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Nazev prace: Deskriptivni vlastnosti systému vyjimeénych mnozin v harmo-
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Abstrakt: V této praci studujeme systémy malych mnozin, které se objevuji
v harmonické analyze. Zvlastni duraz je kladen na mnoziny jednoznacnosti U a

piidruzené systémy H W)

, N €N, U aU. Zejména se zamérujeme na porovnani
velikosti téchto systému, coz provadime pomoci tzv. polar - mnozin mér, které
meéri nulou vSechny mnoziny z piislusného systému.

Lyons ukézal, Ze v tomto smyslu je systém J oy H (V) mensi nez Uy. Hlavnim
cilem této prace je studium otazky, zdali totéz plati, nahradime-li U, podstatné
mensim systémem U. Za timto tcelem definujeme systém H(*) a systémy mnozin
typu N pro N € NU{oo}, a dokazujeme nékteré jejich vlastnosti, které by mohly
prispét k vyteseni dané otazky.
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1 Introduction

In this section we firstly present a brief overview of the theory of sets of unique-
ness. We do not attempt to present all of the main results in the theory, which
the interested reader can find for example in [KL], but we rather list the notions
and problems which are required in order to describe the goal of this thesis. We

then explain how the contents of this thesis are organized.

1.1 Brief historical overview

Trigonometric series and the problem of uniqueness:

A trigonometric series on [0,27] is the formal expression ), _, cpexp (kz),
where x € [0,27] and ¢; € C. Such series are often used in harmonic analysis,
when we assign to a 27 -periodic (complex and integrable) function f its Fourier
series. It is natural to ask whether the coefficients of a given trigonometric series

¢ exp (kx) are unique, or if it is possible to find such ¢, € C that we have
keZ k

Vo € [0,27] : ch exp (kx) = z:c}€ exp (kx),

keZ keZ

but (cx)ez 7 (€) ez Cantor showed in [Can] that the coefficients of any trigono-
metric series are indeed uniquely determined by the sum of this series on the whole
interval [0, 27|, when he proved the following statement: For every trigonometric

series, we have

ch exp (kz) = 0 for every z € [0,27] = Vk € Z: ¢, =0.
keZ

We can then ask whether we can replace the set [0, 27] in the previous statement
by a smaller set E/, such that the implication still holds. Note that this question
is non-trivial, since for example when ), _, ¢ exp (kz) = 0 for some z € [0, 27],
this does not necessarily mean that all of the coefficients ¢, are equal to zero. It
is also not hard to prove (see Proposition 5.3) that whenever E C [0, 27] is a set
with measure strictly less than 27!, then there exists coefficients ¢, € C, k € Z,
not all of them equal to zero, such that ), ¢ exp (kz) = 0 for every z € E.

Definition of the system U:

We say that E C [0,27] is a set of uniqueness, denoting E € U, when for any

1Unless stated otherwise, we will assume that “a set of measure m” means “a set of Lebesgue
measure m”.



trigonometric series we have

chexp(k‘x):Ofor every x € 0,27\ E = Vk€Z: ¢, =0.

keZ

When E ¢ U, we say that F is a set of multiplicity, writing £ € M. In this
notation, Cantor proved that the empty set belongs to ¢/. We note that in this
situation it would be more intuitive to say that the set [0, 27|\ E is of uniqueness,
rather than E, but this notation is used from historical reasons...

Notes on the characterization problem and the union problem:

Since the introduction of the concept of U-sets, this topic has received a lot of
attention. However the problem of deciding whether a given set E is of uniqueness
or of multiplicity turned out to be hard to solve. Finding some "nice” properties
of U also proved to be difficult. For example by theorem of N.K. Bary ([Barl])
when E and I are closed sets of uniqueness, we have F U F' € U, but this does
not hold for general E, F' € U (see Remark 5.6). We still do not know whether
this holds for two Gy sets, nor do we know whether there exist two measurable
sets of uniqueness whose union is of multiplicity.

Approximating U by other systems:

We will now restrict ourselves to the system U of closed sets of uniqueness,
where most of the theory lies. Failing to find a useful characterization of U-sets
or at least enough "nice” properties which this system possesses, we can still turn
to a different approach. Instead of working directly with the system U, we can
"approximate” this collection by different systems A C U C B of closed sets,
which are easier to characterize and have better properties. This will partially
solve the characterization problem and the problem of finding the properties of U.
On the other hand, by working with approximations of U, we have to worry about
a different question: How tight are the approximations A C U and U C B? In this
work we will discuss three ways of measuring the "tightness” of inclusion between
two systems S C T, each of them stronger than the previous one. The first one is
simply finding out whether the inclusion S C T is strict or not. Then we can also
check whether there exist sets in T which cannot be covered by countably many
sets from S, i.e. (for hereditary? S,T) whether we have 7'\ S, # 0. Finally we
can check whether T is bigger than S in the sense of polars, a concept which we
define in Section 9.

Examples:

2Throughout the work, when working with a family of closed sets, the term “hereditary” will
mean "hereditary with respect to closed subsets”. Similarly when we say a family F of closed
sets is a (o- ) ideal, it will mean that closed (countable) unions of F-sets are again in F.



Some examples of collections used for approximating U are the systems

HY c H® ¢ .. c U HM cU' cU c U,
NeN

(which we introduce in more detail later on).

The system Uy:

When a closed set E supports a probability measure pu, such that its Fourier
coefficients /i (k) = [ exp (—ikz)du (x) converge to 0 as |k| — oo, then clearly
E € M. In this case we say that F is of strict multiplicity. When E is not of
strict multiplicity, we say that E is a set of extended uniqueness. We denote the
family of closed sets of uniqueness by symbol Uy. Clearly we have U C U, and
Piatetski-Shapiro ([PS1]) proved that this inclusion is strict. The fact that Up
is a o-ideal is a simple consequence of its alternative definition (which we give
in Section 6) and by [Barl] the system U is a o-ideal as well. This immediately
implies that we have Uy \ U, # (. Finally Kaufman ([Kau2]) proved that the
inclusion U C Uy is strict also in the sense of polars.

The systems U’ and HWN) :

Later in this work, we define the systems H™), N € N (see Section 8) and
the family U’ of U-sets of rank 1 (Section 6). By a theorem of Piatetski-Shapiro
([PS1]), we have Jyey H™) C U’, and as a corollary to the longstanding Borel
basis problem ([DSR], or see Theorem 9.4 of this thesis), we have U 2 U/ D

(Un H™),

1.2 The goal and contents of this thesis

The goal of this thesis:

To the best of our knowledge, the question whether the inclusions .y H M) ¢
U’ C U are strict in the sense of polars still remains open. Vlasak recently proved
in [Vla] that in the sense of polars, each of the inclusions H™) ¢ HV+) N € N
is strict. The goal of this thesis was to prove his conjecture, which states that we
can generalize the concept of H™)-sets and define the so-called H(*)-sets, which

have the following properties:
1. Uy H™M c H™>)

2. Many of the H(*)-sets can be used for witnessing that the inclusion | J,, H®) C

H() is strict in the sense of polars.

3. There exist H()-sets satisfying 2. which belong to U’ (and this can be
proven by modifying the proof of the inclusion |Jy H N cU).



This would then witness that the inclusion |y H (N) c U, and actually even
the inclusion | Jy oy H (N) < U, is strict in the sense of polars, thus solving the
open problem.

Unfortunately we were unable to fully prove this conjecture. To be more
specific, we successfully showed that the inclusion |y H (N) ¢ H®) is strict in
the sense of polars and proved that this fact can be witnessed by any H(*)-set
which satisfies certain technical conditions, which are however not too limiting.
We then attempted to prove the existence of H(*)-sets from U’, but it turned
out that the original proof of inclusion |Jyoy HY) C U’ cannot be modified to
get this result, at least not in a direct way. Whether the existence of such sets
can be proven in another way remains an open question.

Outline of the thesis:

We assume that the reader is familiar with basics of the descriptive set theory
and knows the basic properties of the Fourier transform “: L' ([0, 27]) — ¢ (Z).
The facts from these two areas which we will use in this thesis can be found
in the appendix Sections A.1 and A.2. We also refer to the appendix for some
information on Hausdorff dimension, Cantor-Bendixson rank and Bernstein sets.

The main text is then organized as follows: We begin the Part I by introducing
in Section 2 the notation which we are going to use. In Section 3 we present
some examples of families of small sets which naturally appear in mathematical
analysis. We then observe some of the common properties these systems have,
which allows us to better understand what kind of results we can expect from the
families U and U. In the last Section 4 of this part we then list the key known
results related to the systems &/ and U and highlight some of the problems which
are still open.

In Part II we discuss the sets & and U in more detail and define more of
the related notions. We also include proofs for those theorems which are either
relevant to our goal (i.e. the question whether the inclusion Jycy H W) c U
is strict in the sense of polars), or whose proofs are interesting from some other
reasons. In Section 5 we prove the basic properties of the families &/ and U and
in the next Section 6 we apply some of the tools from functional analysis to the
theory of U-sets, which allows us to define the collection U’. In the following
two Sections 7 and 8 we introduce a few types of the so-called symmetric sets
and define the H™)-sets. We also explore the properties of symmetric sets and
HW)_sets and discuss the relation of these two families. In the last Section 9 of
this part we define what it means for an inclusion between two families to be
strict in the sense of polars. We then summarize the known results related to the
“approximation problem” for U and highlight some open questions related to this

topic.



In Part III we present our results, all of which are novel. We note that they
are mostly inspired by the techniques used in Vlasak’s proof of the fact that the
inclusion H™) ¢ HW+Y is strict in the sense of polars ([Vla]). In the Section 10
we define the family H(* and prove some of its properties. We then observe the
similarity between the subfamily of "regular” H(>®)-sets and a certain family of
symmetric sets. Lastly we give a few notes which explain the difficulties we had
with attempts at finding H(*-sets of uniqueness.

In Section 11 we define the families of "sets of type N” for N € NU{oo} which
generalize the families HN) and H*). We also define the system of L-sets of type
N and regular sets of type N. Using the technique from [Vla] we prove the main
theorem of this thesis, which states that every regular set of type N € NU {co}
supports a measure which measures every L-set of type < N by zero. As a
corollary of this theorem we get the fact that the inclusion |J, H™) < H®) is

strict in the sense of polars.



Part 1

U as a family of thin sets

2

Notation

The unit sphere T:

By T we will denote the unit sphere {z € C| |z| = 1} endowed with the
topology inherited from C. Note that we can identify T with the sphere in R?
via the mapping a+ib — (a, b), or with the interval [0, 27) via the mapping
x € [0,27) — € € T. We can also imagine T as the interval [0, 2x] with
points 0 and 27 identified. Using the mapping x € [0, 27| — /27 € [0, 1]
we can also identify T with the intervals [0,1] or [0,1). In all of the cases
we will work with the topology received from the identification of T with a

subspace of C.

Let z,y € [0,27). By +r (or simply +) we will denote the additive operation
on T defined as
41y :=(r+ry) mod 2.

For z € [0,27) and ¢ € R we will define the multiplication on T by the
formula

corx:=c-v:=cr:=(cgx) mod 2T,

Sequences:

o0

e For sequences indexed by integers we will use the notation z = (z,) -, =

n=1

(z1,x9,...) resp. © = (z;);_ = (T, ..., x,). For general sequences we write
r = (Zi),c;, where I is the index set. We will understand sequences as
functions from the index set, which allows us to use the restriction operator
[. Sometimes when it is clear from the context over which set is the sequence
indexed or which variable is used for indexing, we will omit these, writing

simply (z;),, (z;); or (x;) instead of (:L‘i)iel.

e When =z = (z,)°, and y = (y,).L, are two sequences, where ny € N,

=1
ni; € NU {oo}, we will denote by x"y the concatenation of x and y defined

as

xAy = (33'1, cy Tngy Y1, Y2, ) .



Binary operations:

e Let XY, Zbesets,re X, SCY, TCXandlet R: X XY — Z be

a binary operation. By zRS we will denote the set {zRs|s € S}. We also
set TRS := |J{tRS|t € T}. When there is no risk of confusion (e.g. R is
the multiplication on R or T) we will omit the symbol R and write simply
xS instead of zRS.

Assume that there is some canonical operation + defined on X and that we
have defined multiplication - of elements of X by real numbers. By a shift
or translation of a set T" we will then mean the set x 4+ 7" for some x € X
and by a dilatation (resp. contraction) we will mean a set r - T" for some

r>1 (resp. r € (0,1)).

When v = (vy, ...,v,) € Y™ is a vector, z € X and R is as above, we denote
TRV := (xRvy, ..., zRv,). When we have z,y € R? we will denote by x -y

or also zy the standard scalar product x -y = z1y1 + ... + Ty Yn.

Miscellaneous:

3

e When d € N and a set S C R? is measurable, we will denote by |S| the

d-dimensional Lebesque measure of S.

Let X be a set. By P (X) we denote the power set of all subsets of X.
When § C P(X) and S € S, we say that the set S is an S-set. By S, we

denote the o-closure of S, defined as

SU;Z{SeP(X)H(Sn)cs: S:[jsn}.

When S§ is finite, we denote by #S8 the cardinality of S. By a countable set
we will understand a set which is at most countable, i.e. "countably infinite

or finite”.

When f : X — R is a function and r € R, we denote {f =r} =
{z € X| f(z) =r} and define {f <}, {f <r} etc. analogically.

General families of thin sets

3.1 Examples of families of thin sets

First, we give some examples of families of small sets which naturally appear in

various areas of mathematics.®> One of them will be the sets of uniqueness, in

3 Another important example of small sets is the class of Haar-null sets. However, we avoid

discussing it in this work, as we mostly work in T or in R™ where the standard Lebesgue measure

7



which we will be interested in the remaining part of this thesis.

3.2

[X]=“ - the system of all finite subsets of a set X.
[X]= - the system of all at most countable subsets of a set X.

L (X) - the negligible sets or (Lebesgue-) null sets, i.e. the subsets of X C
R™ which are of Lebesgue measure zero. More generally, we can consider

p-null sets for general Radon measure on X.

NWD (X), MGR (X) - nowhere dense and meager subsets of a topological
space X.

{F<e}, {F<e},{F=¢}for F:P((X)—[0,00)0r F:P(X)— On-
the sets S for which F' (S) is small. For example the sets of small diameter,

measure, cardinality, Hausdorff dimension* or Cantor-Bendixson rank®.

U - the sets of uniqueness on the unit circle T. By definition, aset S C T is a
set of uniqueness if it has the following property: whenever a trigonometric
series Y, ., o€ converges to 0 for all z € T\ S, then ¢, = 0 for all k € Z.

U - the family of all sets of uniqueness which are closed.

Uy - the closed sets of extended uniqueness, which we define later.

Basic properties

We observe that most of these families F C P (X) have some, or even all, of the

following properties:

1.

2.

w

4.

0 e F, X ¢ F - non-triviality,
SeF,TcCS = T e F - being hereditary with respect to inclusion,
S, T e F = SUT € F - closure under finite unions,

Sp € FforneN = |, S, € F - closure under countable unions.

Definition 3.1. As in [BKR], we say that F CP (X) is a family of thin sets, if

it satisfies the first two conditions. If it also satisfies the condition 3, it is said to

be an ideal. If all of the conditions are satisfied, it is said to be a o-ideal.

is available. We also choose not to discuss the families of porous and o-porous sets.

4See Section A.3 for definition and some details on d-dimensional Hausdorff measures H,4
and Hausdorff dimension dimy.

5For definition see Section A .4.



3.3 DMotivation - which questions to ask?

The questions: When one encounters a family of thin sets, it is natural to ask

the following questions:
e [s F an ideal? Is it a o-ideal?
e Does F contain all singletons?

e What is the relation of F to other important families of thin sets? For
example, which of the o-ideals £, MGR, and [ X ]Sw are contained in F and

vice versa.

e For S € F, does there always exist a "nice” (e.g. closed) set 7" with S C
T e F?

e [s F closed under some other interesting operations, such as shifts S
S + z, dilatations S +— a.S or more generally, images under isometries or

homeomorphisms.

e [s an "easy way” to tell whether a given set belongs to F?7 Naturally, we
already have some definition of F, so we are looking for something simpler
than this definition.

