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Title: Study of Neutrino Oscillations parameters at NOνA Experiment

Author: Tomáš Nosek
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1. Introduction

Neutrino oscillations have become a well-established and experimentally intensively surveyed
phenomenon among particle physics during the last two decades. It is now a commonly
acknowledged fact, that there are at least three “flavor states” of neutrinos: |νe〉 - electron,
|νµ〉 - muon and |ντ 〉 - tauon neutrino with defined weak charges (flavors) [1, 2], and three
different “mass eigenstates”: |ν1〉, |ν2〉 and |ν3〉 with defined masses m1, m2, m3. Neutrino
oscillations are paramount evidence of nonvanishing neutrino masses providing thus foremost
hints about the physics beyond the Standard Model (SM).

Almost all of oscillation parameters have been measured [3]. Sizes of the mixing angles
θ12, θ13 and θ23 are known thanks to solar, reactor and atmospheric plus long-baseline
experiments respectively, see Ref. [4]. So are the values of both mass-splittings ∆m2

21 and
∆m2

31 (∆m2
32), also first estimates of CP violating phase δ appear [3]. The upcoming task is

to aim at the last unresolved questions:
1. What is the 13-hierarchy, i.e. the sign of ∆m2

31 (∆m2
32)?

2. Is 23-mixing maximal, i.e. θ23 = 45◦, and if not, is θ23 > or < 45◦?
3. What is the value of CP phase δ?

These enquiries are not only motivated by the will to determine all the oscillation
parameters as fundamentals, but are also essential for future theoretical progress in particle
physics including extensions of the Standard Model, neutrinoless double β-decay or
leptogenesis in the first moments after the Big Bang [1].

The focus of this thesis is to explain the possibility of hierarchy determination using
“matter effects” in neutrino oscillations at long-baseline experiments and NOνA in detail.
The first part sums up the basics of neutrino oscillations, their formalism and experimental
means in oscillation parameters pursuit. Brief introduction of the NOνA experiment in USA
and its important features follows. The second part is dedicated to the propagation
of neutrinos through media and consequent matter effects modifying the plain vacuum
oscillations. Immense attention is devoted to so-called matter resonances and their key role
in mass hierarchy determination. The way to settle the particular 13(23)-hierarchy (∆m2

31,
∆m2

32) in νµ → νe channel and long-baseline experiments is comprehensively depicted.
With a help of GLoBES software the last part probes the potential of NOνA in resolving
neutrino mass hierarchy, especially the need of an early antineutrino run to reach some
plausible results upon this topic sooner than initially expected with 3 years ν and 3 years ν̄
run scheduled.

The system of natural units is used throughout the text, c = ~ = kB = 1, and CPT
theorem is assumed to be valid.
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2. Neutrino oscillations phenomena

Chapter 2 summarizes the basic foundations of neutrino oscillations. Section 2.1 introduces
standard formalism and derives vacuum transition probabilities in three neutrinos model.
More on these essentials can be found in Refs. [1, 2, 5, 6, 7, 8, 9]. The importance of oscillation
parameters and typical experimental designs are in scope of Section 2.2. Reader can seek
for more details in Refs. [1, 2, 4, 10, 11, 12]. Short note on CP violation in neutrino oscillations
is in Section 2.3, also in Refs. [1, 2, 8, 9, 13]. Section 2.4 aims at the current results in neutrino
oscillation parameters search, see Ref. [3].

2.1 General formalism

A general approach towards neutrino oscillations phenomenon requires a n > 1 number
of orthonormal neutrino flavor eigenstates |να〉 of flavor α and corresponding mass eigenstates
|νi〉 with mass mi. The mass eigenstates and flavor eigenstates do not coincide with one
another, but are their quantum superpositions or linear combinations. Conventionally this
relation is written as [1, 2, 5]

|να〉 =
∑
i

U∗αi|νi〉, |νi〉 =
∑
α

Uαi|να〉, 〈να|νi〉 = Uαi, (2.1)

with 〈να|νβ〉 = δαβ, 〈νi|νj〉 = δij and [1, 2]∑
i

UαiU
∗
βi = δαβ,

∑
α

UαiU
∗
αj = δij . (2.2)

And the coefficients Uαi form a unitary mixing matrix U .
The same relations apply to antineutrinos except for Uαi are exchanged for their complex

conjugates

|ν̄α〉 =
∑
i

Uαi|ν̄i〉, |ν̄i〉 =
∑
α

U∗αi|ν̄α〉. (2.3)

The n × n unitary complex matrix U has n2 parameters. Provided neutrinos are Dirac
particles, 2n−1 physically irrelevant phases of 2n neutrino states can be arbitrarily fixed and
(n− 1)2 parameters remain. If neutrinos are Majorana particles (νi = ν̄i), (n− 1) additional
phases need to be kept, since they cannot be eliminated by phase redefinition, and the total
number of free parameters is n(n− 1) [5].

