFP lowerbound which is the triangle
lowerbounding modified by TriGen algorithm [8]. We use 100,000 triplets in 24
iterations to find the best Fractional Power (FP) modifier, and we get FP with the
weight w = 0.802037; for further details about TriGen algorithm and its settings
see [52 [8] or Section [3.2.5

The results depicted in Fig. are interesting — the similarity model is clearly
nonmetric (triangle lowerbound’s precision of 48%) and the ptolemaic lowerbound
(with the precision of tiny 24%) does not work neither.

On the other hand, we discover the lowerbound #50 which gives 99.8% preci-
sion rate using less than 35% of SEQ scan‘s DCs. We acknowledge that this is not
a perfect fit, however we obtain the lowerbound from a relatively small database
sample which indicates a pretty good result. The other lowerbound #49 acts in
this case as the best solution. It gives 100% precision and at the same time it
needs only 23.77% of DCs compared to SEQ scanning.

For completeness, we also provide a lowerbound expression which returns
100% success during the exploration phase, however it performs poorly while
indexing. This false alarm causes the expression #47:

min{2.4454 + min{4(p, 0), 0.841284 + &(q, p) },0.0407}
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Figure 6.6: Corel Image Features — Average DC ratio vs. Average precision
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Figure 6.7: PolygonSet — Average DC ratio vs. Average precision

Studying Fig. we see that this lowerbound returns only 80.75% precision
using more than 81% SEQ scan‘s DCs.

To properly evaluate the results, we compare our results with TriGenFP lower-
bounding. TriGen algorithm works here, as this method gives 100% precision
while using 24.01% of sequential DCs. This shows the validity of TriGen and
that properly configured GP-SIMDEX is capable of finding better results.

The comparison of results from the exploration phase (expression #50 is bet-
ter than #49 in terms of fitness value evaluations) and indexing test results
(lowerbound #49 performs better than #50; inefficiency of #47) shows that the
currently used fitness function is not ideal. We will need to make further en-
hancements to fitness function to disallow the occurrence of such cases.

PolygonSet Indexing

Because we use Ly distance [3] as the ground distance for Hausdorff distance,
the resulting similarity space is metric. We observe this in Fig. which shows
how the precision relates to the average DC ratio. The triangle lowerbound LBa
provides 100% precision while decreasing the number of DCs. We admit that the
Ptolemaic method is faster but it provides a low precision of 49%.
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Figure 6.8: PolygonSet — Detailed Average DC ratio vs. Average precision

The newly discovered lowerbound #10 performs in our environment with the
same results as the Triangle lowerbound. The other lowerbounding method #b5
shows slightly better performance than the previous two techniques but the im-
provements are hardly noticeable (see Fig. .

Due to these representational results and our previous experience, we give
the research community the open question whether there is a way of finding any
better indexing method for metric spaces than the triangle lowerbound LBAa.
This seems to be difficult especially for any metric L, (Minkowski) distances [3].

6.6 Comparing GP-SIMDEX vs. I-SIMDEX

The feasibility study reveals that GP-SIMDEX does provide advantages over the
more trivial I-SIMDEX. Note that it is very difficult to compare these approaches
between each other in other way than by comparing the final outputs or the
real-time we need to reach such results.

Nevertheless, I-SIMDEX gives good, acceptable, and deterministic results with-
in predictable time frames. Because we explore the axiom space iteratively, this
time frame might be relatively big. Also, after reaching a good solution, it is
almost impossible to improve it and direct the next steps towards better results,
as there exist no feedback for the future exploration direction — it is a priori fixed.
Here, GP-SIMDEX drives the exploration based on the feedback from the previous
population and always changes the directions towards possibly better results.

A good example is the comparison of the final results depictedﬂ in Fig.
(I-SIMDEX results) and Fig. [6.10] (GP-SIMDEX results) for the Corel dataset [114]
with nonmetric Jeffrey Divergence distance measure [I0]. I-SIMDEX provides
almost ideal candidate, however it misses 100% precision and there is no way to
improve this result to become a perfect fit. Regarding the number of DCs, the
output from GP-SIMDEX requires 24% of SEQ DCs (which conforms up to 4x
speed-up), while I-SIMDEX results returns only up to 1.2x speed-up.

SFor clarity, we append these figures once again — see the original Fig. and Fig.
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Figure 6.9: Corel Image Features — I-SIMDEX results as depicted in Fig. 5.5
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Figure 6.10: Corel Image Features — GP-SIMDEX results as depicted in Fig.

Also the multiple re-evaluations of the same mathematical expression occur
far less often in GP-SIMDEX than in I-SIMDEX, as genetic operations modify the
candidate relations.

However, there are several drawbacks such as the nondeterministic behavior
which results in unpredictable outputs. Therefore we need to execute multiple
runs of the GP-SIMDEX in order to get acceptable (and stable) results. Also, the
increased complexity of the implementation and huge dependency on the random
generator might be the reasons for not using GP-SIMDEX.

Overall, in the ideal world, we would mix both approaches — GP-SIMDEX for
main exploration purposes and I-SIMDEX for occasional re-generations / enhance-
ments of existing populations.

6.7 GP-SIMDEX Challenges

In our work, we validate the proposed theoretical concept of GP-SIMDEX and verify
its usability as the universal framework for finding suitable indexing methods for
a given database. We attach results which conform that GP-SIMDEX is capable
of exploring any similarity space based only on the given data and a similarity
measure in order to provide insight to the model and reveal alternative indexing
methods. The discovered indexing methods for various datasets in most cases
outperform the best-known indexing methods.

95



There are couple of challenges that we need to address in order to enable
GP-SIMDEX for wider usage such as

1. increase the efficiency by applying a higher degree of parallelization using
island-population model [I38], 139]. This will allow us to either evaluate
more populations and find better results, or inflate the total size of the
terminal /function set to be used.

2. utilize architecture scaling to tens/hundreds of computers or CPUs using
modern Map-Reduce [4, [140] techniques in order to boost the total perfor-
mance.

3. use third-party software tools such as Maxima systemﬁ to simplify all test-
ed lowerbounds (or mathematical expressions in general) and group them
to equivalent classes. We expect that this will improve the whole perfor-
mance as we will disable repeated testing of different forms of the same
mathematical expression.

4. find out how to efficiently explore equivalent classes of candidate relations
and thus provide the feedback for genetic operations, for further evolution,
or for the next populations.

To address some of these issues and to improve the overall performance, we
push the proposed GP-SIMDEX into the parallelized environment and in the fol-
lowing chapter, we introduce its parallelized version, PGP-SIMDEX.