Example: For example, the negligible sets £ form a o-ideal, they contain all
singletons and thus also countable sets. On the other hand there exist discontinua
in [0, 1] of positive Lebesgue measure (we discuss this later in Section 7) and such
sets are meager. Consequently £ does not contain MGR. Whenever S is a
negligible set, by outer regularity of Lebesgue measure, we can find G5 set G O S
which is also of measure zero. Also, L is closed under isometries. but not under
homeomorphisms. Lastly, given a set S, we can use the regularity of Lebesgue
measure to either find € > 0 and compact K C S of measure at least ¢ witnessing
that S ¢ L, or we find for each € > 0 an open set G D S of measure at most ¢, thus
proving that S € L. The last question is rather vague, but the characterization
of L-sets we just described seems to be an example of the kind of "easier to work
with” condition we were looking for.

In case of negative answer: Finally, whenever the answer to one of the
above questions is negative, we usually ask under which conditions would the
answer be positive. For example, if F is not a o-ideal, what are the properties of
the smallest o-ideal F’ containing F7 Is there a "nice” o-ideal 7 C F not "much
smaller” than F7 F might not be closed under isometries, but what about F’ and
F"?7 A good example of how this approach can be useful are the families NW D
and MGR. A different direction to take would be to relax the conditions asked in



our questions. In our example of negligible sets and closure under images under
homeomorphisms, we know the answer would become positive, if we restricted
ourselves to Lipschitz mappings. Another example would be the family F =
{p < €} of sets of small measure for some measure p. F is generally not hereditary
with respect to inclusion, since there exist non-measurable sets. But if we only

ask the p-measurable subsets of F-sets to be in F, we will avoid such problems.

4 U as a family of thin sets

4.1 U-sets and some negative results

Definition 4.1. Trigonometric series on T with coefficients ¢, € C, k € 7Z is
asum y . cpe’®® x € T. We say that £ C T is a set of uniqueness, writing
E € U, if it has the following property: Whenever a trigonometric series _ cye*®
converges to 0 for every x ¢ F| then necessarily ¢, =0 for each k € Z. If M C T

is not a set of uniqueness, we say that it is a set of multiplicity, writing M € M.

In Subsection 3.3 we noted a number of questions relevant to U-sets. The
simple answers to these questions are summarized in the following remark. We
include it now from motivational reasons - most of the individual points of the

remark will be stated and proved later on.

Remark 4.2 (Properties of U - simple answer). The family & has the following

properties:
1. U is a family of thin sets ([Can]).
2. U is not an ideal (Remark 5.6).

3. Shifts of sets from U are again of uniqueness (straightforward). The system
U is not closed under dilatations ([BKR, p. 481], see also Remark 5.6).

4. U contains every countable set ([You]). No inclusion holds between U and
MGR or L-sets (D. E. Menshov, see also Lemma 7.6 and Example 7.4
combined with Theorem 8.12).

5. For every d € (0, 1] there exist both U-sets and M-sets of Hausdorff dimen-
sion d (Example 10.3).

Remark. As mentioned earlier, the ”characterization” problem is rather vaguely

stated, but as of now, no "nice” characterization of U-sets has been found.

10



4.2 U-sets and some positive results

For general sets of uniqueness, we only have a few positive results. In order
to better characterize the sets in U for which some interesting results hold, a
fair number of auxiliary families of sets were defined and relations between these
families were studied. We focus on them in the following sections of this work.
Now we define the family of closed sets of uniqueness and formulate its properties.
When combined with the Remark 4.2, these properties give a somewhat more

complete answer to the questions presented in Subsection 3.3.

Definition 4.3. Denote by K (T) the hyperspace of all compact subsets of T
endowed with the Vietoris topology (see Appendix A.1 for definition). We define
the system U of closed sets of uniqueness as U = U N K (T) and the system M
of closed sets of multiplicity as M = K (T) \ U.

Remark 4.4 (Properties of U). The family U has the following properties:

e U is a o-ideal of closed sets ([Barl]).

U is closed under shifts and dilatations ([KL, p. 180].

e Every U-set is both of measure zero and meager (in fact this holds for
every measurable U-set, resp. for every U-set with the Baire property) (see
e.g. Proposition 5.3 for the first proposition (which is straightforward) and
[DSR] for the second).

e There exist closed null sets sets (and thus also closed meager sets) which

are not in U (same as in Remark 4.2).

e U, as a subspace of K (T), is IT}-complete (R. M. Solovay and independently
[Kaul]).

e For every d € [0,1] (resp. (0,1]) there exists a set in U (resp. M) of

Hausdorff dimension d (same as in Remark 4.2).

As the proposition shows, there are certain advantages to this approach - for
one, the class of closed sets of uniqueness has much better properties than U,
avoiding pathologies such as non-measurable sets, leading to some positive results.
Secondly, we now consider U as a subset of a Polish space K (T), which allows
us to compute its complexity, showing that U is IT{-complete. This explains why
no "simple” description of U has been found - a "simple enough” description of U
would imply that it is in fact Borel. In some sense, this result gives a negative
answer to the problem of characterizing which sets are of uniqueness. This is

something we could not have done with the whole class U C P (T), because U is
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too large to be embedded in any Polish space and thus no notion of complexity
is defined.

4.3 Open questions

The Propositions 4.2 and 4.4 partially answered the questions stated in Subsection
3.3. The two propositions however still leave some gaps to be filled. Specifically,

the following questions are still open, at least to the best of our knowledge:

1. (Union problem) For which E, F € U is EU F € U? This question is open

even when both E and F are G4 (or measurable).

2. (Interior problem) For given £ € M, can we always find a closed set ' C £

of multiplicity? Again, this is open even for Gs-sets.

3. (Characterization problem) Find a "nice” necessary and sufficient condition,

telling us whether a given perfect set E is of uniqueness or of multiplicity.

4. Are there "nice” families A, B which approximate U (resp. U) well, in the

sense that A C U C B and these inclusions are "not too strict”?

12



Part 11
Properties of U/-sets and related

systems

In this chapter, we will establish some of the classical notions related to the
sets of uniqueness, while also explaining in more detail the properties of families
U and U. However, the range of results in the theory of sets of uniqueness is
very extensive, so we will focus on defining the following notions and proving the

following properties, mostly in this order:
1. U, U and the property of being ideal or o-ideal,
2. Lebesgue measure and U sets,
3. countable sets and U sets,
4. Rajchman measures and Uy, the closed sets of extended uniqueness,
5. application of functional analysis to U, introduction of family U’,

(N)_sets and their relation to U,

6. symmetric sets, H
7. the inclusions between the families H™, U’, U and U,,
8. bases of o-ideals and the relative sizes of the families H™), U’, U and U,

9. polars, p-bases of o-ideals and the families H™), U’, U and U,.

In particular, we avoid the discussion of the question whether ¢ and U are closed
under shifts or dilatations. We also focus mostly on the closed sets, leaving out
notions such as Uy (the general version of Up-sets), or further discussion of the

union problem.

5 Basic properties of U/ and U

5.1 Basic examples of U/-sets

Theorem 5.1 ([Can)). U is a family of thin sets.

Proof. Tt is clear from the definition of U that it is hereditary with respect to
inclusion. To observe that the whole set [0,27] is not in U, one can simply

consider the constant function 1 and note that its Fourier transform is not a zero
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sequence. The remaining non-trivial fact that the empty set is a set of uniqueness
is due to Cantor. ]

Proposition 5.2 ([Can]). U contains every singleton.

Remark. Cantor actually proved a stronger result that every countable closed set

of finite Cantor-Bendixson rank is a set of uniqueness.
Proposition 5.3. Measurable U-sets are of measure zero.

Proof. Let E C [0,27) be a set of positive measure. We will show that £ € M.
Let K C E be a compact set of positive measure and consider the function
f = xg. By the standard Rieman’s localization principle, we know that f vanishes
on a neighborhood of every point z ¢ K, therefore S (f) converges to 0 at such
points. In particular, S (f) converges to 0 outside E. On the other hand, we have
f(()) = |K| > 0 and thus f # 0. Consequently, f witnesses that E is a set of
multiplicity. O]

Proposition 5.4 (W.H.Young). If E C T contains no perfect set, then E is a

set of uniqueness.

Proof. Let E be a set of multiplicity. Then there exists a nonzero trigonometric
series > cpe™™ with Y cpe?*® = 0 on T\ E. We denote

B::T\{xET| chei’mzo} C E.

The series Y cxe™*® witnesses that B ¢ U and thus by Corollary 5.9 B is uncount-
able. Clearly B is a borel set, and by Perfect set theorem, every uncountable Borel
set contains a perfect set. Since F was arbitrary, we have shown that each set of

multiplicity contains a perfect set, which proves the proposition. O
Example 5.5. Bernstein® sets are U-sets.

Proof. This follows directly from the previous proposition and the fact that Bern-

stein sets contain no perfect subsets. ]

5.2 Being ideal and o-ideal

Remark 5.6. (1) U is not an ideal.
(2) There exists © € R and E € U such that xF ¢ U. In other words U is not

closed under dilatations.

8For the definition of a Bernstein set, see Section A.5.
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Proof. (1) Let E be a Bernstein set. By Example 5.5, both F and E® are in
U. However, since U is a family of thin sets, we have £ U E¢ = [0,2n] ¢ U,
witnessing that U is not an ideal.

(2) This can be witnessed by the set F = (1E) U (3 + $E), which satisfies

2F =[0,27] € M (where E is as above). For details, see [BKR, p. 481]. O
Theorem 5.7 ([Barl]). Countable union of closed U-sets is in U.

Corollary 5.8. U is a o-ideal of closed sets.

Corollary 5.9. U contains every countable set.

Proof. Use Theorem 5.7 and Proposition 5.2. [

6 Applications of functional analysis in the the-

ory of U-sets

6.1 Spaces A, PF and PM, ideal J (F)

Remark 6.1 (Identification of ' (Z) and A). By the properties of Fourier trans-
form, we can identify the space I! = [! (Z) with the subspace A = {f eC(T)|f e ll}
of the space C (T) via the bijection f — f (See Section A.2 for details). On A
we consider the norm induced by the identification with [*. Recall as well that
E = f * g and that the space {! with convolution is a Banach algebra.

For any f € {f eC(M|fe ll} the mapping (cx) — Zkezf(kz) ¢ 1s clearly
a continuous linear functional on ¢g = ¢y (Z), and for any (b)) € I® = [*(Z)
the mapping f — > .., bi f (k) is a continuous linear functional on the space
({ge ()| gel}, |y with the norm lgl| = 3l

This leads to the following definition:

Definition 6.2. We denote by A (=A (T)) the Banach algebra of all continuous
functions (on T) with absolutely convergent Fourier series. On A, we consider
the norm || f||, = H f Hll and the standard pointwise multiplication of functions.
By PF we denote space of trigonometric series which have coefficients in c¢y.
Identifying PF with (co, |||l ), we see that it is a predual of A (with duality
(S, N pray = <S, f>(co7l1), S € PF, f € A). Similarly we denote by PM
those trigonometric series which have [*° coefficients and identify this space with

[*° = [ (Z) with the standard norm. PM is then the dual space to A, using the

duality (f, S>(A7PM) = <]‘¢,S>(l1 oy feA SePM.

Proposition 6.3. C' (T) C A.
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Proof. This is an immediate consequence of [KL, Proposition I1.1.1], which states
that for absolutely continuous f € C (T), we have f' € L?(T) = f € A. O

Definition 6.4. For £ C T we define the ideal J (F) of functions from A which

vanish on some open neighborhood of E:
J(E)={f€Alf=0o0nV for some V DO E open}.

Remark. Clearly J(FE) is a linear subspace of A. Recall that A is a Banach
algebra with the standard pointwise multiplication of functions. Consequently
J (E) is closed under multiplication by functions from A, which justifies the word

“ideal” in the previous definition.

6.2 The sets of extended uniqueness

Definition 6.5. By R we denote the set of Rajchman measures
R = {ueM(T)m(n) '”'i>°°o}.
We then define the closed sets of extended uniqueness as
Uy={E e K(T)|pu(E)=0 for every p € R}

and closed sets of restricted multiplicity My = K (T) \ Up.
Remark 6.6. The family Uy has the following properties:
1. Uy DU,

2. Uy is a o-ideal,

3. every Up-set is of measure zero.

Moreover, the family R satisfies A C R = PFN M (T) C PF.

Proof. 1. By [KL, Proposition I1.6.5] the new definition of Uy is equivalent with
the one given in the introduction (page 3). This immediately implies that Uy D U
(alternative proof using the later definition can be found in [KL, Proposition
11.6.3]).

2. From Definition 6.5 it is clear that it is a o-ideal of closed sets.

3. By Riemann-Lebesgue lemma the Lebesgue measure is a Rajchman mea-
sure, which gives the result.

Note as well that Rajchaman measures are those measures 1 on T, for which
ft is a pseudofunction, i.e. R = PFNM (T). In particular we have R D A, since
ACPFand ACC(T) Cc M(T). O
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6.3 Characterization of U and the definition of U’

Theorem 6.7 ([PS2]). Let E C T be a closed set. Then E is in U if and only if
the ideal J (E) is w*-dense in A.

Recall here the w*-topology on A is not metrizable and thus a closure of a set
S C A is equal to the set of all limits of nets of points from S. This however,
is in general not the same as taking just all the limits of countable sequences of

points from S.

Definition 6.8. We define the family U’ of closed sets of uniqueness of rank less

or equal to 1 as

U ={FE e€U|J(E) is w*-sequentionally dense in A}.

Remark. We will not use the notion of rank in this thesis, so we refer the interested
reader to, for example [KL, Chapter V]. We just note here that the only set of
rank strictly less than 1 is the empty set, so it is correct to say that a nonempty
set F is of rank 1 whenever E € U’.

Remark 6.9. When working with the family U’, it is useful to keep in mind the

following simple observation

EcU <+ 1€ w"sequential closure of A
< df, € Awith supp (f,,) C T\ £ and sup || fn]| 4 < o0
satisfying f, (0) — 1 and f, (k) — 0 for k # 0,

The first equivalence follows immediately from the fact that J (F) is an ideal
and multiplication on A is continuous, while the second equivalence is simply the

description of w*-convergence of sequences in [*.

7 Symmetric sets

7.1 General construction

Remark 7.1. In mathematics, we often come across the following general con-
struction of a set in RY. We have a bounded B C R? and a sequence of sets
E, C B, n € N. We then construct a new set £ as E' = [, E,. If the sets E,
are closed in R? and they form a centered system, F is a nonempty compact set.
Later in Section 11, we will study a more general case, but for now, we assume
that d = 1, B is either [0, 1] or [0, 27] and the sets E,, are finite unions of closed

intervals with disjoint interiors.
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Figure 1: Cantor set C' = () £, constructed in the classical way (up) and its
HW_representation (down).

In Sections 7 and 8, we focus on symmetric sets and H™-sets, N € N, which
are both of this type”. As the name suggests, the sets £, of a symmetric set £
will be somehow symmetric or "regular”. Typical example of a symmetric set is
the Cantor set (Figure 1). This set is also an example of a H™M-set. For higher N,
the H®™)-sets no longer have to be so symmetric, but they enjoy other properties
instead. In the following sections, we will define these families, show that some

symmetric sets and all of the H®)

-sets are sets of uniqueness and finally state
the Salem-Zygmund theorem, which in particular implies that certain symmetric

sets are also in the family H™).

7.2 The definition

Definition 7.2 (Symmetric set of constant dissection ratio (taken from [BKR])).
For real numbers a < b and £ € (O, %), performing a dissection of type & on [a, b]
means replacing [a,b] by the union of two closed intervals [a,a,] and [b,b] of
lengths & (b — a).

Let (&), be a sequence with &, € (0,3) for n € N. A symmetric perfect
set with dissection ratios &,, n € N is a set Ee, = NE,, where Ey = [0, 27|
and whenever F, i is a disjoint union of closed intervals I, we receive E, by
performing a dissection of type &, on every I;. If the sequence(¢, &, ...) is constant,
we write simply F¢ and we call such set a symmetric perfect set of constant ratio

of dissection €.
Example 7.3. E, is the classical Cantor set in 0, 27].

