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Katedra: Ústav částicové a jaderné fyziky
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Introduction

The subject of this thesis is a study of experimental measurements of jets
in ultra-relativistic heavy-ion collisions and the phenomenon of jet quenching.
Collisions of the heavy ions at these energies are expected to produce a dense
medium of extremely high temperatures in order of trillion kelvins, as predicted
from lattice Quantum Chromodynamics (QCD) calculations. This phase of mat-
ter consists of deconfined quarks and gluons as degrees of freedom and it is,
therefore, accordingly called a quark-gluon plasma (QGP). QGP allows to test
QCD in the limit of extreme temperatures and densities. Furthermore, it is be-
lieved that the QGP existed at the very early stages of our universe. Therefore
the study of the properties of this phase may provide a critical insight into the
dynamics of this era.

Attempts to create and study the QGP have been previously made at CERN’s
(The European Organization for Nuclear Research) Super Proton Synchrotron
(SPS) in the 1980s and 1990s, later at the Relativistic Heavy Ion Collider
(RHIC) at the Brookhaven National Laboratory on Long Island (NY, USA) and
most recently in PbPb collisions at CERN’s Large Hadron Collider (LHC).

High transferred momentum interactions of quarks and gluons in colliding
beams are known to produce highly collimated clusters of hadrons and other
particles produced by hadronization referred to as jets. Jets have long been
thought to interact with the ambient plasma and, therefore, to serve as probes
of the QCD matter created in the collisions. The process by which a quark
or gluon loses energy in a medium of high color charge density is called jet
quenching.

Of special interest are the “dijets” consisting of the two energetic jets. These
two jets are expected to have on average comparable energies and are also ex-
pected to be ejected in back-to-back geometry (i.e., having azimuthal difference
close to π). However, the strong interactions of quarks and gluons inside the
hot medium can significantly modify the dijet energy balance between the two
most energetic jets. It is therefore important to study these modifications of
dijet properties, since they can provide useful information about the properties
of the QCD medium formed in the collisions.

The analysis in this work was made using the data from heavy-ion collisions
at nucleon-nucleon center-of-mass energy 2.76 TeV, which were collected by
the ATLAS (A Toroidal LHC ApparatuS) detector in 2011. These results were
further compared to those in PYTHIA Monte Carlo and those performed by CMS
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Collaboration.
This thesis is organized as follows: Chapter 1 provides the theoretical back-

ground, introducing the theory of strong interaction, the concept of jets and jet
algorithms, and the concept of quark gluon plasma. These concepts are intro-
duced in order to motivate the use of heavy-ion collisions as an experimental
tool to study the strong interaction. The motivation for this work follows in
Chapter 2. Chapter 3 contains the descriptions of the ATLAS detector and the
LHC, which provided the measurement presented in this work. Information
about basic observables and various cuts and corrections used in the analysis is
discussed in Chapter 4. The results of the experimental analysis are presented
in Chapter 5 with the conclusions following in the last chapter.
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Chapter 1

Strong Interaction and Heavy Ion
Collisions

This chapter provides a short overview of the theory of strong interactions
called the Quantum Chromodynamics. We shall outline the basic concepts of
this theory, introduce the concept of jets and jet algorithms and discuss the
concept of quark-gluon plasma. The quark-gluon plasma (QGP) is the main
object of study in ultrarelativistic heavy ion physics. It is an unexplored state
of matter in which the relevant degrees of freedom are not hadrons, but quarks
and gluons. It is believed that the QGP is one of the primordial forms of matter,
which existed in the very early stages of our universe, only few microseconds
after the Big Bang [1].

1.1 General Concepts of Quantum Chromodynam-
ics

Quarks are one of the smallest known subdivisions of matter that have var-
ious intrinsic properties, including electric charge, color charge, mass, spin,
and flavor. They combine to form composite particles called hadrons, either
baryons (consisting of three quarks) or mesons (consisting of one quark and
one antiquark). The theory explaining the interactions among quarks is called
the Quantum Chromodynamics (QCD). Following text is based on classical lit-
erature of particle physics [2,3].

QCD is the Yang-Mills theory of quantum field with a non-Abelian gauge
symmetry group SU(3), with Lagrangian density given by

LQCD = −1

4
FC
µνF

Cµν +
∑
f

ψ̄f (iγ
µDµ −mf )ψf , (1.1)

with the f index denoting the flavor of quark of “bare” mass mf and Dirac
spinor ψf , C is the color index running from 1 to 8 (corresponding to the di-
mensionality of SU(3)), and γµ are the four Dirac matrices. The fermion fields
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have an additional color index that runs from 1 to NC = 3 but is suppressed in
notation for brevity. The field strength tensor FC

µν is expressed in terms of eight
gauge gluon fields ACµ via

FA
µν = ∂µA

A
ν − ∂νAAµ − gfABCABµACν , (1.2)

where g is the QCD coupling constant (sometimes referred to as αs = g2/4π)
and fABC are the structure constants of the SU(3) group. The covariant deriva-
tive appearing in (1.1) is defined as

Dµ = ∂µ − ig
∑
C

tCACµ . (1.3)

Here tC are generators of the gauge group represented by eight 3 × 3 matrices
satisfying the Lie algebra

[tA, tB] = ifABCtC . (1.4)

The covariant derivative ensures that the Lagrangian is invariant under
SU(3) gauge transformations

ψf → Uψf = eiεψf , ψ̄f → ψ̄fU
† = ψ̄fe

−iε, (1.5a)

Aµ → Aµ +
i

g
∂µε. (1.5b)

Writing out the Lagrangian (1.1) explicitly using relations (1.2) and (1.3)
we can separate the LQCD into a free and interaction part: LQCD = L0 + Lint.
The interaction part can be written schematically as

Lint = gAψ̄ψ + gAA∂A+ g2AAAA. (1.6)

The first term is obviously a coupling, of strength g, between the quarks and
massless, spin-1 gauge fields representing gluons, the second term is apparently
a three gauge boson coupling having strength g and the third term is a four
gauge boson coupling proportional to g2. The Feynman diagrams corresponding
to these couplings are displayed on Figure 1.1.

Figure 1.1: Couplings corresponding to the tree terms in the QCD Lint. In ad-
dition to the gauge coupling present also in quantum electrodynamics (shown
on the left) the non-Abelian structure of the theory allows for coupling between
the gauge fields themselves (middle and right).
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Like in the quantum field theory describing the electromagnetism (EM),
where the carriers of the EM force (gauge bosons) are photons, the interac-
tions of QCD are realized by the exchanging of gluons, and the accompanying
force is called the strong nuclear force. Quarks and gluons are collectively
called partons. Quarks are the only known elementary particles in the stan-
dard model that engage in all four fundamental forces of contemporary physics
(electromagnetism, gravitation, strong interaction, and weak interaction) [4].

The main difference between QED, which is an abelian gauge field theory,
and QCD, is that the electrodynamical gauge bosons (photons) do not carry the
charge that they couple to and, hence, do not interact with each other. This is,
as can be seen from Figure 1.1, not the case in QCD. Here, the gluons do carry
the color charge and thus couple not only to fermions, but also to other gluons.
This non-abelian structure of QCD leads to two surprising phenomena, namely
color confinement and asymptotic freedom.

As already mentioned, fields and physical quantities appearing in the QCD
Lagrangian in Equation (1.1) are “bare”. Generally, when doing a perturbative
expansion of an observable, Lagrangian in this form introduces contributions
from quantum loops. These loops describe creation and subsequent annihila-
tion of virtual particles and are particularly important at large momentum scale
Q2 where they cause ultraviolet (UV) divergencies. These divergencies can be
eliminated via a redefinition of fields and other parameters of Lagrangian (1.1),
a process called renormalization. During this process, Lagrangian is separated
into a physical part and a counter-term part which is chosen to exactly cancel
divergencies in observables order by order. As a direct consequence of this, the
original coupling constant g (or equivalently, αs) now depends on the momen-
tum scale Q2.

This so-called “running” of coupling constant is encoded in following renor-
malization group equation:

∂αs
logQ2

≡ β(αs) = −α2
s(β0 + αsβ1 + . . .), (1.7)

where β(αs) represents so-called β function which can be expanded. Once we
know this function at a given order of the perturbative expansion we can solve
the equation (1.7) to obtain coupling at scale Q2 given the coupling at lower
scale µ2, sometimes called renormalization scale. At the lowest order we obtain:

αs(Q
2) =

αs(µ
2)

1 + αs(Q2)β0/4π log(Q2/µ2)
. (1.8)

Equation (1.8) describes how the coupling “runs” from µ2 to Q2. The one
loop coefficient β0 of the β-function was first calculated by David Gross, David
Politzer and Frank Wilczek in 1973 [5,6]. It is equal to:

β0 = 11− 2

3
Nf , (1.9)
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where Nf is the number of fermion flavors. In our universe this number is
Nf = 6 yielding β0 > 0, which has implications for the physical consequences
of QCD. From Equation (1.8) it is obvious that for β0 > 0 the value of αs con-
verges asymptotically to zero for high Q2. This is the fundamental phenomenon
of QCD, called asymptotic freedom mentioned above. It describes the behavior
of quarks, which interact strongly at large distances (or small transverse mo-
menta) and weakly at small distances (or large transverse momenta). Under
these conditions the QCD interactions are thought to be weak at high tempera-
tures and densities, which can be achieved in heavy-ion collisions. Therefore, a
new phase of matter called quark-gluon plasma may occur.

On the other hand, we can choose a convenient momentum scale ΛQCD =

µe−2π/(β0αs(µ2)), which allows us to rewrite Equation (1.8) as:

αs(Q
2) =

4π

β0 log(Q2/Λ2)
. (1.10)

This equation implies that there is a momentum scale ΛQCD ≈ 200 MeV at
which αs diverges in the first order. Near this scale the perturbative expan-
sions of QCD cannot be performed and the Feynman diagram approach be-
comes problematic1 (as opposed to the region of high momenta). This region of
small transferred momenta is governed by the second important phenomenon
of QCD called color confinement. This phenomenon explains the fact that no
color charged particles (such as quarks or gluons) can ever be isolated and di-
rectly observed in our laboratories, because they are confined by the strong
interaction. We can only observe particles carrying zero net color charge (e.g.,
baryons and mesons) [7]. The strong force favors confinement because at a
certain range it is more energetically favorable to create a quark-antiquark pair
than to continue to increase the distance between the quarks.

Figure 1.2 summarizes the Q2 dependence of αs from various experiments
and calculations.

1.2 The QCD Phase Diagram

Phase diagrams are often used when physicists want to summarize the prop-
erties of matter over a range of various physical quantities. The control param-
eters in this case are temperature T and baryon chemical potential µB. The
chemical potential can be intuitively thought of as a measure of net baryon
density of the system [9]. In general, chemical potential describes the change
of internal energy due to the change of the composition of the system (in our
case, the number of baryons).

