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typu N pro N ∈ N∪{∞}, a dokazujeme některé jejich vlastnosti, které by mohly
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Supervisor: RNDr. Václav Vlasák, Ph.D., Department of Mathematical

Analysis

Abstract: We study families of small sets which appear in Harmonic analysis.

We focus on the systems H(N), N ∈ N, U and U0. In particular we compare their

sizes via comparing the polars of these classes, i.e. the families of measures

annihilating all sets from given class.

Lyons showed that in this sense, the family
⋃
N∈NH

(N) is smaller than U0.

The main goal of this thesis is the study of the question whether this also holds

when the system U0 is replaced by the much smaller system U . To this end we

define a new system H(∞) and systems of sets of type N where N ∈ N∪{∞}. We

then prove some of their properties, which might be useful in solving the studied

question.

Keywords: sets of uniqueness, descriptive set theory, harmonic analysis



Contents

1 Introduction 1

1.1 Brief historical overview . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The goal and contents of this thesis . . . . . . . . . . . . . . . . . 3

I U as a family of thin sets 6

2 Notation 6

3 General families of thin sets 7

3.1 Examples of families of thin sets . . . . . . . . . . . . . . . . . . . 7

3.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Motivation - which questions to ask? . . . . . . . . . . . . . . . . 9

4 U as a family of thin sets 10

4.1 U -sets and some negative results . . . . . . . . . . . . . . . . . . . 10

4.2 U -sets and some positive results . . . . . . . . . . . . . . . . . . . 11

4.3 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II Properties of U-sets and related systems 13

5 Basic properties of U and U 13

5.1 Basic examples of U -sets . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Being ideal and σ-ideal . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Applications of functional analysis in the theory of U-sets 15

6.1 Spaces A, PF and PM , ideal J (E) . . . . . . . . . . . . . . . . . 15

6.2 The sets of extended uniqueness . . . . . . . . . . . . . . . . . . . 16

6.3 Characterization of U and the definition of U ′ . . . . . . . . . . . 17

7 Symmetric sets 17

7.1 General construction . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2 The definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.3 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 H(N)-sets 20

8.1 The definition and basic properties . . . . . . . . . . . . . . . . . 20

8.2 The theorem of Piatetski-Shapiro . . . . . . . . . . . . . . . . . . 23

8.3 Relation of H(N)-sets and symmetric sets . . . . . . . . . . . . . . 24



9 Other families as approximations of U 27

9.1 Bases and p-bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9.2 Results concerning the relations between H(N), U ′, U0 and U . . . 28

9.3 Summary of relations between H(N), U ′, U0 and U , open problems 29

III H(∞)-sets and sets of type N 30

10 H(∞)-sets 30

10.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . 31

10.2 Regular H(∞)-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.3 H(∞)-sets and sets of uniqueness . . . . . . . . . . . . . . . . . . . 38

11 Sets of type N 41

11.1 Definition of a set of type N . . . . . . . . . . . . . . . . . . . . . 41

11.2 Restriction to manageable sets . . . . . . . . . . . . . . . . . . . . 43

11.3 Technical interlude . . . . . . . . . . . . . . . . . . . . . . . . . . 48

11.4 Canonical measure and its properties . . . . . . . . . . . . . . . . 52

11.5 Main result and its application to H(N)-sets . . . . . . . . . . . . 61

A Preliminaries 64

A.1 Descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Fourier transform on T . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.4 Cantor-Bendixson rank . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 Bernstein sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



1 Introduction

In this section we firstly present a brief overview of the theory of sets of unique-

ness. We do not attempt to present all of the main results in the theory, which

the interested reader can find for example in [KL], but we rather list the notions

and problems which are required in order to describe the goal of this thesis. We

then explain how the contents of this thesis are organized.

1.1 Brief historical overview

Trigonometric series and the problem of uniqueness:

A trigonometric series on [0, 2π] is the formal expression
∑

k∈Z ck exp (kx),

where x ∈ [0, 2π] and ck ∈ C. Such series are often used in harmonic analysis,

when we assign to a 2π -periodic (complex and integrable) function f its Fourier

series. It is natural to ask whether the coefficients of a given trigonometric series∑
k∈Z ck exp (kx) are unique, or if it is possible to find such c′k ∈ C that we have

∀x ∈ [0, 2π] :
∑
k∈Z

ck exp (kx) =
∑
k∈Z

c′k exp (kx) ,

but (ck)k∈Z 6= (c′k)k∈Z. Cantor showed in [Can] that the coefficients of any trigono-

metric series are indeed uniquely determined by the sum of this series on the whole

interval [0, 2π], when he proved the following statement: For every trigonometric

series, we have∑
k∈Z

ck exp (kx) = 0 for every x ∈ [0, 2π] =⇒ ∀k ∈ Z : ck = 0.

We can then ask whether we can replace the set [0, 2π] in the previous statement

by a smaller set E, such that the implication still holds. Note that this question

is non-trivial, since for example when
∑

k∈Z ck exp (kx) = 0 for some x ∈ [0, 2π],

this does not necessarily mean that all of the coefficients ck are equal to zero. It

is also not hard to prove (see Proposition 5.3) that whenever E ⊂ [0, 2π] is a set

with measure strictly less than 2π1, then there exists coefficients ck ∈ C, k ∈ Z,

not all of them equal to zero, such that
∑

k∈Z ck exp (kx) = 0 for every x ∈ E.

Definition of the system U :

We say that E ⊂ [0, 2π] is a set of uniqueness, denoting E ∈ U , when for any

1Unless stated otherwise, we will assume that “a set of measure m” means “a set of Lebesgue
measure m”.
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trigonometric series we have∑
k∈Z

ck exp (kx) = 0 for every x ∈ [0, 2π] \ E =⇒ ∀k ∈ Z : ck = 0.

When E /∈ U , we say that E is a set of multiplicity, writing E ∈ M. In this

notation, Cantor proved that the empty set belongs to U . We note that in this

situation it would be more intuitive to say that the set [0, 2π]\E is of uniqueness,

rather than E, but this notation is used from historical reasons...

Notes on the characterization problem and the union problem:

Since the introduction of the concept of U -sets, this topic has received a lot of

attention. However the problem of deciding whether a given set E is of uniqueness

or of multiplicity turned out to be hard to solve. Finding some ”nice” properties

of U also proved to be difficult. For example by theorem of N.K. Bary ([Bar1])

when E and F are closed sets of uniqueness, we have E ∪ F ∈ U , but this does

not hold for general E, F ∈ U (see Remark 5.6). We still do not know whether

this holds for two Gδ sets, nor do we know whether there exist two measurable

sets of uniqueness whose union is of multiplicity.

Approximating U by other systems:

We will now restrict ourselves to the system U of closed sets of uniqueness,

where most of the theory lies. Failing to find a useful characterization of U-sets

or at least enough ”nice” properties which this system possesses, we can still turn

to a different approach. Instead of working directly with the system U , we can

”approximate” this collection by different systems A ⊂ U ⊂ B of closed sets,

which are easier to characterize and have better properties. This will partially

solve the characterization problem and the problem of finding the properties of U .

On the other hand, by working with approximations of U , we have to worry about

a different question: How tight are the approximationsA ⊂ U and U ⊂ B? In this

work we will discuss three ways of measuring the ”tightness” of inclusion between

two systems S ⊂ T , each of them stronger than the previous one. The first one is

simply finding out whether the inclusion S ⊂ T is strict or not. Then we can also

check whether there exist sets in T which cannot be covered by countably many

sets from S, i.e. (for hereditary2 S, T ) whether we have T \ Sσ 66= ∅. Finally we

can check whether T is bigger than S in the sense of polars, a concept which we

define in Section 9.

Examples:

2Throughout the work, when working with a family of closed sets, the term ”hereditary” will
mean ”hereditary with respect to closed subsets”. Similarly when we say a family F of closed
sets is a (σ- ) ideal, it will mean that closed (countable) unions of F-sets are again in F .
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Some examples of collections used for approximating U are the systems

H(1) ⊂ H(2) ⊂ ... ⊂
⋃
N∈N

H(N) ⊂ U ′ ⊂ U ⊂ U0

(which we introduce in more detail later on).

The system U0:

When a closed set E supports a probability measure µ, such that its Fourier

coefficients µ̂ (k) =
´

exp (−ikx) dµ (x) converge to 0 as |k| → ∞, then clearly

E ∈ M. In this case we say that E is of strict multiplicity. When E is not of

strict multiplicity, we say that E is a set of extended uniqueness. We denote the

family of closed sets of uniqueness by symbol U0. Clearly we have U ⊂ U0 and

Piatetski-Shapiro ([PS1]) proved that this inclusion is strict. The fact that U0

is a σ-ideal is a simple consequence of its alternative definition (which we give

in Section 6) and by [Bar1] the system U is a σ-ideal as well. This immediately

implies that we have U0 \ Uσ 6= ∅. Finally Kaufman ([Kau2]) proved that the

inclusion U ⊂ U0 is strict also in the sense of polars.

The systems U ′ and H(N):

Later in this work, we define the systems H(N), N ∈ N (see Section 8) and

the family U ′ of U-sets of rank 1 (Section 6). By a theorem of Piatetski-Shapiro

([PS1]), we have
⋃
N∈NH

(N) ⊂ U ′, and as a corollary to the longstanding Borel

basis problem ([DSR], or see Theorem 9.4 of this thesis), we have U ) U ′σ ⊃(⋃
N H

(N)
)
σ
.

1.2 The goal and contents of this thesis

The goal of this thesis:

To the best of our knowledge, the question whether the inclusions
⋃
N∈NH

(N) ⊂
U ′ ⊂ U are strict in the sense of polars still remains open. Vlasák recently proved

in [Vla] that in the sense of polars, each of the inclusions H(N) ⊂ H(N+1), N ∈ N
is strict. The goal of this thesis was to prove his conjecture, which states that we

can generalize the concept of H(N)-sets and define the so-called H(∞)-sets, which

have the following properties:

1.
⋃
N H

(N) ⊂ H(∞)

2. Many of theH(∞)-sets can be used for witnessing that the inclusion
⋃
N H

(N) ⊂
H(∞) is strict in the sense of polars.

3. There exist H(∞)-sets satisfying 2. which belong to U ′ (and this can be

proven by modifying the proof of the inclusion
⋃
N H

(N) ⊂ U).
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This would then witness that the inclusion
⋃
N∈NH

(N) ⊂ U ′, and actually even

the inclusion
⋃
N∈NH

(N) ⊂ U ′, is strict in the sense of polars, thus solving the

open problem.

Unfortunately we were unable to fully prove this conjecture. To be more

specific, we successfully showed that the inclusion
⋃
N∈NH

(N) ⊂ H(∞) is strict in

the sense of polars and proved that this fact can be witnessed by any H(∞)-set

which satisfies certain technical conditions, which are however not too limiting.

We then attempted to prove the existence of H(∞)-sets from U ′, but it turned

out that the original proof of inclusion
⋃
N∈NH

(N) ⊂ U ′ cannot be modified to

get this result, at least not in a direct way. Whether the existence of such sets

can be proven in another way remains an open question.

Outline of the thesis:

We assume that the reader is familiar with basics of the descriptive set theory

and knows the basic properties of the Fourier transformˆ: L1 ([0, 2π]) → c0 (Z).

The facts from these two areas which we will use in this thesis can be found

in the appendix Sections A.1 and A.2. We also refer to the appendix for some

information on Hausdorff dimension, Cantor-Bendixson rank and Bernstein sets.

The main text is then organized as follows: We begin the Part I by introducing

in Section 2 the notation which we are going to use. In Section 3 we present

some examples of families of small sets which naturally appear in mathematical

analysis. We then observe some of the common properties these systems have,

which allows us to better understand what kind of results we can expect from the

families U and U . In the last Section 4 of this part we then list the key known

results related to the systems U and U and highlight some of the problems which

are still open.

In Part II we discuss the sets U and U in more detail and define more of

the related notions. We also include proofs for those theorems which are either

relevant to our goal (i.e. the question whether the inclusion
⋃
N∈NH

(N) ⊂ U ′

is strict in the sense of polars), or whose proofs are interesting from some other

reasons. In Section 5 we prove the basic properties of the families U and U and

in the next Section 6 we apply some of the tools from functional analysis to the

theory of U -sets, which allows us to define the collection U ′. In the following

two Sections 7 and 8 we introduce a few types of the so-called symmetric sets

and define the H(N)-sets. We also explore the properties of symmetric sets and

H(N)-sets and discuss the relation of these two families. In the last Section 9 of

this part we define what it means for an inclusion between two families to be

strict in the sense of polars. We then summarize the known results related to the

”approximation problem” for U and highlight some open questions related to this

topic.
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In Part III we present our results, all of which are novel. We note that they

are mostly inspired by the techniques used in Vlasák’s proof of the fact that the

inclusion H(N) ⊂ H(N+1) is strict in the sense of polars ([Vla]). In the Section 10

we define the family H(∞) and prove some of its properties. We then observe the

similarity between the subfamily of ”regular” H(∞)-sets and a certain family of

symmetric sets. Lastly we give a few notes which explain the difficulties we had

with attempts at finding H(∞)-sets of uniqueness.

In Section 11 we define the families of ”sets of type N” for N ∈ N∪{∞} which

generalize the families H(N) and H(∞). We also define the system of L-sets of type

N and regular sets of type N . Using the technique from [Vla] we prove the main

theorem of this thesis, which states that every regular set of type N ∈ N ∪ {∞}
supports a measure which measures every L-set of type < N by zero. As a

corollary of this theorem we get the fact that the inclusion
⋃
N H

(N) ⊂ H(∞) is

strict in the sense of polars.

5



Part I

U as a family of thin sets

2 Notation

The unit sphere T:

� By T we will denote the unit sphere {z ∈ C| |z| = 1} endowed with the

topology inherited from C. Note that we can identify T with the sphere in R2

via the mapping a+ ib 7→ (a, b), or with the interval [0, 2π) via the mapping

x ∈ [0, 2π) 7→ eix ∈ T. We can also imagine T as the interval [0, 2π] with

points 0 and 2π identified. Using the mapping x ∈ [0, 2π] 7→ x/2π ∈ [0, 1]

we can also identify T with the intervals [0, 1] or [0, 1). In all of the cases

we will work with the topology received from the identification of T with a

subspace of C.

� Let x, y ∈ [0, 2π). By +T (or simply +) we will denote the additive operation

on T defined as

x+T y := (x+R y) mod 2π.

For x ∈ [0, 2π) and c ∈ R we will define the multiplication on T by the

formula

c ·T x := c · x := cx := (c ·R x) mod 2π.

Sequences:

� For sequences indexed by integers we will use the notation x = (xn)∞n=1 =

(x1, x2, ...) resp. x = (xi)
n
i=m = (xm, ..., xn). For general sequences we write

x = (xi)i∈I , where I is the index set. We will understand sequences as

functions from the index set, which allows us to use the restriction operator

�. Sometimes when it is clear from the context over which set is the sequence

indexed or which variable is used for indexing, we will omit these, writing

simply (xi)i, (xi)I or (xi) instead of (xi)i∈I .

� When x = (xn)n0

n=1 and y = (yn)n1

n=1 are two sequences, where n0 ∈ N,

n1 ∈ N ∪ {∞}, we will denote by xˆy the concatenation of x and y defined

as

xˆy = (x1, ..., xn0 , y1, y2, ...) .

6



Binary operations:

� Let X, Y, Z be sets, x ∈ X, S ⊂ Y , T ⊂ X and let R : X × Y → Z be

a binary operation. By xRS we will denote the set {xRs| s ∈ S}. We also

set TRS :=
⋃
{tRS| t ∈ T}. When there is no risk of confusion (e.g. R is

the multiplication on R or T) we will omit the symbol R and write simply

xS instead of xRS.

� Assume that there is some canonical operation + defined on X and that we

have defined multiplication · of elements of X by real numbers. By a shift

or translation of a set T we will then mean the set x + T for some x ∈ X
and by a dilatation (resp. contraction) we will mean a set r · T for some

r > 1 (resp. r ∈ (0, 1)).

� When ~v = (v1, ..., vn) ∈ Y n is a vector, x ∈ X and R is as above, we denote

xR~v := (xRv1, ..., xRvn). When we have x, y ∈ Rd we will denote by x · y
or also xy the standard scalar product x · y = x1y1 + ...+ xnyn.

Miscellaneous:

� When d ∈ N and a set S ⊂ Rd is measurable, we will denote by |S| the

d-dimensional Lebesgue measure of S.

� Let X be a set. By P (X) we denote the power set of all subsets of X.

When S ⊂ P (X) and S ∈ S, we say that the set S is an S-set. By Sσ we

denote the σ-closure of S, defined as

Sσ :=

{
S ∈ P (X) | ∃ (Sn) ⊂ S : S =

∞⋃
n=1

Sn

}
.

When S is finite, we denote by #S the cardinality of S. By a countable set

we will understand a set which is at most countable, i.e. ”countably infinite

or finite”.

� When f : X → R is a function and r ∈ R, we denote {f = r} :=

{x ∈ X| f (x) = r} and define {f < r} , {f ≤ r} etc. analogically.

3 General families of thin sets

3.1 Examples of families of thin sets

First, we give some examples of families of small sets which naturally appear in

various areas of mathematics.3 One of them will be the sets of uniqueness, in

3Another important example of small sets is the class of Haar-null sets. However, we avoid
discussing it in this work, as we mostly work in T or in Rn where the standard Lebesgue measure

7



which we will be interested in the remaining part of this thesis.

� [X]<ω - the system of all finite subsets of a set X.

� [X]≤ω - the system of all at most countable subsets of a set X.

� L (X) - the negligible sets or (Lebesgue-) null sets, i.e. the subsets of X ⊂
Rn which are of Lebesgue measure zero. More generally, we can consider

µ-null sets for general Radon measure on X.

� NWD (X) , MGR (X) - nowhere dense and meager subsets of a topological

space X.

� {F ≤ ε} , {F < ε} , {F = ε} for F : P (X) → [0,∞) or F : P (X) → On -

the sets S for which F (S) is small. For example the sets of small diameter,

measure, cardinality, Hausdorff dimension4 or Cantor-Bendixson rank5.

� U - the sets of uniqueness on the unit circle T. By definition, a set S ⊂ T is a

set of uniqueness if it has the following property: whenever a trigonometric

series
∑

k∈Z cne
ikx converges to 0 for all x ∈ T\S, then ck = 0 for all k ∈ Z.

� U - the family of all sets of uniqueness which are closed.

� U0 - the closed sets of extended uniqueness, which we define later.

3.2 Basic properties

We observe that most of these families F ⊂ P (X) have some, or even all, of the

following properties:

1. ∅ ∈ F , X /∈ F - non-triviality,

2. S ∈ F , T ⊂ S =⇒ T ∈ F - being hereditary with respect to inclusion,

3. S, T ∈ F =⇒ S ∪ T ∈ F - closure under finite unions,

4. Sn ∈ F for n ∈ N =⇒
⋃
n Sn ∈ F - closure under countable unions.

Definition 3.1. As in [BKR], we say that F ⊂P (X) is a family of thin sets, if

it satisfies the first two conditions. If it also satisfies the condition 3, it is said to

be an ideal. If all of the conditions are satisfied, it is said to be a σ-ideal.

is available. We also choose not to discuss the families of porous and σ-porous sets.
4See Section A.3 for definition and some details on d-dimensional Hausdorff measures Hd

and Hausdorff dimension dimH.
5For definition see Section A.4.
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3.3 Motivation - which questions to ask?

The questions: When one encounters a family of thin sets, it is natural to ask

the following questions:

� Is F an ideal? Is it a σ-ideal?

� Does F contain all singletons?

� What is the relation of F to other important families of thin sets? For

example, which of the σ-ideals L, MGR, and [X]≤ω are contained in F and

vice versa.

� For S ∈ F , does there always exist a ”nice” (e.g. closed) set T with S ⊂
T ∈ F?

� Is F closed under some other interesting operations, such as shifts S 7→
S + x, dilatations S 7→ αS or more generally, images under isometries or

homeomorphisms.

� Is an ”easy way” to tell whether a given set belongs to F? Naturally, we

already have some definition of F , so we are looking for something simpler

than this definition.