U is a transformation matrix between |να〉 and |νi〉 bases. These can be treated as two
independent vector representations νf ≡ (να, νβ, νγ , . . . , νω)T (flavor representation) and
νm ≡ (ν1, ν2, ν3, . . . , νn)T (mass representation), in which a neutrino state can be expressed

|ν〉 =
∑
α

ναf |να〉 =
∑
i

νim|νi〉, (2.4)

〈να|ν〉 = ναf , 〈νi|ν〉 = νim. (2.5)

Therefore, with Eq. (2.1)
νf = Uνm. (2.6)

2.1.1 Three neutrino mixing

So far most of the observations and experimental data are explained by a 3 neutrinos model
(3ν-model) [3, 4]. Active neutrino flavors are identified through a weak interaction process
of W± decay in which corresponding charged lepton takes part, i.e. e↔ νe, µ↔ νµ, τ ↔ ντ .
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This system of 3 flavor neutrinos νf ≡ (νe, νµ, ντ )T is connected with νm ≡ (ν1, ν2, ν3)T

via unitary 3× 3 Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS

νf = UPMNSνm. (2.7)

UPMNS has 4 (6 for Majorana neutrinos) parameters: 3 mixing angles θij and a CP violat-
ing phase δ (Majorana phases a and b). Standard parametrization of UPMNS consists of three
matrices of rotation Uij(θij) with angles θij in ij-planes, a diagonal Iδ ≡ diag(1, 1, exp(iδ))
and eventual matrix of Majorana phases A ≡ diag(exp(ia/2), exp(ib/2), 1) [1, 5, 14]

UPMNS =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 = U23(θ23)IδU13(θ13)I∗δU12(θ12)A =

=

1
c23 s23

−s23 c23

 c13 s13e−iδ

1
−s13e+iδ c13

 c12 s12

−s12 c12

1

eia
2

ei b
2

1

 =

 c13c12 c13s12 s13e−iδ

−c23s12 − s13c12s23e+iδ c23c12 − s13s12s23e+iδ c13s23

s23s12 − s13c12c23e+iδ −s23c12 − s13s12c23e+iδ c13c23

×
eia

2

ei b
2

1

 , (2.8)

with sij ≡ sin(θij) and cij ≡ cos(θij). The reader will see that Majorana phases a and b have
no impact on neutrino oscillation probabilities. Thus from now on, let’s assume the 3ν-model
and drop out the matrix A from UPMNS, which will be designated as U for convenience, i.e.

U ≡ U23(θ23)IδU13(θ13)I∗δU12(θ12). (2.9)

Note that if there are more than 3 neutrino flavors, e.g. sterile neutrinos come into play,
UPMNS is then just a submatrix of a larger n× n matrix and is not unitary as assumed [5].

2.1.2 Time evolution of a neutrino

The time evolution of a neutrino state |ν〉 is given by the Schrödinger equation [1, 2, 7]

i
d

dt
|ν(t)〉 = H|ν(t)〉, |ν(t)〉 = exp (−iHt) |ν(0)〉,

i
d

dt
νm(t) = Hmνm(t), i

d

dt
νf (t) = Hfνf (t), (2.10)

where H is the Hamiltonian operator expressed in an appropriate representation basis Hm or
Hf . Since mass eigenstates |νi〉 are eigenstates of H with eigenvalues Ei (energy) in vacuum,
one can write in a plane-wave approximation

|νi(t)〉 = exp (−iHt) |νi(0)〉 = exp (−iEit) |νi〉. (2.11)

Ei = mi (mass of an eigenstate) and t = τ (proper time) in the rest frame of |νi〉. Then
through Lorentz transformation to the laboratory frame with time t, position x (distance
from the source of neutrinos) and momentum p

|νi(t)〉 = exp (−i(Eit− pix)) |νi〉. (2.12)

Assuming that neutrino is emitted at t = 0 with definite energy E, which means that all |νi〉
have the same energy E, and being ultrarelativistic (mi � E) [7]

pi =
√
E2
i −m2

i ≈ E −
m2
i

2E
, x ≈ t, (2.13)

3



the evolution of a mass eigenstate |νi〉 is given by

|νi(t ≈ x)〉 = exp

(
−i
m2
i

2E
x

)
|νi(0)〉. (2.14)

In conclusion, the initial state |ν〉 develops in vacuum into

|ν(t ≈ x)〉 =

3∑
i=1

exp

(
−i
m2
i

2E
x

)
|νi〉〈νi|ν(0)〉. (2.15)

With a closer look at Eq. (2.14) and with M2 ≡ diag(m2
1,m

2
2,m

2
3) the vacuum Hamil-

tonian Hm in the |νi〉 basis can be expressed in an effective form which happens to be very
handy in investigation of neutrino oscillations

Hm =
M2

2E
=

1

2E

m2
1

m2
2

m2
3

 . (2.16)

Schrödinger-like equation of type Eq. (2.10) then becomes

i
d

dt
νm = Hmνm =

M2

2E
νm (2.17)

in |νi〉 basis and using mixing matrix U and Hf in flavor basis |να〉

i
d

dt
νf = Hfνf =

1

2E
UM2U †νf . (2.18)

2.1.3 Vacuum oscillation probabilities in 3 neutrinos model

Imagine a neutrino born at the source in an eigenstate of flavor α. It travels a distance L to
a detector, where it interacts with a target and produces a charged lepton of flavor β. Ipso
facto, it is identified as a νβ. From Eq. (2.1), Eq. (2.7), Eq. (2.9) and Eq. (2.15) the amplitude
of such a process is [1, 6, 7]

Amp(να → νβ;L,E) = 〈νβ|να(L)〉 =

3∑
i=1

U∗αiUβi exp

(
−i
m2
i

2E
L

)
. (2.19)

As noted earlier, this amplitude is independent of Majorana phases a and b, while∑
i

(UA)∗αi (UA)βi =
(
UAA†U †

)
βα

=
(
UU †

)
βα

=
∑
i

U∗αiUβi, (2.20)

with A from Eq. (2.8).
The probability of detecting νβ, P (να → νβ;L), or the oscillation probability is given

by the absolute value of amplitude from Eq. (2.19) squared:

P (να → νβ;L,E) = |Amp(να → νβ;L,E)|2 =

=

∣∣∣∣∣
3∑
i=1

U∗αiUβi exp

(
−i
m2
i

2E
L

)∣∣∣∣∣
2

=

=
3∑
i=1

3∑
j=1

U∗αiUαjUβiU
∗
βj exp

(
−i

∆m2
ij

2E
L

)
(2.21)
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with squared-mass differences (squared-mass splittings)