The phase diagram of quark matter is not very well known, both experimen-
tally and theoretically. Figure 1.3 shows the contemporary view of the QCD

1The calculations in this regime come from lattice QCD, in which the the action of the QCD
Lagrangian is numerically calculated on a grid or lattice of points in space and time.
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Figure 1.2: Summary of measurements of αs(Q2) as a function of the respective
momentum scale Q, from [8].

phase diagram. It is a compilation of a body of results from model calculations,
empirical nuclear physics, as well as first principle lattice QCD calculations and
perturbative calculations in asymptotic regimes. Each point on the diagram
represents the state of thermodynamic equilibrium, characterized by the coor-
dinates in T × µB space. Phase coexistence lines are illustrated as solid blue
lines, crossover region by dashed line. Filled circles represent critical points.

Let us now begin at the point in the vacuum where T = µB = 0. As we
move along the horizontal axis the temperature and the density are zero up to
the point of µB ≈ 920 MeV where the density jumps to nuclear density. The
process of crossing the coexistence lines is believed to be the first-order phase
transition. This process exhibits a discontinuity in the first derivative of the free
energy with respect to pressure and temperature. Looking at the Figure 1.3 we
see that there is yet another coexistence line between the hadron gas (lower
T ), and quark-gluon plasma (higher T ). This first-order transition line is now
ending at a point known as the QCD critical point. Beyond this point it is
believed that the first-order phase transition between a hadron gas and QGP
changes to a smooth cross over. This is the area explored by ultrarelativistic
heavy-ion colliders [11].

A critical point is a well-defined singularity on a phase diagram, and is an
attractive theoretical and experimental target to determine. Many theoretical
calculations have been done and their predictions vary widely (ten of these
results are summarized in [10]). Even though the exact location of the criti-
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Figure 1.3: Schematic semi-quantitative sketch of the QCD phase diagram
showing the names of the various phases. For guidance , aslo shown are the
typical values of µB and T in heavy-ion collision experiments (LHC, RHIC) and
in the early universe. Based on [10].

cal point is not known yet, the available theoretical estimates suggest that the
point is within the region of the phase diagram probed by the heavy-ion col-
lision experiments. This raises the possibility to discover this point in such
experiments [12].

In addition to the discussed transitions and phases, other abnormal forms
of nuclear matter can exist at high densities. Exotic states such as quark liq-
uids and color superconductors (systems with locked color) are thought to ex-
ist [13].

1.3 Heavy Ion Collisions

The QGP can exist only in extreme conditions of very high energy densi-
ties and temperatures. In order to recreate matter at these conditions in the
terrestrial laboratory, one collides heavy nuclei (heavy ions) at ultrarelativis-
tic energies2. Previous attempts to study the properties of the QGP created in
heavy-ion collisions have been made at the Brookhaven National Laboratory
on Long Island (NY, USA) at the Relativistic Heavy Ion Collider (RHIC), which
was the world’s highest energy accelerator of heavy ions before the launch of
the Large Hadron Collider (LHC) in 2008 [14]. Further details about the LHC
machine will be discussed in Chapter 3.

In center-of-mass frame, as they fly towards each other, the colliding nuclei
appear as two Lorenz-contracted discs. It is expected that during the collision,

2The energy region of ultrarelativistic heavy ion reactions starts at around 10 GeV center-
of-mass energy.
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the nuclei deposit a large amount of energy into a very small volume in the
collision region. As estimated by Bjorken [15], the energy density can be so
high that these reactions might provide the conditions for the creation of the
QGP.

The most frequent events in low energy nuclear physics (
√
sNN ≈ 1 MeV)

are elastic collisions and low energy inelastic collisions. In both cases the final
multiplicity (the number of particles after the reaction) is quite small. However,
the multiplicities in (ultra)relativistic heavy-ion collisions are very large. The
number of produced particles may exceed one thousand, which is much more
than the number of initial nucleons [16]. This leads to special experimental
requirements. For example the track recognition problem becomes very difficult
at large multiplicities leading to a need of an effective tracking detector. It
is also advantageous if we can detect all of the created particles in an event.
Because of this, it is desired for the detector to cover full 2π in azimuth. As we
will see, these conditions are partially fulfilled by the ATLAS detector at LHC
(see Section 3.2).

1.4 The Glauber Model and Concept of Centrality

Since the colliding nuclei are extended objects with non-zero volume, the
size of the interacting region depends on the impact parameter b of the collision.
This physical quantity is defined as the distance between the centers of the
colliding nuclei in a transverse plane (see Figure 1.4). Because it is impossible
to directly measure the value of b [17], physicists introduced the concept of the
centrality of the collision, which is directly related to the impact parameter of
the collision.

Figure 1.4: Left: the two heavy ions before the collision with the impact param-
eter b. Right: the spectators remain unaffected while in the participant zone,
particle production takes place. Figure adapted from [18].

The geometrical Glauber model of multiple collisions [19–21] treats a nu-
clear collision as a superposition of binary nucleon-nucleon interactions. The
density distribution of nucleons in a nucleus is typically parametrized by two-
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parameter Woods-Saxon distribution given by:

ρ(r) = ρ0
1

1 + exp
(
r−a
R

) , (1.11)

where a represents the “surface thickness” of the nucleus and R = r0A
1/3 is

the nuclear radius parametrized with mass number A and experimentally de-
termined constant r0 = 1.25 fm. The constant ρ0 ensures proper normalization.

The variables used to quantify the collision centrality in this model include
the number of participant nucleons Npart (that is the number of nucleons that
undergo at least one collision) and the number of all nucleon-nucleon collisions
Ncoll. Assuming that nucleons follow independent straight trajectories through
the colliding system we can calculate these quantities for a given value of the
impact parameter.

One of the techniques used to determine the values of Npart and Ncoll is
Monte Carlo. In this case the distribution (1.11) is used to populate two nuclei.
Then, a random impact parameter is generated, thus defining an offset between
the nuclear centers. Finally, the transverse projection of one of the nuclei on
another is done and for every nucleon from the first nucleus the transverse dis-
tance to every nucleon in the second nucleus is determined. If this distance is
less than

√
σNN
inel/π (where σNN

inel is the total inelastic cross-section of two nucle-
ons), the nucleons are said to have participated and Ncoll is incremented. The
number of nucleons for which this condition is satisfied at least once is then
Npart.

An illustration of such a Glauber Monte Carlo (GMC) event for an AuAu
collision is shown in Figure 1.5.

Figure 1.5: An AuAu GMC event with impact parameter b = 6 fm viewed (a)
in the transverse plane and (b) along the beam axis. Darker circles represent
participating nucleons. Ref. [21].

While these geometrical quantities are, together with the impact parameter,
unobservable, previous studies at RHIC and SPS have shown that the multiplic-
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ity and total transverse energy ET are strongly correlated with Npart. Multiplic-
ity or total ET are, therefore, used to quantify the centrality in an experiment.

A measure of centrality used at the ATLAS experiment at LHC is a total
transversal energy deposited in forward calorimeters FCal. Once the total ET is
summed up, the data sample is sorted in this variable, and split into fractions of
equal cross-section, which are commonly called centrality bins. The convention
is to quote the fractional value in terms of percentage, e.g. 0− 10%, 10− 20%,
. . . 90 − 100%. Using the GMC procedure described above, the mean and the
spread (RMS) values of the b, Npart, and Ncoll for five selected centrality bins
together with their respective systematic uncertainties can be extracted and are
listed in Table 1.1. The main thing to remember is that smaller percentages cor-
respond to more central events. More detailed description of this concept and
the method of centrality determination used at ATLAS is given in Section 4.1.3.

Centrality b mean [fm] b RMS [fm] Npart mean Npart RMS Ncoll mean Ncoll RMS

0− 10% 3.4± 0.1 1.2 355± 3 33 1484± 120 241
10− 20% 6.0± 0.2 0.8 261± 4 30 927± 82 183
20− 30% 7.8± 0.2 0.6 187± 5 23 562± 53 124
30− 50% 9.9± 0.3 0.8 108± 5 27 251± 28 101
50− 100% 13.6± 0.4 1.6 22± 2 19 30± 5 35

Table 1.1: Values of parameters extracted from the Glauber Monte Carlo.
Ref. [22,23].

1.5 Jets in QCD

Let us first consider a collision of simple “QCD systems”, for example two
protons3. During a large-momentum-transfer scattering processes in high-energy
collisions, as the original quarks inside the protons separate, the energy of
the strong nuclear field between them increases up to the point when there
is enough energy to create a new quark-antiquark pairs [24]. Due to postulated
confinement, the quarks escaping from the collision cannot exist individually.
Instead, free quarks created in collision combine with quarks and antiquarks
created spontaneously from the vacuum to form hadrons [25]. This process
is called hadronization and leaves us with two sets of hadrons traveling in the
opposite directions. They are usually collimated in two cones around the di-
rection of the two original partons and we refer to them as jets. However, this
concept of jet, which is associated with the shower of an originating hard par-
ton that has undergone hadronization, must be made more specific in order to
be used as an experimental or theoretical concept. Schematic picture of the
jet production in proton-proton (pp) and lead-lead (PbPb) collision is shown in
Figure 1.6.

3We call these systems simple because, as opposed to the much more complex systems en-
countered in heavy-ion collisions, only few of the partons interact.
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Figure 1.6: Sketch of a hard scattering, showing the jet production in proton-
proton (left) and lead-lead (right) collisions. The colliding nuclei in the right
picture are displayed as thin discs due to the Lorenz contraction. Note that the
jets created in heavy-ion collision are modified due to the interactions of quarks
with the QGP. Ref. [26].

The QCD theory related to jets is very broad containing e.g. the higher or-
der QCD calculation, parton showers, fragmentation and hadronization. These
topics are beyond the scope of this thesis and we will not discuss them. Instead,
in the remainder of this section, we will concentrate on the jet algorithms.

Since we cannot measure the original parton, jet has to be defined by a jet
finding algorithm. Jet reconstruction is a procedure by which the momenta of
the jet fragments are resummed back to obtain the momentum of the original
parton, basically undoing the process of fragmentation. In other words, it is
a set of rules that postulate how to cluster the products of the hadronization
and fragmentation into an object whose kinematics is as close as possible to the
kinematics of the original parton.

In simple systems, such as electron-positron annihilations into two or three
final state partons the definition of jets is simple and to a large extent unam-
biguous. Unfortunately, the situation turns out to be much more complicated if
more partons in the final state are taken into account and other processes, such
as hadron-hadron collisions, are analyzed.

An ideal jet finding algorithm would include all of the hadrons that come
from the fragmentation of the original parton and exclude those coming from
a different parton or other processes. Unfortunately, QCD does not allow us to
unambiguously separate the final state hadrons into those originating from the
original hard-scattered parton and those that do not (e.g. those coming from
the interactions of other initial partons). As a consequence, a jet is not uniquely
defined and different jet algorithms may produce different resulting jets.

There are two main types of jet algorithms: a cone algorithm and a sequen-
tial (or clustering) algorithm. Sequential recombination algorithms work by
iteratively combining pairs of particles (defined by their four-momenta pµ) in a
specified way until the procedure terminates and returns the set of jets. So in
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order to characterize a sequential algorithm we need to specify following con-
ditions: the method for deciding which particles to combine, the scheme to be
used to combine the momenta of the particle pair and the criterion for stopping
the iteration.