Example: For example, the negligible sets L form a σ-ideal, they contain all

singletons and thus also countable sets. On the other hand there exist discontinua

in [0, 1] of positive Lebesgue measure (we discuss this later in Section 7) and such

sets are meager. Consequently L does not contain MGR. Whenever S is a

negligible set, by outer regularity of Lebesgue measure, we can find Gδ set G ⊃ S

which is also of measure zero. Also, L is closed under isometries. but not under

homeomorphisms. Lastly, given a set S, we can use the regularity of Lebesgue

measure to either find ε > 0 and compact K ⊂ S of measure at least ε witnessing

that S /∈ L, or we find for each ε > 0 an open set G ⊃ S of measure at most ε, thus

proving that S ∈ L. The last question is rather vague, but the characterization

of L-sets we just described seems to be an example of the kind of ”easier to work

with” condition we were looking for.

In case of negative answer: Finally, whenever the answer to one of the

above questions is negative, we usually ask under which conditions would the

answer be positive. For example, if F is not a σ-ideal, what are the properties of

the smallest σ-ideal F ′ containing F? Is there a ”nice”σ-ideal F ′′ ⊂ F not ”much

smaller” than F? F might not be closed under isometries, but what about F ′ and

F ′′? A good example of how this approach can be useful are the families NWD

and MGR. A different direction to take would be to relax the conditions asked in
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our questions. In our example of negligible sets and closure under images under

homeomorphisms, we know the answer would become positive, if we restricted

ourselves to Lipschitz mappings. Another example would be the family F =

{µ ≤ ε} of sets of small measure for some measure µ. F is generally not hereditary

with respect to inclusion, since there exist non-measurable sets. But if we only

ask the µ-measurable subsets of F -sets to be in F , we will avoid such problems.

4 U as a family of thin sets

4.1 U-sets and some negative results

Definition 4.1. Trigonometric series on T with coefficients ck ∈ C, k ∈ Z is

a sum
∑

k∈Z cke
ikx, x ∈ T. We say that E ⊂ T is a set of uniqueness, writing

E ∈ U , if it has the following property: Whenever a trigonometric series
∑
cke

ikx

converges to 0 for every x /∈ E, then necessarily ck = 0 for each k ∈ Z. If M ⊂ T
is not a set of uniqueness, we say that it is a set of multiplicity, writing M ∈M.

In Subsection 3.3 we noted a number of questions relevant to U -sets. The

simple answers to these questions are summarized in the following remark. We

include it now from motivational reasons - most of the individual points of the

remark will be stated and proved later on.

Remark 4.2 (Properties of U - simple answer). The family U has the following

properties:

1. U is a family of thin sets ([Can]).

2. U is not an ideal (Remark 5.6).

3. Shifts of sets from U are again of uniqueness (straightforward). The system

U is not closed under dilatations ([BKR, p. 481], see also Remark 5.6).

4. U contains every countable set ([You]). No inclusion holds between U and

MGR or L-sets (D. E. Menshov, see also Lemma 7.6 and Example 7.4

combined with Theorem 8.12).

5. For every d ∈ (0, 1] there exist both U -sets andM-sets of Hausdorff dimen-

sion d (Example 10.3).

Remark. As mentioned earlier, the ”characterization” problem is rather vaguely

stated, but as of now, no ”nice” characterization of U -sets has been found.

10



4.2 U-sets and some positive results

For general sets of uniqueness, we only have a few positive results. In order

to better characterize the sets in U for which some interesting results hold, a

fair number of auxiliary families of sets were defined and relations between these

families were studied. We focus on them in the following sections of this work.

Now we define the family of closed sets of uniqueness and formulate its properties.

When combined with the Remark 4.2, these properties give a somewhat more

complete answer to the questions presented in Subsection 3.3.

Definition 4.3. Denote by K (T) the hyperspace of all compact subsets of T
endowed with the Vietoris topology (see Appendix A.1 for definition). We define

the system U of closed sets of uniqueness as U = U ∩ K (T) and the system M

of closed sets of multiplicity as M = K (T) \ U .

Remark 4.4 (Properties of U). The family U has the following properties:

� U is a σ-ideal of closed sets ([Bar1]).

� U is closed under shifts and dilatations ([KL, p. 180].

� Every U -set is both of measure zero and meager (in fact this holds for

every measurable U -set, resp. for every U -set with the Baire property) (see

e.g. Proposition 5.3 for the first proposition (which is straightforward) and

[DSR] for the second).

� There exist closed null sets sets (and thus also closed meager sets) which

are not in U (same as in Remark 4.2).

� U , as a subspace of K (T), is Π1
1-complete (R. M. Solovay and independently

[Kau1]).

� For every d ∈ [0, 1] (resp. (0, 1]) there exists a set in U (resp. M) of

Hausdorff dimension d (same as in Remark 4.2).

As the proposition shows, there are certain advantages to this approach - for

one, the class of closed sets of uniqueness has much better properties than U ,

avoiding pathologies such as non-measurable sets, leading to some positive results.

Secondly, we now consider U as a subset of a Polish space K (T), which allows

us to compute its complexity, showing that U is Π1
1-complete. This explains why

no ”simple” description of U has been found - a ”simple enough” description of U

would imply that it is in fact Borel. In some sense, this result gives a negative

answer to the problem of characterizing which sets are of uniqueness. This is

something we could not have done with the whole class U ⊂ P (T), because U is
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too large to be embedded in any Polish space and thus no notion of complexity

is defined.

4.3 Open questions

The Propositions 4.2 and 4.4 partially answered the questions stated in Subsection

3.3. The two propositions however still leave some gaps to be filled. Specifically,

the following questions are still open, at least to the best of our knowledge:

1. (Union problem) For which E,F ∈ U is E ∪ F ∈ U? This question is open

even when both E and F are Gδ (or measurable).

2. (Interior problem) For given E ∈M, can we always find a closed set F ⊂ E

of multiplicity? Again, this is open even for Gδ-sets.

3. (Characterization problem) Find a ”nice”necessary and sufficient condition,

telling us whether a given perfect set E is of uniqueness or of multiplicity.

4. Are there ”nice” families A, B which approximate U (resp. U) well, in the

sense that A ⊂ U ⊂ B and these inclusions are ”not too strict”?

12



Part II

Properties of U-sets and related

systems

In this chapter, we will establish some of the classical notions related to the

sets of uniqueness, while also explaining in more detail the properties of families

U and U . However, the range of results in the theory of sets of uniqueness is

very extensive, so we will focus on defining the following notions and proving the

following properties, mostly in this order:

1. U , U and the property of being ideal or σ-ideal,

2. Lebesgue measure and U sets,

3. countable sets and U sets,

4. Rajchman measures and U0, the closed sets of extended uniqueness,

5. application of functional analysis to U , introduction of family U ′,

6. symmetric sets, H(N)-sets and their relation to U ,

7. the inclusions between the families H(N), U ′, U and U0,

8. bases of σ-ideals and the relative sizes of the families H(N), U ′, U and U0,

9. polars, p-bases of σ-ideals and the families H(N), U ′, U and U0.

In particular, we avoid the discussion of the question whether U and U are closed

under shifts or dilatations. We also focus mostly on the closed sets, leaving out

notions such as U0 (the general version of U0-sets), or further discussion of the

union problem.

5 Basic properties of U and U

5.1 Basic examples of U-sets

Theorem 5.1 ([Can]). U is a family of thin sets.

Proof. It is clear from the definition of U that it is hereditary with respect to

inclusion. To observe that the whole set [0, 2π] is not in U , one can simply

consider the constant function 1 and note that its Fourier transform is not a zero
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sequence. The remaining non-trivial fact that the empty set is a set of uniqueness

is due to Cantor.

Proposition 5.2 ([Can]). U contains every singleton.

Remark. Cantor actually proved a stronger result that every countable closed set

of finite Cantor-Bendixson rank is a set of uniqueness.

Proposition 5.3. Measurable U-sets are of measure zero.

Proof. Let E ⊂ [0, 2π) be a set of positive measure. We will show that E ∈ M.

Let K ⊂ E be a compact set of positive measure and consider the function

f = χE. By the standard Rieman’s localization principle, we know that f vanishes

on a neighborhood of every point x /∈ K, therefore S (f) converges to 0 at such

points. In particular, S (f) converges to 0 outside E. On the other hand, we have

f̂ (0) = |K| > 0 and thus f̂ 6= 0. Consequently, f witnesses that E is a set of

multiplicity.

Proposition 5.4 (W.H.Young). If E ⊂ T contains no perfect set, then E is a

set of uniqueness.

Proof. Let E be a set of multiplicity. Then there exists a nonzero trigonometric

series
∑
cke

ikx with
∑
cke

ikx = 0 on T \ E. We denote

B := T \
{
x ∈ T|

∑
cke

ikx = 0
}
⊂ E.

The series
∑
cke

ikx witnesses that B /∈ U and thus by Corollary 5.9 B is uncount-

able. Clearly B is a borel set, and by Perfect set theorem, every uncountable Borel

set contains a perfect set. Since E was arbitrary, we have shown that each set of

multiplicity contains a perfect set, which proves the proposition.

Example 5.5. Bernstein6 sets are U -sets.

Proof. This follows directly from the previous proposition and the fact that Bern-

stein sets contain no perfect subsets.

5.2 Being ideal and σ-ideal

Remark 5.6. (1) U is not an ideal.

(2) There exists x ∈ R and E ∈ U such that xE /∈ U . In other words U is not

closed under dilatations.

6For the definition of a Bernstein set, see Section A.5.
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Proof. (1) Let E be a Bernstein set. By Example 5.5, both E and EC are in

U . However, since U is a family of thin sets, we have E ∪ EC = [0, 2π] /∈ U ,

witnessing that U is not an ideal.

(2) This can be witnessed by the set F =
(
1
2
E
)
∪
(
π
2

+ 1
2
EC
)
, which satisfies

2F = [0, 2π] ∈M (where E is as above). For details, see [BKR, p. 481].

Theorem 5.7 ([Bar1]). Countable union of closed U-sets is in U .

Corollary 5.8. U is a σ-ideal of closed sets.

Corollary 5.9. U contains every countable set.

Proof. Use Theorem 5.7 and Proposition 5.2.

6 Applications of functional analysis in the the-

ory of U-sets

6.1 Spaces A, PF and PM , ideal J (E)

Remark 6.1 (Identification of l1 (Z) and A). By the properties of Fourier trans-

form, we can identify the space l1 = l1 (Z) with the subspaceA =
{
f ∈ C (T) | f̂ ∈ l1

}
of the space C (T) via the bijection f 7→ f̂ (See Section A.2 for details). On A

we consider the norm induced by the identification with l1. Recall as well that

f̂ g = f̂ ∗ ĝ and that the space l1 with convolution is a Banach algebra.

For any f ∈
{
f ∈ C (T) | f̂ ∈ l1

}
the mapping (ck) 7→

∑
k∈Z f̂ (k) ck is clearly

a continuous linear functional on c0 = c0 (Z), and for any (bk) ∈ l∞ = l∞ (Z)

the mapping f 7→
∑

k∈Z bkf̂ (k) is a continuous linear functional on the space

({g ∈ C (T) | ĝ ∈ l1} , ‖‖) with the norm ‖g‖ := ‖ĝ‖l1(Z).

This leads to the following definition:

Definition 6.2. We denote by A (=A (T)) the Banach algebra of all continuous

functions (on T) with absolutely convergent Fourier series. On A, we consider

the norm ‖f‖A =
∥∥∥f̂∥∥∥

l1
and the standard pointwise multiplication of functions.

By PF we denote space of trigonometric series which have coefficients in c0.

Identifying PF with (c0, ‖‖∞), we see that it is a predual of A (with duality

〈S, f〉(PF,A) :=
〈
S, f̂

〉
(c0,l1)

, S ∈ PF , f ∈ A). Similarly we denote by PM

those trigonometric series which have l∞ coefficients and identify this space with

l∞ = l∞ (Z) with the standard norm. PM is then the dual space to A, using the

duality 〈f, S〉(A,PM) :=
〈
f̂ , S

〉
(l1,l∞)

, f ∈ A, S ∈ PM .

Proposition 6.3. C1 (T) ⊂ A.
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Proof. This is an immediate consequence of [KL, Proposition II.1.1], which states

that for absolutely continuous f ∈ C (T), we have f ′ ∈ L2 (T) =⇒ f ∈ A.

Definition 6.4. For E ⊂ T we define the ideal J (E) of functions from A which

vanish on some open neighborhood of E:

J (E) = {f ∈ A| f = 0 on V for some V ⊃ E open} .

Remark. Clearly J (E) is a linear subspace of A. Recall that A is a Banach

algebra with the standard pointwise multiplication of functions. Consequently

J (E) is closed under multiplication by functions from A, which justifies the word

”ideal” in the previous definition.

6.2 The sets of extended uniqueness

Definition 6.5. By R we denote the set of Rajchman measures

R =
{
µ ∈M (T) | µ̂ (n)

|n|→∞−→ 0
}
.

We then define the closed sets of extended uniqueness as

U0 = {E ∈ K (T) |µ (E) = 0 for every µ ∈ R}

and closed sets of restricted multiplicity M0 = K (T) \ U0.

Remark 6.6. The family U0 has the following properties:

1. U0 ⊃ U ,

2. U0 is a σ-ideal,

3. every U0-set is of measure zero.

Moreover, the family R satisfies A ⊂ R = PF ∩M (T) ⊂ PF .

Proof. 1. By [KL, Proposition II.6.5] the new definition of U0 is equivalent with

the one given in the introduction (page 3). This immediately implies that U0 ⊃ U

(alternative proof using the later definition can be found in [KL, Proposition

II.6.3]).

2. From Definition 6.5 it is clear that it is a σ-ideal of closed sets.

3. By Riemann-Lebesgue lemma the Lebesgue measure is a Rajchman mea-

sure, which gives the result.

Note as well that Rajchaman measures are those measures µ on T, for which

µ̂ is a pseudofunction, i.e. R = PF ∩M (T). In particular we have R ⊃ A, since

A ⊂ PF and A ⊂ C (T) ⊂M (T).
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6.3 Characterization of U and the definition of U ′

Theorem 6.7 ([PS2]). Let E ⊂ T be a closed set. Then E is in U if and only if

the ideal J (E) is w∗-dense in A.

Recall here the w∗-topology on A is not metrizable and thus a closure of a set

S ⊂ A is equal to the set of all limits of nets of points from S. This however,

is in general not the same as taking just all the limits of countable sequences of

points from S.

Definition 6.8. We define the family U ′ of closed sets of uniqueness of rank less

or equal to 1 as

U ′ = {E ∈ U | J (E) is w∗-sequentionally dense in A} .

Remark. We will not use the notion of rank in this thesis, so we refer the interested

reader to, for example [KL, Chapter V]. We just note here that the only set of

rank strictly less than 1 is the empty set, so it is correct to say that a nonempty

set E is of rank 1 whenever E ∈ U ′.

Remark 6.9. When working with the family U ′, it is useful to keep in mind the

following simple observation

E ∈ U ′ ⇐⇒ 1 ∈ w∗-sequential closure of A

⇐⇒ ∃fn ∈ A with supp (fn) ⊂ T \ E and sup ‖fn‖A <∞

satisfying f̂n (0)→ 1 and f̂n (k)→ 0 for k 6= 0.

The first equivalence follows immediately from the fact that J (E) is an ideal

and multiplication on A is continuous, while the second equivalence is simply the

description of w∗-convergence of sequences in l1.

7 Symmetric sets

7.1 General construction

Remark 7.1. In mathematics, we often come across the following general con-

struction of a set in Rd. We have a bounded B ⊂ Rd and a sequence of sets

En ⊂ B, n ∈ N. We then construct a new set E as E =
⋂
nEn. If the sets En

are closed in Rd and they form a centered system, E is a nonempty compact set.

Later in Section 11, we will study a more general case, but for now, we assume

that d = 1, B is either [0, 1] or [0, 2π] and the sets En are finite unions of closed

intervals with disjoint interiors.
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Figure 1: Cantor set C =
⋂
En constructed in the classical way (up) and its

H(1)-representation (down).

In Sections 7 and 8, we focus on symmetric sets and H(N)-sets, N ∈ N, which

are both of this type7. As the name suggests, the sets En of a symmetric set E

will be somehow symmetric or ”regular”. Typical example of a symmetric set is

the Cantor set (Figure 1). This set is also an example of a H(1)-set. For higher N ,

the H(N)-sets no longer have to be so symmetric, but they enjoy other properties

instead. In the following sections, we will define these families, show that some

symmetric sets and all of the H(N)-sets are sets of uniqueness and finally state

the Salem-Zygmund theorem, which in particular implies that certain symmetric

sets are also in the family H(N).

7.2 The definition

Definition 7.2 (Symmetric set of constant dissection ratio (taken from [BKR])).

For real numbers a < b and ξ ∈
(
0, 1

2

)
, performing a dissection of type ξ on [a, b]

means replacing [a, b] by the union of two closed intervals [a, a1] and [b1, b] of

lengths ξ (b− a).

Let (ξn)n be a sequence with ξn ∈
(
0, 1

2

)
for n ∈ N. A symmetric perfect

set with dissection ratios ξn, n ∈ N is a set Eξn = ∩En, where E0 = [0, 2π]

and whenever En−1 is a disjoint union of closed intervals Ik, we receive En by

performing a dissection of type ξn on every Ik. If the sequence(ξ, ξ, ...) is constant,

we write simply Eξ and we call such set a symmetric perfect set of constant ratio

of dissection ξ.

Example 7.3. E 1
3

is the classical Cantor set in [0, 2π].

Remark. When working with dissections of intervals, there are three important

variables - the dissection ratio ξ, i.e. the (relative) measure of the remaining

intervals, the number 2ξ - i.e. the (relative) measure of remaining set and 1− 2ξ,

i.e. the (relative) measure of the set we removed. To make the matters worse,

some authors index the symmetric perfect sets by the first of the mentioned

7To be more precise, each H(N)-set is contained in a closed H(N)-set which is of this type.
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variables, as we do here, while others index them by the last variable and both

notations coincide for (the) Cantor set.

Example 7.4. Eξn is of measure zero if and only if the sum
∑∞

n=1 (1− 2ξn)

diverges. In particular there exist symmetric perfect sets of positive measure

(and these are consequently in neither of the classes U and U0).

Proof. Clearly E1 ⊃ E2 ⊃ ... ⊃ Eξn . By induction we get that (the normalized)

measure of En is
∏n

k=1 2ξk, which is equal to
∏n

k=1 (1− εk), where εk = 1 − 2ξk.

Since εk ∈ (0, 1), we get that |Eξn| =
∏∞

n=1 (1− εn) is equal to zero if and only if

the sum
∑∞

n=1 εn is infinite.

Definition 7.5 (Homogeneous perfect set). Let ξ,~η = (η0, ..., ηk) be numbers

satisfying 0 = η0 < η1 < ... < ηk = 1, k > 1, ξ = 1 − ηk−1 and ηi > ηi−1 + ξ for

each i < k. By performing a dissection of type (ξ, ~η) on [a, b], we mean replacing

[a, b] by the disjoint union of closed intervals [ai, bi], i = 0, .., k − 1 of lengths

ξ (b− a), where ai = (1− ηi) a+ ηib.

Let (ξn, ~ηn)n be a sequence of numbers ξn ∈
(
0, 1

2

)
and vectors ~ηn = (ηn,0, ..., ηn,kn),

n ∈ N, each pair satisfying the above conditions. We generalize the Definition

7.2 and define a symmetric perfect set Eξn,~ηn with dissection ratios (ξn, ~ηn) in the

obvious way, replacing ”dissection of type ξn” with ”dissection of type (ξn, ~ηn)”.

If the sequence (ξn, ~ηn)n = (ξ, ~η)n is constant, we call the resulting set Eξ,~η a

homogeneous perfect set Eξ,~η associated to (ξ, ~η).

Remark. Let Eξn be a symmetric perfect set with dissection ratios ξn. If we

take ~ηn = (0, 1− ξn, 1), we have Eξn = Eξn,~ηn . Therefore Definition 7.5 truly

generalizes the previous Definition 7.2.

7.3 Some properties

Remark. Let (ξn, ~ηn)n and (kn)n be as in the above definition. Similarly to Ex-

ample 7.4, we have

|Eξn,~ηn | = 0 ⇐⇒
∞∑
n=1

(1− knξn) =∞.