Remark. When working with dissections of intervals, there are three important
variables - the dissection ratio &, i.e. the (relative) measure of the remaining
intervals, the number 2¢ - i.e. the (relative) measure of remaining set and 1 — 2§,
i.e. the (relative) measure of the set we removed. To make the matters worse,

some authors index the symmetric perfect sets by the first of the mentioned

"To be more precise, each HV)-set is contained in a closed H™)-set which is of this type.
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variables, as we do here, while others index them by the last variable and both

notations coincide for (the) Cantor set.

Example 7.4. E;, is of measure zero if and only if the sum > 7, (1 —2¢,)
diverges. In particular there exist symmetric perfect sets of positive measure

(and these are consequently in neither of the classes U and Up).

Proof. Clearly Ey D Ey D ... D E¢,. By induction we get that (the normalized)
measure of E, is [[_, 2§, which is equal to [[,_, (1 — ), where ¢, = 1 — 2¢;.
Since €, € (0,1), we get that |Ee, | =[]~ (1 —¢,) is equal to zero if and only if
the sum Y7 €, is infinite. O
Definition 7.5 (Homogeneous perfect set). Let £,7 = (o, ...,m%) be numbers
satisfying O =no<m < ... <m=1,k>1,6=1—m_1 and n; > n;_1 + & for
each i < k. By performing a dissection of type (£,7) on [a,b], we mean replacing
[a,b] by the disjoint union of closed intervals [a;, b;], ¢ = 0,..,k — 1 of lengths
€ (b—a), where a; = (1 —n;) a + n;b.

Let (&, 1), be a sequence of numbers &, € (O, %) and vectors 77, = (Mn.0s --s Mk )
n € N, each pair satisfying the above conditions. We generalize the Definition
7.2 and define a symmetric perfect set Eg, 7 with dissection ratios (&,,1,) in the
obvious way, replacing "dissection of type &,” with "dissection of type (&,,7,)”.

If the sequence (&,,7,), = (§,7),, is constant, we call the resulting set E¢; a

—

homogeneous perfect set E¢ z associated to (&, 1)

Remark. Let E¢, be a symmetric perfect set with dissection ratios &,. If we
take 77, = (0, 1 —¢&,, 1), we have E;, = E, 7 . Therefore Definition 7.5 truly

generalizes the previous Definition 7.2.

7.3 Some properties

Remark. Let (&,,1,), and (k,), be as in the above definition. Similarly to Ex-

ample 7.4, we have

Eeoz =0 <= > (1= kn&y) = o0.
n=1
Lemma 7.6. The symmetric sets Eg, . defined above are nowhere dense (and

so, in particular, meager).

Proof. By Remark 7.1, all of these sets are closed. Let E = NFE),, be such a set.
In Definition 7.5, we only allow non-trivial dissections - in each step, each in-

terval is split into at least two disjoint intervals of the same length. Consequently,

the E,, consists of at least 2™ disjoint intervals of length at most 27". This implies

that £ = F = NFE, cannot contain an open set, and thus it is nowhere dense. [
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Definition 7.7. A symmetric perfect set Eg, is said to be ultra-thin, if the dis-

section ratios satisfy Y &2 < oo.

Theorem 7.8 ([Mey, Chapter VIII, Theorem I]). All ultra-thin symmetric sets

are of uniqueness.

Remark. When &, decreases quickly enough, the set E¢, is of uniqueness by the
previous theorem. On the other hand, when &, is high enough, the resulting set
E¢, will have positive measure, and consequently it will not be in U. However
for general sequence (§,),,, there is no known characterization explaining when is

the set F¢, of uniqueness and when is it of multiplicity.

8 HW_sets

8.1 The definition and basic properties

Notation. Recall that for x,y € RY we denote by zy the standard scalar product
Zi\il ;Y in ]RN.
In the following section, we will use the notation
x = (z,), = (=, ,xﬁ)n € (]RN)N.
Definition 8.1. Let N € N and let x € (RN)N be a sequence of vectors. We say

that x is quasi-independent, if for every 0 # o € Z we have lim,, |z,a| = co. By

QN we denote the set of all quasi-independent sequences in (NN )N and by Q.

N
the set of all quasi-independent sequences in ((]R \ {O})N) .

Remark 8.2. Tt is easy to see that if x is quasi-independent, then necessarily
lim,, }xﬁ‘ = oo for each £k < N. An example of a sequence which is not quasi-
independent would be z,, = na for a € ZV (where N > 1). For N = 1, clearly
any (z,), with |z,| — oo is quasi-independent.

For higher N, a sufficient condition for x to be quasi-independent is when for
each 1 < k,l < N, k # | we have either % /2! — oo or 2!, /2F — o0 as n — oo.
To see this, fix nonzero a € Z". There exists an index iy satisfying a;, # 0 and

2% /2% — 00 as n — oo for each 1 < k < N with ay # 0. We then have

k
x
QG + E ozk—g‘:oo- <|az~0|—|— E ozk-()) = 00,

lim |z,a| = lim °
n n
ktip kAo

which implies that x is quasi-independent.

20



CE—— B!
E— — |
— — | = E| U F}

() L] () () am [

G -G G e /), N F,
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Definition 8.3. A set I C TV is an open interval, if it is of the form I =
I; X ... x Iy where each I, k =1,..., N is an open interval.

A set E C T is in H™) | if there exists x € Qn and an open interval I ¢ TV
such that for every x € F and n € N the vector z - z,, € TV is not in I (where
Tz = (zpxl, .., z-pad)). Similarly E is in H™* if there exists x € Q.

and an open interval I C TV with the same property.

Remark 8.4. Let F be a H™)-set and suppose that this fact is witnessed by the
sequence x € Qu and open interval I. Clearly F is contained in a "true” H®™)-get
E=NE,=N(E}U..UE)Y), where the sets E¥ are defined as

Ef:={zeT|z -z} €T\ 1L},

and this set E is closed. Thus we can focus our attention mostly on those closed
HW)_sets E which are of the form

>~ N
E=()JE:= H(N,Ix)
n=1k=1

for some quasi-independent sequence x and open interval I. In particular, from

now on unless stated otherwise, all H™)-sets will be closed.

Remark. In the definition used by [Bar2], the property of being H™*-set can
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actually be witnessed by quasi-independent sequence x € (RN )N instead of x €

((R \ {0})N)N. However the families H")* in either definition are hereditary.
Also when the fact that £ € H®™)* is witnessed by sequence of vectors (x,,),
it is also witnessed by any subsequence of (x,). Combined with the fact that
lim,, }:pfl‘ = o0 holds for each k£ < N, we see that both of the possible definitions

give the same object H™)* - and the one we adopted avoids division by zero.

Proposition 8.5 (Properties of HM-sets). Let N € N. Then we have the
following:

1. HM c HM* c {{J;_ | Exln e N&Vk=1,..,N: E, € HM}.
2. HN) ¢ gWN+1)
3. Let MeNand Ec HM Fe HN), Then EUF € HM+N),

The points 2. and 3. of the previous proposition also hold for the collections
HW)* with identical proofs. The first assertion immediately implies the following
corollary. For definition of symbol (-)+ see Definition 27.

Corollary 8.6. For N € N we have (H(N))U = (H(N)*)(7 (and thus also (H(N))L =

(HM*)*).

Proof. The first inclusion in 1. is trivial, while the second can be found in [Bar2].

In order to prove 2., let E ¢ H(N,I,x) € H™. Define 2Y*! := n .
max {zf|k < N}, 2, = (2),..,2)*"), X = (z,) and I’ = I x T. By Re-
mark 8.2 we have x' € Qny1. Since clearly z - !, ¢ I' <= z-x, ¢ I for any
x € T, the fact that £ € H™N*D is witnessed by x’ and I’.

3. Let E ¢ H(M,I,x) € HM and F ¢ H(N,J,y) € H™. Since for
each f € ZN we have |By,| — oo, we can for each k € N find such n, € N
that |Byn,| > 2|azx| holds for each (o, 8) € {—Fk, ...k} ™. Denote z = (z),
2k = (Th Yny,)-

We check that z € Qpr  n. Fix nonzero v = («, ) € ZM x ZN. If either a or 3
is a zero vector, we have |yz;| = |Byy,, | — oo (or |yz,| = |axg| — 00), since x and
z are quasi-independent. On the other hand when «, 5 # 0, for k& > ||| |5

we have

vz = |awk + BYni| > |BYn,| — loxk| > Jaxy| — oo

Furthermore for any £ € N, we have v -2, ¢ I = x -2z, ¢ I x J and
Yy, & J = x-2, ¢ IxJ. Clearly we have F C H (N, J,y) C H(N, J, (yn,))
and therefore

EUF CH(M+N,Ix J,z)e HMN),
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The system H™* admits the following characterization of H™)* sets, which

we will need later:

Definition 8.7. We denote

HéN)* —{F e H(N)*| Jx € Qn Jopen interval I : E C H (N, I,x)

i

k
n

&Vk < NVneN: > L}

X

Theorem 8.8 ([Vla]). For any N € N, L > 0 we have HM* = HM*,

8.2 The theorem of Piatetski-Shapiro

We now state one of the main theorems relevant to this thesis. We also include

its proof, as we will refer to it later.

Theorem 8.9 ([PS1]). For every N € N, a H™N)-set E is in U'. Consequently
we have | Jy HY) Cc U C U.

Proof. Step 1. Let E C H (N,I,x) € H™. As noted in Remark 6.9 it suffices
to find a sequence f, of functions from A with supp (f,) C T \ E, such that
fn Y We will take f, as f, = fl-...- f¥ with supp (f!) C T\ E!, where
Ei ={z €T|z 2% € T\ I;}. Furthermore, denote by ¢; a fixed function from
A with supp (¢;) C I; and ¢; (0) = 1 (such a function exists, since by 6.3 any
feCHT) isin A). We claim that f! (z) := ¢; (2'x) are the functions we were
looking for.

Step 2. We will denote f = ; (2¢-). Firstly we observe that

N N
Ifalla < TTUIL =TT llills
i=1 i=1

which then implies that sup {|| f,.|| | » € N} < co. The first inequality is immediate
from the fact that A is a Banach algebra. The equality then follows from the fact
that for x € T:

This implies that the numbers <@Z/(JZ) (k))k, defined as gol/(ga) (k) = ¢ (1)

when k = [ - x! for some | € Z and gol/(ya) (k) = 0 otherwise are Fourier coef-
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ficients for the function f!. Since these coefficients are uniquely determined, we
have fi = i (@) and thus |21, = e (@8]0 = il o

Step 3. It remains to prove that f, (0) — 1 and f, (k) — 0 for k # 0. Let
k € Z and € > 0. Using first the standard properties of Fourier transform and

then the observation made in step 2, we get

N/\
- (H v <x:;~>> W= (A @) 0= Y [[at
i=1 pezN =1
p1+...-+tpN=k
N N N
ZH = > Ila@)+ > [[é@)=5+5.
SLEHZ_AIZ =1 vf\z:i‘zgkm i=1 3?|$;2|:>km i=1

In the equation above, fix m such that >, [¢; (I)] < € holds for each i.
Since (z,,) € Qn, we have |ax,| — oo for each nonzero a € Z". This means that
we can find ng high enough so that no a with |a;| < m for each i satisfies az,, = k
for every n > ng (with the possible exception of @ = 0 when k£ = 0). Therefore
for such m and n we have either S; = 0 when k # 0 or S; = [[¢; (0) = 1 when

= (0. We can bound S in the following way:

N N N N
Z H@i (a;) < Z H@i (i) < Z Z H’@z (i)
azn=k i=1 acZN =1 io=1 aczN i=1
Ji: ‘ai‘>m Ja: |ai|>m o >m

—i > 190 () ﬂ(z|@<z>r><e-iﬁrlmu-

ip=1 [l|>m %10 lEZ t0=1i#ig
Thus for each k € Z and ¢ > 0 we proven the existence of such ng that for
fo(k) =1 (k)‘ < €, which completes the proof. O

every n > ng we have

8.3 Relation of H™)-sets and symmetric sets

Remark 8.10 ("regular” H™)-sets). To simplify the notation, we identify for the
moment the unit circle T with the unit interval [0,1]. Let £ = H (N, 1,x) €
HW)* (where as before N € N, I is an open interval and x € Q) and denote
EF = {x €Tz -2Fel C} as before. We will show that under certain conditions,

E is a symmetric perfect set (in a slightly generalized sense).

e E=(\E,, where E,, = E! U...U EY is the representation of the set £ in

the sense of Remark 7.1. However, the set E for general open interval [
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Figure 3: First step of the construction of a "regular” H®-set E with I, =
(% -2, 27r), I, = (0,% . 27r) and z1 =1, 22 = 2.

and quasi-independent x can be rather complicated to draw or imagine.

e Assume that Iy = (ag, 1) is an open interval and z¥ € N. The set E¥ can

then be written as

Bt ={zeTz 2t eIf} = (i ® <Z+R (1k>0)> n[o,1].

i
which shows that it is a disjoint union of 2% closed intervals of length
(1 — ag) /2F. Similar remark can be made for general I, = (ay, by).

e Suppose that I, = (Z—:,Z—Z), where ag, by € NU {0}, ¢ € N and that
k< N, zF 2kl € N and 2¥qy |25, The set E¥*! then "divides well” the

n

set E¥ in the sense that whenever Ji, J, C EF are intervals of the form
[5,7 + 7] /2% qx, then the sets E¥*1 N J; i = 1,2 are translations of each
other (and the same thing also holds for open intervals J; C (Eﬁ)c of the

form (5, j + ) /*qx)-

(N)_sets, it is convenient to have the fol-

lowing order of elements of vectors of sequence x in mind: z}, 22, ..., a¥ 2l 232 ..

e When trying to "draw” or imagine H

e Suppose that for each £ < N the endpoints of I}, = <‘;—:, Z—:) satisfy ax, by €

NU {0}, g» € N and 2% € N. Moreover, assume that for all n € N, k < N

k+1

Kzl gn|ap, . The set E, ;1 (and thus also E,, for m >n

we have z¥q |z
as well as E) then "looks the same” at each interval J C E, of the form
J = 14,7 +j]/*%qx (in the above mentioned sense that if J;, i = 1,2 are
two such intervals, then E'NJ; is a translation of £N.J;). We say that such

a set F is regular.

e For regular F, the sets E, are unions of closed intervals of length 1/ (:cflv qk),
and these intervals have disjoint interiors and their endpoints are of the

form a/z" ¢, for some a € {O, ...,xfqu}. We can relax the condition in
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the Definition 7.5 of dissection of type (&, 7)) to only require 7; > n;_1 + &
instead of 7; > n;_1 + £&. Then by the previous point, we get that each
regular H™)-set is a symmetric perfect set with dissection ratios (&,,1,)

for some &, and 7,.

e We could write the dissection ratios (&,,17,) for E explicitly - unfortunately,
doing so does not seem to bring in any useful information, as this form of

representation of £ is far from being compact®.

Regular H")-sets then share some of the properties with “proper” symmetric
perfect sets with dissection ratios (&,, 7,). For one, we have |, E;| = !ﬂ;:ll E;|-
|E,| for E as above. This allows us the calculate the exact measure of E. Secondly,

it is well known that we can represent the classical Cantor set C' as a set of sums

e e} 1 n o) 1 n—1 2
C= en |l = e, €{0,2} » = €, | = €n €40, =
(B (5) 1m0} ={£e () 1 o3}
and that this way each x € C'is represented uniquely. Recall that C'is a symmetric
perfect set with dissection ratios (&, 7), where £ = % and 77 = (O, %, 1), which gives
meaning to the second equality in the above representation. It is easy to check

that whenever E is a symmetric perfect set with dissection ratios(&,, 7,), we can

represent it in a similar way as

F = {Z Engl---gnfﬂ €, € {7]”70, "'7nn,kn1}} .

n=1

However if we had to relax the definition of symmetric perfect set with dissection

ratios (&, 7,) to allow n,; > 7,1 + &,, this representation will not be unique.