We shall now outline basic steps of the kt algorithm, which belong to the
family of sequential jet algorithms and was first proposed to be used in electron-
positron collisions [27] and later adapted for hadronic collisions [28]. This
algorithm uses a specific distance dij between particles i and j and a distance
between particle i and the beam axis, diB, to construct the recombination rule.
These quantities are defined as

dij = min(p2Ti, p
2
Tj)

∆R2
ij

R2
, diB = p2Ti, (1.12)

where
∆Rij =

√
(ηi − ηj)2 + (φi − φj)2 (1.13)

is a distace in η × φ space. Here η and φ are the rapidity and azimuthal angle
of a particle with pT transverse momentum4. The algorithm starts with a list of
protojets5 with four-momenta pµi and works as follows:

1. Calculate dij for all protojet pairs and diB for all protojets.

2. Find the minimum of dij and diB.

3. If the minimum is a dij combine these two protojets i and j into one,
typically by simple four-momentum addition, and insert it back into the
list.

4. If the minimum is a diB, remove this protojet from the list and call it a
final-state jet.

5. Repeat this process until no protojets remain.

Since every iteration decreases the number of protojets in a list by one, the
procedure terminates after number of iterations equal to the number of proto-
jets in the initial list. The only free parameter of kt algorithm is the distance
parameter R, which controls the size of the jet. Default configurations in ATLAS
are R = 0.4 for narrow and R = 0.6 for wide jets [29].

As we can deduce from Equation (1.12), due to a presence of the minimum
function in dij definitions the algorithm clusters low-pT (soft) particles first, thus
going “backwards” in the fragmentation chain. That means the kt algorithm
allows jets clustered from the soft background particles to compete with the
real jets. This feature presents a serious drawback of the classical kt algorithm

4More detailed description of the kinematic variables used in high-enery physics and their
properties is in Section 3.2.1.

5The elements of the initial list are commonly called “protojets” before the algorithm termi-
nates and “jets” after. The protojet can be a particle, track, or a calorimeter tower.
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both in proton-proton and heavy-ion collisions because, as opposed to e+e−

collisions where the background is minimal, the hadronic collisions produce a
very strong background interfering with the jets. In order to fix this problem,
the distance measure of the kt algorithm has to be generalized in the following
way:

dij = min(p2pTi, p
2p
Tj)

∆R2
ij

R2
, diB = p2pTi. (1.14)

It is obvious that for p = 1 we get the traditional kt algorithm described above.
The choice p = 0 corresponds to the Cambridge-Aachen algorithm [30] where
the distance variable is angle and jets are clustered purely on a geometric basis.
Finally, p = −1 defines the anti-kt jet clustering algorithm [31]. The main virtue
of this algorithm is that it first recombines high-pT (hard) particles, effectively
reducing the sensitivity of the algorithm to the internal structure of the par-
ton shower. Moreover, the nature of this algorithm gives the anti-kt jets their
distinct and desired cone-like shape. For these reasons, both ATLAS and CMS
have chosen the anti-kt algorithm as the default jet algorithm for use in physics
analysis.

1.6 Jet Quenching

One of the main differences between proton-proton collisions and heavy-
ion collisions is the presence of the QGP in the latter. In these conditions the
products of the potential scattering processes interact heavily with the ambient
plasma. A rough classification of the types of energy-loss may be factorized into
following two components [32,33]:

• Energy is transmitted to nearby medium constituents via elastic processes,
referred to as the collisional energy loss. This mode is believed to domi-
nate at low-particle momentum or for initial partons with large rest mass.

• Medium-induced radiation of partons out of the cone due to the gluon
bremsstrahlung (“gluonstrahlung”) during the interaction with the medium,
called radiative energy loss.

Feynman diagrams for both modes are sketched in figure 1.7.
It is expected that the radiative energy loss dominates over collisional energy

loss. The amount of energy loss is predicted to be proportional to the energy
density of the medium. Hence jets, which have lost significant amount of energy
while propagating through the medium, can be used as probes of the medium,
providing information about its structure and properties [33]. In this way jets
play a distinct role in ultrarelativistic heavy-ion physics.

Bjorken was the first one who recognized the potential of jets as a tool to
study the QGP. He suggested that high energy quarks and gluons suffer differ-
ential energy loss while propagating through the plasma [15]. He also pointed
out the extreme case when the hard collision occurs at the periphery of the hot
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Figure 1.7: Diagrams for collisional (left) and radiative (right) energy losses of
a quark of energy E traversing a quark-gluon medium. Ref. [34].

medium resulting in one jet being almost unquenched, and the other jet be-
ing totally absorbed. An example of such an event with large dijet asymmetry
measured by the ATLAS experiment [35] is illustrated in Figure 1.8. In this
figure one can see that one jet from a dijet system is fully quenched while the
other seems to be unmodified. In the left panel a view along the beam axis is
pictured with high-pT charged particle tracks indicated by the lines and energy
responses in calorimeters by colored bars. The middle panel shows the ET dis-
tribution in η×φ space. In the right paned a similar distribution is shown for the
charged particle tracks in the Inner Detector. The signal in the Inner Detector is
consistent with the calorimeter signal6.

Jet quenching, or high-pT parton suppression, has already been observed
in the collisions of golden nuclei at RHIC [36], but the LHC heavy-ion pro-
gram allows to study this phenomenon at much higher energies than previously
achieved at RHIC and, therefore, to use fully reconstructed jets [35].

Figure 1.8: Event display of a highly asymmetric dijet event, recorded by ATLAS
during the early portion of the 2010 PbPb run, with one highly energetic jet and
no visible recoiling jet. Ref. [35].

6Mentioned physical quantities and experimental apparatus are further discussed in sec-
tion 3.2
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Chapter 2

Motivation and Previous
Measurements

At this point it is instructive to outline a brief motivation and goals of the
analysis presented in this thesis. The first direct observation (that is using high
statistics sample of fully reconstructed jets) of jet quenching was performed at
the ATLAS detector at the LHC in year 2010. These results were published in
article [35]. This study focused on the balance between the highest energy pair
of jets in events where the azimuthal separation of these two jets was more
than π/2. The jet energy imbalance was expressed in terms of the asymmetry
AJ defined as:

AJ =
ET1 − ET2

ET1 + ET2

, (2.1)

The dijet asymmetry distributions are shown in four centrality bins in top
row of Figure 2.1 where they are compared with Monte Carlo simulated events
and proton-proton data. As we can see the asymmetry distribution in peripheral
(leftmost panel) lead-lead events coincides with the one for proton-proton and
simulated data. As we move towards more central collisions, however, one can
observe that lead-lead data develop different characteristics. Especially for the
most central (0 − 10%) lead-lead events the AJ distribution broadens and the
mean shifts to higher values. The panels in bottom row show that the leading
and subleading jets are still ejected primarily in back-to-back configuration.

This has, of course, a natural interpretation in terms of QCD energy loss
caused by the propagation through a hot, dense medium created primarily in
central lead-lead collisions. Namely that the subleading jet is often strongly
“quenched” leading to the observed imbalance in the jet energy of the two jets
in the dijet system.

The main goal of the analysis presented in the following chapters is to pro-
vide information about the mechanism that is responsible for the loss of energy
of the subleading jets compared to the leading jet in unbalanced dijet events. To
accomplish this, the differences in the redistribution of “lost” energy are stud-
ied as a function of the associated charged particle transverse momentum. The
distributions are extracted for several PbPb centrality bins, and are furthermore
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Figure 2.1: (Top) Dijet asymmetry distributions for data (points) and un-
quenched HIJING with superimposed PYTHIA dijets (solid yellow histograms),
as a function of collision centrality (left to right from peripheral to central
events). Proton-proton data froms

√
s = 7 TeV, analyzed with the same jet

selection, are shown as open circles. (Bottom) Distribution of the azimuthal
angle between the two jets, for data and HIJING + PYTHIA, also as a function
of centrality. Taken from Ref. [35].

studied as function of dijet asymmetry.
In order to gain more insight into the flow of the “quenched” energy, one

can study the overall momentum balance of dijet events. This can be done
using so-called missing transverse momentum1 (missing pT), which is basically
the sum of transverse momenta of all particles in the studied track pT range
with a minus sign2. By studying the projection of the missing pT on the axis
of the leading jet as a function of dijet asymmetry, it is possible to inspect the
redistribution of the “lost” energy by the leading and subleading jets. This
analysis has been previously done by the CMS Collaboration at the LHC and
was first published in [22] in 2011 and with updated results in 2014 [37].
The final figures taken from these publications are shown below in Figures 2.2
and 2.3. An interpretation of the results by CMS will be provided in the context
of our analysis in Chapter 5.

1If the sign for the vectorial quantity is not in boldface it denotes the magnitude of the vector.
2A more detailed definition of this quantity is given in Section 4.2.
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Figure 2.2: Average missing transverse momentum, 〈�p
||,LJ
T 〉 , for tracks with

pT > 0.5 GeV/c, projected onto the leading jet axis (solid circles). The 〈�p
||,LJ
T 〉

values are shown as a function of dijet asymmetry AJ for 30 − 100% centrality
(left) and 0−30% centrality (right). For the solid circles, vertical bars and brack-
ets represent the statistical and systematic uncertainties, respectively. Colored
bands show the contribution to 〈�p

||,LJ
T 〉 for five ranges of track pT . The top and

bottom rows show results for PYTHIA + HYDJET and PbPb data, respectively.
For the individual pT ranges, the statistical uncertainties are shown as vertical
bars. Taken from Ref. [22]
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Figure 2.3: (Upper row) Average missing transverse momentum, 〈�p
||,LJ
T 〉 , for

pp collisions (left) and four selections of PbPb collision centrality ranging from
50 − 100% to 0 − 10%. The solid markers show 〈�p

||,LJ
T 〉 averaged over all tracks

with pT > 0.5 GeV/c, while the colored boxes show the contribution to 〈�p
||,LJ
T 〉

for various momentum ranges from 0.5 < pT < 1 GeV/c (light blue) to pT
> 8 GeV/c (red). For the solid circles, vertical bars and brackets represent
the statistical and systematic uncertainties, respectively. For the individual pT
ranges, the statistical uncertainties are shown as vertical bars. (Lower row)
Difference PbPb - pp of the 〈�p

||,LJ
T 〉 contribution for the individual momentum

ranges shown in the upper panel. Error bars and brackets represent statistical
and systematic uncertainties respectively. Taken from Ref. [37].
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Chapter 3

Experimental Setup

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator and collider lo-
cated at CERN outside Geneva, Switzerland. It was primarily constructed to
collide protons, however, the machine is also capable of colliding heavy ions.
The first lead ion collisions took place in November 2010.