Chttp://maxima.sourceforge.net/

96



Chapter 7
Parallel GP-SIMDEX

The genetic operations in the real world apply to thousands or millions of indi-
viduals at the same time, so it seems appropriate and reasonable to apply the
parallelism to the GP problems as well. The next SIMDEX variant is based on
this idea and also as the immediate answer to the previously introduced chal-
lenges of single-threaded GP-SIMDEX executions. As the consequence and as the
further step in the research of SIMDEX Framework, we develop another variant
that utilizes GP-SIMDEX in the parallel processing environment [I10]. We named
it appropriately PGP-SIMDEX which refers for Parallel GP-SIMDEX.

In this section, we introduce PGP-SIMDEX and focus on parallel enhancements
of simple GP-SIMDEX [109] in order to reveal how PGP-SIMDEX applies genetic
programming for discovering suitable lowerbounds in multi-threaded environment
while it further improves the qualitative results by employing nontrivial parallel
genetic programming methods.

The main benefit comes from the parallel implementation of the proposed
(single-threaded) GP-SIMDEX which results in intelligent Parallel Genetic Pro-
gramming (PGP) exploration method using well-known island-population model
[138, 139] together with the recently introduced map-reduce approach [4 [140].
The combination of both approaches shows how to address the challenges of
GP-SIMDEX (see Section [6.7).

Another outcome is the usability and immediate applicability of PGP-SIMDEX
to multi-CPU environment or a cluster of computers. Besides the fact that we will
be no longer dependent on the outputs from a single machine, this also adds huge
computational power that we can benefit from. Before we outline PGP-SIMDEX
algorithm, we describe the underlying principles into more details.

7.1 Island-Population Model

It is known for quite some time that distributed genetic algorithms usually outper-
forms serial executions of canonical genetic algorithms on many different problems
[T41], 142]. This however applies to GP with no modifications. More precisely,
if we apply the parallelism to the known GP problem, we expect better results
than the sum of results from the separated executions [I43]. Often, PGP leads
to the superior performance even though we implement the solution on a single
multi-threaded processor. We do not necessarily have to implement the solution
in a distributed environment with multiple processors.
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There exist several approaches of how to implement parallelism for GP prob-
lems [142], 141, 143] but one of the most famous methods is the island-population
model. In this case, we divide the execution of the given GP problem to several
(almost) independent machines or nodes (so called islands).

Each island receives the same execution parameters, however it generates its
own initial population and maintains all the subsequent populations. Therefore
the program execution at the given island seems to be independent and there is
no difference compared to multiple serial executions running at the same time.
However, at periodic time-frames (the migration intervals), the island exchanges
a small portion of its current population (with the fixed migration size) with
another island within the process of migration. This way, the migration allows
islands to share and propagate their genetic material [I41]. For any island, this
migration is a two-step process of (a) sending the best-so-far results to some non-
specific island, and (b) receiving the a set of best results from another island.

The main outcome of such a model is that we are able to explore differences
in several distinctly developing (sub)populations and reveal the true genetic di-
versity during the execution. There are specific rules how the genetic material is
transferred between islands, so we mix the global differences with local ones.

Another advantage is that during the exploration, we usually receive higher
quality of the discovered solution found and we are able to better navigate in
the search space [144]. This results from the independent behavior of each island
mixed with sharing the information through the migrations.

Note that we consider the parallelism here in the context of executing and eval-
uating a single GP problem. This is different from the situation in which we take
into account the parallelism while executing the evaluation function (Def. .

7.2 Map-Reduce

With the huge expansion of data and the requirements to process very large
datasets, we need a new model of how to process such data in a distributed
environment. One of the successful attempts that provides a way of doing so is the
Map-Reduce programming model [4] T40]. Authors provide the model that hides
all implementation details (parallelization, fault-tolerance, or distributing data
across various nodes) inspired by the primitives from the functional languages.
With this abstraction layer, we apply this model to any problem that we solve in
a distributed environment or within a cluster of multiple machines.

The model provides the interface that allows us to automatically parallelize
and distribute the computations on large clusters. Here, users just specify two
main functions: map and reduce. In the original paper, the input for the com-
putation is a set of key/value pairs which we process with map function. For
each pair, we generate a set of intermediate key/value pairs and run the process.
Afterwards, the reduce function groups and handles all intermediate values with
the same key and merges these values while trying to reduce the size of the final
set. Such a technique allows easy and highly-scalable distributed computing.
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Figure 7.1: PGP-SIMDEX — High-level overview of the parallel approach

7.3 PGP-SIMDEX Architecture

The next variant of Parallel GP-SIMDEX (or shortly PGP-SIMDEX) leverages more
sophisticated axiom exploration than running multiple independent executions of
GP-SIMDEX at the same time [I45]. It follows two previously described principles
of the island-population model for efficient execution of parallel GP-based algo-
rithms, and the map-reduce technique for distributing GP-based computations
for processing huge amounts of data within the distributed environment. The
first method assures that the context of each processing island is consistent.

As the result, we are able to parallelize the computations to a large extent
and execute PGP-SIMDEX algorithm at multiple computing nodes at the same time
while we are leveraging the advanced evaluation method. The general architecture
of PGP-SIMDEX is very similar to the one depicted in Fig. for GP-SIMDEX.
However, it is adjusted to the distributed environment, so there are multiple
instances running simultaneously.

The redistribution of immigrants between running instances is completely
random, so one island might receive more immigrants than the others. For better
comprehension, Fig. outlines a sample visualization of this process. The total
required computation power equals to P + 1 nodes where we use P nodes for
the exploration plus one extra node for the Coordinator, as will be shown in the
following text. We will divide the execution into several major steps, i.e. phases,
and we sequentially execute these phases to obtain final results.

7.3.1 Phase A - Initialize

During the initialization phase, we build GP-SIMDEX instances for a given number
P of processing nodes. Although the input parameters equal, all instances will
build their own (random) initial populations of expressions and maintain the ex-
ecution in their own way. If we ensure different seeds for random generators [146]
in GP-SIMDEX instances, the evaluations will not be identical and will produce
different results.
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Because we run the exploration process on several nodes (islands) simulta-
neously, we need a special (non-computing) node that coordinates the whole
exploration process from the beginning to the end. In our work, we suggest using
a Coordinator that manages the execution and provides also the administrative
role, i.e. knows about the number of running nodes, their states, guarantees the
communication between nodes, manages waiting immigrants, etc. Also, this extra
node consolidates the partial results and returns the final results.

7.3.2 Phase B - Map

Having all P instances ready for the execution, we select the number of computing
nodes in the distributed environment that corresponds to the number of instances.
We assign each computing node a single GP-SIMDEX instance together with the
reference to the Coordinator and thus build a single islandﬂ. Finally, we start the
exploration process on each island.

7.3.3 Phase C - Exploration Process

During the exploration, every island executes the PGP-SIMDEX algorithm (see
Section which is a modified version of GP-~SIMDEX (see Algorithm [5). In short,
the principles of GP-based axiom exploration remains unchanged — we repeatedly
apply genetic operations with given probabilities to build further populations
until the termination criterion holds. The only difference is that occasionally
the running PGP-SIMDEX instance propagates the best-so-far results (denoted as
immigrants) from its island to another instance.