Next we present the Salem-Zygmund Theorem which relates the homogenous

perfect sets and the sets of uniqueness, and H™)-sets in particular.

Definition 8.11. Real number 8 > 1 is called a Pisot number if 8 is the root of
some polynomial P which has coefficients from Z, leading coefficient of P is 1 and
all other roots of P have absolute value less than 1. Order of 8 is the minimal

degree of a polynomial P which witnesses that 6 is a Pisot number.

Remark. Clearly every n € N greater than 1 is trivially a Pisot number of degree
1 and Q (n) = Q (recall that FF (s) is the extension of the field F by the element

s).

8The word "compact” is not used in the mathematical sense here.
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Theorem 8.12 (Salem-Zygmund, 1955). Let £,7 = (1o, ..., Nk) be numbers satis-
fungO=my<m<..<m=1,k>1,6=1—nr_1 and n; > n;_1 + & for each
1< k.

(1) Suppose that 0 = % is a Pisot number of degree N and ny, ..., € Q(6).
Then Eg¢ ; is a HW)_set. In particular Ee¢ 7 is a set of uniqueness.

(2) If either 6 = % s not a Pisot number or one of the numbers ny, ..., ng is

not in Q (0), then E¢ 7 is a set of restricted multiplicity.

Proof. [KL, Chapter III]. ]

9 Other families as approximations of U

9.1 Bases and p-bases

Remark 9.1. In previous chapters, we listed several families of thin sets connected

to U-sets. In particular we have the following inclusions

HY cH® c..c |JHNM cU' cU cU,. (1)
N=1
It is natural to ask whether these inclusions are strict and, in case of a positive

answer, "how strict” they are.

Definition 9.2. Let F be a family of sets. By F, we denote its o-closure, i.e.
the family F, = {U _, F,| F,, € F}. Clearly if F is a family of thin sets, its
o-closure is a o-ideal. If 7 is a o-ideal, F a family of thin sets and Z = F,, we
say that F is a basis of o-ideal Z. We also define the corresponding notions for

families of closed sets in the obvious way.

Remark. For two families of thin sets F C G, clearly F, 2 G implies F, 2 G,. On
the other hand we also have F, O G = F, = G,. Consequently, it is the same
to ask whether there exists a set G € ¢ which cannot be written as countable
union of sets F), € F, as it is to ask "Is the family F a basis for the o-ideal G,7”.

When we compare two families of thin sets F C G, the first step is to check
whether F C G. If this is the case, we then usually proceed to ask whether F
is a basis for G,. Should the difference of two families turn out to be big in this
sense as well, as it will for families in (1), it will be useful to have even stronger

notion of difference between two families of thin sets, which we define now.

Definition 9.3. For F C K (T) denote by
Fr={peM(T)|VEc F: u(E)=0}
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the polar of F. Analogically we define for S C M (T) the set
St={EcK(T)|VueS: u(E)=0}

. If F C G has the property that F* = G+ and G is a o-ideal, we say that F is

a polarity basis, or also just p-basis, for G.

Remark. By o-aditivity of measures from M (T), if F is a basis for G,, then
trivially F is also a p-basis for §. Thus "being smaller in the sense of polars” is

a stronger notion than "being smaller in the sense of bases”. Recall as well that
by definition, Uy = R*.

9.2 Results concerning the relations between H™) U, U,
and U

When Rajchman introduced the H(-sets in 1923, he conjectured that oY = U.
It was also expected that the inclusion U C Uy might not be strict. However it
later turned out that both of the inclusions Hc(rl) C U and U C Uy are strict in a
strong sense. We now list some of the results known about the inclusions in (1)
in order to highlight the related open questions.

Lyons showed in [Lyo] that Us- = R and Kaufman [Kau2| complemented this
by the (very difficult) result that U+ 2 R. Together, these two results imply that
U is not a polarity basis for Uy. Debs and Saint-Raymond solved negatively the
so-called Borel basis problem for U by proving the following theorem:

Theorem 9.4 ( [DSR]). Let E C T be of multiplicity. Then U N K (E) admits
no Borel basis. In particular whenever F C K (T) is Borel, then F cannot be a

basis for U.

The following lemma then implies that U’ is not a basis for U.
Lemma 9.5. The family U’ is 33 in K (T).
Proof. By Remark 6.9 we have for E € K (T)

FelU <« 3f,€ Awithsupp(f,) C T\ FE and sup||f.]/, < o0
satisfying f, (0) — 1 and f, (k) — 0 for k # 0.
< dneNVmeN3IfeA: (ECT\supp(f) & fll,<n
ek, K <m |F) - 1)< )

Denoting
2o o 1
Moo= {F € AL <0 VI < s [F0) - 100 < 1}
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we get that U" = U, M, Usens, , 1E € K(E)|E C T\ supp (f)}, which shows
that U’ is G,. n
In [Vla] we can then find the following lemma and its corollary:

Lemma 9.6. Let N € N. Then there exists a set E € HN*Y and a probability

measure i € M (E), such that p (F) =0 for every F' € Hfév)*.

Corollary 9.7. (H(N))L ») (H(]\““l))L holds for every N € N,
1
Proof. By Lemma 9.6 we have (H(]\”“l))L - (Hl(év)*> . Characterization of

h
HW)* sets from Theorem 8.8 then gives (Hl(év)*> = (H(N)*)L. Finally by Corol-
lary 8.6 we have (H(N)*)J_ = (H(N))L, which implies the result. O

We will not give the proof of Lemma 9.6 here, but we will later in Section 11

prove a more general result, from which this lemma can be derived.

9.3 Summary of relations between HY), U’, U, and U, open

problems

Remark 9.8. We now summarize the known results about the inclusions in (1).

1. The following inclusions hold:

HYcH® c..c| | HNM cU cU c U,.

¢

2
Il

1

2. For each N € N, the family H®) is much smaller than H™*Y in the sense
that (HM)™ 2 (HN+D)*,

3. Un_i H™ is smaller than U’ in the sense that (Uy_, H™)_ C U’
4. U’ is smaller than U in the sense that U, C U.

5. U is much smaller than Uy in the sense that U+ 2 Ug-.

Proof. The only result not mentioned so far is 3. This follows from the fact that
each HN)-set is o-porous ([Zaj]), but there exists a U’-set which is not o-porous
([ZP)). O

This leaves the following problem, to the best of our knowledge, open:

Problem 9.9. Are the following inclusions strict?
L (Uso HY) > )
2. (U > UL
In particular, is it true that (J3_; H (N) is polarity basis for U?
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Part II1
H(®)_sets and sets of type N

10 H(®)-gsets

Vlasak conjectured the following:

Conjecture 10.1 (H™)-sets). We can define the so-called H*)-sets, a family of
sets which generalizes the concept of HN)-sets. These sets have, among others,

the following properties:

(i) There exists a set E € H®™) and a measure p € M (E) which annihilates

every set from Jy_, H.
(73) In (i), the set E can be chosen such that E € U (or possibly even E € U’).

In particular, the conjecture would give an answer to Problem 9.9, as it implies
that (| H(N))l # U~ (or possibly even (|J H(N))L £ (U")"). We were able to
prove the part (i) of the conjecture and we present this result in Section 11. In
this section we give the definition of H(*)-sets and prove some of their basic
properties. So far, we were unable to prove (i7) - our original intention was to
do so using the Theorem 8.9 of Piatetski-Shapiro. Sadly this did not work, so we
at least explain why the proof of the mentioned theorem cannot be modified in

order to get the desired result (at least not in a straightforward way).

Remark 10.2. A natural question regarding the polars of H"-sets is whether this
topic could be somehow related to Hausdorff dimension and Hausdorff measures.
For example one might wonder whether a d-dimensional Hausdorff measure Hy4
for some d € (0,1) restricted on some £ € H™*Y could not witness the fact
that (H(NJ“U)L #* (H(N))L. Unfortunately this is not the case. Firstly the
notion of polars only works with Radon measures, while the measure H, for
d < 1 is actually not a Radon measure as it is not finite on compact sets. A
more significant obstruction is however caused by the following example which
suggests that the notion of Hausdorff measure is not closely related to the theory
of H™)_gsets.

Example 10.3. (1) For any d € (0, 1) there exists a H"-set of Haudorff dimen-
sion at least d.

(2) There exists a H-set of Haudorff dimension 1.

(3) For any d € (0,1) there exists a M-set of Haudorff dimension less than d.
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Proof. (2) follows from (1) using the fact that when Ej, € (Jyoy H®) for k € N
then |JE, € H™) (see Proposition 10.7 for the proof of this fact) and 1 >
dimy J Ex > sup, dimy Ey = 1.

(1) Let d € (0,1). There exists some k € N, such that log2 (k — 1) /log 2k >
d. Denote E = H (N, I,x), where I = (1/2—1/2k,1/2+ 1/2k) and x = (x,),
z, = (2k)"~'. By the definition of Hausdorff dimension (see A.3) we have
dimy (E) := inf {d > 0| H? (E) = 0}, where

°° 11
4(E) = lim H{ E) = lim inf diamU,)?| | JU; o B, diamU; < —
HE (E) nggoHl/(%"k)( ) = lim in ;( iam U D iam %

Fix n € N. Clearly we are only interested in d € [0, 1]. For such d, it is clear that

the infimum in the above equation will be attained for
{U;} =8, ={ReR,RCEN..NE,},
where E, = {z € T|zz, ¢ I} and
Ry ={lj,j +1]/2kz,|j=0,..,2kz, — 1} .
Consequently we have
M (B) = lim (#8,) / (2ke,)" = lim (#5,) / (20)")".

By a simple induction we can prove that #8,, = 2" (k — 1)", which then implies
that
HE(E) =1lim 2" (k — 1)" / ((2k)™)" = lim (2 (k—1)/ (2k:)d>

n n

Clearly then H¢ (E) € (0,00) <= 2(k—1)/(2k)* =1 <= d =logy, 2 (k — 1),
which means that dimy (E) =log2 (k — 1) /log 2k > d.

(3) Using Salem-Zygmund theorem, we get £ € M when 1/ = 6 is not a
Pisot number. Since there exists arbitrarily high numbers which are not Pisot,
we have M-sets F¢ for arbitrarily low . The proposition then follows from the
well known fact that when £ N\, 0, we have dimy, (E¢) — 0 (This can be proven

in a similar manner to (1). Alternatively see e.g. [Kar].). O

10.1 Definition and basic properties

Notation 10.4. In this chapter we will always use the following notation: N =

(N,,) is a nondecreasing sequence of integers (With lim N, € NU{o0}), x a

lim N,

sequence of vectors, where x = (z,,), , = (21, ...,2)") € N¥» and T = (I,,),2,

n? 0 n
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a sequence of open sets in T. We also denote
H(N,I,x):= ﬂ{xe’]ﬂx-xn ¢ x..x1Iy,}.
n=1

Definition 10.5. Let (N,Z,x) be as above and suppose that lim N,, = co. We
say that x is quasi-independent if ((x;, e a:fj)):’:l € Qu holds for each N € N
(where for k > N, we set 2% = 0). If this is the case, we denote x € Q.

We say that a set £ C T is a H()-set, if there exists a tuple (M, Z,x) with

X € Q. such that

Ec(({ze€To 2, ¢ L x .. x In,}.

n=1

We then say that (N, Z,x) witnesses that E € H(™),
Let L > 0. If there exists a witnessing tuple (N, Z,x) for E, satisfying

ap | I

Vn € NVEk < N, : |
aj?’l

=

we write E € H\™.

Remark 10.6. (1) Similarly to the case of H®)-sets, the closed H()-sets and
H()_sets of the form E = H (N, Z,x) are of particular interest.
(2) Suppose that (N, Z,x) witnesses the fact that £ € H). Clearly for any

increasing sequence (ny) we have
H(N,Z,x) C H((Na)y-Z: (2n,)y) 5

therefore the tuple ((Ny,),,,Z, (,,),) also witnesses that E € H),

(3) Let (N, Z,x) be as in Notation 10.4 and suppose that x is quasi-independent.
Let M = (M) be a nondecreasing sequence of integers with lim M, = M €
N U {oc}, y € Qu a quasi-independent sequence of vectors, where y = (yx),
Y = (y,};, s y,i\/[k> € NMe and J = (Jn)fyzl a sequence of open sets in T.

Suppose (M, J,y) is “contained” in (N,Z,x) in the following sense: For
every k € N there exists n (k) € N and indices i (1), ...,i (Ny@x)) < M such that
Vi < Npwy 1 = Jiy) &x{l(k) = y,i(j). Then

H(N,I,x)C H(M,J,y)e HM.
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Proof. (2) is trivial. (3): Let x € H (N,Z,x). We need to prove that

xEﬂ{x/ET|x/~yk¢J1><...><JMk}.
k

Let k € N. Since z € H (N,Z,x), we have x - x4y ¢ Iy X ... X Iy, . Since
(M, J,y) is "contained” in (N, Z,x), this is equivalent to

i(1) i(Nuy)
Z - (?/k 70 Yg ) ¢ Jiq) X oo X Ji(Nn(k))’

which implies @ -y & J1 X ... X Jap,. O

Proposition 10.7. (1) For each N € N we have H™N) ¢ H(>).
(2) The family H®) is an ideal.

Proof. (1) Let E C H(N,I,x) € H™) where I = I, x ... x Iy is an open interval
and x € Qy. We set N,, = max{N,n}, N = (N,), I, = T for n > N and
T = (I,,). Furthermore we set y* = x¥ whenever &k < N and find y* for n € N
and N < k < N, such that y* > n-max{‘y“ |l < k’} We set y,, = (?/7117 ...,yTZZV").
By Remark 8.2 y = (y,) is quasi-independent, which implies that H (N, Z,y) €
H), Clearly (N,Z,y) is contained in ((N)ZO:1 (L)Y, ,x) in the sense of (3)

from Remark 10.6 , which completes the proof, as we then have

ECH(N,I,x)=H ((J\f)jj:1 (LN ,x) c H(N,T,y) e H*.

(2) Clearly H) is hereditary. It remains to show that the union of two
H(®)_gets is again in H®). Let E; € H®) i = 1,2. By definition we have
E; C H((N?,T%,x")) € H® for some non-decreasing N = (N?), Z" = (I) and
X' = (24) € Qooy Tim = xil’n, ,vail )

By induction we will construct N = (Ny), Z = (I;) and x = () such that x
is quasi-independent and for i = 1,2, (N, Z% x%) is contained in (A, Z,x) in the
sense of Remark 10.6. Granting these properties of (N, Z,x), we can then finish
the proof by observing that for each i € {1,2} we have

10.6

E;C H(N.IT'x") C H(N,I,x)e H™.

Construction: k = 1 : Since x? is quasi-independent, we find such n; € N
that

‘B-xgm r {1,,N11}} Z 2’0('{13171’

holds for each o, 8 € {—1,0, 1}N11, B # 0. We then set Ny := N{ + N7 | (I,)M

n n=1 "

NN o~ 2 N7211 .. ~
(I}),L, " (I2),2) and similarly 21 = @11 " To, .
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k — 1 — k: Assume that we have already constructed N,, and z,, for n < k
and I; for i < Nj,_;. As in the step k = 1 we find such n; € N that

|ﬁ-x2,nk I {1, ,N,i}} > 2oz ] (2)

for each a, 8 € {—k, ..., k}N%, B # 0. Again we set Ny := N} + Nﬁk and

Ne Ni—1 ~ (71\ Vi - (72) N
(In)nil = (‘ln)nill (In)niNé_l-f-l (In)n:];\/?bk_1+1 '

We can assume that ny > ng_1, so that the sequence (Vi) is non-decreasing.

