
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Juraj Hámorńık

Signature-based User Authentication

Katedra distribuovaných a spolehlivých systémů

Supervisor of the master thesis: Mgr. Pavel Janč́ık

Study programme: Informatics

Specialization: Software Systems

Prague 2015

I would like to thank my supervisor Mgr. Pavel Janč́ık for his time and his very
helpful, constructive advice on this thesis.

I would like to thank the coffee machine for working long hours, always pro-
viding great espresso that keep the caffeine level high.

Last but not least, I would like to thank my family for their kind support
during my whole bachelor and master studies and my girlfriend Zuzana for being
my companion and for making me happy (besides that, she also read this whole
thesis)

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date 6.5.2015 signature of the author

Název práce: Overováni osob podpisem

Autor: Juraj Hámorńık

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: Mgr. Pavel Janč́ık, Katedra distribuovaných a spolehli-
vých systémů

Abstrakt:
Tato práce zpracovává chyběj́ıćı možnost autentifikace uživatele podpisem v systé
-mu Windows. Výsledkem této práce je software, který umožňuje přihlášeńı
uživatele do systému Windows podpisem. Zaměřili jsme se zejména na bezpečnost
ověřováńı podpisu a na co největš́ı uživatelskou př́ıvětivost. Implementovali jsme
autentifikačńı službu, která přij́ımá podpis a vraćı př́ıstupový token v př́ıpadě
jeho pravosti. Ověřováńı je realizované porovnáváńım podobnosti zkoumaného
podpisu se vzory. Podobnost je poč́ıtána metodou dynamic time wrap na základě
dynamických vlastnost́ı podpisu jako jsou rychlost, zrychleńı a tlak pera při psańı.
Př́ıstupový token využ́ıvá náš plugin přihlášeńı, nazvaný signature credential
provider, na dekódováńı př́ıstupových údaj̊u a vykonáńı přihlášeńı. Výsledkem
této práce je řešeńı, které dovoluje přihlášeńı uživatele do systému Windows
ručně psaným podpisem s rizikem 5.27 procent na nepřihlášeńı nebo přihlášeńı
nevhodné osoby.

Kĺıčová slova: overovávńı ručne psaného podpisu, windows login, credential provider

Title: Signature-based User authenticaion

Author: Juraj Hámorńık
Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Janč́ık, Department of Distributed and Dependable Sys-
tems

Abstract:
This work aims on missing handwritten signature authentication in Windows.
Result of this work is standalone software that allow users to log into Windows
by writing signature. We focus on security of signature authentification and best
overall user experience. We implemented signature authentification service that
accept signature and return user access token if signature is genuine. Signature
authentification is done by comparing given signature to signature patterns by
their similarity. Signatures similarity is calculated by dynamic time warp on
dynamic signature features such as speed, acceleration and pressure. User access
token is used by our Windows login plugin called signature credential provider
to decrypt user credentials and perform log in. Result of this work is solution
that allow user log to windows by handwritten signatures, with equal error rate
of 4.17%.

Keywords:
handwriiten signature authentication,credential provider,windows login

Contents

Introduction 4

1 Signature overview 6
1.1 History of handwriting signature 6
1.2 Signature as method of authentication 7
1.3 Signatures retrival . 8
1.4 Signature features . 10
1.5 Signature verification method . 13

1.5.1 Hidden Markov model . 13
1.5.2 Support vector machines 14
1.5.3 Neural networks . 14
1.5.4 Dynamic Time Warp . 14

1.6 Signature forgery . 17

2 Windows credential provider overview 19
2.1 Windows XP . 19

2.1.1 Reason to give up GINA 20
2.2 Windows Vista, Windows 7 . 20
2.3 New Logon Architecture . 21
2.4 Credential provider design . 21

2.4.1 Loading . 22
2.4.2 Login . 23
2.4.3 Default credential . 24

2.5 Windows 8 . 24
2.5.1 Old model . 24
2.5.2 New model . 24
2.5.3 Inside changes . 25

3 Signature credential provider design 27
3.1 Signature enter . 27
3.2 Native credential provider or third part solution 28
3.3 Location of signature verification 28
3.4 User credential storage and pass 29
3.5 Localization and implementation of credentials injections 31

3.5.1 Credential . 31
3.5.2 Provider . 31

3.6 Credential provider for Window Vista/7 or Windows 8 32

4 Signature credential provider implementation 33
4.1 Language selection . 33
4.2 Implementation . 33

4.2.1 File overview . 34
4.2.2 Signature credential provider login scenario 35
4.2.3 Signature credential provider loading 35
4.2.4 Gathering of user input required to log in 36

1

4.2.5 User input transformation to password 37
4.2.6 Windows 8 Signature credential differences. 39
4.2.7 Implementation notes . 40
4.2.8 Alternative usage of signature credential provider 40

5 Signature authentication design 43
5.1 Capturing of handwritten signature 43
5.2 Signature features used to authentication 44
5.3 Token from signature . 45
5.4 Signature authentication . 46
5.5 Weight of signature features . 46
5.6 Calculation of signature weight 47

5.6.1 Feature similarity deviation 47
5.6.2 Feature entropy . 48
5.6.3 Feature weight calculation 48

5.7 Signature similarity calculation 49

6 Signature authentication implementation 50
6.1 Signature verification DLL implementation 50

6.1.1 Capturing signatures . 50
6.1.2 Verifying signatures . 52
6.1.3 DynamicX signature comparer 53
6.1.4 Signature Container . 54

6.2 Sign form . 55
6.2.1 Usage scenario . 55

6.3 Signature authentication service 56
6.3.1 Signature authenticator loading 56
6.3.2 Signature authentication 56
6.3.3 Management of signatures 57

6.4 Credential manager . 57
6.5 Signature studio . 58

7 Evaluation 59
7.1 Test data . 59
7.2 Test methods . 60
7.3 Miss input test . 60
7.4 Forger test . 60

8 User documentation 63
8.1 Instalation . 63
8.2 Signature and credentials managing 63
8.3 Login by signature . 66

9 Related work 68
9.1 Signatures . 68
9.2 Credentials providers . 69

Conclusion 70

2

Bibliography 72

Attachments : DVD contantes 76

3

Introduction

People, especially in these days when information about passwords leaks regular
fills the media, are aware of what security threads in form of standard passwords.
They seek other authentication methods. Most popular and secure are biomet-
ric authentication systems. Biometric attributes used for authentication include
iris, hand geometry, face and fingerprints, but they require special hardware to
capture. Behavioral biometric attributes have similar characteristics such as uni-
versality and uniqueness but are easier to obtain.Walk characteristic, keystroke
dynamics, signatures and more belong among behavioral biometric attributes.
Signatures are most widely and traditionally used in authentication documents
and enforcing binding contracts in paper-based documents and hence are socially
accepted. We will combine advantages of signatures with tablet pc capability to
proceed handwritten input.

To successfully use handwritten signature to perform log in to Windows we
must solve two problems: authenticate user by given signature and to be able to
process information about user authentication to perform log in to the Windows.

User authentification is done by comparing similarity between given user sig-
nature and stored signature patterns. Similarity is calculated from dynamic-based
signature features such as speed, acceleration and pressure. These features are
compared by dynamic time warp method. To better reflect uniqueness of each
person signature, we weight these features. Feature weight is based on feature
entropy and deviation. Result of user authentification is access token, which is
used in custom Windows login plugin. This log in plugin must transform access
token to user credentials and submit it to Windows. Windows have limited capa-
bility to capture handwritten input data from login screen, so our Windows login
plugin muse solve this problem as well.

Main motivation for writing this thesis was that in time of writing this thesis
there are no solutions that use handwritten signature to log user to the Windows.
This thesis has goal to develop such solution.

Structure of the Thesis

The thesis is dived into two main parts. Signature authentication and Windows
logon plugin that is called Credential provider.

Signature part (Chapters 1. and 5 to 6). Chapter 1 overviews signatures. In
this chapter we discuss history of signature, signature usage for authentification
between other bionic traits, capturing signature to computer and signatures fea-
tures. We also discuss some method used in signature verification. At the end of
the chapter we briefly discuss signature forgery. Chapter 5 discuss design decision
about signature authentication such as choosing signatures features for authen-
tication and choosing method for signature authentication. Chapter 5 describes

4

implementation of signature authentication mechanism based on this decisions.

Credential part (Chapter 2 to 4). Chapter 2 overview credential provider ar-
chitecture and differences between login architectures in Windows XP, Windows
Vista/7 and Windows 8. In Chapter 3 we discuss design decision that have to
be made for implementation our signature credential provider. Implementation
of signature credential provider is described in chapter 6.

Additionally Chapter 7 evaluate signature authentication with genuine and
forged signatures from SVC2004 [30] (First international signature verification
competition.

5

1. Signature overview

Signature, according to the American Heritage dictionary, can be define as “the
name of a person written with his hand or “the act of signing one’s name”. Signa-
tures are with us during whole lifetime. Birth certificates, papers that establish
who we are and what right and privileges we have are signed by parents or doc-
tors. First thing that a child usually learn is to write their own name, so basically
a signature. At the opposite end one of last paper that person sign is a testament,
paper that provide distribution of person property at death.

In next section, we look at signature history, usage, features, capturing and
at least forging.

1.1 History of handwriting signature

Handwritten signature is based on written language so we start at the creators
of handwriting. The Sumerians (5th to 3rd millennia BC) are considered as the
creators of writing and also developers of ways to authentication writer. The
Sumerians created intricate works of art carved in clay tables or seals to iden-
tify ownership. In many civilizations people used symbols and other marks to
authenticate writings, acknowledge writings and even to accept the content of
document [1].

Figure 1.1: Sumerian cylinder seal and its imprint to clay. This imprint served
as signature

Use of signatures is recorded in the Talmud [2] around 4th century, complete
with security procedures to prevent the alteration of documents after they are
signed. The Talmud describes use of a form of signature cart by witnesses to
deeds. The practice of authentication of documents by affixing handwritten sig-
natures began to be used with the Roman Empire during the rule of Valentian III
in year 439 AD. A short handwritten sentence at the end of a document, named
the subscipto stating for that the signer subscribed to the document. This sub-
scipto was first used to authenticate wills. The practice of affixing signatures to
documents spread rapidly from initial usage at wills and form of signatures (as

6

we describe already it a hand written representation of one’s own name) remain
unchanged for over 1400 years [3].

Every authentication mechanism, however great its idea, is sooner or later
bypassed. There is evidence that signature forgery was practiced shortly after
the invention of writing. Problem with signature forgery remained ever since
these days. Not surprisingly, signature forgery, was a very lucrative business for
individuals in high office.

For example Titus was a skillful forger in his time. Another case is that Ci-
cero berated Anthony for making profits by counterfeiting handwriting. Based on
this two and more cases in the year 539 AD,only 100 years after Romans started
using signatures, Romans generated legislation that establisher requirements for
forensic document examination. This requirements specifying under what cir-
cumstances their testimony may be given in the cases of forgery.

”Comparison of handwriting shall only be made in the case of public docu-
ments, and in the case of private instruments where the adverse party can use
them to his own advantage. For we entertain hatred for the crime of forgery.
We order that experts charged with the comparison of the handwriting of pub-
lic documents shall be sworn before any private instruments are placed in their
hands for this purpose. Wherefore this law, as well the present modification of
the same, shall remain in full force, and experts aforesaid shall by all means be
sworn”[4]

Not all civilization held a negative attitude to signature forgery. Albert S.
Osborn in book “Questioned Documents” [5] suggested that I was not as result
of design, but as an outgrowth of circumstances and condition that the English
common law for many years favored signature forgery. The great period of time in
English history an atmosphere of mystiques was associated with the written word.
This mystique was so big, that for many generation the “comparisons of hands”
was not only illegal but it was even highly improper. In other word handwriting
and handwritten signature could not be identified or verified. Thinks starting
changing slowly in 1854 when British system of justice allow handwriting com-
parisons in civil cases. By 1865 all restriction were lifted to allow handwringing
comparisons in criminal cases.

1.2 Signature as method of authentication

Today’s security requirements place biometrics authentication to the center of
interest. Term biometric refers to individual recognition based on a person’s dis-
tinguishing characteristics. While other non-biometric technique use possession
of item such as tokens (NFC badges, ID cards etc.) or the knowledge of some-
thing (password, key phrase) to perform authentication, biometric techniques use
inherent characteristics of the person to perform this task. Biometric technique
have advantage that it can’t suffer from lost or theft as tokens or can’t be forgot-
ten as password.

7

Biometric trait should have follow characteristic

• Universality (each person should possess the trait)

• Uniqueness (no two person should share the same trait)

• Permanency (the trait should not change during lifetime)

• Collectability (the trait can be obtained easily)

• Reducibility and comparability (the trait should be capable of being reduced
to format that is easy to handle and digitally comparable to others)

• Cost (how expensive is to perform authentication by the trait)

There are wide sets of biometric trait that are used for authentication (e.g.
fingerprint, face, iris, palm veins). None of these traits satisfy all the desired
characteristic. Selection of right biometric trait depend on the specific applica-
tion, because it involve both technical issues and culture and social aspect [6].

Handwritten signature have special place in set of biometric trait. Handwrit-
ten signature is most widespread method of personal verification. Signatures are
generally recognized as legal way of verifying person identity by administrative,
government and financial institution. Person verification does not require inva-
sive measurements and peoples are familiar with the use of signatures in their
daily life [16].

Handwritten signature, alongside with keystroke dynamic and walk character-
istic, are considered as behavioral biometric trait. Behavioral biometric trait is
trait based on an individual behavior. This cause that signature can vary by con-
ditions under which the signing occurs and depends on the psychophysical state
of signer. Some complex theories have been made for psychophysical mechanism
underlying handwriting [8].Because of the variability over time of most behav-
ioral characteristic, an authentication system needs to be designed to be more
dynamic and accept some degree of variability. On the other hand behavioral
biometrics are associated with less intrusive systems, so they are better accepted
by the users.