The LHC machine1 is installed in the tunnel which was originally constructed
for LEP (Large Electron–Positron Collider). The tunnel itself has 26.7 km in di-
ameter and contains eight arcs and eight straight sections. It lies between 45 m
and 170 m under the ground on the borders of Switzerland and France. By
contrast to the particle-antiparticle colliders, the LHC accelerator is designed to
collide particles with the same charge sign. For this reason it has two parallel
rings with counter-rotating beams. Figure 3.1 shows the location of the LHC
tunnel, and the location of the four large experiments around its ring.

As previously mentioned, the main physics program of LHC is based on
proton-proton (pp) collisions. However, typically one month per year, runs
with heavy-ion (208Pb82+) collisions are included. The LHC injector chain for
Pb ions is almost identical to the one for protons. The ions go from source
through a series of linear and circular accelerators before entering the LHC.
The first of them is a linear accelerator Linac 3, after that the ions go through
three circular accelerators, namely the Low Energy Ion Ring (LEIR), the Proton
Synchrotron (PS) and the Super Proton Synchrotron (SPS). This sequence is
also schematically shown in Figure 3.2.

The Pb27+ ions extracted from source need to be fully stripped from elec-
trons before entering the LHC. This is assured by two aluminium foil strippers.
The first one is located in Linac3 and provides the conversion to Pb54+. The
second stripping occurs in the line between PS and SPS. After extraction from
PS the Pb beam is fully stripped by a 0.8 mm aluminium foil [40].

1If not stated otherwise, all information about the LHC were taken from the LHC design
paper [38].
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Figure 3.1: Overall view of the LHC and its 4 main experiments. Ref. [39].

Figure 3.2: Scheme of the LHC ion injection chain with corresponding output
energies per nucleus taken from [40].

3.2 The ATLAS Experiment

ATLAS2 (A Toroidal LHC ApparatuS) is one of the seven particle detectors
at the LHC and together with CMS (Compact Muon Solenoid) is one of two
general purpose detectors. It is built at interaction point 1 (IP1) of the LHC
ring and is capable of studying both pp and PbPb collisions at unprecedented
luminosity. Its massive dimensions are 44 m in length, 25 m in height and it

2If not stated otherwise, all information about the ATLAS detector were taken from [41].
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weighs about 7000 tons. The illustration on Figure 3.3 provides overall cutaway
view of the ATLAS detector.

Following sections are devoted to the more detailed description of this de-
tector. In Section 3.2.1 we will define several concepts and physical quantities
which are often used in accelerator physics. This Section also defines the coor-
dinate system used in the ATLAS experiment. The Section 3.2.2 then describes
various parts and sub-detectors of ATLAS.

Figure 3.3: Cutaway view of the ATLAS detector highlighting various parts of
the experiment [42].

3.2.1 The ATLAS coordinate system and related concepts

The origin of the ATLAS coordinate system is located in the nominal inter-
action point. The z-axis is defined by the beam direction while the x-y plane
is perpendicular to the beam direction. The positive x-axis points towards the
center of the LHC tunnel and the positive y-axis is defined as pointing upwards.
The orientation of the z-axis therefore follows from the right-handedness of the
coordinate system. The azimuthal angle φ is measured as the angle in the x-y
plane. The φ = 0 corresponds to the positive x-axis and increases clock-wise
looking in the positive z direction. The polar angle ϑ is measured as the angle
from the positive z-axis. By definition, ϑ is 0 or π along the beam axis and π/2
on the transverse plane.

Considering a particle with momentum vector p = (px, py, pz) and energy E
experimental particle physicists often use rapidity y as an alternative to speed
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as a measure of motion. It is defined as [43]:

y =
1

2
ln

(
E + pz
E − pz

)
. (3.1)

Rapidity is not Lorentz-invariant, it is, however, additive under the boosts along
the z-axis. For p � m or, equivalently, for m/p → 0, the Equation (3.1) can be
expanded and simplified to obtain the definition of pseudorapidity:

η = − ln

(
tan

(
ϑ

2

))
. (3.2)

This quantity gives us only geometric information about the direction of the
particle and does not require the knowledge of mass of the particle. Unlike
rapidity, pseudorapidity is not additive under longitudinal boosts.

We define the transverse momentum pT as the projection of the momentum
vector on the x-y plane:

pT = |p| sinϑ =
√
p2x + p2y. (3.3)

The transverse energy ET of a particle is defined as3 [44]:

ET = E sinϑ =
√
m2 + p2T, (3.4)

where m is the rest (invariant) mass of the particle. Azimuthal angle φ, pseudo-
rapidity η, ET and pT are four quantities that can fully characterize the particle.
We can therefore say that ET and pT are measured in η × φ space.

A total energy accessible in the collision is quantified by the center-of-mass
energy, which can be expressed in the Lorentz invariant form4 [43]:

√
s =

√
(P1 + P2)2 =

√
(E1 + E2)2 − (p1 + p2)2, (3.5)

where P1 and P2 are the four-momenta of the incoming particles.
In heavy-ion collisions, it is common to use the energy per nucleon-nucleon

pair
√
sNN. Typical values of

√
sNN for AuAu collisions at RHIC have been

130 GeV [45] and 200 GeV [36]. The LHC currently operates at 2.76 TeV

per-nucleon center-of-mass energy and it is planned to reach
√
sNN = 5 TeV,

which roughly corresponds to designed 14 TeV for protons.
An important factor in a collider run is the luminosity which quantifies the

yield of events per period of time normalized by the interaction cross-section.
The beams in today’s colliders consist of bunches of ions. If two bunches con-
taining n1 and n2 particles collide head-on with frequency f , the instantaneous

3Using the convention where c = 1.
4This formula takes into consideration the collision of two particles with energies E1 and E2

and momenta vectors p1 and p2. The square of the momenta therefore plays the role of the
dot product.
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luminosity, L , of a beam can be expressed as:

L = f
n1n2

4πσxσy
, (3.6)

where σx and σy characterize the transverse beam profiles in the horizontal
and vertical directions. It is assumed that the transverse profiles of the colliding
bunches are identical and that the profiles are independent of position along the
bunch. The integral over time of the instantaneous luminosity is the integrated
luminosity. It is used to calculate the number of events N with cross section σ:

N = σ

∫
L (t)dt. (3.7)

Luminosity is clasically stated in units of cm−2s−1. Integrated luminosity, on the
other hand, is usually quoted as the inverse of the standard measures of cross
section, such as barns [43].

This thesis focuses on the phenomenon of jet quenching. It is therefore
useful to define two more quantities regarding jets. One of them is the jet
axis which characterizes the jet position in η × φ phase space and gives the
information about the direction of parton from which the jet originates. It can
be defined e.g., as a transverse energy weighted position of constituents of jets:

φjet =

∑
i∈jet

ET,iφi∑
i∈jet

ET,i

, ηjet =

∑
i∈jet

ET,iηi∑
i∈jet

ET,i

, (3.8)

where ηi, φi and ET,i are the position in η × φ space and transverse energy of
constituents of jets. Constituents of jets are particles or calorimeter cells that
are assigned to a jet by the jet finding algorithm mentioned in Section 1.5. Each
jet finding algorithm has a distance parameter, or radius, R, which is the area
in η × φ space that is covered by a jet.

3.2.2 The sub-detectors

The ATLAS detector is forward-backward symmetric with respect to the in-
teraction point and covers almost the full 2π in azimuth. It consists of four main
subdetector systems [42].

• The Inner Detector (ID): This is the innermost sub-detector beginning
only 50 millimeters from the beam axis. It has a cylindrical shape with a
length of 7 m and the outer radius of 1.15 m. These dimensions cover a
pseudorapidity region of |η| < 2.5. Its main purpose is the tracking of the
charged particles and measuring their momentum. It is also capable of
reconstructing the primary interaction vertex and particle decay vertices.
Figure 3.4 contains the illustration of this sub-detector.
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Figure 3.4: Overall view of the Inner Detector [42].

The ID is immersed in the solenoidal magnetic field of 2 T which curves
the tracks of charged particles allowing the momentum measurements.
The detector is composed of three independent sub-detectors. These are
(in order of increasing radius): silicon pixel detector, a silicon microstrip
detector (SCT) and, finally, a straw tube transition radiation tracker (TRT).

• The Calorimeter System: The ATLAS calorimeters are designed to stop
the particles through the electromagnetic and strong interactions. This
system is composed of electromagnetic (EM) and hadronic calorimeters,
each using a different technology to measure the energy of particles. Liq-
uid argon technology (LAr) is used by the EM calorimeters (and some
hadronic calorimeters) and scintillation tiles by the hadronic ones. The
fine segmentation of both types of calorimeters is well-suited for measur-
ing jets [35].

When the particle strikes an absorber (thick metal layer) it initiates EM
and/or hadronic showers. The energy of the incident particle is spread
among the lower energy particles in the cascade. Behind the absorber
is placed an active material which collects some of the energy of these
particles, either through ionization (LAr) or scintillation (tiles). Alternat-
ing layers of absorber and active material are placed in succession and the
shower-sampling is repeated. As a consequence, the energy of the particle
can be determined.

In order to limit punch-through of the particles into the muon system the
thickness of the calorimeters is an important parameter. Moreover, the
absorbing material is chosen to be dense in order to absorb the particles.
Figure 3.5 highlights various parts of the ATLAS calorimetric system. The
EM calorimeter covers the pseudorapidity range of |η| < 3.2. The hadronic
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calorimetry which uses the steel and scintillating tiles covers the range of
|η| < 1.7. LAr technology is also used in hadronic end-cap calorimeters
covering the range of 1.5 < |η| < 3.2. Finally, the LAr forward calorimeters
(FCal) extend the pseudorapidity coverage up to |η| = 4.9. As we will see
in section 1.4 the FCal system plays a special role in the ATLAS heavy-ion
analyses.

Figure 3.5: Cutaway view of the ATLAS calorimeters [42].

• The Muon Spectrometer: Figure 3.6 shows the layout of the muon spec-
trometer. This system is located on the outermost part of the detector

Figure 3.6: Layout of the muon spectrometer [42].
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(see Figure 3.3) because the muons with sufficient energy are the only
detectable particles that can pass the calorimetric system without being
stopped. It consists of monitored drift tubes (MDTs) for precision track-
ing in the spectrometer, Resistive Plate Chambers (RPCs) and Thin Gap
Chambers (TGCs) for triggering in barrel and endcap, respectively, and
Cathode Strip Chambers (CSCs) for detailed measurements in the high-
rate endcap inner layer where MDTs would have occupancy problems.
Like in the ID the momenta of muons are measured using a magnetic field
provided by the magnets described in the following paragraph.

• The Magnet System: The main purpose of this system is, as previously
mentioned, bending the tracks of the charged particles for precise mo-
mentum measurements. It consists of the magnets used in the ID (central
solenoid) and the muon spectrometer. The system of magnets for the
latter consists of large barrel toroid for |η| < 1.4, two smaller end-cap
magnets for the range 1.6 < |η| < 2.7 and by the combination of the two
in the transit region (1.4 < |η| < 1.6). The central solenoid produces an
axial magnetic field throughout the ID.
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Chapter 4

Basic Observables

4.1 Centrality Definition and Event Selection

4.1.1 Event selection

In this thesis, two sets of experimental data samples have been analyzed.
The data were collected during the 2011 Heavy Ion run at

√
sNN = 2.76 TeV

using jet trigger (Hard Probe stream) and minimum bias trigger (Minimum Bias
stream).