Similarly the vector z; will consist of elements of vectors x;; and zg,,. In
1

i,m

order to be able to use Remark 10.6, it remains to make sure the numbers x

are ordered in the same as the open sets I/. Therefore we take the sequences

N} Ny . .
Tip = (x}jk,...,xu’;), Tom, = (x%nk, -,y ¢ ) and arrange their elements into
NI+N2
k
sequence Ty = <a:}t, ey T "’“) as follows:

2 1 N2 1 N2
- 1 N1 - 1 Nap - Ni+1 Ny ) ~ ny ny \ ~
xk» — <$17k,...,$17k anvnk"“’aj27nk ZIZ’Lk ,...,leg .Z'an ,...,sznk e

2 2
L[ Nl 41 NI\ . NE AL N2,
B AN N Ty sy To gy | -

(N,Z,x) has the desired properties: From the construction of z; we
immediately get that (A, Z,x) is contained in (N*, Z%, x") in the sense of Remark
10.6 for both ¢ = 1 and 7 = 2. It remains to prove that x € Q.

Let v € Z" be a non-zero vector for some N € N. Since N} — oo, we can find
no € N such that 2N,,, > N. Furthermore we can assume that v € {—ny, ..., nO}N.
Then there exist some a € {—ng, ..., no}* and 8 € {—n, ..., no}’, such that for

any n > ng we have

N a b
yoaa LNy = ) g =), + ) b, = (3)
1=1 1=1 1=1
= a- 11, [ {L,...,a} + 0 xon, [ {1,...,b}.
If B = 0 we immediately get
vy [ {1, .. N} =|a- 21, [ {1,...;a}| = 0

since x! € Q. and « and 8 cannot be both zero vectors. In the same way we
can deal with the case a = 0.
Assume now that «, 5 # 0, fix n > ng and set @ = a” (0, ..., 0), B=p" (0, ...,0)

such that &, j3 € {—n, ...,n}NTlL (which we can do since n > ng and a,b < N, <

34



N!). Using equations (2) and (3) we get

w1 {1, N} @ ’&-xl,n+ﬁ~-x2,nn[{1,...,N}L}

- @
- ‘Oé : xl,n| Z |05 *Tin

v

1B 2o, 1 {1,0 N2

= Ja-x1, [ {1,...,a} e 00,

where the last term tends to infinity because x! € Q. O

10.2 Regular H(™)-sets

In Remark .8.10 we made some observations concerning “"regular” H")-sets. For
H(>®)_gets we will discuss these sets in more detail. One of the reasons for doing
so is that these observations will illustrate the notions needed in Section 11. The
regular H(®)-sets will also serve as specific examples of H(*)-sets. In particular
we will be able to calculate the measure of such sets, showing that there exist
H(®)_sets of measure zero - a necessary condition for existence of H(®)-sets of

uniqueness.

Notation 10.8. As in Remark 8.10 we denote E! = {x € T|z -2, ¢ L}, E, =
Uf.vz"l E‘ and to simplify the notation we identify T with the unit interval [0, 1].

We then set
E.p=(EiN..NE,1)N(E}U..UE).

For now we will deal with the sets of the form £ = H (N, Z,x). For any sequence
of integers N, we can consider the following ordering of the set
{(n,i)|[neN,i1=1,2,...,N,}:

(1,1) < (1,2) < ... < (1, N1) < (2,1) < (2,2) < ...

When referring to “the previous” set E° . "the next” ¢ etc. it will always be with

respect to this ordering.

As noted earlier, we can imagine F as a "limit” of sets Fy, E», ..., where again
each FE, is iteratively created in steps E, 1, Ey 2, ..., Eh n,. Informally, we can
imagine a reqular H(*) set E as a set for which each step E, ; from the construc-
tion above "refines” the previous step and each step F,,; "looks the same” at each
of the intervals [j/z¥,, (j +1) /2% ], j = 0,...,2% — 1 which intersect the interior

of Ep, k, for every (m, k) < (n,i). Example of such a set follows below:

Example 10.9 (Existence of regular sets). For each k € Nlet [}, = Ufi’“l (%, 3—k>
where 0 < a; < b; < q and K}, are integers.. Furthermore for eachn € N, k < N,

let 2% € N be such that gaf|zF™ (resp. qual|zl,, in case that k = N,). By
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Figure 4: First step of a construction of a regular H(*®)-set E with N; = 2,
L = (3,1), I = (0,3), 2} =1, 2} = 4. In this case we have ¢ = ¢» = 2,
6! — (0.1}, R = {10.3], [2.1]}: 2 = {[jj + 1) /41 = 0,...3) and RZ =
{l4,7+1]/8]7=0,...,7}. The system & (resp. EF, £12) consists of those sets
from R{ (resp. R?) which lie in the set E{ (resp. E, E;).

Remark 8.2 we can choose z* such that x is quasi-independent and therefore
E € H® (or E € H™) depending on whether limsup,, N, is equal to oo or not).
We call such E a reqular H*)-set and denote for n € N, k < N,,

Gr o= [/l G+1) /ak] |5 =0, .28 -1}
Ry = {l/axy, (G+1) [axy] |5 =0, ... qeay — 1}
E¥ = {ReR;|RCE}

Eni = {RERE|RCE,;}

(the letter "G” stands for "grid” and "R” stands for "refinement” (of the grid)).

Remark 10.10. When E € H*) is a regular set, we can apply the assertions from

Remark 8.10. In particular, we then have the following:

1. There exists a sequence of real numbers &,, and sequence of vectors 7, such
that E = E(¢, ), i.e. the set E is a symmetric perfect set with dissection

ratios (&,,1,) (in the generalized sense mentioned in the remark).

2. E can be represented as a set of sums

{Zengl---gn—ll €n € {nn,Ou "'7”71,]%—1}} .

n=1

3. Let (n,i) < (m,j) and Cy,Csy € G,,;. Suppose that either Cy,Cy C E,; or
Int (CY) N E,; = Int (Cy) N E,,; = 0. Then the set C} N E,, ; is a translation
of the set Cy N E,, ;. Consequently C; N E is a translation of Cy N E.
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Corollary 10.11. Let E = H (N, Z,x) be a regular H*)-set. The measure of
E is then equal to

oo

Bl =T = Ial - nD)-

n=1

In particular, there exist H(™)-sets of measure zero.

Proof. Let E = H (N,Z,x) be a regular set. We easily observe that for any
n € N, 1 < N,, we have

(B0 (B =[] | ()] (5)

((4) follows from Remark 10.10 3. and the fact that gz¢|z"™, for (5) see Figure
10.9). This allows us to compute |E,|:

B, = |ELU.UEY|=1- )(E;)C A0 (E;yn)c‘

=

1 ’(E;)C( . ’(E;Vn)c‘ — 1= |L|- e In]

which, when combined with (4), immediately gives the formula

[e.e]

Bl =10l N
n=1

To prove the "in particular” part of the corollary, we need to find such a tuple
(N, T, X) that the resulting set £ = H (N, Z,x) is of measure zero. To this end
we set N, :=n, N' = (N,,) and fix a divergent series >°° [, with [, € (0,1)NQ.
For n € N let I, be an open interval in T with rational endpoints and length
Ly :=l,/l,—1 (where Iy := 1) and Z = (I,,). Finally let x be a quasi-independent
sequence such that the set E := H (N, Z,x) is regular H(*)-set (such quasi-
independent x exists by Example 10.9). We then have |E| = 0, since

[Ja-1al L) =0 <= > (4] |L]) = o0
n=1

n=1

and
S n ) = 3 (1l afan) = Sk = o0
=t n=1 n=1
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10.3 H(™)-gets and sets of uniqueness

In this section we briefly recall some of the results which might be relevant to the
problem of deciding whether there exist H(*®)-sets of uniqueness. Since we did
not succeed at using these results, we at least make a few notes which explain

where our approach failed.

Remark 10.12 (H™)-sets are of uniqueness). . We recall here the Theorem 8.9
of Piatetski-Shapiro which states that each H™)-set E is in U’. The idea of
the proof was the following: Suppose that (Z,x) witnesses that £ € H™N). We
find functions 0 < ¢; € A with supp (¢;) C [; and ¢; (0) = 1. We then set
fi(x) == o (xix), fr, = fL- ...« f¥ and claim that the sequence (f,) witnesses
that £ € U’ - i.e. that

(1) f» have support disjoint from F,
(17) sup,, || fnll 4 < 0o and
(uii) fo (k) = 1(k) as n — oo for cach k € Z.

Condition (7) then follows from the definition of f,, and ¢;, condition (ii) uses the

inequality

falla = Wfa o Ly < M falla - I L = Nenlla - lowlla (6)

and the last condition follows from the quasi-independence of x.

It was our intent to modify this proof to work for E ¢ H (N,Z,x) € H(®
as well. Clearly we can define the functions f, in the same way as above with
the only change being f, := fl-.... fN¥». Such a definition again guarantees
that () is satisfied and under some additional conditions we were able to prove
that (i72) holds as well (this later part was non-trivial, but possible). There is
however a problem with the condition (ii) - the original functions ¢; used in the
proof of Theorem 8.9 satisfied ||;|| > 2. Therefore we were unable to use the
inequality (6) as [[¢1]l4 - - - [[¢n,ll4 — 00. Our hope was that we could find
such functions ¢, that the inequality || f:|l, < [11Ifill, would not be tight.

However we were unable to find any such functions. The following example gives

a partial explanation of this.

Example 10.13. Let N, Z, x, ¢;, f: and f,, be as above and suppose that zt+1 /z¢ —
oo as n — oo holds for all + € N. Later we will prove that for any N € N

sup |[fo o S ll4 2 el - lleonllog - (7)
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Observe that any non-negative continuous function ¢ : T — R with ¢ (0) = 0
and ¢ (0) = [ ¢ = 1 satisfies |¢|| > 1.

1. Assume that the observed inequality holds uniformly for all ¢;, i.e. there
exists ¢ > 1 such that Vi : ||¢;||,, > ¢ > 1. Equation (7) then implies that
the sequence f, = (fr-...- f) - (SN - .. f]V) satisfies

li]{fns:p | A f,iVHA > 11 1@illoe = oo

2. Conjecture: Assume that the functions ¢; satisfy liminf; ||| = 1 (as
opposite to 1.). We conjecture that in this case limsup; |||/ , = oo holds
and thus, in particular, we have

. i o
Jon g [fally = oo
Since for f,g € A we can have ||fg|l, < [|f|l41lgll 4, neither of the cases actu-

ally proves that the sequence f,, is unbounded. However, the above presented

observations suggest that (f,,) is very unlikely to be bounded.

0 c-h/2 c c+h/2 2

Figure 5: Triangle function ¢ with supp p = [¢c — h/2,c+ h/2]

Remark. For example when ¢; are the triangle functions (Figure 5) used in the
original proof, then ¢ = 2. The assumptions we make about x are not necessarily
met for every quasi-independent x, but the sequences we will later use to witness
that (H(OO))L + (UH(N))l always do have this property.

Proof of (7) . For any non-negative ¢ € A and x € T we have

p(a) = ¢k)e™ <Y ok e[ =D 16 (k)] = lel, (8)

which immediately gives the inequality ||| , > ||¢l|... Therefore it is enough to
show that

o Sl = Ienlloe - oo llon o (9)
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We start with the following simple observation: Let p,9 € A, ¢ > 0 and
denote v, (z) := ¢ (nx). Fix o € T with | (z9)| = [|¢]|,, and § > 0 satistying

z € (x0—d,20+0) = |p(r)] = llell -

Clearly any ,is 1/n periodic and for n > 1/26, whole period of %, fits into
the interval (zo—d,x¢+0). Consequently there exists =1 € (xg— 0,29+ 9)
with ¢, (21)] = ||¥nll, = [[¥|l, and for this z; we have | (z1) ¢, (21)] >
(ol — ) 19]l.o. This implies that @, — [l 4]

We now prove 9 by modifying the above observation. Let N € N and ¢ > 0.
Let ng € N be high enough (depending on ¢;, i < N and x) and fix n > ny. By
a period of function f! we mean any closed interval P = [j/x% (j+ 1) /z!] for
some j = 0,...,z", — 1. Fix a period P, of f;}. Since f! (z) = ¢; (z!,x), we can find
open interval U; C Py such that fi > ||¢1]|, — € and the ratio |U;] /| Pi| does not
depend on n. We know that 2 /z), — oo, therefore for ny high enough, we can
find a period P, of f2 such that P, C U;. We then proceed inductively to find
periods P; of f¢ and open intervals U;, i = 1,..., N, such that

PPOUI DB DUy D ...DUyN
and for any i < N we have f! > |||l — € on U;. Then for any z € Uy we have

1‘ . N (8) 1. al
[FA A A= G A > T (leill
=1

which completes the proof. O

Remark 10.14 (Ultra-thin symmetric sets are of uniqueness). There is another
result which might be relevant to the problem of deciding whether there exists
H(®)_sets of uniqueness. By Theorem 7.8, every ultra-thin symmetric set Ee, is
of uniqueness. Consequently one might wonder whether the proof of this theorem
could be modified to work for regular H()-sets as well, i.e. for the "generalized”
sets of the form F' = E¢, 7 .

The first issue with this approach is that the original proof uses only the
symmetric sets £ = FE . Since the main reason for this was the ability to
represent /' as a set of sums, this problem does not seem to be fundamental.
However the proof also heavily relies on the fact that the inequalities 7, ; >
Mni—1 + &y are always strict for £, which means that the direct modification of
the proof for regular H(*)-sets is impossible. Of course this still does not rule
out the possibility that an analogous result to Theorem 7.8 might hold for H(>)-

sets as well. An example of such a proposition might be the following: "Let
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E = H(N,Z,x) be a regular H(™)-set. If |I,| — 1 holds as n — oo and this

convergence is “fast enough”, then £ € U.”

11 Sets of type N

The aim of this section is to prove that (H(OO))L # (Uy H(N))L. However, this
problem has mostly geometrical flavor, rather than number theoretic or analytic.
In particular the quasi-independent sequences, which play a central role in the
theory of H®™)-gets, are of small importance here. Therefore we will work in a
slightly different setting which is also a bit more general.

Throughout this section we fix dimension d € N. For N € NU {oo} we will
define sets of type N in R? which somehow correspond to H™)-sets, L-sets of type
N which correspond to HéN) sets and regular sets of type N which correspond
to regular H™)-sets. In particular we will do this in such a way that for d = 1,

)

every H™)-set is a set of type N, there exists Ly € R such that every HSOV -set

is an L-set of type N and every regular H™)-set is also a regular set of type N
(see Example 11.9). Our goal will then be to prove the following theorem (which

we state properly at the end of this section).
Theorem. (1) Let N € N and N < M € NU {oo}.

(a) For any reqular set E of type M which satisfies a certain technical
condition, there exists p € M"'(E) such that u(F) = 0 for every
L-set F' of type N.

(b) HWM) _sets always satisfy the required technical condition.
(2) There ezist reqular sets of type oo which are of measure zero.

In Remark 11.10 we observe that in case of M = oo and d = 1, the measure
also annihilates every ng]:)*—set. Recall here Vlasik’s characterization of H®)*-
sets (Theorem 8.8), which implies that for any N € N and Ly > 0 we have

n
(Hg:)*> = (H(N)*)L = (H(N))L. Granting the properties of sets of type N

listed above, this characterization immediately gives the following corollary.
Corollary. (1) For any N € N, (H(N“))L - (H(N))L.
(2) (H* N L) € (Uy HM) (where £ ={E C T| |E| = 0}).

11.1 Definition of a set of type N

Definition 11.1. When S, T are two sets in a topological space such that Int (S)N
Int (T') = 0, we say that S and T do not overlap.
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Figure 6: Grid and its refinement.

A finite system G of subsets of |0, 1]d is a grid, if it satisfies the following

conditions:

1. Each set G € G is a product of closed intervals and G is a system of

non-overlapping sets.
2. Ug =1[0,1]%
3. For each two sets GG1,Go € G the set (77 is a translation of a set Gs.

A finite system R is a refinement of a grid G if it satisfies the conditions 1. and

2. from above and if its elements satisfy
4. ReR = JGegG:RCQG.

For any system P of subsets of [0, 1]? and any S C [0,1]” we denote
PS:={PecP|lPCS}.

We also set
|P|| := inf {diamP| P € P}.

Definition 11.2. Let N € NU{oco}. A scheme of type N is a tuple (N, G, R, S)
satisfying

1. N = (N (n)).2, is a sequence of integers with liminf,, N (n) = N.

2.G=(G), R =(R),S = (S) are systems indexed by n € N, i =

1,..., N (n). For each n,i we have
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(a) G' is a grid,
(b) R! is a refinement of the grid G°.