Lemma 7.6. The symmetric sets Eξn,~ηn defined above are nowhere dense (and

so, in particular, meager).

Proof. By Remark 7.1, all of these sets are closed. Let E = ∩En be such a set.

In Definition 7.5, we only allow non-trivial dissections - in each step, each in-

terval is split into at least two disjoint intervals of the same length. Consequently,

the En consists of at least 2n disjoint intervals of length at most 2−n. This implies

that E = E = ∩En cannot contain an open set, and thus it is nowhere dense.
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Definition 7.7. A symmetric perfect set Eξn is said to be ultra-thin, if the dis-

section ratios satisfy
∑
ξ2n <∞.

Theorem 7.8 ([Mey, Chapter VIII, Theorem I]). All ultra-thin symmetric sets

are of uniqueness.

Remark. When ξn decreases quickly enough, the set Eξn is of uniqueness by the

previous theorem. On the other hand, when ξn is high enough, the resulting set

Eξn will have positive measure, and consequently it will not be in U . However

for general sequence (ξn)n, there is no known characterization explaining when is

the set Eξn of uniqueness and when is it of multiplicity.

8 H(N)-sets

8.1 The definition and basic properties

Notation. Recall that for x, y ∈ RN we denote by xy the standard scalar product∑N
i=1 xiyi in RN .

In the following section, we will use the notation

x = (xn)n =
(
x1n, ..., x

N
n

)
n
∈
(
RN
)N
.

Definition 8.1. Let N ∈ N and let x ∈
(
RN
)N

be a sequence of vectors. We say

that x is quasi-independent, if for every 0 6= α ∈ ZN we have limn |xnα| =∞. By

QN we denote the set of all quasi-independent sequences in
(
NN
)N

and by QN∗

the set of all quasi-independent sequences in
(

(R \ {0})N
)N

.

Remark 8.2. It is easy to see that if x is quasi-independent, then necessarily

limn

∣∣xkn∣∣ = ∞ for each k ≤ N . An example of a sequence which is not quasi-

independent would be xn = nα for α ∈ ZN (where N > 1). For N = 1, clearly

any (xn)n with |xn| → ∞ is quasi-independent.

For higher N , a sufficient condition for x to be quasi-independent is when for

each 1 ≤ k, l ≤ N , k 6= l we have either xkn/x
l
n → ∞ or xln/x

k
n → ∞ as n → ∞.

To see this, fix nonzero α ∈ ZN . There exists an index i0 satisfying αi0 6= 0 and

xi0n /x
k
n →∞ as n→∞ for each 1 < k ≤ N with αk 6= 0. We then have

lim
n
|xnα| = lim

n
xi0n

∣∣∣∣∣αi0 +
∑
k 6=i0

αk
xkn
xi0n

∣∣∣∣∣ =∞ ·

(
|αi0|+

∑
k 6=i0

αk · 0

)
=∞,

which implies that x is quasi-independent.
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Figure 2: First two steps of the construction of a H(2)-set E with I1 =
(
1
3
· 2π, 2π

)
,

I2 =
(
0, 1

2
· 2π
)

and x11 = 1, x21 = x12 = 2, x22 = 6.

Definition 8.3. A set I ⊂ TN is an open interval, if it is of the form I =

I1 × ...× IN where each Ik, k = 1, ..., N is an open interval.

A set E ⊂ T is in H(N), if there exists x ∈ QN and an open interval I ⊂ TN

such that for every x ∈ E and n ∈ N the vector x · xn ∈ TN is not in I (where

x · xn :=
(
x ·T x1n, ..., x ·T xNn

)
). Similarly E is in H(N)∗, if there exists x ∈ QN∗

and an open interval I ⊂ TN with the same property.

Remark 8.4. Let F be a H(N)-set and suppose that this fact is witnessed by the

sequence x ∈ QN and open interval I. Clearly F is contained in a ”true”H(N)-set

E =
⋂
En =

⋂(
E1
n ∪ ... ∪ EN

n

)
, where the sets Ek

n are defined as

Ek
n :=

{
x ∈ T|x · xkn ∈ T \ Ik

}
,

and this set E is closed. Thus we can focus our attention mostly on those closed

H(N)-sets E which are of the form

E =
∞⋂
n=1

N⋃
k=1

Ek
n =: H (N, I,x)

for some quasi-independent sequence x and open interval I. In particular, from

now on unless stated otherwise, all H(N)-sets will be closed.

Remark. In the definition used by [Bar2], the property of being H(N)∗-set can
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actually be witnessed by quasi-independent sequence x ∈
(
RN
)N

instead of x ∈(
(R \ {0})N

)N
. However the families H(N)∗ in either definition are hereditary.

Also when the fact that E ∈ H(N)∗ is witnessed by sequence of vectors (xn),

it is also witnessed by any subsequence of (xn). Combined with the fact that

limn

∣∣xkn∣∣ =∞ holds for each k ≤ N , we see that both of the possible definitions

give the same object H(N)∗ - and the one we adopted avoids division by zero.

Proposition 8.5 (Properties of H(N)-sets). Let N ∈ N. Then we have the

following:

1. H(N) ⊂ H(N)∗ ⊂
{⋃n

k=1Ek|n ∈ N&∀k = 1, ..., N : Ek ∈ H(N)
}

.

2. H(N) ⊂ H(N+1).

3. Let M ∈ N and E ∈ H(M), F ∈ H(N). Then E ∪ F ∈ H(M+N).

The points 2. and 3. of the previous proposition also hold for the collections

H(N)∗, with identical proofs. The first assertion immediately implies the following

corollary. For definition of symbol (·) ⊥ see Definition 27.

Corollary 8.6. For N ∈ N we have
(
H(N)

)
σ

=
(
H(N)∗)

σ
(and thus also

(
H(N)

)⊥
=(

H(N)∗)⊥).

Proof. The first inclusion in 1. is trivial, while the second can be found in [Bar2].

In order to prove 2., let E ⊂ H (N, I,x) ∈ H(N). Define xN+1
n := n ·

max
{
xkn| k ≤ N

}
, x′n :=

(
x1n, ..., x

N+1
n

)
, x′ =

(
x
′
n

)
and I ′ = I × T. By Re-

mark 8.2 we have x′ ∈ QN+1. Since clearly x · x′n /∈ I ′ ⇐⇒ x · xn /∈ I for any

x ∈ T, the fact that E ∈ H(N+1) is witnessed by x′ and I ′.

3. Let E ⊂ H (M, I,x) ∈ H(M) and F ⊂ H (N, J,y) ∈ H(N). Since for

each β ∈ ZN we have |βyn| → ∞, we can for each k ∈ N find such nk ∈ N
that |βynk | ≥ 2 |αxk| holds for each (α, β) ∈ {−k, ..., k}M+N . Denote z = (zk),

zk = (xk, ynk).

We check that z ∈ QM+N . Fix nonzero γ = (α, β) ∈ ZM×ZN . If either α or β

is a zero vector, we have |γzk| = |βynk | → ∞ (or |γzk| = |αxk| → ∞), since x and

z are quasi-independent. On the other hand when α, β 6= 0, for k ≥ ‖α‖∞ ‖β‖∞
we have

|γzk| = |αxk + βynk | ≥ |βynk | − |αxk| ≥ |αxk| → ∞.

Furthermore for any k ∈ N, we have x · xk /∈ I =⇒ x · zk /∈ I × J and

x · ynk /∈ J =⇒ x · zk /∈ I×J . Clearly we have F ⊂ H (N, J,y) ⊂ H (N, J, (ynk))

and therefore

E ∪ F ⊂ H (M +N, I × J, z) ∈ H(M+N).
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The system H(N)∗ admits the following characterization of H(N)∗ sets, which

we will need later:

Definition 8.7. We denote

H
(N)∗
L ={E ∈ H(N)∗| ∃x ∈ QN ∃ open interval I : E ⊂ H (N, I,x)

& ∀k < N ∀n ∈ N :

∣∣∣∣xk+1
n |Ik|
xkn

∣∣∣∣ ≥ L }.

Theorem 8.8 ([Vla]). For any N ∈ N, L > 0 we have H(N)∗ = H
(N)∗
L .

8.2 The theorem of Piatetski-Shapiro

We now state one of the main theorems relevant to this thesis. We also include

its proof, as we will refer to it later.

Theorem 8.9 ([PS1]). For every N ∈ N, a H(N)-set E is in U ′. Consequently

we have
⋃
N H

(N) ⊂ U ′ ⊂ U .

Proof. Step 1. Let E ⊂ H (N, I,x) ∈ H(N). As noted in Remark 6.9 it suffices

to find a sequence fn of functions from A with supp (fn) ⊂ T \ E, such that

fn
w∗

−→ 1. We will take fn as fn = f 1
n · ... · fNn with supp (f in) ⊂ T \ Ei

n, where

Ei
n =

{
x ∈ T|x · xkn ∈ T \ Ik

}
. Furthermore, denote by ϕi a fixed function from

A with supp (ϕi) ⊂ Ii and ϕ̂i (0) = 1 (such a function exists, since by 6.3 any

f ∈ C1 (T) is in A). We claim that f in (x) := ϕi (x
i
nx) are the functions we were

looking for.

Step 2. We will denote f in = ϕi (x
i
n·). Firstly we observe that

‖fn‖A ≤
N∏
i=1

∥∥f in∥∥A =
N∏
i=1

‖ϕi‖A ,

which then implies that sup {‖fn‖ |n ∈ N} <∞. The first inequality is immediate

from the fact that A is a Banach algebra. The equality then follows from the fact

that for x ∈ T:∑
k∈Z

f̂ in (k) exp (ikx) = f in (x) = ϕi
(
xinx

)
=

=
∑
l∈Z

ϕ̂i (l) exp
(
il
(
xinx

))
=
∑
l∈Z

ϕ̂i (l) exp
(
i
(
lxin
)
x
)
.

This implies that the numbers
(
ϕ̂i (xin·) (k)

)
k
, defined as ϕ̂i (xin·) (k) = ϕ̂i (l)

when k = l · xin for some l ∈ Z and ϕ̂i (xin·) (k) = 0 otherwise are Fourier coef-
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ficients for the function f in. Since these coefficients are uniquely determined, we

have f̂ in = ϕ̂i (xin·) and thus ‖f in‖A = ‖ϕi (xin·)‖A = ‖ϕi‖A.

Step 3. It remains to prove that f̂n (0) → 1 and f̂n (k) → 0 for k 6= 0. Let

k ∈ Z and ε > 0. Using first the standard properties of Fourier transform and

then the observation made in step 2, we get

f̂n (k) =

̂(
N∏
i=1

ϕi (xin·)

)
(k) =

(
ϕ̂1 (x1n·) ∗ ... ∗ ̂ϕN (xNn ·)

)
(k) =

∑
p∈ZN

p1+...+pN=k

N∏
i=1

ϕ̂i (xin·) (pi) =

=
∑
α∈ZN
αxn=k

N∏
i=1

ϕ̂i (αi) =
∑
αxn=k
∀i: |αi|≤m

N∏
i=1

ϕ̂i (αi) +
∑
αxn=k
∃i: |αi|>m

N∏
i=1

ϕ̂i (αi) = S1 + S2.

In the equation above, fix m such that
∑
|l|>m |ϕ̂i (l)| < ε holds for each i.

Since (xn) ∈ QN , we have |αxn| → ∞ for each nonzero α ∈ ZN . This means that

we can find n0 high enough so that no α with |αi| ≤ m for each i satisfies αxn = k

for every n ≥ n0 (with the possible exception of α = 0 when k = 0). Therefore

for such m and n we have either S1 = 0 when k 6= 0 or S1 =
∏
ϕ̂i (0) = 1 when

k = 0. We can bound S2 in the following way:

S2 =
∑
αxn=k
∃i: |αi|>m

N∏
i=1

ϕ̂i (αi) ≤
∑
α∈ZN
∃i: |αi|>m

N∏
i=1

ϕ̂i (αi) ≤
N∑
i0=1

∑
α∈ZN
|αi0|>m

N∏
i=1

|ϕ̂i (αi)|

=
N∑
i0=1

∑
|l|>m

|ϕ̂i0 (l)|

 N∏
i 6=i0

(∑
l∈Z

|ϕ̂i (l)|

)
< ε ·

N∑
i0=1

N∏
i 6=i0

‖ϕi‖A .

Thus for each k ∈ Z and ε > 0 we proven the existence of such n0 that for

every n ≥ n0 we have
∣∣∣f̂n (k)− 1̂ (k)

∣∣∣ < ε, which completes the proof.

8.3 Relation of H(N)-sets and symmetric sets

Remark 8.10 (”regular”H(N)-sets). To simplify the notation, we identify for the

moment the unit circle T with the unit interval [0, 1]. Let E = H (N, I,x) ∈
H(N)∗ (where as before N ∈ N, I is an open interval and x ∈ Q∞) and denote

Ek
n =

{
x ∈ T|x · xkn ∈ ICk

}
as before. We will show that under certain conditions,

E is a symmetric perfect set (in a slightly generalized sense).

� E =
⋂
En, where En = E1

n ∪ ... ∪ EN
n is the representation of the set E in

the sense of Remark 7.1. However, the set E for general open interval I
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Figure 3: First step of the construction of a ”regular” H(2)-set E with I1 =(
1
2
· 2π, 2π

)
, I2 =

(
0, 1

2
· 2π
)

and x11 = 1, x21 = 2.

and quasi-independent x can be rather complicated to draw or imagine.

� Assume that Ik = (ak, 1) is an open interval and xkn ∈ N. The set Ek
n can

then be written as

Ek
n =

{
x ∈ T|x · xkn ∈ ICk

}
=

(
1

xkn
·R
(
Z +R (Ik)

C
))
∩ [0, 1] ,

which shows that it is a disjoint union of xkn closed intervals of length

(1− ak) /xkn. Similar remark can be made for general Ik = (ak, bk).

� Suppose that Ik =
(
ak
qk
, bk
qk

)
, where ak, bk ∈ N ∪ {0} , qk ∈ N and that

k < N , xkn, x
k+1
n ∈ N and xknqk|xk+1

n . The set Ek+1
n then ”divides well” the

set Ek
n in the sense that whenever J1, J2 ⊂ Ek

n are intervals of the form

[j, j + j] /xknqk, then the sets Ek+1
n ∩ Ji, i = 1, 2 are translations of each

other (and the same thing also holds for open intervals Ji ⊂
(
Ek
n

)C
of the

form (j, j + j) /xknqk).

� When trying to ”draw”or imagine H(N)-sets, it is convenient to have the fol-

lowing order of elements of vectors of sequence x in mind: x11, x
2
1, ..., x

N
1 , x

1
2, x

2
2, ...

� Suppose that for each k < N the endpoints of Ik =
(
ak
qk
, bk
qk

)
satisfy ak, bk ∈

N ∪ {0} , qk ∈ N and xkn ∈ N. Moreover, assume that for all n ∈ N, k < N

we have xknqk|xk+1
n , xNn qN |x1n+1. The set En+1 (and thus also Em for m > n

as well as E) then ”looks the same” at each interval J ⊂ En of the form

J = [j, j + j] /xknqk (in the above mentioned sense that if Ji, i = 1, 2 are

two such intervals, then E∩J1 is a translation of E∩J2). We say that such

a set E is regular.

� For regular E, the sets En are unions of closed intervals of length 1/
(
xNn qk

)
,

and these intervals have disjoint interiors and their endpoints are of the

form a/xNn qk for some a ∈
{

0, ..., xNn qk
}

. We can relax the condition in
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the Definition 7.5 of dissection of type (ξ, ~η) to only require ηi ≥ ηi−1 + ξ

instead of ηi > ηi−1 + ξ. Then by the previous point, we get that each

regular H(N)-set is a symmetric perfect set with dissection ratios (ξn, ~ηn)

for some ξn and ~ηn.

� We could write the dissection ratios (ξn, ~ηn) for E explicitly - unfortunately,

doing so does not seem to bring in any useful information, as this form of

representation of E is far from being compact8.

Regular H(N)-sets then share some of the properties with ”proper” symmetric

perfect sets with dissection ratios (ξn, ~ηn). For one, we have |
⋂n
i=1Ei| =

∣∣⋂n−1
i=1 Ei

∣∣·
|En| for E as above. This allows us the calculate the exact measure of E. Secondly,

it is well known that we can represent the classical Cantor set C as a set of sums

C =

{
∞∑
n=1

εn

(
1

3

)n
| εn ∈ {0, 2}

}
=

{
∞∑
n=1

εn

(
1

3

)n−1
| εn ∈

{
0,

2

3

}}

and that this way each x ∈ C is represented uniquely. Recall that C is a symmetric

perfect set with dissection ratios (ξ, ~η), where ξ = 1
3

and ~η =
(
0, 2

3
, 1
)
, which gives

meaning to the second equality in the above representation. It is easy to check

that whenever E is a symmetric perfect set with dissection ratios(ξn, ~ηn), we can

represent it in a similar way as

E =

{
∞∑
n=1

εnξ1...ξn−1| εn ∈ {ηn,0, ..., ηn,kn−1}

}
.

However if we had to relax the definition of symmetric perfect set with dissection

ratios (ξn, ~ηn) to allow ηn,i ≥ ηn,i−1 + ξn, this representation will not be unique.

Next we present the Salem-Zygmund Theorem which relates the homogenous

perfect sets and the sets of uniqueness, and H(N)-sets in particular.

Definition 8.11. Real number θ > 1 is called a Pisot number if θ is the root of

some polynomial P which has coefficients from Z, leading coefficient of P is 1 and

all other roots of P have absolute value less than 1. Order of θ is the minimal

degree of a polynomial P which witnesses that θ is a Pisot number.

Remark. Clearly every n ∈ N greater than 1 is trivially a Pisot number of degree

1 and Q (n) = Q (recall that F (s) is the extension of the field F by the element

s).

8The word ”compact” is not used in the mathematical sense here.
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Theorem 8.12 (Salem-Zygmund, 1955). Let ξ,~η = (η0, ..., ηk) be numbers satis-

fying 0 = η0 < η1 < ... < ηk = 1, k > 1, ξ = 1− ηk−1 and ηi > ηi−1 + ξ for each

i < k.

(1) Suppose that θ = 1
ξ

is a Pisot number of degree N and η1, ..., ηk ∈ Q (θ).

Then Eξ,~η is a H(N)-set. In particular Eξ,~η is a set of uniqueness.

(2) If either θ = 1
ξ

is not a Pisot number or one of the numbers η1, ..., ηk is

not in Q (θ), then Eξ,~η is a set of restricted multiplicity.

Proof. [KL, Chapter III].

9 Other families as approximations of U

9.1 Bases and p-bases

Remark 9.1. In previous chapters, we listed several families of thin sets connected

to U -sets. In particular we have the following inclusions

H(1) ⊂ H(2) ⊂ ... ⊂
∞⋃
N=1

H(N) ⊂ U ′ ⊂ U ⊂ U0. (1)

It is natural to ask whether these inclusions are strict and, in case of a positive

answer, ”how strict” they are.

Definition 9.2. Let F be a family of sets. By Fσ we denote its σ-closure, i.e.

the family Fσ = {
⋃∞
n=1 Fn|Fn ∈ F}. Clearly if F is a family of thin sets, its

σ-closure is a σ-ideal. If I is a σ-ideal, F a family of thin sets and I = Fσ, we

say that F is a basis of σ-ideal I. We also define the corresponding notions for

families of closed sets in the obvious way.

Remark. For two families of thin sets F ⊂ G, clearly Fσ + G implies Fσ + Gσ. On

the other hand we also have Fσ ⊇ G =⇒ Fσ = Gσ. Consequently, it is the same

to ask whether there exists a set G ∈ G which cannot be written as countable

union of sets Fn ∈ F , as it is to ask ”Is the family F a basis for the σ-ideal Gσ?”.

When we compare two families of thin sets F ⊂ G, the first step is to check

whether F ( G. If this is the case, we then usually proceed to ask whether F
is a basis for Gσ. Should the difference of two families turn out to be big in this

sense as well, as it will for families in (1), it will be useful to have even stronger

notion of difference between two families of thin sets, which we define now.

