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Autor: Miroslav Beneš

Katedra/Ústav: Ústav teorie informace a automatizace, Akademie věd České republiky, v.v.i.

Vedoucí doktorské práce: RNDr. Barbara Zitová, Ph.D., Ústav teorie informace a automatizace, Akade-
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Chapter 1

Introduction

The improvement of digital imaging devices and technologies in recent years has led
to dissemination of image acquisition to many different scientific fields. The result of
this development is growing amount of data which is necessary to process, store and
eventually retrieve again from dedicated database for further analyses. This would not
be possible without comparable advances in information technologies. They provide
means which allow to handle the continuous growth of images. One of the fields which
can substantially help is digital image processing (DIP).

In this thesis we study how the DIP can contribute to the analysis and process-
ing of microscopic image data. The progress of image acquisition technologies has
made possible to capture the images of minute researched objects in higher resolution
and different modalities using various devices. This applies to many scientific areas
– biology, medicine, geology, mineralogy and cultural heritage to name a few. We
concentrate mainly on the area of cultural heritage and study the cross-section samples
taken from the artworks (see following section 1.1 for the description). However most
of the achieved results are directly applicable also to other mentioned fields which is
demonstrated in the text.

We focus on dealing with two different problems which DIP can help with. First,
the image processing methods can facilitate the analysis of acquired microscopic sam-
ples or species. They are often visually processed and evaluated. Image processing
algorithms can make this routine either completely automatic or at least they signif-
icantly simplify it. Moreover they can offer new solutions to existing problems and
come up with new findings. We aim at a critical step of the sample image analy-
sis – image segmentation. Image segmentation is a process which partitions an input
image to meaningful non-overlapping regions – segments. Quality of the image seg-
mentation algorithm affects the performance of the whole image analysis. Therefore
it is always crucial to choose a right method for the very problem which needs to be
solved. Unfortunately there is no universal method which would provide the best re-
sults possible. We evaluate performance of many segmentation algorithms and try to
answer the question which of them are suitable for microscopic images and what can
be done more to obtain even better results. We are not aware of any similar work in
context of microscopic image data although there are papers working with different
data, e.g. [42, 63, 38].

The retrieval stage is the second problem we focus on. DIP provides methods to im-
prove searching in large databases using image information. Conventional databases
with information systems usually contain only a text-based search which makes re-
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(a)

(b)

(c)

Figure 1.1: (a) The painting with marked location of the sample extraction; (b) image
of sample 1 in visible spectrum; (c) image of sample 1 in ultraviolet spectrum. Image
courtesy of Academy of Fine Arts Archives, Prague, Czech Republic, and ALMA.

trieval under certain circumstances a clumsy task. Retrieving functionality can be
however extended by content-based image retrieval (CBIR). This approach enables
fetching data by image similarity and thus help potential user to browse through a
database in a different way.

The Nephele system implements the results achieved from solving both mentioned
problems – image segmentation and image retrieval. Nephele is an expert system for
processing and archiving the material research reports created during material research
of the artwork. Incorporation of image-based search and image preprocessing meth-
ods for related image restoration simplifies the delivery of relevant reports and efficient
work with the collection. Nephele reflects the best practices used in the art conserva-
tion and is intended to be used by art restorers, conservators, or art historians.

1.1 Cross-section samples of the artwork
Research of the thesis is based on a set of microscopic image data – images of cross-
section samples taken from the artworks. They origin from painting restoration pro-
cess, whose integral part is painting material research. Its aim is mainly to identify
used painting substances which helps to evaluate painter’s technique and style. During
this stage the minute samples are taken away from representative places of the artwork.
The locations should be well laid out across the artwork plane to provide competent
view on different material layers composition (stratigraphy), morphology of the mate-
rial grains and color. See the example in figure 1.1.
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(a) VIS image (b) UV image (c) SEM image

Figure 1.2: The images of the cross-section samples are acquired in three modalities
– visible spectrum (VIS), ultraviolet spectrum (UV) and scanning electron microscope
(SEM). Image courtesy of ALMA.

Being an invasive method a scalpel or laser technique are used for sample with-
drawal. Nowadays also the non-destructive methods of material research are exploited,
e.g. inspection of the painting under different illumination (ultraviolet, infrared or
roentgen spectra are used to name a few), and/or spectroscopic methods for measuring
laser-induced atomic and molecular emission. However invasive sample extraction is
still essential part of the research. After the withdrawal, the samples are embedded in
a polyester resin, grounded at a right angle to a surface plane and ground to expose
the material layers consisting of color pigments and binders (the procedure is well-
described in [67]1). The images in visible (VIS) and ultraviolet spectrum (UV) are
taken, where UV image may reveal fluorescent property of certain materials. Study by
scanning electron microscope (SEM) with chemical contrast is also performed. These
constitute three modalities, which we work with throughout the thesis. See figure 1.2
for an example of images of cross-section sample.

The resulting data set consists of 156 cross-section samples captured in three modal-
ities. They come from the Academic Materials Research Laboratory of Painted Art-
works (ALMA)2, where they help the art restorers to choose the proper materials and
appropriate technique for the very restoration. The images do not always form a com-
plete triplet for each sample. SEM modality is often missing, sometimes VIS or UV
image are not present. Nonetheless there are 148 VIS images, 148 UV images and 89
SEM images in the data set. The SEM images are grayscale, the other two modalities
are acquired in RGB colorspace.

1.2 Thesis outline
Thesis is divided to two different parts with the following contents. First part is dedi-
cated to the problem of image segmentation and contains chapters 2, 3, 4, 5 and 6.

• Chapter 2 introduces the reader to the problem of image segmentation and
whole first part of the thesis.

1Alternatively see web page http://chsopensource.org/2012/12/19/
microscopy-for-art-examination-cross-sections-preparation/ with a video of cross-
section sample preparation.

2http://www.alma-lab.cz
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• Chapter 3 deals with necessary preprocessing of the input images. They con-
tain artifacts which have undesirable impact on the performance of the image
segmentation algorithms. It is therefore feasible to remove or diminish them.

• Chapter 4 is the key section of the first part. It presents set of studied image
segmentation algorithms and indices for measuring their output quality (perfor-
mance). The algorithms are compared there and findings of the evaluation are
discussed. Chapter gives recommendations on using of the algorithms depend-
ing on the input image properties. Also the applicability to different image data
is shown.

• Chapter 5 shows that performance of even the best segmentation algorithm
from chapter 4 can be improved by combination/fusion of multiple segmenta-
tion methods.

• Chapter 6 concludes the first part of the thesis.

Part two of the thesis presents in chapter 7 the image processing system for art restora-
tion – Nephele – with image retrieval facility. It also implements the results and find-
ings of the first part. Last part summarizes main contributions of the thesis in chapter 8.
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Part I

Image segmentation
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Chapter 2

Introduction

The fundamental objective of image segmentation is to partition the input image into
meaningful non-overlapping regions – segments – for further analysis or visualization
(see illustration in figure 2.1, subfigures (a) and (b)). There is a variety of approaches
addressing this task, exploiting various image properties to achieve the given goal (see
e.g. [69] for survey). They span from low-level techniques using intensity thresholds,
edge tracing or region growing, over graph-based and statistical approaches, to model-
based algorithms and other higher-level methods. Recently, the combination-based
solution has been introduced, where the final partition is formed using a combination
of results of several segmentation methods and thus inhibiting their shortcomings.

Despite the longtime effort to develop high quality segmentation algorithms, there
has not been any universal segmentation method proposed. Under these circumstances,
there is a dilemma which method to choose for given particular data set and whether
the combination of segmentation results would be beneficial. This part of the thesis
tries to answer these questions for defined category of image processing data – set of
images of microscopic samples (described in section 1.1, see figure 1.2), moreover
taken in different modalities. From the image processing point of view, the origin of
the samples often does not play an important role. The factual meaning of particular
intensity levels can be irrelevant for the segmentation algorithm.

We limit our study to the microscopic image data that contain the sample located in
the inner part of the image, mostly not reaching to the top and bottom image borders.
The data may come from an analysis of painting materials used in art restoration (fig-
ure 1.2), which is the case of the data set used in our evaluation. They can be samples of
various biological materials, such as tissues, cells, or other biological structures. The
task at hand can be seen as the two-target problem where an image has to be labeled
with either foreground or background label and where the foreground is usually the
inner part of the image and the background is separated and/or removed. The problem
can be viewed as image binarization, too (illustrated in subfigure (c) of figure 2.1).

At first glance it might seem to be a simple task solvable by means of basic thresh-
olding, however the situation is often more complex. Due to the setting of data collec-
tion process, acquired images are often unfit to the chosen segmentation method and
following complications are usually inevitable – surroundings of analyzed samples can
be semitransparent, with non-uniform cutting-plane and various debris, to name a few
examples. High number of samples can negatively influence precision of sample scan-
ning in terms of noise level and blurring.

The objective is to evaluate the non-interactive segmentation methods in terms of

8



(a) Input color image (b) Image partitioned to salient non-overlapping
regions

(c) Binarized image with only foreground and
background

Figure 2.1: Illustration of partitioning the input image (a) to several salient non-
overlapping regions (b). In (c) the input image is binarized only to foreground with
one meaningful object and the rest in the background. Images come from The Berke-
ley Segmentation Database [63].
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their accuracy, assessed by several indices used for measuring the output quality of
image segmentation algorithms. First, necessary preprocessing of the input images
from data set needs to be performed (chapter 3). In following chapter 4 the partici-
pating methods and indices are introduced, the very comparison of the algorithms is
presented and we show the applicability of the achieved conclusions to different data
set – the biological samples. Finally, efficiency of combination of segmentation re-
sults is addressed in chapter 5 as a way to further improve the performance of single
segmentation algorithm.
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Chapter 3

Preprocessing

This chapter deals with image preprocessing stage necessary to successful image anal-
ysis which follows in next chapters. Original images acquired during artwork restora-
tion process are often unfit for direct image processing, i.e. image segmentation in
chapter 4 or image retrieval in chapter 7. There are two main problems involved and
covered by next two sections – legend in SEM images embedded by electron micro-
scope and more importantly artifacts created by grinding of polyester resin during
sample preparation process.

3.1 Removal of legend in SEM images
During SEM image acquisition process the scanning electron microscope embeds a
legend into a final image it creates. The legend contains sample identification number,
amount of magnification, image bar scale and other information possibly important for
evaluation by the analyst. On the other hand with its white color it causes problems
to image segmentation algorithms. They cannot produce desired output which would
otherwise be in their capability. Under these circumstances it is better to remove the
legend and to reconstruct the missing image parts appropriately. Since it is part of
preprocessing stage the removal method should be simple and fast.

There are two kinds of SEM images in a data set coming from two different scan-
ning microscopes. The first one (subfigure (a) of figure 3.1) has the legend only in
white color, while the other one (subfigure (b)) has the letters anti-aliased (gray levels
are present). The legend is vertically always in the same place in the image, only the
horizontal length differs. This makes the localization of the legend easy and following
steps are realized only on region with the legend inside. Replacement of white letters
by one different color (e.g. black which is often close to the color of background)
would not change a situation much. It would still influence the outcome of segmen-
tation algorithms. Better approach. which would conceal the legend completely. is
thus needed. Color of each pixel of the legend will be replaced with color close to the
nearest neighboring non-legend pixels. First the letters are replaced by initial estimate
of final color. The letters are identified by white color. However in case of the sec-
ond type of SEM image this would be insufficient due to anti-aliasing. So few more
neighboring pixels enclosing the whites are added (given by operator of mathematical
morphology – dilation). Initial estimate of color is formed by masked local means of
neighboring background pixel colors. Masked means that the legend pixels are not
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(a)

(b)

Figure 3.1: Two SEM images with two different legends. In (a) the legend is only of
white color, in (b) letters of the legend are anti-aliased. Partial closeups are in the right
column. Image courtesy of ALMA.
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(a)

(b)

(c)

(d)

Figure 3.2: Process of legend removal. Subfigure (a) shows cutout with legend from
original SEM image. Subfigure (b) shows the same with slightly enhanced contrast
(this also holds for (c) and (d)). In subfigure (c) the letters are replaced with local
means. In (d) there is a final output after mild averaging.

taken into account1. Second stage is to adapt the estimated pixel colors even more to
the surrounding neighborhood of the former legend. This is achieved by two steps of
mild average filtering. The legend is masked out in a resulting output in such a way that
it does not further influence the outcome of segmentation methods. Figure 3.2 shows
the whole process on the example where legend interferes with cross-section sample.

The UV and VIS images do not contain any such legend. However rarely the image
bar scale is present also there. It is impossible to locate it and replace it automatically.
The bar scale is thus removed manually in graphics editing program.

3.2 Removal of grinding artifacts
During acquisition process of the cross-section samples the polyester resin, which each
sample is embedded in, is ground by fine sandpaper to reveal the painting layers for
necessary analyses and measuring. Due to this grinding of the resin noisy artifacts form
in the background. Unfortunately apart from being visually disturbing, the artifacts
influence the results of image segmentation algorithms and also the comparison of their
performance. It is therefore legitimate to remove these artifacts completely or at least to
significantly diminish them. It is possible to grind the resin with much finer sandpaper
and prevent creation of the artifacts in images. This would however complicate follow-
up analyses with reflections and coarsening of the resin would be unavoidable. The
image processing algorithm is thus needed. See figure 3.3 for example of segmentation
method which is prone to do worse in presence of the artifacts. The proposed method
was published in [9]. Several improvements have been made since then.

Figure 3.3 shows the properties of the artifacts. They are omnipresent and in form
of parallel lines. The width and density of the lines depend on the grit size of the sand-
paper. The visibility of the artifacts depends on the modality. In SEM and VIS they
are clearly observable, while in UV they are not as evident due to their non-fluorescent

1It was confirmed by experiments that in the case of first type pure black color is sufficient as an
initial estimate. The letters are very narrow and more complex approach is not necessary.
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(a) SEM image before enhancement (b) SEM image after enhancement

(c) Binarized SEM image (d) Binarized enhanced SEM image

Figure 3.3: The background artifacts might influence the outcome of the segmentation
algorithm. In (a) there is a SEM image with the artifacts, in (b) the image is after
enhancement (artifacts are removed). Figures (c) and (d) illustrate the influence of
artifacts (non)presence on segmentation method. The legend was removed before the
actual segmentation via process described in section 3.1. Image in (a) courtesy of
ALMA.
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nature and dark background. The proposed method uses Fourier transform for detec-
tion and removal. In the following we assume that f is a matrix of real numbers of
dimension N×M representing a grayscale input image with artifacts to be removed, j
and k are spatial coordinates, u and v are frequencies.

First we compute discrete Fourier transform of the input image

F(u,v) =
M−1

∑
k=0

N−1

∑
j=0

f ( j,k)e−2πi( u j
N + vk

M )

and its amplitude

A(u,v) = |F(u,v)|

In amplitude spectrum we can observe considerable response in a direction per-
pendicular to the original artifacts lines (see figure 3.4(a), the spectrum is in logarithm
scale and shifted using Matlab fftshift function for better visibility). It is useful to
equalize the histogram of the input image to make the lines more distinctive and fol-
lowing processing easier. Otherwise the response would be too weak. Now the re-
sponse and its orientation can be detected, masked out of the amplitude spectrum and
after application of inverse Fourier transform the artifacts are removed in the image
domain. It is achieved by following steps.

Amplitude spectrum A(u,v) usually contains irregularities due to so-called spec-
tral leakage (horizontal and/or vertical stripes induced by discontinuities of the image
borders. See figure 3.4(a)). They could make the artifacts response detection difficult
as they are very similar. Therefore it is important to remove these spurious flaws from
the spectrum before the very detection is performed. It can be achieved by division of
the spectrum by row and column sums respectively (the result is in figure 3.4(b)).

A′(u,v) =
A(u,v)

∑
N−1
j=0 A( j,v)

A′′(u,v) =
A′(u,v)

∑
M−1
k=0 A(u,k)

The alternative way is to suppress the spectral leakage via application of window
function to the image domain [27]. Since the problem rises from image border dis-
continuity the solution is to assure that there are zero values on the image borders,
preferably with smooth decrease from the image center. We can achieve this by mul-
tiplying the image with window function (or taper) such as Hamming or Hann (Han-
ning) functions. However in our case this method diminishes also the response of the
grinding artifacts and final results are worse than with row/column sums normaliza-
tion approach. Figure 3.5 exhibits comparison of these two approaches and it shows
diminishing of response in case of window tapering.

The response detection is based on following idea. We can rotate amplitude spec-
trum A′′(u,v) by one degree around the origin (assuming that the spectrum is shifted)
for all angles between 1 and 180. In each step the values in columns are summed
and the maximum of the column sums is taken (with regard to the character of Fourier
transform it is always in the middle). Thus, for each angle we have maximum response.
The highest peak of this function gives the orientation of the grinding artifacts in the
image domain. Nevertheless the computation of the function using rotation approach
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Figure 3.4: Removal of grinding artifacts in stages. The image from figure 3.3(a)
forms the input, figure 3.3(b) is the output. In (a) there is an amplitude spectrum with
clearly visible response of the grinding artifacts, in (b) the spectrum is normalized us-
ing row/column sums to suppress the spectral leakage (highlighted cross in the middle
of spectrum in (a)). The spectrum transformed to polar coordinates is in subfigure (c).
(d) shows energy function E(θ) (directional energy for every angle). Finally, subfig-
ure (e) exhibits mask constructed using detected orientation. All spectra are shifted, in
logarithm scale and adjusted for better illustration.
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(a) (b)

Figure 3.5: The comparison of two different approaches to suppress the spectral leak-
age. In (a) there is a result of normalization the original spectrum with row and col-
umn sums. In (b) there is a result of window tapering of the original image. Tapered
spectrum is definitely smoother compared to normalized spectrum with dark cross.
However the response of the grinding artifacts is significantly suppressed as well. The
dark cross in (a) is not a problem because it does not create false high peaks as non-
normalized spectrum. Both spectra are shifted, in logarithm scale and adjusted for
better illustration.

would be inefficient and time demanding. The same can be achieved by transforming
the amplitude spectrum A′′(u,v) to polar coordinates Ap(r,θ) and exploit that.

r =
√

u2 + v2

θ = atan2(v,u)

The amplitude spectrum in polar coordinates Ap(r,θ) contains directional response
for all angles in range of 1 and 180 degrees. Now a narrow horizontal band is removed
from spectrum Ap(r,θ) for small values of r. The band corresponds to small circle
of values surrounding the origin of spectrum A′′(u,v) in Cartesian coordinates. This
part is heavily interpolated during the transformation to polar coordinates and as such
it negatively influences following computation. Also the values of spectrum Ap(r,θ)
are squared which emphasizes the artifacts response in spectrum even more. Formally
we obtain a power spectrum with energy as values. Figure 3.4(c) exhibits amplitude
spectrum transformed to polar coordinates.