1.3 Signatures retrival

There are two signatures retrieval method:static and dynamic.

Static signatures retrievals are used when signing was completed. For dig-
italization of already written signatures scanning and photographing are used.
Scanned signatures are represented as 2D image. Scanned signatures may contain
spurious noise which has to be removed to avoid errors in the further process-
ing steps. Processing is used to improve quality of retrieved information about
signature. Processing stages include : image resizing, thinning (thinning make

8

extracted features invariant to quality of paper and pen, thinning means reduc-
ing binary object or shapes to strokes a single pixel wide) and creating of the
bounding box. Example of pre and post processed signature can be seen in 1.2.
Mostly only parameters feature of signature can be obtained by this method.

Figure 1.2: Scaned signature, pre and post processed

Dynamic method involving usage of special hardware(such as Wacom Intuis
1.3) to capture whole dynamic process of writing signature. Mostly used hard-
ware for capturing signing are digitizing tablets. Person write with a specific
electronic pen called stylus on tablet surface. Whole movement of stylus on (and
usually at the small distance off) table surface is captured. Alongside exact po-
sition at the time additional information about pen pressure, writing force, pen
inclination (angle between tablet suffice and pen) are stored.

Figure 1.3: Wacom intuos tablet digitizer

Other methods of capturing writing of signatures included touch screens with
specific or traditional pen. This methods provide visual feedback of writing sig-
nature. 1.4

Other Methods are using traceable digital pen. Traceable digital pens are
often able to capture time additional information about writing like digitalize
tablet. Tracking of pen is realized by: strain gauges, magneto elastic sensors,
shifting of resonance frequency, laser diodes, tracking small patterns on table
with camera build in pen and tracking pen movement by filming writing . Some

9

Figure 1.4: UPS sign pad

traceable digital pen (as shown in 1.5) use traditional ink pen and allow to write
on paper. This provide important haptic feedback from paper.

Figure 1.5: Example of digital pens

1.4 Signature features

There are two types of signature features that are used for signature verification:
1) Functions, 2) Parameters.

1. Function features are used in terms of time functions whose values constitute
the feature set. Parameter features are used in terms of vector of elements,
each one representative of the value of a feature. Function features allow

10

better performance than parameters, but require higher system cost for
matching [21].

2. Parameter features are classified to two categories: 1) Global, 2) Local.
Global parameters concern features that are related to whole signature i.e.:
total writing time, numbers of pen strokes in signature and total written
distance. Local features are like global features but retrieved only from
specific part.

Depending on the level of details, local parameters can be divided into two cat-
egories: 1) component-oriented 2) point (pixel) oriented. Component oriented
parameters are extracted at the level of component i.e. stroke height: width ratio
and relative position of signature parts. Point oriented are extracted at levels of
point (pixel) resolution, i.e. Pixel density and total count of the stylus points.
This feature classification isn’t strict. Some features can be used globally and
locally. Feature classification is shown on 1.6

Figure 1.6: Features clasifications

We describe in short some of the most common function and parameter fea-
tures found in literature.

• Position (X and Y position of pen tip)

• Speed Overall speed of writing or in X and Y direction)

• Acceleration (Overall acceleration or in X and Y direction)

• Pen inclination (inclination of pen with signing area)

• Pressure (pressure on which pen leaves to the signing area)

• Direction of pen movement (direction of pen speed vector)

• ...

11

Position, Speed and acceleration are widely used for online signature verifica-
tion. Velocity and acceleration function can be obtained from specific device or
numerically derived from position. Pen inclination is considered as most consis-
tent feature, however, it can be captured only by specific device. Vizualization
of theese pattens are shown on 1.6.

Figure 1.7: Dynamic features vizualization

• Total signing time duration

• Total writing time (time in which pen is in contact with signing area)

• Total lifting time (time in which pen is not in contact with signing area)

• Count of pen ups

• Count of pen downs

• Aggregate functions (max, min, average, median) of function features

• Fourier transformation of signature [12]

• Directory based features (in which direction was signature written (left →
right, right → left)

• Geometrical-based features (occurrence of geometric shapes in signature)

• Curvature based features (count, shape, radius of curves in signature)

• Intensity of ink

• Pattern spectrum (spectrum of patterns found in signature)

• . . .

12

Some of parameter features are related to signature dynamic such as total sign-
ing time duration, numbers of pen ups and down. Some parameter are obtained
by aggregating feature function i.e. maximum speed, minimum acceleration in x
direction. Some parameters are determinate as coefficient obtained from mathe-
matical tools as Fourier, Hadamard, Cosine, wavelet, fractal transformation.

1.5 Signature verification method

Signature verification can be done manually by person or (semi)automatically
by computer. Manual signature verification is called forensic signature examina-
tion. Forensic signature examination is used in cases of tax fraud, suicide notes,
stalking letters, validating authenticity of autograph and so on. Forensic scien-
tist consider: traces of practicing, guild lines, order of movement, line quantity,
complexity, ease of simulation and more. Computer examination is also widely
used method of forensic signature examination.

Computer signature verification can be dived to two categories: Off-line (stat-
ic) signature verification, On-line (dynamic) signature verification.

Off-line signature verification methods are used on static signature. This
methods used mostly parameter feature of static signature. This method is used
by examination physical (written on paper) signatures.

On-line signatures verifications are used on dynamic signatures. This methods
used mostly function features but can also use with some parametric features.
On-line signatures required signer to have specific hardware or signer muse be
physically present during signature extraction (by specific hardware)

Signature verification sustain of matching examined signature features to sig-
natures features stored in knowledge base. As result of signature verification is
statement: signature is or is not valid. Signature verification is much investigated
problem, so there is many solution to it. We describe most common one. Addi-
tionally we provide list of other found solution with reference literature.1.9

1.5.1 Hidden Markov model

In the field of pattern recognition, model–based similarities were shown to be
powerful tools to measure similarity of vector sets: computing distance consist of
two steps: mapping each vector set to a probability distribution and computing
probabilistic similarity. For signature features approach is very similar. In classic
article authors introduce HMM with definition.

“An HMM is a doubly stochastic process with an underlying stochastic pro-
cess that is not observable (it is hidden), but can only be observed though another
set of stochastic processes that produce a sequence of observed symbols.” [10]

13

In this paper are described principles behind HMM, training and scoring. In
HMM consider each signature pattern in knowledge base as independent entity
and base on this entity generate a lure set. Verified signature features are classi-
fied against stored signature patterns using those rules. HMM have advantage in
signature verification because of its ability to model an unknown sample as one
of the existing samples.

HMMs are naturally suited for modelling “flowing” entities such as speech
and handwriting. They are made up of a series of states with transitions between
these states. Signatures can be split up into strokes, with a similar number of
sections to the number of states in the HMM. It is then possible to progress
through the states of the HMM in a corresponding fashion to processing through
the strokes of the signatures. At each state, local features of signature stroke
are examined, therefore local features can be naturally modeled by HMMs. This
approach with reasonably large training data set provide good results [9].

1.5.2 Support vector machines

Support vector machine with a set of examples from two classes (in signature
authentication case valid and invalid class) finds the hyper plane, which maxi-
mizes the distance from either class to the hyper plane and separates the largest
possible number of points belonging to the same class. By this approach the
misclassification is minimalized. SVMs in their basic form use linear threshold
function. SVMs measure the complexity of hypotheses according to the merging,
which separates the signatures. SVMs can be apply on signatures with many
features [11].

1.5.3 Neural networks

Neural networks are widely used in signature verification. All kinds on neural
networks are used: recurrent neural network, kohonen self-organizing network,
feedforward neural network and more. Neural networks must be trained (with or
without supervisor) to verify signatures. [13]

1.5.4 Dynamic Time Warp

Dynamic Time Warping is used to compute a distance between two time series.
Näıve approach to calculating a matching distance between two series could be
to resample one of them and then compare it sample by sample. DTW provide
recovering of optimal alignment between sample points in two time series. The
name Time Warping is derived from warping time axes of the two time series in
way that corresponding samples appear at the same location as shown in 1.8 [14].

14

Figure 1.8: Visualization of DTW alignment. Green and orange lines are plot-
ted two time series of signature speed in axle X. With grey lines are connected
matching points.

15

Figure 1.9: Most common signature authentication methods with technique used
for signature authentication , category of method and reference literature [15]

16

1.6 Signature forgery

We can see evidence in history, that signature forgery has been formed shortly
after signature acceptance as verification. Only small percentage of signatures
in existence are forgery. Unsurprisingly signature forgery are generally part of
important documents or of paper carrying a monetary value. This is reason why
signature verification and forgery detection are so important.

Handwritten signatures can be forged in many ways, there are three most
common:

• Forging by copying

• Forging by mimicking

• Free hand forgery

Forging by copying can be archive through many methods. One method in-
volving usage of windows to trans illuminates paper having valid signature. On
top of this paper, we place destination paper of forgery signature. We adjust
the position and outline genuine signature. Other method use grooves on writing
surface to obtain valid signature. These methods of forging is reason why cheque-
leafes are made of thick paper. These methods can be considered as “static forging
“because it use similar way as static signature retrieval [17].

To perform forging by mimicking, forger must have sample of signature writ-
ing as an act i.e. forger must be whiteness of signature writing or have video
material capturing it. With this knowledge, forger try to mimic signature writing
with all dynamic aspect of it. This methods can be consider as “dynamic forging”
for its similarity of dynamic signature retrieval.

Forger, who is familiar whit a another signature can simulate a free hand
forgery. This type of forgery represents a careful and painstaking drawing of the
signature of another person without examples of any kind. This method have
interesting drawback. If the forger is familiar with the language of the signature,
there is bigger chance that forged signature have more legible manner that the
genuine signature.

There is false common awareness that more complex signature is, then is more
difficult to be forged. Signature of people that often sign are simplified and sign-
ing is done almost in unconscious way. They dont bother about the spelling, later
designs and beauty of signature. By this, signatures are becoming more personal
and gain behavioral biometric trait [17].

17

Figure 1.10: Example of forged signatures

18

2. Windows credential provider
overview

We have talked about signatures and signatures verification but it’s equally im-
portant that we are able to perform log in to windows by user signature. . Our
target version of operating system will be Windows 8.1. Supported operating
system will be Windows Vista up to Windows 10. We are not taking into ac-
count Windows XP. While Windows XP was the first Microsoft OS to support
handwritten input, it used different logon architecture. In the next chapters, we
will discuss Windows XP logon architecture to see how much it is different from
modern Windows logon architecture and then talk about modern logon architec-
ture.

2.1 Windows XP

Windows XP uses credentials provider called GINA. GINA is abbreviation for
Graphical Identification and Authentication dynamic-link library (DLL). GINA
is replaceable DLL component that is loaded by WinLogon executable. GINA
implements the authentication policy and performs all identification and authen-
tication user interaction.

What was the reason to abandon this architecture? In pre-Vista environment,
every session had an instance of WinLogon, which is responsible for driving the
interactive logon sequence for that session. On newly booted systems, an in-
teractive logon at the console level is always performed in session zero. Session
zero hosted system services and other crucial processes, including local security
authority process.

Figure 2.1: Windowx XP login architecture

After interactive logon is loaded, registered GINA starts loading in the Win-
Logon process space. (This is not GINA chaining, this is regular Multiple GINA

19

loading routine). After GINA is loaded, it makes calls to Logon user and relat-
ed authentication APIs. GINA is also responsible for rendering whole login GUI.
This is the reason, why we can install 3rd part visual enhancement of login screen
in Windows XP and not in more recent systems. [18].

2.1.1 Reason to give up GINA

As an answer for a high-demanded multi-factor authentication and complex GUI
GINA drop support. Demand for multi-factor authentication places greater bur-
den on the abstraction layer between core windows credentialing and engine, and
more complex GUI GINA drop support. In addition, windows logon process
(winlogon.exe) has been completely re-architected in Windows Vista.

The core requirement was to move software out of the WinLogon process
space. That requirement was motivated by reliability. If, for instance, a defected
or poorly written GINA is loaded into the WinLogon in session zero, a software
failure could kill some critical process, even cause BSOD (Blue screen of death).
Even if GINA could have been adopted to run out of process, there would still be
the issue in design that hasn’t provided a consistent controlled experience across
arbitrary complex or interactive credentials gathering scenarios.

2.2 Windows Vista, Windows 7

Difficult GINA chaining and one point of failure was limitation that Credential
Providers were designed to address. Design point was oblivious:

• Make it easier for multiple logon providers to co-exist on the same OS
installation without conflict

• Provide robustness for Credential provider’s failure. So if one credential
provider fails that doesn’t drag the whole system.

Credential providers pay for its consistency. Credential providers are only
supposed to be used for gathering credentials and passing then on. Credential
providers also are not fully responsible for login GUI. Credential provider archi-
tecture requires each provider to enumerate its UI elements. Logon render given
UI elements as controls on behalf of the credential provide. This helps to achieve
consistent look and login experience.

Another design chart for credential providers was to move to COM based
plug-in model. However in early build of Windows Vista the first internal design
for the new interface was based (Like GINA) purely on Load Library and func-
tion pointers. Luckily this was redesigned to COM-based and resulted to cleaner
interface that is easier to use.

20

Figure 2.2: Windowx Vista and above login architecture

2.3 New Logon Architecture

In Windows Vista, session zero is never used for interactive logon. This is
good for security reasons, because there is security boundary that separates all
per–machine processes from pre- user processes. Also the kernel Global names-
pace is now more tightly controlled, since objects are created by user application
are kept out of it by design. There’s still an instance of WinLogon in every session
other than session zero, but all credential providers are loaded by new Logon UI
process.

2.4 Credential provider design

First we briefly look at the design of basic credential provider. For this design
overview we will use one full lifecycle of credential provider: started with its
loading (shown in 2.4), user interaction and finally user log in (shown in 2.5).
With basic knowledge how credential providers work, we will look on our custom
credential provider. On our custom credential we will focus on modification that
allow user log in to the system by his signature.