Because islands do not interact between each other directly (as they do not
know about each other), the whole communication is accomplished through the
Coordinator node which randomly selects the target island that will receive the
immigrants. When the target island next time checks for available immigrants,
the Coordinator delivers them and they are appended to the next population.
This way, they provide "fresh food” to drive the exploration efficiency. This
approach is recommended to obtain better results more quickly [138, [139].

The optimal way of implementing such a solution to exchange information is to
use push and pull mechanisms. The push action propagates the immigrants from
the source island I, to the Coordinator which randomly selects the target island
I;. Moreover, the Coordinator maintains a separate waiting list of immigrants to
be delivered to each island — waitlist[I]. Each island I; now and then asks the
Coordinator whether there are some immigrants prepared in the waiting list to be
delivered. If the waiting list waitlist[I;] is empty, nothing happens. Otherwise,
the island I; requests and pulls all immigrants from the waiting list and adds them
to the next population to be evaluated. After they are successfully delivered to the
target island I;, the Coordinator removes them from the waiting list waitlist[1].

The optimality of push and pull methods comes from the fact that we do not
violate the consistency of any islands. The reason is that the initiator of push
requests is the source island I, the initiator of pull requests is the target island
I;, and the synchronization of waiting lists using basic locking primitives is the
job of the Coordinator.

'We will use the terms nodes and islands interchangeably
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Algorithm 6 PGP-SIMDEX (ISR, T, S, 6, P)

Require: Inequality symbolic regression properties ISR, termination criterion
T, database sample S, distance function ¢, number of parallel instances P
islands < new array of PGP-SIMDEX instances
coordinator <— new PGPCoordinator()
for i =1 to P do {P denotes the level of parallelism }
islands[i] <— new PGP-SIMDEX Instance(coordinator, ISR, T,S, 0)
islandsli].SetRandomSeed ()
end for
coordinator Distributelslands( islands ) {[B] Map}
coordinator.ExecutelslandsExploration( islands ) {[C] Exploration}
coordinator.WaitForlslandsToFinish( islands ) {[C] Background process}
return coordinator.GetBestResults( islands ); {[D] Consolidate results}

=
=

7.3.4 Phase D - Reduce

The very last step after all processing nodes finished the execution is to consoli-
date partial results and select the best results using the reduce technique. Each
island produces and returns a limited number of best-so-far results.

Similarly to GP-SIMDEX execution, we use fixed-size heaps for each input sim-
ilarity model within the consolidation process (see Section . In the heap, we
sort the results based on their final fitness values while maintaining the result
with the lowest fitness value at the top of the heap. With the fixed heap size of
k items, we produce the final top-k results for each input similarity model.

As this is the job of the Coordinator, we incrementally build the final result
based on partial results whenever an island finishes the execution and provides
its best-so-far results. After the last island terminates, we already have the final
results ready.

7.4 PGP-SIMDEX Algorithm

In previous sections, we outlined the individual stages (so called phases) of the
algorithm, each responsible for a specific action. Here, we describe the overall
execution and show how these phases interact with each other.

We divide PGP-SIMDEX process into two algorithms as it is more complex
than the previous variants. Algorithm [6] outlines the high-level overview of how
we perform the individual phases (A-D). This algorithm is easy to read, self-
explainable, and relates to the previously described phases (see Section .

We outline the algorithm for PGP-SIMDEX Instance as the modified version
of GP-SIMDEX algorithm, in Algorithm Compared to GP-SIMDEX, it takes an
additional parameter which provides the reference to the Coordinator. At the
beginning, it checks for available immigrants (if required), pull them, and append
them to the current population before it is evaluated. After a population is
processed, the algorithm occasionally propagates / pushes the best-so-far results
to another instance, again through the Coordinator. Here, we can see that the
Coordinator plays an important role during the whole execution.
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Algorithm 7 PGP-SIMDEX Instance (C, ISR, T, Mjss)

Require: Coordinator C', Inequality Symbolic Regression properties ISR, ter-
mination criterion 7', database sample S, distance function ¢

1: Mjsg < new distance matrix (4, .5)

2: population < RandomPopulation(ISR.Terminals, ISR.Functions, ISR.Size)
3: topIndividuals < new empty fixed-size set(ISR.TopIndividualsCount)

4: while not T.IsSatisfied(ISR, population, topIndividuals) do

5. if ISR.CheckForlmmigrants then {regularly pull immigrants}

6: immigrants = C.Pulllmmigrants(Msg) {retrieve immigrants}

7: population.Append(immigrants) {add incoming immigrants if any}
8: end if

9:  Evaluate(population, Msg) {evaluate candidate relations}

10:  ComputeFitnessValues(population, ISR.FitnessFunction)

11 topIndividuals.Add (population.GetBestIndividuals())  {best-so-far}
12:  intermediate < SelectIndividuals(population, ISR) {apply the selection}
13:  population < ApplyGeneticOperations(intermediate, ISR)

14:  if ISR.PushImmigrants then {regularly push immigrants}

15: C.PushImmigrants(topIndividuals) {propagate immigrants}

16:  end if
17: end while
18: return topIndividuals {return the set of best-so-far individuals}

It is the matter of I SR settings to decide whether for the current population
the pull or push request occur or not. Usually, the pull requests arise more often
(usually at the beginning of each iteration) than the push requests. The reason for
this is that in the distributed environment the target node might receive multiple
immigrants from several different nodes during a single population evaluation.
However, the best-so-far individuals do not change quite so often, so the ”push”
operation occurs less often.

7.5 Comparing PGP-SIMDEX vs. GP-SIMDEX

To examine our concept and to compare it with GP-SIMDEX, we generate eight
datasets of 11,000 random objects (represented as points in 4D space) and we
apply several nonmetric similarity models mostly with nonzero triangle inequality
errors. We select L, distances to demonstrate the variability of similarity models
(see Triangle Error in Table[7.1]).

For the exploration, we use database samples consisting of 1,000 objects and
sample 10,000 k-tuples for evaluating each candidate relation. We run all exper-
iments multiple times and provide only the best results.