(¢) §; € R} satisfies G, Ga € G, = 0 < [U(s)”
|G| = |Gal.

= U@

<

Notation 11.3. In this situation we denote by ¢! € (0,1) the coverage ratio of S,
a number satisfying G € G/ = )U (S,’L)G‘ = ¢ |G|. We also denote !, =1 — ¢,

and call this number the loss ratio of S). Furthermore we denote

s, = Jsi

n N(k

)
S, == (U sk

k=1 i=1

Sni = Spo1N(ShU..USE) (where So:=[0, 1)
Sui = {RERLRC Sn;}

00 oo N(n) oo N(n)
TWN.G.RS) = (S=Us=U S
n=1 n=1 i=1 n=1 i=1

Definition 11.4. We say that S C [0, l]d is a set of type N when there exists a
scheme (N, G, R,S) of type N such that S ¢ T (N,G,R,S).

Notation. As in the case of H™)-sets, we will mostly be interested in the sets
S which satisfy S = T (N,G,R,S). When a scheme of type N uses a different
letters, i.e. (N,C,B,A), we will obviously not denote the respective sets by
Gi, St S etc. but rather by C:, A’ A etc. In order to avoid confusion, we
will sometimes add the name of the set as an index to the related variables, i.e.

I}, = 1., 4 for the loss ratio of C},.

11.2 Restriction to manageable sets

We will need to control the properties of sets of type IV in some way. To this end

we restrict ourselves to sets of type N which are created from non-flat sets:

Definition 11.5. From now on, Ny > 1 will be a fixed constant. We say that a
set M in a metric space is non-flat, if there exist n > 0, such that B (a:, T]/Nf) -
McCB (3:, an) holds for some x € M.

The key reason for using the notion of being non-flat is the following technical

property.

Lemma 11.6 (Key observation: non-flat sets and grids). There ezist constants

C’dr,cmr > 0 (diameter and measure ratios), such that the following holds: Let
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Figure 7: First two steps of a construction of a type 1 set S: S for G = {0, 1]2},

Ri = {[0+4, 5+ x[0+j,5+j]|ij€{0,5}} and ¢ = § (left). S} with
1

Cy = % using the grid and refinement from Figure 6 (right). For an example of a

"nicer” scheme see Figure 8.

G be a grid and let G € G be it’s element. If a system M of measurable non-flat
subsets of R? satisfies VM € M : diamM > Cy, |G|, then we have VM € M :
#GM > cmr M| /|G].

Proof. Let G € G, M € M be sets and x € M the point from the definition of a
non-flat set. By symbol B, = B (z,n) we will denote the closed balls centered at
this point. We have B, C M C By, for some r, R > 0 satisfying = > Nf’Q.

Clearly we have
GnN Br—diamG # ) = GcC M. (10)

Thus we can bound the number #G:

4oV — U™ _ UG | W |Beygi| _ [M]|Brya| | 5]
L€ (€1 I (€] Gl B |M]
M| |Bijail B, _ M| (r— H9||>d ()’
— |Gl Bl |Bgl G| r R/
Wehaveﬂzl—.”i‘m—mM>1_.”LH%:1_‘HL\l2N2 and
T diamy 7 = diamar diamm = '

so for diamm >= 4N, f2 we get

4]
M| (1N 7 \d
#0" = g (3) 7))

Therefore the numbers Cy, = 4]\/f2 and eqr = (%)d (N -

d
f2) are the desired
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constants. O

Notation 11.7. If two systems M and P of subsets of R? (not necessarily grids)
satisfy the inequality VM € M : diamM > Cg, ||P|| from the previous lemma,
we write M > P. If they satisfy VM € M diamM > ||P|| (resp. >), we write
M > P (resp. >). Clearly for any scheme (N, G, R,S) of type N and any n € N,
i < N (n) we have G' > R!, > S'.

Figure 8: First two steps of the construction of a regular set of
type 1. St (left) is the same as on Figure 7. Sy (right)
satisfies Gy = {[04+i, 14+ x [0+, +4]|i,j€{%,...3}}, RY =
{[0+d,5+i] x[0+4,5+7]147€{3,....5}} and ¢} = §. Notice that GJ re-
fines R} and R} actually a grid, not just a refinement of Gj.

Definition 11.8. Let S C T'(N,G,R,S) be a set of type N € NU{oco}. We say
that S is an L-set if it has the following key property

e for each n € N, i < N (n) the systems G’ and R, consist of non-flat sets
and we have
i<N(n) = RL\S,> g
and if the following technical conditions holds

1. Monotonicity of N: If N € N, then N is constant. If N = oo, then N is

non-decreasing.

2. Measure loss control: For each i € N there exists Iy > 0 such that %, > I}
holds for each n € N with N (n) > .

3. The refinements are not too fine: For each i € N there exists di > 0 such
that diamR > d% ||G!|| holds for each n € N with N (n) > 4 and each
ReR:.

We say that S is a regular set if it has the following key property
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e for each n € N, i < N (n), R} is a grid and for each n,m € N, i < N (n),
j < N (m) we have’

(n,i) < (m,j) = G/, is a refinement of R,

and if it satisfies the following technical conditions:
1. S is an L-set.

2. ||RL|| decreases quickly: For any (n,i) > (1,1) we denote by ¢’ the number
satisfying |Ri-Y|| = & R (resp. HR;V_(’;) — 61 |RL| for i = 1). Then

the following two conditions hold:

(a) 6. "3 oo holds for each i.

(b) For each n,m € N, i < N (n), j < N (m) we have
(n,) < (m,j) = Ry > G,

3. S is a "true” set of type N: S =T (N,G,R,S).

Example 11.9. Let N € NU {cc} and E € H™). By Proposition 10.7 (1)
we know that there exists some tuple (N,Z,x) as in Notation 10.4, such that
E Cc H(N,Z,x), imN,, = N and x is quasi-independent. We can assume
without loss of generality that I; = (a;, b;), where 0 < a; < b; < 1.

1. Every H™-set is a set of type N:

We denote N'= (N)>2, and G = (G.), R = (R), S = (S)), where

Gi={[j/a., (G+1) /2] |0<j <zl —1},

S;L = {[J/$2>(J+az)/wﬂ |j=0,...,$%—1}u
UL +b) fay, (G +1) fa,] [0 < 5 <, — 1},

Ry, = S, UL +a) [ay, (5 +bi) /2] [0 < j <@, — 1}

These systems then witness that £ C T (N, G, R,S) is a set of type N.

2. Hg:)-sets are L-sets for Ly > C’dr:

Suppose that the tuple (N, Z, x) also witnesses that H SOV) for some Ly > Cyy-
We will show that F is an L-set of type N. Clearly all of the systems from
(N,G,R,S) consist of 1-dimensional intervals, i.e. of non-flat sets (in this case

we could actually use Ny = 1). By definition of ng)—set we have z' ! |I| /xt > L

9Recall here the definition of ordering from Notation 10.8.
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for i < N (n). Since |G| = 1/25F and [|RL\ Si|| = (b — @) /x!, = |L] /¢,
this means that for Ly > Cg, we have

[Ro N Sull /|G = 2" 12l Ja, = Lo = Cyps

which implies that F satisfies the key property R! \ S > Gi*1. We also have
Il = 1% = b; — a; and dy = min{a,; b; — a;, 1 — b;}, therefore E also satisfies the
technical conditions necessary for being an L-set.

Existence of HM)-sets which are also regular sets of type N: Suppose
now that £ = H(N,Z,x), E € H,g:) and for each i < N we have I; = (%, %),
where 0 < a; < b; < ¢; are integers, and assume that for each n € N, 1 < N we

have zf, € N and ¢;z%,|z5™ (vesp. gyl |z}, in case that i = N).

By the previous point, E is an L-set of type N as witnessed by the scheme
(N,G,R,S) from the first point. We will either show that F is also a regular set
or modify E slightly so that it becomes a regular set (but remains a H®™)-set).

Generally, the regularity of E cannot be witnessed by (N, G, R,S), since the

systems R!, are not necessarily grids. To remedy this we define R = 7%; and
S = <5’;>, where
R = {5+ 1 Jaiwy] 5 = 0, ... g, — 1},
S = {R eR.|RC Us;}.

The key property of being a regular set is then satisfied for these systems, since

q;x’ |z holds for (n,i) < (m, ). It remains to prove that F satisfies the condition

2.
We have ||G!|| = 1/2% and | R} || = )S’TZL

0o. We can assume that for every i < N we have 2t /2! — oo as n — oo (resp.

= 1/¢} ! and we know that z¢ —

xl .1/l in case that ¢ = N) - if this was not true, we could take a different
set B = H (N, I,%), where @1 = gitigi 71— gl 2 This implies the
technical condition 2.(a) which in turn implies that 2.(b) is satisfied for all n > ng
for some ny € N. Consequently the set £ = H (N',Z,x") where N = (Nyin),.,
X' = (Tpiny),is a H™-set which is also a regular set of type N.

Note that by Corollary 10.11 we have
B =0 < )E]:o — |E|=0.
Remark 11.10 (H™)*-sets). When E = H (N,I,x) € H™M*\ H™) we have

!, € R\ N for some n and i. For E € HSOV)*, we can assume without loss

of generality that =, > 2. Let N, G', S and R}, be as in the representation of
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HW)_sets. The tuple (N, G, R,S) is not a scheme of type N, because the systems
i R! only cover the interval [0, |z’ | /z’] rather than the whole interval [0, 1]

and we have £ C (S,. We set
Go = G V{10 /i 1]}

R, =Ry, U{[[=] /=5, 1]},
S, = 8, u{[[a] /2. 1]}

This new tuple (N .G. R, 5’) is still not a scheme of type N since the elements
of G! necessarily do not have the same diameter, but we at least have EU {1} =
T(M.GR.S).

1. In order to avoid complicating the notation even further, we will not
attempt to generalize the definition of sets of type N in such a way that Hg:)*—

(VM)*_gets

sets become L-sets of type V. However by using the representation of H
introduced by this remark, we can still prove the main result (i.e. the existence

of measure 1, supported on H(*)-set, which annihilates every H g(\;)*—set) even for
r

H, (CN)r*—sets. We claim that this will require only minor modifications to the proofs,
namely the only affected proof is that of Proposition 11.19, where the addition
of the interval |7 | /2%, 1] to the systems S’ might slightly change the value of
a. However since ! > 2, the new & will not be lower than a/2". Consequently
all of the later propositions will remain valid with the exact same proofs.

2. We only need the H")*-sets in order to be able to use the results from [Vla]
- but in fact, its author only uses rational quasi-independent sequences to prove
his results. Therefore we can also observe that if a quasi-independent sequence

N)*_get

x consists of rational numbers, it is possible to represent the resulting H(
as a set of type V. This gives us an alternative to the modification of our proves

suggested in 1.

11.3 Technical interlude

Notation 11.11. In the remainder of this chapter we will fix an L-set A of type IV,
N € N and a regular set P of type M > N, M € NU{co} and we will try to find

a measure i on P which annihilates A. For the set A we will use the notation
A=T((N),C,B,A),

in all the following propositions we will have £ € N, 1 < ¢,7 < N and use these

7

numbers for indexing the relevant systems and variables (i.e. C = (Ci), It = 1—c,
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...). For the set P we will use the notation
P=T(N,S,R,P),

the integers m, n, p, ¢ will always satisfy m,n e N, 1 <p < N (m),1 < q < N (n)
and they will be used for indexing the systems and variables related to P. If
M < oo, then we assume that N = (M)>2

n=1"
The following simple, but very technically involved, facts will be repeatedly
needed during the proofs of main results, so we formulate them in a separate
lemma. Note that while the statements of this lemma might look rather compli-

cated, most of them have an intuitive meaning as well as explanation.

Lemma 11.12 (Technical lemma: properties of regular sets). The following is
true for P:

(1) Pr.q is a subset of a grid: ¥n,qVD, D’ € P,,: |D|=|D'| & diamD =
diamD’ = || P, 4]|-
) Each two sets from Py, nim) contain the same number of elements:

For each D, D" € Py, n(my, D # D' we have

VYm < nVq: #qu = #PE;&PTLD@QPE; =0.

(ui1) Number of elements can be compared via measure ratio: The identity

/U7,

holds for each X,Y C [0, 1]d, n and q, provided we avoid division by
zero. In particular for any D € P, ,, X C [0, 1]d:

ez,

(iv) Measure of P, ,: If n =m +1 then

ure,

holds for every q, p and D € Py, .

#PX#PL, = | UPY,

=|PogND|=|D| (1 -1 -..-1%)

(v) For every mog <m < n, pg < N (mg), E € Ppyp, and q we have

(i7) 3
#Pf,q - Z #qu - #ngN(m)#qu’

DePfl’N(m)
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(where D € PL my s arbitrary).
(vi) Generalization of (v): Under the assumptions of (v) we further have

forp < N (m) that

Pm mﬂE‘ ll ‘ m,N(m ‘
o0 = T 2 #Pa s g, PP

(where D € PE is arbitrary).

P

(vid) Analogy of Lemma 11.6 for P: Let n =m + 1 and H € B} for some
k, j. If we have B;, > S4, then

Uz,

Moreover if ¢ < G < N (n), then
H
‘U Pnzq

Using (iv) inductively, we get the following corollary:

(1—=13)|H]|.

Corollary 11.13. For the regular set P, the measure of P, , is equal to

n—1

Pl = [P | [T (=18 o 2¥@) - (1= 0g).

m=2

oo bl N0

In particular P is of measure zero if and only if Y >~ 1)

Proof of Lemma 11.12. (i) follows immediately from the fact that each system
P, is a subset of grid R, , (which consists of isometric sets). To get (i), we
combine the fact that P, , C R, , with the key refinement property of L-sets with
(7). (4i7) is again immediate from (¢) and the fact that P, , is a subset of a grid.

(1v): Note that the first identity is trivial. We prove the statement for p =
N (m). The general version for p < N (m) follows from the fact that each D €
Pomp is a disjoint union of elements of Py, n(m) (combined with (7)).

Tt is enough to show that |D\ P,,| = |D|I}-...-19. Let ¢ > 1. The set
D\ P, 41 is a union of sets Ry € RZ™!, f € F for some finite index set F'. Every
Ry is refined by the system RI and we have

D\ Py = JU{Ge®)™|G¢ P}

feFr

- U U U{Ge(Rg)SyGan,q}.

JEF se(s3)™
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Since by definition of {4 (Notation 11.3) we have for any S € S?

U{ee®’icgr.,}| = uls

we get

ID\Pogl =) > Uls|= Zlqufl—lqlD\an il

Fose(sa)™

By the exact same reasoning we get that |D \ P, ;| = [} |D|. This implies that
|D\ P,,| =|D]|I}-...-1% holds for each g, which finishes the proof of (iv).

(v) : By the refinement property, R4 refines RN and by the definition
(Notation 11.3) we have JPng C UPmnmm)- So for E € Py nime) We get
FePf, < 3DePly,, :FCD&F c P, This implies Py, =
U DEPE \ 77,]3 > and since this union is disjoint, we get the desired result.

(vi): We start with rewriting the sum on the right hand of the desired equality.
We use the refinement property (r.p.) and then the fact that each of the elements

of Py n(m) contains the same number of elements from P, , ( (i7) ):

T. Ir.
S #PE, R PR R yplane & it 4Pl

DePE ,

( where F' € Py, nm) is arbitrary).

By the exact same reasoning we see that

v mNmE
#pE L N PP = gp e ypk

DEPE iy

We also note that

E
P, N(m)ﬂE P N(m)m
#P N m) 7,22 U Pm N(m

(@) |Pon(my N E]|
PmpnE PnpnE|
#P ]\;Dm) ’UPmJ\;)(m

|Pm7me|

Combining these three equations together finishes the proof.

(vii): Assume first that ¢ = g. We have the inclusion P, > J {P;jq|5 € (S,,({)H}
This implies |JPZ | > 3 se(st)” IUPS,|. Since each such S € S is a subset of
P n(m), we get |UPS | > [P0 S| = ¢ |S|. Thus we can complete the proof as

follows:

U

By Hl -
4151 = # (8" et 8] > emr et |3].