A′p(r,θ) =

{
0 0≤ r ≤ x
A2

p(r,θ) otherwise
,

where x is parameter.
Spectrum A′p(r,θ) is then summed in columns to obtain directional energy for every

angle (figure 3.4(d)).

E(θ) = ∑
r

A′p(r,θ)

This energy function E(θ) directly corresponds to function computed by rotation
approach described above. Distinct peak of this function (and its maximum value at
the same time) determines the orientation of the grinding artifacts.
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θmax = argmax
θ

E(θ)

Now we have enough information to construct binary mask M(u,v), which will
be used for removing the response from the Fourier spectrum. The aim is to mask
out the artifacts response in the spectrum using the detected orientation. Mask must
be smoothed, otherwise the ringing effect is involved [27]. See figure 3.4(e) for an
example. Afterward, inverse Fourier transform is applied to modified spectrum and
enhanced result is acquired (see figure 3.3(b)).

f ( j,k) =
M−1

∑
v=0

N−1

∑
u=0

M(u,v)F(u,v)e2πi( u j
N + vk

M )

Finally, the parameters of the algorithm were tuned to have a minimal impact on
the cross-section in terms of sharpness and level of detail.

Proposed method for artifacts removal is tested on the data set of cross-section
images. Therefore, we have 148 VIS images, 148 UV images and 89 SEM images
for testing purposes. Grayscale SEM images are processed directly, in case of color
VIS and UV images artifacts orientation detection and mask construction is performed
using intensity channel, mask is applied on each RGB channel separately. In VIS
modality 114 images out of 148 are successfully enhanced (success rate of 77 percent),
which means the artifacts are removed completely or significantly suppressed2. Con-
cerning the remaining dissatisfactory results, either the response in Fourier spectrum is
not distinctive enough or an appropriate peak is not correctly marked. The algorithm
is much more successful in SEM modality – 83 out of 89 SEM images are correctly
enhanced (success rate is thus 93 percent). The reason of better behavior is definitely
in more contrastive nature of the grinding artifacts in SEM modality as oppose to VIS
where the artifacts can blend with pale background. This naturally affects the Fourier
spectrum and response detection. 126 UV images are successfully enhanced (85 per-
cent). Originally the algorithm performed poorly in UV modality. The responses in
spectra were almost negligible and detection of artifacts orientation was impossible.
As a workaround the orientation detected on VIS image (where VIS image is present)
is used for removal. This is not correct, since both images are not registered. However
geometrical misalignment is small and final results are satisfactory. Nonetheless the
practical impact of artifacts removal in UV modality is minute and it is done only for
illustration purposes. The background of the UV images is dark and the artifacts are
nearly unnoticeable, and thus they do not affect image segmentation and other image
processing methods too much.

Figure 3.6 contains three examples of successful removal of grinding artifacts –
one in SEM modality and two VIS images. The artifacts are satisfactorily suppressed
in each case, while the texture of the cross-section is well preserved and ringing arti-
facts are kept at minimum. The positive effect of removal on image segmentation was
already demonstrated in figure 3.3.

The proposed removal method can be also used in a different area of cultural her-
itage – processing of infrared (IR) images of old paintings. The IR light enables to see

2There are few images where two different orientations of grinding artifacts are present. It originates
from two phases of grinding by sandpaper. The proposed algorithm successfully removes one dominant
orientation while the other stays in the image. However this second orientation is often not so disturbing.
Nonetheless these cases are taken as successful.
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(a)

(b)

(c)

Figure 3.6: Three examples of successful removal of grinding artifacts in cross-section
images. In each pair original image is on the left side and enhanced image with artifacts
removed on the right side. The close ups are in the red frame. In (a) there is result
of algorithm in SEM modality. The legend was removed before processing via the
method described in section 3.1. Two processed VIS images are in subfigures (b) and
(c). The artifacts are satisfactorily suppressed, while the texture of the cross-section is
well preserved and ringing artifacts are kept at minimum. Image courtesy of ALMA.
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hidden underdrawing, which captures the painter’s original intentions. Unfortunately,
IR backlighting reveals also the canvas structure and its inhomogeneity. The algorithm
with few minor tweaks helps to remove them which simplifies further analysis (e.g. it
reveals several features around gemstone and eyes which were hard to notice before).
See figure 3.7.
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(a) Original image

(b) Image after enhancement using the proposed algorithm

Figure 3.7: Beside the underdrawings the IR backlighting shows also the canvas struc-
ture, which can be removed by the proposed method. The original underdrawing tex-
ture is well preserved and image details are more visible. Courtesy of Igor Fogaš,
Moravian Gallery in Brno.
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Chapter 4

Comparison of image segmentation
methods

4.1 Segmentation algorithms and quality indices
A survey of the image segmentation algorithms analyzed in this thesis (i.e. studied
set) and survey of indices used for measuring the output quality of the segmentation
algorithms are presented in this section (subsections 4.1.1 and 4.1.2 respectively). It is
not meant to be a comprehensive review, especially in the case of segmentation algo-
rithms. The aim is rather to specify which methods are studied and by which means
they are compared. If necessary, please consult given references. The abbreviations
are assigned to each method and index for future references and their list is presented
in table 4.1.

4.1.1 Segmentation algorithms
There is a variety of segmentation methods available to be used to solve the image
segmentation problem which differ in many ways (see e.g. [69] for survey). The algo-
rithms in our study are selected with respect to the following criteria. Methods with
different fundamentals are considered to provide a diversity. The performance and
computational (time) efficiency are taken into account with preference for short ex-
ecution time. Finally, the public availability of the implementation and thus related
popularity of the segmentation method are considered too. Last criterion is also impor-
tant because it can be expected that potential users of image segmentation algorithms
would choose exactly such popular methods. There exists a lot more segmentation
algorithms (e.g. [61, 4, 36]) but inclusion of each of them is beyond the scope of this
work.

The selected algorithms can be divided into groups according to their fundamental
approach to solve the image segmentation problem. The following paragraphs briefly
describe the groups and particular algorithms.

Thresholding

Thresholding is probably the most popular method for image segmentation. The aim
is to find an optimum threshold which separates the input image to two distinct groups
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Segmentation methods
IMJ_* Various thresholding methods from ImageJ [44, 74, 77, 58, 50, 53, 98,

68, 25, 85, 107, 106]
HT_* Various thresholding methods from HistThresh [82, 34, 68, 77, 74, 23,

53, 98]
TNC Tao’s thresholding method [96]
RG Region growing [73]
KM K-means clustering [60]
MS Mean Shift algorithm [17]
GC_FH Felzenszwalb’s method [28]
GC_R GrabCut [83]
GC_CV Daněk’s optimization of Chan-Vese [21, 20, 13]
GC_RD Daněk’s optimization of Rousson-Deriche [21, 20, 84]
MNC Multiscale normalized cut [19]

Quality indices
HD Hamming distance [39]
BHD Boundary Hamming distance [54]
RI Rand index [75]
ARI Adjusted Rand index [46]
DC Dice coefficient [24]
FMI Fowlkes-Mallows index [30]
NMI Normalized mutual information [94]
VI Variation of information [64]
HAUSD Hausdorff distance [88]
MASD Mean absolute surface distance [88]

Table 4.1: List of image segmentation methods in studied set and of quality indices
used for their comparison. The abbreviations widely used in text are in the first column.

23



of pixels by their intensity. Plenty of different methods for threshold detection exist
and many of them are selected to participate in the evaluation.

The methods of the Auto Threshold plugin1 for ImageJ software package2 are
included. Namely Huang method (IMJ_HUANG) [44] which minimizes the mea-
sures of background/foreground fuzziness, Intermodes (IMJ_IM) [74] with iterative
histogram smoothing, IsoData (IMJ_ISO) [77] and its variation (IMJ_DEF) which iter-
atively update the threshold according to background and foreground intensity means,
Li’s method (IMJ_LI) [58] for cross entropy minimization, Kapur–Sahoo–Wong max-
imum entropy method (IMJ_MAXENT) [50], mean of the gray levels as threshold
(IMJ_MEAN), iterative version of minimum error thresholding (IMJ_IME) [53], min-
imum method (IMJ_MIN) [74], moment-preserving method (IMJ_MOM) [98], Otsu’s
method (IMJ_OTSU) [68] for minimizing the intra-class variance, percentile method
(IMJ_PER) [25], method using Renyi’s entropy (IMJ_RENYI) [50], Shanbhag’s ex-
tension (IMJ_SB) [85] to Kapur’s maximum entropy method, geometric Triangle al-
gorithm (IMJ_TRIANGLE) [107] and Yen’s method (IMJ_YEN) [106] based on a
maximum correlation criterion.

In addition to the plugin several other thresholding methods from MATLAB Hist-
Thresh toolbox3 are studied4 – concavity method by Rosenfeld (HT_CONCAV) [82],
Glasbey’s entropy method (HT_ENT) [34], maximum likelihood via EM algorithm
(HT_MAXLIK) [23], Intermeans (HT_INTER) as equivalent to Otsu’s method and
its iterative version (HT_INTERI) which is equivalent to IsoData method mentioned
above. Then there is median method (HT_MEDIAN) [34] which assumes that half of
the pixels belong to the background and other half to the foreground, and non-iterative
minimum error thresholding (HT_ME) [53].

Finally, a Tao’s method for image thresholding (TNC) [96], which uses a normal-
ized graph-cut to detect an optimum threshold, is included in the evaluation below.

Region growing

The region growing (RG) [73] is another common segmentation approach included
in our selection. The algorithm partitions the input image to segmented regions by
growing from the seed points (picked automatically or by the user) to the neighboring
pixels depending on a membership criterion such as intensity or texture similarity.

Clustering methods

The goal of clustering methods is to group the input objects by their similarity or
dissimilarity with respect to a given criterion such as color, spatial coordinates etc.
K-means clustering and Mean Shift algorithm are selected representatives of this ap-
proach.

K-means clustering (KM) [60] assigns the input objects to the clusters with the
nearest means which are iteratively updated. The method strongly depends on the

1http://fiji.sc/Auto_Threshold
2http://rsbweb.nih.gov/ij/
3http://www.cs.tut.fi/~ant/histthresh/
4There are more thresholding methods in the toolbox. Most of them are the same as in ImageJ

plugin. However we found out that their implementation often slightly differed and so did the results of
the segmentation. For this reason all methods are included in the studied set with corresponding suffices
in their abbreviations (so there are e.g. both IMJ_MEAN and HT_MEAN in the studied set).
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initialization and favors final clusters/segments of similar spatial extent. The Mean
Shift algorithm (MS) represents more complex approach. Comaniciu and Meer [17]
exploited the non-parametric mean shift procedure for detecting multiple modes in a
feature space in order to delineate the final clusters in such space.

Graph-based algorithms

Graph-based image segmentation algorithms generally model the image as a graph in
which the nodes represent the pixels and the edges of the graph correspond to some
relation between pixels (usually their similarity or dissimilarity). A graph partitioning
method is then used to obtain final partition and by doing so also the final segmentation
of the input image.

In their paper [28] Felzenszwalb and Huttenlocher (GC_FH) introduced the effi-
cient greedy algorithm for partitioning an image graph to obtain a final segmentation
that is not too coarse or too fine given a dissimilarity predicate. GrabCut algorithm by
Rother et al. (GC_R) [83] uses graph cut optimization technique (min-cut/max-flow
algorithm) to minimize energy function derived from an input image using intensity
values5. The OpenCV6 implementation of this algorithm is examined. The graph cut
minimization [21, 20] of both Chan-Vese active contour model for image segmenta-
tion (GC_CV) [13] and Rousson-Deriche Bayesian model (GC_RD) [84] is included7.
A multiscale version of normalized cut graph partitioning framework (MNC) [19] is
considered too. The multiscale adjustment added to the original algorithm by Shi and
Malik [87] allows to segment large images thanks to its computational efficiency.

4.1.2 Quality indices
Quality indices form the second important part of the evaluation. To objectively eval-
uate the performance of the image segmentation methods and quality of their results,
the quality indices (or measures) are necessary to adopt. The pursuit of objectivity is
motivated by an effort to suppress the subjective (and still often empirical) evaluation
of the segmentation algorithms in the original papers.

There exist two main approaches to design an objective measure – unsupervised
evaluation and supervised evaluation. The unsupervised quality indices do not re-
quire comparison with any additional reference standard and their evaluation is solely
based on a given segmented image. These indices usually exploit such criteria as intra-
region homogeneity, inter-region difference etc. For a survey of unsupervised evalua-
tion methods see [108]. Conversely the supervised performance evaluation approach
requires the ground truth reference image (GT) which the actual segmented image is
compared to. The ground truth image is often obtained manually by experts and re-
flects the optimum of the resulting segmentation. In our case the supervised evaluation
is more appropriate because of the better ability to distinguish the slight disparities
between the results of various segmentation algorithms thanks to the comparison with
this ideal ground truth.

The following sections present quality indices used in this article. They are selected
mainly to keep the diversity of the final set. On top of that they are widely used

5Although GrabCut is user interactive algorithm, its initialization can be done automatically with no
effort (see section 4.2.1). Interactivity is thus no handicap.

6http://www.opencv.org
7http://cbia.fi.muni.cz/projects/graph-cut-library.html
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in relevant papers. Each index usually favors certain properties of the segmentation
results and penalizes others (they are biased in this sense). Therefore it is important to
incorporate larger set of indices and handle their possibly different evaluation of given
segmented image to keep the evaluation objective as much as possible. Only one or
two indices would be insufficient and would probably distort the results.

It is worth mentioning that there exist more quality indices than there are described
in this work. Nevertheless a lot of them are equivalent to the ones selected, like F-
measure [78], Jaccard index [47] or Classification accuracy used e.g. in [55]. Some
are inappropriate for the task, e.g. LCE and GCE [63], which try to deal with refine-
ments in context of multilabel segmentation. We assume that the indices are correct,
i.e. their values are meaningful and not random. The theoretical range of values is
specified for each index8. Since we are not aware of any comprehensible survey on a
supervised evaluation methods the indices are described in more detail and their for-
mulas are included. In formulas I denotes segmented image for which the quality
index is computed, GT is the corresponding ground truth, F and B subscripts denote
foreground and background respectively.

Hamming distance

Hamming distance (HD) is well-known metric from the information theory [39]. Orig-
inally it counts differences between two strings. In image processing it can be used to
count the number of misclassified or missegmented pixels. The distance is normalized
with the total number of pixels and therefore the range is in the interval of 0 and 1,
where 0 is for absolute mismatch and 1 for equality to the ground truth.

HD = 1− |IB∩GTF |+ |IF ∩GTB|
|I|

Huang and Dom introduced a variation called normalized Hamming distance [45],
which can deal with multilabel and not only with binary segmentation. However in
binary case Huang’s normalized version is equivalent to plain Hamming distance9.

Boundary Hamming distance

Boundary Hamming distance (BHD) introduced in [54] is the variation of Hamming
distance that stresses the accuracy of the segmentation result on an object’s boundary.
Kohli et al. argue that the ordinary Hamming distance is not appropriate if the user
is interested more in accurate object boundary (and so in the accurate segmentation
as well), because a large qualitative improvement on the object border results in only
a negligible increase of the performance measure. The quality in boundary version
is then evaluated by counting the number of missegmented pixels in the region sur-
rounding the object boundary with the specified width. As with the previous case, the
distance is normalized and range is between 0 and 1.

BHD = 1− |IB∩GTF |BOUNDARY + |IF ∩GTB|BOUNDARY

|BOUNDARY|
In our case it makes sense to include both the Hamming distance and its boundary

version, because even though we are interested in fine object boundary in the resulting
8Extremities of the range do not necessarily have to be reached in practice.
9Except for the matching problem between segmented regions. See the paper [45] for details.
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image the complete missegmentation might happen and such case is better reflected
(and penalized) by common Hamming distance.

Rand index and Adjusted Rand index

Rand index (RI) [75] and Adjusted Rand index (ARI) [46] are quality indices originally
developed for comparing the clusterings. They are based on counting pairs of objects
which two clusterings agree or disagree on (which leads to what is often called contin-
gency table or confusion matrix). In the same manner they can compare segmentation
results to the ground truth.

mi j = |Ii∩GTj|, i, j ∈ {F,B}

m = ∑
i, j∈{F,B}

mi j mi+ = ∑
j∈{F,B}

mi j m+ j = ∑
i∈{F,B}

mi j

T =
1
2

[
∑

i, j∈{F,B}
m2

i j−m

]

P = ∑
i∈{F,B}

(
mi+

2

)
Q = ∑

j∈{F,B}

(
m+ j

2

)
N =

(
m
2

)

RI =
N +2T −P−Q

N
The adjusted Rand index corrects the original RI for chance agreement between

two clusterings by normalizing RI with its expected value. The range of RI (values
between 0 and 1, where 0 is for absolute non-compliance with GT) is thus corrected
to the interval of -1 and 1. It is questionable if this correction stays practical in the
area of image segmentation where assumptions do not have to hold, but experimental
results [102] show that it is worth considering.

ARI =
2(NT −PQ)

N(P+Q)−2PQ

The RI and ARI are also in some sense equivalent to other well-known criteria like
Cohen’s Kappa statistic [15, 104] or Mirkin’s metric [65], which is another adjusted
form of RI [64].