∆m2
ij = m2

i −m2
j . (2.22)

Provided CPT invariance holds, obtaining antineutrino probability is quite easy [6]:

P (ν̄α → ν̄β;L,E) = P (νβ → να;L,E). (2.23)

Or, all Uαi in Eq. (2.21) need to be replaced by their complex conjugates in terms of Eq. (2.3)

P (ν̄α → ν̄β;L,E,U∗) = P (να → νβ;L,E,U). (2.24)

2.2 Oscillation parameters and mass hierarchy

It can be revealed with an aid of the formula in Eq. (2.21), that vacuum neutrino oscillation
probabilities in 3ν-model depend on 6 parameters: three mixing angles θ12, θ13, θ23 of mixing
matrix U , CP-violating phase δ and squared-mass splittings ∆m2

ij , from which only two

of them are independent [1, 5]. As long as this is arbitrary, one can pick ∆m2
21 and ∆m2

31

for instance.
Besides their absolute values also signs of squared-mass splittings are essential. Taking

the masses of neutrino mass eigenstates |νi〉 real they distinguish the mass ordering or mass
hierachy of neutrino mass eigenstates telling us which one is the heaviest and the lightest.
So far, the hierarchy ofm2

1 andm2
2 has been resolved in oscillations of solar neutrinos with a re-

sult of ∆m2
21 > 01) [4]. On the other hand the sign of ∆m2

31 still2) remains unknown leaving
us with two possible mass arrangements, commonly denoted as [1, 2, 4, 5, etc.]

1. m2
1 < m2

2 < m2
3 (normal hierarchy = NH)

2. m2
3 < m2

1 < m2
2 (inverted hierarchy = IH).

2.2.1 The size of the squared-mass splittings importance

The physical meaning of ∆m2
ij emerges from exp

(
−i∆m2

ijL/2E
)

term in Eq. (2.21), which

represents the periodic character of oscillation probabilities with respect to parameter L/E
[1, 5, 7]. Therefore ∆m2

ij can be seen as an oscillation frequency in units of E/L. Or in other
words, the oscillation length Lij is characterized by the equation [1]

Lij =
4πE

∆m2
ij

. (2.25)

There are only two independent ∆m2
31, ∆m2

21 in 3ν-model and according to current data
on neutrino oscillations (Table 2.1, Fig. 2.1) [3, 4]

∆m2
31 ≈ ∆m2

32 ≈ ∆m2 = m2
3 −

m2
2 +m2

1

2
(2.26)

and |∆m2| � |∆m2
21|. Thanks to these odds neutrinos can be divided into two groups

with two characteristic oscillation scales of L/E, where oscillation maxima/minima occur
(halves of oscillation lengths) [1]. For |∆m2| = 2.5 × 10−3 eV2 and ∆m2

21 = 7.5 × 10−5 eV2

(close to current best fit values in Table 2.1):

∆m2 scale :
|∆m2|

2

〈
L

E

〉
∼ π ⇒

〈
L

E

〉
≈ 500

km

GeV
(2.27)

∆m2
21 scale :

|∆m2
21|

2

〈
L

E

〉
∼ π ⇒

〈
L

E

〉
≈ 16 000

km

GeV
. (2.28)

1) More on the methods of hierarchy determination using matter effects in Chapters 4 and 5.
2) April 2015
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2.2.2 The size of the mixing angles importance

With squared-mass splittings being the effective frequencies of oscillations, elements of U
control the magnitudes of oscillatory patterns. They include the combinations of sin θij and
cos θij . Hence, the sizes of mixing angles θij are responsible for the oscillation amplitudes.
Uαi are also coefficients in linear combinations in Eq. (2.1), thus |Uαi|2 determine the relative
content of |να〉 in |νi〉, see Fig. 2.1.

2.2.3 Some basic designs of neutrino oscillation experiments

As a result of the above subsections, neutrino oscillations are often subject to scrutiny in two
basic types of experiment, for which Eq. (2.27) or Eq. (2.28) holds. The neutrino mixing
can be usually3) treated as a mixing of 2 effective mass eigenstates in a 2ν-model in such
experiments [1, 2]:

1. Atmospheric (see Refs. [4, 11]), long-baseline experiments (see Refs. [4, 12]) and reactor
experiments (see Ref. [4]) at short distances (up to ∼ 5 km), where Eq. (2.27) holds, are
sensitive to oscillations due to ∆m2 (∆m2

31,∆m
2
32). The 2ν-like oscillation probability

is [1]

P 2ν(να → νβ;L,E) = sin2 2θeff
αβ sin2

(
∆m2

4E
L

)
(2.29)

for appearance experiments and

P 2ν(να → να;L,E) = 1− sin2 2θeff
αα sin2

(
∆m2

4E
L

)
(2.30)

for disappearance experiments with

sin2 2θeff
αβ = 4|Uα3|2|Uβ3|2 (α 6= β), sin2 2θeff

αα = 4|Uα3|2
(
1− |Uα3|2

)
. (2.31)

From Eq. (2.31) and Eq. (2.8) follows that oscillation probabilities in Eq. (2.29) and
Eq. (2.30) depend only on θ13 and θ23 and are independent of θ12.

Atmospheric neutrinos are created in hadronic showers resulting from collisions of cos-
mic rays with nuclei in the atmosphere (νµ, νe mostly) [11]. Such neutrinos have
energies up to hundreds of GeV and travel distances of km to thousands km depending
on the arrival direction into the detector. Super-Kamiokande, SNO, IceCube or MINOS
experiments are fitted to measure fluxes of neutrinos born in the atmosphere [4, 11].