Credential provider must exposes the two COM interface: ICredential-
ProviderCredential. And ICredentialProvide

• ICredentialProviderCredential (for short Credential, in calls prefix Cre-
dential::) defines the behavior of a credential tile. It’s responsible for the
way the credentials is responding to user input.

• ICredentialProvider (for short Provider, in calls prefix Provider::) de-
fines the behavior of the credential provider, which typically manages one
or more credentials. It’s responsible for the way credentials are enumerated
and handle background calls and credential layout.

21

Figure 2.3: Example of login screen with one provider have multiple credentials

Figure 2.4: Schema of credential loading

2.4.1 Loading

The system boots

After WinLogon is loaded, process LogonUI is initialized in console session. Dur-
ing initialization, LogonUI enumerates all registered credential provider that are
registered. Credential provider registration are stored in windows registry under
HKLM\Software\Microsoft\Windows\CurrentVersion\Authentication\Credential
Providers by its GUID.

Each provider DLL is loaded and it receives Provider::CreateInstance call. At
this moment, user sees the logon screen.

Ctrl+Alt+Del screen

Then Provider::SetUsageScenario notification is received. If machine is part
of domain, CTRL+ALT+DELETE screen is shown and this notification is send
after well-known combo is pressed. This notification tell credential that user want
to perform logon. Only now is called Credential::Initialize for credential ini-
tialization.

Logon UI then calls Provider::Advise on each loaded provider. Purpose of
advise call is to give the providers mechanism to notify Logon UI asynchronously

22

for UI changes.

Next Logon UI call Provider::GetCredentialCount.By output parameters of
this function provider tell LogonUI, how much credentials it contains, what is
the index of default credential or it contain no default credential and if default
credential have auto login capability.

UI Renders

Next Logon UI calls Provider::GetFieldDescriptorCount. In return param-
eter provider returns number of UI elements that will be rendered.

Logon UI calls then Provider::GetFieldDescriptorAt for each UI element
to determinate its type. For example password box return CPFT_PASSWORD_TEX

and for this element then Logon UI call Credential::GetStringValue to get its
value.

After all element tell its type, Logon UI calls Credential::Advise. That’s other
advise call, target of first one was Provider, but purpose is similar, to have oppor-
tunity to asynchronously notify LogonUI to change state of UI element. This is
used for example after long time of inactivity with password box filled, then ICre-
dentialProviderCredentialEvents SetFieldString is called on password box
and text is cleared.

2.4.2 Login

Figure 2.5: Schema of credential logi in

After user input credential (or credential is gathered different) the submit but-
ton is pressed and in this case, Credential::GetSerialization is called. Cre-
dential prepares the return value for that routine by marshaling “user name”
“password” and “domain name” in format expected by Kerberos. Credential in-
forms LogonUI that credentials is prepared by calling

CREDENTIAL_PROVIDER_GET_SERIALIZATION_RESPONSE output parameter in which
compete credential is returned.

After GetSerialization, Logon UI passed credential info to winlogon. Winlogon

23

passes it to the Local Security Authority (LSA) by calling Logon User. Based
on this, Logon UI Calls Credential:UnAdvise and Provider:UnAdvise to
notify both entities. After winlogon gets the result of LogonUser, result its passed
back to Logon UI and then passed again to focused credential instances (focused
credential instances is the same that have focus from GetSerialization). Before
credential receive status code of login in, callback for UI element changes is passed.

Login result is returned to credential via Credential::ReportResult routine.
Another calls are made for UI changes based on ReportResult. One case of this
scenario is if user password expires and new one is entered.

2.4.3 Default credential

It’s possible, and it’s common, that multiple providers will enumerate its default
credential. How does LogonUI allow user to select from multiple defaults and
then non-default credentials? In general for each credential a tile is shown, with
focus set to the default one. In case of multiple defaults, the true default is
selected based on rules including auto-logon and LLO (last logged-on provider)

2.5 Windows 8

First of all, windows 7 credential provider, unlike windows XP GINA, is forward
compatible with windows 8/8.1. Unfortunately not all new features that bring
windows 8 can be achieve via old credential provider, but we will discuss that
later in this paper. Changes with Microsoft Windows 8 vs Windows 7 are mostly
in UI based on changes in user experience while login. Windows 8 is designed
to be extremely personalized to each user of PC. New user-centric philosophy is
present in Windows 8 Logon UI. Instead of displaying more abstract concept of
authentication method, actual users are at the center of Logon UI in windows 8
[19].

2.5.1 Old model

In windows 7 or Windows vista, first thing that user must do in login process is
choose authentication method first and foremost. For example if user is part of
domain, have fingerprint reader on his/her LogonUI will shows many entities:

• One that showed user tile and user name (basic password provider)

• One that showed Finger print reader tile and user name (finger print provider)

For user, this can be confusing, user is one person, why there are two thing with
user name on it?

2.5.2 New model

In windows 8. User tiles are shown instead of multiple methods to authenticate
single user in Deselected screen (screen where credential tiles are shown). This

24

user tiles are generated by Windows and is rendered for any user, which have
associated credential provider with his account. Credential provider that tells
windows which users are associated with it are referred as v2 credential provider.
Credential provider which don’t provide this information is referred as v1. If there
is any v1 credential provider in system, it will show on deselect screen alongside
user tiles

When user click on v1 credential provider, nothing new happen, it’s shown

Figure 2.6: V1 Credential in Windows 8

the same interaction as we describe above, just title size changed

When user click on user tile, new UI is showed. Then along basic information
things as back button (1), User image (2) and name, logon state and addition
info (3). These elements are fully controlled by LogonUI. Credential provider
selection is done by its small images under sign in options label (4) and its render
place is above that’s label. Fields that credential provider requests to drawn will
appear between user name area and this label. This UI element are the same one
that are used in v1 credential provider.

2.5.3 Inside changes

As it looks like, differences between v2 credential providers and v1 are most-
ly in per-user philosophy and from that divided graphical modification. Small
changes have been made inside. V2 credential provider must implement new in-
terface ICredentialProviderCredential2 and return valid SID from function
GetUserSID. GetUserSID tells Windows which user are oblique for specific cre-
dential provider. SID (Security identifier) is unique, immutable identifier of user,

25

Figure 2.7: V2 Credential in Windows 8

user group or other security principal in windows. SIDs are gathered by enumer-
ating all users by function GetUserSID. When user is oblique, it return its SID,
when not it returns false. This allow credential provider walk through all of users
and determine if user is associate with it.

Modifications in calls responsible for GUI changes was also made. Call
Provider::CredentialsChanged was used for UI changes in windows 7, but it
has high cost in re-loading all credentials. Now Provider::CredentialsChanged
should be used only for auto login feature or to change numbers of credentials. For
UI changes instead there is Provider::CredentialProviderCredentialEvents2.

Another small change is associated with default provider. In V2 there is no
thing as default provider, because that might confuse users, so there is now only
last used provider which are shown by default [20].

26

3. Signature credential provider
design

In this chapter, we discuss design decision that have been made during signature
credential provider (signature provider in short) implementation. Signature cre-
dential provider design reflect in every aspect login scenario via this provider, so
first of all we describe it. Logon screen is shown to user. User click to perform
log in by handwritten signature. Some kind of signature form is displayed. User
enter his or hers genuine signature and click to log in. After successful signature
verification, user will be log in to the system. After unsuccessful signature veri-
fication visual feedback is provided.

Then we go step after step and we will ask a question after each step such as:

• How and where user enter signature?

• Will we use native credential provider implementation or use third party
solution?

• Where signature verification happen, inside credential provider or some-
where else?

• How and where user credential will be stored and passed or can we log in
without it?

• If we must pass user credential into our credential provider, will we pass it
to our credential or provider and how we do it?

• Will we implement V1 or V2 credential provider?

• Can we use our credential provider for authentication different that just
signature

3.1 Signature enter

How and where user enter signature? First of all we must ask, if we are able to
capture user signature on logon screen by resources given by credential providers.
As we told, for Login GUI is responsible LogonUI process. Logon UI renders
elements that are given by provider. Set of possible UI element type is limited in
many ways, it contains only basic types such as bitmap image, checkbox, textbox,
text label, and clickable text label In UI set is no build in element type that can
capture handwritten user input and set of UI element can’t be extend by custom
element. Due this limitation, we won’t be able use only credential provider to
achieve our goal. Solution of this problem is quite strait forward: From our
custom credential provider launch external program, that will have capability to
capture handwritten signature.

27

3.2 Native credential provider or third part so-

lution

When deciding if we choose native credential provider, or third party solution,
there are not many options. There is of course native credential provider and
from third part solution there is pGina.

pGina is pluggable, open source credential provider. Plugins are written in
managed code and allow for user authentication and authorization.

Pros of pGina is that plugins are written in .NET platform, so it’s easy to
debug.

It looks like, pGina is all we need, but there is a small problem. As we told,
credential provider itself doesn’t give us tools to capture handwritten signatures,
so we must launch external program. There is problem, pGina restrict launching
external programs from plugins for security reasons.

Gina is ideal for situation, where we are satisfied with given UI input types,
and we will implement custom authentication background, which in our case,
isn’t enough.

Pros of Native credential provider are there is possibility to launch external
program from itself, which is shown on logon screen and from its nature its can.

Cons on other hand are limited debugging possibilities.

Despite complicated debugging, our goal, let user sign in to system via hand-
written signature, leaving us no other option that choose native credential provider.

3.3 Location of signature verification

When deciding about location of signature verification, there are two oblivious
places. First two are oblivious:

• Inside signature credential provider

• Inside external program that capture handwritten signatures

Less oblivious solution, will be placing signature verification to addition program
(service)

First option is, that verification will be inside credential provider. This ap-
proach have advantages that only fewer application are required (signature cre-
dential provider and sign form). One advantages is outweighed by many disad-
vantage: loading user pattern every time credential provider is initialized, very

28

limited debugging capability and difficult signature transmission. Last disadvan-
tage is in code duplication, since verification of signatures is using for preprocess-
ing of signatures during saving user pattern. More of that in chapter 6.3.3 about
credential manager.

Another option is, that verification will be inside sign form. This solution
have same advantages as location inside provider: fewer application are required.
This option lack disadvantages in problematic debugging, since sign form will be
written in C#. Anyway loading user patter every time sign form is displayed and
code duplication is still big disadvantage.

Last option trade advantages of few program for multiple pattern loading and
code duplication. We will add authentication services. Since there must be com-
munication between sign form and credential provider in both previous option,
we just place authentication between them.

By this approach we achieve that user pattern will be loaded only once, during
startup since this service will have auto start. This have cons in system usage,
since authentication service will be running always, not only during authentica-
tion. Over and above that, we now can encapsulate whole signature verification
and user pattern management in one place. This is important for signature man-
agement: new signature recording and signature re-recording. Debugging will be
also a lot of easier, since we can debug each connection: Signature authentica-
tion Service ↔ Credential provider and Signature authentication service ↔ Sign
form independently. There will be significant saving in data transfer to credential
provider and type conversions. Between authentication services and sign form we
will transfer complex data type (digitalized handwritten signature) to authenti-
cation. Between authentication service and credential provider is transferred only
result of signature authentication.

We choose ls solution by addition authentication service, mostly for localiza-
tion of signature processes in one place.Overall signature provider architecture is
shown on 3.1.

3.4 User credential storage and pass

From previous talk about credential providers design, we know that for successful
login our credential provider must pass triplet of credentials (User name, Pass-
word and optional domain name) to LogonUI. There is no option to do login
without user credentials. Problem is, how this triplet will be store and how we
pass it to credential provider?

For question about storage, there are two sub questions: Format and locations
of credentials. For format there are basically two options: plaintext format and
encrypted format.

Pros for plaintext is its simplicity, but cons are absolute lack of security. We
chose encrypted credentials. It had Cons in little difficult usage, and we must

29

Figure 3.1: Signature credential architecture

maintain key, but it have advantage in security.

For storage locations, we considered three options: store credentials in file,
registry or by third part solution.

Third part solution have none pros while considering storing only few simple
typed object, but have cons of increased number of programs needed to perform
log in, system resources consumption, and potentially slow down boot time. Cre-
dentials must be availed during first log in after boot, so third part program must
run before user login.

File storage share registry storage are basically the same. Both have Pros with
nearly zero system cost while I/O and we can manage access right. Difference it
that in file storage, we can manage access right only per file. In registry storage
we can set access right per key.

We chose approach in storing credential in registry and in encrypted format.
Now let’s discuss how we pass them into the credential and how we store it in
details.

After successful user verification, Signature authenticator service send the
access token to credential. This access token is key to encrypted credentials
that are stored in windows registry. User’s credentials are stored under Local-
Machine\SOFTWARE\Juraj Hamornik\Signature Login\Keys In this registry
directory, all user credentials are stored. Name of folder that belongs to the user
isn’t his user name, but sha1 hash of combination of access token and “token
salt”. Token salt is in root of Keys directory.

Inside user folder, there are another salt, we called it user salt. User salt
and access token hashed by sha1 is key for decrypting user name, password and
domain name.

30

Figure 3.2: User credentials registry structure

Access right for credential folder is set as follows:

• Token salt are accessible to: Users and system. Every user must have access
to salt to retrieve its user folder for credential management.1

• User folder are accessible to system and for corresponding user. Only user
(and admin and system) have right to manage his/hers credential.1

3.5 Localization and implementation of creden-

tials injections

Now we have all components to build our signature credential provider, last ques-
tion remain: Will Credential or Provider communicate with Signature authen-
ticator service, and then will be responsible for passing user credential and to
perform login?

3.5.1 Credential

Looking at credential provider architecture, it might seems better to communicate
with Credential, because it is first place, from which user credential are passed
to provider and further. This solution was successfully implemented and work.
However there was one major problem. From credential only, we were unable
to perform submit without pressing submit button. This led for double submit
to log in, one for signature and then from credential itself. We abandoned this
solution despite easier implementation in prior for better user experience.