S

> U~

se(sy)” Se(s‘l)H
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where S € S is arbitrary and the last inequality comes from Lemma 11.6 (using
the definition of the symbol < from Notation 11.7).

For general g, we observe that for S € S we have

e,

(the proof of this fact is exactly the same as the proof of (i7) ) and use this

=P NS> |[(PIU..UPH)NS|=(1—12-...-18)|5]

estimate instead. O

11.4 Canonical measure and its properties

Definition 11.14 (Canonical measure on a regular set). We define the canonical
measure 1 on P =T (N,S,R,P) by the formula

. D € Punn
D eRY™ = p(D) = { e N

0 D ¢ Ponim)

Proposition 11.15 (Properties of the canonical measure). The formula from the
previous definition correctly defines a measure on P. The measure i1 s a Radon

continuous probability measure with supp u = P.

Proof. The standard mass distribution principle (e.g. Proposition 1.7 from [Fal])
implies that the set function p as defined above can be extended to a measure

which has the desired properties. O

Remark 11.16 (Motivation for definition of Lr). Let G be a grid and let M, D C
R? be bounded measurable sets, such that [M \ D| = 0 and D is a union of
a Lebesgue null set and finite number of elements of G. Then |D| = ‘U GgP
|D| = |E ‘ #GP (where E € G is arbitrary) and we clearly have

I

(M| < #{EeG”|ENM#0}sup {IMNE||EeG”}
D
- #{EGQQQEDQM#Q}sup{]MﬁEHEEgD}#gD
#{EcG’|EnM #0}

< 2GD

DI

If we wanted a more precise bound on |M|, we could start from the second
line of the computation above, find a finer grid G’ and use exactly the same steps
for each of the sets M N E C E.

In fact, this observation still holds if we replace Lebesgue measure and grid

G by a different measure and arbitrary system of sets which all have the same
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measure and are disjoint up to a null set. In particular it also holds for the

canonical measure p and any of the systems P, y(n), n € N.

Notation 11.17 (Loss ratio Lr). As we will make extensive use of the previous
observation, we denote some of the variables used there by special symbols. By

CrE (M) we denote the coverage ratio

#{E€PPIENM +#0}
#PP

Crp (M) =

(assuming that P” is nonempty). We set Cr), = Crp —and Cr? (M) =
sup {Crﬁq (M)|D € Py, p}. We also denote the loss ratio

#{EePP|ENM =0}

Lrl (M) :=1—Crp (M) = D

(and define the corresponding versions with more indices in the obvious way).

Lemma 11.18 (General properties of Cr and Lr). For any p-measurable sets
X,Y c[0,1]* we have the following:

(1) Monotonicity: X CY = Crl (X) < CrP (Y) holds for any n, q and
any measurable D C [0,1]" with PP # 0.

(2) Relation to p: If ny /* 00 is an increasing sequence of integers, then we have
nl N(ny)
H nz+1 N(npy1) (X) )

(3) Lr and unions: Suppose that Lr;2 Pt (X) > o and Lr222 (Y) > 3 holds for

n2,q2

some integers my < ny < Mmo <no=mo+ 1 and p1 < @1 < py < q2. Then

[Povar | Py |

‘PnlvN(n1)| ‘ng,N(mg)‘ .

LrtP (X UY) > caf holds with ¢ =

n2 »q2

(4) LrmN) g Lymt: If m < my < n, then we have

|Pm1,1|

er’N(m )
}Pml,N(m) ’

n,N(n)) (X) = CLT::L}\}%n) (X) fOT' c=

Proof. (1) is trivial. For (2), we will use induction over L € {0} UN to prove the

inequality

L

n;,N(n

H (X) < (H CrnllJrh(Nl()an) (X)> sup {:U’ (X N E) |E = PnL+17N(nL+1)} #PTLL+17N(”L+1)'
=1
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The result is then immediate, since for £ € P,

p(E) = 1/#PnL+17N(nL+1)‘
L =0: We clearly have

y we have p (X NE) <

L+1,N(np41

w(X) = p(XnP)< N(XumJV("l))
= > w(XnE)<sup{p(XNE)|E € Puynu) } #Prs Nmn)-

E€Pn, N(ny)

L—1+— L :Let L € N and suppose the inequality holds for L — 1. Using
Remark 11.16 on X N E for £ € P, N(n,), We get

p(XNE) < #{FePu No| FNXNE£D}-
-sup{,u FﬂXﬂE)|F€73nL+1N(nL+1)}
#{FePfLHNnLH\FﬂX;AQ}

# nry1,N(npy1)

sup { (X V) F €PE | niur i)} #PE o g

Taking supremum over E € Py, nn,) We get

sup {# (XﬂE) | E e PnL,N(nL)} <

nr,N(nr)
< C’rn;thnHl - sup {,u (XNF)|F €Pni Nopiy) }#PHLH N(npi1)s

where E € Ph..Nmny) can be arbitrary, since the quantity #PnLH N(nps1) is
the same for every FE € PnL’N (n,) (Properties of regular sets, Lemma 11.12 (77)).

Combining this inequality with the induction hypothesis, we get

L+1
ny,N(n
H (X) < (H Crnzl+1,(Nl()nz+1) (X>> Sup {'u (X A F) |F < PnLHvN(”LH)} '

=1

E
'#PTLL,N(TLL)#PnL+1,N(nL+1) .

Using Lemma 11.12 (v) we get #Pp, n(ny) #PE
finishes the proof of (2).

= #PnL+17N(nL+1)7 which

L+1,N(np41)

(3) : Let E € Py, p,- We want to find sets in PP which avoid both X and

n2,q2
Y and show that there is a sufficient number of them. To this end we observe

that if a set D € P, 4, avoids X, then so does any F € P This allows us to

m2,p2°

o4



bound the loss ratio LrZ  (X):

m2,p2

def #{F € mmyFmX 0} Y pepr . prx=0 # Py v

LrE, , (X) o -
e # m2,p2 # ma2,p2
We continue by using (vi) from Lemma 11.12 (D is again an arbitrary element of
Piiiar):

(*) — #{Depnl a1’ DﬂX:(Z)}#Pg%m — IrE (X) |Pn17lh| (11)
_ nl »q1
e P [Pt

Using the same arguments, we now compute the desired loss ratio Lrnz e (XUY):
Fe FNX=0&FNY =0
Ln2q2(XUY) dZGf #{ n2q2| }
#Pr
n2,q2
N ZDEP‘EQI72 DﬂX:(Z)#{FE na q2|FﬂY (D}
N Prsaa
L11.12(vi) ZDeP{;{Q py DX =0 #{F Py, FNY =0} | Py s |
# ma P2# n2,q2 }Pm%N(m?)‘
> #{DE msz’DﬂX_Q)}
- #P o o
lnf #{F E nz, q2|FﬂY @} ’Pm2,P2‘
DEPvaQQ # n2,q2 ‘sz,N(mQ)’
m ’Pm2, 2‘
- Lrl, o, (X) L2z (Y) Prvons] £ |
ma,N(mz2)
a P, P
Z LT:Z{ZI;? (X) | 1,91 ‘ LT,T’I;VLQ’ZIZQ (Y) ’ 2,D2 ’
’PnlvN(nl)‘ }ng,N(mg)‘
(where D € P, ,, is arbitrary).
(4): Fix E € Py N(m)- Since Py, 1 C Py Nimy) We have
#{FeP N(n)|FﬂX 0} = Z #{FeP N(n|FﬂX P}12)
DEP ()
DePl |
By (vi) in Lemma 11.12 we have
E _ ‘PMLN(ml)‘ D 1
# PN () = D #PInw = #Prs #PIvwle, (1)
| P 1 DePE

my,l
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(where D € Pl | is arbitrary and ¢ = Py, 1]/ |thN(m1)|). Therefore dividing
(12) by #775 Ny Yields

E
b #{FePly, FnX =0}
n,N(n) #pE

(12),>(13) ZDePﬁl i {F € PDN(n |FNX = (Z)}
- #P 11#PnNn)/C
P lnf{#{FGP,?Nn)IFOX:Q)}|D€77£;1,1}

>
# mi, 1#PnN (n)
#{F e PPy, FNX =0}
> ¢ -inf | D € Ppya
#P N
dlef cL’r’Zf}\’,tn) (X).

Since Lr" (;";) (X) = inf {LrﬁN(n) (X)|E € Pm,N(m)} and E was an arbitrary

element of P, N(m), the inequality above implies the desired lower bound. O
Remark. Recall here the Definition 11.2 and Notation 11.11: We have N <
M € NU {oo} and the sets A = T'((N),C,B,A) (L-set of type N) and P =
T (N,S,R,P) (regular set of type M), using the notation T' (sequence, grid, refinement, subset

Proposition 11.19 (Loss ratio of L-sets). (1) Suppose that Py, > Cj > ... >
Ci ZBi>>SﬁL, where n =m+ 1, i > j. Then for § > q we have

q
1 - l’fL,P i ) ) l]
1 _l]- ) . lq k‘,A cee k,A'
n,P  "n,P

Ll? (AL U ..U AL) > a > 0, where a = ey

(2) There exists mo € N (depending only on A and P), such that for every

m>mgandn=m+1

[Prpial VO > |G| > o > ([ = [Pagll V51

is a sufficient condition for (1) to hold.

Proof. (1) : Let E € Pypp.

Step 1: H’ (E)

Firstly we define the system of holes in the set A U...U Ai. For M C R? and
l € {i,...,j} we denote by induction

H (M) = {He(B,@\A;)Mum — HCU?—LH(M)}.
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We then get the following properties of HE:

(H1) H e H (M) => HnN (A, U...UA]) = 0. Thus also

P n (4 u..u4l) =0

(H2) We can rewrite || JH' (E)| in the following way:

Un )| = |U{Urn ©lce @)}
= |U{rema)ice @)}
= > U@
ce(ci)”

= Y Lol =#(C)"L

ce(ci)”

‘|

(where C' € Ci is arbitrary). Since P,,, > Ci, Lemma 11.6 gives # (Ci)"

Cmr%. Consequently, we can rewrite the inequality above as

U 92 @] 2o 6] ).

‘ O

(H3) Let I € {i,...,j — 1}. The systems C., B} correspond to an L-set, so by the
definition we have B\ AL > Ci*!. Therefore, when H € H' (M) C B} \ AL,
we can use exactly the same reasoning as above to get |JH't! (H)| >
cmrllJrl |H|. Also, it is clear from the definition of H' (M) that

W (M) D | J{B e (H)|HeH (M)}

Consequently we get

‘UHZ—H (E)‘ > Z ‘UrHl—H (H)‘ > Z el [ H| = Cmrllﬂ ’UHI

HeH!(E) HeH!(E)

Combining this inductively with (H2) gives
U (B)| = i s o Hoa B

Step 2: Computation of Lr
In the following, symbols (7),...,(vii) refer to Lemma 11.12.
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, . DePEIDN(ALU...UA) =
Lrf (Alu..uA)) def  #{DEPy,| DO (A V..U A) =0}

#Prg
(H1) #PH (ii) ’U'PH‘
> gome A
Y e w0
HeHI(E) 4 HeMI(E)
(lii) Z ‘U |
He(E ! niq () B
Biisg Z cmrcy p | H]|
- ) [Pg N E|
HeHI(E
. 1 — e UM (B)
M, B
(#3) 1—- lgLP —i+1y4 j
2 Cmrl_pp__,__lqpcjm;r loa = oo -

For general ¢ > ¢, the only difference is that we use the second estimate from

(vid):
urs

(2) : It remains to prove that P,,, > Ci and B} > S¢.
Pump > Ci: Using the definition of 62!, we have

1Pooll = Vi (Vo Py + 1) > VT lCill.

To ensure that Py, , > Cj holds, we need to show that [|P,,,|| > Cy, [|C}]| - Since

or "% 0, this will indeed be true for every m high enough.

Bi > S¢ : Since both A and P are L-sets, we have the following:

(1 1 zgyp) [H| > emr (1—19,) |H]|.

1Bl > dy Il & [ICE]| = Vo IPugll & [1Pagll > dp ISE]

1B > diy/sads || S2].

And once again, as ¢ goes to infinity, the inequality ||BiH > Cqy 1S3 will be
satisfied for all m high enough. O]

Lemma 11.20 (Key lemma: bounding Lr (4} U...UAY)). (1) For every m,

there exists n > m, k and €,, > 0 such that

m,N(m
erN(gl)) (AL U UAY) > .
(2) If the numbers I}, p are constant with respect ton (i.e. if Vm,nVp: I} p =

Ly p), then €, = € does not depend on m (it only depends on the sets A and P).
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Proof. Let m € N. Firstly, we set ng to be the maximum of m + 1, the least
number m satisfying N (m) > N+ 1 and my from (2) in Proposition 11.19. Since
ICA]l ¢ 0, we can set k to be the minimal number satisfying /02 P2 > Cp.

We divide the proof into two sections. In the first section, our goal will be to
divide the numbers {1,..., N} into blocks {iy,...,j1}, ..., {is, .-, js}, and find for
each block i;, ..., j; numbers m;, n;, p;, q;, such that we can apply Proposition 11.19
(with the already defined k) to get a bound on Lr (4} U ... U AJ'). However, we
need to do this in such a way that we can also apply (3) from Lemma 11.18 to
bound Lr (AjU...UA}) and be able to get (1) later. In the second section,
we will apply the mentioned propositions in order to actually get (1), then we
compute the value of €, and, grating the constancy of {?-s, bound it from below
to get € and thus also (2).

step 1: We will find numbers s, m;, n;, p;, qi, %, j; for @ = 1, ..., s satisfying:

1. Conditions from Proposition 11.19:

(a) |1 Pmepesi | VO > |ICE|| > - > [|cF

> [[Pn:.g:

(b) m; > ng, n; =m; +1 and i; < j;
2. Conditions from Lemma 11.12 (3):

(a) pp=1,¢s=N+1landi;=1,js=N

(b) M1 > ni, pi < ¢ = piy1 and 4,41 = j; + 1

For i =0, ..., s we denote by (I H;) the following statement:
G =i+ 1 & \/OLT Py, gia > CLT (IH;)

1=0: Weset jo=0, go = 1. Clearly we then have gy = jo + 1 and as stated
above, we have \/WHPW%HH > HCIZOHH. In other words (I Hy) holds.

i—1wi:Leti e {1,..,s}. Assume that we have already constructed
the numbers m;, n;, p;, ¢;, 33, 7; for all i =1,..,i — 1, these numbers satisfy the
conditions 1. (a), 1.(b) and 2. (b) and that (/H;_1) holds. Our goal will be to
define my;, n;, p;, gi, i, J; in such a way that these numbers also satisfy 1. (a), 1. (b)
and 2. (b) and show that (I H;) holds.

We set i; = j;_1 + 1 and p; = ¢;_1. Since, by (I H;_1), the number m = n;_4
satisfies || P p;+1]| \/(Sgij > ||Cy:
with this property and set n; = m; + 1. The number p;, = i; = 5 then trivially
Cl[ > ||Po s || /6. We define 4,
as the highest number (not greater than V) with this property and set ¢; = j;+ 1.
Clearly the conditions 1. (a), 1. (b) and 2. (b) are satisfied.

, we can define m; as the maximum number

satisfies j > 4; and, by maximality of m;,
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If j; = N, we set s := i, observing that 2. (a) holds, and denote n := ns.
Combination of Proposition 11.19, and Lemma 11.12 (3) then finishes the proof
of (1). If j; < N, we know that, by the maximality of j;, (IH;) holds and we
continue with the next induction step.

step 2: By Proposition 11.19, we have for ¢ < s and i = s (using the version
for G = N (ns) > q) the following bounds:

- L .
Lrysf (A U UAY) > on = et 7l lia >0,
? 1 - lm,P lnlu ’ 7
| — 1
erg,ps (141é U...U AN) > = C%I—il_I]'V_ZS—i_ll ll lqs l;:A l > 0.
~ ‘np -

Tterative use of (3) from Lemma 11.18 (on X = AU...UAT and Y = A2U...UAJ,
then on X = AMU...UA?> and Y = AU...UAJ and so on) produces the following

lower bound.