• Minimum Bias PbPb collisions were identified using the Minimum-Bias
Trigger Scintillator (MBTS) counters and Zero-Degree Calorimeters (ZDCs).
The ZDCs are located symmetrically at z = ±140 m and cover |η| < 8.3. In
PbPb collisions the ZDCs measure primarily “spectator” neutrons, which
originate from the incident nuclei and do not interact hadronically. The
MBTS counters are positioned 3.6 m from the nominal interaction point
and provide the full coverage of the azimuthal angle φ in the region of
pseudorapidity 2.09 < |η| < 3.84. They are divided into eight φ and two η
sectors, allowing for 16 possible hits per detector side [41, 46]. The total
integrated luminosity corresponding to this data sample is approximately
0.7 µb−1.

• The Hard Probe stream events with high-pT jets were selected using a
combination of a Level-1 minimum bias trigger and High Level Trigger
(HLT) jet triggers. The Level-1 trigger required a total transverse energy
measured in the calorimeter of greater than 10 GeV. The HLT jet trigger
ran the offline PbPb jet reconstruction algorithm, described above, except
for the application of the final hadronic energy scale correction, to identify
jets with radius R = 0.2. The HLT trigger selected events containing a
R = 0.2 jet with transverse energy ET > 20 GeV. The jet data sample
corresponds to the total integrated luminosity of approximately 140 µb−1.

In order to select a pure data sample of inelastic hadronic collisions, several
offline selections had to be applied to the triggered event samples. Events se-
lected by both minimum bias and HLT triggers were required to have a primary
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vertex reconstructed from charged-particle tracks with pchT > 0.5 GeV. The
primary vertices were reconstructed from hits in the inner detector using the
ATLAS track reconstruction algorithm described in [47] with settings optimized
for high-multiplicity heavy ion collisions [48]. Additionally, the time difference
between the two MBTS detectors is chosen to be less than 7 ns to efficiently
reject beam-halo events. Furthermore, to veto beam-gas events (when an ac-
celerated heavy-ion strikes a residual gas molecule), a coincidence of signals
at MBTS and ZDCs was required. These are the standard heavy ion settings
utilized by other analyses as well, see e.g. [49].

To conclude, Table 4.1 summarizes the dataset names and numbers of events.

Description Dataset name # events

MB 2011 Pb+Pb data11_hi.00*.physics_MinBias.merge.NTUP_HI*p1253_p1270 42.287 M

HP 2011 Pb+Pb
data11_hi.00*.physics_HardProbes.merge.NTUP_HI*p1238_p1249

14.156 Mdata11_hi.00*.physics_HardProbes.merge.NTUP_HI*p1253_p1270
data11_hi.00*.physics_HardProbes.merge.NTUP_HI*p1281_p1270

Table 4.1: Summary of data used in the analysis

4.1.2 Monte Carlo reference

In order to simulate the jet events in realistic conditions of heavy ion colli-
sions, the PYTHIA di-jet events were embedded into real minimum-bias heavy-
ion collisions measured during 2011 data taking. The detector response to each
event was individually simulated using a full GEANT4 [50] description of AT-
LAS [51]. The overlay of PYTHIA to real data was done at the digitization
level. These events thus contain, both the reconstructed quantities (e.g. tracks,
calorimeter jets) and PYTHIA particle level information which is called “truth”
(truth particles and truth jets).

We used three sets of PYTHIA MC samples (J3 – J5 samples). Each of them
has a fixed range of transverse momenta in the PYTHIA hard scattering. For this
analysis the different J samples were combined using a cross-section weighing
to obtain a combined sample with good statistics over a wide range of jet p̂T (the
transverse momentum of outgoing partons in the 2 → 2 hard-scattering). The
names of PYTHIA samples and their respective numbers of events can be found
in Table 4.2. The definitions of pT ranges and the associated cross-sections are
shown in Table 4.3. The MC samples were subjected to the same event selection
as the Minimum Bias data which is described in the previous section.

J Dataset name # events

3 mc11_2TeV.105012.J3_pythia_jetjet.recon.NTUP_HI.e1296_d724_r4789 4.531 M
4 mc11_2TeV.105013.J4_pythia_jetjet.recon.NTUP_HI.e1296_d724_r4789 4.535 M
5 mc11_2TeV.105014.J5_pythia_jetjet.recon.NTUP_HI.e1296_d724_r4789 4.5536 M

Table 4.2: Names of the PYTHIA J samples.
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J p̂min
T [GeV/c] p̂max

T [GeV/c] σ [nb]

3 70 140 294.17
4 140 280 6.4489
5 280 560 0.063882

Table 4.3: Definitions of embedded PYTHIA dijet.

4.1.3 Centrality definition and determination

The collision centrality can be intuitively thought of as the degree of overlap
of the two colliding nuclei. It is one of the most important factors in heavy-ion
physics, because the system produced in the most overlapping heavy-ion colli-
sions is expected to create the best conditions necessary for the QGP production.
In other words, closer the collision is to “head-on” (we say the collision is more
“central”), the more likely plasma production will be. On the other hand, more
“peripheral” collisions are less likely to create ideal conditions for the plasma
production [17].

In ATLAS, the PbPb collision centrality is characterized using the summed
transverse energy (

∑
ET) deposited in the forward calorimeters (FCal). The

minimum bias FCal
∑
ET distribution of the data analyzed in this work is illus-

trated in Figure 4.1. The FCal
∑
ET is used for this analysis to avoid biasing the

centrality measurements by jets, which are produced with the highest probabil-
ity in the barrel region [35].

The shape of the energy distribution (Figure 4.1) can be explained very
intuitively. The more frequent peripheral collisions with large impact parameter
produce only few particles, which generate only a small response in FCal (the
left end of the distribution), while the rare central collisions with small impact
parameter generate many more particles because of the increased number of
nucleon-nucleon interactions (the right end of the distribution).

For the purpose of this analysis, the fine-grained bins on Figure 4.1 were
combined into 10 larger bins, which are defined according to fractions of the
total PbPb cross section in minimum bias events. These bins are expressed in
terms of percentiles. By convention, the 0 − 10% bin represents the 10% most
central events (highest values of FCal

∑
ET) and increasing percentiles refer

to events with successively lower FCal
∑
ET and thus successively smaller cen-

trality. The Table 4.4 contains values of FCal
∑
ET, which determine different

centrality bins, together with the mean values 〈FCal
∑
ET〉 [52].

Figure 4.2 confirms the assumption that various centrality bins contain, by
definition, the same amount of minimum bias events.
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Figure 4.1: Probability distribution of
∑
ET in the forward calorimeters for

minimum bias data. The four regions of centrality are indicated by dashed lines
and labeled according to increasing fraction of lead-lead total cross section.
Central collisions (0-10%) deposit large amounts of energy in the FCal while
peripheral (40-100%) have small energy deposits.

Centrality FCal
∑
ET range [TeV] 〈FCal

∑
ET〉 [TeV]

0− 10% > 2.423 2.903
10− 20% 2.423− 1.661 2.033
20− 30% 1.661− 1.116 1.363
30− 40% 1.116− 0.716 0.885
40− 50% 0.716− 0.430 0.545
50− 60% 0.430− 0.239 0.308
60− 70% 0.239− 0.119 0.160
70− 80% 0.119− 0.053 0.077
80− 90% 0.053− 0.019 0.032
90− 100% < 0.019 -

Table 4.4: Values of FCal
∑
ET and 〈FCal

∑
ET〉 for the centrality bins used in

this analysis.
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Figure 4.2: Distribution of the fraction of events in ten centrality bins. The
centrality-bin labels run from 0% (most central events) to 100% (most periph-
eral events).

4.2 Definition and General Behavior of the Missing
Transverse Momentum

The law of conservation of momentum dictates that the total sum of trans-
verse momenta vectors pT of all the particles created in the collision should be
zero1:

pT =
N∑
i=0

pT,i = 0, (4.1)

where i is the integer labeling the particle and N is the total number of par-
ticles produced in the collision (i.e., the multiplicity of the collision). In other
words, the pT vector calculated by adding the pT,i vectors of individual particles
produced in an event should be a zero vector.

This fact is, however, almost never observed in real experiments. We can,
therefore, talk about a missing transverse momentum vector �pT (in the rest of
this work this quantity will be referred to without boldface notation, i.e. �pT).
This observable is of high importance when studying the phenomenon of jet
quenching. It is usually calculated by adding the momenta vectors of all recon-
structed ID tracks present in an event vectorially and multiplying this by −1, as

1The summation sign here denotes the vector sum.
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defined in the following equation:

�pT ≡ −
N∑
i=0

pT,i = −pT. (4.2)

A nonzero �pT in an event usually has contributions from many sources. The
primary source of �pT are neutrinos, which are produced in weak interactions
and which escape from collider detectors without producing any direct response
in the detector elements. The presence of such particles must be deduced from
the overall imbalance of the total momentum [53]. Another contributions to

�pT include measurement resolutions, instrumental defects in the detector sys-
tem, and reconstruction inefficiencies. Apart from the undetected particles,
these contributions are considered unwanted, because they distort the mea-
surements.

4.2.1 Toy Monte Carlo

Before we started the analysis of ATLAS data and Monte Carlo (MC) events
a simple “toy” Monte Carlo simulation has been performed. The main purpose
of this simulation was to define �pT and to explore the basic properties of this
quantity under idealized conditions.

This MC was based on random number generation. It created a set of NC

“virtual” collisions, each with a different number of particles, Np. The total
number of particles in each collision was uniformly distributed from Np,min to
Np,max. Every particle in an event was assigned a value of pT,i and an azimuthal
angle φi. The values of φi were uniformly distributed over the interval [−π, π].
The number of particles carrying the transverse momentum pT, N(pT), followed
the exponential distribution:

N(pT) = ae−b·pT ,

where a and b are free parameters chosen to be 1 and 5, respectively. Note that
the behavior of quantities discussed further (especially of �pT) does not depend
on the choice of these parameters.

Using the value of pT,i and angle φi we calculated the x and y components
of the transverse momentum of a given particle i using simple formulae:

pxT,i = pT,i · cosφi, (4.3)

pyT,i = pT,i · sinφi. (4.4)

For every event the values of pxT and pyT of every particle were summed to obtain
the final vector pT. The magnitude of this vector reads as:

pT =

√√√√(∑
i

pxT,i

)2

+

(∑
i

pyT,i

)2

. (4.5)
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The vector �pT is, according to the Equation (4.2), just the vector of pT with the
minus sign. Thus they both have equal magnitude.

The individual x and y components of �pT can, therefore, be calculated as:

�p
x
T = −

∑
i

pxT,i, (4.6)

�p
y
T = −

∑
i

pyT,i. (4.7)

These are the quantities we will thoroughly discuss throughout the rest of the
thesis.