Dice coefficient

Dice coefficient (DC) [24] is popular quality index for evaluating the results of image
segmentation, especially in the medical imaging domain. Its range is again from 0 to
1 (1 for perfect match with ground truth).

DC =
2|IF ∩GTF |
|I|+ |GT |

Other indices are equivalent to Dice coefficient, e.g. Jaccard index [47] and in
binary case the popular F-measure [78].

27



Fowlkes-Mallows index

Fowlkes-Mallows index (FMI) [30] is another index based on the contingency table.
It has different properties than both RI and ARI mentioned earlier. It handles the
independent clusterings in a better way and behaves stably in the presence of noise
(see the original paper). As with the RI the range of this index is between 0 and 1. The
smaller the degree of missegmentation is the closer the index is to 1.

W1 =
T

∑i∈{F,B} |Ii|(|Ii|−1)/2

W2 =
T

∑ j∈{F,B} |GTj|(|GTj|−1)/2

FMI =
√

W1W2

Normalized mutual information

Mutual information is information theoretic index which measures the amount of mu-
tually shared information between two random variables (i.e. partitions or segmented
images in our case). The more the segmented result resembles the ground truth the
more information is shared. Since the mutual information has no argument-independent
upper bound, Strehl and Ghosh [94] normalized it using the geometric mean of the en-
tropies. The normalized version (NMI) thus ranges from 0 to 1 with 1 for equality to
the ground truth.

NMI =
MI(I,GT )√
H(I)H(GT )

,

where MI(I,GT ) denotes the mutual information between I and GT , and H(I) denotes
the entropy of I.

Variation of information

The variation of information (VI) [64] is distance metric derived from the mutual in-
formation. Contrary to the mutual information it measures the amount of information
(or entropy) which is not shared between two random variables. It would seem that VI
is only a complement of NMI and their results would be equivalent. Comparison of the
results however shows that they may differ, so both indices are used in evaluation. The
non-normalized version of VI is used with values 0 for absolute match to the ground
truth and positive values for the opposite.

VI = H(I)+H(GT )−2MI(I,GT )

Hausdorff distance and Mean absolute surface distance

Two last indices take the boundary of the segmented foreground into account. Haus-
dorff distance (HAUSD) measures the largest minimal distance between two bound-
aries. Mean absolute surface distance (MASD) measures the average minimal distance
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between two boundaries (e.g. [88]). Both indices are symmetric and their values ap-
proach 0 with increasing resemblance between the segmented image and the ground
truth. Both are directly connected to the distance distribution signature [45] which can
be used for fast computation of these two indices.

dmin(x,B j) = min
{

dE(x,y)
∣∣y ∈ B j

}
,

where dE(x,y) denotes the Euclidean distance between points x and y, B j denotes set
of boundary points of either I or GT . So dmin(x,B j) is the minimum distance of a point
x (for example on boundary Bi) to boundary B j.

h(BI,BGT ) = max{dmin(x,BGT )|x ∈ BI}

HAUSD = max{h(BI,BGT ),h(BGT ,BI)}

MASD =
1
2
[
d̄min(BI,BGT )+ d̄min(BGT ,BI)

]
,

where d̄min(BI,BGT ) denotes average (minimum) distance from all points x from BI to
BGT .

4.2 Algorithms evaluation
The study of image segmentation algorithms performance is presented in this section.
First, few remarks connected to the input data set and experimental setup are made.
They are necessary to correctly interpret the results. Then the evaluation is carried
out which mainly consists of answering two important questions – whether there is
such segmentation method that would outperform the others in the studied set, and (if
not) whether it is possible to choose method that is sufficiently good in the majority
of cases. In final part (section 4.3) the results are analyzed in more detail and the
generally applicable recommendations concerning the performance of the algorithms
are proposed.

4.2.1 The input data set and evaluation setup
The algorithms for image segmentation in this thesis are evaluated on a data set of the
cross-section images of the artworks described in the introduction (section 1.1). To
briefly recall the images are captured in three modalities – VIS, UV and SEM – but
they do not always form the triplet (SEM modality is often missing). There are 148
VIS images, 148 UV images and 89 SEM images in the data set. The SEM images are
grayscale, but since the other two modalities are in RGB colorspace, we can evaluate
the performance of the image segmentation algorithms in different colorspaces (or
their subspaces) like LUV or LAB [73]10. Before the very evaluation the images have
to be preprocessed using procedures described in chapter 3. Especially handling the

10Naturally this applies only to UV and VIS images. SEM images are processed as grayscale. Also
not every colorspace or its subspace is used for every segmentation method. Only those with meaningful
results are included in the studied set. Finally, not every segmentation algorithm is able to work with
full color data.
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grinding artifacts is important as they influence the image segmentation results and
their removal may improve the performance of specific methods (as was shown on
example in figure 3.3). A study was conducted to find out which segmentation methods
from the set are liable to grinding artifacts. The original or preprocessed image is used
as an input for different segmentation methods in the following sections according to
the study findings.

Next remark regarding the input data set concerns ground truth images as the ref-
erence standard for the evaluation of the image segmentation algorithms performance.
They were obtained manually for each image in the input data set. The delineation
of the sample boundary (i.e. the foreground) is a troublesome process even for the
art restorer because of the difficulties mentioned earlier. The object boundary is not
always clear. Sometimes the top or the bottom material layer is not even visible be-
cause the lack of contrast to the background or due to its properties (e.g. top varnish
layer is not visible in SEM modality). This is the reason why the ground truth images
of one cross-section sample may be slightly different for each modality. However the
final binary masks produced in cooperation with ALMA represent suitable reference
standard. There is an example of GT masks for one cross-section in all modalities in
figure 4.1.

The second group of remarks is dedicated to the algorithms’ parameters setting and
their initialization. The behavior and so the output of the selected image segmentation
algorithms can be considerably influenced by various setting of their input parameters.
The parameters of some methods are plainly interpretable and as such they can be
adjusted appropriately to obtain the best results. For the rest the experiments with
different sets of parameters were performed and the parameter set with the best output
was selected. The same goes for the parameter of BHD quality index, which is the
only quality index with parameter.

The second issue is the initialization of some segmentation methods. For example
the region growing demands the indication of the initial seed points. Considering the
properties of the images the pixels with the most typical intensity on the border of the
image (i.e. the mode) can be taken as the seed points. The algorithm then groups
the pixels similar to the seeds by intensity with given tolerance (given as a parameter
and added to the abbreviation, e.g. RG_25. There are 7 different parameters used in
the studied set). The GrabCut algorithm requires user initialization in the form of a
rectangle with a potential foreground inside. This task is done automatically in our
case and the rectangle is set to cover the most of the image except for the narrow band
of pixels around the image border.

Finally, the aim is to obtain the final masks without small noisy regions in the
background and with the smooth border of the foreground. Hence, the resulting binary
masks after the segmentation are slightly post-processed using mathematical morphol-
ogy.

4.2.2 Single best segmentation method
The goal of this subsection is to find out whether there is such image segmentation
method in studied group of methods that solely outperforms the others in processing
the input images in terms of quality. That means if there is method which gives better
segmentation result for significant majority of images (or for each image in extreme
case) in the data set than every other method in the group. If so, use of such method
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(a) SEM

(b) UV

(c) VIS

Figure 4.1: Example of ground truth masks. In (a)-(c) in the left column there are
images of one cross-section sample taken in all three modalities (SEM, UV and VIS).
In the right column there are respective ground truth binary masks. White is for fore-
ground, black is for background. Cross-section images courtesy of ALMA.
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SEGMENTATION METHODS

QUALITY

INDICES }
IMAGE

Figure 4.2: Workflow for denoting the best method for one image. Each quality index
selects the best method (gray squares on the left side of the arrow). The majority rule
is then applied to obtain the best segmentation method.

Algoritmus 4.1 Denotes the best segmentation algorithm for an image
Require: image I

for all Q from the set of quality indices do
result← empty vector
for all M from the set of segmentation methods do

compute Q on the result of M on I to obtain value valQ
result(M)← valQ

end for
MQ← argmax

M
{result(M)} {or min depending on the index}

end for
apply majority vote on all MQ to obtain MBEST
return MBEST

would be of general preference to solve background removal problem of similar data.
To study prevalence of any method first we need to denote the best segmentation

algorithm for every image in input data set separately (see figure 4.2 for visualization
of the procedure and algorithm 4.1 for pseudocode). Ten quality indices (described
in section 4.1.2) have to be computed for every such image and every segmentation
algorithm. Then the algorithm with the best result may be picked by each index for
each image. It is the algorithm with the best correspondence to the respective ground
truth, so the algorithm with maximum (or minimum) index value is picked. After this,
there are ten possibly different segmentation methods selected by each quality index
for every image. To obtain single decision for every image some combination rule has
to be applied. Since the quality indices can be interpreted as ten different voters, voting
rules can be successfully used in this situation. In our case the relative majority rule
is considered. It means that for every image the segmentation method which is the
most frequently selected as the best one by individual indices is the best segmentation
method for the particular image overall. This gives us the best segmentation method
for every image in input data set.

It would be useful to verify that the best segmentation method selected by quality
indices according to the described procedure is also visually the best segmentation
method from the set available for each image. Therefore visual comparison of all the
segmentation results for every image was performed with extra focus on cases where
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Figure 4.3: Graph of number of occurrences among the best segmentation methods for
each method in SEM modality. Felzenszwalb’s method, region growing (with param-
eter 5) and Mean Shift algorithm are the most successful methods. The majority of
methods has however two occurrences at most.

the result of the selected best method was not too close to the ground truth (we need
to verify that there is no better result available). The analysis leads to conclusion that
the quality indices behave correctly in a vast majority of cases. The selected result
is either one of the many proper ones or it is the only viable output. If there is no
satisfactory result of any segmentation method, then the one visually most plausible
is often selected. However there are some cases where the indices (or majority vote)
do not decide entirely correctly. The selected result is not visually the best available
though it is very similar to it. In such cases the decision of the indices is usually far
from being unanimous. Each index may favor a different method and final decision
using majority vote would be supported by small number of indices.

In any case, we have the best segmentation method denoted for every image in
input data set. The key conclusion of this section is based on a distribution of segmen-
tation methods among the best methods selected by quality indices and voting for each
image. In this section we focus only on the most frequent segmentation methods which
have potential to be the best. The results are presented separately for each modality.
They naturally differ due to distinct character of those modalities and their input im-
ages. This gives us opportunity to study performance of the algorithms in different
conditions.

The two most frequent segmentation methods in SEM modality are Felzenszwalb’s
method (GC_FH) and region growing (with parameter equal to 5 – RG_5) with 12 oc-
currences out of 89 possible (number of SEM images in total) each among the best
methods. They are followed by Mean Shift algorithm (MS) and Rousson-Deriche ap-
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(a) Original SEM image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of GC_RD

(e) Final segmented mask of IMJ_PER (f) Final segmented mask of RG_5

Figure 4.4: Results of the four most successful image segmentation algorithms in SEM
modality. In (a) there is an original SEM image. Ground truth mask is in subfigure (b).
The image is segmented by GC_FH (c), MS (d), RG_5 (e) and GC_RD (f). Image in
(a) courtesy of ALMA.
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Figure 4.5: Graph of number of occurrences among the best segmentation methods
for each method in UV modality. Mean Shift is by far the most successful method
with colorspace versions of multiscale normalized cut, K-means, GrabCut and Felzen-
szwalb’s method behind.

proach (GC_RD). The rest is featured in figure 4.3. 19 methods out of 43 have zero
number of occurrences. Several important conclusions can be made based on this his-
togram. First and the most importantly, there is no segmentation method which clearly
outperforms the others (12 occurrences for MS out of 89 are not sufficient enough).
Second, region growing methods are quite successful, especially with smaller values
of the parameter. Finally, thresholding algorithms do not perform well individually
(though there are 16 occurrences in total for thresholding). Figure 4.4 shows an exam-
ple of results of the four most successful methods.

The situation in UV modality is rather different. MS is clearly the most successful
method. It is better than any other method in 34 cases out of 148 (the total number of
UV images). K-means (KM, in AB subspace of LAB colorspace), GC_FH, GrabCut
(GC_R, in RGB) and multiscale normalized cut (MNC, in grayscale) follow with 12–
14 occurrences. Half of the methods (25 out of 52 precisely) are not among the best
methods in at least one case. The rest is displayed in figure 4.5. As in SEM modal-
ity there is no clear winner which could be mechanically used for segmentation of
UV images. MS is indeed very successful, but it outperforms the others only in quar-
ter of cases which is not sufficient. Surprisingly, GC_RD and Chan-Vese approach
(GC_CV) fail completely with one and zero occurrences respectively. Region growing
does not perform that well as in SEM modality. Thresholding methods represent only
a complement to more successful methods.

Finally, the results for VIS modality are presented. MS stays the most frequent
among the best methods for each image with 40 occurrences out of 148 possible. Ver-
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of RG_25

Figure 4.7: Demonstration that the selected best method is not perfect for all images.
The image in (a) is better segmented by region growing with parameter 25 (RG_25,
in (d)) than by Mean Shift (MS, in (c)) which is the best method in VIS modality.
RG does not perform nearly that well overall. In (b) there is a ground truth image for
reference. Image in (a) courtesy of ALMA.

sions of GC_R and MNC in various colorspaces and GC_FH follow with roughly 10
occurrences. The rest can be seen in histogram in figure 4.6. 17 methods out of 50 are
not selected as the best method at least once. The conclusions for UV modality hold
also here. MS outperforms the other methods in lots of cases, nevertheless not in the
significant majority. GC_RD and GC_CV approaches fail again. Region growing is
not very successful and where it is, the bigger parameter values are used. In contrast to
UV, thresholding methods represent alternative to more sophisticated methods. They
are selected as the best ones for 31 images in total.

Based on these facts we can say that there is no segmentation method which sig-
nificantly outperforms the other segmentation algorithms in the set. It happens only
in fraction of cases (13–27 percentage depending on modality). The use of the most
frequent method mentioned in previous paragraph (e.g. MS for UV modality) for back-
ground removal in images similar to those in our data set is not sufficient for achieving
perfect results (see figure 4.7 for example of an image where the best method does not
perform that well). It is important to keep in mind that potential user usually does not
have the ground truth images, so he cannot select the individual best method for every
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Algoritmus 4.2 Denotes the best average segmentation algorithm overall
for all Q from the set of quality indices do

result,medians← empty vectors
for all M from the set of segmentation methods do

for all I from the set of input images do
compute Q on the result of M on I to obtain value valQ
result(M, I)← valQ

end for
medians(M)←median

I
{result(M, I)}

end for
MQ← argmax

M
{medians(M)} {or min depending to the index}

end for
apply majority vote on all MQ to obtain MBESTAVG
return MBESTAVG

sole image. Additional conclusions can be made from the results. MS, GC_FH, GC_R
and MNC often perform well. But also more straightforward approaches such as RG
or thresholding can be used to achieve good results.

4.2.3 Best average segmentation methods
The evaluation in the previous section is not entirely fair. The focus was on finding
a segmentation method which was the best for significant majority of images. There
was no such method in the studied set. However what if there is a method which
is good enough (and not necessarily the best) for vast majority of the images. We
look for method which is comparable to the best method in case of easy to segment
images (majority methods can segment this image with satisfactory results) and does
not completely fail in case of worse images (where most of the methods fail), i.e. the
best average segmentation method. Such method (if found) could be used as number
one choice to solve the image segmentation problem.

The starting point for the evaluation is the same as in the previous section. The
values of ten quality indices are computed for each image and segmentation method.
However following steps differ from the previous procedure (see algorithm 4.2). There
are so many values as there are images for every pair of quality index and image seg-
mentation method. Median of these values is the average performance of segmentation
method according to the respective index. The best average method is thus the method
with the highest median (or the lowest depending on the index). Finally the major-
ity rule denotes the best average segmentation method as a consensus of all quality
indices. The median is preferred over the mean because vectors of numbers often con-
tain several outliers which would distort the results inappropriately11. Table 4.2 shows
median values for each quality index and several selected segmentation methods in
SEM modality.

Felzenszwalb’s method (GC_FH) and Rousson-Deriche approach (GC_RD) are
the two best average methods for SEM modality (they were selected equally by the

11Outlier means that segmentation method segments some image exceptionally well or poorly. Outlier
is the value of the quality index for such image. We are interested in average performance which has to
be stable despite the outliers. That is why the median is more suitable for the task.
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Quality indices
Segmentation BHD HD RI ARI VI
methods [0,1] [0,1] [0,1] [−1,1] [0, . . .)
GC_RD 0.84 (0.12) 0.98 (0.03) 0.96 (0.06) 0.90 (0.15) 0.29 (0.31)
GC_FH 0.82 (0.13) 0.98 (0.03) 0.96 (0.06) 0.90 (0.20) 0.28 (0.24)
MS 0.82 (0.14) 0.97 (0.04) 0.95 (0.08) 0.88 (0.23) 0.33 (0.34)
GC_CV 0.84 (0.14) 0.97 (0.06) 0.95 (0.11) 0.88 (0.31) 0.32 (0.37)
IMJ_IME 0.81 (0.14) 0.97 (0.04) 0.94 (0.07) 0.89 (0.20) 0.32 (0.31)
RG_10 0.82 (0.15) 0.97 (0.05) 0.94 (0.10) 0.87 (0.23) 0.33 (0.38)
IMJ_TRIANGLE 0.77 (0.18) 0.97 (0.09) 0.93 (0.15) 0.86 (0.39) 0.39 (0.47)
GC_R 0.73 (0.22) 0.96 (0.10) 0.93 (0.17) 0.82 (0.41) 0.37 (0.45)
KM 0.63 (0.17) 0.87 (0.20) 0.78 (0.27) 0.40 (0.55) 0.77 (0.57)
IMJ_OTSU 0.61 (0.17) 0.84 (0.18) 0.74 (0.24) 0.38 (0.53) 0.82 (0.48)
TNC 0.49 (0.29) 0.81 (0.28) 0.70 (0.34) 0.01 (0.84) 0.81 (0.55)
RG_70 0.49 (0.09) 0.75 (0.19) 0.64 (0.17) 0.02 (0.19) 0.93 (0.28)
MNC 0.50 (0.05) 0.57 (0.17) 0.51 (0.05) 0.01 (0.09) 1.66 (0.35)
IMJ_SB 0.46 (0.04) 0.70 (0.19) 0.58 (0.12) 0.00 (0.00) 0.88 (0.24)

FMI DC NMI HAUSD MASD
[0,1] [0,1] [0,1] [0, . . .) [0, . . .)