Long-baseline experiments are designed to search for νµ (ν̄µ) disappearance or transi-
tions to νe, ντ with ∼ GeV energies at ∼ 100 − 1000 km distances. Neutrino beams used
by these experiments are created at accelerator complexes (like NuMI beam at Main
Injector in Fermilab or CNGS beam at SPS in CERN) from π−/π+ (K−/K+) decays.
Brief summary of long-baseline experiments with their baseline and neutrino
approximate energy scope follows [4, 12, 15]: K2K (250 km, 0 − 8 GeV), MINOS
(735 km, 0 − 10 GeV), OPERA (730 km, ≈ 17 GeV), T2K (295 km, 0.2 − 2.0 GeV),
NOνA (810 km, ≈ 2.0 GeV) and a future experiment of LBNF/DUNE (formally known
as LBNE) (1300 km, 0 − 10 GeV).

Reactor experiments at short distances study disappearance of ν̄e from interactions
in the nuclear reactors at ∼ MeV energies. They are suitable to high precision mea-
surements of θ13. Daya Bay, Double Chooz, RENO [4] are subsumed in this group
of experiments.

3) Except for CP and T violation effects.
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Table 2.1: Current best estimates of 3ν-model oscillation parameters from global fits of oscillation data [3,
p. 252]. ∆m2 defined as: ∆m2 = m2

3 − (m2
2 + m2

1)/2. Thus ∆m2 > 0 in case of normal hierarchy and < 0
in case of inverted hierarchy. sin2 θ23 from the lower θ23 octant, i.e. for θHO

23 > 45◦ sin2 θHO
23 = 1− sin2 θ23.

best fit (±1σ)
parameter ∆m2 > 0 ∆m2 < 0

sin2 θ12 0.308± 0.017

sin2 θ23 0.437+0.033
−0.023 0.455+0.039

−0.031

sin2 θ13 0.0234+0.0020
−0.0019 0.0240+0.0019

−0.0022

∆m2
21 [10−5 eV2] 7.54+0.26

−0.22∣∣∆m2
∣∣ [10−3 eV2] 2.43± 0.06 2.38± 0.06

δ/π 1.39+0.38
−0.27 1.31+0.29

−0.33

2. Solar (see Refs. [4, 10]) and reactor experiments at long distances (∼ 100 km), where
Eq. (2.28) is valid, are sensitive to oscillations due to ∆m2

21. The effective 2ν survival
probabilities are given by [1]

P 2ν(να → να;L,E) = 1− sin2 2θeff
αα sin2

(
∆m2

21

4E
L

)
(2.32)

with the mixing angle

sin2 2θeff
αα = 4

|Uα1|2|Uα2|2

(|Uα1|2 + |Uα2|2)2 . (2.33)

Both solar and reactor long distance experiments measure in disappearance channels.
Solar neutrinos are created in thermonuclear interactions that power the Sun and have
energies of 0.1 − 20.0 MeV and travel all the way from inside the Sun to the Earth.
Solar experiments such as SAGE, GALLEX, Super-Kamiokande, SNO reported a deficit
in νe fluxes with respect to the Standard Solar Model (SSM) [10] and determined θ12

and ∆m2
21. Thanks to the effects of matter in neutrino oscillations and total flavor

transitions known as the MSW (Mikheev-Smirnow-Wolfenstein) effect [1, 2, 10, 16]
the 12-hierarchy has been resolved in these experiments.

There is one delegate of reactor experiments at long distance: KamLAND. KamLAND
measures ν̄e disappearance with a baseline of ∼ 175 km which resulted in the most
precise determination of ∆m2

21 [4, 10].

2.3 Charge-parity and time violation

Unlike effective 2ν-models mentioned in preceding paragraphs CP and T violation is a genuine
three (or more) flavors effect. Consider the difference between appearance probability of νβ
and ν̄β for an initial να and ν̄α (CP difference) and a probability difference between T-mirror
processes (να → νβ and νβ → να, T difference)

∆PCP
αβ = P (να → νβ)− P (ν̄α → ν̄β), ∆PT

αβ = P (να → νβ)− P (νβ → να). (2.34)

From CPT theorem one has in vacuum

∆PCP
αβ = ∆PT

αβ, ∆PCP
αα = ∆PT

αα = 0 (2.35)

and the disappearance channels are not affected by possible CP and T violation.
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Figure 2.1: Flavor content of neutrino mass eigenstates with dependence on the Dirac phase δ. Fraction
of flavor eigenstates (νe black, νµ light blue, ντ red) is determined by |Uαi|2. Left: Normal mass ordering.
Right: Inverted mass ordering. The figure was taken from Ref. [13].

There is only one CP-violating phase δ in 3ν-model, hence only one CP (T) probability
difference occurs [8]

∆PCPeµ = ∆PCPµτ = ∆PCPτe = ∆PCP (2.36)

and from Eq. (2.21)

∆PCP = −4s12c12s13c
2
13s23c23 sin δ

[
sin

(
∆m2

12

2E
L

)
+ sin

(
∆m2

23

2E
L

)
+ sin

(
∆m2

31

2E
L

)]
= 2 cos θ13 sin 2θ13 sin 2θ12 sin 2θ23 sin δ sin

(
∆m2

21

4E
L

)
sin

(
∆m2

31

4E
L

)
sin

(
∆m2

32

4E
L

)
.

(2.37)

CP violation can be observed only if there is an interference between at least two different
mass splittings and three mixing angles [13]. ∆PCP vanishes if one ∆m2

ij = 0 or one θij = 0
or 90◦ or δ = 0 or π (180◦).