The values of parameters used in this simulation were: NC = 100, 000;
Np,min = 10 and Np,max = 6, 000. Each event was assigned to one of six bins
according to the number of particles in the event, that is, according to the “ac-
tivity” of the collision. In real collisions the activity of the event reflects the
centrality of the collision, which is a crucial quantity in the heavy-ion physics
and which was introduced in Sections 1.4 and 4.1.3.

The distribution of �pT for each of these bins is displayed in Figure 4.3. The
horizontal axis in this figure does not have an associated unit for the �pT, be-
cause we are only interested in the qualitative behavior of the distribution.
Histograms are normalized according to the number of entries in each activity
bin.
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Figure 4.3: Probability distribution of �pT for six activity bins in MC toy simula-
tion.

Let us now introduce one more quantity regarding �pT, the missing pT signifi-
cance �p

sign
T , which is often used in the studies of the missing pT and shall help us
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to understand the behavior of missing pT. It is defined for each collision as �pT
divided by the square root of the total transverse momentum of all the particles
in that collision:

�p
sign
T = �pT√∑

i

pT,i
. (4.8)

In an idealized case of our MC simulation, the distribution of �p
sign
T should be the

same for each centrality bin. This is really the case, as shown in Figure 4.4. The
reason for this will be explained in the following paragraphs.
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Figure 4.4: Probability distribution of �p
sign
T for six activity bins in MC toy simu-

lation.

Looking at the Figures 4.3 and 4.4, one could wonder about the origin of the

�pT. Remember that this is just a toy MC simulation, without any implemented
mechanism, which would generate the missing transverse momentum of the
simulated collisions. As it turns out, this �pT stems from finite statistics of par-
ticles we are dealing with. In order to understand this, imagine the transverse
plane of the detector as a circle. Let us now generate Np particles with uni-
formly distributed φ and divide the transverse plane in two halves, each span-
ning π in azimuth (for example, the upper half of the detector φ ∈ (0, π) and the
bottom half φ ∈ (π, 2π)). Say that the number of particles with azimuthal angle
belonging to the upper half of the detector is N , and number of the remaining
particles (those hitting the bottom half) is M (obviously, M +N = Np).

The overall �pT can be approximated using the mean particle transverse mo-
mentum 〈pT〉:

�pT ≈ 〈pT〉M − 〈pT〉N = 〈pT〉(M −N). (4.9)

The uncertainty of this quantity can be evaluated as the error of the indirect
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measurement:

(δ�pT)2 =

(
∂�pT
∂M

)2

(δM)2 +

(
∂�pT
∂N

)2

(δN)2 = 〈pT〉2(M +N), (4.10)

where δM and δN are the uncertainties of M and N , respectively. The last
equality follows from the fact that the standard deviation of the Poisson process
is the square root of the number of entries.

One can see that the error of the measurement of missing pT is proportional
to the square root of pT sum:

〈pT〉
√
M +N ∼

√∑
i

pT,i. (4.11)

Hence, the significance of the missing pT is missing pT scaled by its error, which
is the reason why we see the scaling in Figure 4.4 and which also confirms the
explanation of the origin of the missing pT in our toy MC: �pT stems from finite
statistics of particles we are dealing with.

This toy MC does not bring any new knowledge, but helps us to understand
the basic behavior of missing pT and its origin. In the following sections we will
explore the missing pT in the context of jet measurements using PYTHIA MC
samples and real data collected by ATLAS.

4.3 Basic Cuts and Corrections

4.3.1 Cuts for particles and jets

The lower threshold for the transverse momenta of particles considered in
this analysis was set to pthrsT = 0.5 GeV/c and since the Inner Detector (ID)
covers the |η| < 2.5 only tracks within this pseudorapidity interval can be con-
sidered. The requirements for the selection of quality tracks consist of cuts
on number of hits in different subdetectors of ID and cuts on the pointing of
tracks to the primary vertex. The longitudinal (z0) and transverse (d0) impact
parameter of the track measured with respect to the primary vertex are scaled
by their errors (zcov0 , dcov0 and sin θcov) which defines a significance of the impact
parameter (σz0 and σd0). The full list of track-quality selection requirements is
then:

• at least two hits in the Pixel ID

• at least seven hits in the Semiconductor Tracker (SCT)

• at least one hit in the first layer of the Pixel ID (BLayer) if expected

• σz0 ≡
z0 sin θ√

zcov0 sin2 θ + sin θcov(z0 sin θ)2
< 3; σd0 ≡

d0√
dcov0

< 3
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These cuts were found to provide a selection of tracks with a minimum contri-
bution from mis-reconstructed tracks while keeping the tracking efficiency at a
high level.

Jets have been reconstructed using the anti-kt jet clustering algorithm [31]
with the radius parameter R = 0.4. It is the standard jet algorithm used by
both ATLAS [35], and CMS [22]. The transverse energy of the jet is equal to
the sum of the transverse energies deposited in calorimeters belonging to the
reconstructed jet cone. The average contribution from the underlying event to
the jet was subtracted. Moreover, axis of the jet was required to lie within the
pseudorapidity range of |η| < 2.1 in order to capture all particles within a jet
cone.

4.3.2 Corrections for the components of missing pT

To investigate the basic behavior of �pT, similar analysis to the one presented
in Section 4.2.1 has been made on minimum bias data. The distributions of

�pT and �p
sign
T for centrality bins defined in the previous section are shown in Fig-

ures 4.5 and 4.6. The (80−100)% centrality bin is omitted, because it comprises
only the most peripheral collisions, which are not of much interest. Note that
the distributions displayed in these figures, as well as in the rest of this work,
are normalized according to the number of events in the given centrality bin.
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Figure 4.5: Probability distribution of �pT for seven centrality bins.

As we can observe, the qualitative behavior of the missing transverse mo-
mentum and its significance is almost identical to the ones for toy MC. However,
there may be some small differences caused by the malfunctioning regions in
ID, which distort the missing pT, as will be shown in the following text.
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Figure 4.6: Probability distribution of �p
sign
T for seven centrality bins.

As already mentioned, some of the missing pT may be generated due to the
presence of faults in ATLAS ID system. We shall demonstrate this effect on a
simple example. For the sake of simplicity, let us consider the extreme case
where one half of the Inner Detector is completely dysfunctional, for example
all of the detectors in the range of φ ∈ (0, π) (that is, the upper half of the
detector). If we were now to measure transverse momenta of a huge amount
of particles, the overall �pT would be pointing upwards (towards the faulty parts
of the Inner Detector), because no particles have been detected in the range
φ ∈ (0, π).

It is therefore useful to create the “map” of the detector, which would display
the faulty spots in the tracking system. This can be done by plotting the density
of tracks emerging from minimum bias collisions with pT > 0.5 GeV/c in two
dimensional η × φ space. This is illustrated in Figure 4.7.

The natural segmentation in η does not concern us, since the missing pT
projection does not depend on the overall η dependence of the underlying event
as one can infer from equations mentioned in Section 4.2. The inhomogeneity
in φ, however, has a significant impact on the analysis, because it distorts the
calculations of pxT,i and pyT,i.

Let us now look at the consequences of these faults on the �pT in Hard Probe
stream events. They can be observed in Figures 4.8 and 4.9. These graphs
show the values of means of the distributions of x and y components of �pT. If
the tracking system of the ID was flawless these distributions would be zero-
centered and their means would be centrality independent. This is almost true
for the y component but does not appear to hold for the x component. Since
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Figure 4.7: Scatter plot illustrating the number of tracks in η × φ phase space.
Color indicates the density of the tracks and is given in numbers, representing
the amount of tracks in 0.01× 0.02 bins of η × φ space.

the �pT is a basic observable of this analysis, our main concern is to reduce the
centrality dependence of these observables.

In the rest of this work the analyses shall be done for four individual particle
pT ranges: (0.5 −∞) GeV/c, (0.5 − 2) GeV/c, (2 − 4) GeV/c, (4 −∞) GeV/c

which reflect the selection in the original study of missing pT done by CMS [22].
The first correction that we can apply is the correction for the tracking effi-

ciency. This correction works as follows: first we take the map of particle tracks
displayed in Figure 4.7, then we do the projection on the η axis and normal-
ize it according to the number of φ bins and, finally, we divide each φ slice of
the track map by this projection. What we are left with is a two-dimensional
histogram displayed in Figure 4.10.

As one can see from the figure, this histogram contains values fluctuating
around 1. If we now multiply the momentum of each particle going into spe-
cific [η, φ] direction by the inverse of the histogram value at this coordinate
we effectively eliminate the detector effects on the overall missing pT vector in
an event. To what extent is this method effective can be seen in Figures 4.11
and 4.12 which show the mean values of missing pT components in the HP
stream as a function of collision centrality after applying the aforementioned
correction.

Apparently this correction helped to shift the means of histograms of missing
pT vector components towards zero mainly for the (0.5 −∞) and (0.5 − 2) pT
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Figure 4.8: The centrality dependence of the average missing transverse mo-
mentum in the x direction for four individual pT ranges.
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Figure 4.9: The centrality dependence of the average missing transverse mo-
mentum in the y direction for four individual pT ranges.
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Figure 4.10: Map of the inverse of the track momentum weights. Value of 1
means no track pT correction is applied for particles going into this coordinate
of the ID.

bins of the x component.
It is now possible to use values reported in Figures 4.11 and 4.12 to de-

fine an additive correction which removes the remaining centrality dependence
of components of �pT vector and sets their mean values to zero. This additive
correction subtracts the mean values reported in Figures 4.11 and 4.12 from
missing pT components calculated in each event during the analysis. The re-
sulting distribution of components of �pT vector are summarized in Figures 4.13
and 4.14. These figures show that the mean value is centered at zero for each
centrality bin and they also demonstrate the deterioration of the missing pT res-
olution with increasing centrality. Same procedure as described in this section
was applied also during the analysis of reconstructed Monte Carlo data. The
efficiency map presented in Figure 4.10 was in that case defined using the sim-
ulation data to avoid small differences between the simulation of the detector
response in MC and in the real data.
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Figure 4.11: The centrality dependence of the average missing transverse mo-
mentum in the x direction for four individual pT ranges after the correction.
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Figure 4.12: The centrality dependence of the average missing transverse mo-
mentum in the y direction for four individual pT ranges after the correction.
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Figure 4.13: Probability distributions of the corrected x component of �pT vector
for four individual pT ranges.
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Figure 4.14: Probability distributions of the corrected y component of �pT vector
for four individual pT ranges.
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4.3.3 Corrections of jets

The underlying event subtraction which is performed during the jet recon-
struction leaves jets that are not calibrated. Jet calibration needs to be applied
in order to correct e.g. for differences in the detector response to the electro-
magnetic part and hadronic part of the calorimeter shower. This correction is
done using standard ATLAS calibration. Further, the jets are corrected for a
presence of correlated background fluctuations by matching the jets to electro-
magnetic clusters and to jets reconstructed in the ID. The jets used in this study
reach a fully efficiency at about 90 GeV.
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Chapter 5

Analysis of Data and Monte Carlo

The measurements presented in the following sections aim to characterize
the energy loss mechanism that is responsible for the energy “lost” in the sub-
leading jet compared to the leading jet in highly unbalanced dijet pairs. In
order to accomplish this task, we study the differences in the redistribution of
the “lost” energy by the leading and subleading jet as a function of transverse
momentum. The distributions are extracted for several selections of PbPb col-
lision centrality both in real data and PYTHIA MC simulations. Finally, these
distributions are studied for different selections of dijet asymmetry AJ.