3.5.2 Provider

Our entry point for communication with Signature authenticator service will be
Provider. Credential will be responsible only for user interaction with title and
for launching Sign form.

1Administrator can obtain access right to all registry.

31

After Provider initialization, we launch named pipe watcher that will look on
named pipe for incoming token. When token is received. Token is then verify by
hashing it with salt and from this salt, we obtain name of user folder in registry.
If token isn’t right, calculated hash doesn’t match user folder in registry. From
user registry folder we encrypt password, user name and domain.

Here comes first problem, how we can trigger login from provider? There
is no function that will emulate click on submit button. Only way credential
provider can enforce login, is through doAutoLogin parameter during credential
initiation. We can’t just simple set auto Login to true by default, because with-
out proper set of user credential provider will cause infinite loop of logins. This is
caused because when credential provider fail to log in (in this case for wrong user-
name/password), first credential that have doAutoLogin set to true is launched.

To prevent this, we must set doAutoLogin to true after we obtain user creden-
tials via token. After doAutoLogin is set, we call LogonUI to reload credential.
After credential is reloaded, because it have set doAutoLogin to true, login pro-
cedure is triggered and user will log in without click on submit button.

First think that comes to mind, what if user credentials that are stored in
registry correct? Correctness of stored user credentials might be caused for ex-
ample if password expired, so it isn’t rare case. Then infinite loop of login start
just after provider receive token. We think on this possibility. On provider, we
will remember if last login fail or no. If last login fail, credentials are incorrect or
other problem occurs, provider don’t set doAutoLogin to true second time.

3.6 Credential provider for Window Vista/7 or

Windows 8

Since Windows 8 provide backward compatibility for V1 credential provider, we
just need to implement V1 provider that will work both on Windows Vista/7 and
Windows8, This solution have one deficit which make us implement both V1 and
V2 Credential provider.

First of all, back to Windows 8 account philosophy. In Windows 8 Microsoft
introduce its Live account as replacement for basic user accounts. This Live
account provider number of benefits as setting backup and cross device synchro-
nization, access to Store and OneDrive. Unlucky, by V1 credential provider, we
didn’t find way to log in by Live account. We wasn’t able to find any valid com-
bination of domain and user. For importance of Lice account in Windows 8+, we
decide to implement our signature credential provider also in V2 versions.

32

4. Signature credential provider
implementation

In this chapter, we will discuss implementation of our signature credential provider.
We focus particularly on credential provider itself and leave most of signature
authentication services and form windows to the signature part of the paper.
Since signature authentication service and form are more signature related than
provider, we only describe communication between credential provider and au-
thentication service. First we describe implementation based on our design de-
cision. At the end we will discuss some of alternative usage of our credential
provider. We will first describe implementation of V1 credential provider and
then we describe implementation of V2, because lot of function used in V1 cre-
dential provider was reused. Reason of this order is because requirement for V2
credential provider (we were unable to log in via live account) was established
after V1 credential provider was fully implemented and deployment on physical
computer, not virtual machine.

For implementation of signature provider we used Windows Vista signature
credential provider sample that can be obtained on .We use default credential
provider as main frame of function name and parameters [22].

4.1 Language selection

First of all there is decision about programing language that will be used. Un-
managed C++ is used in Signature credential provider implementation, because
it is required by Windows.

4.2 Implementation

Credential provider have simple task. Provide user to log in to system by user
input. The simplified run of one login scenario will be:

• Signature credential provider load up

• Gathering of user input required to log in

• User input transformation to password

• Password pass

• In case of login error, show result

We will walk through on each step and discuss our modification on default
credential provider. On function that are intact, we just describe its purpose.
First of all, we provide some overview of class from witch are signature credential
provider made of. Content of this class will be revealed during login scenario.

33

4.2.1 File overview

Registry.cpp

This file contain functions responsible for reading of windows registry. It contains
function responsible for gathering registry values of type: DWORD, Bool, String
and Char. Parameter for this function is always hkey: path to registry directory,
strValueName name of registry inside hkey directory, output parameter in witch
if returned value. For DWORD, BOOL and STRING is additional parameter
(type) DefaultValue to check if registry value doesn’t have default value.

Logger.cpp

This file was most important file during implementation and debugging. It con-
tain function that provide at least basic debug capabilities in form of text log.
It contain Log function that take pointer to const char as parameter. This const
char is then alongside with timestamp append to the file specific inside class.

SHA1.cpp

This class implement NSA designed hashing algorithm. More information about
this cryptographic hash function can be found in [23]

SHA1 hashing run

Sha1 run start with Sha1 initialization.Sha1 function must by first initialized by
its parameters construction CSHA1 (). Then we need insert text and salt hash
with function Update. Update have parameter unsigned char* t data and its
length. Then we run hashing by calling parameters function Final. We gathered
result of hashing by calling function ReportHashStl. ReportHashStl have two
parameters, first is TCHAR* in which hash will be stored and then Enum of
report type. For complete run of one sha1 we delete it at the end. We will
substitute this run for abstract function later in this chapter for higher clarity.

Helpers.cpp

Since some exotic data types are used in credential provider this file contains
function responsible for conversion from and to them.

Encryption.cpp

This file contain function responsible for decrypt: Decrypt. Decrypt take toDe-
crypt char* and char *password and decrypt it over toDecrypt parameter.

Guid.cpp

In this file is only reference to guid header file. In Guid.h is stored credential
provider GUID which is used in registration.

34

Dll.cpp

In this file all function required for proper signaturecredential.dll loading to
LogonUI are implemented. Signature Credential provider instance is created
through factory pattern.

SignatureProvider.cpp

This is one of required part of credential provider com object. Function in this
class is responsible for behavior of the credential provider, for the way credentials
are enumerated, for receiving and handling token from signature authenticator
service. It is responsible also for credential looks, by enumerating all its UI
components.

SignatureCredential.cpp

This class is responsible of behaviors of user title. Since signature capturing is
moved to external application, credential provider provide launching signature
form and notification about login event.

4.2.2 Signature credential provider login scenario

When logon screen display is triggered, during system startup or when user trig-
ger it, LogonUI load Signature credential provider.dll is loaded by GUI stored in
guid.cpp.

Function that are called by LogonUI must have specific names strictly given
to us by credential logon architecture. For better clarity, we will prefix functions
called by LogonUI by Log::, functions called by LogonUI on the basis of user
interaction UI::. Our functions will be without prefix.

4.2.3 Signature credential provider loading

First function that is executed after dll is loaded, is Log::Provider::Create
Instance. This function as name describe create instance of Signature provider.
Then Log::Provider::SetUsageScenario is called with paramether cpus (Cre-
dentialProviderUsageScenario). This parameter parameter contain information
about logon usage. In this state, we should choose in which scenario our creden-
tial provider will be used. Possible scenario values are:

• CPUS_LOGON This usage scenario is for workstation logon.

• CPUS_UNLOCK_WORKSTATION This usage scenario is passed when user is when
workstation is lock and logon screen is for unlocking it

• CPUS_CREDUI This usage scenario is passed when Signature Credential Provider
is used for authentication on remote machines or over the shoulder prompt-
ing in User Account Control.

35

• CPUS_CHANGE_PASSWORD This usage scenario is passed in response to a user
request to change their password (or other private information such as a
PIN). We don’t implement this scenario for security reasons. For password
management we have dedicated app that must be run from user environ-
ments. In this case user will must use other credential to log in to the
system.

After switching logon scenario, named pipe communication for token transport
is initialized by functionInitSignatureReader. InitSignatureReader first set
signatureThreadRunning to true, then initialized hPipe2 by its name that is
stored in lpszPipename2. Then new thread is created that contain function for
reading that name Pipe NamedPipeReader. We will return to description
NamedPipeReader function later during token accepting.

Then initialization of credential begin via function Log::Credential::Initialize.
During Credential initialization we set labels by function SetFieldString that
will inform about credential name, logon status and logon use.

After credential initialization Log::Provider::Advise(
ICredentialProviderEvents* pcpe,UINT PTR upAdviseContext) is called.
In this call we store Credential provide event reference and store upAdvise condex.

Then function Log::GetCredentialCount (DWORD* pdwCount,
DWORD* pdwDefault,BOOL* pbAutoLogonWithDefault) is called.We
have in credential flag named doAutoLogin that tell us if we are about to perform
auto login. In Credential we have public flag lastLoginFailed that tell us if last
login failed (this is for auto login infinite loop prevention). If we are about to
doAutoLogin, last Login didn’t failed and we have credential (dwNumCreds is
greater than zero) then we return count of credentials and set pbAutoLogonWith-
Default to true.

Otherwise we pass pdwDefault with value CREDENTIAL_PROVIDER_NO_DEFAULT
and pbAutoLogonWithDefault to false, since we are not going to perform auto
Login now.

After then, user controls are rendered. Because we capture user signature not
direct from credential, we don’t modify function responsible for rendering logon
UI element.

4.2.4 Gathering of user input required to log in

We will capture user signature by external program: sign form. But how we will
launch it and when? It make sense launch it only after user click the signature
Credential tile. Before that it doesn’t make sense shown user sign form on shared
credential screen. On the contrary after user click on user tittle there will muse
be some additional user control for launching sign form. So right after user click
title is the right time. Whole scenario is shown in 4.1

36

Figure 4.1: Part of login scenario

When user click live tile, function UI::Credential::SetSelected(BOOL*
pbAutoLogon) is called. Note that in same function where auto Login is set-
tled.

First we will try do auto Login, because this function might be called automat-
ically during auto login. We check if there are defined (in other words correctly
gathered and decrypted and stored) username, password and domain and if last
auto login didn’t fail .It so, we set pbAutoLogon to true and LogonUI perform
auto login.

If we are not going to do auto login it’s because two reasons: credentials are
not ready or last login failed.

If last Login failed, we inform user by labels: “Login details were invalid. You
will need to login with a different credential to update them.”

If last login didn’t failed, so this is the first time user interact with signature
credential, we create sigh process by function CreateProcess. Sign form must be
present in known direction.

4.2.5 User input transformation to password

When user enter handwritten signature to signForm, captured signatures in form
of Stroke Collection is serialized to string and send through namedPipe to Signa-
ture Authorization service. When signature Authorization service authenticate
signatures, it send token to Signature credential provider.Simplyfied scenario is

37

shown on 4.2

Figure 4.2: User input to login diagram

Now we are back in Sigture credntial proviver. When token is send, inside
provider is received via function NamedPipeReader(that’s the function that
we run in separate thread during provider setUsageScenario).

We receive token and we can move next to gathering credential information
from this token. For this gathering we use function getCredentials(token).Get-

Credentials first check if registry structure is correct by checking the Key di-
rectory. If Key directory is not found, we terminate this function, because none
user have stored credential information or worst, registry was compromise.

If the registry structure is correct, we gather salt value and calculate name of
user folder by given token. This calculation is done by sha1 hash of token and
salt, more in chapter3.4.

If we can reach user folder by calculated name, we know token was right. From
hashed token with user salt and this folder, we decrypt username, password and
domain. On this place we can put easily pre-fill user credentials for test purpose.
Now when we have user credential, we clean up support data structures that we
used during hash calculation and decrypting.

We can tell (and set lastLoginFailed to false), that last Login didn’t failed,
because we receive token and this is done by user-interaction, not because auto
login caused by infinite loop. Then we set doAutoLogin true ,pass user creden-
tial to function EnumerateOneCredential with user credentials as parameters
alongside with LogonUI required Field state and field descriptor. Then we trigger
re-loading of credential by Provider::CredentialsChanged (UpAdvseCon-
text).

38

EnumereOneCredential initialize new credential provider with user cre-
dentials. If Initialization succeeded, we replace current credential with new cre-
dential and increase number of credentials. This increase of numbers is due to
remunerating purpose.

When Provider::CredentialsChanged is called, Log::Provider::Get-
CredentialCount is again re-run but in this run, doAutoLogin is true, last Lo-
gin didn’t failed and number of credential is greater than one: pdwDefault will
be last credential (that one we reinitialized with user credential) and it have auto
login capability. By this circumstances, on Log::Credential::SetSelected is
triggered automatically 4.1. In SetSelected (we have properly set user creden-
tial via initialization) and pbAutoLogon is set to true.

Then Log::Provider::GetSerialization is triggered and user credentials
that we gathered from are passed. From now, logon process take LogonUI. In
GetSerialization function we also set lastLoginFailed true. In case login failed
credential will be re-enumerated. Default credential will be our signature cre-
dential, this means that Signature tile will be selected automatically: function
Log::Credential::SetSelected will be called.

In first condition, we check if all credentials are given (this is true, without
them we won’t be able to perform login) and if last Login failed. There we set
doAutoLogin to false. Also we notify user about unsuccessful last login.

4.2.6 Windows 8 Signature credential differences.

Figure 4.3: V2 Signature credential provider

V2 Signature credential provider have lot common with V1 Signature creden-

39

tial provider. As framework we use Windows 8 credential samples. Differences
are caused by changed credential design to be more user oriented. Major differ-
ences, except UI 4.3 changes, are :

Implementation of required V2 function GetUserSid in Signature Credential.
This function return UserSid if user are able to use signature credential provider.
Without token, or list of users with registered signatures we can’t tell if user is
or is not able to perform login by signature, thus we allow all user.

We must change launching of sign form. Sign form are now launched when
user click label “Launch signature form”. This seems little contradictory: we
spend nontrivial effort to achieve login by one button and now we added another
user control. Sigh form can be launched automatically via Set Selected function
(like in V1 credential provider), but by this approach, launch form will launch
immediately after logon screen is triggered: it show after “pre login picture”.
Since this is very confusing, we choose launching sign form by user interaction.