Definition 9.3. For F ⊂ K (T) denote by

F⊥ = {µ ∈M (T) | ∀E ∈ F : µ (E) = 0}
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the polar of F . Analogically we define for S ⊂M (T) the set

S⊥ = {E ∈ K (T) | ∀µ ∈ S : µ (E) = 0}

. If F ⊂ G has the property that F⊥ = G⊥ and G is a σ-ideal, we say that F is

a polarity basis, or also just p-basis, for G.

Remark. By σ-aditivity of measures from M (T), if F is a basis for Gσ, then

trivially F is also a p-basis for G. Thus ”being smaller in the sense of polars” is

a stronger notion than ”being smaller in the sense of bases”. Recall as well that

by definition, U0 = R⊥.

9.2 Results concerning the relations between H(N), U ′, U0

and U

When Rajchman introduced the H(1)-sets in 1923, he conjectured that H
(1)
σ = U .

It was also expected that the inclusion U ⊂ U0 might not be strict. However it

later turned out that both of the inclusions H
(1)
σ ⊂ U and U ⊂ U0 are strict in a

strong sense. We now list some of the results known about the inclusions in (1)

in order to highlight the related open questions.

Lyons showed in [Lyo] that U⊥0 = R and Kaufman [Kau2] complemented this

by the (very difficult) result that U⊥ ) R. Together, these two results imply that

U is not a polarity basis for U0. Debs and Saint-Raymond solved negatively the

so-called Borel basis problem for U by proving the following theorem:

Theorem 9.4 ( [DSR]). Let E ⊂ T be of multiplicity. Then U ∩ K (E) admits

no Borel basis. In particular whenever F ⊂ K (T) is Borel, then F cannot be a

basis for U .

The following lemma then implies that U ′ is not a basis for U .

Lemma 9.5. The family U ′ is Σ0
3 in K (T).

Proof. By Remark 6.9 we have for E ∈ K (T)

E ∈ U ′ ⇐⇒ ∃fn ∈ A with supp (fn) ⊂ T \ E and sup ‖fn‖A <∞

satisfying f̂n (0)→ 1 and f̂n (k)→ 0 for k 6= 0.

⇐⇒ ∃n ∈ N ∀m ∈ N ∃f ∈ A : (E ⊂ T \ supp (f) & ‖f‖A ≤ n

&∀k, |k| ≤ m :
∣∣∣f̂ (k)− 1̂ (k)

∣∣∣ < 1

m
).

Denoting

Mm,n =

{
f ∈ A| ‖f‖A ≤ n, ∀ |k| ≤ m :

∣∣∣f̂ (k)− 1̂ (k)
∣∣∣ < 1

m

}
,
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we get that U ′ =
⋃
n

⋂
m

⋃
f∈Mm,n

{E ∈ K (E) |E ⊂ T \ supp (f)}, which shows

that U ′ is Gδσ.

In [Vla] we can then find the following lemma and its corollary:

Lemma 9.6. Let N ∈ N. Then there exists a set E ∈ H(N+1) and a probability

measure µ ∈M (E), such that µ (F ) = 0 for every F ∈ H(N)∗
10 .

Corollary 9.7.
(
H(N)

)⊥ )
(
H(N+1)

)⊥
holds for every N ∈ N.

Proof. By Lemma 9.6 we have
(
H(N+1)

)⊥ (
(
H

(N)∗
10

)⊥
. Characterization of

H(N)∗ sets from Theorem 8.8 then gives
(
H

(N)∗
10

)⊥
=
(
H(N)∗)⊥. Finally by Corol-

lary 8.6 we have
(
H(N)∗)⊥ =

(
H(N)

)⊥
, which implies the result.

We will not give the proof of Lemma 9.6 here, but we will later in Section 11

prove a more general result, from which this lemma can be derived.

9.3 Summary of relations between H(N), U ′, U0 and U , open

problems

Remark 9.8. We now summarize the known results about the inclusions in (1).

1. The following inclusions hold:

H(1) ⊂ H(2) ⊂ ... ⊂
∞⋃
N=1

H(N) ⊂ U ′ ⊂ U ⊂ U0.

2. For each N ∈ N, the family H(N) is much smaller than H(N+1) in the sense

that
(
H(N)

)⊥ )
(
H(N+1)

)⊥
.

3.
⋃∞
N=1H

(N) is smaller than U ′ in the sense that
(⋃∞

N=1H
(N)
)
σ
( U ′.

4. U ′ is smaller than U in the sense that U ′σ ( U .

5. U is much smaller than U0 in the sense that U⊥ ) U⊥0 .

Proof. The only result not mentioned so far is 3. This follows from the fact that

each H(N)-set is σ-porous ([Zaj]), but there exists a U ′-set which is not σ-porous

([ZP]).

This leaves the following problem, to the best of our knowledge, open:

Problem 9.9. Are the following inclusions strict?

1.
(⋃∞

N=1H
(N)
)⊥ ⊃ (U ′)⊥

2. (U ′)⊥ ⊃ U⊥

In particular, is it true that
⋃∞
N=1H

(N) is polarity basis for U?
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Part III

H(∞)-sets and sets of type N

10 H(∞)-sets

Vlasák conjectured the following:

Conjecture 10.1 (H(∞)-sets). We can define the so-called H(∞)-sets, a family of

sets which generalizes the concept of H(N)-sets. These sets have, among others,

the following properties:

(i) There exists a set E ∈ H(∞) and a measure µ ∈ M (E) which annihilates

every set from
⋃∞
N=1H

(N).

(ii) In (i), the set E can be chosen such that E ∈ U (or possibly even E ∈ U ′).

In particular, the conjecture would give an answer to Problem 9.9, as it implies

that
(⋃

H(N)
)⊥ 6= U⊥ (or possibly even

(⋃
H(N)

)⊥ 6= (U ′)⊥). We were able to

prove the part (i) of the conjecture and we present this result in Section 11. In

this section we give the definition of H(∞)-sets and prove some of their basic

properties. So far, we were unable to prove (ii) - our original intention was to

do so using the Theorem 8.9 of Piatetski-Shapiro. Sadly this did not work, so we

at least explain why the proof of the mentioned theorem cannot be modified in

order to get the desired result (at least not in a straightforward way).

Remark 10.2. A natural question regarding the polars of HN -sets is whether this

topic could be somehow related to Hausdorff dimension and Hausdorff measures.

For example one might wonder whether a d-dimensional Hausdorff measure Hd

for some d ∈ (0, 1) restricted on some E ∈ H(N+1) could not witness the fact

that
(
H(N+1)

)⊥ 6= (
H(N)

)⊥
. Unfortunately this is not the case. Firstly the

notion of polars only works with Radon measures, while the measure Hd for

d < 1 is actually not a Radon measure as it is not finite on compact sets. A

more significant obstruction is however caused by the following example which

suggests that the notion of Hausdorff measure is not closely related to the theory

of H(N)-sets.

Example 10.3. (1) For any d ∈ (0, 1) there exists a H(1)-set of Haudorff dimen-

sion at least d.

(2) There exists a H
(1)
σ -set of Haudorff dimension 1.

(3) For any d ∈ (0, 1) there exists aM-set of Haudorff dimension less than d.

30



Proof. (2) follows from (1) using the fact that when Ek ∈
⋃
N∈NH

(N) for k ∈ N
then

⋃
Ek ∈ H(∞) (see Proposition 10.7 for the proof of this fact) and 1 ≥

dimH
⋃
Ek ≥ supk dimHEk = 1.

(1) Let d ∈ (0, 1). There exists some k ∈ N, such that log 2 (k − 1) / log 2k ≥
d. Denote E = H (N, I,x), where I = (1/2− 1/2k, 1/2 + 1/2k) and x = (xn) ,

xn = (2k)n−1. By the definition of Hausdorff dimension (see A.3) we have

dimH (E) := inf
{
d ≥ 0|Hd (E) = 0

}
, where

Hd (E) = lim
n→∞

Hd
1/(2xnk) (E) = lim

n→∞
inf

{
∞∑
i=1

(diamUi)
d |
⋃

Ui ⊃ E, diamUi ≤
1

2k
· 1

xn

}
.

Fix n ∈ N. Clearly we are only interested in d ∈ [0, 1]. For such d, it is clear that

the infimum in the above equation will be attained for

{Ui} = Sn := {R ∈ Rn|R ⊂ E1 ∩ ... ∩ En} ,

where En = {x ∈ T|xxn /∈ I} and

Rn = {[j, j + 1] /2kxn| j = 0, ..., 2kxn − 1} .

Consequently we have

Hd (E) = lim
n

(#Sn) / (2kxn)d = lim
n

(#Sn) / ((2k)n)
d
.

By a simple induction we can prove that #Sn = 2n (k − 1)n, which then implies

that

Hd (E) = lim
n

2n (k − 1)n / ((2k)n)
d

= lim
n

(
2 (k − 1) / (2k)d

)n
.

Clearly thenHd (E) ∈ (0,∞) ⇐⇒ 2 (k − 1) / (2k)d = 1 ⇐⇒ d = log2k 2 (k − 1),

which means that dimH (E) = log 2 (k − 1) / log 2k ≥ d.

(3) Using Salem-Zygmund theorem, we get Eξ ∈ M when 1/ξ = θ is not a

Pisot number. Since there exists arbitrarily high numbers which are not Pisot,

we have M-sets Eξ for arbitrarily low ξ. The proposition then follows from the

well known fact that when ξ ↘ 0, we have dimH (Eξ) → 0 (This can be proven

in a similar manner to (1). Alternatively see e.g. [Kar].).

10.1 Definition and basic properties

Notation 10.4. In this chapter we will always use the following notation: N =

(Nn) is a nondecreasing sequence of integers (with limNn ∈ N ∪ {∞}), x a

sequence of vectors, where x = (xn), xn =
(
x1n, ..., x

Nn
n

)
∈ NNn and I = (In)limNn

n=1
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a sequence of open sets in T. We also denote

H (N , I,x) :=
∞⋂
n=1

{x ∈ T|x · xn /∈ I1 × ...× INn} .

Definition 10.5. Let (N , I,x) be as above and suppose that limNn = ∞. We

say that x is quasi-independent if
((
x1n, ..., x

N
n

))∞
n=1
∈ QN holds for each N ∈ N

(where for k > Nn we set xkn = 0). If this is the case, we denote x ∈ Q∞.

We say that a set E ⊂ T is a H(∞)-set, if there exists a tuple (N , I,x) with

x ∈ Q∞ such that

E ⊂
∞⋂
n=1

{x ∈ T|x · xn /∈ I1 × ...× INn} .

We then say that (N , I,x) witnesses that E ∈ H(∞).

Let L > 0. If there exists a witnessing tuple (N , I,x) for E, satisfying

∀n ∈ N ∀k < Nn :

∣∣∣∣xk+1
n |Ik|
xkn

∣∣∣∣ ≥ L,

we write E ∈ H(∞)
L .

Remark 10.6. (1) Similarly to the case of H(N)-sets, the closed H(∞)-sets and

H(∞)-sets of the form E = H (N , I,x) are of particular interest.

(2) Suppose that (N , I,x) witnesses the fact that E ∈ H(∞). Clearly for any

increasing sequence (nk) we have

H (N , I,x) ⊂ H
(
(Nnk)k , I, (xnk)k

)
,

therefore the tuple
(
(Nnk)k , I, (xnk)k

)
also witnesses that E ∈ H(∞).

(3) Let (N , I,x) be as in Notation 10.4 and suppose that x is quasi-independent.

Let M = (Mk) be a nondecreasing sequence of integers with limMk = M ∈
N ∪ {∞}, y ∈ QM a quasi-independent sequence of vectors, where y = (yk),

yk =
(
y1k, ..., y

Mk
k

)
∈ NMk and J = (Jn)Mn=1 a sequence of open sets in T.

Suppose (M,J ,y) is ”contained” in (N , I,x) in the following sense: For

every k ∈ N there exists n (k) ∈ N and indices i (1) , ..., i
(
Nn(k)

)
≤ Mk such that

∀j ≤ Nn(k) : Ij = Ji(j) &xjn(k) = y
i(j)
k . Then

H (N , I,x) ⊂ H (M,J ,y) ∈ H(M).
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Proof. (2) is trivial. (3): Let x ∈ H (N , I,x). We need to prove that

x ∈
⋂
k

{x′ ∈ T|x′ · yk /∈ J1 × ...× JMk
} .

Let k ∈ N. Since x ∈ H (N , I,x), we have x · xn(k) /∈ I1 × ... × INn(k) . Since

(M,J ,y) is ”contained” in (N , I,x), this is equivalent to

x ·
(
y
i(1)
k , ..., y

i(Nn(k))
k

)
/∈ Ji(1) × ...× Ji(Nn(k)),

which implies x · yk /∈ J1 × ...× JMk
.

Proposition 10.7. (1) For each N ∈ N we have H(N) ⊂ H(∞).

(2) The family H(∞) is an ideal.

Proof. (1) Let E ⊂ H (N, I,x) ∈ H(N), where I = I1× ...×IN is an open interval

and x ∈ QN . We set Nn = max {N, n}, N = (Nn), In = T for n > N and

I = (In). Furthermore we set ykn = xkn whenever k ≤ N and find ykn for n ∈ N
and N < k ≤ Nn such that ykn ≥ n ·max

{∣∣yln∣∣ | l < k
}

. We set yn =
(
y1n, ..., y

Nn
n

)
.

By Remark 8.2 y = (yn) is quasi-independent, which implies that H (N , I,y) ∈
H(∞). Clearly (N , I,y) is contained in

(
(N)∞n=1 , (In)Nn=1 ,x

)
in the sense of (3)

from Remark 10.6 , which completes the proof, as we then have

E ⊂ H (N, I,x) = H
(

(N)Nn=1 , (In)Nn=1 ,x
)
⊂ H (N , I,y) ∈ H(∞).

(2) Clearly H(∞) is hereditary. It remains to show that the union of two

H(∞)-sets is again in H(∞). Let Ei ∈ H(∞), i = 1, 2. By definition we have

Ei ⊂ H ((N i, I i,xi)) ∈ H(∞) for some non-decreasing N i = (N i
n), I i = (I in) and

xi = (xi,n) ∈ Q∞, xi,n =
(
x1i,n, ..., x

N i
n

i,n

)
.

By induction we will construct N = (Nk), I = (Ik) and x = (xk) such that x

is quasi-independent and for i = 1, 2, (N i, I i,xi) is contained in (N , I,x) in the

sense of Remark 10.6. Granting these properties of (N , I,x), we can then finish

the proof by observing that for each i ∈ {1, 2} we have

Ei ⊂ H
(
N i, I i,xi

) 10.6
⊂ H (N , I,x) ∈ H(∞).

Construction: k = 1 : Since x2 is quasi-independent, we find such n1 ∈ N
that ∣∣β · x2,n1 �

{
1, ..., N1

1

}∣∣ ≥ 2 |α · x1,1|

holds for each α, β ∈ {−1, 0, 1}N
1
1 , β 6= 0. We then set N1 := N1

1 +N2
n1

, (In)N1

n=1 =

(I1n)
N1

1
n=1 ˆ (I2n)

N2
n1

n=1 and similarly x1 = x1,1ˆx2,n1 .
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k − 1 7→ k: Assume that we have already constructed Nn and xn for n < k

and Ii for i ≤ Nk−1. As in the step k = 1 we find such nk ∈ N that

∣∣β · x2,nk � {1, ..., N1
k

}∣∣ ≥ 2 |α · x1,k| (2)

for each α, β ∈ {−k, ..., k}N
1
k , β 6= 0. Again we set Nk := N1

k +N2
nk

and

(In)Nkn=1 := (In)Nk−1

n=1 ˆ
(
I1n
)N1

k

n=N1
k−1+1

ˆ
(
I2n
)N2

nk

n=N2
nk−1

+1 .

We can assume that nk ≥ nk−1, so that the sequence (Nk) is non-decreasing.

Similarly the vector xk will consist of elements of vectors x1,k and x2,nk . In

order to be able to use Remark 10.6, it remains to make sure the numbers xli,m

are ordered in the same as the open sets I il . Therefore we take the sequences

x1,k =
(
x11,k, ..., x

N1
k

1,k

)
, x2,nk =

(
x12,nk , ..., x

N2
nk

2,nk

)
and arrange their elements into

sequence xk =
(
x1k, ..., x

N1
k+N

2
nk

k

)
as follows:

xk :=
(
x11,k, ..., x

N1
1

1,k

)
ˆ
(
x12,nk , ..., x

N2
n1

2,nk

)
ˆ
(
xN1+1
1,k , ..., x

N1
2

1,k

)
ˆ
(
x
N2
n1

+1

2,nk
, ..., x

N2
n2

2,nk

)
ˆ...

...ˆ
(
x
N1
k−1+1

1,k , ..., x
N1
k

1,k

)
ˆ

(
x
N2
nk−1

+1

2,nk
, ..., x

N2
nk

2,nk

)
.

(N , I,x) has the desired properties: From the construction of xk we

immediately get that (N , I,x) is contained in (N i, I i,xi) in the sense of Remark

10.6 for both i = 1 and i = 2. It remains to prove that x ∈ Q∞.

Let γ ∈ ZN be a non-zero vector for some N ∈ N. Since N1
n →∞, we can find

n0 ∈ N such that 2Nn0 ≥ N . Furthermore we can assume that γ ∈ {−n0, ..., n0}N .

Then there exist some α ∈ {−n0, ..., n0}a and β ∈ {−n0, ..., n0}b, such that for

any n ≥ n0 we have

γ · xn � {1, ...N} =
N∑
l=1

γlx
l
n =

a∑
l=1

αlx
l
1,n +

b∑
l=1

βlx
l
2,nn = (3)

= α · x1,n � {1, ..., a}+ β · x2,nn � {1, ..., b} .

If β = 0 we immediately get

|γ · xn � {1, ...N}| = |α · x1,n � {1, ..., a}| → ∞

since x1 ∈ Q∞ and α and β cannot be both zero vectors. In the same way we

can deal with the case α = 0.

Assume now that α, β 6= 0, fix n ≥ n0 and set α̃ = αˆ (0, ..., 0), β̃ = βˆ (0, ..., 0)

such that α̃, β̃ ∈ {−n, ..., n}N
1
n (which we can do since n ≥ n0 and a, b ≤ N1

n0
≤
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N1
n). Using equations (2) and (3) we get

|γ · xn � {1, ...N}| (3)
=

∣∣∣α̃ · x1,n + β̃ · x2,nn �
{

1, ..., N1
n

}∣∣∣
≥

∣∣∣β̃ · x2,nn �
{

1, ..., N1
n

}∣∣∣− |α̃ · x1,n| (2)≥ |α̃ · x1,n|
= |α · x1,n � {1, ..., a}| n→∞−→ ∞,

where the last term tends to infinity because x1 ∈ Q∞.

10.2 Regular H(∞)-sets

In Remark .8.10 we made some observations concerning ”regular”H(N)-sets. For

H(∞)-sets we will discuss these sets in more detail. One of the reasons for doing

so is that these observations will illustrate the notions needed in Section 11. The

regular H(∞)-sets will also serve as specific examples of H(∞)-sets. In particular

we will be able to calculate the measure of such sets, showing that there exist

H(∞)-sets of measure zero - a necessary condition for existence of H(∞)-sets of

uniqueness.

Notation 10.8. As in Remark 8.10 we denote Ei
n = {x ∈ T|x · xin /∈ Ii}, En =⋃Nn

i=1E
i
n and to simplify the notation we identify T with the unit interval [0, 1].

We then set

En,k = (E1 ∩ ... ∩ En−1) ∩
(
E1
n ∪ ... ∪ Ek

n

)
.

For now we will deal with the sets of the form E = H (N , I,x). For any sequence

of integers N , we can consider the following ordering of the set

{(n, i) |n ∈ N, i = 1, 2, ..., Nn}:

(1, 1) < (1, 2) < ... < (1, N1) < (2, 1) < (2, 2) < ....

When referring to ”the previous” set Ei
n, ”the next” xin etc. it will always be with

respect to this ordering.