GC_RD 0.96 (0.05) 0.97 (0.07) 0.82 (0.22) 40.31 (65.19) 4.57 (8.03)
GC_FH 0.96 (0.04) 0.96 (0.10) 0.83 (0.26) 32.60 (54.43) 4.43 (7.28)
MS 0.96 (0.07) 0.95 (0.11) 0.81 (0.23) 45.50 (68.99) 5.71 (10.63)
GC_CV 0.96 (0.08) 0.94 (0.16) 0.79 (0.33) 53.48 (71.93) 5.79 (13.93)
IMJ_IME 0.96 (0.06) 0.95 (0.09) 0.80 (0.25) 48.71 (94.05) 5.82 (11.98)
RG_10 0.95 (0.08) 0.95 (0.10) 0.78 (0.26) 57.24 (97.56) 6.40 (12.15)
IMJ_TRIANGLE 0.95 (0.10) 0.93 (0.26) 0.77 (0.38) 54.58 (127.65) 7.00 (22.40)
GC_R 0.94 (0.11) 0.92 (0.16) 0.74 (0.37) 56.04 (71.01) 7.98 (21.90)
KM 0.85 (0.17) 0.62 (0.46) 0.39 (0.43) 118.17 (177.56) 29.42 (47.81)
IMJ_OTSU 0.82 (0.16) 0.60 (0.48) 0.36 (0.40) 124.39 (192.89) 34.48 (58.20)
TNC 0.81 (0.19) 0.12 (0.89) 0.05 (0.71) 361.82 (449.15) 111.70 (129.26)
RG_70 0.78 (0.11) 0.11 (0.37) 0.08 (0.20) 370.18 (333.21) 98.91 (82.07)
MNC 0.59 (0.09) 0.39 (0.31) 0.02 (0.11) 197.50 (75.12) 63.94 (23.54)
IMJ_SB 0.76 (0.10) 0.00 (0.01) 0.01 (0.02) 523.64 (181.98) 144.72 (41.20)

Table 4.2: Table with median values and interquartile ranges in brackets (both rounded
to two decimal places) of all ten quality indices for several selected segmentation
methods in SEM modality. Median value is the average performance of a segmen-
tation method on a set of images according to a quality index. There are the six most
successful methods, several representative methods in the middle and the two worst
methods according to evaluation in section 4.2.3 (in this order). SEM modality is cho-
sen for demonstration due to bigger variance in indices values for different methods in
different places of the ranked list than it is in other two modalities.
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indices). If we look on the problem of finding the best average segmentation method
even in more detail and consider first five methods for each quality index (assuming
that the lists for each index are sorted by median values, thus by performance), we can
see that GC_FH and GC_RD occupy the first two positions of almost every list (there
is only one exception) in SEM modality (see table 4.3(a)). Considering the median
values there is a noticeable gap between these two and next methods in the list. This
second cluster is formed by Chan-Vese approach (GC_CV), Mean Shift (MS) and min-
imum error thresholding (IMJ_IME). Apart from them there are several occurrences
of region growing with parameters 10 and 15 on lower positions. MS holds its supe-
riority in UV modality even as the best average method (table 4.3(b)). It is first for
9 out of 10 quality indices (only HAUSD votes for GC_FH) with substantial perfor-
mance gap from the second position which is occupied almost only by GC_FH (except
for HAUSD naturally). Two colorspace versions of multiscale normalized cut (MNC,
RGB and grayscale) fill the third and the fourth position. The last one with another
noticeable loss in performance is mainly region growing with parameter 25 (RG_25).
There are sporadic occurrences of other methods from studied set on lower positions,
but nothing of importance. The result in VIS modality is not so clear. Majority vote
denotes MS to be the best average method, since five quality indices vote for it (ta-
ble 4.3(c)). Nonetheless four indices are for MNC (in RGB) and one for GC_FH. The
rest of the first five positions is shared by plenty of different methods including thresh-
olding, RG, K-means etc. The conclusion is that there exist four very good methods
which can be used as number one choice depending on the modality. It is GC_FH and
GC_RD for SEM, MS for both UV and VIS modality, in the latter case supported by
MNC (in RGB).

The evaluation of previous paragraph can be done more rigorously with the removal
of the following shortcoming in addition. The choice of the best average method (and
four runners up) was based on the position within ten sorted list coming from ten qual-
ity indices. Unfortunately the situation when one method was chosen as the best one
by several indices and given a lower rank by others was not taken into account be-
cause only first five positions were considered. Therefore, the results could be little bit
inaccurate. This drawback can be amend by exploiting the information about perfor-
mance of all the methods from all the indices, i.e. by processing complete sorted lists
of indices’ values. The goal is to combine all ranked lists to the single ordering which
would express input preferences in the best way. This is called a rank aggregation
problem and is extensively studied in different fields (elections, web search etc.). See
for example [26] in context of web searching. We use RankAggreg package [72] for R
statistical software12 for our evaluation. It implements optimization techniques neces-
sary to produce final ranked list13. As a result there is one list of image segmentation
methods sorted by their performance (according to quality indices) for each modality.
This list represents consensus of ten input lists as individual voters with preferences.

It would be reasonable to deeply analyze positions of every segmentation method
in the final lists. Hence we focus only on several prominent methods, interesting results
and general position of different approaches (comprehensive analysis is given below

12http://www.r-project.org
13Optimization is unavoidable because due to amount of data (ten relatively long lists) the exact

solution cannot be computed in feasible time. However exact solution can be computed for short input
lists and they more or less match the corresponding part of presented optimization results. Unfortunately
implemented optimization algorithms do not necessarily find a global optimum and can get stuck in a
local one. The scripts were therefore executed many times to obtain the solution as good as possible.
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SEM GC_RD, GC_FH, MS, GC_CV, IMJ_IME, RG_10, RG_15, HT_ME,
IMJ_TRIANGLE, IMJ_MEAN, HT_MEAN, HT_IME, GC_R,
IMJ_HUANG, RG_20, IMJ_LI, RG_5, RG_25, KM, HT_INTER,
HT_INTERI, IMJ_DEF, HT_CONCAV, IMJ_ISO, IMJ_OTSU, RG_50,
HT_MOM, IMJ_MOM, IMJ_PER, HT_IM, TNC, IMJ_IM, HT_MEDIAN,
IMJ_RENYI, RG_70, IMJ_YEN, HT_MIN, HT_MAXLIK, HT_ENT,
IMJ_MAXENT, IMJ_MIN, MNC, IMJ_SB

UV MS, GC_FH, MNC_GRAY, MNC_RGB, RG_20, GC_R_LAB(AB),
RG_25, GC_CV, RG_15, IMJ_TRIANGLE, KM_LAB(AB), HT_MEAN,
IMJ_HUANG, RG_50, TNC, GC_R_LAB, IMJ_LI, IMJ_MEAN,
RG_10, KM_GRAY, KM_LAB, RG_70, HT_INTER, HT_ME,
HT_INTERI, IMJ_DEF, KM_RGB, MNC_LAB(AB), IMJ_OTSU,
GC_R_LAB(L), HT_CONCAV, IMJ_ISO, MNC_LUV(L), HT_MOM,
GC_RD, IMJ_MOM, HT_IM, HT_MAXLIK, IMJ_IM, GC_R_RGB,
HT_MIN, IMJ_YEN, IMJ_MIN, IMJ_RENYI, HT_ENT, IMJ_MAXENT,
IMJ_IME, RG_5, HT_IME, IMJ_PER, HT_MEDIAN, IMJ_SB

VIS MS, MNC_RGB, KM_RGB, IMJ_OTSU, IMJ_ISO, IMJ_DEF,
IMJ_HUANG, HT_INTERI, TNC, MNC_LUV(L), GC_CV, HT_INTER,
KM_LAB, KM_GRAY, IMJ_MEAN, IMJ_MOM, IMJ_IME, HT_MEAN,
HT_MOM, IMJ_IM, RG_70, RG_50, IMJ_LI, MNC_GRAY,
HT_IM, IMJ_RENYI, GC_FH, IMJ_MIN, HT_MAXLIK, HT_MIN,
GC_R_LUV(UV), IMJ_YEN, KM_LAB(AB), RG_25, MNC_LAB(AB),
RG_20, HT_ENT, GC_R_LUV(L), RG_15, IMJ_TRIANGLE, GC_RD,
HT_CONCAV, HT_ME, IMJ_PER, IMJ_MAXENT, HT_MEDIAN,
RG_10, HT_IME, RG_5, IMJ_SB

Table 4.4: Final lists of segmentation methods sorted according to their average per-
formance (the best in the first place) in all three modalities.
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in section 4.3). The complete lists are appended in table 4.4. Rousson-Deriche ap-
proach (GC_RD) and Felzenszwalb’s method (GC_FH) stay the best average methods
in SEM modality with that GC_RD is the best one. This result is little bit surprising,
because GC_RD was not so successful as the best method overall (in previous sec-
tion 4.2.2) and nothing indicated that it would outperform the others on average. Mean
Shift algorithm (MS) and Chan-Vese approach (GC_CV) follow the two. Iterated and
normal version of minimum error thresholding is very successful (both ImageJ and
HistThresh, i.e. IMJ_IME, HT_IME and HT_ME), as well as Triangle and Mean ap-
proaches (IMJ_TRIANGLE and IMJ_MEAN). Region growing (RG) with parameters
10 and 15 occupies position 6 and 7 in the list, other parameters are scattered in the
middle. From already mentioned methods K-means (KM) and GrabCut (GC_R) rather
disappoint with its results and multiscale normalized cut (MNC) completely fails with
the last but one position.

MS is the best average algorithm in UV modality, which only confirms its domi-
nance. It is followed by GC_FH and grayscale and RGB versions of MNC, which is
the opposite to SEM modality, where grayscale version fails. Parameters 15, 20 and
25 of RG are suitable for UV modality as they are placed in top 10 also with GC_CV
method. IMJ_TRIANGLE, IMJ_MEAN, IMJ_HUANG and IMJ_LI are the most use-
ful thresholding methods. Several colorspace alternatives of KM are ranked in the top
half. Contrary to SEM modality GC_RD method is not very good as it is ranked in
bottom half of the list. The least successful method is Shanbhag (IMJ_SB) approach
to thresholding. It is interesting that this method was voted as the best one overall for
one image (previous section 4.2.2) despite its uselessness on average.

MS is the best average algorithm also in VIS modality, but otherwise the situation
differs a lot compared to previous two modalities. In the second and third place there
are RGB version of MNC and RGB version of KM algorithm. Apart from them top
10 consists further from thresholding methods, IMJ_OTSU, IMJ_ISO, IMJ_HUANG
and Tao’s thresholding method (TNC) to name several. GC_CV algorithm produces
satisfactory results. GC_FH, GC_R or GC_RD do not perform very well. Concerning
RG approach its results are generally worse than in the previous two modalities. How-
ever higher values of parameter like 50 or 70 are definitely better than smaller ones.
IMJ_SB thresholding is again the worst segmentation method on average.

The evaluation in this section delivers very interesting results. The construction
of lists of segmentation methods sorted by algorithms’ performance according to ten
selected quality indices is the most important. The ordering allows the future user to
pick the suitable segmentation method for his problem and character of data (which are
represented by different modalities in this work). The lists also provides an insight to
performance of different segmentation methods and their comparison. The conclusions
about the performance depend on the specific modality, but generally some resume can
be made. Mean Shift algorithm performs very well in all three modalities and can be
declared the best average method overall. Felzenszwalb’s method, Rousson-Deriche
and Chan-Vese approaches, and multiscale normalized cut may deliver excellent results
as well. Region growing is not a bad choice either, but its performance depend on the
chosen parameter. Thresholding can be good alternative too, but the choice of specific
algorithm has to respect the properties of data. Segmentation methods which take
place at the end of the lists perform badly on average, however that does not necessarily
mean that they perform badly on every image (for example see figure 4.7, where region
growing outperforms the best method on average – Mean Shift. RG_25 is ranked in
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the bottom half.). Furthermore they may provide important diversity for segmentation
fusion/combination or other processing (chapter 5). More discussion and conclusions
are presented in section 4.3.

One remark concerning correctness of the above evaluation has to be made before
closing this section. The comparison does not take into account the absolute values of
quality indices. So it is possible that the best average segmentation method is certainly
better than the rest of the methods in the studied set, but absolutely its performance is
poor with useless results. However it is not the case. The segmentation methods at the
top of the lists obtained relatively high values from the quality indices (and vice versa
for the methods at the bottom). See table 4.2 for reference in case of SEM modality.
The further evaluation was performed to support this conclusion more precisely. The
output of segmentation method on one image was marked good if its index value was
above specified threshold (and bad if it was below another). Afterward all the methods
were ranked according to the number of their occurrences in a set of good outputs and
a set of bad outputs. The results of this evaluation did not differ much with the results
of this section described above.

4.3 Discussion of the achieved results
In this section, deeper analysis of the evaluations and their results is presented. We
will use it to give recommendations for the application of studied image segmentation
methods in different situations, i.e. for different data. First the distinct features of each
modality (SEM, UV and VIS as shown in figure 1.2) are examined in more detail. Then
the performance of each segmentation approach and its connection to input images (or
modality) is evaluated to make clear in which situations which image segmentation
methods perform the best.

SEM modality images are products of scanning electron microscope. This tech-
nique enables to study chemical contrast of different materials. In the image it is ex-
pressed by varying texture of the cross-section in contrast to relatively homogeneous
background. Thus the boundary edges between the cross-section as foreground ob-
ject and the background are usually sharp and clear. The cross-section has generally
different intensity values than the background. All this could make the segmentation
quite easy. However in case of our data set the task is sometimes complicated with the
artifacts induced by scanning microscope, and certain materials used in the paintings
do not have sufficient contrast response so the boundary edge is not sharp enough.

UV modality is similar to SEM in that the background is homogeneous. UV light
reveals a possible fluorescent property of certain materials. Such materials have bright
response (typically green, turquoise or blue) in the image. Non-fluorescent materials
are on the other hand often dark and they blend with the background which is dark by
definition due to absence of fluorescent property of polyester resin. Another problem is
that the non-surface parts of the cross-section can shine through transparent resin and
form blurred shadows on the borders of the cross-section. Satisfactory background
removal can therefore be quite challenging.

VIS modality captures optical properties in visible spectrum. The sharpness of
cross-section boundary varies from high contrast edge to fluent transition to back-
ground depending on the material color. The transparency of polyester also remains a
problem in VIS modality. The difficulty of background removal is thus similar to UV
modality in this aspect. In addition the background is not uniform. The lighting can
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Set of six VIS images demonstrating different properties which cause prob-
lems for image segmentation. In figure (a) there is neat and relatively easy to segment
image for comparison. Other images demonstrates non-uniform illumination of the
background ((e), (f)), problematic transparency of the polyester resin ((b), (c)), grind-
ing artifacts ((c)-(f)), air bubbles and defects in the background ((c), (f)) and finally
unclear boundary edge between cross-section and background (d). Image courtesy of
ALMA.
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be reflected unevenly and there can be lot of different artifacts like air bubbles which
are not visible in other modalities. Also grinding artifacts may be a problem as was
mentioned before. Figure 4.8 gives examples of distinct properties of VIS images.

To summarize key properties of the modalities SEM modality generally represents
images with sharp and contrast boundary edges, relatively homogeneous background
and often clear separation of object and background intensity values. UV modality im-
ages have uniform background, but unclear boundary edges between background and
certain (non-fluorescent in our case) parts of the foreground object, also transparency
of the resin is the problem. VIS images are similar to UV in problems with unclear
boundary edges and transparency of the resin. Difference is in more problematic back-
ground which is not uniform and contains artifacts.

Discussion about the usability of studied segmentation methods starts with simpler
approaches, i.e. region growing, thresholding and K-means14. Region growing gen-
erally delivers satisfactory results when there is relatively homogeneous background
and boundary between desired segmented object and background is apparent. In our
case it is demonstrated on SEM and UV modalities where the background surround-
ing the cross-section is more or less uniform. Tolerance to non-uniformity is given by
parameter. The smaller values of parameter are sufficient for images in SEM, while
slightly higher values are required for UV to compensate the transparency mentioned
above. Region growing is then placed in top 10 of the best average methods. VIS
modality is different. The background there is more variable in such way that it al-
most prohibits compensation with high parameter values (region growing would easily
cross the border between background and foreground object in that case). This be-
ing said high values of parameter are more suitable in VIS. Overall region growing
approach can provide satisfactory results comparable to more complicated methods if
the assumptions of relatively uniform background and clear border are met.