2.4 Current knowledge of oscillation parameters

Reader can find the best fit of oscillation parameters known up to this date in Table 2.1.
The numbers are taken from Ref. [3]. In addition to it, some of the recent results from neutrino
oscillation experiments that relate to the next chapters of this thesis shall be noted.

One of the most precise values of the mixing angle θ13 comes from the Daya Bay
experiment in China. Daya Bay measures antineutrino fluxes from nuclear reactors in order
to search for ν̄e disappearance [17]:

sin2 2θDB
13 = 0.084± 0.005. (2.38)

Two long-baseline experiments T2K (295 km) in Japan and MINOS (735 km) in USA
measure θ23 and |∆m2

32| using νµ → νµ (ν̄µ → ν̄µ) beams at energies ∼ GeV created by large
accelerators. MINOS results [18]

sin2 θMINOS
23 = 0.43+0.16

−0.04 |∆m2
32|MINOS = 2.34+0.09

−0.09 × 10−3 eV2 (NH) (2.39)

sin2 θMINOS
23 = 0.43+0.19

−0.05 |∆m2
32|MINOS = 2.37+0.11

−0.07 × 10−3 eV2 (IH) (2.40)
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According to the same Ref. [18] the 90% C.L. interval for θ23 is

sin2 θMINOS
23 = 0.37− 0.64 (NH), sin2 θMINOS

23 = 0.36− 0.65 (IH). (2.41)

T2K results [19]

sin2 θT2K
23 = 0.514+0.055

−0.056 |∆m2
32|T2K = 2.51± 0.10× 10−3 eV2 (NH) (2.42)

sin2 θT2K
23 = 0.511± 0.055 |∆m2

32|T2K = 2.48± 0.10× 10−3 eV2 (IH) (2.43)

Almost all parameters have been determined with good precision. Few last discrepancies
wait for final resolution:

1. What is the sign of ∆m2, i.e. is there normal or inverted mass hierarchy?
2. Is θ23 =, > or < 45◦?
3. What is the size of δ (at least more precise than in Table 2.1)?
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3. The NOνA experiment

Chapter 3 gives elementary information on the NOνA experiment. NuMI beam used by NOνA
is described in Section 3.2, details in Refs. [4, 12, 20, 21, 22]. Section 3.3 deals with the off-
axis concept, its pros and cons. Reader can found more in Refs. [1, 2, 12, 20]. The NOνA
Near and Far detectors are the topic of Section 3.4. More is depicted in Refs. [4, 12, 20, 21].
The last Section 3.5 provides a brief report on typical ν interactions, their backgrounds and
systematics. Refs. [4, 12, 20, 22] can procure more specific enlightenment.

3.1 Introduction

NOνA (NuMI Off-axis νe Appearance) [4] is a second generation long-baseline neutrino
oscillation experiment located in Fermilab’s NuMI (Neutrinos at the Main Injector) beamline.
The main feature of NOνA is its long baseline 810 km (the longest of all recent long-baseline
experiments) in combination with matter effects in Earth’s mantle. These modify the vacuum
oscillations in νµ → νe channel making it possible to determine neutrino hierarchy and CP
violation.

NOνA has two detectors (Near and Far), both sitting ca 14 mrad off the axis of the
NuMI beam [22]. It is scheduled to run for 3 years in neutrino mode (νµ → νµ, νµ → νe) and
3 years in antineutrino mode (ν̄µ → ν̄µ, ν̄µ → ν̄e). With full start of data taking in fall 2014,
the end is expected at the turn of 2020 and 2021.

Under certain conditions (see next subsections and chapters) NOνA is capable of studying
several aspects of neutrino oscillations [4, 21, 22]:

1. the size of θ13,
2. the mass ordering, i.e. the sign of ∆m2,
3. the CP violation, i.e. δ 6= 0,
4. the size of θ23 and ∆m2 (∆m2

32, ∆m2
31)

5. the θ23 ambiguity, i.e. whether θ23 =, >, or < 45◦.
Other topics of physics programme at NOνA such as supernovae neutrinos, sterile neutrinos,
lepton number violation etc. can be found in Refs. [20, 21, 22], theoretical foundations
in Refs. [1, 2].

3.2 NuMI beam

NuMI is a νµ beam used by MINOS experiment (map in Fig. 3.2). Initially it worked
with power of 350 kW, but further upgrades up to 700 kW and estimated 6.0×1020 POT/year
are scheduled [12]. 120 GeV protons from the Main Injector accelerator hit the graphite target
in Target Hall producing secondary pions and kaons. Either positively or negatively charged
pions (kaons) are focused by two magnetic horns towards a Decay Pipe, where most of them
decay via [20, 21]

π+ → µ+ + νµ, π− → µ− + ν̄µ. (3.1)

Following Al-Fe water cooled Hadron Absorber stops all residual protons and mesons. At last,
muons from pion and kaon decays are attenuated in 250 m of earth shielding between Absorber
Hall and Near Detector Hall. A schematic of NuMI beamline is in Fig. 3.1.

There are some adjustables in NuMI focusing optics configuration: position of the target
and second magnetic horn with respect to the first one, the horn current and polarity [12].
Position and current of the horns fix the desired neutrino energy spectrum, or its mean energy
more likely. In combination with off-axis concept this has a potential to pick a neutrino
energy spectrum with very sharp peak at a certain energy as it is done for NOνA (2 GeV).
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Figure 3.1: A schematic of NuMI beamline. From left to right: 120 GeV protons hit the carbon target
in the Target Hall producing pions and kaons. These are focused by two magnetic horns, then decay while
travelling through the Decay Pipe. Except for muons all produced hadrons and mesons are stopped
in the Hadron Absorber. Residual muons are attenuated by nearly 250 m of rock in front of the Near
Detector leaving just neutrinos in the beam. The figure was taken from Ref. [12].