5.1 Dijet Asymmetry

The basic condition for the offline selection of events is described in Sec-
tion 4.1.1. On top of these conditions, a presence of two jets in the pseudorapid-
ity range of |η| < 2.1 (to capture all particles within a jet cone) is required. The
transverse energy of the leading jet (the jet with the highest transverse energy)
labeled as ET1 is required to be ET1 > 100 GeV, and the subleading (next to the
highest transverse energy) jet has to have ET2 > 25 GeV. The azimuthal angle
between the leading and subleading jets is required to be ∆φ = |φ1−φ2| > 2π/3.
This requirement is used to reduce contributions from multi-jet final states.
These settings were adapted from the paper [35]. By selecting leading jets with
rather large transverse energies we ensure full reconstruction efficiency. The re-
quirement for the subleading jet assures that this jet is reliably detected above
the underlying event.

It is important to characterize the dijet energy balance (or imbalance) with
a single quantity. To do so, the dijet asymmetry, AJ, is introduced:

AJ =
ET1 − ET2

ET1 + ET2

, (5.1)

where the subscripts 1 and 2 refer to the leading jet and subleading jet, respec-
tively. This construction ensures that AJ is always positive and reduces uncer-
tainties caused by possible constant shifts of the jet energy scale. Regular dijet
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events are expected to have the AJ distribution dominated by the contribution
at zero. The deviations from zero are caused by a combination of intrinsic prop-
erties of dijets and the jet energy resolution. Energy loss caused by the propa-
gation through the dense medium is expected to produce strong deviations in
the reconstructed energy balance. This was indeed observed in [22,35].

It is important to note that the ET2 threshold of 25 GeV constrains the
ET1-dependent limit on the magnitude of AJ. For the most common leading
jets with energies just above the 100 GeV threshold, this limit is AJ < 0.41.
The largest possible value of the dijet asymmetry ratio for the used dataset is
AJ = 0.77 for the highest energy leading jets with ET1 ≈ 400 GeV. Jets carry-
ing the energy of this magnitude are, however, very rare, and we can consider
AJ = 0.7 as an effective upper limit of the energy imbalance, when exploring
event properties differentially in the dijet asymmetry.

The example of the dijet asymmetry distribution is shown in Figure 5.1.
The figure compares AJ distributions reconstructed in 0 − 10% and 60 − 80%

centrality bins in Monte Carlo (MC) and in data. One can indeed see larger
contribution of events with imbalanced dijets in the data compared to MC in
the central collisions. The full details of the analysis of the MC sample and data
sample is presented in the next sections.
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Figure 5.1: AJ distributions for data (points) and PYTHIA MC (solid yellow
histograms) for central (left panel) and peripheral (right panel) PbPb collisions.

5.2 Analysis of Monte Carlo Reference Sample

The MC analysis has been performed both at the truth particle level and at
the reconstructed level containing a simulation of the detector. For the analysis
at the reconstructed level, we applied the cuts and corrections described in
detail in Section 4.3. The MC data samples and event selection criteria are
described in Section 4.1.2.
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The missing pT projections that are main observables of this analysis were
unfolded (that is corrected from the reconstructed to the truth level) by the
bin-by-bin correction as discussed later in this section.

Before we present the study of energy imbalance, it is useful to explore the
angular behavior of the missing transverse momentum evaluated with respect
to the jet position. More precisely, the object of our interest is the angle be-
tween the missing momentum vector �pT and the axis of leading jet defined in
Section 3.2. Hence, we introduce angular differences α defined as:

αLJ = |φMPT − φLeading Jet|, (5.2)

where φMPT is the azimuthal angle of �pT. The behavior of the quantity αLJ is
shown in Figure 5.2 for the truth MC and in Figure 5.3 for the reconstructed
MC. To enhance the readability of figures angular distributions of only four (out
of total seven) centrality bins are displayed.
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Figure 5.2: Probability distributions of the angle between the �pT vector and
leading jet axis for four individual pT ranges in truth Monte Carlo events.

The first feature obvious from these plots is the fact that there is absolutely
no centrality dependence in the MC truth. This is, of course, expected since the
truth MC deals only with particles generated from pQCD calculations without
any sort of jet quenching mechanism. There is also no detector present in truth
MC which would distort these measurements. The basic properties seen in
Figure 5.2 are following. For the highest pT particles (pT > 4 GeV/c), we can
see that the �pT points dominantly to the direction of the subleading jet (e.g.,
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Figure 5.3: Probability distributions of the angle between the �pT vector and
leading jet axis for four individual pT ranges in reconstructed Monte Carlo
events.

αLJ near π for the bottom right panel in both figures), which reflects the fact
that the subleading jet has less particles with high-pT than the leading jet. For
the low-pT particles (0.5− 4 GeV/c) the �pT points dominantly to the leading jet
(e.g., αLJ near 0 in Figure 5.2), which is a consequence of subleading jet having
more low-pT particles than the leading jet.

In the reconstructed MC sample there is an obvious centrality dependence
caused by the detector effects namely the jet position and energy resolution
and tracking efficiency which play a more important role in central collisions,
compared to peripheral collisions. The jet energy resolution not only smears
the jet energies, it may also lead to a misidentification of the leading jet as
subleading jet and vice versa. This leads to the observed enhancement of yields
at zero angles for the hardest particles.

It is not easily possible to disentangle the underlying physics from these fig-
ures, since jets with different AJ contribute simultaneously to the distributions
of αLJ. Moreover, the magnitude of the missing transverse momentum varies in
a given centrality bin according to the physics, as we shall further see.

To get some information about the overall energy balance (or imbalance)
of dijet events, we can use the projections of �pT vector of reconstructed tracks
onto the axis of leading jet. These were calculated for each event as the scalar
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projections:

�p
||,LJ
T = �pT cosαLJ, (5.3)

where �pT is the magnitude of the missing transverse momentum vector and αLJ

is the angle defined in Equation (5.2).
In Figures 5.4 and 5.5, the average values of �p

||,LJ
T , 〈�p

||,LJ
T 〉, are shown as a

function of event centrality for four track pT bins. The distributions in Figure 5.4
do not exhibit any centrality dependence while the distributions in Figure 5.5
do exhibit a small but significant residual centrality dependence even after the
corrections discussed in Section 4.3. The overall magnitude of the missing pT
projection in the case of reconstructed events is also significantly smaller than
in the case of truth. This is due to the combination of the deterioration of
the missing pT resolution, jet energy resolution, and tracking efficiency. Thus,
this residual centrality dependence was corrected in each track-pT interval and
centrality interval separately by applying an additive correction derived as a
difference of respective distributions in Figures 5.4 and 5.5. This correction
was applied when the projections were calculated in the event loop. This proce-
dure represents a simple bin-by-bin unfolding of reconstructed observable to the
truth level. The resulting corrected distributions are shown in Figure 5.6. One
can see a very good agreement of distributions between Figures 5.4 and 5.6.
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Figure 5.4: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges in Truth MC. The 〈�p
||,LJ
T 〉

values are shown as a function of collision centrality. The statistical uncertainty
is smaller than the marker size and horizontal error bars represent a size of a
given collision centrality bin.
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Figure 5.5: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges in reconstructed MC. The
〈�p
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T 〉 values are shown as a function of collision centrality. The statistical

uncertainty is smaller than the marker size and horizontal error bars represent
a size of a given collision centrality bin.
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Figure 5.6: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges in reconstructed MC after
the unfolding. The 〈�p

||,LJ
T 〉 values are shown as a function of collision centrality.

The statistical uncertainty is smaller than the marker size and horizontal error
bars represent a size of a given collision centrality bin.
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Figures 5.7 and 5.8 show the distributions of �p
||,LJ
T for both truth and recon-

structed MC. One can see that for the truth MC the distributions are identical in
all centrality bins. This is the same behavior as observed for the case of angles
αLJ in truth events. The reconstructed distributions are centrality dependent.
They are more broad for central compared to peripheral collisions which re-
flects the fact that missing pT resolution is deteriorated in central compared to
peripheral collisions (as shown in Sections 4.2.1 or 4.3.2).
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Figure 5.7: Probability distributions of the scalar projection of the �pT vector on
the leading jet axis for four individual pT ranges for truth Monte Carlo events.

Figures 5.9 and 5.10 present the average values of the projections as a func-
tion of dijet asymmetry, AJ, for four centrality bins ranging from 0 − 10% to
50 − 80%. These figures show the average missing transverse momentum for
tracks with pT > 0.5 GeV/c, projected onto leading jet axis, as solid black cir-
cles. Colored boxes show the contributions to the mean �pT projection for three
transverse momentum ranges from 0.5−2 GeV/c (blue) to pT > 4 GeV/c (red).
For each panel 〈�p

||,LJ
T 〉 values are shown as a function of dijet asymmetry from

almost balanced (AJ < 0.1) to unbalanced (AJ > 0.5) dijets. Following the
definition of �p

||,LJ
T , negative values represent an excess of particles in the direc-

tion of leading jet, while positive values indicate an excess of particles in the
direction of subleading jet.

One can see from these plots that the magnitude of the �p
||,LJ
T to the lead-

ing jet axis increases with increasing asymmetry as one would expect – the
events with large intrinsic AJ will tend to have large contribution of missing
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Figure 5.8: Probability distributions of the scalar projection of the �pT vector on
the leading jet axis for four individual pT ranges for reconstructed Monte Carlo.

pT pointing towards the subleading jet for hard particles (pT > 4 GeV/c) and
large contribution of missing pT pointing towards a leading jet for soft particles
(0.5 < pT < 2 GeV). This can be seen both at the truth level and reconstructed
level.

It is still possible to see some small residual differences between Figures 5.9
and 5.10 which means that the correction of the missing pT projections to the
truth level (unfolding) does not fully correct the missing pT projections evalu-
ated differentially in both the centrality and AJ. The goal of this analysis is not
to provide all the observables corrected to the truth level but rather to quantify
the energy flow and try to verify the observations by CMS. To achieve this goal
it turns out that the unfolding of all the observables to the truth level is not
needed and thus goes beyond the scope of this thesis. The important distri-
butions prior applying the unfolding are summarized in Appendix A. One can
see from the figures presented in the Appendix A that the physics conclusions
discussed later in this Chapter do not change if the unfolding of the missing pT
projections is not performed.
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Figure 5.9: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges shown as a function of AJ

for four centrality bins in truth MC. The statistical errors are shown as vertical
bars. Note that the blue and yellow histograms are “stacked” on top of each
other.
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Figure 5.10: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges shown as a function of AJ

for four centrality bins in reconstructed MC. The statistical errors are shown as
vertical bars. Note that the blue and yellow histograms are “stacked” on top of
each other.