Thresholding methods (not only those in the studied set) differ in the way they find
the threshold to divide pixels into two groups. Strictly bimodal histogram would be
an optimum situation, however such case is not very common in our input data set
(and in real images neither). Therefore some methods are more successful in han-
dling non-optimum case than others. In SEM modality where the background pixels
in histogram are easier to separate Triangle (IMJ_TRIANGLE), Mean (IMJ_MEAN)
and minimum error method (IMJ_IME) are the most successful. On the other side of
spectrum there are entropy-based methods (IMJ_MAXENT, IMJ_RENYI, IMJ_SB,
HT_ENT) and several others (HT_MAXLIK, IMJ_YEN, IMJ_MIN). In UV modal-
ity the intensity values of the foreground often blend with those of the background,
which is difficult condition for thresholding. Triangle, Huang (IMJ_HUANG), Mean
and Li (IMJ_LI) methods handle it well on average. The spectrum of failing meth-
ods stays the same as in SEM modality. IMJ_IME produces disappointing results too.
Though the image properties of VIS modality are similar to those of UV mostly differ-
ent thresholding methods are satisfactory in VIS. Otsu (IMJ_OTSU and HT_INTER),
IsoData (IMJ_ISO, IMJ_DEF and HT_INTERI) and Huang are among the most suc-
cessful methods. Concerning Tao’s thresholding approach (TNC) it succeeds in UV
and VIS modalities, while it fails in SEM. Thus it deals better with visually hard cases
with smooth transitions between background and foreground than in cases where the
intensity values of the foreground object are clearly separated from those of the back-

14Concerning different colorspaces region growing and thresholding exploited only the grayscale
information in all three modalities. K-means was evaluated in more colorspaces.
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ground.
The results of K-means (KM) approach are highly dependent on colorspace (or

subspace) which the input data are in and on overall color profile of the images in
different modalities. Grayscale (the only one for SEM), LAB (plus AB only subspace
version) and RGB variants are analyzed. KM in grayscale produces merely mediocre
results on average in all three modalities. Same thing can be said on account of full
LAB space variant (in case of UV and VIS) with slightly better results in VIS. However
interesting results appear concerning KM in AB subspace of LAB and RGB. Both can
perform well depending on color profile of the image. In UV modality where the
images are mainly darker with dominant responses in blue or green the AB variant is
placed in top positions of the ranked list. RGB variant performs much worse. The
situation is opposite in VIS modality. RGB variant is the third best average method
while AB variant takes place in two thirds of the ranked list. It is clear that successful
use of K-means depends on the overall color dominance of input images. Generally its
results can be quite satisfactory.

After more straightforward approaches were analyzed we will now focus on more
complex segmentation methods in the studied set15. Felzenszwalb’s method (GC_FH)
performs very well being the second most successful average segmentation method in
SEM and UV modalities. However it does not perform that well in the remaining VIS
modality. The algorithm has apparent problems with converging to stable result when
the border of the object is unclear and background is not homogeneous (and in that
sense resembles the foreground object). In such cases the segmented result is often
blank image. Apart from that GC_FH can be excellent method for segmentation which
copes with other mentioned problematic image properties appropriately. Daněk’s op-
timization of Chan-Vese and Rousson-Deriche functionals is very successful for the
easy to segment images with clear and sharp border between object and surrounding
background (GC_RD is the best average method in SEM, GC_CV being the fourth).
Otherwise they struggle with unclear transitions and transparency. GC_RD fails in UV
and VIS modality, GC_CV still manages to take position in top third of the average
ranked list, but its results are often dissatisfactory. The results of multiscale normalized
cut (MNC) differ with various colorspace configurations. MNC produces very good
results when the original RGB colorspace is conserved (second place in VIS modality
and fourth place in UV modality average ranked list). Also the exploitation of only the
intensity channel (grayscale or lightness from LUV) can be profitable in case of UV
and VIS. In all other cases MNC rather fails, especially in SEM modality. GrabCut
algorithm (GC_R) provides perhaps the worst results from group of more advanced
segmentation methods and cannot be recommended for unsupervised segmentation in
similar setting. Originally it is based on user interaction and its power lies in addi-
tional adjustment of initial segmentation. Mean Shift is the last algorithm to discuss.
According to the results of evaluation it is the best average segmentation method in
the studied set. It can handle problematic image properties well and its outputs often
outperforms the rest (see section 4.2.2).

With regard to the analyses above Mean Shift algorithm should be number one

15From those Felzenszwalb’s method is applied to the images in original colorspaces. That means
grayscale in case of SEM modality and RGB colorspace in case of UV and VIS. Processing in different
colorspaces delivers comparable results. Mean Shift segmentation followed the original paper and LUV
space is used. Daněk’s version of Chan-Vese and Rousson-Deriche use the grayscale information. So
only the performances of multiscale normalized cut and GrabCut algorithm are analyzed in different
colorspaces.
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Images in general – Mean Shift algorithm would be num-
ber one choice

Image with relatively homogeneous
background and apparent boundary edge
between object and background

– Region growing with appropriate pa-
rameters
– Felzenszwalb’s method (even in the
case of not so clear boundary edge and
partial blending of the object and the
background)
– Chan-Vese and Rousson-Deriche ap-
proaches optimized by Daněk

Image with possibly unclear boundary
edges between object and background,
presence of shadows or halos around
boundaries

– Multiscale normalized cut in RGB or
applied to intensity/luminance channel

Image with easier to separate histogram – Thresholding methods Triangle, Mean
or minimum error thresholding

Image with more blended histogram – Thresholding methods Triangle,
Huang, Otsu or IsoData
– Tao’s thresholding approach

Image with color composition similar to
UV modality

– K-means in AB subspace of LAB col-
orspace could deliver good results

Image with color composition similar to
VIS modality

– K-means applied to whole RGB image
could be good choice

Table 4.5: Table contains generalized findings of the evaluation. Mean Shift algorithm
should be number one choice segmentation method. Use of other methods depends on
the input image properties. Details and further results are described in the text.
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Quality indices
Segmentation
methods

RI [0, 1] DC [0, 1] NMI [0, 1]
SEM UV VIS SEM UV VIS SEM UV VIS

All methods 0.75 0.75 0.85 0.64 0.75 0.84 0.39 0.42 0.55
GC_FH 0.96 0.90 0.88 0.96 0.91 0.84 0.83 0.71 0.65
GC_CV 0.95 0.82 0.87 0.94 0.83 0.86 0.79 0.51 0.59
GC_RD 0.96 0.74 0.71 0.97 0.76 0.74 0.82 0.44 0.44
MS 0.95 0.91 0.88 0.95 0.92 0.88 0.81 0.72 0.65
MNC 0.51 0.88 0.85 0.39 0.88 0.86 0.02 0.63 0.56
KM 0.78 0.77 0.87 0.62 0.71 0.86 0.39 0.42 0.58
IMJ_TRIANGLE 0.93 0.81 0.73 0.93 0.80 0.80 0.77 0.51 0.45
IMJ_OTSU 0.74 0.75 0.87 0.60 0.70 0.87 0.36 0.38 0.60
TNC 0.70 0.79 0.86 0.12 0.77 0.87 0.05 0.46 0.60
RG_10 0.94 0.76 0.67 0.95 0.80 0.76 0.78 0.47 0.38

Table 4.6: Table shows a change in performance of selected segmentation algorithms
in three modalities for three different quality indices. In the first row there is an average
performance (median) of all the methods in studied set in all three modalities according
to the selected quality indices (RI, DC and NMI). In next rows there is performance of
selected methods from the studied set. It is clear that more successful methods from
the evaluation like MS perform the best in SEM modality, while in UV and VIS the
average performance of all methods is the same or higher. There are some methods
(e.g. MNC, KM) which perform better in VIS and UV than in SEM. All presented
methods are the grayscale versions.

choice for image segmentation of related data. However several other methods could
perform well while respecting above conditions, i.e. MNC, GC_CV, GC_RD or GC_FH.
Should the execution time be an issue GC_FH especially would be an excellent choice.
In that situation even plenty of thresholding methods or region growing could provide
good results with some limitations. Table 4.5 sums up recommendations on the use of
segmentation methods depending on the input image properties.

Concerning three modalities it is confirmed that SEM images are easier to segment
for better methods thanks to clear boundaries between foreground object and relatively
uniform background. The most successful segmentation methods like e.g. Mean Shift
perform there generally much better than in UV and VIS where the segmentation is
complicated by image properties. However the average performance of all algorithms
is higher in VIS (and UV) than it is in SEM modality. In SEM there are lot of methods
which underperform and lot of methods which deal with the problem excellently (in-
terquartile range/variance of algorithms’ performance is high). In VIS many methods
deal with the problem comparably (interquartile range is much smaller). See table 4.6
for example of such methods and overall performance of the algorithms. Figures 4.9
and 4.10 show results of selected segmentation algorithms. More can be found in an
appendix A.

One more evaluation was performed in addition to already described procedures.
The idea was to find out what the various segmentation methods are sensitive to in the
input images. For each method the images could be clustered to three groups – where
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of KM_RGB

(e) Final segmented mask of IMJ_HUANG (f) Final segmented mask of RG_25

Figure 4.9: Results of four image segmentation algorithms. In (a) there is an original
VIS image. Ground truth mask is in subfigure (b). The image is segmented by MS (c),
KM_RGB (d), IMJ_HUANG (e) and RG_25 (f). Image in (a) courtesy of ALMA.
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of KM_RGB

(e) Final segmented mask of IMJ_HUANG (f) Final segmented mask of RG_25

Figure 4.10: Results of four image segmentation algorithms. In (a) there is an original
VIS image. Ground truth mask is in subfigure (b). The image is segmented by MS (c),
KM_RGB (d), IMJ_HUANG (e) and RG_25 (f). Image in (a) courtesy of ALMA.
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the output is good, bad and the rest. If some common features for the images in such
groups could be found, it would provide a lead on which segmentation method should
be used when such features happen to be present in an input image. Unfortunately no
common features in addition to described properties could be found in defined groups.

Finally one remark to close the evaluation. It is important to keep in mind that be-
havior of some algorithms can be influenced with parameter setting. In our evaluation
parameters are tuned to specific input data and we assume that same thing has to be
done for different data set.

4.4 Demonstration of evaluation results applicability
We now demonstrate how the findings in previous section can be exploited in at least
two different ways. First we verify that achieved conclusions hold also for different
data set of cross-section images. In the second part the applicability of evaluation
results is shown on distinct image data, i.e. biological images.

4.4.1 Testing data set of cross-section images
This section shows that the findings of previous sections hold also for different data set
of cross-section images. The data set presented in section 1.1 and used so far in the text
can be perceived as a training set. Now the same procedures of evaluation described in
sections 4.2.2 and 4.2.3 will be applied on a smaller testing data set.

Testing data set consists of 28 SEM images, 27 UV images and 27 images16. The
cross-section samples come from different artworks and some of the images are cap-
tured with different imaging devices. This data set is thus independent of previous
training one and can be used for applicability test.

Foremost the conclusion that there is no such image segmentation method that can
solely outperform the others in processing the input images in terms of quality (as
stated in section 4.2.2) needs to be confirmed. We follow the same procedure to denote
the most frequent segmentation methods among the best ones for every image. In
SEM modality Mean Shift (MS) and Felzenszwalb’s methods (GC_FH), two variants
of region growing (RG_5 and RG_10) are the most frequent methods. Also percentile
thresholding approach (IMJ_PER) is successful. This corresponds to the results on
the training set (see graph in figure 4.3). The situation is similar also in UV modality.
RGB version of Grabcut algorithm (GC_R_RGB), MS, GC_FH and grayscale version
of multiscale normalized cut (MNC_GRAY) are the most frequent methods there. This
is very close to graph in figure 4.5. Only MS is not so dominant here. It is however the
most successful method in VIS modality with GC_R_LUV(UV), version of K-means
(KM_LAB(AB)), MNC_LUV(L) and others behind. Thus the results correspond also
in case of VIS modality (figure 4.6 with graph for training data set). The conclusion is
that also in case of testing data set the single segmentation method is not sufficient to
perfectly process the input images.

Next we compare the best average methods. The procedure described in sec-
tion 4.2.3 is followed up to rank aggregation of sorted lists of methods created by
ten quality indices. It is reasonable to expect that the order of segmentation methods
in the aggregated lists would be similar to that achieved with training data set (except

16In training data set they are 89 SEM images, 148 UV images and 148 VIS images.

52



for variations given by smaller number of images in testing set). In SEM modality this
hypothesis is valid. The successful methods from training data sets are successful also
here and conversely methods with dissatisfactory results are similar too. GC_FH and
MS are the best average methods, Rousson-Deriche approach (GC_RD) with slightly
worse results, IMJ_PER moves notably up the list. However the order of segmenta-
tion methods is more or less the same. Situation in UV modality is a little bit more
confusing. MS algorithms takes second place after Chan-Vese approach (GC_FH).
Also ranking of other segmentation methods is more shuffled in comparison to SEM
modality. Nonetheless successful methods from training data set still perform very
good and are placed in top positions of the list. VIS modality ranked list on the other
hand does not deviate much from that of training set. MS is still by far the best average
segmentation method and also the rest of the methods hold their positions.

The conclusions of segmentation methods evaluation thus hold also for testing data
set of cross-section images. There is no image segmentation method which would
solely outperform the others on all images and the best average methods are the same
for both training and testing data sets. Figures 4.11 and 4.12 show results of selected
segmentation algorithms.

4.4.2 Biological images
In this section the applicability of evaluation results to different image data is shown.
In figures 4.13, 4.14 and 4.15 there are segmentation results of biological images.
The first figure shows the mouse retina. Specimen is colored with hematoxylin-eosin
and captured with optical microscope in visible spectrum. It closely resembles VIS
modality of cross-section images, because boundary edges are not clear enough and the
background contains plenty of debris. The second figure shows transplant mouse cere-
bellum. Cells of the transplant generate enhanced green fluorescent protein (EGFP)
so they are easily distinguishable from recipient tissue under a fluorescent microscope.
The aim is to segment whole tissue (both original and transplant) from the background.
Original tissue is however dark in contrast to green fluorescent transplant tissue and
plenty of segmentation algorithms classify it as the background. The third figure shows
2D projection of 3D rendering of an early stage mouse heart, acquired by optical pro-
jection tomography. The image shows fluorescence excitation and emission. Last two
figures resemble UV modality of cross-section images. The background is homoge-
neous and boundary edges are not so clear. The debris and other unwanted structures
are also present in the background. Although it is not as visible as in the case of fig-
ure 4.13, it makes segmentation problematic. The best average segmentation method
for UV and VIS modality is applied, i.e. Mean Shift algorithm. The results are depicted
by red boundary line in respective figures.
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(a) Original SEM image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of GC_RD

(e) Final segmented mask of IMJ_PER (f) Final segmented mask of RG_5

Figure 4.11: Results of four image segmentation algorithms. In (a) there is an original
SEM image. Ground truth mask is in subfigure (b). The image is segmented by MS
(c), GC_RD (d), IMJ_PER (e) and RG_5 (f). Image in (a) courtesy of ALMA.
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of KM_RGB

(e) Final segmented mask of IMJ_HUANG (f) Final segmented mask of RG_25

Figure 4.12: Results of four image segmentation algorithms. In (a) there is an original
VIS image. Ground truth mask is in subfigure (b). The image is segmented by MS (c),
KM_RGB (d), IMJ_HUANG (e) and RG_25 (f). Image in (a) courtesy of ALMA.
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Figure 4.13: Mouse retina colored with hematoxylin-eosin. Boundary of segmented
result by Mean Shift algorithm is depicted by red line. Courtesy of Jan Cendelín,
Faculty of Medicine in Pilsen.
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Figure 4.14: Transplant mouse cerebellum. Original tissue is dark, transplant tissue is
light green. Mean Shift algorithm correctly segments both tissues. Boundary of seg-
mented result is depicted by red line. Courtesy of Jan Cendelín, Faculty of Medicine
in Pilsen.
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(a)

(b)

Figure 4.15: 2D projection of 3D rendering of an early stage mouse heart. Boundary
of segmented result by Mean Shift algorithm is depicted by red line. In (b) the image
is adjusted to reveal structures in the background which can influence image segmen-
tation algorithms. Mean Shift however segments the foreground correctly. Courtesy of
Martin Čapek, Institute of Physiology AS CR, Prague.
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Chapter 5

Fusion of segmentation results

In section 4.2.3 we found (for each data modality) the image segmentation method
which performed the best on average on input data set. The average means that this
segmentation method often offers satisfactory results but sometimes it can fail (but not
in such scale as other methods in the studied set). Next methods in the ranked list
(the second, the third, . . . ) can behave differently (and due to their different funda-
mentals they often do) with failing on other images than the best method. Therefore
it would be useful to somehow combine the results of several segmentation methods
to remove unfavorable results and by doing so improve the overall performance of the
segmentation process. The idea of combination comes from the classifiers domain.
Kittler et al. in their paper [52] provided theoretical framework for combining clas-
sifiers. Key idea is to exploit advantages of different classifiers and eliminate their
misclassification (sets of misclassified patterns do not necessarily overlap). Similar
concept exists in clustering domain, i.e. cluster ensemble. Different clusterings of the
same data set are combined to obtain final clustering of improved quality. Topchy et
al. prove in [97] that cluster ensemble leads to better solution than individual clus-
tering components. See [33] or [100] for an extensive survey of various combination
methods and techniques. The idea of combination can be straightforwardly extended
from classification and clustering also to the problem of image segmentation, because
the segmentation method can be considered as a special kind of classifier or clustering
method. See e.g. [31, 99] for application of cluster ensembles to image segmentation.
Medical imaging represents another interesting domain where the concept of combina-
tion of segmentation results finds an application in so-called multi-atlas segmentation.
Input volume (brain for example) is first transformed to match (it is registered) mul-
tiple known volumes in a collection (set of atlases) which are pre-segmented (usually
manually by expert). The inverse transforms are then applied to known atlas segmen-
tations and transformed label maps are combined to final segmentation result of the
input volume (see [5, 80, 103] for examples).

In our case many of the published methods either cannot be used or they are not
appropriate for the task. We deal with combination of binary results which makes the
problem somewhat easier. Some of the methods (especially from multi-atlas segmen-
tation domain) use also the intensity values of the original images next to results of the
segmentation (labels) to improve the performance. In our problem domain this would
however mean to substitute a behavior of image segmentation algorithm which would
cause a vicious circle. Therefore we mainly exploit findings of previous chapter to bet-
ter the outcome of image segmentation methods. To successfully resolve this problem
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(a) Original SEM image (b) Ground truth image mask

(c) Foreground pixel coverage (d) “Non-segmented” pixels

Figure 5.1: Example of combination limits. In subfigure (c) there is foreground pixel
coverage of SEM image in (a). It is obtained as an intersection of GT mask (b) and
union of results of all segmentation algorithms. In (d) there is a difference of (b) and
(c) – these pixels are not labeled as foreground by any segmentation method. Image in
(a) courtesy of ALMA.

we have to decide which segmentation methods to combine and what method of com-
bination to use. In the following sections we present couple of different approaches to
these two questions. They all combine computed binary masks (segmentation results)
on a pixel level. First the majority vote (MV) rule applied on limited subset of the
segmentation methods is studied. Then the various methods of weighted voting with
whole set of segmentation methods are addressed.