GP-SIMDEX starts with the initial population that includes 1,000 candidate
relations which evolve in 1,000 generations. On the other hand, PGP-SIMDEX
uses 10 separated islands and only 100 generations, which results in comparable
settings. For both cases, we deal with approximately 1,000,000 candidate relations
evaluated in total.
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4 Distance Triangle | Best Fitness PGP Total PGP
Error GP | PGP | Improvement | immigrants

1 | Jeffrey Divergence | 14.0 % | 38.08 | 38.40 0.86 % 7,198

2 Lo 7.6 % |23.82]24.44 2.61 % 9,452

3 Lo 5.5 % |22.53]23.13 2.65 % 6,984

4 Los 3.8 % |21.18 | 22.09 4.32 % 8,150

5 Los 2.5 % |20.75 | 21.19 2.15 % 7,671

6 Ly 0.3 % |19.94 | 20.39 2.25 % 7,278

7 Lo 0.0% |16.82 | 17.40 3.46 % 7,343

8 L 0.3 % | 12.27 | 12.50 1.85 % 6,923

Table 7.1: Improvements of PGP-SIMDEX over GP-SIMDEX

During the exploration phase, we study

e the comparison of best fitness values to find out the overall improvement.
Here, PGP-SIMDEX slightly outperforms GP-SIMDEX.

e the number of immigrants — how many additional expressions ”helped”
PGP-SIMDEX to achieve better results

e how the combination of these metrics relates to the global improvement on
the performance (see Table [7.1).

With initial evaluations and obtained results, we are able to demonstrate the
applicability of the parallel processing and its power to improve results. However,
currently we obtain only small efficiency increase (up to 4%) which is relatively
disappointing. To overcome this, we need to either find the relation between
the improvements and ideal PGP-SIMDEX settings, or to apply the experimental
evaluation at larger scale (multi-CPU farm). Only afterwards, we will be able to
conclude the effectiveness of the proposed solution.

7.6 PGP-SIMDEX Summary

We perceive the proposed PGP-SIMDEX as the shift towards an intelligent indexing
method, so called Smart Pivot Table [110], applicable to any similarity model.
Although we address some of the GP-SIMDEX challenges, there are still issues
we need to overcome such as the non-deterministic behavior or the increased
complexity of the implementation. These tasks remain as the next steps of our
research.

Having several SIMDEX variants which demonstrate the feasibility of the
theoretical framework, we would like to apply it to the practice by building a
smart indexing scheme usable for arbitrary similarity models. In the following
chapter, we describe this application into more details.
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Chapter 8

Smart Pivot Table Index

While the previous sections and individual SIMDEX variants show the steps
towards building a general intelligent indexing scheme with the data-driven dis-
covery of suitable lowerbounds, here, we provide a concrete example of such a
technique with our recently introduced Smart Pivot Table index [110].

Our objective is to apply the previous results in a consolidated manner and to
introduce the technique of Triangle™ lowerbounding and filtering (see Section.
The latter method inspired us to such extent that we propose a novel technique
of LowerBound Tightening (see Section that relies upon improving filtering
capabilities of lowerbounds and is orthogonal (thus applicable) to all existing
SIMDEX variants. This provides the final outcome of our research.

8.1 Smart Pivot Table Concept

Smart Pivot Table is based on the pivot table index (see Section such as
AESA [64] or LAESA [65] 3], but we extend the standard functionality of metric
(see Section [3.2.2)) or ptolemaic (see Section [3.2.4]) lowerbounding by deriving the
lowerbounding mechanism that will fit for the data combined with arbitrary (but
fixed) similarity measures. For the discovery of appropriate lowerbounds, we use
any variant of SIMDEX Framework.

The concept of the intelligent indexing is based on the double-pivot constraint
[3] and it follows the approach introduced with ptolemaic filtering [15, 51]. We
can accomplish this principle easily due to the enforced form of all resulting
lowerbounds that we get as outputs from SIMDEX Framework (see Def. .
During the query evaluation, we compute the lowerbound value LB_Value that
estimates the real value of the distance d(q,0) between the query object ¢ and
any database object o as

d(g,0) > LB Value = max{LB(q, 0, SN)} (8.1)

sneP
where sy is a sequence of N pivots from the pivot set P such that
SN =D, Dy, Py Vi, =1, N:pi,pj €P, Vi j:p,#pj
We override the standard operator of inclusion € which for our case sy € P gives:

sNEP ¢+ NP and Vp,esy:p. el
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As the result, this approach allows us to use any valid lowerbound expression
LB to filter out database objects o; without computing the generally expensive
distance 6(q, 0;). This applies to objects for which the lowerbound value is greater
than the given radius or the distance to the k-th nearest neighbor discovered so
far, i.e. LB_Value > mazRadius. Together with early abandoning principle (to
stop computing the lowerbound value if it currently exceeds the max Radius), we
obtain an efficient pruning mechanism.

We can view the sequence sy as an ordered set of N pivots which assigns each
pivot variable in the lowerbound expression LB the object of the corresponding
pivot from P before we evaluate the LB. Note that it is easy to get the ordered
list of all variable names from the given LB expression (e.g., by traversing the
corresponding tree-like structure of LB). Here, the resulting order of variables
is not relevant, however, the cardinality of the sequence sy depends only on the
number of independent variables N in the lowerbound expression LB.

Furthermore, we can limit the number of sequences sy to be evaluated either
to all N-tuples which gives (‘]]s‘) tuples in total, or to a smaller constant C' < ('}i').
To clearly distinguish between these two cases, we will explicitly mark the limited
number C' of lowerbound evaluations as LB_Valuec.

The obvious challenge here is to choose the best pivot selection method [6§]
to be applied and to define the best order of evaluating sequences sy while com-
puting the lowerbound value.

Also, we are able to combine several lowerbounds to obtain LB_Value using
the same principles as proposed for I-SIMDEX (see Section or for ptolemaic
pivot tables (see Section such as the combination of metric & custom LB,
ptolemaic & custom LB, etc., as we depict in Triangle™ filtering (see Sectio.

The described approach gets the suitable lowerbounds from the ”external”
engine (SIMDEX Framework) using only the data stored within the pivot table
index. It discovers the indexing method for the indexed data — this is feasible
as we always modify the filtering options, not the stored data. In general, we
incorporate the axiom discovery techniques directly into pivot table index. Also,
the combination with other methods such as those of LAESA and TriGen [§], or
LAESA and fuzzy approaches [91], [19] might bring additional benefits.

8.2 Triangle™ Lowerbounding

In metric spaces, the basic property of the triangle inequality (see Table
enables us to create effective and efficient triangle lowerbound LBa (Eq. |3.3)).
However, for some similarity models, this lowerbound is not as tight as we would
expect which has been demonstrated for Signature Quadratic Form Distance (see
Section [3.1.2). In that case, the combination with the ptolemaic lowerbound
LBpo1 (Eq. presents better results and provides more efficient pruning of
non-interesting objects [15] [51].

Our main objective is to retain the standard LBa and to increase its filtering
power for such cases in which LBa does not prune objects. The idea is simply to
take an additional lowerbound LB™ which is (in specific cases) supposed to pro-
vide better distance approximations. This will improve the triangle lowerbound
pruning and we denote this method as Triangle™ Lowerbounding.
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Figure 8.1: Triangle™ lowerbounding overview

This opens a question whether we could enhance the triangle lowerbound
with the result from any of the existing SIMDEX variants. Because all previous
variants (I-SIMDEX, GP-SIMDEX, or PGP-SIMDEX) deal with general axiom spaces,
applicable (not strictly limited) to metric spaces, this approach is feasible.