5.3 Analysis of Collision Data Sample

In this section we will present the same observables as those presented in
Section 5.2, but reconstructed in real data. For the analysis presented in this
section the hard-probe stream defined in Section 4.1.1 was used. The basic
properties of corrections and missing pt distributions were cross-checked in the
Minimum Bias stream as well. The plots of distributions of angle αLJ are dis-
played in Figure . The scalar projections of �pT vector on leading jet axis (ac-
cording to Equation (5.2)) are shown in Figure 5.12. Finally, the mean values of
the distributions of these projections are displayed as a function of centrality in
Figure 5.13 and as a function of dijet asymmetry AJ in Figure 5.14. Important
differences in these distributions between the MC and real data are discussed
in the next section.
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Figure 5.11: Probability distributions of the angle between the �pT vector and
leading jet axis for four individual pT ranges.
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Figure 5.12: Probability distributions of the scalar projection of the �pT vector
on a leading jet axis for four individual pT ranges.
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Figure 5.13: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto

the leading jet axis for four individual track pT ranges. The 〈�p
||,LJ
T 〉 values are

shown as a function of collision centrality. Vertical error bars represent the
statistical uncertainties and horizontal error bars represent a size of a given
collision centrality bin.

5.4 Discussion

The most striking difference between the Monte Carlo and data results can
be seen by comparing Figure 5.6 for reconstructed MC and Figure 5.13 for
data. In the latter figure we can see that with the increasing centrality (cen-
trality going to zero) the size of the �pT projection calculated using the highest
pT particles increases towards negative values, which means an excess of yield
of these high-pT particles pointing towards the leading jet (�pT points in the di-
rection of the subleading jet). This means that more hard particles are in the
leading jet than in the subleading jet. This excess is compensated by an excess
of �pT calculated using soft particles (0.5 GeV/c < pT < 2 GeV/c). This means
that there are more soft particles in the subleading jet region. No such centrality
dependence is observed in the equivalent plot for both truth, as well as recon-
structed Monte Carlo. The underlying physics picture is following: in central
collisions the subleading jet is very often strongly quenched, which means that
the yield of hard particles is suppressed. The energy from these hard particles is
transferred to soft particles, which show an enhanced yield in central collisions.

This physics picture can be concluded also from the plots in Figure 5.14,
which evaluate the mean missing pT projection as a function of dijet asymmetry
separately for four centrality ranges ranging from central (0−10%) to peripheral
(50− 80%) collisions. With increasing asymmetry the imbalance increases and

58



0.1 0.2 0.3 0.4 0.5 0.6

 [
G

e
V

/c
]

〉
,L

J

T
p〈

­40

­30

­20

­10

0

10

20

30

40 T
0.5 < p

 < 2
T

0.5 < p
 < 4

T
2 < p

T
4 < p

ATLAS Work in Progress

0­10 %

0.1 0.2 0.3 0.4 0.5 0.6

­40

­30

­20

­10

0

10

20

30

40 10­30 %

JA
0.1 0.2 0.3 0.4 0.5 0.6

 [
G

e
V

/c
]

〉
,L

J

T
p〈

­40

­30

­20

­10

0

10

20

30

40
30­50 %

JA
0.1 0.2 0.3 0.4 0.5 0.6

­40

­30

­20

­10

0

10

20

30

40
50­80 %

Figure 5.14: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges shown as a function of AJ for
four centrality bins. The statistical errors are shown as vertical bars. Note that
the blue and yellow histograms are “stacked” on top of each other.

the lack of the high-pT particles in the subleading jet (negative values of �p
||,LJ
T

in Figure 5.14) is compensated by the excess of softer particles in the region of
0.5 − 4 GeV/c (positive values of �p

||,LJ
T in Figure 5.14), as expected. In periph-

eral PbPb collisions and for all centrality selections of MC, this excess of hard
particles in leading jet is compensated by both intermediate pT particles from
2 − 4 GeV/c and soft pT particles between 0.5 − 2 GeV/c with approximately
equal contributions. As we move towards more central PbPb collisions, how-
ever, the balancing contribution of soft particles is significantly larger than the
contribution from intermediate pT particles. This is consistent with the picture
of medium-induced energy loss mechanism resulting in a softer spectrum of
charged particles. This effect is strongest for large AJ dijets observed in central
PbPb collisions, where the size of hot, dense medium is expected to be largest
resulting in most significant quenching effects.

One also observes that generally, the total projected momenta in the events,
shown as solid markers in Figures 5.14 and 5.10, are found to be balanced to
maximum value of �p

||,LJ
T of approximately 12 GeV/c for events with the largest

AJ. This trend can be observed in both truth, as well as reconstructed PYTHIA
MC events. The reason for this deviation from zero can be the transverse mo-
mentum threshold of 0.5 GeV/c imposed on charged particles or the acceptance

59



of the tracker.
In order to draw more quantitative conclusions we have evaluated the dif-

ferences between the reconstructed distributions in MC and real data. The best
way to do so is to show the difference between the contributions of different
track pT ranges to 〈�p

||,LJ
T 〉 in PbPb data and reconstructed Monte Carlo. This

final result is shown in Figure 5.15. While the contributions from the various
pT ranges for PbPb data and MC are similar for peripheral collisions, a differ-
ence can be seen for central collisions, with a significant excess of soft charged
particles for asymmetric jets in PbPb collisions.
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Figure 5.15: Difference (PbPb Data - PbPb Reconstructed MC) of the 〈�p
||,LJ
T 〉

evaluated as a function of dijet asymmetry for the individual momentum ranges
of charged particles.

60



5.4.1 Comparison with the CMS study

These results, especially those displayed in Figures 5.14 and 5.15, can be
compared with the results obtained by CMS Collaboration, published in [22].
We should note that there are some small differences between the analysis of
CMS and the analysis in this work. Namely there is a difference in the jet
selection requirements – CMS uses following: ET1 > 120 GeV, ET2 > 50 GeV,
∆φ > 5/6π, while in this analysis we use: ET1 > 100 GeV, ET2 > 25 GeV,
∆φ > 2/3π which were adopted from the original paper [35].

Of the main interest are the figures shown in the bottom row of Figure 5.16.
It is possible to directly compare these figures with Figure 5.15 presented in
previous section. As we can see, both of these figures exhibit a very good cor-
respondence between each other and we can therefore conclude that we have
confirmed the observation done previously by the CMS Collaboration.

Figure 5.16: (Upper row) Average missing transverse momentum, 〈�p
||,LJ
T 〉 , for

pp collisions (left) and four selections of PbPb collision centrality ranging from
50 − 100% to 0 − 10%. The solid markers show 〈�p

||,LJ
T 〉 averaged over all tracks

with pT > 0.5 GeV/c, while the colored boxes show the contribution to 〈�p
||,LJ
T 〉

for various momentum ranges from 0.5 < pT < 1 GeV/c (light blue) to pT
> 8 GeV/c (red). For the solid circles, vertical bars and brackets represent
the statistical and systematic uncertainties, respectively. For the individual pT
ranges, the statistical uncertainties are shown as vertical bars. (Lower row)
Difference PbPb - pp of the 〈�p

||,LJ
T 〉 contribution for the individual momentum

ranges shown in the upper panel. Error bars and brackets represent statistical
and systematic uncertainties respectively.
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Summary and Conclusions

In this work, the data collected by ATLAS detector have been used to in-
vestigate the behavior of missing transverse momentum in PbPb collisions at
center-of-mass energy

√
sNN = 2.76 TeV. Before the analysis of the data pro-

duced by ATLAS a simple “toy” MC simulation has been performed to study the
basic mechanism of �pT production.

We analyzed two samples of collision data and corresponding MC simula-
tion. The first of the collision data samples was the minimum bias data sample,
corresponding to an integrated luminosity of 0.7 µb−1, which has been used
to define the collision centrality. These data were also used to investigate and
construct the corrections for the x and y components of the missing transverse
momentum vector. These corrections had to be applied in order to compensate
for the faulty parts of the ID tracking system.

The second data sample, a jet data sample, has been used to study the flow
of the energy missing in the subleading jet. Jets were reconstructed using the
anti-kt jet clustering algorithm with the distance parameter of R = 0.4 in a data
sample corresponding to an integrated luminosity of 140 µb−1. Only events
with |η| < 2.1 having leading and subleading jet energies higher than 100 GeV

and 25 GeV, respectively, were selected. Only the tracks with pT > 0.5 GeV/c

were used in this study. The pT of tracks was corrected to compensate for
the inefficiency of the ID tracking system. Jets were corrected by standard
corrections used by ATLAS.

The momentum flow in PbPb and MC events containing high momentum
jets has been studied and it was shown that for a given dijet asymmetry, the
dijet momentum imbalance in PbPb is found to be compensated by particles at
lower transverse momentum (pT = 0.5 − 2 GeV/c) compared to the PYTHIA
simulated collisions, where most of the momentum balance is found in the
higher transverse momentum range (pT = 2− 4 GeV/c). These measurements
show an increasing difference between PbPb and MC for more central collisions,
reflecting a softening of the charged particle spectra carrying the momentum
balance of asymmetric dijet systems.

All things considered, these results should provide an important qualitative
and quantitative insight into the transport properties of the medium created
in heavy-ion collisions. Furthermore, the results are in a very good agreement
with previously published results by CMS [22].
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Appendix A

Distributions Prior the Unfolding

In this appendix, we summarize the important distributions evaluated prior
the unfolding described in Section 5.2. One can see that the unfolding of the
missing pT projections does not influence the overall conclusion of the analysis.
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Figure A.1: Probability distributions of the scalar projection of the �pT vector on
the leading jet axis for four individual pT ranges for reconstructed Monte Carlo.
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Figure A.2: Average missing transverse momentum, 〈�p
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Figure A.3: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges. The 〈�p
||,LJ
T 〉 values are shown

as a function of AJ for four centrality bins. The statistical errors are shown as
vertical bars. Note that the blue and yellow histograms are “stacked” on top of
each other. (Reconstructed Monte Carlo)
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Figure A.4: Probability distributions of the scalar projection of the �pT vector on
a leading jet axis for four individual pT ranges in real data.
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Figure A.5: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges. The 〈�p
||,LJ
T 〉 values are shown

as a function of collision centrality. Vertical error bars represent the statistical
uncertainties and horizontal represent a size of a given collision centrality bin.
(Data sample)
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Figure A.6: Average missing transverse momentum, 〈�p
||,LJ
T 〉, projected onto the

leading jet axis for four individual track pT ranges. The 〈�p
||,LJ
T 〉 values are shown

as a function of AJ for four centrality bins. The statistical errors are shown as
vertical bars. Note that the blue and yellow histograms are “stacked” on top of
each other. (Data sample)
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Figure A.7: Difference (PbPb Data - PbPb Reconstructed MC) of the 〈�p
||,LJ
T 〉

evaluated as a function of dijet asymmetry for the individual momentum ranges
of charged particles.
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