Last modification was made in function EnumerateOneCredentials(). For un-
known reason (probably undocumented changes in credential provider V2 API)
we were unable to recreate credential before we call CredentialsChaged function.
This was bypass by temporarily storing token in registry. When credentials are
remunerating, we create new signature credential with properly set auto login
and password. Token stored in registry is immediately deleted.

4.2.7 Implementation notes

Debugging on the same machine is not possible because the credentials provider
is running under LogonUI and our IDE (Visual studio) is running in user ses-
sion which is inaccessible after login. Another problem with debugging on the
development machine is that the credentials provider is very unstable during de-
velopment and problems might arise such as Blue screen of death or inability to
log in to the system, even after restart. Debugging over virtual machine is much
safer, but we were unable to manage the connection between credentials provider
running at virtual machine and debug program on host machine. This leaves us
with only text debug output to file which, fortunately, might be stored on NAS
and then accessed even if the virtual machine stops responding.

4.2.8 Alternative usage of signature credential provider

During implementation, there was only few place where we use signature itself.
In fact only places was launching external application to capture user signature
(sign form) and receiving token from signature authenticator services. So what
we can achieve when we change sign form and authenticator services for different
one? Here is some examples that was successfully tried:

40

USB authentification

First of all, what if user don’t want to enter any information, but rather that
use some kind of hardware token to authentication. There are many types of
hardware that can serve as token: nfc tag, RFID card and more. For lack of this
special hardware, we will for test purpose use basic usb stick. On that usb stick
will be file that will have access token in in.

When user click on tile that belong to our credential provider. External pro-
gram will launch. This external program check if there is any usb stick on com-
puter, and if so check if any of them contain acess-token file. Then content of this
file send to authenticator services that will only resend it to credential. There-
from login procedure continue all the same as in signature credential provider.

There is lot of space to improve. Such as token encrypting, using usb id as
token rather than file but this was only proof of concept of credential provider
reusability.

Two factor authentification

Two factor authentication if based on the premise that an unauthorized action
is unlikely to be able to supply both factors required for access. In this exam-
ple, external program will capture and transfer to authentication services all user
credentials (name, password, optional domain name) alongside with additional
access token. We tried pre-generated and dynamically generated one-time tokens.

First we tried pre-generate one-time token. User received ten one-time 8 digit
number. During each login, first unused number is entered.

Second we tried HOTP algorithm to generate one-time password. HOTP is
an HMAC-based One Time Password algorithm. More information about HTOP
can be found here [24]

User credentials are entered to external application for follow reasons: Pass-
word that we use in two factor authentication can and should be different from
system password and for avoiding changes on credential provider.

After user enter credentials and access token, this information is passed to
authentication service. If entered information is valid, send provider access token
to credential provider. Therefrom login procedure continue all the same as in
signature credential provider.

Mobile authentification

Last tried example is using device that everybody carry all the time: Mobile
phone. We will use presence of mobile phone on network as kind of access token.
Then user click on our credential tile, external application is launched. This ex-
ternal application only trigger authentication service to do start authentication

41

process.

Authentication services have stored tuples of values: mac address of device;
access token. During authentication service find all device on network. If exactly
one device is on the network and have mac address stored in service, authen-
tication send token that belongs to that device mac address. Therefrom login
procedure continue all the same as in signature credential provider.

42

5. Signature authentication
design

In this chapter, we will discuss design decisions that have been made during
signature authentication implementation. In chapter Signature credential design
some design decision about signature authentication have been already made.
User signature will be captured by standalone program called Sign Form and
signature authentication will happen in Signature authentication services. Since
signature credential provider doesn’t use handwritten signature as is, there are
many design question about handwrite signatures that are left unanswered:

• How and what data we will capturing from handwritten signature?

• What signature feature(s) will we use?

• Can we get aces token from signature or we must store user-related data to
perform signature authentication?

• How we use signature features to authentication?

• If we use many signature features, will it be equal or weighted?

• If we use weighted signature features, how will we set weight?

• How we determinate if signature is valid or is not?

5.1 Capturing of handwritten signature

Before we can do anything with signatures, first of all we must obtain signature
from user. In chapter Signatures retrival 1.3 we describe some methods for re-
trieving user signatures. Since device of capturing signature is built in to the
tablet itself, we will discuss method of capturing handwritten signature through
it. We can use third party solution or solution build in Windows (.net)

First option is to use API solution of digitalize manufacturer. In case of testing
device, as well as most devices on market, Wacom. Solution from Wacom is called
Wintab [25]. Wintab API gave us access to all information that are available from
stylus in form of strokes: time ordered array of stylus points. Wintab stylus point
contain information of X and Y coordinate, strength which user pushed stylus
to tablet surface (pressure) and index of stylus point in stroke. On supported
devices it can provide additional information such as azimuth: clockwise rotation
of stylus about the z-axis and altitude: angle upward toward the positive z-axis.
Cons of this solution is that it provide all available information. On the other
hand big disadvantage is, that Wintab driver must be installed for Wintab usage.
Wintab drivers are available for both major digitalizer manufacturesr: Wacom
and N-trig. Problem with Wintab driver is in stability and availability. On our
test device (Microsoft Surface pro) WinTab drivers cause stylus to work only on
1cmx1cm area in top left corner (this is known issue, only solution is restart).

43

There are also problem with Wintab drivers availability, since drivers are often
released months after device release [25].

Second option is universal and provided by Windows right after installation.
.Net have UI element named InkCanvas that is capable to capture handwritten
user input. Result of user input to InkCanvas is StrokeColection (collection of
stokes). Each stroke is basically list of stylus points. Stylus points like in WinTab
contain information about X and Y coordinates, pressure and index of stylus point
in stroke. Pros of InkCanvas solution is that is available on Windows without
installing custom drivers. On windows 8+ it’s available by default, on Windows
Vista and Windows 7 user must install .net framework in required version. Cons
of this solution is that didn’t provide all information from user input: we don’t
have azimuth and altitude information. Because this features are device specific
and in time of writing this paper only one device capable capture this type of
data was on market, we don’t considered it as big disadvantage.

We will choose approach by InkCanvas, because no third party driver instal-
lation is required. We use all data that this approach provides.

5.2 Signature features used to authentication

First of all we decide not to use any parametric feature. This decision is based
on fact, that supposed forger will have full visual copy of user signature. This as-
sumption was supported by work Smudge Attacks on Smartphone Touch Screens [26].
In this work they manage to obtain significant large information about user pat-
tern password from smudges on smartphone screens. Since tablets (as targeted
platform) are device of daily usage and its screen can be little dirty they can
suffer from same problem. Figure 5.1 shown example of this signature exposure
on tablet surface.

Figure 5.1: Picture taken by mobile phone without flash during standard light
conditions

Parameter features have advantages of providing some additional informa-

44

tion about signature. This information, in wrong hand can on the contrary wok
against signature security. For this reason we won’t use any parameter features
of signature.

We will use only function features of signature. Cons of this approach is this
feature is harder to process, since its time-bound data. Pros is, that function
features can’t be captured from already written signatures.

5.3 Token from signature

As we know from Signature credential provider design 3.5, result of signature
authentication should be access token, which we use from decrypting credentials.
Question is, how we obtain this token from entered signature.

First option is to transform signature directly to access token. Similar solu-
tion, but for voice-based approach can be found in [33], where cryptographic keys
are generated from spoken telephone number sequence. Signature hash described
in [29] used 50 diferent signature features to transform signature to bionic hash.

Great advantages of this technique is there is no need to storing access token.
However we must store user related parameters for hash calculation. One major
disadvantage is that during signature transform, there is no easy way to deter-
mine which feature is responsible for possible mistake.

Another options use combination of signature hash with digital key. First
solution in this category use embedding of digital key to biometric hash, for ex-
ample with bit replacement. Second solution uses combination of digital key and
signature (biometric in general) data into so called Bio Script TM in such way that
neither information can be retrieved independently by the other. Both solution
are based on signature hash (or directly use data divided from signature) thus
they share same disadvantages. Additionally we must manage digital key.

Last option is solution which release token upon successfully signature verifi-
cation. Advantage of this approach is that verified signature doesn’t transform
token in any ways. If is valid, token is sent and vice versa. From transforma-
tion signature token we move to signature authorization. By this approach, we
have wider choice of technique to verify signatures, since there are lot of related
works. Biggest disadvantage is related with security. Token and all related data
for authentication must be securely stored.

We tried transforming signature directly to access token and releasing token
upon successful verification. Transform option during implementation shown un-
reliable results, caused probably with trimmed feature set. Successful usage of
this technique is major part of future work. We chose last option, because we
prefer rather signature authorization before signature transformation, even at the
cost of reduced security. As we will talk in chapter security, it’s pointless to have
steel strong security in mild environment.

45

5.4 Signature authentication

Signature authentication can return two results: given signature will be, or will
be not valid. But how we will validate this signature? Form chapter1.5 we have
basic knowledge about method used in signature authentication. We will use
on-line signature verification for nature of capturing device. Discussed authen-
tication methods will be: continues and semi-continues hidden Markov model
(HMM), neural networks and dynamic time warp (DTW).

For authentication by hidden Markov model, support vector machines or neu-
ral networks we need large training data set. For example in this work [31] about
signature verification bases on neural network classifier they used 40 samples per
person, totally 240 writers. We don’t have access to database of signatures of this
size and prompt end-user to sign in 40 times before he can use our application is
unrealistic. However if good training data is provided above mentioned method
shown great results.

Last option is to use Dynamic time warp. This method doesn’t need any train-
ing data, so it’s ideal for our purpose. Dynamic Time Warping is used to compute
a distance between two time series. Naive approach to calculating a matching
distance between two series could be to resample one of them and then compare it
sample by sample. DTW provide recovering of optimal alignment between sam-
ple points in two time series. The name Time Warping is derived from warping
time axes of the two time series in way that corresponding samples appear at the
same location. Drawback of this method is that we calculating distance between
two series, so we must sustain user signatures that are entered upon initialization.

We will use dynamic time warp because no training data is needed, which we
cannot provide. Using DTW for each time series of feature values we will get
quantifiable similarity between one features of two signatures. How we use this
basically number to verify similarity between two signatures?

5.5 Weight of signature features

Have signature features equal importance while measuring signature similarity?
Each signature feature reflect uniqueness of signature in some ways, so they are
as unique, as signatures itself. Some features will be more important to determine
validity of signature as others.

We introduce feature weight, as measurements of signature features relevance.
Options for obtaining feature weight that we will discuss:

1. One constant weight to all signature features.

2. Constant weight unique per feature.

3. Weight of features based on pattern signatures.

First option just increase (or decreses if weight is below 1) differences between
features. This is not in general bad thing, but it doesn’t capture uniqueness of

46

signatures.

Second option will ensure basic features weight. Pros of this solution is that
we can set feature weight: favor one feature before another one. Values of features
weights are set manually in program. Feature weights can be based on research
therefore it can cover different importance between features in general. But these
weights are same for every user. Con of this solution is that it doesn’t take into
account uniqueness of signatures.

Last option will calculate feature weight for each user. Each features will
have capability for standalone weight calculation. Weight calculation will take in
favor: range of feature values and similarity based on this feature.

We chose this option despite more demanding implementation in favor to
increase accuracy of our method.

5.6 Calculation of signature weight

When we calculate signature weight, we must look to two statistical measure:
Intrapersonal (intra-pattern) stability, intrapersonal (intra-pattern) entropy.

5.6.1 Feature similarity deviation

Major problem with using signature (and any other bionic) features, is the trade-
off between natural intrapersonal variability of feature values between several
samples of a user and the requirement to have a persistent stable value (or in-
terval) to authenticate. Example for this dilemma is the total writing time of
a signature. This feature is very easy to calculate and very often used in low-
resources verification systems [7] this feature shown a rather stable intrapersonal
behavior. If for example a natural interpersonal variance of 5% . For signature
that takes 5 seconds to write, all duration in interval [4.25s .. 5.25s] should be
accepted to authenticate this feature. In short feature deviation can be describe
as intrapersonal instability reflecting the degree of scatter of feature [29].

We use function features, so instead of one value as total writing time of sig-
nature in example, we have time-ordered vector of features values. Instead of
calculating feature deviation over aggregate (min., max.,avrg.) values of function
features per pattern, we can use value of similarity per feature.

Big deviation in aggregate value does not have to impact similarity. For ex-
ample when user have punctuation in signature, pressure factor in punctuation is
independent from rest of signature. By calculating similarity by DTW this punc-
tuation pressure deviation will not have big impact on overall similarity, however
it impact feature deviation. Instead of intrapersonal stability, we are looking of
intra-pattern stability (Stability between user patterns).

47

We will use feature similarity deviation, as measurement of stability in similar-
ity over one feature. We calculate feature similarity deviation as ratio of average
feature similarity values over both extreme values of similarity

FeatureSimilarityDeviationi = 2∗average(Similarityi(patterns))
Max(Similarityi(patterns)+Min(Similarityi(patterns)

Function Similarityi return vector of similarities for feature i calculate for all
pairs of unequal signature patterns.

By including feature similarity deviation into feature weigh we can raise weight
of feature, that have stable similarity and vice versa.

5.6.2 Feature entropy

Information entropy had been introduced by Shannon in 1948 [28], and is a mea-
sure for information density with a set of values with known occurrence prob-
abilities. Information entropy is the base for several efficient data coding and
compression techniques like the Huffman code [27]. The question of effective in-
formation content is direct related to the uniqueness of signature feature. For
features with a low interpersonal variability, it can be expected that many users
will have similar or identical values, whereas a height interpersonal variability
indicates a greater distinguishing character. Feature entropy in short can be de-
scribe as potential of information density in feature [29].

Applied on function features, we can assume that if feature have bigger range
of feature values, then this feature have bigger entropy. Since all values of feature
have same length, we can assume that with bigger value range it can contain
more information.
We will calculate feature entropy as

FeatureEntropyi = Max(featuresi(patterns))−Min(featuresi(patterns))

Function featurei return vector of all features i values in patterns.