We depict the concept of Trianglet Lowerbounding in Fig. [8.1] which shows
relationships between individual components. We distinguish the exploration
phase (see Section from the filtering stage (see Section [8.2.2). While the
first one occurs once when the pivot table is constructed, we apply the latter one
during each query evaluation.

Observe, that it is plausible to convert general (nonmetric) spaces to metric
ones with TriGen algorithm (see Section as the initial step. Then, we work
with the modified space (given by the distance 5 as opposed to §) and we apply
LB A’{l instead of LBA. For simplicity, we suppose only metric spaces and we
take into account LB as the basis.

8.2.1 Triangle® Exploration

We would like to enhance the triangle lowerbound LB with an extra lowerbound
LB™ in order to increase the efficiency of query evaluation. Then, the combined
lowerbound LB will provide better distance approximations and greater filtering
power.

To obtain the appropriate lowerbound LB™ from SIMDEX, we first modify
the input parameter. Instead of using the whole distance matrix M; g, we consider
only such objects that we cannot filter out by LBa. Note, that this is not a big
issue and it means only a slight modification of the evaluation function. The other
thing we need to ensure, is to use LAESA-like evaluation (see Section [4.4.2)) to
simulate real similarity queries. This is important in order to define the mining
field correctly; otherwise we will not get relevant results.

L' LB A5 denotes LBA that works with the modified distance 5

107



Algorithm 8 Triangle™ Preprocessing (Mss, query, P, radius)

Require: Distance matrix Msg, a query object query, set of pivots P, range
query radius radius

: for all object € M;g do
LBj < TriangleLowerbound(query, object, P)
object.Filtered = LBA > radius

end for

W

To fulfill these requirements, we use the Triangle™ Preprocessing algorithm
as depicted in Algorithm [§] and for mining purposes we consider only objects for
which object.Filtered = false. If we use multiple queries, we can store the sets
of objects to be filtered out for each query in a hashtable for fast access. Here,
we do not need to compute any distance, as we deal with pure lowerbounds.

Even though we outline the preprocessing for range query RQs(q, radius)
evaluation, it is easily adjustable to kNN queries by maintaining the priority
queue with the distance to the kth nearest neighbor as the radius (see Section[3.1]).

Having done this preprocessing phase, we are able to run SIMDEX instance
to discover appropriate lowerbound(s) LB*. Note that during the exploration we
can reveal several suitable relations with same fitness values. Then, we either pick
a single output based on additional requirements (e.g., a minimal number of pivots
or a minimal number of total lowerbound computations), or we apply multiple
lowerbounds LB;" in order to obtain the additional lowerbound value and choose
the maximal value. For initial evaluation, we pick only a single lowerbound LB™.

We admit, that LB™ might not be a true lowerbound for the whole distance
matrix Mg according to the formal definition (Def. because we limit the
mining space to a considerable extent. However, the way we will apply it (see

Section [8.2.2)) allows us to consider it as a valid lowerbound.

For now, we skip the description of LowerBound Tightening component which
we introduce in Section 8.4 Also, it is an optional post-processing step.

8.2.2 Triangle™ Filtering

With the resulting pairs (LBa, LB™) obtained from the previous (exploration)
step, we are able to apply the advanced filtering during the query processing.
For objects that we are able to filter out using standard LB, nothing changes.
Otherwise, (for non-filtered objects) we compute the additional lowerbound value
using a specific lowerbound LB™. Here, we expect that this value will be greater
value(LB™) > value(LBA) and so it has a higher probability of filtering out
some additional irrelevant objects.

This concept is similar to existing lowerbound techniques which combine mul-
tiple lowerbounds and take the maximum lowerbound value (Eq. in order to
filter out irrelevant objects. However, the additional LB™ does not have to be a
true lowerbound, as we expect it to provide better approximations only for some
objects.
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Figure 8.2: Triangle™ preprocessing — Ratio of filtered objects

8.3 Evaluating Triangle™ with GP-SIMDEX

In order to reveal the potential of Trianglet lowerbounding method which employs
GP-SIMDEX variant, we use the following list of similarity models:

e Clouds of points with 360 dimensions using Hausdorff distance and Ly as
the ground distance (see Section [2.2.1))

e 7D points — random objects in low-dimensional space constrained by the
hypercube in which values in each dimension are limited to the interval
(0,100) with Ly distance (see Section [2.2.1))

e TWIC (Thematic Web Images Collection) dataset [147] with Signature
Matching Distance (SMD) for content-based image retrieval [148]

o TWIC (Thematic Web Images Collection) dataset [147] with Perceptually
Modified Hausdorff Distance (PMHD) [149]

First two datasets consist of randomly generated data in high- and low-
dimensional spaces and we apply basic and more complex metric models. The
other two datasets employ the recently introduced TWIC dataset [147] that is de-
signed for testing purposes in the content-based image retrieval area. All datasets
are normalized, so that the values are limited to (0, 1).

8.3.1 GP-SIMDEX Exploration

For the exploration purposes, we use GP-SIMDEX and its standardized settings
(see Section with the population size of 80 individuals that evolve in 1,000
generations. We use LAESA-like evaluation function with 10 sample queries, 5
pivots, and kNN (k = 5) queries on the dataset that consists of 500 objects,
tweaked by Triangle™ preprocessing phase. Figure summarizes the number of
objects filtered by the triangle inequality and thus the number of objects involved
in the evaluation during the exploration. The lower the ratio, the bigger the
number of objects that remain for the exploration.
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Exploration Results

Based on the previous settings, we pick the best individuals from the exploration
process. We discover the following LB™ relations suitable for lowerbound filtering:

e Clouds of points will be enriched by
d(g,0) > |(6(q,p) — 5(0’p)|0.717061

e 7D points will use

5(q,0) > 16(q, p) — 6(o, p)|*-01838°

o TWIC with Signature Matching Distance (SMD) is empowered by
5((]7 O) > (ln[é(oapl) + 5(%]91)] +In 6((]’191))2 ’ (ma‘X{&(Oapl)a 5(‘]7]72)})2
o TWIC with Perceptually Modified Hausdorff Distance (PMHD)

8(q,0) = Inmax{4(o, p), (0.4905°@*) + |6(0, p)|)}
= 1n[0.4905°“P) 4+ §(0,p)]

For the last dataset, we provide two equivalent expressions to highlight that
resulting formulas do not have to hold optimal forms. During the exploration, the
engine might recombine two expressions which results in a correct mathematical
expression that is however useless. Here, the value 0.4905°(%P) is always positive,
so we can discard the max operator with no negative effect.