Figure 3.2: Map of NuMI beamline. The figure was downloaded (2015/03/09) from:
http://www-nova.fnal.gov/images v2/graphics/numi-beamline-map-med.jpg.

The optimal setup for the NOνA experiment is so-called “medium energy tune” (Fig. 3.3 -
right) (MINOS run with “low energy tune”) with peak at 7.5 GeV on-axis.

By changing polarity of the horns a νµ or ν̄µ beam can be chosen. To be more precise,
one shall talk about νµ dominated and ν̄µ enhanced beams. With the magnetic horn polarity
set to focus positive hadrons (νµ mode) the on-axis beam consist of 91.7% νµ, 7.0% ν̄µ and
1.3% νe + ν̄e, with the opposite polarity (ν̄µ mode) of 40% ν̄µ, 58% νµ and 2% νe + ν̄e [12].
Despite this fact, the NOνA off-axis detectors will see a beam flux with significantly higher
purity than on-axis having 1% ν̄µ contamination in νµ mode and about 5% νµ contamination
in ν̄µ mode.

3.3 Off-axis concept

Both of NOνA detectors are located ca 14 mrad off-axis of the NuMI beam. Appreciable
outcome of the relativistic kinematics is the main reason for such a disposition. In their
rest frame, pions and kaons decay isotropically producing mono-energetic neutrinos. When
boosted, the energy Eν of a neutrino from a decay of pion (kaon) Eq. (3.1) of energy E
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at a small laboratory angle φ is

Eν =
(1−m2

µ/m
2)E

1 + E2φ2/m2
⇐


(

1− m2
µ

m2
π

)
≈ 0.427 for pions,(

1− m2
µ

m2
K

)
≈ 0.954 for kaons,

(3.2)

with m the mass of the initial particle and mµ the mass of muon. For detailed derivation
of Eq. (3.2) see Ref. [2, p. 66]. Unlike the energy on axis of the beam, energy of off-axis
neutrinos is less dependent on the pion (kaon) energy as you can see in Fig. 3.3 - left.

Experimental off-axis layout has a number of pros and cons. The main con is a suppresion
of the overall neutrino flux, because it obviously peaks in the forward direction. On the other
hand, off-axis position provides extra flux in the chosen energy region and moreover effectively
discriminates neutrinos with higher and lower energies. The consequent neutrino spectrum is
relatively narrow and sharp, which helps to reduce backgrounds with usually much broader
energy distribution (NC events) [20, 21]. Also high energy tail is lowered, τ backgrounds
with a threshold slightly above 3 GeV, when ν scatters on a nucleon, are minimized [20].
Fig. 3.3 - right shows the simulated NuMI energy spectrum in on-axis beam and three off-
axis directions.

A conclusion of the previous two sections emerges: peak energy of the neutrino spectrum
is primarily determined by a combination of focusing optics “energy tune” and the off-axis
angle. Focusing optics itself affects the on-axis beam energy and, given a certain off-axis angle,
off-axis beam intensity [21]. Picking out carefully the beam power, focusing configuration, off-
axis angle and sufficient baseline optimizes the experimental sensitivity to particular object
of interest. The parameters of NOνA experiment (L = 810 km, E ≈ 2.0 GeV) maximizes
sensitivity to the mass ordering resolution and observation of CP violation effects [4].

3.4 Detectors

NOνA has two detectors: Far Detector (FD) in Ash River, Minnesota, ca 810 km from a Fer-
milab site and Near Detector (ND) ca 1 km from the target next to the MINOS near

12



Figure 3.4: A drawing of NOνA detectors (including prototype NDOS) with a human figure for scale.
Inset: An illustration of PVC cellular structure and detectors’ high segmentation. Each layer of elementary
cells is oriented orthogonally to adjacent ones to provide 3D event reconstruction. The figure was adapted
from Ref. [12].

detector at Fermilab, Batavia, Illinois. The NOνA detectors are almost totally active, highly
segmented, tracking liquid scintillator calorimeters. FD is constituted of approximately
11 200 metric tons of mineral-oil based liquid scintillator and 2 800 tons of highly reflective
polyvinyl chloride extrusions to contain it, i.e. 14 kt of fiducial mass [12, 21]. The elementary
cells of 4.5 cm × 6 cm × 15.6 m are glued together in modules of 32 cells. Twelve modules
next to each other make up a plane and the planes alternate in having their long dimension
horizontal and vertical. FD has 896 layers with 384 cells, i.e. ∼ 344 000 readout channels.
ND is similar, but much smaller with total mass ∼ 300 t and 4.5 cm × 6 cm × 4.1 m size
of elementary cells and is supplemented with a muon catcher to shorten muons stopping
range. See Fig. 3.4 with drawings of NOνA detectors.

Light is emitted when a charged particle travels through the scintillator and extracted
by a U-shaped wavelength-shifting fiber. Both ends of the fiber are attached to a 32-pixel
avalanche photodiode (APD) [21]. APDs must be cooled to –15◦C to obtain low noise
on output. Detectors assembly and instrumentation was completed in September 2014.

NOνA has operated a prototype near detector on the surface since 2010 (NDOS,
also in Fig. 3.4) to study interaction topologies, detector response, test detector adjusment,
develop electronics and data acquisition etc. NDOS is located 110 mrad off NuMI beam
axis and is very similar to ND. For more information and results achieved with NDOS see
Refs. [20, 21, 23].