As noted earlier, we can imagine E as a ”limit” of sets E1, E2, ..., where again

each En is iteratively created in steps En,1, En,2, ..., En,Nn . Informally, we can

imagine a regular H(∞) set E as a set for which each step En,i from the construc-

tion above ”refines” the previous step and each step En,i ”looks the same” at each

of the intervals
[
j/xkm, (j + 1) /xkm

]
, j = 0, ..., xin − 1 which intersect the interior

of Em,k, for every (m, k) < (n, i). Example of such a set follows below:

Example 10.9 (Existence of regular sets). For each k ∈ N let Ik =
⋃Kk
i=1

(
ai
qk
, bi
qk

)
where 0 < ai < bi < qk and Kk are integers.. Furthermore for each n ∈ N, k ≤ Nn

let xkn ∈ N be such that qkx
k
n|xk+1

n (resp. qkx
Nn
n |x1n+1 in case that k = Nn). By
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Figure 4: First step of a construction of a regular H(∞)-set E with N1 = 2,
I1 =

(
1
2
, 1
)
, I2 =

(
0, 1

2

)
, x11 = 1, x21 = 4. In this case we have q1 = q2 = 2,

G11 = {[0, 1]}, R1
1 =

{[
0, 1

2

]
,
[
1
2
, 1
]}

, G21 = {[j, j + 1] /4| j = 0, ..., 3} and R2
1 =

{[j, j + 1] /8| j = 0, ..., 7}. The system E11 (resp. E21 , E1,2) consists of those sets
from R1

1 (resp. R2
1) which lie in the set E1

1 (resp. E2
1 , E1,2).

Remark 8.2 we can choose xkn such that x is quasi-independent and therefore

E ∈ H(∞) (or E ∈ H(N) depending on whether lim supnNn is equal to∞ or not).

We call such E a regular H(∞)-set and denote for n ∈ N, k ≤ Nn

Gkn =
{[
j/xkn, (j + 1) /xkn

]
| j = 0, ..., xkn − 1

}
Rk
n =

{[
j/qxkn, (j + 1) /qxkn

]
| j = 0, ..., qkx

k
n − 1

}
Ekn =

{
R ∈ Rk

n|R ⊂ Ek
n

}
En,k =

{
R ∈ Rk

n|R ⊂ En,k
}

(the letter ”G” stands for ”grid” and ”R” stands for ”refinement” (of the grid)).

Remark 10.10. When E ∈ H(∞) is a regular set, we can apply the assertions from

Remark 8.10. In particular, we then have the following:

1. There exists a sequence of real numbers ξn and sequence of vectors ~ηn, such

that E = E(ξn, ~ηn), i.e. the set E is a symmetric perfect set with dissection

ratios (ξn, ~ηn) (in the generalized sense mentioned in the remark).

2. E can be represented as a set of sums{
∞∑
n=1

εnξ1...ξn−1| εn ∈ {ηn,0, ..., ηn,kn−1}

}
.

3. Let (n, i) < (m, j) and C1, C2 ∈ Gn,i. Suppose that either C1, C2 ⊂ En,i or

Int (C1)∩En,i = Int (C2)∩En,i = ∅. Then the set C1 ∩Em,j is a translation

of the set C2 ∩ Em,j. Consequently C1 ∩ E is a translation of C2 ∩ E.
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Corollary 10.11. Let E = H (N , I,x) be a regular H(∞)-set. The measure of

E is then equal to

|E| =
∞∏
n=1

(1− |I1| · ... · |INn|) .

In particular, there exist H(∞)-sets of measure zero.

Proof. Let E = H (N , I,x) be a regular set. We easily observe that for any

n ∈ N, i ≤ Nn we have

|E1 ∩ ... ∩ En| = |E1| · ... · |En| , (4)∣∣∣(E1
n

)C ∩ ... ∩ (ENn
n

)C∣∣∣ =
∣∣∣(E1

n

)C∣∣∣ · ... · ∣∣∣(ENn
n

)C∣∣∣ (5)

((4) follows from Remark 10.10 3. and the fact that qix
i
n|xi+1

n , for (5) see Figure

10.9). This allows us to compute |En|:

|En| =
∣∣E1

n ∪ ... ∪ ENn
n

∣∣ = 1−
∣∣∣(E1

n

)C ∩ ... ∩ (ENn
n

)C∣∣∣
(5)
= 1−

∣∣∣(E1
n

)C∣∣∣ · ... · ∣∣∣(ENn
n

)C∣∣∣ = 1− |I1| · ... · |INn| ,

which, when combined with (4), immediately gives the formula

|E| =
∞∏
n=1

(1− |I1| · ... · |INn|) .

To prove the ”in particular” part of the corollary, we need to find such a tuple

(N , I,x) that the resulting set E = H (N , I,x) is of measure zero. To this end

we set Nn := n, N = (Nn) and fix a divergent series
∑∞

n=1 l̃n with l̃n ∈ (0, 1)∩Q.

For n ∈ N let In be an open interval in T with rational endpoints and length

ln := l̃n/l̃n−1 (where l̃0 := 1) and I = (In). Finally let x be a quasi-independent

sequence such that the set E := H (N , I,x) is regular H(∞)-set (such quasi-

independent x exists by Example 10.9). We then have |E| = 0, since

∞∏
n=1

(1− |I1| · ... · |In|) = 0 ⇐⇒
∞∑
n=1

(|I1| · ... · |In|) =∞

and
∞∑
n=1

(|I1| · ... · |In|) =
∞∑
n=1

(
l̃1/l̃0 · ... · l̃n/l̃n−1

)
=
∞∑
n=1

l̃n =∞.
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10.3 H(∞)-sets and sets of uniqueness

In this section we briefly recall some of the results which might be relevant to the

problem of deciding whether there exist H(∞)-sets of uniqueness. Since we did

not succeed at using these results, we at least make a few notes which explain

where our approach failed.

Remark 10.12 (H(N)-sets are of uniqueness). . We recall here the Theorem 8.9

of Piatetski-Shapiro which states that each H(N)-set E is in U ′. The idea of

the proof was the following: Suppose that (I,x) witnesses that E ∈ H(N). We

find functions 0 ≤ ϕi ∈ A with supp (ϕi) ⊂ Ii and ϕ̂i (0) = 1. We then set

f in (x) := ϕi (x
i
nx), fn = f 1

n · ... · fNn and claim that the sequence (fn) witnesses

that E ∈ U ′ - i.e. that

(i) fn have support disjoint from E,

(ii) supn ‖fn‖A <∞ and

(iii) f̂n (k)→ 1̂ (k) as n→∞ for each k ∈ Z.

Condition (i) then follows from the definition of fn and ϕi, condition (ii) uses the

inequality

‖fn‖A =
∥∥f 1

n · ... · fNn
∥∥
A
≤
∥∥f 1

n

∥∥
A
· ... ·

∥∥fNn ∥∥A = ‖ϕ1‖A · ... · ‖ϕN‖A (6)

and the last condition follows from the quasi-independence of x.

It was our intent to modify this proof to work for E ⊂ H (N , I,x) ∈ H(∞)

as well. Clearly we can define the functions fn in the same way as above with

the only change being fn := f 1
n · ... · fNnn . Such a definition again guarantees

that (i) is satisfied and under some additional conditions we were able to prove

that (iii) holds as well (this later part was non-trivial, but possible). There is

however a problem with the condition (ii) - the original functions ϕi used in the

proof of Theorem 8.9 satisfied ‖ϕi‖ ≥ 2. Therefore we were unable to use the

inequality (6) as ‖ϕ1‖A · ... · ‖ϕNn‖A → ∞. Our hope was that we could find

such functions ϕn that the inequality ‖
∏
f in‖A ≤

∏
‖f in‖A would not be tight.

However we were unable to find any such functions. The following example gives

a partial explanation of this.

Example 10.13. LetN , I,x, ϕi, f in and fn be as above and suppose that xi+1
n /xin →

∞ as n→∞ holds for all i ∈ N. Later we will prove that for any N ∈ N

sup
n

∥∥f 1
n · ... · fNn

∥∥
A
≥ ‖ϕ1‖∞ · ... ‖ϕN‖∞ . (7)
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Observe that any non-negative continuous function ϕ : T → R with ϕ (0) = 0

and ϕ̂ (0) =
´
ϕ = 1 satisfies ‖ϕ‖∞ > 1.

1. Assume that the observed inequality holds uniformly for all ϕi, i.e. there

exists c > 1 such that ∀i : ‖ϕi‖∞ ≥ c > 1. Equation (7) then implies that

the sequence fn =
(
f 1
n · ... · fNn

)
·
(
fN+1
n · ... · fNnn

)
satisfies

lim
N

sup
n

∥∥f 1
n · ... · fNn

∥∥
A
≥
∞∏
i=1

‖ϕi‖∞ =∞.

2. Conjecture: Assume that the functions ϕi satisfy lim infi ‖ϕi‖∞ = 1 (as

opposite to 1.). We conjecture that in this case lim supi ‖ϕi‖A = ∞ holds

and thus, in particular, we have

lim
n→∞

max
i≤Nn

∥∥f in∥∥A =∞.

Since for f, g ∈ A we can have ‖fg‖A < ‖f‖A ‖g‖A, neither of the cases actu-

ally proves that the sequence fn is unbounded. However, the above presented

observations suggest that (fn) is very unlikely to be bounded.

Figure 5: Triangle function ϕ with suppϕ = [c− h/2, c+ h/2]

Remark. For example when ϕi are the triangle functions (Figure 5) used in the

original proof, then c = 2. The assumptions we make about x are not necessarily

met for every quasi-independent x, but the sequences we will later use to witness

that
(
H(∞)

)⊥ 6= (∪H(N)
)⊥

always do have this property.

Proof of (7) . For any non-negative ϕ ∈ A and x ∈ T we have

ϕ (x) =
∑

ϕ̂ (k) eikx ≤
∑
|ϕ̂ (k)|

∣∣eikx∣∣ =
∑
|ϕ̂ (k)| = ‖ϕ‖A , (8)

which immediately gives the inequality ‖ϕ‖A ≥ ‖ϕ‖∞. Therefore it is enough to

show that ∥∥f 1
n · ... · fNn

∥∥
∞ → ‖ϕ1‖∞ · ... ‖ϕN‖∞ . (9)

39



We start with the following simple observation: Let ϕ, ψ ∈ A, ε > 0 and

denote ψn (x) := ψ (nx). Fix x0 ∈ T with |ϕ (x0)| = ‖ϕ‖∞ and δ > 0 satisfying

x ∈ (x0 − δ, x0 + δ) =⇒ |ϕ (x)| ≥ ‖ϕ‖∞ − ε.

Clearly any ψnis 1/n periodic and for n ≥ 1/2δ, whole period of ψn fits into

the interval (x0 − δ, x0 + δ). Consequently there exists x1 ∈ (x0 − δ, x0 + δ)

with |ψn (x1)| = ‖ψn‖∞ = ‖ψ‖∞ and for this x1 we have |ϕ (x1)ψn (x1)| ≥
(‖ϕ‖∞ − ε) ‖ψ‖∞. This implies that ‖ϕψn‖∞ → ‖ϕ‖∞ ‖ψ‖∞.

We now prove 9 by modifying the above observation. Let N ∈ N and ε > 0.

Let n0 ∈ N be high enough (depending on ϕi, i ≤ N and x) and fix n ≥ n0. By

a period of function f in we mean any closed interval P = [j/xin, (j + 1) /xin] for

some j = 0, ..., xin− 1. Fix a period P1 of f 1
n. Since f in (x) = ϕi (x

i
nx), we can find

open interval U1 ⊂ P1 such that f 1
n ≥ ‖ϕ1‖∞− ε and the ratio |U1| / |P1| does not

depend on n. We know that x2n0
/x1n0

→∞, therefore for n0 high enough, we can

find a period P2 of f 2
n, such that P2 ⊂ U1. We then proceed inductively to find

periods Pi of f in and open intervals Ui, i = 1, ..., N , such that

P1 ⊃ U1 ⊃ P2 ⊃ U2 ⊃ ... ⊃ UN

and for any i ≤ N we have f in ≥ ‖ϕi‖∞ − ε on Ui. Then for any x ∈ UN we have

∥∥f 1
n · ... · fNn

∥∥
A

(8)

≥
(
f 1
n · ... · fNn

)
(x) ≥

N∏
i=1

(‖ϕi‖∞ − ε) ,

which completes the proof.

Remark 10.14 (Ultra-thin symmetric sets are of uniqueness). There is another

result which might be relevant to the problem of deciding whether there exists

H(∞)-sets of uniqueness. By Theorem 7.8, every ultra-thin symmetric set Eξn is

of uniqueness. Consequently one might wonder whether the proof of this theorem

could be modified to work for regular H(∞)-sets as well, i.e. for the ”generalized”

sets of the form E = Eξn,~ηn .

The first issue with this approach is that the original proof uses only the

symmetric sets E = Eξn . Since the main reason for this was the ability to

represent E as a set of sums, this problem does not seem to be fundamental.

However the proof also heavily relies on the fact that the inequalities ηn,i ≥
ηn,i−1 + ξn are always strict for E, which means that the direct modification of

the proof for regular H(∞)-sets is impossible. Of course this still does not rule

out the possibility that an analogous result to Theorem 7.8 might hold for H(∞)-

sets as well. An example of such a proposition might be the following: ”Let
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E = H (N , I,x) be a regular H(∞)-set. If |In| → 1 holds as n → ∞ and this

convergence is ”fast enough”, then E ∈ U .”

11 Sets of type N

The aim of this section is to prove that
(
H(∞)

)⊥ 6= (⋃
N H

(N)
)⊥

. However, this

problem has mostly geometrical flavor, rather than number theoretic or analytic.

In particular the quasi-independent sequences, which play a central role in the

theory of H(N)-sets, are of small importance here. Therefore we will work in a

slightly different setting which is also a bit more general.

Throughout this section we fix dimension d ∈ N. For N ∈ N ∪ {∞} we will

define sets of type N in Rd which somehow correspond to H(N)-sets, L-sets of type

N which correspond to H
(N)
L sets and regular sets of type N which correspond

to regular H(N)-sets. In particular we will do this in such a way that for d = 1,

every H(N)-set is a set of type N , there exists L0 ∈ R such that every H
(N)
L0

-set

is an L-set of type N and every regular H(N)-set is also a regular set of type N

(see Example 11.9). Our goal will then be to prove the following theorem (which

we state properly at the end of this section).

Theorem. (1) Let N ∈ N and N < M ∈ N ∪ {∞}.

(a) For any regular set E of type M which satisfies a certain technical

condition, there exists µ ∈ M1 (E) such that µ (F ) = 0 for every

L-set F of type N .

(b) H(M)-sets always satisfy the required technical condition.

(2) There exist regular sets of type ∞ which are of measure zero.

In Remark 11.10 we observe that in case of M =∞ and d = 1, the measure µ

also annihilates every H
(N)∗
L0

-set. Recall here Vlasák’s characterization of H(N)∗-

sets (Theorem 8.8), which implies that for any N ∈ N and L0 > 0 we have(
H

(N)∗
L0

)⊥
=
(
H(N)∗)⊥ =

(
H(N)

)⊥
. Granting the properties of sets of type N

listed above, this characterization immediately gives the following corollary.

Corollary. (1) For any N ∈ N,
(
H(N+1)

)⊥ (
(
H(N)

)⊥
.

(2)
(
H(∞) ∩ L

)⊥ (
(⋃

N H
(N)
)⊥

(where L = {E ⊂ T| |E| = 0}).

11.1 Definition of a set of type N

Definition 11.1. When S, T are two sets in a topological space such that Int (S)∩
Int (T ) = ∅, we say that S and T do not overlap.
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Figure 6: Grid and its refinement.

A finite system G of subsets of [0, 1]d is a grid, if it satisfies the following

conditions:

1. Each set G ∈ G is a product of closed intervals and G is a system of

non-overlapping sets.

2.
⋃
G = [0, 1]d.

3. For each two sets G1, G2 ∈ G the set G1 is a translation of a set G2.

A finite system R is a refinement of a grid G if it satisfies the conditions 1. and

2. from above and if its elements satisfy

4. R ∈ R =⇒ ∃!G ∈ G : R ⊂ G.

For any system P of subsets of [0, 1]d and any S ⊂ [0, 1]d we denote

PS := {P ∈ P|P ⊂ S} .

We also set

‖P‖ := inf {diamP |P ∈ P} .

Definition 11.2. Let N ∈ N∪{∞}. A scheme of type N is a tuple (N ,G,R,S)

satisfying

1. N = (N (n))∞n=1 is a sequence of integers with lim infnN (n) = N .

2. G = (Gin), R = (Ri
n) , S = (S in) are systems indexed by n ∈ N, i =

1, ..., N (n). For each n, i we have
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(a) Gin is a grid,

(b) Ri
n is a refinement of the grid Gin.

(c) S in ⊂ Ri
n satisfies G1, G2 ∈ Gin =⇒ 0 <

∣∣∣⋃ (S in)
G1

∣∣∣ =
∣∣∣⋃ (S in)

G2

∣∣∣ <
|G1| = |G2| .

Notation 11.3. In this situation we denote by cin ∈ (0, 1) the coverage ratio of S in,

a number satisfying G ∈ Gin =⇒
∣∣∣⋃ (S in)

G
∣∣∣ = cin |G|. We also denote lin = 1− cin

and call this number the loss ratio of S in. Furthermore we denote

Sin :=
⋃
S in

Sn :=
n⋂
k=1

N(k)⋃
i=1

Sik

Sn,i := Sn−1 ∩
(
S1
n ∪ ... ∪ Sin

)
(where S0:=[0, 1]d )

Sn,i :=
{
R ∈ Ri

n|R ⊂ Sn,i
}

T (N ,G,R,S) :=
∞⋂
n=1

Sn =
∞⋂
n=1

N(n)⋃
i=1

Sin =
∞⋂
n=1

N(n)⋃
i=1

Sn,i.

Definition 11.4. We say that S ⊂ [0, 1]d is a set of type N when there exists a

scheme (N ,G,R,S) of type N such that S ⊂ T (N ,G,R,S).

Notation. As in the case of H(N)-sets, we will mostly be interested in the sets

S which satisfy S = T (N ,G,R,S). When a scheme of type N uses a different

letters, i.e. (N , C,B,A), we will obviously not denote the respective sets by

Gin, Sin, S etc. but rather by Cin, Ain, A etc. In order to avoid confusion, we

will sometimes add the name of the set as an index to the related variables, i.e.

lin = lin,A for the loss ratio of Cin.

11.2 Restriction to manageable sets

We will need to control the properties of sets of type N in some way. To this end

we restrict ourselves to sets of type N which are created from non-flat sets:

Definition 11.5. From now on, Nf ≥ 1 will be a fixed constant. We say that a

set M in a metric space is non-flat, if there exist η > 0, such that B
(
x, η/Nf

)
⊂

M ⊂ B
(
x, ηNf

)
holds for some x ∈M .

The key reason for using the notion of being non-flat is the following technical

property.

Lemma 11.6 (Key observation: non-flat sets and grids). There exist constants

Cdr, cmr > 0 (diameter and measure ratios), such that the following holds: Let
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Figure 7: First two steps of a construction of a type 1 set S: S1
1 for G11 =

{
[0, 1]2

}
,

R1
1 =

{[
0 + i, 1

2
+ i
]
×
[
0 + j, 1

2
+ j
]
| i, j ∈

{
0, 1

2

}}
and c11 = 1

2
(left). S1

2 with
c12 = 4

9
using the grid and refinement from Figure 6 (right). For an example of a

”nicer” scheme see Figure 8.

G be a grid and let G ∈ G be it’s element. If a system M of measurable non-flat

subsets of Rd satisfies ∀M ∈ M : diamM ≥ Cdr ‖G‖, then we have ∀M ∈ M :

#GM ≥ cmr |M | / |G|.

Proof. Let G ∈ G, M ∈ M be sets and x ∈M the point from the definition of a

non-flat set. By symbol Bη = B (x, η) we will denote the closed balls centered at

this point. We have Br ⊂M ⊂ BR for some r, R > 0 satisfying r
R
≥ N−2

f
.

Clearly we have

G ∩B
r−diamG

6= ∅ =⇒ G ⊂M. (10)

Thus we can bound the number #GM :

#GM =

∣∣⋃GM ∣∣
|G|

≥
∣∣⋃GBr∣∣
|G|

(10)

≥
∣∣Br−‖G‖

∣∣
|G|

=
|M |
|G|

∣∣Br−‖G‖
∣∣

|Br|
|Br|
|M |

≥ |M |
|G|

∣∣Br−‖G‖
∣∣

|Br|
|Br|
|BR|

=
|M |
|G|

(
r − ‖G‖

r

)d ( r
R

)d
.