8.3.2 Indexing Evaluation

With the obtained results and expressions, we perform the real indexing tasks. In
all cases, we average the values over 10 different ANN similarity queries (k = 5).
With the requirement of 100% precision, we execute these queries and look for
the number of distance computations required to obtain final results.

We compare the triangle lowerbounding ( Triangle) with the proposed Triangle™t
lowerbounding ( Triangle+ (GP)) which computes the additional lowerbound val-
ue for non-filtered objects based on the results from GP-SIMDEX.

For completeness, we compare the results with the triangle lowerbounding of
TriGen FP-modifiers (TriGenFP) with following weights: wciougs = —0.019235,
wrp = —0198429, WsMD — 0116880, and WPMHD — 0.033072.

As we can see in Fig. , for most cases, Triangle™ (GP) as the combination of
LB with the additional (highly suitable) lowerbound LB* decreases the number
of DCs to a considerable extent and also outperforms TriGenFP approach.

The overall improvements of Triangle™ (GP) and TriGenFP methods com-
pared to triangle lowerbounding are highlighted in Fig. 8.4l For TWIC datasets,
TriGenF' P performs poorly probably due to non-optimal weights w. If we discard
the lowest value for the problematic dataset (TWIC with SMD) for which neither
Triangle nor Triangle+ (GP) performs efficiently, for the remaining datasets, we
get the query efficiency improvements of Triangle™ (GP) that range in 14-34%.

These results highlight strong improvements and also the fact that we cannot
improve the query performance for any dataset. It remains as an open question for
further research to solve for which databases and similarity models this happens.
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8.4 LowerBound Tightening

If we analyze the previous results of Triangle™ lowerbounding, we observe that the
secondary lowerbound LB* which helps the standard triangle lowerbound LBa to
filter out additional objects is very often only a modification of the original LB .
Suppose we apply the tree edit distance drpp (see Section to lowerbounds
and we get the number of operators and/or constants we need to modify in order
to convert the first lowerbound into the second one. Then, we could search
axiom space only for candidate lowerbounds LB for which the distance between
the lowerbound LB and original LB is relatively small: érpp(LB, LBa) < 6.

Based on this observation, we propose a new technique called LowerBound
Tightening (LBT). Its main purpose is to modify any valid lowerbound expression
LB in a consistent and effective way by strengthening its filtering power with
better distance estimations using Fxpression Tightening Algorithm in order to
increase lowerbound’s efficiency.
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8.4.1 Expression Tightening Overview

The idea of tightening a lowerbound LB stems from mathematical properties of
normalized spaces in which all items (distances in our case) are strictly limited
to the interval (0,1) and is also motivated by the success of TriGen algorithm
18, 52] (for details see Section [3.2.5]). More precisely, having a number 0 < z <1,
we can observe two facts

r<a¥ Yy € (0,1) (8.2)
x> z° Vz € (1,00) (8.3)

We want to leverage these properties for lowerbounding and filtering. This
means that if we power the lowerbound LB to any number y from the interval
y € (0,1), we increase the lowerbound value and thus improve its filtering power.
Yet, we need to ensure the correctness of the resulting lowerbound: 6 > (LB)Y.

On the other hand, if we power the lowerbound LB to the number from the
interval z € (1,00), we decrease its value and thus decrease its filtering power.
This applies to cases, in which the lowerbound LB provides incorrect values:
d < LB. Here, we can select appropriate z for which § > (LB)>.

If we are able to find the appropriate power value w € (0, 00) for the lower-
bound LB, we modify it and get a new lowerbound (LB)" with better filtering
capabilities. If w = 1, we get the same lowerbound. This concept applies to
any valid lowerbound expression LB, while the only requirement remains the
normalized distance space.

8.4.2 Expression Tightening Algorithm

Based on the discussion in the previous sections, we outline the algorithm which
aims at discovering the best power value w € (0,00) for the input lowerbound
expression LB. It uses the principle of tuning the power value w in a similar way
as TriGen algorithm (see Section [3.2.5]). We start with w = 1 and in each step
we either (a) increase its value whenever the lowerbound (LB)Y is incorrect, or
(b) decrease its value to provide tighter lowerbound value. To do this, we use the
complementary function ComputeFError which computes the error ratio and sets
the future direction as shown in Algorithm [9]

This approach is general enough to be involved as the post-processing step in
any algorithm. However, we try to find an additional lowerbound LB™ to enrich
LB, so we set one extra requirement — instead of sampling random objects from
the dataset, we consider only objects not filtered by LBx because our goal is to
enrich its filtering power (see Triangle® Preprocessing in Algorithm .

Difference from TriGen Algorithm

It might not be clear at the first sight but the expression tightening algorithm is
conceptually different from the TriGen algorithm. We do not modify the input
data as TriGen does and the behavior of tightening comes from the exploration
phase with strictly limited axiom space inspired by SIMDEX. The tuning phase
of a single parameter w is however similar for both methods and we acknowledge
that our motivation for this process comes from TriGen.
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Algorithm 9 Expression Tightening Algorithm (LB, NFO)

Require: Lowerbound expression LB, set of non-filtered objects N FO
1: W= Wpest = 1; W* = 00;
2: if ComputeError(NFO, LB) > 0 then
3: wpg = L;wyg = oo;w =2 {improve — decrease lowerbound value}
4: else
5. wp = 0;wy = 1;w = 0.5 {worsen — increase lowerbound value}
6: end if

7. for (i = 0; i < MaxlIterations; i++) do

8

9

if ComputeError(NFO,(LB)") >0 then

WL = W,
10: if wyg = 0o then
11: w=2-w
12: else
13: w = (wpg + wyg) /2
14: end if
15:  else {best result so far}
16: w* = w; w = (wpp + wyg)/2
17 end if
18: end for

19: if w* # oo then

20 Wpest = W™

21: end if

22: return (LB)"= {the best power modifier for the lowerbound expression}

8.4.3 Tightening Triangle Lowerbound

To verify proposed LBT approach empowered by expression tightening algorithm
for real-world data indexing using Triangle™ filtering, we examine its behavior on
several datasets. We fix the database size to 900 objects, use 5 pivots and average
the results over 10 kNN queries (k = 5).

For initial evaluation, we completely limit the axiom space only to relations
d(q,0) > 16(q,p) — d(p,0)|"”. This means that the exploration phase equals to
applying the expression tightening algorithm to the triangle lowerbound LB .