3.5 Interactions, backgrounds and systematics

NOνA uses CC events for νe/ν̄e and νµ/ν̄µ detection. Typical interactions to be sought
in the detectors are

νe + nucleus→ e− +X, νµ + nucleus→ µ− +X. (3.3)
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Figure 3.5: Distinguishing neutrino events in the NOνA Near Detector. Each small rectangle represents
the individual elementary cells of the detector. The darker cell is the higher energy deposit was measured.
Top to bottom: νµ CC quasi-elastic event with proton and characteristic muon; νe CC quasi-elastic event
with electromagnetic shower caused by an electron; NC event with π0 production. The figure was taken
from [22].

Distinguished topologies can be seen in Fig. 3.5. The total number of νe/ν̄e events expected
for 3+3 years run with 6.0 ×1020 POT/year is 60 – 70/30 – 40 [24].

Having two detectors is a major advantage in dealing with backgrounds and systematics.
ND unoscillated beam spectra, its backgrounds and subsequent extrapolation are a measure
of the expected background to νµ → νe oscillation signals in FD [20]. Operational and
structural similarity of detectors ensures that the efficiencies for signal and background are
nearly identical. However, there are some issues that one should be aware of [20]:

1. Energy resolutions of detectors are different and, as a consequence, so are their abso-
lute energy calibrations. Energy dependent background (NC events) needs this to be
understood perfectly.

2. Beam spectra cannot be identical, because ND sees a line source of muon neutrinos
from decays hundreds meters away, while FD sees a point source from 810 km.

3. ND is underground and shielded from cosmic rays, while FD is on the surface. In order
to reduce cosmic photons which can be misidentified as νe CC events FD’s roof is com-
posed of normal and barite-enhanced concrete with twelve radiation length overburden.
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4. Effects of matter
in neutrino oscillations

Chapter 4 explores the impact of matter on neutrino oscillations and the effective modification
of oscillation parameters in 3ν-model. Sections 4.1 and 4.2 derive the scattering potentials
and corresponding matter Hamiltonian, also in Refs. [1, 7, 14, 25]. Section 4.3 is dedicated
to a diagonalization of this Hamiltonian in order to find relations for effective oscillation
parameters. Conditions of resonances and adiabatic flavor transitions are discussed. Inspect
Refs. [1, 14, 25] for details or Refs. [26, 27] for more rigorous results. Exhausting explanations
of neutrino oscillations in matter phenomena concerning lots of theoretical and experimental
usage are in Ref. [1] and Ref. [14].

4.1 Coherent forward scattering and matter potentials

When propagating through media, neutrinos undergo weak interactions with other particles
via exchange of W± (CC) and Z0 gauge bosons (NC) [7, 14], see Fig. 4.1. At low energies
(center-of-mass energies lower than the masses of weak gauge bosons) and assuming that
matter consists almost only of protons p, neutrons n and electrons e [14, 25], the interaction
Hamiltonian can be expressed as an effective four-fermion Hamiltonian [14]

Hint =
GF√

2
ν̄γµ(1− γ5)ν

[
ēγµ(gV + gAγ5)e+ p̄γµ(gpV + gpAγ5)p+ n̄γµ(gnV + gnAγ5)n

]
, (4.1)

where GF is the Fermi coupling constant, gV and gA are the vector and axial vector coupling
constants respectively, γµ, γ5 corresponding γ-matrices and ν, e, p, n stand for fermion fields.

In the Standard Model the matrix of the potentials in |να〉 basis is diagonal (flavor
states are eigenstates of weak interaciton). For the coherent forward scattering on electrons,
neither νµ, nor ντ has CC contribution [25]. NC interactions, on the other hand, treat all
neutrino flavors in the same manner. NC scattering potentials on electrons and protons
are equal and opposite, hence they cancel each other in electrically neutral media [1, 14].
Neutrons contribute to the potential proportionally to their density. Assuming coherent
forward scattering and that medium is unpolarized with zero average particle momenta, this
results in an effective interaction potential [14]

Vα =
√

2GF

(
δαeNe −

1

2
Nn

)
, (4.2)

where Ne is electron and Nn neutron density of the medium. The matrix of interaction
potentials in flavor basis Vf is therefore

Vf =

Ve Vµ
Vτ

 =
√

2GF

Ne − Nn
2

−Nn
2

−Nn
2

 . (4.3)

Vf is then added to Hf (vacuum propagation Hamiltonian in |να〉 basis) from Eq. (2.16)
to form the neutrino propagation Hamiltonian in matter Hf .

Oscillation probabilities depend on relative phases of the different neutrino eigenstates
(θij , ∆m2

ij , δ) and they cannot be affected by interaction that shifts the eigenvalues

of Hamiltonian by the same amount [5, 25]. Ergo, the NC contribution (Z0 exchange) can be
left out. Or equivalently: since only the difference of potentials has a physical meaning [14],
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Figure 4.1: Feynmann diagrams of neutrino weak interactions in matter. Left semi-plane: CC interactions
of νe/ν̄e and e− mediated by W± bosons. Right semi-plane: NC interactions of να/ν̄α and e−, p, n mediated
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the matter Hamiltonian of neutrino propagation can be written as

Hf = Hf + Vf = Hf +
√

2GF

Ne − Nn
2

−Nn
2

−Nn
2

 eff.−−→ Hf +

V 0
0

 , (4.4)

where V is the effective electron potential (from now on denoted simply as V for simplicity)

V ≡
√

2GFNe. (4.5)

The potential for antineutrinos can be formally obtained as V → −V [1, 14, 25].