L (ARU L UAL) = I (AU UAY) > a > 0, where
a = - azﬁ | ni,qi H mzpZ
im1 ’ n;,N(n;) | m;,N(m;)
s ...-zqz R Y s
o0 e ) e

Combining this with Lemma 11.18,(4), we get

m,N(m) 1 N mi, 1 N ’Pm ,1‘
erN(n) (A,C u... UAk) > Lrn]l\,n) (A U...UA, ) ﬁ
m1,N(m)
) e
N(m me
‘1= ope e I

Rearranging the product of ;-s, bounding the denominators from above by 1 and
adding the terms for 7 = 1 and ¢ = s in the products defining a;, we can estimate

the value of €, in the following way

em > (emr)™ G WA (1=154) -
JIIO =0 e 18 ) (L= 0 e I ) (L—15 )]
=1

By the definition of L-sets, we have Vk,i : [} 4 > I > l4 > 0, where [, :=

min {Z}L‘, o 1Y } We now use the assumption that the value of lg p 1s independent
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of n. By the non-triviality of [-s from definition of an L-set we know that 0 <

lp

n.p < 1. Therefore there exists a constant

l:lp,N:sup{lfL’P\nEN,p§N+1}<1,

dependent on N and P only, such that all of the [-s which appear in the estimate

on €, can be bounded from above by this [. We can now specify the bound on

Em:
N
em=e > (emx) I 1= 1-1)"
i=1
Z CNZIJX (C4P,N)N7
where we denoted ¢ = (cmr)3 and cpy =1 —lpn. O

Definition 11.21. If a set of type N has the property that Vm,nVp: I} p =1 p,

we call it a set of type N with constant loss ratios.

(V)

11.5 Main result and its application to H'"/-sets

Theorem 11.22. (1) Fiz M € NU{oo}, let P be any regular set of type M with
constant loss ratios and denote by p the canonical measure on P. Then u(A) =0
for every L-set A of type strictly lower than M.

(2) There ezist sets P of measure zero satisfying part (1) of this theorem.

Proof. (1) : Fix an L-set A of type N, N < M. Set ng = m; = 1. By Lemma
11.20 we can find n; > my and k; such that

m1,N(m1) 1 N
Lry Ny (A, U..UAY) > e

for some € > 0. We set my = ny. This way we will inductively find sequences

my,ny,k; satisfying m; < n;, my1 = n; and

my,N(m;) 1 N
Lr, N (A, U..UAY) > e
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By the properties of Lr (Lemma 11.18), we have

o0

n;,N(n;p) nl, (n) 1 N
K (A) = H Cr an,N(an H i N(niga) (Akz ..U Ak’l)

=0

(1—L R (41 u...uAkNl))

nanl

I
s I

=1

(1—¢)=0.

IA
8

=1

(2) : By Corollary 11.13 we have
Zl . 53 =00 = P is of measure zero.

Therefore if type of P is a finite number, P is automatically of measure zero. If
N = oo, set for example N (n) =n, I} p =1—277. Since } 2 277 =1 < oo we
get

Hz H1—2-p)=s>o.
p=1

Consequently > I} p- ) > > o, s = 00, which means that [P| =0. O

Example 11.23 (Counterexample: constant loss ratios are needed). Let P be a
regular set of type 2 satisfying ¢} =1 -1} = % and liminf ¢2 = 0.
Denote by n, some increasing sequence of natural numbers satisfying cik <
27%. We set
1
(Ci, By, Ay) = (Sh, . R

1
ng’? P )
and denote by A the set of type 1 defined by this sequence. Clearly A is an L-set
(even regular). However, we will show that u (A4) > 0.

On each level A} of the set A, the measure of A decreases exactly by the factor

1
» formally for A, = N1_, Ak, P, = (_, (PL UP2), k > 1 we have

Cp
of - +11

the follovvlng.

|Pk 1|C1
|Pk,1‘( +ll C2 )

NE Nk

1P|
1(Ar) = p(Apor) 75— = 1 (Ap—1)
\Pr}k UP2
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Thus we can compute the measure of A as follows (assuming that pu (P) = 1):

oo o0 1
p(4) = u(P> = =

~ 1 = 1427k 1 = 2k
> H = (1 — + > > H (1 — —)
= —k —k -k | =

142 ot 1+2 1+2 o 1
> 0, since ZQ F < o0

k=1

This implies that some kind of extra assumptions on the loss ratios of regular
set P is needed.

Remark. Note that the same idea as we just described will work for any regular
P, provided that there exists a subsequence nj and indices py, ..., ps, such that

the loss ratios 8!, ..., [F: are uniformly strictly less than 1 and the products of the

ng? "

remaining indices tend to 1 as k — oo.
However, this does not mean it is impossible to construct a different regular
set P, such that ;1 annihilates all the L-sets of lesser type, but [-s tend to 1 as

n — oo (for example when P satisfies Vn: [} =12 = .. = 1.

Corollary 11.24. (1) For N € N we have (H(N“))L C (H(N))L.
(2) Denote L = {E C T| |E| = 0}. Then we have (H* N E)l C (Uyen H(N))L

Proof. (1) Fix N € N. By Example 11.9 we know that for Ly > Cy,, every

N+1)_gets

Hg)—set is an L-set of type N and we also know that there exist H
which are also regular sets of type N. By the definition of H®)-sets, clearly any
E € HW) is a set with constant loss ratios. Using Theorem 11.22 we then have

1
(H(N“))L - (Hg?) and by Remark 11.10 this also holds for H™)*-sets, i.e.

=

of HN)*_sets (Theorem 8.8) and the fact that every H)*-set is a finite union of
HW)_sets:

L
(H (N +1))L C (Hg:)*) . We finish the proof by using Vlasak’s characterization

(H(NH))L C <H£1§)*)L _ (H(N)*)L _ (H(N))L.

(2) The proof of the second part of the statement is identical to the proof of
(1) - it only remains to prove that there exists a regular H(*)-set of measure zero,
which follows from Corollary 10.11. ]
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Appendix

A  Preliminaries

In the following section we list some of the basics of descriptive set theory. We
do not give a complete introduction, instead we rather only present the notions
which will be used in this work - i.e. the space I (T), the family of Borel sets,
the collections 39 and II} and the notion of ITi-completeness. For details on

descriptive set theory we refer the interested reader to, for example, [Kec].

A.1 Descriptive set theory

Polish spaces: A Polish space is a topological space X which is separable and
completely metrizable. Typical examples of such spaces are R,R¢,C, T, Z with
their classical topologies, the Cantor set 2* or the Baire space N = w* with the
standard product topologies (where the sets 2 = {0,1} and w = {0,1,2,...} are
endowed with discrete topology). Also any metrizable compact space K is clearly
a Polish.

Hyperspace K (X): Another example of a Polish space is given by the fol-

lowing proposition. We will be particularly interested in the space IC (T).

Proposition A.1. Let X be a metrizable compact space and denote by IKC (X) the
hyperspace of all compact subsets of X

K(X)={F C X|F is closed} ={F C X|F is compact} .

Furthermore we denote by V the so-called Vietoris topology, i.e. a topology gener-
ated by the collection of all sets of the form {F C X|F C U} and {F C X|FNU # 0},
where U C X 1is open.

Endowed with the topology V, the space K (X)) is Polish.

Proof. This can be proven by showing that the topology V coincides with the
topology generated by the so-called Hausdorff metric og. For the complete proof

see for example [Kec]. O

Borel hierarchy, Projective hierarchy: Let X be a fixed Polish space.
Borel sets in X are the elements of the smallest o-algebra containing all open
sets. By IIY we denote the system of closed subsets of X and by %3 we denote
the system of all G, subsets of X (i.e. all sets S of the form S = |J~, H, where
the sets H,, are Gs). We say that a subset A of X is analytic in X, if there exists
a continuous mapping ¢ : w* — X, such that ¢ (w¥) = A. We say that a set
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C C X is coanalytic in X if the set X \ C is analytic in X. We denote by %] (X)
(resp. II} (X)) the system of all analytic (resp. coanalytic) subsets of X. Similarly

we denote
23 (X):={S C X|Jp:w’ — X continuous s.t. S = ¢ (C) for some C € ITj (w*)}

and II} (X) :={T Cc X|X\T € 2} (X)}.

[1}-complete set: A topological space Y is said to be 0-dimensional when
its topology admits a clopen basis. A set S in some Polish space X is said to be
[1}-complete when S € TI3 (X) and for every O-dimensional space Y and every
T € 11} (V) there exists a continuous mapping ¢ : Y — X such that o= (X) =Y.

A.2 Fourier transform on T

Spaces ¢, ' and [*: We use the symbols ¢y = ¢q (Z), I} = ' (Z) and [*® =
[ (Z) to denote the usual Banach spaces with their standard norms. Recall that
we have ¢ = [* and (I*)" = [ where the dualities are given by the mapping
(¢, dy = > iepc(k)d (k) (where either ¢ € ¢y and d € I' or ¢ € I' and d € 1),
On ! we can also consider the w*-topology. By a w*-sequential closure of a
set M C I' we will denote the set {x €lYdr, e M,neN: z, w x} Note
that this topology is not metrizable, therefore the w*-sequential closure is usually
not the same as w*-closure. Furthermore we have the following equivalence for

T, x € 1L

Ty D 1w = sup ||z, |[p < oo & VEk € Z: x, (k) = x (k).

We also note that (' with convolution % defined as

cxd=e, where e = (e (k)),c; is given by e (k) := Z c(m)d(k—m)

meZ

is a Banach algebra.

Spaces C, L' and M: By \ we will denote the normalized Lebesgue measure
on T given by the identification of T with [0,27]. By L' (T) we will denote the
space of complex functions on T which are A-integrable, endowed with the usual
norm. By C(T) we denote the space of all continuous complex functions on T
with the supremum norm. By M (T) we denote the space of all (complex) Radon
measures on T with the norm [|u| v ) = |p[ (T), where |u| is the total variation
of the measure pu. For £ C T the symbol M (F) will stand for all the measures
from M (T) which are supported by E. We note that every function f from
C(T) or L'(T) can be identified with a measure y from M (T) by the formula
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Jgdp = [ fgdA.
Fourier transform on T: A trigonometric series S is a formal expression
S~ en cxe’*® where x € T and the coefficients ¢; belong to C. We say that S

converges at  when the symmetric partial sums » ;,_ cpe”

* converge to some
f (z) € C. We say that S converges when it converges at every = € T.
Fourier series of a function f € L' (T) is the sequence is the trigonometric

series S (f) ~ Zkezf(k) e’ where f(k) is the k-th Fourier coefficient of f,

given by the formula

Fo = [ f@)e @),

The mapping ": f — ( f (k)) is called the Fourier transform. More generally
keZ
we can consider also the Fourier transform of a measure p € M (T) given by the

formula

o o ) 0 B) = [ g

Fourier transform and spaces L' and M: For f € L'(T) we have by
Riemann-Lebesgue lemma that f (k) — 0 as |k| — oo, which gives us

fel'(T) = fe€oq.

By the Uniqueness Theorem for Fourier series, this map is one-to-one. It is
immediate from the definition of /i (k) that for p € M (T) we have | (k)| <
[[£ell pgery for any k € Z. This implies that

peEM = pel™.

Whenever pq, 1o € M (T) are distinct, we have [ fdus # [ fdps for some f €
C(T). Since trigonometric polynomials are dense in C(T), f = Y cxe*® can
be a trigonometric polynomial. Finally because for such f we have [ fdu; =
> s (k), Fourier transform is necessarily one-to-one on M (T) as well. In this
sense, every function f € L!'(T) can be identified with a sequence from ¢, and
every measure p € M (T) can be viewed as a bounded sequence. Note however

that the inverse mappings
(e (K)) peg (x €T > c(k)e* e C)
keZ

are not always correctly defined on either of the spaces ¢y and [*° and thus we
cannot identify ¢y with L (T) nor [ with M (T). At best, every ¢ € I*° can be
identified with a linear operator on the set A := A(T) := {f e L'(T)|f e ll}
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by the formula (f,c) := Zkezf(k) c (k).
Fourier transform and [': Clearly when ¢ € [!, the fact that ||eik"3HOO =1

gives the following:

fn(z) = Z c(k:)eikx:ZZc(k‘)eikx =: f(x) on T as N — 0.

k|<N kEZ

Since the functions fy are continuous we get that f € C(T) holds as well. The
fact that " : C(T) — ¢ is continuous and ex@x) (I) = 0k then implies that
f = ¢. Consequently we can identify I' with a subspace of C (T) - in fact this
means we identify {! with the set A from the previous paragraph, which is actually

of the form

A:{feC(Tnfezl}.

It is also well known that for f,g € L' (T) with f,§ € > we have fg=fx*q.
Thus the identification of A with {! by the Fourier transform also respects the

natural multiplication operations defined on these spaces.

A.3 Hausdorff dimension

Hausdorff measure: Let X be a metric space, S C X and d € [0,00). For
0 > 0 we define

HE(S) = inf {Z (diam?U;)* | | JU; D 8, diamU; < 5} .

i=1

and set H?(S) = supsoqHE(S). The number H?(S) is called the outer d-
dimensional Hausdorff measure of the set S. Since H$(S) is clearly monotone
with respect to §, we have H¢ (S) = lims_,oy H4(S). When d € N and X = R¢,
the measure H? coincides with the d-dimensional Lebesgue measure, up to a
multiplicative constant (on, for example, Borel sets).

Hausdorff dimension: Hausdorff dimension dimy (S) of a set S can be

defined in one of the following equivalent ways:
dimy (S) := inf {d > 0| H*(S) = 0} = sup {d > 0| H* (5) = oo}

(where we set inf () = oo, sup ) = 0).

A.4 Cantor-Bendixson rank

Perfect sets: For 2 € R? we denote by U (z) the collection of all open neighbor-
hoods of z. A point x of a set C' C R? is said to be isolated (in C') when there
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exists such U € U (x) that U N C = {x}. The set C is said to be perfect if it
contains no isolated points (in C).

Definition of rCB: For C' C R? we define the Cantor-Bendizson derivative
C" of the set C' as

C':=C\{z € C|x is isolated in C'}.

We denote C'© := ' and for an ordinal o > 0 we set

o) . ﬂ (C(ﬂ))"

B<a

Finally the Cantor-Bendizson rank rp(C) of a set C is the least ordinal a
such that C@t1) = @ Clearly everytime C@*Y) C C(®) there exists a basic
set B C C@\ O+ which we have removed by taking the derivative. Since
we can take a countable basis for R?, the rank of each C' C R? is necessarily
at most countable and therefore rp is well defined. It is also immediate that

rcg (C) =0 <= C is perfect.

A.5 Bernstein sets

Definition A.2. A set B C T is said to be a Bernstein set if B intersects every

closed perfect subset of T but contains none of them.

Existence: Assuming that the axiom of choice holds, we can find enumeration
P,, a < 2¢ of all the closed perfect subsets of T (clearly 2 indices will suffice, as
there is at most 2¢ closed subsets of T). We then inductively find z,, y, € P, for
a < 2% such that x4 # Yo and To, Yo € Po \Us, {25, ys} (clearly this is possible

since for every o < 2¢ we have by Perfect set theorem

Card (P,) = 2¥ > Card (o) = Card (U {a:g,yﬁ}> ).

[B<a

The set B := {x,| a < 2“} is then clearly a Bernstein set.

Non-measurability: We also note that whenever B is a Bernstein set, then
B is Lebesgue-non-measurable: Recall that by Perfect Set theorem, every un-
countable closed set contains a closed perfect subset. Consequently no Bernstein
set can contain an uncountable compact subset and neither can T\ B. This means
that if B was measurable, we would get by inner regularity of Lebesgue measure
that

|B| = sup{|K|| K C B is compact} = sup {|K|| K C B is compact and countable} = 0.
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In the same way we would get that |T \ B| = 0, which contradicts the assumption
that B is measurable, since |T| > 0 and T = BU{T \ B}.
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