We use same databases as for GP-SIMDEX experiments (see Section and
compare both approaches. Here, we obtain the following results:

e Clouds of points — the best power value is w = 0.776897 as opposed to
wgp = 0.717061 found by GP-SIMDEX (A = w — wgp = 0.059836).

e 7D points — the best power value w = 0.972691 as opposed to wgp =
0.939630 discovered by GP-SIMDEX (A = w — wgp = 0.033061).

e TWIC (Thematic Web Images Collection) dataset [147] with Signature
Matching Distance (SMD) for content-based image retrieval [148] results
with w = 0.957558.

e TWIC (Thematic Web Images Collection) dataset [147] with Perceptually
Modified Hausdorff Distance (PMHD) [149] outputs the best power value
w = 0.896825.
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Figure 8.5: Comparing DCs of the standard LBa (Triangle), the triangle lower-
bound with TriGen FP-modifier LB, 5 (TriGenkP), the combined LB resulted
from GP-SIMDEX (Triangle+ (GP)) , and the combined LB resulted from LBT
approach (Triangle+ (LBT))

In cases when A > 0 (the difference between power values), we expect worse
query performance due to the properties of normalized spaces (Section .

The obtained results from LBT method by applying the expression tightening
algorithm to LBa provide the basis for indexing tasks. For LBT results, the
combined lowerbound LB} always corresponds to the pair (LBa, LBY).

In Fig. 8.5, we compare these Triangle+ (LBT) results together with previous
results from GP-SIMDEX exploration phase (Triangle+ (GP); see Section [8.3.2),
and Trigen FP-modifiers (TriGenF'P). For first two datasets, the performance
of the best expression discovered by GP-SIMDEX provides higher query efficiency.
The reason for this is that the increased database size brings additional objects
that invalidate the previous lowerbound performance. Yet, these objects do not
get to the final result set, so the incorrect distance estimations for some objects
introduced by GP-SIMDEX lowerbound do not matter.

For the remaining two datasets, we reveal lowerbounds with higher filter-
ing power which additionally improve the query performance. In this case, our
method outperforms TriGenFP efficiency. This makes Triangle+ (LBT) a better
and stronger alternative for efficient indexing and querying in (non)metric spaces.

8.4.4 Triangle Tightening Behavior Analysis

We study deeply the behavior of Triangle™ filtering with the tightened triangle
lowerbound LBY. For this purpose, we generate 9 synthetic datasets as random
objects in N-dimensional space constrained by the hypercube in which values in
each dimension are limited to the interval (0,100). We apply the standard Ly
distance to get the metric similarity model. We depict the general information
regarding the datasets in Table with details in Appendix [A.2]

With the increasing dimensionality, the number of DCs rises for both lower-
bounds LB and LBY (see Fig. also due to increasing IDim values (Figor
Section and the curse of dimensionality [56, [6, 58] but it does not increase
proportionally.
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Figure 8.7: The filtering power of the combined LB obtained from the LBT ap-
proach ( Triangle+ (LBT)) and the triangle lowerbound with TriGen FP-modifier
(TriGenFP) compared to the standard LB (always 0%)

Starting with 3-dimensional space, Triangle+ (LBT) gains the first (minor)
improvements of 3% which further rise with high-dimensional spaces (see Fig.
and result in 20% improvement of the query evaluation for 10-dimensional space
compared to pure triangle lowerbound LBA. In this particular case, we drop the
percentage of DCs from 81% to 65% (as opposed to 71% given by TriGenFP)
simply by employing additional lowerbound LB} for non-filtered objects.

TriGenFP approach also improves the query performance but its behavior
is in average worse than Triangle+ (LBT). This validates the value of Triangle®
lowerbounding for practical indexing tasks with a potential of better performance.
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Triangle™® Average DCs
Dataset | IDim LBT Triangle | TriGenFP | Triangle+ (LBT)

weight w LBA LB,; LBR
2D 2.1887 | 1.000000 39.5 39.5 39.5
3D 3.4805 | 0.999859 78.3 78.3 78.3
4D 4.7912 | 0.997222 107.5 107.1 103.9
5D 6.1878 | 0.993441 319.4 315.7 299.7
6D 7.5951 | 0.993160 342.5 332.1 320.1
7D 8.9323 | 0.990897 523.9 488.4 493.5
8D 10.2821 | 0.982229 629.6 583.5 564.9
9D 11.5424 | 0.960257 745.5 698.6 605.6
10D 13.1199 | 0.953754 729.7 639.9 582.9

Table 8.1: Characteristics of synthetic /N-dimensional datasets

8.4.5 LowerBound Tightening Summary

The results confirm the validity of LowerBound Tightening as a simple approach
for empowering lowerbounds for better filtering and completes the overall Triangle™
concept (Fig.[8.1)). In the future, we want to study (1) whether there exist better
candidates than LBa for a general applicability of the expression tightening al-
gorithm (see Section [8.4.2)), (2) how to identify objects for which the lowerbound
values are irrelevant, as they will not get to the result set, and (3) how to involve
LBT technique as the post-processing step to SIMDEX to additionally increase
the performance of the discovered axioms.

8.5 SIMDEX and Trianglet Synergy

The Smart Pivot Table concept with Triangle™ lowerbounding (LBJ) reveals
the benefits and the applicability of SIMDEX Framework for practically oriented
general-purpose indexing tasks. If we incorporate preprocessing and exploration
phases directly within the Pivot Table index and build the Smart Pivot Table,
the users would not recognize the difference from the classic Pivot Table. The
initial cost required for the discovery of additional lowerbound will be returned
by faster query evaluation in the future.

Here, we need to admit that the advantages of using multiple lowerbounds is
suitable only for similarity models in which computing a single distance compu-
tation is far more expensive than evaluating multiple lowerbounds in order to get
a tight lowerbound value.

In the future, we would like to research potential combinations with TriGen
modifiers (see Section for nonmetric spaces. Also, we would like to find out
the ideal "zero” point in which the initial costs are returned in terms of faster
query evaluation.
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Chapter 9

Conclusion

Our motivation in this thesis is to enable efficient indexing techniques for different
communities of domain experts who employ arbitrary (generally nonmetric) simi-
larity models. To address the challenges of existing indexing methods (Section ,
we propose the algorithmic framework SIMDEX that is capable of discovering
strong alternatives to existing indexing techniques (Section .

Besides the general overview and framework fundamentals, we describe three
existing and different variants of SIMDEX Framework — I-SIMDEX, GP-SIMDEX,
and PGP-SIMDEX together with a novel technique of LowerBound Tightening that
is applicable as the post-processing step to any of them.

The final outcome of our work includes the concept of Smart Pivot Table
(Section [§)) with Triangle™ lowerbounding (Section [8.2). Here we apply SIMDEX
Framework to practice and confirm its potential.

In the following text, we review individual variants in a consolidated manner
and highlight individual strengths and weaknesses of these methods.

I-SIMDEX

I-SIMDEX (see Section [5)) is the first and very naive implementation of SIMDEX
Framework which leverages incremental and iterative exploration of the axiom
space. Although this is quite straightforward and easy to implement, it is slow in
terms of time, as it re-evaluates various forms of the same mathematical expres-
sions. This occurs very often, results in multiple repetitive tasks with the same
output, and thus degrades the overall performance.