Performance of all combination methods is compared to that of the best average
segmentation method and possible improvement is evaluated. However it is important
to keep in mind that the combination could not overcome limitations given by input
segmentation results. In some images there are foreground pixels (denoted by GT) that
are not correctly labeled as foreground by any of the segmentation methods in the stud-
ied set. In such cases combination cannot overcome this fact and cannot approximate
to the ground truth segmentation. Fortunately such cases are quite rare in the data set
and “non-segmented” pixels are usually on the foreground boundary. See figure 5.1
for an example.
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5.1 Majority vote rule and limited subset of methods
Generally it holds that the input set of methods (results, clustering or classifiers) has to
be sufficiently diverse to achieve the best possible result of combination but at the same
time if there are frequently failing methods included the final combination is spoiled
(see e.g. [86] in context of neural networks classification). In terms of image seg-
mentation we need to combine such segmentation methods which perform very well
generally, do not fail too often and their results differ in important details (boundaries).
We use evaluation results from previous chapter to achieve this. The best three average
methods form the input set to combination in each modality. They perform the best
from the studied set of methods, do not fail to often and their results are sufficiently
diverse thanks to different fundamentals of each segmentation method. The combina-
tion of more than three methods was found dissatisfactory because the input results
were more frequently bad which negatively influenced the output of combination (it is
discussed in more detail below). Concerning combination method the majority vote is
used. Therefore the pixel of an input image is labeled as foreground if at least two of
the three methods label it as foreground. Otherwise it is background. We show that
even such uncomplicated combination method can achieve considerable improvement
of the image segmentation.

Results of segmentation combination are thus generated for every image in each
modality using the three best average methods. It is Rousson-Deriche approach, Felzen-
szwalb’s method and Mean Shift for SEM modality, Mean Shift, Felzenszwalb’s method
and multiscale normalized cut in grayscale for UV modality, and finally Mean Shift,
multiscale normalized cut in RGB and K-means in RGB for VIS modality (see ta-
ble 4.4). The aim now is to compare the results of the combination to the best average
method. Again quality indices are necessary to ensure objective evaluation. We com-
pute ten indices already used in evaluations of previous chapter for every image and
compare them to those of the best average segmentation methods (Rousson-Deriche
approach for SEM and Mean Shift or UV and VIS modalities). We use statistical eval-
uation with hypothesis testing to determine which of the two is better. The Wilcoxon
signed-rank test [105] is used as good trade-off between plain sign test (which does not
consider the magnitude of differences at all) and t-test (which considers the magnitude
in much stronger way and also the stronger assumptions have to be met). Level of
significance is set to 0.05.

Combination is statistically significantly better than the best average method in
SEM and UV modality. In VIS modality the situation is little bit more complicated.
Only four out of ten indices claim that the combination is significantly better. Con-
versely two indices claim that the best average method is significantly better. The rest
stays rather undecided. Thus it cannot be decided which of the two approaches is bet-
ter in VIS modality. If we compare combination to the second best average method
(which is multiscale normalized cut in RGB) situation gets much clearer. Combina-
tion is significantly better in this case. For these reasons the choice of combination
approach is appropriate even for VIS modality thanks to its robustness.

Visual evaluation was done as well to support the findings from statistical testing.
Combination pays off also from this point of view. It is usually better than the best
average methods in SEM and UV modality. In UV the difference is even more promi-
nent and it is easy to see how combination of several segmentation methods amend
inaccuracies of Mean Shift algorithm as the best average method (see figure 5.2 for
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(a) SEM

(b) UV

(c) VIS

(d) VIS

Figure 5.2: Demonstration of improvement using combination of segmentation meth-
ods compared to the best average method. In each triplet in rows there is ground truth
mask (left column), result of the best average method (middle column, GC_RD in SEM
and MS in UV and VIS) and result of combination (right column). Last triplet corre-
sponds to the images in figure 4.7. Combination there is certainly better than Mean
Shift’s result. However even better result can be achieved with pure region growing in
this case as is shown in figure 4.7.
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examples). Perhaps surprisingly the same holds for VIS modality. The results of com-
bination are often more plausible. In those cases, where Mean Shift is better than
combination, the difference is often minute. In the opposite cases difference between
combination and Mean Shift is much larger and combination resembles ground truth
more accurately1.

Conclusion is that using majority vote rule applied on the limited subset of methods
as a combination method for image segmentation can significantly outperform use of
single (even the best average) segmentation method. This clearly holds for SEM and
UV modality but also in case of VIS it is safe to use combination approach. Combi-
nation there is almost identical or only slightly worse than the best average method in
vast majority of cases and occasionally it gives much better results. See figure 5.2 for
examples of the results of segmentation combination using MV.

It remains to verify whether the limitation to only three best average segmentation
methods is appropriate. Therefore we also compute the combination of five and ten
best average methods and also the combination of all segmentation methods in the
studied set. The results of the combination are worse with increasing number of meth-
ods to combine. This holds especially for VIS and UV modalities where the average
performance of the methods at the top of the ordered lists is not as high as in SEM
modality. Worse methods spoil the combination very quickly. In SEM modality the
results of combination using of more than three methods are still quite good, because
generally the image segmentation is more successful in this modality (see section 4.3).
It is thus crucial for majority vote to use only good enough methods as an input for
combination procedure. See [56] for a theoretical analysis of this aspect in classifica-
tion domain.

We can also analyze benefit of combination approach on testing data set and bio-
logical images from section 4.4. Concerning testing set the combination is definitely
better than the best average segmentation methods in all three modalities using visual
evaluation. This holds especially for SEM modality. The statistical evaluation via
Wilcoxon test confirms the significant improvement in SEM modality. In case of UV
and VIS the improvement is not significant. However number of samples (images) is
relatively small to consider statistical evaluation to be valid. In case of biological im-
ages the combination delivers similar results to those of Mean Shift as the best average
method with negligible differences. MS results are already very good so there is not
much space left for improvement (thus the benefit of combination will not be further
analyzed in following section).

5.2 Weighted voting
To achieve good combination results using majority vote only the most successful
methods could be used in previous section. The rest of the segmentation methods
were set aside because otherwise they worsened the results. However these methods
could still contain information useful for combination. It must be exploit in slightly
different way though. Majority voting assigns the same influence on the result to every
participating method. This influence can be adjusted with respect to performance of

1Wilcoxon test is incapable of capturing such subtleties. However t-test with greater sensitivity to
magnitude of differences confirms this finding. According to this test combination is significantly better
than the best average method.
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the methods in image segmentation which is explored in chapter 4. The successful
segmentation methods would have relatively big impact on the resulting combination
while influence of less successful methods would be small. In this way we can exploit
information provided by all segmentation methods and maintain performance level of
the combination at the same time. Such approach is called weighted voting as the
influence of impact is in fact weight of the method’s vote.

In our binary case the final label L (F for foreground, B for background) of pixel x
can be obtained as

L(x) = argmax
i∈{F,B}

Ei(x)

where Ei(x) is accumulated evidence that pixel x belongs to foreground or back-
ground respectively. It is computed as a sum of weights (influences mentioned above)
of methods which denote the pixel as either foreground or background2.

Ei(x) =
M

∑
j=1

mwi, j(x)

mwi, j(x) =

{
w j if method j labels pixel x as i ∈ {F,B}
0 otherwise

M is the number of segmentation methods in the studied set and w j is precomputed
weight of particular method j3.

In the following text we will look into different ways how the weights can be deter-
mined and compare it to majority voting from section 5.1 and the best average method.
Weighted voting is also widely used in the area of multi-atlas segmentation. However
the weight computation there uses different approach as it often exploits registration
errors or image similarities. See e.g. [5].

5.2.1 Quality index as weight for voting
Straightforward idea is to use one of the quality indices as a weight for voting. Quality
index offers natural measure of performance of each segmentation method. To be more
precise the average (median) performance of each segmentation method on the image
data set as computed in section 4.2.3 is suitable candidate for the weight. Normalized
mutual information (NMI) happens to be a good choice from ten quality indices. It
normalizes values to range of 0 and 1 and performances of segmentation methods
covers the whole interval (dissatisfactory methods are close to 0, average methods
somewhere in the middle and good methods draw near to 1). Table 5.1 presents NMI
values for selected segmentation methods in all three modalities.

Using NMI as weight and previously described formulas the results of combination
can be generated. Following evaluation procedure from section 5.1 we can compare
the performance of this combination scheme to the best average method and majority
vote combination to see whether there is any benefit of the NMI weighted voting.

Concerning the best average method combination does not improve its results in
any modality. Statistically weighted voting is significantly worse or comparable at

2This corresponds to sum rule as described in [52].
3Majority vote is just the special case of this, in which weights of all participating methods equal 1.
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NMI
Segmentation
methods

SEM UV VIS

GC_FH 0.8267 0.7057 0.6496
GC_CV 0.7883 0.5079 0.5864
GC_RD 0.8224 0.4376 0.4354
MS 0.8078 0.7245 0.6524
MNC 0.0241 0.6307 0.5639
KM 0.3862 0.4214 0.5815
IMJ_TRIANGLE 0.7671 0.5084 0.4532
IMJ_OTSU 0.3586 0.3791 0.6046
TNC 0.0482 0.4643 0.5971
RG_10 0.7848 0.4720 0.3809

Table 5.1: Table shows NMI values of selected segmentation algorithms in all three
modalities. All presented methods are the grayscale versions.

most. It holds also for visual comparison and regardless of input data set (training or
testing).

Difference between NMI weighted voting and majority vote is more prominent.
Majority vote is significantly better in all modalities according to Wilcoxon signed-
rank test. Only in UV and VIS in case of testing data set the results of the test are
undecidable. However visually the superiority of MV is evident (it is important to
keep in mind validity objection of statistical testing mentioned above).

In the end, weighted voting using NMI as weights does not bring any improve-
ment over the best average methods or majority vote. There is a visual comparison of
majority vote and NMI weighted voting in figure 5.3.

5.2.2 Linear weights from quality index lists
The way to improve the results of weighted voting scheme may lie in exploiting infor-
mation from all ten quality indices used in comparison of segmentation algorithms in
chapter 4. Each index measures average performance of given algorithm individually
and ordered lists produced by each index can thus differ significantly. These lists can
be combined into one list by means of rank aggregation as is described above in sec-
tion 4.2.3. The ranked list contains combined data about the average performance of
each algorithm and as such can be used to determine their weights for voting process.
However we will use more subtle approach and try to exploit data from each individual
list before aggregation.

The weight wm of method m is computed as

wm =
10

∑
i=1

posi(m)

where posi(m) is a position of method m in an ordered list i (as there are ten quality
indices and thus ten lists). Each list is sorted according to average (median) perfor-
mance. This means that the method ranked as the best one by each index has wm equal
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(a) SEM

(b) UV

(c) VIS

(d) VIS

Figure 5.3: Comparison of majority vote and NMI weighted voting combination. In
each triplet in rows there is ground truth mask (left column), result of the majority vote
(middle column) and result of weighted voting (right column).
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Voting weights
Segmentation
methods

SEM UV VIS

GC_FH 0.9786 0.9725 0.7122
GC_CV 0.9262 0.8392 0.7347
GC_RD 0.9881 0.3824 0.1408
MS 0.9310 0.9980 0.9449
MNC 0.1595 0.9510 0.5673
KM 0.5381 0.5510 0.7224
IMJ_TRIANGLE 0.7952 0.8118 0.2429
IMJ_OTSU 0.4333 0.4216 0.8816
TNC 0.2857 0.7157 0.8020
RG_10 0.8786 0.5667 0.1327

Table 5.2: Table shows linear voting weights of selected segmentation algorithms in
all three modalities. All presented methods are the grayscale versions.

to 10. Finally it is useful to normalize the weights to range between 0 and 1 (1 for the
best method).

w′m =
max−wm

max−min
where max and min are possible maximum and minimum values of wm (minimum

is clearly equal to 10).
Evaluation procedure stays the same. The results of combination are generated for

every image using all the segmentation methods and weights for each modality. See
table 5.2 which presents weights for selected methods in all three modalities. Quality
indices are computed and statistical evaluation using Wilcoxon signed-rank test is used.
Level of significance stays the same – 0.05.

First we need to answer the question whether there is some improvement of using
all quality indices over one index, i.e. NMI. Statistically NMI is better only in SEM
modality in both training and testing data set. However visually the differences are
really small and both approaches are comparable. This also applies to UV and VIS
modalities. The reason is that despite the distributions of values are not the same and
NMI handles the best and worst methods slightly differently (see figure 5.4) the overall
difference is not that big. In total when the voting is evaluated the results happen to be
very similar.

Results of statistical evaluation between linear weighted voting and the best aver-
age methods are straightforward in case of SEM and UV modality. Combination there
does not bring any improvement over the best average methods which are significantly
better. In VIS modality the combination is comparable to the best average method
as neither is significantly better than the other one. Visual evaluation confirms these
conclusions. If we compare results of weighted voting to majority vote on the limited
subset of methods from section 5.1, majority rule is significantly better in all modali-
ties. In case of testing data set visually the results of weighted voting are comparable to
the best average method in UV and VIS modalities. In SEM the best average method
achieves better results. Also Wilcoxon test confirms this (however small set size objec-
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Figure 5.4: Comparison of linear (blue points) and NMI (red triangles) weights for
segmentation methods in SEM modality. NMI handles the best and worst methods
slightly differently but overall trend of the curves is more or less the same. Segmen-
tation methods are sorted from the worst ones to the best ones (thus according to the
weights).
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Voting weights
Segmentation
methods

SEM UV VIS

GC_FH 0.9371 0.9199 0.3631
GC_CV 0.7945 0.5910 0.3966
GC_RD 0.9647 0.0559 0.0028
MS 0.8068 0.9941 0.8436
MNC 0.0041 0.8600 0.1826
KM 0.1558 0.1673 0.3771
IMJ_TRIANGLE 0.5029 0.5349 0.0143
IMJ_OTSU 0.0814 0.0749 0.6853
TNC 0.0233 0.3666 0.5159
RG_10 0.6782 0.1820 0.0023

Table 5.3: Table shows polynomial voting weights of selected segmentation algorithms
in all three modalities. All presented methods are the grayscale versions.

tion holds). Similar findings apply also to comparison with majority vote. The results
of both approaches are comparable in UV and VIS modalities while majority vote is
better in SEM.

Overall conclusion is that weighted voting scheme with weights computed as above
does not improve the results of the best average segmentation methods or majority vote.
Majority vote on the limited subset of methods is still better choice. See figure 5.5
which exhibits comparison of the results of weighted voting combination to majority
vote.

5.2.3 Nonlinear weights from quality index lists
The reason behind worse results of weighted voting in previous subsection is still rela-
tively big influence of the worst segmentation methods in the set. They spoil the com-
bination results too much in comparison to majority vote and the three best average
methods. This handicap can be amended by different distribution of weights between
segmentation methods. In previous section the weights are linear (see blue dots in
figure 5.6). By applying some nonlinear function (e.g. polynomial) to the computed
weights we can give more influence to more successful segmentation methods and at
the same time penalize less successful methods in the studied set. Cubic function is
a good trade-off since the weights decline fast enough for the best methods and yet it
still give some influence to the methods in bottom half (see red pluses in figure 5.6 and
comparison with linear weights (blue dots) in the same picture).

The polynomial weights w′′m are therefore computed as

w′′m = (w′m)
3

The established evaluation procedure is followed. The results of polynomial weighted
combination are generated for every image using the described formulas. Table 5.3
presents polynomial weights for the same selected methods as in case of linear weights
for comparison. Quality indices are computed and statistical evaluation using Wilcoxon
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(a) SEM

(b) UV

(c) VIS

(d) VIS

Figure 5.5: Comparison of majority vote and linearly weighted voting combination. In
each triplet in rows there is ground truth mask (left column), result of the majority vote
(middle column) and result of weighted voting (right column).
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Figure 5.6: Comparison of linear (blue points) and polynomial (red pluses) weights for
segmentation methods in SEM modality. Polynomial weights declines more rapidly
towards zero. This eliminates the influence of worse segmentation methods. Segmen-
tation methods are sorted from the worst ones to the best ones (thus according to the
weights).
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signed-rank test is used. Level of significance is still the same (0.05).
First it is necessary to analyze if there is even any benefit of polynomial over linear

weights. The situation again differs in three modalities. In SEM and UV polynomial
weights significantly improve the performance of weighted voting combination. This
holds also for testing data set. In VIS modality linear weights are significantly better
according to Wilcoxon statistical test. However when visually compared the difference
between two approaches is minute. Linear weights are constantly slightly better which
is the reason why statistical test states it is better, but polynomial weights offer almost
the same results. In testing data set it is even more pronounced as Wilcoxon test fails
to reject any null hypothesis (meaning neither weights are significantly better than the
others). The conclusion is that polynomial weights are definitely better in SEM and
UV modalities, and at least visually comparable in VIS modality (however statistically
a bit worse in case of training data set). The same conclusion also applies to the
comparison of polynomial weights and NMI weights from subsection 5.2.1.

Polynomial weighted voting behaves better than the linear also when the best av-
erage method is involved. The polynomial results are significantly better then those of
the best average method in SEM modality (which is Rousson-Deriche approach). In
UV and VIS the results are comparable which is still better conclusion than in previous
case. In testing data set all the results are similar. It is safe to say that using polynomial
weighted voting is better the best average methods as it is more robust and does not
perform worse.

It remains to explore the relation of polynomial weighted voting to majority vote
from section 5.1. Combination of three best methods using majority vote stays the
best approach so far. In all modalities MV is statistically and visually better than
polynomial voting. Only in case of UV and VIS in testing set the superiority of MV is
not that dominant.