5.6.3 Feature weight calculation

Based on feature entropy and Feature similarity deviation we calculate overall
feature weight as

FeatureWeighti = FeatureSimilarityDeviationi(patterns)∗FeatureEntropyi(patterns)

48

5.7 Signature similarity calculation

Until now, we deal with signature similarity. Result of verification isn’t quantified
similarity, but Boolean value that declares if input signature is or is not valid. To
transform similarity to this statement, we use threshold. If signature similarity
is below this threshold, we declare it as valid and vice-versa.

We calculate threshold as average of similarities between all combinations of
two unequal signature patterns.

Since similarity is calculate between two signatures, we must choose which
one from pattern we will use. We use most similar pattern to examination sig-
nature. If similarity is below threshold, we declare exanimate signature as valid.
Otherwise we declare signature as invalid.

In other words, a signature can be declared valid, if it is similar
to the most similar pattern, at least as much as pattern signatures to
each other.

49

6. Signature authentication
implementation

In this chapter, we will discuss implementation of our Signature Authentication
service and Sign form. We chose this architecture in chapter Signature Credential
design. Along with programs needed to perform signature login, we introduce sup-
port programs: Credential manager for recording and re-recording user signature
patterns and user credentials and Signature studio which serve for visualization
of signature verification and running measurements. Since signature verification
is used in multiple project, we will encapsulate it in DLL called SignatureVeri-
fication. First we discuss implementation of this DLL, because rest of programs
relies on it.

6.1 Signature verification DLL implementation

Signature verification content can by divided into two parts: Capturing signatures
and verifying signatures.

6.1.1 Capturing signatures

For handwritten data, .net windows presentation foundation provide class InkCan-
vas. This Wpf UI element capture and visualize handwritten input in form of
stroke collection. InkCanvas doesn’t provide all features that we need: it only
visualize, don’t capture, stylus movement over the surface (hovering) and its ac-
curacy is not sufficient.

We solve this problem by inheritance child object SignatureInkCanvas from
InkCanvas into witch we added plugin SignaturePlugin that modify its function-
ality 6.1

Inside SignatureInkCanvas we create StrokeCollection named wholeStroke.
Function OnStylusAirMove si triggered when stylus is moving over surface. Inside
this function we added all with over the surface stylus points to wholeStroke.
With this approach, we can capture whole movement of stylus during signing,
not only when stylus touching surface of tablet. We can add complexity to the
Signature that look simple on first sign 6.2. As we want to track whole sign
movement, when user leave sign form with stylus, written signature is erased
before we start writing new signature.

We added modification for signature precision improvements. First we tried
to get timestamp information for each point. Inside SignaturePlugin we have
access to raw stylus points. Raw stylus point contain Timestamp value, in which
timestamp when impute occurred is stored. We didn’t get sufficient result by this
approach. Stylus points was clustered around few times.

50

Figure 6.1: SignatureInkCanvas and SignaturePlugin class diagram

Figure 6.2: Comparison of writing with and without of the surface movement
information

Then we try to pool stylus point at regular time bases. When the timeframe
is small enough, we can get stylus points that was added during this timeframe.
For this solution we set timer on constant time and when timer expired we clone
content of InkCanvas. We didn’t do difference of two last InkCanvas snapshot
on this place for performance reasons. By this approach, we hit on the build in
timer smallest possible time limit. Since period of timer is set as a number of
milliseconds, one could expect that even can reach a frequency up to 1000Hz.
This is not true, the maximum frequency is fall less and its system depend. We
tried it on multiple systems and got minimum values around 15-16 millisecond’s
which 66 – 62 hertz is. This is low value comparably to tablet samples rate that
can go from 100pps up to 200. (Samples rate on tablet is in pps : points per
second)

51

To improve timer, we use MicroTimer1 (related class can be found in sub-
folder MicroTimer) which can go up to theoretically 1µs (1Mhz). This is far
beyond sample rate of digitalize, so we use only 5000µs (5ms, 200 Hz) to match
sample rate of tablet digitalize. When we start pooling for stylus point, we get
stable one point per 5 millisecond. Without pooling sample rate was from 5ms to
20ms. However we won’t time data, since we have constant time between points,
we provide this information from SignatureInkCanvas for alternative usage.

6.1.2 Verifying signatures

For calculating similarity per one feature we have parent class called Signature-
Comparer 6.3. We chose inheritance before interface because not all function that
we required must have signatureComparer implement, for e.g. function DrawnUI
is optional. Inside SignatureComparer we can find only one property ID. This is

Figure 6.3: Class diagram of SignatureComparer

GUID of the comparer. By this GUID weight of feature that comparer examined
is stored inside signature container6.1.4. We initialized credential with this GUID.

For calculating comparer weight (we can say feature, but we don’t strict that
one comparer use only one feature) there is function CalculateWeights that take
List of user patterns and return double value of comparer weight.

For comparing two signatures is used private function Comparer that take two
signatures and weight. It return signature similarity in form of double number.

Function DrawnGui is optional, it serve for only demonstrating purpose.
DrawnGui is basically signature comparer, but rather than double value of simi-
larity it return whole UIElement that can contain visualization of signature sim-

1 Available from:http://www.codeproject.com/Articles/98346/
Microsecond-and-Millisecond-NET-Timer

52

 http://www.codeproject.com/Articles/98346/Microsecond-and-Millisecond-NET-Timer
 http://www.codeproject.com/Articles/98346/Microsecond-and-Millisecond-NET-Timer

ilarity, partial results of comparing or it can show whole process of comparing.

Because parent class parent class SignatureComparer doesn’t implement any
complex functionality, we describe one specific signature comparer: dynamixX.
All comparer that use DTW for computing similarity are similar.

6.1.3 DynamicX signature comparer

DynamicX signature comparer signature use speed in X axle as feature for cal-
culate similarity of two signatures. Similarity calculation is done as follow:

1. We take examined feature (in this case speed in X axle) of pattern and
signature

2. We calculate similarity by DTW of this two time ordered series. Dtw pa-
rameters are two series and dtw settings. The more signature are similar,
then result of dtw is closest to zero.

3. Similarity will be multiplied result of dtw by comparer weight

For calculation of dynamic time warp we using library nDtw (obtaied from
github.com/doblak/ndtw)

Calculation of comparer weight is done as we describe it in chapter 5.6

For optional function we have besides GetName function DrawnGui. Drawn-
Gui return UIElement that contain comparer name, visualization of dtw calcula-
tion both in series and matrix and overall information about feature weigh and
calculated similarity (whit and whiteout weight) and visualization of feature 6.4.

Reason why in SignatureVefification folder is Project Ndtw.Visualization.Wpf
is that vizualization of dtw calculation didn’t work. We have to fix some issue
related with oxyplot (dll used for drawing graph).

We added function SetSetting beyond SignatureComparer. By this function
we can set and modify setting for DTW calculation as way of distance measure
(Euclidian, Manhattan, maximum or squared Euclidian) and if we boundary start
and end to be Constrain align or not.

We implemented follow signature comparer on the basis of signature fea-
ture 6.5

Figure 6.4: Vizualization provided by DynamicX comparerr

53

github.com/doblak/ndtw

Figure 6.5: Diagram of all implemented signature comparers

6.1.4 Signature Container

We store user patterns, comparer’s weights and access token in binary serializable
class named Signature Container 6.6. Signature Container doesn’t expose these
data, but provide ways that data can be modify and obtain.

Figure 6.6: Diagram of signature container

First we wall through property:

• Name is name of SignatureContainer. This Name is used as filename.

• Threshold is for demonstrate purpose, it show maximum value of similarity
value that can have signature to be valid.

Function can be divided to tree groups

• Managing functions: AddPattern, ClearPatterns ,RecalulateWeights, Change-
Token.

• Comparing function: isSimilar with one overload. Function can return
Boolean value if given signature is valid or additionally return quantified
similarity (double) and access token (if signature is valid) in out parame-
ters.

54

• Demonstrating functions: DrawnComparerUi and GetUiInfo are function
that return UIElements , its use for demonstrating purpose

We will describe this functions more in detail during usage scenarios wall through.

6.2 Sign form

Sign form is used for capturing user signatures and transferring it to Signature
Authentication service. It contain few classes:

• Speaker: provide communication through name pipes. In this class is also
implemented visual behavior of sign form based on signature verification
result.

• MainWindow is main class of this program. This class is responsible for
serializing and sending user signature. MainWindows contain XAML file
that describe UI of sign form. For capturing User signature we use Signa-
tureInkCanvas describet in chapter6.1.1

6.2.1 Usage scenario

When Sign form is initialized, Speaker instance connect to namePipe. This
channel is duplex for receiving message about signature authentication. User
then enter signature and click on send button. After send button is pressed, we
get signature from SignatureInkCanvas by read only property .WholeStroke. In
wholeStroke is stored signature whit off-surface movements. Only way to serialize
stroke is through Stroke collection. Stroke collection have capability to save itself
to stream. We use this way of serialization as follows: we create memory stream,
in which we save StrokeCollection that contain only whole stroke. Then we get
byte array from memStrem and encode it to string. This string will we send to
Signature Authentication service.

There can be more than simple true / false result from authentication service.
We distinguish four result states and follow behavior:

• Signature verified : Sign form flash in green color and close itself

• Signature denied : Sign form tremble itself , it stay open for another signa-
ture

• Signature recorded: Sign form flash in blue color. This happen during
recording new signature’s. This indicate that signature was recorded cor-
rectly.

• Signature verified silent: Sign form flash in dark green, but stay open.
This happen when signature is verify not against signature authentication
service but against Signature studio6.5. or when surficial count of signature
is recorded.

55

6.3 Signature authentication service

Signature authentication service serve for authenticating signatures. Signatures
came from Sign Form through named pipe. Besides authenticating signatures
and sending access token to Signature Credential provider it serves for creating
and updating user’s data stored in SignatureContainers.

We walk through tree usage scenario: service loading, authenticating signature
and recording new signatures.

6.3.1 Signature authenticator loading

In OnStart function (every service must implement OnStart and OnStop func-
tion) we create and start namePipeServer , open host , and we load userPatterns(
stored in Signature Containers) and create signature comparers.

Loading user pattern is done by function LoadUserPatterns. We scan
\C:\Signature\UserPaterns" directory and we try desterilize every file in it.
After success deserialization we added this signature container inside list Signa-
tureContainers.

Signature Comparers are created by function AddComparer. We simple added
new instance of every used signature comparer to list of signatures Comparers.

6.3.2 Signature authentication

First of all, we need to obtain signature to authentication. Signature came from
Sign Form to signature authentication services through namepipe. Besides signa-
tures from Sign Form we can receive command messages from Credential Man-
age 6.3.3 we will discuss this in chapter 6.3.3, we will split code execution by
sender name. For now we will focus on signatures only.

Fist we recreate Stroke from received string. We Decode string to byte array
and from this byte array we create memory stream. We recreate StrokeCollec-
tion from this memory stream. Its exactly opposite way as we use in sign form
to serialization 6.1.1.

Then we check if we are in record state

First we look out on our signature container, if any can compare. If yes, we
authenticate signature by function Compare Signature with recreated stroke as
parameter.

For each signatureContainer, we run similarity calculation by function isSim-
ilar. We will store thresholds and access tokens alongside with similarity results.

There must be exactly one similar signature found. If there is more or less
than one match, we can’t declare positive user authentication. In this case we

56

write Error to Event log and send message about unsuccessful signature verifica-
tion to sign form to provide visual feedback to user.

In case that signature was authenticate successfully we send access token to
Signature Credential provider through name pipe .We also send message about
successful authentication to sign form.

6.3.3 Management of signatures

As we told, we can receive messages from Credential Manager. These messages
are send when we want record new users pattern or create whole new user (Sig-
natureContainers). We can receive massage of follow type

• Record: We change state of service to record. This mean all incoming
signature will not be authenticate, but they will be added to signature-
Container. If user already have recorded and loaded signature container,
we find it, clear user patterns and start recording to it. If we record new
user, we create new signatureContainer. Alongside control message, we al-
so received access token. By this token we can find SignatureContainers
related to user, or create new signature Container. At the beginning we set
record timer that change state back from record after time automatically,
if something unexpected happen.

• Change: This message change token inside signatureContainer. Alongside
control message, we also received old and new access token. By old token
we can find SignatureContainers related to user in which we change token
to new one

• Stop recording: This message change state of service from record to au-
thenticate. It do not save new recorder signature Container.

• Discard: This message change state of service from record to authenticate,
disable record timer and for consistency we reload all user patterns from
disk.

• Save: This message change state of service from record to authenticate.
We save edited (or newly created) to User Pattern folder, disable record
timer and for consistency we reload all user patterns from disk.

6.4 Credential manager

Signature manager in form of wizard is used for managing and recording signa-
tures. Users will use signature manager by done three tasks:

• Change stored windows password

• Change stores signature

• Both above

57

When user want to change any information, first of all he must verify by cur-
rent windows password. From password token is generated. If we don’t found
any matching stored user credentials, we ask for last password. For new users (or
users that forge old password) there is change to generate new credentials. Users
that just want update password can skip signature recording part.

Then record control message is send to signature authorization service and
sign form is launched. After user enter signature pattern sign form notify about
successful record. After 3 signatures are recorded (smallest sufficient amount)
user is notify. He can continue recording more signature patterns or close sign
form and go to next step, stop record control message is send. Then user fill
credentials and finish wizard, save control message is sender and user credential
are updated (or created). If application is closed Discard control message is send.
Screenshots of Credential manager can be found in User documentation.

6.5 Signature studio

Signature studio 6.7 application was originally built for running measurements on
signatures. During development it’s became center of signature authentication
visualization, performing measurements on given signature sets and even can sub-
stitute signature authentication service in some ways. It also serve as counterpart
when debugging some part of signature authentication service.