Also, there is no feedback about the ”potential” of the candidate relations
being evaluated. Although we can estimate that the relation will not provide
good results or does not have a strong potential, it will be still evaluated, as
we cannot simply apply good heuristics. This has a negative impact on the
performance. However, the iterative exploration is attractive, as it is easy to
implement, deterministic, and always returns the same results for the fixed input.

GP-SIMDEX

GP-SIMDEX (see Sectionl6] follows the idea of SIMDEX Framework but mix it with
the inspiring theoretical concept of genetic programming. The custom GP-based
wequality symbolic regression algorithm reveals a great potential of intelligent
axiom exploration with subsequent populations of candidate relations.
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The advantage is that we explore the axiom space in a more consolidated
way, as we take into account the feedback from previous evaluations. Also, such
an intelligent discovery is intended to find more complex relations faster which
makes the exploration more efficient.

However, from the nature of GP-based algorithms, also GP-SIMDEX suffers
from the non-deterministic behavior which needs to be overcome by multiple
executions (runs) of the algorithm to get acceptable and/or stable results. Addi-
tionally, the implementation of such an approach is dramatically more complex
than for I-SIMDEX.

What remains as a minor issue here is the re-evaluation of the same math-
ematical expressions as there is much smaller probability that the outcome of
genetic operations will contain a different form of the same (previously tested)
mathematical expression and because we test the reproduced relations only once.

PGP-SIMDEX

PGP-SIMDEX (see Section pushes the idea of GP-based axiom exploration to the
next level, modifies GP-SIMDEX approach, and introduces the parallel processing
in the distributed environment. It addresses the challenges of single-threaded
GP-SIMDEX executions while leveraging the fact that the genetic operations in the
real world apply to thousands or millions of individuals simultaneously.

For the exploration, we use the same inequality symbolic regression algorithm
together with island-population model and map-reduce techniques in order to
improve the qualitative results by a nontrivial parallel algorithm.

This method eliminates the need for multiple executions of GP-SIMDEX to
get acceptable results, because it executes multiple instances at the same time.
Moreover, the additional intelligence ensures that the best-so-far individuals are
propagated between instances to boost the efficiency and overall performance.
Even though the computation is distributed amongst several nodes, we have once
again the non-deterministic behavior. With the increased complexity of such a
solution, we also have to guarantee the synchronization of all running instances.

The drawback is the necessity of multi-threaded or multi-CPU environment
and corresponding high performance in order to obtain qualitative results.

Table compares the major pros and cons of all variants in a consolidated
manner. Note that we consider individual advantages and disadvantages from the
database researcher‘s point of view. Not all of these items apply to final end-user
(domain researches).

Smart Pivot Table

We apply these principles to practice and propose Smart Pivot Table indexing
scheme (Section for efficient filtering. It employs data-driven discovery of
indexing techniques using only the stored data. Together with SIMDEX, this
results in Triangle™ lowerbounding and filtering for metric spaces. This approach
outperforms the state-of-the-art methods such as the triangle lowerbound LBA.
Moreover, we introduce LowerBound Tightening as the candidate for post-
processing steps to existing SIMDEX variants because it further improves the
filtering power of given expressions. We also analyze its superior behavior while
individually tightening the triangle lowerbound LBa (Section [8.4.4)).
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Variant Advantages (+) Disadvantages (-)
Straightforward Slow
Multiple evaluations
Easy to use
I-SIMDEX of same expressionﬂ
Fixed (deterministic
( ) No feedback
evaluations
Intelligent discovery Random and unpredictable results
Quickly finds Multiple executions
GP-SIMDEX
complex relations (runs) required
Feedback from evaluations More complex to implement
Intelligent discovery .
Random and unpredictable results
at high scale
Huge parallelism and Synchronization between
PGP-SIMDEX
distributed environment islands required
Propagating .
Very complex to implement
best-so-far individuals

Table 9.1: Comparing SIMDEX variants

9.1 Future Work

We review several variants of SIMDEX Framework that confirm its viability and
as we outline and describe, all of these approaches have positive and negative
sights. What remains as a challenge for the future research is how to develop such
a variant that efficiently searches the given aziom space, provides (sub)optimal
results quickly, and is truly deterministic. Also, we need to ensure the crucial
requirement that the exploration is easily adopted before / within the indexing.

One such concept is the proposed Smart Pivot Table, however, it is initially
validated mainly for metric spaces. The tasks of extensively studying its behavior
on nonmetric similarity models and of combining triangle lowerbound modified
by appropriate FP-modifier (LB, ;) with an additional lowerbound LB remain
as the future work. 7

!Observe, that we put the Multiple evaluations of same expressions only to I-SIMDEX variant,
although it generally applies to all variants. The reason is that while building the candidate
relations (and thus inequality expressions) iteratively, this occurs far more frequently than in
randomized SIMDEX versions (GP-SIMDEX or PGP-SIMDEX).
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App

endix

A.1 QMap Evaluation

Figures and show the comparison of QFD and QMap models while eval-
uating 1NN similarity queries using Pivot table and M-tree index on real-world
dataE|. For more details, we refer readers to the original paper [20].
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Figure A.1: QMap evaluation for INN query on growing databases

Pivot table
database size 1M

SR N

real time (seconds)

1‘0

—o— QFD model
-8- QMap model

0-- 0-- 0--0--0--0--0--0--0--0--0

T T T U U T T T T
1 2 5 10 16 30 50 100 256 500 1024
k (log. scale)

(a) Pivot Tables

M-tree
database size 1M

—0
o 0/0/
o e —
R g —o
o
@S
w© —e— QFD model
] -8- QMap model
8o |
i)
P}
bl
2
3
3
%o
E£°
g
=o
i
--o
0 _---0-"
S __g----o---""¢
o----pg----0-7
T T T T T T T
1 2 10 20 50 100
k (log. scale)
(b) M-Tree

Figure A.2: QMap evaluation for INN query on the database with 1M objects

2Results acquired for 1,000,000 images represented by real-valued RGB histograms with the
dimensionality of 512, where the R,G,B components are divided in 8 bins each, thus 8*8*8
= 512 bins. Each histogram is normalized to have the sum equal to 1. Then, for each bin

we compute the color in the center of the bin

[(Rmin+Rmax GmintGmax Btnit)+Bmax]
2 ) 2 2

as the color

)

prototype, and transform this color to CIE Lab color space [40].
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Figure A.3: Distance distribution histograms for N-dimensional datasets

A.2 Custom N-dimensional Datasets

Figure [A.3 outlines the IDim values (Section [3.2.3)) for n-dimensional datasets we
use for evaluating LowerBound Tightening behavior in Section [8.4.4]
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