In conclusion, weighted voting combination scheme using polynomial weights def-
initely achieves better results then using linear weights. It is better or the same than the
respective best average method. However majority vote combination is still superior.
Figure 5.7 shows the comparison of three combination schemes to ground truth mask.
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(a) SEM

(b) UV

Figure 5.7: Comparison of three combination methods. In each subfigure there is
majority vote, linear weighted voting and polynomial weighted voting in a top row and
ground truth mask in a bottom row. In subfigure (a) polynomial voting outperforms
the linear one but is worse than majority vote. In subfigure (b) the result of polynomial
voting is comparable to majority vote.
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Chapter 6

Conclusion

The first part of the thesis addressed image segmentation problem and objective evalua-
tion of image segmentation algorithms executed on microscopic image data. The input
image data set was formed by images of cross-section samples extracted from the art-
work during restoration process and captured in three different modalities – SEM, UV
and VIS.

Chapter 3 dealt with preprocessing stage necessary to the following chapters of the
thesis. Two problems were handled – legend removal from SEM images and more se-
vere removal of grinding artifacts. The grinding artifacts origin from sample extraction
process and they influence the image analysis. The automatic removal algorithm based
on Fourier transform was proposed. Experiments proved the algorithm was successful
in significant diminishment of present artifacts. Further the proposed method was used
also in a different area of cultural heritage, processing of IR images. The algorithm
removed the canvas structure and simplified following analysis of art restorers.

Chapter 4 analyzed the performance of segmentation methods on the input data set.
The set of studied methods covered various approaches such as thresholding, region
growing, clustering methods and graph-based algorithms. Ten quality indices were
described to objectively evaluate the performance. The larger set of indices was in-
corporated to eliminate the bias of each individual index so the objectivity could be
assured as much as possible. Concerning the very evaluation we first showed that there
was no single segmentation method which significantly outperformed the others in the
studied set. This means that there is no free lunch in image segmentation problem
and it is necessary to compromise. Otherwise such segmentation method would be
number one choice for solving background removal problem of similar data. This led
to search for the best segmentation method on average which would be good enough.
Such methods were found for every modality and also the lists of segmentation meth-
ods ranked according to their performances were produced through rank aggregation
process. Mean Shift algorithm generally performed the best and can be considered the
best segmentation method on average for related data. The results of the evaluation
were thoroughly analyzed and circumstances, under which the segmentation methods
performed well, were found. Recommendations on the usability of individual methods
could be thus given. Finally, we verified the findings on separate testing data set and
the applicability of the evaluation results was shown on different but related biological
data.

Chapter 5 examined whether combination (or fusion) of segmentation methods
could further improve the performance of even the best average method. Majority vote
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with limited subset of segmentation methods and weighted voting with several meth-
ods of weight computation were considered. In both cases the findings obtained from
evaluation of chapter 4 were exploited to achieve better results of combination. Ma-
jority vote applied on three best average methods and polynomial weights computed
from quality indices lists proved to deliver significantly better or in some cases at least
comparable results as the best average method itself. The combination approach is
thus appropriate in all cases as it does not underperform and its advantage is robust-
ness. From these two combination schemes majority vote method was superior. This
result confirms the observations about good performance of majority vote from other
domains – classifier combination [51] or multi-atlas segmentation [2, 41, 79, 81]. It
remains to note that the superiority of majority vote applies to microscopic image data
of similar properties as the cross-section images have. As in case of image segmenta-
tion there is no universal combination approach which would outperform the others in
all cases [43, 5, 56]. All the conclusions of the chapter were supported with statistical
testing.
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Part II

The Nephele system
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Chapter 7

The Nephele system

7.1 Introduction
Protection of cultural heritage remains an important issue. Next to the long-established
methods new technologies are proposed to support this complex task. Advances in the
digital image acquisition brought considerable momentum to the study of paintings –
uncovering the author’s intentions, verification of the authorship, or selection of the
most proper restoration procedure for the artwork conservation. All this is possible
thanks to the ability of multimodal imaging exploiting various spectral wavelengths
(e.g. infrared, ultraviolet) to reflect material composition of the artwork, even in its in-
visible layers underneath the painting surface. Price lowering and wider accessibility
of the hardware equipment for such multimodal acquisition have led to sharp increase
in the volume of data acquired in variety of wavelengths and often in high resolution
mode. Current methodologies, addressing the proper painting scanning, setting system
parameters and lighting conditions, and/or solving geometric and radiometric degra-
dations introduced during the data acquisition, have been no longer capable to handle
these large quantities of information. Image processing methods able to extract higher
level information have been introduced to the painting analyses. They can provide in-
sight into brushstrokes, into pigment composition, or into canvas structure evaluation.
These methods form an indispensable component of the current research in the field of
painting conservation.

Our proposed system Nephele lies somewhere on the border between the pure
data acquisition and a higher level analysis of the painting. Nephele is an expert
information system for archiving the reports created during material research of the
painting. The report contains all gathered information about the studied object –
textual, numerical and also image-based. Typical database retrieving functionality
is extended by content-based image retrieval (CBIR). This approach enables fetch-
ing reports by image similarity and thus leave out difficult and time consuming tex-
tual description of the required record. The cross-section images of minute sam-
ples described in section 1.1 are fundamental building blocks of the implemented im-
age retrieval. In material research the cross-section images help to identify the used
painting materials. In the Nephele system they are used to answer queries whether
an artwork of similar material composition has been already analyzed. Thus, the
Nephele system consists of database functions for data archiving, conventional search
and of image processing functions which provide image preprocessing and analysis
for the CBIR. The system has been developed in cooperation with Academic Mate-
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rials Research Laboratory of Painted Artworks in Prague (ALMA) and it reflects all
the best practices used in the material analyses of the paintings and their reporting.
The system is continually evolved and extended and is published free of charge un-
der GNU GPL (http://zoi.utia.cas.cz/nephele.html). The work was partially
published in [8].

The chapter is organized as follows. Next section contains a brief survey of works
related to use of image processing methods in art conservation and content-based im-
age retrieval system. Section 7.3 describes the proposed Nephele system with material
research context. It is followed by the section 7.4 dedicated to the image processing
algorithms included in the Nephele system. Section 7.5 contains demonstration of the
image retrieval together with screenshots of the system. The chapter concludes with
section 7.6.

7.2 Related work
The Nephele system is an expert system for art restorers and conservators with addi-
tional image retrieval of cross-section images ability. Despite there is no other com-
parable system to the best of our knowledge, exploitation of the image processing
methods in art conservation and restoration gains in importance. The image retrieval
functionality can provide feasible means for exploration of the museum or gallery dig-
itized collection. The next two sections present the related work concerning the use
of image processing in art conservation and overview of content-based image retrieval
systems.

7.2.1 Image processing in art conservation
The exploitation of the image processing methods in the art analysis and restoration
grows and an application typology broadens too. Methods can be original or adap-
tations of algorithms used in existing applications, modified for the cultural heritage
niche. Several main directions can be identified in this boom, which also follow the
main steps of the art conservation process.

The first and the most important is the data acquisition category, which addresses
the process of the object scanning and data gathering [70]. Proposed solutions offer
capturing of the object (which is often the painting) in various image modalities (e.g.
using different wavelengths) [16]. They are able to handle very high resolution data and
solve eventual geometrical degradations and changes in lighting conditions of the scan-
ning process. Acquisition in various wavelengths and modalities enables art restorers
to see the underdrawings, the structure of the canvases and even individual pigments
and other components of the paintings. The infrared (IR) and/or ultraviolet imaging
belong to the most often used approaches. Less commonly used synchrotron radiation
based X-ray fluorescence allowed to uncover the van Gogh’s painting repainted later
by its author [3].

Scanning process as described often produces very large data files. Methodologies
how to handle, visualize and archive such objects are thus needed and form the next
popular group of methods, which are in the center of interest. Algorithms for visual-
ization of acquired multispectral information can properly complement the acquisition
process [49]. Archiving and potential publication of data complete the processing
pipeline. This last step calls for effective storage methods of huge number of images
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with tools for their retrieval (see section 7.2.2). Nowadays, many museums and other
institutions provide online access to their art collections via the Internet (e.g. Louvre,
British Museum, Museum of Modern Art in New York, Google’s Art project, ART-
stor1).

The role of image processing methods in the mentioned data processing pipeline is
essential but image processing can offer much more. Having the digitized version of
the art piece, possibly in several modalities, image analysis provides an insight into the
author’s intentions by inspecting the underdrawings. The restoration interventions can
be reviewed based on the pigment visualization in different modalities. Looking at the
dynamics and shapes of the brushstrokes sheds light on the painting’s authorship [48].
An estimation of the place and time of the painting’s creation can be done based on
the craquelure detection and analysis [10]. Even the author’s method for the creation
of painting can be explored [93].

Recently, complex software solutions offering the data acquisition and their further
analysis have started to appear. ArtShop, an art-oriented image processing tool for cul-
tural heritage applications, provides wide functionality from the multispectral scanning
tools to the fuse-based visualization and symbolic description of the artworks [11].
Chip, an image processing software specifically designed for cultural heritage applica-
tions, offers, next to the basic image processing functionality, also higher level methods
such as inpainting algorithms or feature extraction for further analysis [18]. Finally,
all achieved data and analyses can lead to complex virtual restoration, which could
demonstrate the original beauty of the art piece. Its colors can be rejuvenated [76] and
craquelure removed [91].

7.2.2 Content-based image retrieval systems
Research in image retrieval has roots in the second half of the 70’s of the 20th century.
The necessity of image searching in huge collections became apparent and solutions
based on a text annotation or tags emerged promptly (text-based image retrieval). As
a result, the image retrieval was carried out by existing text retrieval system exploit-
ing text tags which where tied to the image during insertion time. However a time-
demanding image annotation process and perception subjectivity of human annotators
showed the non-usability of such approach.

On the contrary, content-based image retrieval exploits visual features of the im-
ages in question and their visual similarity based on human visual perception. The
features range from color or texture properties to objects shapes or object distribution
across the image. The content-based image retrieval (CBIR) system implements finite
set of descriptors of these features which were specifically chosen for given problem
domain. Suitable similarity measure for comparing feature descriptor vectors of dif-
ferent images and eventual indexing data structure for fast retrieval response must be
picked as well. Different CBIR system may also implement different query schemes or
techniques. Query-by-example serves as a common type of query in which an image
of interest is supplied by user. Another possibility is query-by-sketch technique. The
user may draw approximate draft of desired results. For exhaustive survey on CBIR
techniques and system properties see [89].

The true CBIR systems started to occur during the 90’s of the 20th century. QBIC2

1http://www.artstor.org
2Abbreviation for Query By Image Content
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developed by IBM [29] was perhaps then most well-known system. QBIC adopted
both query-by-example and query-by-sketch techniques, and implemented a variety of
image feature descriptors. Berkeley’s Chabot system [66] made use of mentioned text
tags in connection with content features. Image characteristics were accompanied by
user’s description (e.g. "search for all the sunsets above a blue lake"), which was trans-
lated to spatial relations between predefined objects. Photobook from MIT [71] linked
CBIR system with relevance feedback, so the user could specify appropriateness of
the retrieved images. The CBIR system called VisualSEEk [90] implemented different
query technique similar to query-by-sketch. A diagram with approximate spatial ar-
rangements of color regions served as the input to the retrieval process. An extensive
list of contemporary CBIR systems can be found in [101].

An important change came with the expansion of the Internet. The CBIR systems
could become online and had to deal with the growing amount of pictures. On the
other hand, the development in indexing data structures and also in image processing
research helped to handle novel challenges. CORTINA system [32] implements a web
crawler to build a large-scale collection of images which serves as a base for CBIR.
PIBE [6] focuses on browsing through a large image database and on user experience as
well. LIRe is an open source CBIR library which among others includes a considerable
range of global and local image feature descriptors [59].

In comparison to the ongoing research of general CBIR systems, image retrieval in
art field stays rather behind in contrast to its potential merit for art galleries and mu-
seums. Artistic representation of ordinary objects, abstraction and creativity make the
process of image analysis difficult. Nonetheless, CBIR systems specialized in this field
exist and are used by galleries worldwide. ARTISTE [1], system deployed in several
famous galleries in Europe (including the Louvre in Paris, the Victoria and Albert Mu-
seum in London, the Uffizi Gallery in Florence and the National Gallery in London),
offers automatic annotating of picture collections and retrieval which respects specific
needs of art historians. SCULPTEUR [35] extends the previous system with capability
of retrieving 3D objects. A few other systems are also published (see [37, 12]).

7.3 The Nephele system
The Nephele system and database provide a solution for processing and archiving in-
formation about artwork and its material research in the course of art restoration. The
material research of the painting helps art restorers to choose the proper materials for
the actual restoration and determine the authorship of the artwork. Material analysis
of the painting is described in the form of a report, which contains general information
about artwork, its description, samples and chemical analyses which were hold. These
reports can serve as a knowledge base for future restoration cases. The goal of Nephele
system is to make such usage possible and efficient by using forms, which the report
is generated from, storing them in the database and providing a user-friendly access.
Up to now the reports have been created manually in the desktop publishing software,
which certainly complicates further exploitation of gathered knowledge. To make this
task easier the Nephele system implements the image retrieval functionality which is
in detail discussed in section 7.4.
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7.3.1 The material research report
The material research report captures that part of artwork restoration process which is
aimed on the objective identification of the painting materials and on the evaluation of
painting techniques and style. The precise identification of used substances helps the
restorer to choose the proper materials and appropriate technique for the restoration.
The optical and chemical analyses of minute surface samples taken away from artwork
are the important parts of this process. The sample extraction and following manipu-
lation is described in section 1.1. The images in VIS and UV spectra are captured as
was mentioned, where UV image may reveal fluorescent property of certain materials
(figure 1.2). Study by scanning electron microscope (SEM) with chemical contrast
is performed together with a variety of chemical analyses. Energy-dispersive X-ray
spectroscopy using SEM delivers qualitative information about elemental or chemical
characterization (SEM/EDX). X-ray powder diffraction identifies the mineral compo-
nents of the material layer. Fourier transform infrared spectroscopy (FTIR) is used
for estimative determination of binders which is necessary for correct artwork classi-
fication. Matrix assisted laser desorption ionization time of flight mass spectroscopy
(MALDI-TOF MS) serves as a means for protein binder differentiation. Finally, X-ray
fluorescence (XRF) analysis exploits a fluorescent emission to determine an elemental
composition of the sample.

Acquired findings are gathered and composed to the material research report. It
includes general information concerning the artwork (e.g. author, owner, artwork’s
state, dating, painting technique), photodocumentation of the cross-section samples,
results of the optical analyses and stratigraphy of the samples, the results of mentioned
chemical analyses, interpretation of the results, and plenty of additional materials. In
the end, art conservator or restorer draws the conclusion about material composition,
which forms the final part of the report, and chooses the precise painting material for
the very restoration. Figure 7.1 exhibits the parts of the material research report.

7.3.2 The Nephele system architecture
The Nephele system is the information system built on top of the database for material
research reports. Besides a report archiving the primary goal of the system is to serve
as a knowledge base for future usage. To do so the effective information retrieval
must be implemented – text-based search, search in the results of chemical analyses
and image retrieval facility (including the necessary image preprocessing modules).
Text-based search implemented in the system permits the user to enter simple queries
concerning artwork’s author, report’s author, report’s number etc., and fulltext queries.
Search based on the results of chemical analyses allows detection of the artworks with
similar chemical composition as the researched one. The other option is looking for
the artworks of given material composition. See section 7.4 for details about the image
retrieval and image processing part.

The system is deployed in a real environment (Academic Materials Research Lab-
oratory of Painted Artworks) which leads to certain requirements the system has to
meet. The application should provide an easy access to all information, however such
an access must be secured and sensitive data should be restricted only to precisely de-
fined group of users (the information about detected materials could be misused for
creation of falsifications). The system has to allow access of multiple users at the same
time. Finally, the expandability can be crucial, since the material research reports are
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The material research report

Heading

Cross-section samples

Chemical analyses

Conclusion of material research

- General info

- Analyzed entities

- Methods of material research

- Cross-section samples

- Notes

- XRF

- SEM/EDX

- FT-IR

- RTG-diffraction

- MALDI-TOF MS

Figure 7.1: Contents of the material research report. Generally it has four parts: so
called heading with general information concerning the artwork, its several parts if
present (analyzed entities) and photodocumentation; cross-section samples part with
photodocumentation, results of the optical analyses and stratigraphy, interpretation of
the layers and notes; results of chemical analyses, and finally conclusion of material
research.
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Figure 7.2: Client-server architecture model of the Nephele system. The server part
acts as a service provider and communicates with database management system. The
client part plays a service requester role.

from time to time enriched with a new analysis.
The Nephele system is based on the client-server architecture model (see figure 7.2).

The server part acts as a service provider which implements most of the system func-
tionality such as data management, information retrieval, users administration etc. The
server communicates with database management system3 through a series of SQL
commands. The database was created using the entity-relationship model in coop-
eration with the experts. The programming part was implemented in C++.

The client part of the system on the other side plays a service requester role. It
communicates with the user through graphical interface and dispatches user requests
to the server by means of XML-based messaging model. Momentarily this part is
implemented in .NET framework, but the client-server model and precisely defined
communication protocol allows to design various clients (a web-based for example).

7.4 Image processing in the Nephele system
The image retrieval in the Nephele system, which provides extended functionality com-
pared to the standard text-based searching, consists of chained image processing steps,
which have to be performed. The preprocessing of acquired input data, feature extrac-
tion and the similarity retrieval are the key issues to be handled by the image processing
blocks. Due to the preparation of the cross-section samples and the image acquisition
process the multimodal input images can be degraded. Thus they cannot be used di-
rectly and certain preprocessing steps are necessary. A priori selected feature descrip-
tors are then extracted from the input images and used as a feature vector to query a
database and to retrieve a given number of similar cross-section images. Following
sections describe mentioned steps in detail.

3MariaDB at present
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Figure 7.3: An example of blurred sample (left image) and the deblurred result (right
image) achieved by method described in [92]. The structure of the seeds and rough
texture is much more apparent now.