Figure 6.7: Signature stuio with open signature vizualization

58

7. Evaluation

In addition in this section, we will evaluate our signature authentication imple-
mentation. First we look on difficulties about gathering test data and then we
evaluate our signature authenticator in set of test with variable count of user
patterns and different threshold computing.

7.1 Test data

Gathering testing data was difficult for two reasons:

• To compare test signatures, all signatures must be capture on same (or at
least similar) device. This is due different features of capturing devices. For
example test subjects that have signature captured by big tablet (size of
A4 +) have usually larger signatures than test subject that have signatures
capture by small one. Other difference is between signing on tablet with
digitizer that provide no visual feedback and on tablet pc.

• Users, especial in these days, are aware of computer security threads. Is
nearly hard to gather one signature samples, harder obtain at least three
signatures samples and nearly impossible obtain signature, when we tell to
test subjects, that we will try to forge given signatures.

We test data obtained from SVC 2004: First International Signature Verifi-
cation Competition [30].Competition consist from two task about signature ver-
ification. Information provided to first task contain only coordinate information
only. For second task information contain additional information including pen
orientation and pressure. Because we use pressure as one of signature feature for
verification, we will use data from task 2.

”Each data contributor was asked to produce 20 genuine signatures and 20
skilled forgeries in two separate sessions. For privacy reasons, the contributors
were advised not to use their real signatures in daily use. Instead, they were
suggested to design a new signature and to practice the writing of it sufficiently
so that it remained relatively consistent over different signature instances, just
like real signatures. Contributors were also reminded that consistency should not
be limited to spatial consistency in the signature shape but should also include
temporal consistency due to dynamic features.

In the first session, each contributor was asked to contribute 10 genuine sig-
natures. Contributors were advised to write naturally on the digitizing tablet
(WACOM Intuos tablet) as if they were enrolling themselves to a real signature
verification system. They were also suggested to practice thoroughly before the
actual data collection started. Moreover, contributors were provided the option
of not accepting a signature instance if they were not satisfied with it. In the
second session, which was at least one week after the first one, each contributor
came again to contribute another 10 genuine signatures. In addition, he/she also

59

contributed four skilled forgeries for each of five other contributors. Skilled forg-
eries were collected in the following fashion. Using a viewer, a contributor could
see genuine signatures of other contributors that he/she would attempt to forge.
The viewer could replay the writing sequence of the signatures on the computer
screen. Contributors were also advised to practice the skilled forgeries for a few
times until they were confident to proceed to the actual data collection. The
signatures are mostly in either English or Chinese” [30].

We only use data that can also provide tablet pc digitizer (X/Y coordinate,
pressure). We don’t use azimuth and altitude information. Overall we have 1600
signatures (20 genuine and 20 by skilled forger from 40 test subject).

7.2 Test methods

We will measure these factors:

• FRR False Rejection Rate : ratio of the number of false rejections divided
by the number of total identification attempts.

• FAR False Accept Rate : ratio of number of false acceptance divided by
the number of total identification attempts.

• EER Equal Error rate: a point where the FAR and FRR intersect. This
point describes probability when FAR and FRR are equal. The risk of
accepting an impostor is equally as small as the risk of rejecting a legitimate
user.

Since our method use relatively small count of user signature patterns (n), we
define one iteration of n patterns as: knowledge base of authentication sustain of
n patterns randomly pick from 20 genuine signature. We run follow test: Miss
impute test and Forger test.

7.3 Miss input test

In this test, we measure robustness of our authentication method against “ran-
dom” user input. For every test subject, we run 100 iteration of 3 to 6 user
patterns. We used substitution from random input signatures of all other test
subject. This approach measure if one user signature can be authenticate as two
person. If signature match to more than one parson, we declare it as invalid,
because we can’t guarantee its authenticity.ňň

In total 2,5 million of signature comparison have been made. Only four ran-
dom user input was considered as valid.

7.4 Forger test

In this test, we measure robustness of our authentication method again skilled
forger. FRR measures the rate of genuine signatures classified as forgeries while

60

FAR represents the rate of forgeries recognized as genuine ones.

For every test subject, we run 100 iteration of 3 till 6 user patterns. As input
to compare, we use remaining genuine signatures and all forged signatures. We
don’t take pattern signature as input, because from nature of our authenticate
method, they will always be correctly classified.

We are averse of importance of selection of right quantity and quality of
signature pattern in our method. Alongside average result of each random pattern
pick, we record best and worst case. This can give us better perspective in what
range our authenticate method works.

Figure 7.1: Graph of FRR and FAR of random signature pattern pick

In figure 7.1 we can see FAR/FRR of average signature pattern pick. EER in
average signature pick is 15.97%

Random pattern pick is good for providing overall result of our signature au-
thentification method, but signatures pick doesn’t correspondent with our usage
scenario. Random pattern pick have big probability to pick signatures that have
been recorded week apart. In our usage scenario, we will record pattern signa-
tures in a row, so each signatures will be recorded in short succession.

In next test, we randomly pick one genuine signature from one week and then
we add following patterns until we have required amount of patterns. When pick
patterns in this way, we use remaining genuine signatures alongside with forged
signatures as input to compare. This patent pick better reflects how users of our
method will record signatures.

61

Figure 7.2: Graph of FRR and FAR of row signature pattern pick

Results can be found in figure 7.2. As we can see, recording signatures in a
row produce better results as random pattern pick. EER by pattern pick in a
row is: 4,17%

Overall EER of implemented method is 15.97%, but it doesn’t reflect ways
that users pattern will be recorded in our solution. Much closer to real time usage
is row pattern pick method with EER 4,17% . As result we will mention both
results, random pick result as overall result of method, and row pick result real
time usage result.

62

8. User documentation

8.1 Instalation

User install our signature login solution by Installer. No user input is needed
during installation. At the end, user have check box that run Credential Manager
after installer exit.

8.2 Signature and credentials managing

Signature management is done by program Credential manager. Credential man-
ager, due to registry access, must by run with as administrator.

Figure 8.1: Initial page of Credential Manager

8.1 is initial screen of credential manager. Only basic information are provided
on this page. User click Next to continue

Figure 8.2: User verification page of Credential Manager

63

On next page, User is requested to verify himself. After user enter password,
he click on Verify button. Three scenarios can happen:

1. User password is incorrect: Correct password must be entered. 8.3.1

2. User password is correct and user already have stored credentials: Click
next to continue. 8.3.2.1

3. User password is correct, but no credentials were found. This case can
happen for follow reason:

(a) New user, click on button new user 8.3.3.3

(b) User password is different that stored one, User is prompt to enter old
password and verify it 8.3.3.1. By this, user can just change password
and skip Signature recording 8.3.3.2 to Edit credentials page 8.5

Figure 8.3: User verification page variaton of Credential Manager

On next pag 8.4, Sign form is launched. User enter pattern signature and click
send. When signature is successful recorded, visual feedback in form on blue flash
is provided. After sufficient amount of signature is recorded (3 signatures) visual
feedback in form of dark green flash is provided. User can record more signatures.
Then user close sign form and click next to proceed to next page 8.5 or cancel to
discard any changes.

64

Figure 8.4: Signature recording page of Credential Manager

In this page 8.5, user enter valid credentials and can verify if user name and
domain is correct.Click next to preceed to last page 8.6

Figure 8.5: User credential edit page of Credential Manager

This is end page 8.6. After finish button is clicked, all changes will be saved.
When cancel (or close button) is pressed no changes will be made.

65

Figure 8.6: Finish page of Credential Manager

8.3 Login by signature

Login is little different in by V1 and V2 signature credential provider. V1 credent
provider will on right side 8.7.1, V2 on left side 8.7.2.Fist user click on title of
signature credential provider.

Figure 8.7: Logon screen of V1 and V2 Signature credential

In V1 Credential provider sign form is launched automatically. In V2 Creden-
tial provider user must click on tile “launch sign form”. 8.8.2.1
User enter genuine signature to sign form and click Send. If Signature is accepted,
Visual feedback in form of light green flash is provided and sign form is closed
and user is singed in windows. If Signature is not accepted, visual feedback in
form of signature form shake is provided.

66

Figure 8.8: Sign screen of V1 and V2 Signature credential

67

9. Related work

There are no related work in term of allowing user to log in to windows by
handwritten signature. There is no solution on other platform (android, iOS,
Linux) that allows user to log in by handwritten signatures. However some usage
of handwritten signatures and alternative ways to log on can be found. As this
whole paper, this chapter will be too divided to section about signatures and
about credentials provider

9.1 Signatures

There are countless related works in academic sphere about signature verification,
authorization and capturing and classifying handwritten data, both by in on-line
and off-line methods. We highlight one most similar work: Dynamic signature
recognition based on velocity changes of some features [32]. In this work, authors
use similar set of signature function features and DTW as method for comparing
signatures. Additionally they use signature rotation for better similarity match.
In this work even same test data set is used, so we can compare results on same
data. However only fraction (320 from 1600) signatures were used. From nature
of proposed technique of they work, best result is used. With our ERR value of
raw pick 4.17% is comparable with value of ERR 1.4% in their method. Addi-
tionally in comparison with other works compared in the paper, our method is
comparatively accurate. Proposed technique of they work is better as our method
when choosing patterns randomly with ERR value of average pick 15.97%

In commercial solutions, handwritten signature is almost exclusively used for
signing documents. Documents are signed only with image of signature or addi-
tional information about signer is included. In commercial solution stand out so-
lution SignDock. This solution use handwritten signature to verify signer against
pre-created online account. If verification is successful, on signed document are
beside image of signature added information about signer. Most wide spread
software that allow placement of signature (without verifying signature) is adobe
acrobat.

Handwritten signature used for authenticating user is used in some mobile
application. In application Bio Wallet Signature claim itself as exclusive signature
password manager. This application use handwritten signature for authentication
user for access to sensitive information such as credit card information or internet
banking app.

68

9.2 Credentials providers

There are many alternative ways to log in to the Windows.

One category of alternative credential provider use bionic trait to authorize
user. In this category follow bionic trait is used: fingerprint, hand, veins and iris
scan.

Other category use possession of item to authorize user. Token in form of
RFID card, NFC tag or USB key. Additionally some usb key solution have capa-
bility to automatically lock and unlock workstation based on proximity of usb-key
contra part [Gatekeeper , Gkchain.con]

par Two-way authentication is also used. For example by solution from com-
pany duo security.

Last category are plugin-based credentials as pGina. When we want to custom
background to our authentication process, with pGina we can authorize user
against sql server, CAS (central authentication service) or even text file.

69

Conclusion

In this thesis, we implemented standalone solution that allow user log in to Win-
dows by handwritten signature. This solution can be divided into two parts:
Signature authentication and Signature credential provider.

Because credential providers, by their design, have limited capability to cap-
ture handwritten data, we split implementation to three parts: Sign form for cap-
turing handwritten signatures. Signature authentication service to authenticate
signatures and Signature credential provider that provide login by information
from Signature authentication service. As support programs for this implemen-
tation are: Credential manager for managing credentials and recording signatures
and Signature studio for signature authentication visualization.

We implemented both V1 credential provider for Windows Vista and above
and V2 credential provide for Windows 8 and above. To implementation of both
credential providers led problem with Microsoft live account in V1 credential
provider. Biggest challenge in both credential providers were to achieve log in
to the system without any spare user interaction (capability to be able do auto
login). Demanding task was also how to secure store user credentials. We solve
this by storing user’s credentials in encrypted format in registries with access
right restrictions.

Based on difficulties with obtaining training signature, we chose method that
required smallest amount of signatures patterns: signature authentication by
dynamic time warp features similarly. We also used feature weight based on
feature entropy and feature deviation to achieve better results.

Our signature authentication method provide sufficient security properties
with equal error rate (risk of accepting an impostor is equally as small as the
risk of rejecting a legitimate user) with row pattern pick of 4.17%. This EER is
comparable with other methods that use small amount of user patterns. Used
signature authentication method with random pattern pick have EER at 15.97%.
This method, because it use few user patterns, is however susceptible ambitus
user signatures that serve as pattern.

Safety of solution raise and falls on security of signature credential provider.
We are storing user encrypted credentials in registry that are over and above
protected with access right. We are also storing user pattern and token in binary
serializable class, but we don’t expose these data directly, but through functions
that required valid signature as input.

70

Feature work

In feature work, as we mentioned in chapter signature design, we want to achieve
direct transformation from signature to access token, preferably without any user-
related addition data.

For little better user experience, some modification in V2 signature credential
provider have to be made. In feature work, we want to launch sign form in right
time, without any additional user interaction as clicking on link that is needed in
current implementation.

Last point of feature works, will also involves signature credential provider.
As we can see in chapter alternative credential provider usage, there is small if
none direct binding between signature and credentials. We want to redraw signa-
ture credential provider in the form of credential provider framework as platform
similar as pGina, but with capability to launch external programs from credential
environment. By this approach some exciting ways of user authentication can be
develop such as log in by whistle or log in by tapping sequence on table

71

Bibliography

[1] POSTGATE, J. . Early Mesopotamia: society and economy at the dawn of
history. . New York: Routledge, 1994, xxiii, 367 p. ISBN 04-150-0843-3.

[2] STEINSALTZ, Commentary by Rabbi Adin. The Talmud. 1. ed. New York:
Random House, 1994. ISBN 0679428992.

[3] NICHOLAS, Barry. An introduction to Roman law. 1. ed. Oxford: Clarendon
Press, 1991, pp. 254-255. Clarendon law series. ISBN 0198760639.

[4] SCOTT, S. The civil law: including the Twelve Tables, the Institutes of
Gaius, the Rules of Ulpian, the Opinions of Paulus, the Enactments of Jus-
tinian, and the Constitutions of Leo. Union, N.J.: Lawbook Exchange, 2001,
pp. 217. ISBN 1584771305.

[5] OSBORN, Albert Sherman. Questioned documents. 2d ed., complete and
unabridged. Chicago: Nelson-Hall Co, [1974], viii, xxiv, 1042 p. ISBN 08-
822-9190-4.