We have r−‖G‖
r

= 1 − ‖G‖
diamM

diamM
r

≥ 1 − ‖G‖
diamM

2R
r

= 1 − ‖G‖
diamM

2N2

f , and

so for diamM
‖G‖ ≥= 4N2

f we get

#GM ≥ |M |
|G|

(
1

2

)d (
N−2

f

)d
.

Therefore the numbers Cdr = 4N2

f and cmr =
(
1
2

)d (
N−2

f

)d
are the desired
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constants.

Notation 11.7. If two systems M and P of subsets of Rd (not necessarily grids)

satisfy the inequality ∀M ∈ M : diamM ≥ Cdr ‖P‖ from the previous lemma,

we write M � P . If they satisfy ∀M ∈ M diamM > ‖P‖ (resp. ≥), we write

M > P (resp. ≥). Clearly for any scheme (N ,G,R,S) of type N and any n ∈ N,

i ≤ N (n) we have Gin > Ri
n ≥ S in.

Figure 8: First two steps of the construction of a regular set of
type 1. S1

1 (left) is the same as on Figure 7. S1
2 (right)

satisfies G12 =
{[

0 + i, 1
4

+ i
]
×
[
0 + j, 1

4
+ j
]
| i, j ∈

{
0
4
, ..., 3

4

}}
, R1

2 ={[
0 + i, 1

8
+ i
]
×
[
0 + j, 1

8
+ j
]
| i, j ∈

{
0
8
, ..., 7

8

}}
and c12 = 1

4
. Notice that G12 re-

fines R1
1 and R1

1 actually a grid, not just a refinement of G11 .

Definition 11.8. Let S ⊂ T (N ,G,R,S) be a set of type N ∈ N∪{∞}. We say

that S is an L-set if it has the following key property

� for each n ∈ N, i ≤ N (n) the systems Gin and Ri
n consist of non-flat sets

and we have

i < N (n) =⇒ Ri
n \ S in � Gi+1

n

and if the following technical conditions holds

1. Monotonicity of N : If N ∈ N, then N is constant. If N = ∞, then N is

non-decreasing.

2. Measure loss control: For each i ∈ N there exists liS > 0 such that lin ≥ liS
holds for each n ∈ N with N (n) ≥ i.

3. The refinements are not too fine: For each i ∈ N there exists diS > 0 such

that diamR ≥ diS ‖Gin‖ holds for each n ∈ N with N (n) ≥ i and each

R ∈ Ri
n.

We say that S is a regular set if it has the following key property
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� for each n ∈ N, i ≤ N (n), Ri
n is a grid and for each n,m ∈ N, i ≤ N (n),

j ≤ N (m) we have9

(n, i) < (m, j) =⇒ Gjm is a refinement of Ri
n

and if it satisfies the following technical conditions:

1. S is an L-set.

2. ‖Ri
n‖ decreases quickly: For any (n, i) > (1, 1) we denote by δin the number

satisfying ‖Ri−1
n ‖ = δin ‖Ri

n‖ (resp.
∥∥∥RN(n)

n−1

∥∥∥ = δ1n ‖R1
n‖ for i = 1). Then

the following two conditions hold:

(a) δin
n→∞−→ ∞ holds for each i.

(b) For each n,m ∈ N, i ≤ N (n), j ≤ N (m) we have

(n, i) < (m, j) =⇒ Ri
n � Gjm.

3. S is a ”true” set of type N : S = T (N ,G,R,S).

Example 11.9. Let N ∈ N ∪ {∞} and E ∈ H(N). By Proposition 10.7 (1)

we know that there exists some tuple (N , I,x) as in Notation 10.4, such that

E ⊂ H (N , I,x), limNn = N and x is quasi-independent. We can assume

without loss of generality that Ii = (ai, bi), where 0 < ai < bi < 1.

1. Every H(N)-set is a set of type N :

We denote N = (N)∞n=1 and G = (Gin) , R = (Ri
n) , S = (S in), where

Gin =
{[
j/xin, (j + 1) /xin

]
| 0 ≤ j ≤ xin − 1

}
,

S in =
{[
j/xin, (j + ai) /x

i
n

]
| j = 0, ..., xin − 1

}
∪

∪
{[

(j + bi) /x
i
n, (j + 1) /xin

]
| 0 ≤ j ≤ xin − 1

}
,

Ri
n = Sin ∪

{[
(j + ai) /x

i
n, (j + bi) /x

i
n

]
| 0 ≤ j ≤ xin − 1

}
.

These systems then witness that E ⊂ T (N ,G,R,S) is a set of type N .

2. H
(N)
L0

-sets are L-sets for L0 ≥ Cdr:

Suppose that the tuple (N , I,x) also witnesses that H
(N)
L0

for some L0 ≥ Cdr.

We will show that E is an L-set of type N . Clearly all of the systems from

(N ,G,R,S) consist of 1-dimensional intervals, i.e. of non-flat sets (in this case

we could actually use Nf = 1). By definition of H
(N)
L0

-set we have xi+1
n |Ii| /xin ≥ L0

9Recall here the definition of ordering from Notation 10.8.
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for i < N (n). Since ‖Gi+1
n ‖ = 1/xi+1

n and ‖Ri
n \ S in‖ = (bi − ai) /xin = |Ii| /xin,

this means that for L0 ≥ Cdr we have

∥∥Ri
n \ S in

∥∥ /∥∥Gi+1
n

∥∥ = xi+1
n |Ii| /xin ≥ L0 ≥ Cdr,

which implies that E satisfies the key property Ri
n \ S in � Gi+1

n . We also have

lin = liE = bi − ai and diA = min {a,i bi − ai, 1− bi}, therefore E also satisfies the

technical conditions necessary for being an L-set.

Existence of H(N)-sets which are also regular sets of type N : Suppose

now that E = H (N , I,x), E ∈ H(N)
L0

and for each i ≤ N we have Ii =
(
ai
qi
, bi
qi

)
,

where 0 < aj < bj < qi are integers, and assume that for each n ∈ N, i ≤ N we

have xin ∈ N and qix
i
n|xi+1

n (resp. qNx
N
n |x1n+1 in case that i = N).

By the previous point, E is an L-set of type N as witnessed by the scheme

(N ,G,R,S) from the first point. We will either show that E is also a regular set

or modify E slightly so that it becomes a regular set (but remains a H(N)-set).

Generally, the regularity of E cannot be witnessed by (N ,G,R,S), since the

systems Ri
n are not necessarily grids. To remedy this we define R̃ :=

(
R̃i
n

)
and

S̃ =
(
S̃ in
)

, where

R̃i
n :=

{
[j, j + 1] /qix

i
n| j = 0, ..., qix

i
n − 1

}
,

S̃ in :=
{
R ∈ R̃i

n|R ⊂
⋃
S in
}
.

The key property of being a regular set is then satisfied for these systems, since

qix
i
n|xjm holds for (n, i) < (m, j). It remains to prove that E satisfies the condition

2.

We have ‖Gin‖ = 1/xin and
∥∥∥R̃i

n

∥∥∥ =
∥∥∥S̃ in∥∥∥ = 1/qinx

i
n and we know that xin →

∞. We can assume that for every i ≤ N we have xi+1
n /xin →∞ as n→∞ (resp.

x1n+1/x
N
n in case that i = N) - if this was not true, we could take a different

set Ẽ = H (N, I, x̃), where x̃i+1
n := xi+1

n xin, x̃1n+1 := x1n+1x
N(n)
n . This implies the

technical condition 2.(a) which in turn implies that 2.(b) is satisfied for all n ≥ n0

for some n0 ∈ N. Consequently the set E ′ = H (N ′, I,x′) where N ′ = (Nn+n0)n,

x′ = (xn+n0)nis a H(N)-set which is also a regular set of type N .

Note that by Corollary 10.11 we have

|E| = 0 ⇐⇒
∣∣∣Ẽ∣∣∣ = 0 ⇐⇒ |E ′| = 0.

Remark 11.10 (H(N)∗-sets). When E = H (N, I,x) ∈ H(N)∗ \ H(N), we have

xin ∈ R \ N for some n and i. For E ∈ H
(N)∗
L0

, we can assume without loss

of generality that xin > 2. Let N , Gin, S in and Ri
n be as in the representation of
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H(N)-sets. The tuple (N ,G,R,S) is not a scheme of type N , because the systems

Gin, Ri
n only cover the interval [0, bxinc /xin] rather than the whole interval [0, 1]

and we have E (
⋂
Sn. We set

G̃in = Gin ∪
{[⌊

xin
⌋
/xin, 1

]}
,

R̃i
n = Ri

n ∪
{[⌊

xin
⌋
/xin, 1

]}
,

S̃ in = S in ∪
{[⌊

xin
⌋
/xin, 1

]}
.

This new tuple
(
N , G̃, R̃, S̃

)
is still not a scheme of type N since the elements

of Gin necessarily do not have the same diameter, but we at least have E ∪ {1} =

T
(
N , G̃, R̃, S̃

)
.

1. In order to avoid complicating the notation even further, we will not

attempt to generalize the definition of sets of type N in such a way that H
(N)∗
L0

-

sets become L-sets of type N . However by using the representation of H(N)∗-sets

introduced by this remark, we can still prove the main result (i.e. the existence

of measure µ, supported on H(∞)-set, which annihilates every H
(N)∗
Cdr

-set) even for

H
(N)∗
Cdr

-sets. We claim that this will require only minor modifications to the proofs,

namely the only affected proof is that of Proposition 11.19, where the addition

of the interval [bxinc /xin, 1] to the systems S̃ in might slightly change the value of

α. However since xin > 2, the new α̃ will not be lower than α/2N . Consequently

all of the later propositions will remain valid with the exact same proofs.

2. We only need the H(N)∗-sets in order to be able to use the results from [Vla]

- but in fact, its author only uses rational quasi-independent sequences to prove

his results. Therefore we can also observe that if a quasi-independent sequence

x consists of rational numbers, it is possible to represent the resulting H(N)∗-set

as a set of type N . This gives us an alternative to the modification of our proves

suggested in 1.

11.3 Technical interlude

Notation 11.11. In the remainder of this chapter we will fix an L-set A of type N ,

N ∈ N and a regular set P of type M > N , M ∈ N∪{∞} and we will try to find

a measure µ on P which annihilates A. For the set A we will use the notation

A = T ((N) , C,B,A) ,

in all the following propositions we will have k ∈ N, 1 ≤ i, j ≤ N and use these

numbers for indexing the relevant systems and variables (i.e. C = (Cik), lik = 1−cik,
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...). For the set P we will use the notation

P = T (N ,S,R,P) ,

the integers m,n, p, q will always satisfy m,n ∈ N, 1 ≤ p ≤ N (m), 1 ≤ q ≤ N (n)

and they will be used for indexing the systems and variables related to P . If

M <∞, then we assume that N = (M)∞n=1.

The following simple, but very technically involved, facts will be repeatedly

needed during the proofs of main results, so we formulate them in a separate

lemma. Note that while the statements of this lemma might look rather compli-

cated, most of them have an intuitive meaning as well as explanation.

Lemma 11.12 (Technical lemma: properties of regular sets). The following is

true for P :

(i) Pn,q is a subset of a grid: ∀n, q ∀D,D′ ∈ Pn,q : |D| = |D′| & diamD =

diamD′ = ‖Pn,q‖.

(ii) Each two sets from Pm,N(m) contain the same number of elements:

For each D,D′ ∈ Pm,N(m), D 6= D′ we have

∀m < n ∀q : #PDn,q = #PD′n,q &PDn,q ∩ PD
′

n,q = ∅.

(iii) Number of elements can be compared via measure ratio: The identity

#PXn,q/#PYn,q =
∣∣∣⋃PXn,q∣∣∣ / ∣∣∣⋃PYn,q∣∣∣ ,

holds for each X, Y ⊂ [0, 1]d, n and q, provided we avoid division by

zero. In particular for any D ∈ Pn,q, X ⊂ [0, 1]d:∣∣∣⋃PXn,q∣∣∣ = #PXn,q · |D| .

(iv) Measure of Pn,q: If n = m+ 1 then∣∣∣⋃PDn,q∣∣∣ = |Pn,q ∩D| = |D|
(
1− l1n · ... · lqn

)
holds for every q, p and D ∈ Pm,p.

(v) For every m0 < m < n, p0 ≤ N (m0), E ∈ Pm0,p0 and q we have

#PEn,q =
∑

D∈PE
m,N(m)

#PDn,q
(ii)
= #PEm,N(m)#PD̃n,q,
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(where D̃ ∈ PEm,N(m) is arbitrary).

(vi) Generalization of (v): Under the assumptions of (v) we further have

for p ≤ N (m) that

#PEn,q =

∣∣Pm,N(m) ∩ E
∣∣

|Pm,p ∩ E|
∑

D∈PEm,p

#PDn,q
(ii)
=

∣∣Pm,N(m)

∣∣
|Pm,p|

#PEm,p#PD̃n,q

(where D̃ ∈ PEm,p is arbitrary).

(vii) Analogy of Lemma 11.6 for P: Let n = m+ 1 and H ∈ Bjk for some

k, j. If we have Bjk � Sqn, then∣∣∣⋃PHn,q∣∣∣ ≥ cmr (1− lqn) |H| .

Moreover if q ≤ q̃ ≤ N (n), then∣∣∣⋃PHn,q̃∣∣∣ ≥ cmr
(
1− lqn · lq+1

n · ... · lq̃n
)
|H| .

Using (iv) inductively, we get the following corollary:

Corollary 11.13. For the regular set P , the measure of Pn,q is equal to

|Pn,q| =
∣∣P1,N(1)

∣∣ n−1∏
m=2

(
1− l1m · ... · lN(p)

m

)
·
(
1− l1n · ... · lqn

)
.

In particular P is of measure zero if and only if
∑∞

n=1 l
1
n · ... · l

N(n)
n =∞.

Proof of Lemma 11.12. (i) follows immediately from the fact that each system

Pn,q is a subset of grid Rn,q (which consists of isometric sets). To get (ii), we

combine the fact that Pn,q ⊂ Rn,q with the key refinement property of L-sets with

(ii). (iii) is again immediate from (i) and the fact that Pn,q is a subset of a grid.

(iv): Note that the first identity is trivial. We prove the statement for p =

N (m). The general version for p ≤ N (m) follows from the fact that each D ∈
Pm,p is a disjoint union of elements of Pm,N(m) (combined with (i)).

Tt is enough to show that |D \ Pn,q| = |D| l1n · ... · lqn. Let q > 1. The set

D \Pn,q−1 is a union of sets Rf ∈ Rq−1
n , f ∈ F for some finite index set F . Every

Rf is refined by the system Rq
n and we have

D \ Pn,q =
⋃
f∈F

⋃{
G ∈ (Rq

n)Rf |G /∈ Pn,q
}

=
⋃
f∈F

⋃
S∈(Sqn)

Rf

⋃{
G ∈ (Rq

n)S |G /∈ Pn,q
}
.
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Since by definition of lqn (Notation 11.3) we have for any S ∈ Sqn∣∣∣⋃{
G ∈ (Rq

n)S |G /∈ Pn,q
}∣∣∣ = lqn |S|

we get

|D \ Pn,q| =
∑
F

∑
S∈(Sqn)

Rf

lqn |S| =
∑
F

lqn |Rf | = lqn |D \ Pn,q−1| .

By the exact same reasoning we get that |D \ Pn,1| = l1n |D|. This implies that

|D \ Pn,q| = |D| l1n · ... · lqn holds for each q, which finishes the proof of (iv).

(v) : By the refinement property, Rq
n refines RN(m)

m and by the definition

(Notation 11.3) we have
⋃
Pn,q ⊂

⋃
Pm,N(m). So for E ∈ Pm0,N(m0) we get

F ∈ PEn,q ⇐⇒ ∃D ∈ PEm,N(m) : F ⊂ D & F ∈ Pn,q. This implies PEn,q =⋃
D∈PE

m,N(m)
PDn,q, and since this union is disjoint, we get the desired result.

(vi): We start with rewriting the sum on the right hand of the desired equality.

We use the refinement property (r.p.) and then the fact that each of the elements

of Pm,N(m) contains the same number of elements from Pn,q ( (ii) ):

∑
D∈PEm,p

#PDn,q
r.p.
= #P

⋃
PEm,p

n,q
r.p.
= #PPm,p∩En,q

(ii)
= #PPm,p∩Em,N(m) ·#P

F̃
n,q,

( where F̃ ∈ Pm,N(m) is arbitrary).

By the exact same reasoning we see that

#PEn,q
(v)
=

∑
D∈PE

m,N(m)

#PDn,q = #PPm,N(m)∩E
m,N(m) ·#P F̃n,q.

We also note that

#PPm,N(m)∩E
m,N(m)

#PPm,p∩Em,N(m)

(iii)
=

∣∣∣⋃PPm,N(m)∩E
m,N(m)

∣∣∣∣∣∣⋃PPm,p∩Em,N(m)

∣∣∣ (iv)
=

∣∣Pm,N(m) ∩ E
∣∣

|Pm,p ∩ E|
.

Combining these three equations together finishes the proof.

(vii): Assume first that q̃ = q. We have the inclusion PHn,q ⊃
⋃{
PSn,q|S ∈ (Sqn)H

}
.

This implies
∣∣⋃PHn,q∣∣ ≥∑S∈(Sqn)

H

∣∣⋃PSn,q∣∣. Since each such S ∈ Sqn is a subset of

Pm,N(m), we get
∣∣⋃PSn,q∣∣ ≥ |P q

n ∩ S| = cqn |S|. Thus we can complete the proof as

follows:∣∣∣⋃PHn,q∣∣∣ ≥ ∑
S∈(Sqn)

H

∣∣∣⋃PSn,q∣∣∣ ≥ ∑
S∈(Sqn)

H

cqn |S| = # (Sqn)H cqn

∣∣∣S̃∣∣∣ ≥ cmr
|H|∣∣∣S̃∣∣∣ cqn

∣∣∣S̃∣∣∣ ,
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where S̃ ∈ Sqn is arbitrary and the last inequality comes from Lemma 11.6 (using

the definition of the symbol � from Notation 11.7).

For general q̃, we observe that for S ∈ Sqn we have∣∣∣⋃PSn,q̃∣∣∣ = |Pn,q̃ ∩ S| ≥
∣∣(P q

n ∪ ... ∪ P q̃
n

)
∩ S
∣∣ =

(
1− lqn · ... · lq̃n

)
|S|

(the proof of this fact is exactly the same as the proof of (ii) ) and use this

estimate instead.

11.4 Canonical measure and its properties

Definition 11.14 (Canonical measure on a regular set). We define the canonical

measure µ on P = T (N ,S,R,P) by the formula

D ∈ RN(n)
n =⇒ µ (D) =


1

#Pn,N(n)
D ∈ Pn,N(n)

0 D /∈ Pn,N(n)

.

Proposition 11.15 (Properties of the canonical measure). The formula from the

previous definition correctly defines a measure on P . The measure µ is a Radon

continuous probability measure with suppµ = P .

Proof. The standard mass distribution principle (e.g. Proposition 1.7 from [Fal])

implies that the set function µ as defined above can be extended to a measure

which has the desired properties.

Remark 11.16 (Motivation for definition of Lr). Let G be a grid and let M,D ⊂
Rd be bounded measurable sets, such that |M \D| = 0 and D is a union of

a Lebesgue null set and finite number of elements of G. Then |D| =
∣∣⋃GD∣∣,

|D| =
∣∣∣Ẽ∣∣∣#GD (where Ẽ ∈ G is arbitrary) and we clearly have

|M | ≤ #
{
E ∈ GD|E ∩M 6= ∅

}
sup

{
|M ∩ E| |E ∈ GD

}
=

#
{
E ∈ GD|E ∩M 6= ∅

}
#GD

sup
{
|M ∩ E| |E ∈ GD

}
#GD

≤
#
{
E ∈ GD|E ∩M 6= ∅

}
#GD

|D| .

If we wanted a more precise bound on |M |, we could start from the second

line of the computation above, find a finer grid G ′ and use exactly the same steps

for each of the sets M ∩ E ⊂ E.