7.4.1 Image data preprocessing
The purpose of the image preprocessing phase is dealing with the degradations and
the artifacts formed during the sample preparation and image acquisition, which can
negatively influence the performance of the image retrieval. It includes the grinding ar-
tifacts but also during image acquisition in the microscope a foreign particles like dust
might be present and create a noise off the very sample in the cross-section projec-
tion. All these unwanted fragments slightly change the result of the feature descriptors
computation and therefore the outcome of the image retrieval, because the otherwise
similar images would be more distant in the feature space.

The background removal from the cross-section image is a natural way to handle
the problem4. The removal is accomplished by means of the image segmentation which
leads to separation of the input image to two distinguished regions, noisy background
and sample foreground in our case. We use the proposed method from the first part
of the thesis to achieve this. Foremost the grinding artifacts have to be removed using
the method presented in section 3.2 in order to improve the results of some image
segmentation methods (and thus the image retrieval). Then the selected segmentation
methods are applied and their outputs are combined using majority vote (see detailed
description of the procedure in section 5.1).

Next to the described imperfections, the images of analyzed samples can be noisy
and/or blurred. Blur can be introduced during the acquisition process. Its two most
common sources are the out-of-focus blur due to the inaccurate setting of scanning
parameters and the too shallow camera depth of field. It is not always possible to
avoid these degradations, mainly due to high amounts of the analyzed data and due to
operator’s skills. The blind deconvolution approach can be utilized for removal of the
introduced blurring, when the known a priori information is used to restore the original
denoised and sharp image. Figure 7.3 demonstrates an example of blurred sample and
the deblurred result achieved by method described in [92].

4The noisy fragments are indeed omnipresent and the background removal does not solve the prob-
lem entirely. Nevertheless, the sample foreground generally occupies only a smaller fraction of the
whole image and thus the removal is always beneficial.
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Figure 7.4: Computation of symmetric co-occurrence matrix (an example) with shape
operator (1,0) and image of size 4×4 . In (a) two pixels of the original image defined
by shape operator are highlighted, (b) demonstrates increment of one to appropriate
places in co-occurrence matrix. In (c) there is final co-occurrence matrix of image in
(a).
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Table 7.1: Mathematical formulas of four selected Haralick’s feature descriptors. The
co-occurrence N-by-N matrix M is computed from the image, µ denotes the mean.

7.4.2 Image retrieval
Image retrieval of UV and VIS images

The image retrieval subsystem in Nephele follows the query-by-example concept. The
user submits the pair of UV and VIS images from the artwork he is interested in and
expects the set of similar pairs as a result. By doing so, the user receives the reports
which are alike regarding visual similarity of respective cross-section images. The
image feature descriptors are computed from the input pair and compared in feature
space with the descriptors of the images already stored in the system database. The
nearest neighbors in terms of the similarity measure are retrieved and returned to the
user.

The descriptors must be carefully chosen with respect to the properties of the input
images, since inconsiderate selection could negatively influence the result (as far as the
number of false positives and negatives is concerned). The problem is complicated be-
cause of the difficult determination what the visual similarity means (for example the
shape of cross-section samples is irrelevant due to its arbitrariness as a results of sam-
ple acquisition process). The proposed method is based on co-occurrence matrices and
color descriptors. The co-occurrence matrix [40] reflects the joint occurrence of gray
level pixel pairs with a defined spatial relationship formed by a shape operator (see ex-
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Figure 7.5: Workflow of the image retrieval in the Nephele system with image feature
descriptors computation for each cross-section image

ample of computation small co-occurrence matrix in figure 7.4). In consequence they
have a potential to capture the relationships between the material layers as well as dif-
ferent texture properties of a single layer. Shape operators of different lengths are used
and all color channels are processed separately. Since the matrices by themselves are
not very suitable for image retrieval, Haralick proposed a set of descriptors which can
be directly computed from the matrices [40]. In our case Contrast, Inverse difference
moment, Entropy and Variance showed the most promising results (see table 7.1 for
mathematical formulas). Next to the Haralick descriptors two color descriptors, image
mean color and standard deviation, are included to take the main color trends of the
images into account.

The image retrieval process in the Nephele system consists of two parts (illustrated
in figure 7.5). First part is the descriptors computation from existing images in the
database, second is the very retrieval. The images are processed during the material
research report insertion. The marked pair of VIS and UV images for every sample
passes through the image processing step and the resulting vector of feature descrip-
tors is stored in the database. The image retrieval step is alike. The query pair of VIS
and UV images is processed and the query vector is compared via weighted Euclidean
distance with all the vectors stored in the database. The specified number of the nearest
(the most visually similar) neighbors is retrieved. The exhaustive search for neighbors
would be time consuming and therefore M-tree indexing structure [14] is used to speed
up the retrieval process. M-tree is a flexible data structure designed to combine advan-
tages of metric tree and database access methods. It offers much better performance in
a high-dimensional feature space than the R*-tree [7], which has been implemented in
the Nephele system before.

Image retrieval of SEM images

Not only UV and VIS images can be used for image retrieval functionality to help
the art restorer. As was mentioned before scanning electron microscope with energy-
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Figure 7.6: Several SEM cutouts which form a basis for image retrieval. Each exhibits
texture of different properties in terms of coarseness, contrast, directionality etc. There
are total of 296 cutouts in database. Image courtesy of ALMA.

dispersive X-ray spectroscopy detector (SEM/EDX) has the ability to capture chemical
contrast of different materials. Different materials thus have different texture in terms
of coarseness, contrast or directionality [95] and this property of SEM images can be
exploit to implement successful retrieval of similar painting materials. The user would
submit the part of material texture image (in SEM) and would expect the set of similar
materials to be retrieved. This would help him to find all the artwork reports in database
where correspondent materials were used by the original author.

Cutouts of textures from SEM images form a basis for implemented image re-
trieval. Original SEM image generally contains several layers of different painting
materials. It is feasible to cut out certain parts which contain texture of only one ma-
terial and use this cutout as an input for image retrieval. Exhibit 7.6 shows several
examples of different materials and textures. There are total of 296 cutouts in database
for image retrieval.

As in case of UV and VIS image retrieval of SEM cutouts is realized through the
image feature descriptors and similarity measure for finding the nearest neighbors. The
workflow corresponds to that in figure 7.5. However descriptors used here are different
than in UV and VIS images case. Instead of co-occurrence matrices, which turned out
to be good method to capture relationship between single material layers, the multires-
olution wavelet transform is applied to SEM cutouts. Wavelet transform [62, 22] can
reflect local details and changes in several scales levels and therefore it can be a very
useful tool for characterization of textures. SEM cutout is decomposed to the depth of
2 using Daubechies orthogonal wavelet (db4), which proved suitable for the case. The
decomposed texture patch is then represented using the nonnormalized Shannon en-
tropy of the individual high frequency bands (HL, LH and HH using common wavelet
notation) [57]. Entropy feature performed the best compared to other textural features
like energy or variance (or other Haralick features mentioned above).
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(a)

(b)

(c)

Figure 7.7: The favorable results of the image retrieval. Query pair of VIS and UV
images is in the leftmost column, while the five nearest neighbor pairs are on the right
side. The query pair is found as the nearest neighbor by retrieval system. It is omitted
in the illustration. Image courtesy of ALMA.

Entropy =−
N

∑
i=1

M

∑
j=1

C2(i, j) logC2(i, j)

where C(i, j) is a wavelet coefficient.
These entropy values of individual bands from wavelet decomposition form the

feature vector. It is compared via Euclidean distance to all feature vectors stored in a
database and specified number of the nearest neighbors is retrieved. The search can be
sped up by incorporation of indexing structure as in previous case.

7.5 Demonstration of the Nephele system
This section presents several illustrative pictures of the Nephele system. First, results
of the implemented image retrieval facility are introduced. The real life screenshots of
the system form the second part of the section.
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(a)

(b)

Figure 7.8: Demonstration of image retrieval failure. In subfigure (a) it is caused by the
absence of resemblant image pairs in the database. In subfigure (b) the two visually
similar VIS images are absent in the results. The query pair is always found as the
nearest neighbor by retrieval system. It is omitted in the illustration. Image courtesy
of ALMA.

The figures 7.7 and 7.8 show the results of the image retrieval of UV and VIS
images. There were 146 pairs of VIS and UV images available in the database. In
the leftmost column there is the query pair provided by user, in five columns on the
right side there are retrieved nearest neighbors of the query pair (both VIS and UV
images are displayed). In all cases the same image pair as the query is retrieved as
the nearest neighbor (the image retrieval thus functions correctly). Nonetheless it is
omitted in the figures for illustration purposes. To demonstrate the capabilities of the
image retrieval system the cross-section images in the figures are processed by an
“optimum” segmentation algorithm which delivers GT results. The figure 7.9 exhibits
the results on the images which are preprocessed according to the workflow described
in section 7.4. The results are comparable since only the order changes. It is caused by
imprecise segmentation of cross-section samples in some cases. While the results of
the image retrieval are often satisfactory in terms of visual similarity, the final decision
of their usefulness and applicability is left to the art restorer.

The figure 7.7 presents the favorable results of the retrieval. The five nearest neigh-
bors are visually similar in terms of the texture (its smoothness, coarseness or peri-
odicity) and color. Also the composition of material layers is often alike. Figure 7.8
represents example of rare cases when the CBIR does not return good results. The
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(a)

(b)

(c)

Figure 7.9: The results of the image retrieval processed according to the workflow
described in section 7.4. Query pair of VIS and UV images is in the leftmost column,
while the five nearest neighbor pairs are on the right side. The query pair is found as
the nearest neighbor by retrieval system. It is omitted in the illustration. Subfigures (a)
and (b) correspond to subfigures (a) and (c) of figure 7.7. Subfigure (c) corresponds
to (a) in figure 7.8. The retrieval results are approximately the same up to the order.
Image courtesy of ALMA.
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reason can be either absence of the resemblant image pairs (subfigure (a)) or simply
the failure of the retrieval system (subfigure (b) with two VIS image which are visually
similar yet missing in the results).

Figure 7.10 demonstrates the results of SEM cutouts image retrieval. There were
296 cutouts from SEM images of different materials or the same/similar material from
different cross-section samples. In the leftmost column there is a query patch, in next
columns to the right there are the three nearest neighbors to the query patch (the query
image is again omitted as the nearest neighbor found by retrieval system).

The real life screenshots of the Nephele system are described next. The figure 7.11
shows the user interface of the image retrieval in the system. The left form provides
the means to submit the query pair of VIS and UV images and to specify the number
of the nearest neighbors. The right form contains the list of the retrieved results and
the basic information for each of them. There are also buttons for consequent record
administration (viewing, editing etc.). Figures 7.12 and 7.13 show the process of a
new report insertion. On the left side of the form there is tree-based structure which
serves as a navigation through the report. On the right side of the form there are
addition of one of the samples with photo documentation and filling of the XRF results
respectively.

7.6 Conclusion
The Nephele system for art restoration was proposed in this chapter. It can facilitate
the work of material researcher and art restorer by providing the easy access to the ma-
terial research reports they create and store in the database during artwork restoration
process. Next to the traditional information system features Nephele is extended by
image processing functionality – content-based image retrieval and related image pre-
processing methods. The image retrieval simplifies the search among stored reports by
exploiting the visual similarity of VIS and UV images of cross-section samples taken
from the artwork. SEM images of the very same samples are used for retrieval of sim-
ilar painting materials. The preprocessing stage implements findings of part I of this
thesis. The removal of grinding artifacts is included, image segmentation necessary for
successful image retrieval is implemented using several segmentation algorithms and
their following combination via majority vote. The Nephele system reflects the best
practices used in the art restoration, is open-source and distributed free of charge.

91



Figure 7.10: The results of the SEM cutouts image retrieval. Query patch is in the
leftmost column, the three nearest neighbor patches are on the right side. The query
image is always found as the nearest neighbor by retrieval system. It is omitted in the
illustration. Image courtesy of ALMA.
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Figure 7.11: The graphical user interface for image retrieval functionality in the sys-
tem. On the left side there is a form for submission of the query pair images. On the
right side there is a form with list of results. Image courtesy of ALMA.

Figure 7.12: Demonstration of new report insertion with tree-based structure on the
left side of the form for navigation through report. The rest of the form captures the
addition of new cross-section sample with a photodocumentation. Image courtesy of
ALMA.
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Figure 7.13: The figure demonstrates the filling of XRF analysis results for the new
report
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Part III
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Chapter 8

Contribution of the thesis

The contribution of this doctoral thesis is related to two different problems of digital
image processing – image segmentation and image retrieval. All the research was done
on a data set of microscopic images, i.e. images of cross-section samples extracted
from the artworks. The results are however applicable also to microscopic image data
of different origin and similar properties.

Contribution to image segmentation

Concerning the image segmentation many segmentation methods were analyzed in
terms of their performance on microscopic image data. The set of studied segmenta-
tion methods covered various approaches such as thresholding, region growing, clus-
tering and graph-based methods. The analysis provided an insight into their behavior
which led to recommendations about their suitability for segmentation of such data (in
table 4.5). In the process ten objective quality indices were used to evaluate the per-
formance. More indices were incorporated to reduce the bias of each individual index
so the objectivity of the evaluation could be assured as much as possible. The gath-
ered findings thus have more value than simple visual evaluation. The set of studied
methods and quality indices is summarized in table 4.1.

We showed that there was no free lunch in the presented segmentation problem as
no studied method significantly outperformed the others. Mean Shift [17] algorithm
performed generally the best but it outperformed the other methods only in fraction of
cases (13–27 percent depending on modality). Among other successful methods were
Felzenszwalb’s algorithm [28], GrabCut [83], or multiscale normalized cut [19]. But
also more straightforward approaches as region growing or thresholding managed to
outperform the others in limited number of cases.

The best average methods were afterward determined and also the lists of methods
ordered by their average performance established using the rank aggregation approach
(table 4.4). Mean Shift algorithm was found to be the best average method for two out
of three studied modalities (UV and VIS). In the third SEM modality Daněk’s opti-
mization of Rousson-Deriche [21, 20, 84] was the best average segmentation method.
Already mentioned Felzenszwalb’s method, multiscale normalized cut or Chan-Vese
approach optimized by Daněk were also at the top of the lists. These findings are
backed up by a large number of experiments and they were verified on testing data
set. Their applicability was shown on a data of different origin (microscopic images of
biological tissues).

The area of segmentation combination (fusion) was explored next. We showed that
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there was a benefit in using a combination approach since it improved the segmenta-
tion results significantly (verified by statistical testing). Even in the cases where the
results of the best average method and combination were comparable the combination
approach was more suitable thanks to its robustness. Several combination schemes
were proposed and compared to select the most appropriate. Majority vote using the
three best average methods and weighted voting with differently computed weights
were considered. Majority vote proved to be the best combination approach for given
data set.

Finally, the method for automatic removal of grinding artifacts (necessary prepro-
cessing for image segmentation stage) was found useful also for another cultural her-
itage application – removal of canvas structure from IR images of the artwork.

Contribution to image retrieval

Image retrieval was the second problem which the thesis addressed. Functional solu-
tion of content-based image retrieval concept was presented. It simplifies the work of
art restorer with searching the database of cross-section samples by exploiting the vi-
sual similarity of UV and VIS images. Likewise SEM images were used as an input for
finding similar painting materials. In both cases proper set of feature descriptors was
selected specifically for given problem domain. In case of UV and VIS retrieval Haral-
ick’s features computed from co-occurrence matrices turned out to deliver satisfactory
results. The SEM retrieval exploits entropy descriptor computed from wavelet coeffi-
cients. Daubechies orthogonal wavelet was found appropriate for the task. Retrieval
system implements tree data structure (M-tree) to speed up the actual searching.

The implementation of image retrieval with supportive image processing methods
is included in Nephele system, an expert system for processing and archiving the ma-
terial research reports with image processing features, designed and implemented for
the cultural heritage application area. The system is open-source and distributed free
of charge.

The work contributed to number of projects which also supported my research, namely
72507 by the Grant Agency of Charles University; 1M0572 and MSM6046144603 by
the Ministry of Education of the Czech Republic; GA203/07/1324, GA102/08/1593
and GAP103/12/2211 by the Grant Agency of the Czech Republic; M100750901 by
the Academy of Sciences of the Czech Republic.
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Appendix A

Results of image segmentation
algorithms

This appendix contains four figures which show results of selected image segmentation
algorithms applied on cross-section images. In figure A.1 there is segmentation of VIS
image. In figures A.2, A.3 and A.4 there are segmentation results of one cross-section
sample in each of three modalities (SEM, UV and VIS).
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of KM_RGB

(e) Final segmented mask of IMJ_HUANG (f) Final segmented mask of RG_25

Figure A.1: Results of four image segmentation algorithms. In (a) there is an original
VIS image. Ground truth mask is in subfigure (b). The image is segmented by MS (c),
KM_RGB (d), IMJ_HUANG (e) and RG_25 (f). Image in (a) courtesy of ALMA.
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(a) Original SEM image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of GC_RD

(e) Final segmented mask of IMJ_PER (f) Final segmented mask of RG_5

Figure A.2: Results of four image segmentation algorithms. In (a) there is an original
SEM image. Ground truth mask is in subfigure (b). The image is segmented by MS
(c), GC_RD (d), IMJ_PER (e) and RG_5 (f). Image in (a) courtesy of ALMA.
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(a) Original UV image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of GC_FH

(e) Final segmented mask of IMJ_TRIANGLE (f) Final segmented mask of RG_15

Figure A.3: Results of four image segmentation algorithms. In (a) there is an original
UV image. Ground truth mask is in subfigure (b). The image is segmented by MS (c),
GC_FH (d), IMJ_TRIANGLE (e) and RG_15 (f). Image in (a) courtesy of ALMA.
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(a) Original VIS image (b) Ground truth image mask

(c) Final segmented mask of MS (d) Final segmented mask of KM_RGB

(e) Final segmented mask of IMJ_HUANG (f) Final segmented mask of RG_25

Figure A.4: Results of four image segmentation algorithms. In (a) there is an original
VIS image. Ground truth mask is in subfigure (b). The image is segmented by MS (c),
KM_RGB (d), IMJ_HUANG (e) and RG_25 (f). Image in (a) courtesy of ALMA.
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