[6] JAIN, Anil, Lin HONG a Sharath PANKANTI. Biometric identifi-
cation. Communications of the ACM. vol. 43, issue 2, pp. 90-98.
DOI: 10.1145/328236.328110. Available from: http://portal.acm.org/

citation.cfm?doid=328236.328110

[7] DULLINK, VAN DAALEN, J NIJHUIS, L SPAANENBURG a H ZUID-
HOF. Implementing a DSP Kernel for Online Dynamic Handwritten Signa-
ture Verification Using the TMS320 DSP Family. DSP Solution Challenge
1995 European Team. 1995, pp. . 1. Available from: http://www.ti.com/

lit/an/spra304/spra304.pdf

[8] YAMPOLSKIY, Roman V. a Venu GOVINDARAJU. Behavioural biomet-
rics: a survey and classification. International Journal of Biometrics. 2008,
vol. 1, issue 1, pp. 81-. DOI: 10.1504/IJBM.2008.018665. Available from:
http://www.inderscience.com/link.php?id=18665

[9] MCCABE, Alan a Jarrod TREVATHAN. Markov Model-Based Hand-
written Signature Verification. 2008 IEEE/IFIP International Conference
on Embedded and Ubiquitous Computing. IEEE, 2008, pp. 173-179. DOI:
10.1109/EUC.2008.138. Available from: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=4755225

[10] ANTON-HARO, C., J.A.R. FONOLLOSA, C. FAULI a J.R. FONOLLOSA.
On the inclusion of channel’s time dependence in a hidden Markov mod-
el for blind channel estimation. IEEE Transactions on Vehicular Technol-
ogy. 2001, vol. 50, issue 3, pp. 867-873. DOI: 10.1109/25.933319.Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=933319

72

http://portal.acm.org/citation.cfm?doid=328236.328110
http://portal.acm.org/citation.cfm?doid=328236.328110
http://www.ti.com/lit/an/spra304/spra304.pdf
http://www.ti.com/lit/an/spra304/spra304.pdf
http://www.inderscience.com/link.php?id=18665
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755225
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4755225
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=933319
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=933319

[11] ÖZGÜNDÜZ, Emre, Tülin ŞENTÜRK a M. Elif KARSLIGIL. OFF-
LINE SIGNATURE VERIFICATION AND RECOGNITION BY SUP-
PORT VECTOR MACHINE. 13th European Signal Processing Confer-
ence. 2005, n. 13. Available from: http://www.eurasip.org/Proceedings/
Eusipco/Eusipco2005/defevent/papers/cr2010.pdf

[12] MCCORMACK, Daniel K. R., B. M. BROWN, John F. PEDERSEN, Bruce
G. BATCHELOR, Susan Snell SOLOMON a Frederick M. WALTZ. Neu-
ral network signature verification using Haar wavelet and Fourier trans-
forms. Machine vision applications, architectures, and systems integra-
tion II: 7-9 September 1993, Boston, Massachusetts. Bellingham, Wash.,
USA: SPIE, 1993, n. 2064, pp. 14-25. DOI: 10.1117/12.150284. Avail-
able from: http://proceedings.spiedigitallibrary.org/proceeding.

aspx?articleid=941886

[13] KECMAN, V. Learning and soft computing. Vyd. 1. Massachusetts: MIT
Press, 2001, 526 s. ISBN 02-621-1255-8.

[14] WIROTIUS, M., J. Y. RAMEL a N. VINCENT. Improving DTW for
Online Handwritten Signature Verification. Image analysis and recogni-
tion: international conference, ICIAR 2004, Porto, Portugal, September
29-October 1, 2004 : proceedings. Berlin: SpringerVerlag, 2004, n. 1,
pp. 786.DOI: 10.1007/978-3-540-30126-4 95.Available from: http://link.

springer.com/10.1007/978-3-540-30126-4_95

[15] IMPEDOVO, Donato a Giuseppe PIRLO. Automatic Signature Verification:
The State of the Art. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews). 2008, vol. 38, issue 5, pp. 609-635. DOI:
10.1109/TSMCC.2008.923866. Available from: http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=4603099

[16] PLAMONDON, R. a S.N. SRIHARI. Online and off-line handwriting
recognition: a comprehensive survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2000, vol. 22, issue 1, pp. 63-84.
DOI: 10.1109/34.824821.Available from: http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=824821

[17] VADACKUMCHERY, James. Bankers’ safety: methods and techniques. 2nd
ed. New Delhi: Concept Pub. Co, 2002, 70 - 81. ISBN 9788170229377.

[18] Create Custom Login Experiences With Credential Providers For
Windows Vista. GRIFFIN, Dan. THE MICROSOFT JOURNAL
FOR DEVELOPERS [online]. 2007 [cit. 2015-05-02]. Available from:
https://msdn.microsoft.com/en-us/magazine/cc163489.aspx

[19] MICROSOFT. Credential Provider Framework Changes in Windows 8.
2012. Available from: : http://download.microsoft.com/download/F/3/
5/F3536898-FF3C-4548-8418-08D79555A0DB/Credential%20Provider%

20Framework%20Changes%20in%20Windows%208.docx

73

http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr2010.pdf
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2005/defevent/papers/cr2010.pdf
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=941886
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=941886
http://link.springer.com/10.1007/978-3-540-30126-4_95
http://link.springer.com/10.1007/978-3-540-30126-4_95
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4603099
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4603099
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=824821
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=824821
http://download.microsoft.com/download/F/3/5/F3536898-FF3C-4548-8418-08D79555A0DB/Credential%20Provider%20Framework%20Changes%20in%20Windows%208.docx
http://download.microsoft.com/download/F/3/5/F3536898-FF3C-4548-8418-08D79555A0DB/Credential%20Provider%20Framework%20Changes%20in%20Windows%208.docx
http://download.microsoft.com/download/F/3/5/F3536898-FF3C-4548-8418-08D79555A0DB/Credential%20Provider%20Framework%20Changes%20in%20Windows%208.docx

[20] Credential Provider update–Windows 8 SDK breaks a
few things. . . [online]. 2013 [cit. 2015-05-02]. Avail-
able from: http://blogs.msmvps.com/alunj/2013/04/07/

credential-provider-update-windows-8-sdk-breaks-a-few-things/

[21] FAIRHURST, M.C. Signature verification revisited: promoting prac-
tical exploitation of biometric technology. Electronics. 1997-12-01,
vol. 9, issue 6, pp. 273-280. DOI: 10.1049/ecej:19970606.Available from:
http://digital-library.theiet.org/content/journals/10.1049/

ecej_19970606

[22] Windows Vista Credential Provider Samples: Five Credential Provider Sam-
ples for Windows Vista RTM and Windows Server Codename: Longhorn.
Microsoft [online]. 2006 [cit. 2015-05-02].Available from: http://www.

microsoft.com/en-US/download/details.aspx?id=4057

[23] FIPS PUB 180-4. Secure Hash Standard (SHS). Gaithersburg: National In-
stitute of Standards and Technology, 2012.Available from: http://csrc.

nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[24] PARK, James J. Advances in information security and assurance: third in-
ternational conference and workshops, ISA 2009, Seoul, Korea, June 25-27,
2009 : proceedings. New York: Springer, 2009, pp. 674-678. Lecture notes in
computer science, 5576. ISBN 9783642026164.

[25] Wintab Backgrounder. WACOM. Wacom [online]. 2010 [cit. 2015-
05-03].Available from: http://www.wacomeng.com/windows/docs/

WintabBackground.htm

[26] AVIN, Adam, Katherine GIBSON, Evan MOSSOP, Matt BLAZE a
Jonathan M. SMITH. Smudge Attacks on Smartphone Touch Screens.
WOOT’10 Proceedings of the 4th USENIX conference on Offensive tech-
nologies. 2010, n. 4, pp. 1-10. DOI: 10.1.1.176.4678.Available from: http:

//static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf

[27] CORMEN, Thomas H. Introduction to algorithms. 2nd ed. Cambridge: MIT
Press, c2001, pp. 385-392. ISBN 0-262-03293-7.

[28] SHANNON, Claude Elwood a Warren WEAVER. The mathematical theory
of communication. Chicago: University of Illionois Press, 1998, 125 p. ISBN
978-0-252-72548-7.

[29] VIELHAUER, Claus a Ralf STEINMETZ. Handwriting: Feature Cor-
relation Analysis for Biometric Hashes. EURASIP Journal on Ad-
vances in Signal Processing. 2004, vol. 2004, issue 4, pp. 542-
558. DOI: 10.1155/S1110865704309248.Available from: http://asp.

eurasipjournals.com/content/2004/4/389304

[30] YEUNG, Dit-Yan, Hong CHANG, Yimin XIONG, Susan GEORGE, Ra-
manujan KASHI, Takashi MATSUMOTO a Gerhard RIGOLL. SVC2004:
First International Signature Verification Competition. Biometric authenti-
cation: first international conference, ICBA 2004, Hong Kong, China, July

74

http://blogs.msmvps.com/alunj/2013/04/07/credential-provider-update-windows-8-sdk-breaks-a-few-things/
http://blogs.msmvps.com/alunj/2013/04/07/credential-provider-update-windows-8-sdk-breaks-a-few-things/
http://digital-library.theiet.org/content/journals/10.1049/ecej_19970606
http://digital-library.theiet.org/content/journals/10.1049/ecej_19970606
http://www.microsoft.com/en-US/download/details.aspx?id=4057
http://www.microsoft.com/en-US/download/details.aspx?id=4057
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://www.wacomeng.com/windows/docs/WintabBackground.htm
http://www.wacomeng.com/windows/docs/WintabBackground.htm
http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://asp.eurasipjournals.com/content/2004/4/389304
http://asp.eurasipjournals.com/content/2004/4/389304

15-17, 2004 : proceedings. New York: Springer, 2004, n. 1, pp. 16. DOI:
10.10079783540259480 3. Available from: http://link.springer.com/10.
1007/978-3-540-25948-0_3

[31] BALTZAKIS, H. a N. PAPAMARKOS. A new signature verification tech-
nique based on a two-stage neural network classifier. Engineering Ap-
plications of Artificial Intelligence. 2001, vol. 14, issue 1, pp. 95-103.
DOI: 10.1016/S0952-1976(00)00064-6.Available from: http://linkinghub.
elsevier.com/retrieve/pii/S0952197600000646

[32] DOROZ, Rafal, Piotr PORWIK, Tomasz PARA a Krzysztof WROBEL. Dy-
namic signature recognition based on velocity changes of some features.
International Journal of Biometrics. 2008, vol. 1, issue 1, pp. 47-. DOI:
10.1504/IJBM.2008.018663.Available from: http://www.inderscience.

com/link.php?id=18663

[33] CARRARA, Brent a Carlisle ADAMS. You are the key: Generating
cryptographic keys from voice biometrics. 2010 Eighth International Con-
ference on Privacy, Security and Trust. IEEE, 2010, n. 1, pp. 213-
222. DOI: 10.1109/PST.2010.5593251.Available from: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5593251

75

http://link.springer.com/10.1007/978-3-540-25948-0_3
http://link.springer.com/10.1007/978-3-540-25948-0_3
http://linkinghub.elsevier.com/retrieve/pii/S0952197600000646
http://linkinghub.elsevier.com/retrieve/pii/S0952197600000646
http://www.inderscience.com/link.php?id=18663
http://www.inderscience.com/link.php?id=18663
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5593251
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5593251

Attachments : DVD contantes

The dvd disk included with this thesis has the following structure:

• Thesis.pdf - the electronic version of this thesis.

• readme.txt - usage instruction

• Installers

* Demo Mode - Installer of signature authentification demonstrate mode

* Windows 7 (V1 credential provider) - Instaler of V1 signature creden-
tial provider

* Windows 8 (V2 credential provider) - Instaler of V1 signature creden-
tial provider

• TestData - Signatures of 40 subjects used in SVC 2004: First International
Signature Verification Competition

• SignatureCredentialProvider soucrce codes - source codes of our signature
credentil solution

• Programing documentation - Programing documentation of our solution

76

	Introduction
	Signature overview
	History of handwriting signature
	Signature as method of authentication
	Signatures retrival
	Signature features
	Signature verification method
	Hidden Markov model
	Support vector machines
	Neural networks
	Dynamic Time Warp

	Signature forgery

	Windows credential provider overview
	Windows XP
	Reason to give up GINA

	Windows Vista, Windows 7
	New Logon Architecture
	Credential provider design
	Loading
	Login
	Default credential

	Windows 8
	Old model
	New model
	Inside changes

	Signature credential provider design
	Signature enter
	Native credential provider or third part solution
	Location of signature verification
	User credential storage and pass
	Localization and implementation of credentials injections
	Credential
	Provider

	Credential provider for Window Vista/7 or Windows 8

	Signature credential provider implementation
	Language selection
	Implementation
	File overview
	Signature credential provider login scenario
	Signature credential provider loading
	Gathering of user input required to log in
	User input transformation to password
	Windows 8 Signature credential differences.
	Implementation notes
	Alternative usage of signature credential provider

	Signature authentication design
	Capturing of handwritten signature
	Signature features used to authentication
	Token from signature
	Signature authentication
	Weight of signature features
	Calculation of signature weight
	Feature similarity deviation
	Feature entropy
	Feature weight calculation

	Signature similarity calculation

	Signature authentication implementation
	Signature verification DLL implementation
	Capturing signatures
	Verifying signatures
	DynamicX signature comparer
	Signature Container

	Sign form
	Usage scenario

	Signature authentication service
	Signature authenticator loading
	Signature authentication
	Management of signatures

	Credential manager
	Signature studio

	Evaluation
	Test data
	Test methods
	Miss input test
	Forger test

	User documentation
	Instalation
	Signature and credentials managing
	Login by signature

	Related work
	Signatures
	Credentials providers

	Conclusion
	Bibliography
	Attachments : DVD contantes