In fact, this observation still holds if we replace Lebesgue measure and grid

G by a different measure and arbitrary system of sets which all have the same
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measure and are disjoint up to a null set. In particular it also holds for the

canonical measure µ and any of the systems Pn,N(n), n ∈ N.

Notation 11.17 (Loss ratio Lr). As we will make extensive use of the previous

observation, we denote some of the variables used there by special symbols. By

CrDP (M) we denote the coverage ratio

CrDP (M) =
#
{
E ∈ PD|E ∩M 6= ∅

}
#PD

(assuming that PD is nonempty). We set CrDn,q = CrDPn,q and Crm,pn,q (M) =

sup
{
CrDn,q (M) |D ∈ Pm,p

}
. We also denote the loss ratio

LrDP (M) := 1− CrDP (M) =
#
{
E ∈ PD|E ∩M = ∅

}
#PD

(and define the corresponding versions with more indices in the obvious way).

Lemma 11.18 (General properties of Cr and Lr). For any µ-measurable sets

X, Y ⊂ [0, 1]d we have the following:

(1) Monotonicity: X ⊂ Y =⇒ CrDn,q (X) ≤ CrDn,q (Y ) holds for any n, q and

any measurable D ⊂ [0, 1]d with PD 6= ∅.

(2) Relation to µ: If nl ↗∞ is an increasing sequence of integers, then we have

µ (X) ≤
∞∏
l=1

Cr
nl,N(nl)
nl+1,N(nl+1)

(X) .

(3) Lr and unions: Suppose that Lrm1,p1
n1,q1

(X) ≥ α and Lrm2,p2
n2,q2

(Y ) ≥ β holds for

some integers m1 < n1 ≤ m2 < n2 = m2 + 1 and p1 < q1 ≤ p2 < q2. Then

Lrm1,p1
n2,q2

(X ∪ Y ) ≥ cαβ holds with c =
|Pn1,q1|∣∣Pn1,N(n1)

∣∣ |Pm2,p2 |∣∣Pm2,N(m2)

∣∣ .
(4) Lrm,N(m) vs Lrm,1: If m < m1 < n, then we have

Lr
m,N(m)
n,N(n) (X) ≥ cLrm1,1

n,N(n) (X) for c =
|Pm1,1|∣∣Pm1,N(m)

∣∣ .
Proof. (1) is trivial. For (2), we will use induction over L ∈ {0} ∪N to prove the

inequality

µ (X) ≤

(
L∏
l=1

Cr
nl,N(nl)
nl+1,N(nl+1)

(X)

)
sup

{
µ (X ∩ E) |E ∈ PnL+1,N(nL+1)

}
#PnL+1,N(nL+1).
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The result is then immediate, since for E ∈ PnL+1,N(nL+1) we have µ (X ∩ E) ≤
µ (E) = 1/#PnL+1,N(nL+1).

L = 0 : We clearly have

µ (X) = µ (X ∩ P ) ≤ µ
(
X ∩ Pn1,N(n1)

)
=

∑
E∈Pn1,N(n1)

µ (X ∩ E) ≤ sup
{
µ (X ∩ E) |E ∈ Pn1,N(n1)

}
#Pn1,N(n1).

L − 1 7→ L : Let L ∈ N and suppose the inequality holds for L − 1. Using

Remark 11.16 on X ∩ E for E ∈ PnL,N(nL), we get

µ (X ∩ E) ≤ #
{
F ∈ PnL+1,N(nL+1)|F ∩X ∩ E 6= ∅

}
·

· sup
{
µ (F ∩X ∩ E) |F ∈ PnL+1,N(nL+1)

}
=

#
{
F ∈ PEnL+1,N(nL+1)

|F ∩X 6= ∅
}

#PEnL+1,N(nL+1)

·

· sup
{
µ (X ∩ F ) |F ∈ PEnL+1,N(nL+1)

}
#PEnL+1,N(nL+1)

.

Taking supremum over E ∈ PnL,N(nL) we get

sup
{
µ (X ∩ E) |E ∈ PnL,N(nL)

}
≤

≤ Cr
nL,N(nL)
nL+1,N(nL+1)

· sup
{
µ (X ∩ F ) |F ∈ PnL+1,N(nL+1)

}
#P ẼnL+1,N(nL+1)

,

where Ẽ ∈ PnL,N(nL) can be arbitrary, since the quantity #PEnL+1,N(nL+1)
is

the same for every E ∈ PnL,N(nL) (Properties of regular sets, Lemma 11.12 (ii)).

Combining this inequality with the induction hypothesis, we get

µ (X) ≤

(
L+1∏
l=1

Cr
nl,N(nl)
nl+1,N(nl+1)

(X)

)
sup

{
µ (X ∩ F ) |F ∈ PnL+1,N(nL+1)

}
·

·#PnL,N(nL)#PEnL+1,N(nL+1)
.

Using Lemma 11.12 (v) we get #PnL,N(nL)#PEnL+1,N(nL+1)
= #PnL+1,N(nL+1), which

finishes the proof of (2).

(3) : Let E ∈ Pm1,p1 . We want to find sets in PEn2,q2
which avoid both X and

Y and show that there is a sufficient number of them. To this end we observe

that if a set D ∈ Pn1,q1 avoids X, then so does any F ∈ PDm2,p2
. This allows us to
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bound the loss ratio LrEm2,p2
(X):

LrEm2,p2
(X)

def
=

#
{
F ∈ PEm2,p2

|F ∩X = ∅
}

#PEm2,p2

≥

∑
D∈PEn1,q1 ,D∩X=∅#PDm2,p2

#PEm2,p2

= (?)

We continue by using (vi) from Lemma 11.12 (D̃ is again an arbitrary element of

PEn1q1
).

(?) =
#{D∈PEn1,q1 ,D∩X=∅}#PD̃m2,p2

|Pn1,N(n1)|
|Pn1,q1 |

#PEn1,q1#P
D̃
m2,p2

= LrEn1,q1
(X)

|Pn1,q1 |∣∣Pn1,N(n1)

∣∣ . (11)

Using the same arguments, we now compute the desired loss ratio LrEn2,q2
(X ∪ Y ):

LrEn2,q2
(X ∪ Y )

def
=

#
{
F ∈ PEn2,q2

|F ∩X = ∅&F ∩ Y = ∅
}

#PEn2,q2

≥

∑
D∈PEm2,p2

,D∩X=∅#
{
F ∈ PDn2,q2

|F ∩ Y = ∅
}

PEn2,q2

L11.12(vi)
=

∑
D∈PEm2,p2

,D∩X=∅#
{
F ∈ PDn2,q2

|F ∩ Y = ∅
}

#PEm2,p2
#PD̃n2,q2

|Pm2,p2|∣∣Pm2,N(m2)

∣∣
≥

#
{
D ∈ PEm2,p2

, D ∩X = ∅
}

#PEm2,p2

·

· inf
D∈Pm2,q2

#
{
F ∈ PDn2,q2

|F ∩ Y = ∅
}

#PDn2,q2

· |Pm2,p2|∣∣Pm2,N(m2)

∣∣
= LrEm2,p2

(X)Lrm2,p2
n2,q2

(Y )
|Pm2,p2 |∣∣Pm2,N(m2)

∣∣
(11)

≥ Lrm1,p1
n1,q1

(X)
|Pn1,q1|∣∣Pn1,N(n1)

∣∣Lrm2,q2
n2,q2

(Y )
|Pm2,p2|∣∣Pm2,N(m2)

∣∣
(where D̃ ∈ Pm2,q2 is arbitrary).

(4): Fix E ∈ Pm,N(m). Since Pm1,1 ⊂ Pm1,N(m1) we have

#
{
F ∈ PEn,N(n)|F ∩X = ∅

}
=

∑
D∈PE

m1,N(m1)

#
{
F ∈ PDn,N(n)|F ∩X = ∅

}
(12)

≥
∑

D∈PEm1,1

#
{
F ∈ PDn,N(n)|F ∩X = ∅

}
.

By (vi) in Lemma 11.12 we have

#PEn,N(n) =

∣∣Pm1,N(m1)

∣∣
|Pm1,1|

∑
D∈PEm1,1

#PDn,N(n) = #PEm1,1
·#PD̃n,N(n)/c, (13)
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(where D̃ ∈ PEm1,1
is arbitrary and c = |Pm1,1| /

∣∣Pm1,N(m1)

∣∣). Therefore dividing

(12) by #PEn,N(n) yields

LrEn,N(n) (X)
def
=

#
{
F ∈ PEn,N(n)|F ∩X = ∅

}
#PEn,N(n)

(12), (13)

≥

∑
D∈PEm1,1

#
{
F ∈ PDn,N(n)|F ∩X = ∅

}
#PEm1,1

#PD̃n,N(n)/c

≥ c
#PEm1,1

· inf
{

#
{
F ∈ PDn,N(n)|F ∩X = ∅

}
|D ∈ PEm1,1

}
#PEm1,1

#PD̃n,N(n)

≥ c · inf

#
{
F ∈ PDn,N(n)|F ∩X = ∅

}
#PDn,N(n)

|D ∈ Pm1,1


def
= cLrm1,1

n,N(n) (X) .

Since Lr
m,N(m)
n,N(n) (X) = inf

{
LrEn,N(n) (X) |E ∈ Pm,N(m)

}
and E was an arbitrary

element of Pm,N(m), the inequality above implies the desired lower bound.

Remark. Recall here the Definition 11.2 and Notation 11.11: We have N <

M ∈ N ∪ {∞} and the sets A = T ((N) , C,B,A) (L-set of type N) and P =

T (N ,S,R,P) (regular set of typeM), using the notation T (sequence, grid, refinement, subset of refinement).

Proposition 11.19 (Loss ratio of L-sets). (1) Suppose that Pm,p � Cik > ... >

Cjk ≥ B
j
k � Sqn, where n = m+ 1, i ≥ j. Then for q̃ ≥ q we have

Lrm,pn,q̃

(
Aik ∪ ... ∪ A

j
k

)
≥ α > 0, where α = c1+j−i+1

mr
1− lqn,P

1− l1n,P · ... · l
q
n,P

lik,A · ... · l
j
k,A.

(2) There exists m0 ∈ N (depending only on A and P ), such that for every

m ≥ m0 and n = m+ 1

‖Pm,p+1‖
√
δp+1
m >

∥∥Cik∥∥ > ... >
∥∥Cjk∥∥ ≥ ‖Pn,q‖√δqn

is a sufficient condition for (1) to hold.

Proof. (1) : Let E ∈ Pm,p.
Step 1: Hj (E)

Firstly we define the system of holes in the set Aik ∪ ...∪A
j
k. For M ⊂ Rd and

l ∈ {i, ..., j} we denote by induction

Hl (M) :=
{
H ∈

(
Blk \ Alk

)M | l > i =⇒ H ⊂
⋃
Hl−1 (M)

}
.
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We then get the following properties of HL:

(H1) H ∈ Hj (M) =⇒ H ∩
(
Aik ∪ ... ∪ A

j
k

)
= ∅. Thus also⋃

PHn,q ∩
(
Aik ∪ ... ∪ A

j
k

)
= ∅.

(H2) We can rewrite |
⋃
Hi (E)| in the following way:∣∣∣⋃Hi (E)
∣∣∣ ≥ ∣∣∣⋃{⋃

Hi (C) |C ∈
(
Cik
)E}∣∣∣

=
∣∣∣⋃{

H ∈
(
Bik \ Aik

)C |C ∈ (Cik)E}∣∣∣
=

∑
C∈(Cik)

E

∣∣∣⋃(
Bik \ Aik

)C∣∣∣
=

∑
C∈(Cik)

E

lik |C| = #
(
Cik
)E
lik

∣∣∣C̃∣∣∣
(where C̃ ∈ Cik is arbitrary). Since Pm,p � Cik, Lemma 11.6 gives # (Cik)

E ≥
cmr

|E|
|C̃| . Consequently, we can rewrite the inequality above as

∣∣∣⋃Hi (E)
∣∣∣ ≥ #

(
Cik
)E
lik,A

∣∣∣C̃∣∣∣ ≥ cmr
|E|∣∣∣C̃∣∣∣ lik,A

∣∣∣C̃∣∣∣ = cmrl
i
k,A |E| .

(H3) Let l ∈ {i, ..., j − 1}. The systems Clk,Blk correspond to an L-set, so by the

definition we have Blk \Alk � Cl+1
k . Therefore, when H ∈ Hl (M) ⊂ Blk \Alk,

we can use exactly the same reasoning as above to get
∣∣⋃Hl+1 (H)

∣∣ ≥
cmrl

l+1
k,A |H|. Also, it is clear from the definition of Hl (M) that

Hl+1 (M) ⊃
⋃{

B ∈ Hl+1 (H) |H ∈ Hl (M)
}
.

Consequently we get∣∣∣⋃Hl+1 (E)
∣∣∣ ≥ ∑

H∈Hl(E)

∣∣∣⋃Hl+1 (H)
∣∣∣ ≥ ∑

H∈Hl(E)

cmrl
l+1
k |H| = cmrl

l+1
k,A

∣∣∣⋃Hl (E)
∣∣∣ .

Combining this inductively with (H2) gives∣∣∣⋃Hj (E)
∣∣∣ ≥ cj−i+1

mr lik,A · ... · l
j
k,A |E| .

Step 2: Computation of Lr

In the following, symbols (i),...,(vii) refer to Lemma 11.12.
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LrEn,q
(
Aik ∪ ... ∪ A

j
k

) def
=

#
{
D ∈ PEn,q|D ∩

(
Aik ∪ ... ∪ A

j
k

)
= ∅
}

#PEn,q
(H1)

≥
∑

H∈Hj(E)

#PHn,q
#PEn,q

(iii)
=

∑
H∈Hj(E)

∣∣⋃PHn,q∣∣∣∣⋃PEn,q∣∣
(vii)
=

∑
H∈Hj(E)

∣∣⋃PHn,q∣∣
|Pn,q ∩ E|

Bjk�S
q
n

≥
∑

H∈Hj(E)

cmrc
q
n,P |H|

|Pn,q ∩ E|

(iv)
= cmr

1− lqn,P
1− l1n,P · ... · l

q
n,P

|
⋃
Hj (E)|
|E|

(H3)

≥ cmr
1− lqn,P

1− l1n,P · ... · l
q
n,P

cj−i+1
mr lik,A · ... · l

j
k,A.

For general q̃ ≥ q, the only difference is that we use the second estimate from

(vii): ∣∣∣⋃PHn,q̃∣∣∣ ≥ cmr

(
1− lqn,P · ... · l

q̃
n,P

)
|H| ≥ cmr

(
1− lqn,P

)
|H| .

(2) : It remains to prove that Pm,p � Cik and Bjk � Sqn.

Pm,p � Cik: Using the definition of δp+1
m , we have

‖Pm,p‖ =
√
δp+1
m

(√
δp+1
m ‖Pm,p + 1‖

)
>
√
δp+1
m

∥∥Cik∥∥ .
To ensure that Pm,p � Cik holds, we need to show that ‖Pm,p‖ ≥ Cdr ‖C

i
k‖ . Since

δpm
m→∞−→ ∞, this will indeed be true for every m high enough.

Bjk � Sqn : Since both A and P are L-sets, we have the following:

∥∥Bjk∥∥ ≥ djA
∥∥Cjk∥∥ &

∥∥Cjk∥∥ ≥√δqn ‖Pn,q‖ & ‖Pn,q‖ ≥ dqP ‖S
q
n‖∥∥Bjk∥∥ ≥ djA

√
δqnd

q
P ‖S

q
n‖ .

And once again, as δqn goes to infinity, the inequality
∥∥Bjk∥∥ ≥ Cdr ‖S

q
n‖ will be

satisfied for all m high enough.

Lemma 11.20 (Key lemma: bounding Lr
(
A1
k ∪ ... ∪ ANk

)
). (1) For every m,

there exists n > m, k and εm > 0 such that

Lr
m,N(m)
n,N(n)

(
A1
k ∪ ... ∪ ANk

)
≥ εm.

(2) If the numbers lpn,P are constant with respect to n (i.e. if ∀m,n∀p : lpm,P =

lpn,P ), then εm = ε does not depend on m (it only depends on the sets A and P ).

58



Proof. Let m ∈ N. Firstly, we set n0 to be the maximum of m + 1, the least

number m̃ satisfying N (m̃) ≥ N + 1 and m0 from (2) in Proposition 11.19. Since

‖C1k‖ ↘ 0, we can set k to be the minimal number satisfying
√
δ2n0
Pn0,2 > C1k .

We divide the proof into two sections. In the first section, our goal will be to

divide the numbers {1, ..., N} into blocks {i1, ..., j1} , ..., {is, ..., js}, and find for

each block ii, ..., ji numbers mi, ni, pi, qi, such that we can apply Proposition 11.19

(with the already defined k) to get a bound on Lr
(
Aiik ∪ ... ∪ A

ji
k

)
. However, we

need to do this in such a way that we can also apply (3) from Lemma 11.18 to

bound Lr
(
A1
k ∪ ... ∪ ANk

)
and be able to get (1) later. In the second section,

we will apply the mentioned propositions in order to actually get (1), then we

compute the value of εm and, grating the constancy of lpn-s, bound it from below

to get ε and thus also (2).

step 1: We will find numbers s,mi, ni, pi, qi, ii, ji for i = 1, ..., s satisfying:

1. Conditions from Proposition 11.19:

(a) ‖Pmi,pi+1‖
√
δpi+1
mi >

∥∥Ciik ∥∥ > ... >
∥∥Cjik ∥∥ ≥ ‖Pni,qi‖√δqini

(b) mi ≥ n0, ni = mi + 1 and ii ≤ ji

2. Conditions from Lemma 11.12 (3):

(a) p1 = 1, qs = N + 1 and i1 = 1, js = N

(b) mi+1 ≥ ni, pi < qi = pi+1 and ii+1 = ji + 1

For i = 0, ..., s we denote by (IHi) the following statement:

qi = ji + 1 &

√
δqi+1
ni Pni,qi+1 > Cji+1

k . (IHi)

i = 0 : We set j0 = 0, q0 = 1. Clearly we then have q0 = j0 + 1 and as stated

above, we have
√
δq0+1
n0 ‖Pn0,q0+1‖ >

∥∥Cj0+1
k

∥∥. In other words (IH0) holds.

i − 1 7→ i : Let i ∈ {1, ..., s}. Assume that we have already constructed

the numbers mĩ, nĩ, pĩ, qĩ, ĩi, jĩ for all ĩ = 1, ..., i − 1, these numbers satisfy the

conditions 1. (a) , 1. (b) and 2. (b) and that (IHi−1) holds. Our goal will be to

define mi, ni, pi, qi, ii, ji in such a way that these numbers also satisfy 1. (a) , 1. (b)

and 2. (b) and show that (IHi) holds.

We set ii = ji−1 + 1 and pi = qi−1. Since, by (IHi−1), the number m̃ = ni−1

satisfies ‖Pm̃,pi+1‖
√
δpi+1
m̃ >

∥∥Ciik ∥∥, we can define mi as the maximum number

with this property and set ni = mi + 1. The number pi = ii = j̃ then trivially

satisfies j̃ ≥ ii and, by maximality of mi,
∥∥∥C j̃k∥∥∥ ≥ ∥∥Pni,j̃+1

∥∥√δj̃+1
ni . We define ji

as the highest number (not greater than N) with this property and set qi = ji+1.

Clearly the conditions 1. (a), 1. (b) and 2. (b) are satisfied.
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If ji = N , we set s := i, observing that 2. (a) holds, and denote n := ns.

Combination of Proposition 11.19, and Lemma 11.12 (3) then finishes the proof

of (1). If ji < N , we know that, by the maximality of ji, (IHi) holds and we

continue with the next induction step.

step 2: By Proposition 11.19, we have for i < s and i = s (using the version

for q̃ = N (ns) ≥ q) the following bounds:

Lrmi,pini,qi

(
Aiik ∪ ... ∪ A

ji
k

)
≥ αi = c1+ji−ii+1

mr
1− lqini,P

1− l1ni,P · ... · l
qi
ni,P

liik,A · ... · l
ji
k,A > 0,

Lrms,psn,N(n)

(
Aisk ∪ ... ∪ A

N
k

)
≥ αs = c1+N−is+1

mr
1− lqsn,P

1− l1n,P · ... · l
qs
n,P

lisk,A · ... · l
N
k,A > 0.

Iterative use of (3) from Lemma 11.18 (on X = Ai1k ∪...∪A
j1
k and Y = Ai2k ∪...∪A

j2
k ,

then on X = Ai1k ∪...∪A
j2
k and Y = Ai3k ∪...∪A

j3
k and so on) produces the following

lower bound.

Lrm1,i1
ns,N(ns)

(
Ai1k ∪ ... ∪ A

js
k

)
= Lrm1,1

n,N(n)

(
A1
k ∪ ... ∪ ANk

)
≥ α > 0, where

α =
s∏
i=1

αi

s−1∏
i=1

|Pni,qi |∣∣Pni,N(ni)

∣∣ s∏
i=2

|Pmi,pi |∣∣Pmi,N(mi)

∣∣
=

s∏
i=1

αi

s−1∏
i=1

1− l1ni,P · ... · l
qi
ni,P

1− l1ni,P · ... · l
N(ni)
ni,P

s∏
i=2

1− l1mi,P · ... · l
pi
mi,P

1− l1mi,P · ... · l
N(mi)
mi,P

.

Combining this with Lemma 11.18,(4), we get

Lr
m,N(m)
n,N(n)

(
A1
k ∪ ... ∪ ANk

)
≥ Lrm1,1

n,N(n)

(
A1
k ∪ ... ∪ ANk

) |Pm1,1|∣∣Pm1,N(m)

∣∣
= α

1− l1m1,P

1− l1m1,P
· ... · lN(m1)

m1,P

= εm.

Rearranging the product of αi-s, bounding the denominators from above by 1 and

adding the terms for i = 1 and i = s in the products defining α, we can estimate

the value of εm in the following way

εm ≥ (cmr)3N l1k,A · ... · lNk,A
(
1− l1m1,A

)
·

·
s∏
i=1

[(
1− l1ni,,P · ... · l

qi
ni,P

) (
1− l1mi,P · ... · l

pi
mi,P

) (
1− lqini,P

)]
.

By the definition of L-sets, we have ∀k, i : lik,A ≥ liA ≥ lA > 0, where lA :=

min
{
l1A, ..., l

N
A

}
. We now use the assumption that the value of lpn,P is independent
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of n. By the non-triviality of l-s from definition of an L-set we know that 0 <

lpn,P < 1. Therefore there exists a constant

l = lP,N = sup
{
lpn,P |n ∈ N, p ≤ N + 1

}
< 1,

dependent on N and P only, such that all of the l-s which appear in the estimate

on εm can be bounded from above by this l. We can now specify the bound on

εm:

εm = ε ≥ (cmr)3N lNA (1− l)N+1
N∏
i=1

(1− l)2

≥ cN lNA
(
c4P,N

)N
,

where we denoted c = (cmr)3 and cP,N = 1− lP,N .

Definition 11.21. If a set of type N has the property that ∀m,n∀p : lpm,P = lpn,P ,

we call it a set of type N with constant loss ratios.

11.5 Main result and its application to H(N)-sets

Theorem 11.22. (1) Fix M ∈ N∪{∞}, let P be any regular set of type M with

constant loss ratios and denote by µ the canonical measure on P . Then µ (A) = 0

for every L-set A of type strictly lower than M .

(2) There exist sets P of measure zero satisfying part (1) of this theorem.

Proof. (1) : Fix an L-set A of type N , N < M . Set n0 = m1 = 1. By Lemma

11.20 we can find n1 > m1 and k1 such that

Lr
m1,N(m1)
n,N(n)

(
A1
k1
∪ ... ∪ ANk1

)
≥ ε

for some ε > 0. We set m2 = n1. This way we will inductively find sequences

ml,nl,kl satisfying ml < nl, ml+1 = nl and

Lr
ml,N(ml)
nl,N(nl)

(
A1
kl
∪ ... ∪ ANkl

)
≥ ε.
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By the properties of Lr (Lemma 11.18), we have

µ (A) ≤
∞∏
l=0

Cr
nl,N(nl)
nl+1,N(nl+1)

(A) ≤
∞∏
l=0

Cr
nl,N(nl)
nl+1,N(nl+1)

(
A1
kl
∪ ... ∪ ANkl

)
=

∞∏
l=1

(
1− Lrml,N(ml)

nl,N(nl)

(
A1
kl
∪ ... ∪ ANkl

))
≤

∞∏
l=1

(1− ε) = 0.

(2) : By Corollary 11.13 we have

∞∑
n=1

l1n,P · ... · l
N(n)
n,P =∞ =⇒ P is of measure zero.

Therefore if type of P is a finite number, P is automatically of measure zero. If

N =∞, set for example N (n) = n, lpn,P = 1− 2−p. Since
∑∞

p=1 2−p = 1 <∞ we

get
∞∏
p=1

lpn,P =
∞∏
p=1

(
1− 2−p

)
= s > 0.

Consequently
∑∞

n=1 l
1
n,P · ... · l

N(n)
n,P ≥

∑∞
n=1 s =∞, which means that |P | = 0.

Example 11.23 (Counterexample: constant loss ratios are needed). Let P be a

regular set of type 2 satisfying c1n = 1− l1n = 1
2

and lim inf c2n = 0.

Denote by nk some increasing sequence of natural numbers satisfying c2nk ≤
2−k. We set (

C1k ,B1
k,A1

k

)
=
(
S1
nk
,R1

nk
,P1

nk

)
and denote by A the set of type 1 defined by this sequence. Clearly A is an L-set

(even regular). However, we will show that µ (A) > 0.

On each level A1
k of the set A, the measure of A decreases exactly by the factor

of
c1nk

c1nk
+l1nk

c2nk
; formally for Ak =

⋂k
l=1A

1
k, Pn =

⋂n
m=1 (P 1

m ∪ P 2
m), k > 1 we have

the following:

µ (Ak) = µ (Ak−1)

∣∣P 1
nk

∣∣∣∣P 1
nk
∪ P 2

nk

∣∣ = µ (Ak−1)
|Pk−1| c1nk

|Pk−1|
(
c1nk + l1nkc

2
nk

) .

62



Thus we can compute the measure of A as follows (assuming that µ (P ) = 1):

µ (A) = µ (P )
∞∏
k=1

c1nk
c1nk + l1nkc

2
nk

=
∞∏
k=1

c1nk
c1nk + l1nkc

2
nk

=
∞∏
k=1

1

1 + c2nk

≥
∞∏
k=1

1

1 + 2−k
=
∞∏
k=1

(
1− 1 + 2−k

1 + 2−k
+

1

1 + 2−k

)
≥
∞∏
k=1

(
1− 2−k

1

)
> 0, since

∞∑
k=1

2−k <∞.

This implies that some kind of extra assumptions on the loss ratios of regular

set P is needed.

Remark. Note that the same idea as we just described will work for any regular

P , provided that there exists a subsequence nk and indices p1, ..., ps, such that

the loss ratios lp1nk , ..., l
ps
nk

are uniformly strictly less than 1 and the products of the

remaining indices tend to 1 as k →∞.

However, this does not mean it is impossible to construct a different regular

set P , such that µ annihilates all the L-sets of lesser type, but lpn-s tend to 1 as

n→∞ (for example when P satisfies ∀n : l1n = l2n = ... = l
N(n)
n ).

Corollary 11.24. (1) For N ∈ N we have
(
H(N+1)

)⊥ (
(
H(N)

)⊥
.

(2) Denote L = {E ⊂ T| |E| = 0}. Then we have
(
H(∞) ∩ L

)⊥ (
(⋃

N∈NH
(N)
)⊥

.

Proof. (1) Fix N ∈ N. By Example 11.9 we know that for L0 ≥ Cdr, every

H
(N)
L0

-set is an L-set of type N and we also know that there exist H(N+1)-sets

which are also regular sets of type N . By the definition of H(N)-sets, clearly any

E ∈ H(N) is a set with constant loss ratios. Using Theorem 11.22 we then have(
H(N+1)

)⊥ (
(
H

(N)
L0

)⊥
and by Remark 11.10 this also holds for H(N)∗-sets, i.e.(

H(N+1)
)⊥ (

(
H

(N)∗
L0

)⊥
. We finish the proof by using Vlasák’s characterization

of H(N)∗-sets (Theorem 8.8) and the fact that every H(N)∗-set is a finite union of

H(N)-sets: (
H(N+1)

)⊥ (
(
H

(N)∗
L0

)⊥
=
(
H(N)∗)⊥ =

(
H(N)

)⊥
.

(2) The proof of the second part of the statement is identical to the proof of

(1) - it only remains to prove that there exists a regular H(∞)-set of measure zero,

which follows from Corollary 10.11.
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Appendix

A Preliminaries

In the following section we list some of the basics of descriptive set theory. We

do not give a complete introduction, instead we rather only present the notions

which will be used in this work - i.e. the space K (T), the family of Borel sets,

the collections Σ0
3 and Π1

2 and the notion of Π1
2-completeness. For details on

descriptive set theory we refer the interested reader to, for example, [Kec].

A.1 Descriptive set theory

Polish spaces: A Polish space is a topological space X which is separable and

completely metrizable. Typical examples of such spaces are R,Rd,C,T,Z with

their classical topologies, the Cantor set 2ω or the Baire space N = ωω with the

standard product topologies (where the sets 2 = {0, 1} and ω = {0, 1, 2, ...} are

endowed with discrete topology). Also any metrizable compact space K is clearly

a Polish.

Hyperspace K (X): Another example of a Polish space is given by the fol-

lowing proposition. We will be particularly interested in the space K (T).

Proposition A.1. Let X be a metrizable compact space and denote by K (X) the

hyperspace of all compact subsets of X

K (X) = {F ⊂ X|F is closed} = {F ⊂ X|F is compact} .

Furthermore we denote by V the so-called Vietoris topology, i.e. a topology gener-

ated by the collection of all sets of the form {F ⊂ X|F ⊂ U} and {F ⊂ X|F ∩ U 6= ∅},
where U ⊂ X is open.

Endowed with the topology V, the space K (X) is Polish.

Proof. This can be proven by showing that the topology V coincides with the

topology generated by the so-called Hausdorff metric %H . For the complete proof

see for example [Kec].

Borel hierarchy, Projective hierarchy: Let X be a fixed Polish space.

Borel sets in X are the elements of the smallest σ-algebra containing all open

sets. By Π0
1 we denote the system of closed subsets of X and by Σ0

3 we denote

the system of all Gδσ subsets of X (i.e. all sets S of the form S =
⋃∞
n=1Hn where

the sets Hn are Gδ). We say that a subset A of X is analytic in X, if there exists

a continuous mapping ϕ : ωω → X, such that ϕ (ωω) = A. We say that a set
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C ⊂ X is coanalytic in X if the set X \C is analytic in X. We denote by Σ1
1 (X)

(resp. Π1
1 (X)) the system of all analytic (resp. coanalytic) subsets of X. Similarly

we denote

Σ1
2 (X) :=

{
S ⊂ X| ∃ϕ : ωω → X continuous s.t. S = ϕ (C) for some C ∈ Π1

1 (ωω)
}

and Π1
2 (X) := {T ⊂ X|X \ T ∈ Σ1

2 (X)}.
Π1

2-complete set: A topological space Y is said to be 0-dimensional when

its topology admits a clopen basis. A set S in some Polish space X is said to be

Π1
2-complete when S ∈ Π1

2 (X) and for every 0-dimensional space Y and every

T ∈ Π1
2 (Y ) there exists a continuous mapping ϕ : Y → X such that ϕ−1 (X) = Y .

A.2 Fourier transform on T

Spaces c0, l
1 and l∞: We use the symbols c0 = c0 (Z), l1 = l1 (Z) and l∞ =

l∞ (Z) to denote the usual Banach spaces with their standard norms. Recall that

we have c∗0 = l1 and (l1)
∗

= l∞ where the dualities are given by the mapping

〈c, d〉 7→
∑

k∈Z c (k) d (k) (where either c ∈ c0 and d ∈ l1 or c ∈ l1 and d ∈ l∞).

On l1 we can also consider the w∗-topology. By a w∗-sequential closure of a

set M ⊂ l1 we will denote the set
{
x ∈ l1| ∃xn ∈M, n ∈ N : xn

w∗−→ x
}

. Note

that this topology is not metrizable, therefore the w∗-sequential closure is usually

not the same as w∗-closure. Furthermore we have the following equivalence for

xn, x ∈ l1:

xn
w∗−→ x ⇐⇒ sup

n
‖xn‖l1 <∞ & ∀k ∈ Z : xn (k)→ x (k) .

We also note that l1 with convolution ∗ defined as

c ∗ d = e, where e = (e (k))k∈Z is given by e (k) :=
∑
m∈Z

c (m) d (k −m)

is a Banach algebra.

Spaces C, L1 andM: By λ we will denote the normalized Lebesgue measure

on T given by the identification of T with [0, 2π]. By L1 (T) we will denote the

space of complex functions on T which are λ-integrable, endowed with the usual

norm. By C (T) we denote the space of all continuous complex functions on T
with the supremum norm. ByM (T) we denote the space of all (complex) Radon

measures on T with the norm ‖µ‖M(T) = |µ| (T), where |µ| is the total variation

of the measure µ. For E ⊂ T the symbol M (E) will stand for all the measures

from M (T) which are supported by E. We note that every function f from

C (T) or L1 (T) can be identified with a measure µ from M (T) by the formula
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´
gdµ =

´
fgdλ.

Fourier transform on T: A trigonometric series S is a formal expression

S ∼
∑

k∈Z cke
ikx where x ∈ T and the coefficients ck belong to C. We say that S

converges at x when the symmetric partial sums
∑N

k=−N cke
ikx converge to some

f (x) ∈ C. We say that S converges when it converges at every x ∈ T.

Fourier series of a function f ∈ L1 (T) is the sequence is the trigonometric

series S (f) ∼
∑

k∈Z f̂ (k) eikx, where f̂ (k) is the k-th Fourier coefficient of f ,

given by the formula

f̂ (k) =

ˆ
f (x) e−ikxdλ (x) .

The mappingˆ: f 7→
(
f̂ (k)

)
k∈Z

is called the Fourier transform. More generally

we can consider also the Fourier transform of a measure µ ∈M (T) given by the

formula

µ 7→ (µ̂ (k))k∈Z , µ̂ (k) :=

ˆ
e−ikxdµ.

Fourier transform and spaces L1 and M: For f ∈ L1 (T) we have by

Riemann-Lebesgue lemma that f̂ (k)→ 0 as |k| → ∞, which gives us

f ∈ L1 (T) =⇒ f̂ ∈ c0.

By the Uniqueness Theorem for Fourier series, this map is one-to-one. It is

immediate from the definition of µ̂ (k) that for µ ∈ M (T) we have |µ̂ (k)| ≤
‖µ‖M(T) for any k ∈ Z. This implies that

µ ∈M =⇒ µ̂ ∈ l∞.

Whenever µ1, µ2 ∈ M (T) are distinct, we have
´
fdµ1 6=

´
fdµ2 for some f ∈

C (T). Since trigonometric polynomials are dense in C (T), f =
∑
cke

ikx can

be a trigonometric polynomial. Finally because for such f we have
´
fdµi =∑

ckµ̂i (k), Fourier transform is necessarily one-to-one on M (T) as well. In this

sense, every function f ∈ L1 (T) can be identified with a sequence from c0 and

every measure µ ∈ M (T) can be viewed as a bounded sequence. Note however

that the inverse mappings

ˇ: (c (k))k∈Z 7→

(
x ∈ T 7→

∑
k∈Z

c (k) eikx ∈ C

)

are not always correctly defined on either of the spaces c0 and l∞ and thus we

cannot identify c0 with L1 (T) nor l∞ with M (T). At best, every c ∈ l∞ can be

identified with a linear operator on the set A := A (T) :=
{
f ∈ L1 (T) | f̂ ∈ l1

}
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by the formula 〈f, c〉 :=
∑

k∈Z f̂ (k) c (k).

Fourier transform and l1: Clearly when c ∈ l1, the fact that
∥∥eikx∥∥∞ = 1

gives the following:

fN (x) =
∑
|k|≤N

c (k) eikx ⇒
∑
k∈Z

c (k) eikx =: f (x) on T as N →∞.

Since the functions fN are continuous we get that f ∈ C (T) holds as well. The

fact that ˆ : C (T) → c0 is continuous and ̂exp (ikx) (l) = δkl then implies that

f̂ = c. Consequently we can identify l1 with a subspace of C (T) - in fact this

means we identify l1 with the set A from the previous paragraph, which is actually

of the form

A =
{
f ∈ C (T) | f̂ ∈ l1

}
.

It is also well known that for f, g ∈ L1 (T) with f̂ , ĝ ∈ l1 we have f̂ g = f̂ ∗ ĝ.

Thus the identification of A with l1 by the Fourier transform also respects the

natural multiplication operations defined on these spaces.

A.3 Hausdorff dimension

Hausdorff measure: Let X be a metric space, S ⊂ X and d ∈ [0,∞). For

δ > 0 we define

Hd
δ (S) := inf

{
∞∑
i=1

(diamUi)
d |
⋃

Ui ⊃ S, diamUi < δ

}
.

and set Hd (S) := supδ>0Hd
δ (S). The number Hd (S) is called the outer d-

dimensional Hausdorff measure of the set S. Since Hd
δ (S) is clearly monotone

with respect to δ, we have Hd (S) = limδ→0+Hd
δ (S). When d ∈ N and X = Rd,

the measure Hd coincides with the d-dimensional Lebesgue measure, up to a

multiplicative constant (on, for example, Borel sets).

Hausdorff dimension: Hausdorff dimension dimH (S) of a set S can be

defined in one of the following equivalent ways:

dimH (S) := inf
{
d ≥ 0|Hd (S) = 0

}
= sup

{
d ≥ 0|Hd (S) =∞

}
(where we set inf ∅ =∞, sup ∅ = 0).

A.4 Cantor-Bendixson rank

Perfect sets: For x ∈ Rd we denote by U (x) the collection of all open neighbor-

hoods of x. A point x of a set C ⊂ Rd is said to be isolated (in C) when there
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exists such U ∈ U (x) that U ∩ C = {x}. The set C is said to be perfect if it

contains no isolated points (in C).

Definition of rCB: For C ⊂ Rd we define the Cantor-Bendixson derivative

C ′ of the set C as

C ′ := C \ {x ∈ C|x is isolated in C} .

We denote C(0) := C and for an ordinal α > 0 we set

C(α) :=
⋂
β<α

(
C(β)

)′
.

Finally the Cantor-Bendixson rank rCB (C) of a set C is the least ordinal α

such that C(α+1) = C(α). Clearly everytime C(α+1) ( C(α), there exists a basic

set B ⊂ C(α) \ C(α+1) which we have removed by taking the derivative. Since

we can take a countable basis for Rd, the rank of each C ⊂ Rd is necessarily

at most countable and therefore rCB is well defined. It is also immediate that

rCB (C) = 0 ⇐⇒ C is perfect.

A.5 Bernstein sets

Definition A.2. A set B ⊂ T is said to be a Bernstein set if B intersects every

closed perfect subset of T but contains none of them.

Existence: Assuming that the axiom of choice holds, we can find enumeration

Pα, α < 2ω of all the closed perfect subsets of T (clearly 2ω indices will suffice, as

there is at most 2ω closed subsets of T). We then inductively find xα, yα ∈ Pα for

α < 2ω such that xα 6= yα and xα, yα ∈ Pα \
⋃
β<α {xβ, yβ} (clearly this is possible

since for every α < 2ω we have by Perfect set theorem

Card (Pα) = 2ω > Card (α) = Card

(⋃
β<α

{xβ, yβ}

)
).

The set B := {xα|α < 2ω} is then clearly a Bernstein set.

Non-measurability: We also note that whenever B is a Bernstein set, then

B is Lebesgue-non-measurable: Recall that by Perfect Set theorem, every un-

countable closed set contains a closed perfect subset. Consequently no Bernstein

set can contain an uncountable compact subset and neither can T\B. This means

that if B was measurable, we would get by inner regularity of Lebesgue measure

that

|B| = sup {|K| |K ⊂ B is compact} = sup {|K| |K ⊂ B is compact and countable} = 0.
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In the same way we would get that |T \B| = 0, which contradicts the assumption

that B is measurable, since |T| > 0 and T = B ∪ {T \B}.
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