4.2 Time evolution and effective Hamiltonian

As stated earlier, effective Hamiltonian H of oscillations in matter in flavor basis (Hf ) is
a sum of vacuum Hamiltonian Hf and effective potentials Vf [1, 14]

Hf = Hf + Vf =
1

2E
UM2U † + Vf =

1

2E

UM2U † +

2EV
0

0

 , (4.6)

where U is the mixing matrix from Eq. (2.9) and M2 is a diagonal matrix of masses squared
from Eq. (2.16). Time evolution of an arbitrary neutrino state in matter is then given
by an equation similar to Eq. (2.10)

i
d

dt
|ν(t)〉 = H|ν(t)〉, |ν(t)〉 = exp (−iHt) |ν(0)〉, (4.7)
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with H being the matter Hamiltonian expressed in an appropriate basis.
While oscillation probabilities do not depend on absolute scales, but rather only on the dif-

ferences of subjected eigenvalues [1, 14, 25, 26, 27], M2 can be simplified in terms of m2
1 = 0

M2 =

m2
1

m2
2

m2
3

 eff.−−→

0
∆m2

21

∆m2
31

 ≈ ∆m2

0
a

1

 , (4.8)

where

a ≡ ∆m2
21

∆m2
, (4.9)

which will be focused on later due to its relatively small value ≈ 0.03 rooted in the observed
strong hierarchy of the squared-mass differences (|∆m2| � |∆m2

21|).
For the neutrino mixing is defined with respect to the eigenstates of the Hamiltonian,

the further task is to find the eigenstates |Ni〉 of H, understood in a clear connection
with vacuum oscillations as the effective mass eigenstates in matter [14]. Common eigenstate
equation would be

H|Ni〉 = Hi|Ni〉 =
M2
i

2E
|Ni〉 (4.10)

with Hi = M2
i /2E the eigenvalues of H, M2

i is the effective mass of a mass eigenstate
|Ni〉. As this is, after all, only a generalization of the vacuum mixing, there has to be
a matter mixing matrix U , that relates the flavor states with the effective matter mass states
in the sense of Eq. (2.7), N ≡ (N1, N2, N3)T ,

νf = UN. (4.11)

Or, U is the transformation matrix between the basis of flavor states and the basis of matter
mass states, in which is the Hamiltonian diagonal. Using M2 ≡ diag(M2

1 , M
2
2 , M

2
3 ),

Eq. (4.4) and Eq. (4.8), one can write

Hf = UHmU† =
1

2E
UM2U† =

1

2E
U

M2
1

M2
2

M2
3

U† =

=
∆m2

2E

U
0

a
1

U † +

 2V E
∆m2

0
0

 , (4.12)

where Hm = M2/2E is the matter Hamiltonian in the basis of effective matter mass
eigenstates |Ni〉.

4.3 Diagonalization of matter Hamiltonian

In order to find the eigenvalues of matter Hamiltonian M2
i /2E and effective matter mixing

matrix U , a diagonalization of Hf shall be performed. The exact expressions for oscillation
parameters in matter are rather complicated and difficult to analyze, the reader can find
them in Refs. [28, 29] if interested. More frequently, some sort of analytical approximation
or numerical computations are being used. The approximative diagonalization described
in next few paragraphs is similar to that in Ref. [14] and relies on the strong hierarchy
of the squared-mass differences a ≈ 0.03 from Eq. (4.9) and a relatively small value of θ13.
To stay as simple and comprehensible as possible, instead of explicit expressions of matter
oscillation parameters with respect to vacuum parameters, formal rotation technique was used
with only one effective matter angle given explicitly. Higher precision analytical calculations
can be found e.g. in Refs. [26, 27].
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First of all, it is convenient to make use of the following relations [26]

I†δU12Iδ = U12, I†δdiag(a, b, c)Iδ = diag(a, b, c), IδI
†
δ = 1, (4.13)

where U12 ≡ U12(θ12) and Iδ are from Eq. (2.8). Remind the factorization of U from Eq. (2.9)
and notice that U23(θ23) and Iδ can be permuted with Vf in Eq. (4.6), since the potential
matrix is invariant under 23 rotations1). Inserting Eqs. (4.13) into right places in Eq. (4.12)
one gets [14, 26]

Hf =
∆m2

2E
U23Iδ

U13U12

0
a

1

U †12U
†
13 +

 2V E
∆m2

0
0

 I†δU †23 (4.14)

with Uij ≡ Uij(θij) the rotational matrices in ij-planes from Eq. (2.8). The diagonalization
of Hf will consist of four consecutive rotations of the propagation basis:

Hf
U23(θ23)Iδ−−−−−−→ Ḣ U13(Θ13)−−−−−→ Ḧ U12(Θ12)−−−−−→

...
H

U23(θ̃23)−−−−−→ Hm, (4.15)

where all the rotations are again in ij-planes, but, except for the first one, with new effective
angles in matter Θ13, Θ12 and a very small θ̃23, which importance will be clarified later.

After the first trivial rotation (or simply omitting U23(θ23)Iδ) the initial Hf becomes

Ḣ =
∆m2

2E

U13U12

0
a

1

U †12U
†
13 +

 2V E
∆m2

0
0

 (4.16)

or explicitly

Ḣ ≡ ∆m2

2E

ḣ11 ḣ12 ḣ13

ḣ21 ḣ22 ḣ23

ḣ31 ḣ32 ḣ33

 =
∆m2

2E

s2
13 + as2

12c
2
13 + 2EV

∆m2 as12c12c13 s13c13(1− as2
12)

◦ ac2
12 −as12c12s13

◦ ◦ c2
13 + as2

12s
2
13

 ,

(4.17)
where sij ≡ sin θij , cij ≡ cos θij as earlier in Eq. (2.8), ḣij are the elements of Ḣ. Ḣ is real and
unitary, i.e. ◦ stands for the same terms from across the diagonal. Here all the off-diagonal
elements contain small parameters a and/or s13, whereof an advantage will be taken.

After the second 13 rotation

Ḣ = U13(Θ13)ḦU13(Θ13)† (4.18)

over the angle Θ13 given by

tan 2Θ13 =
2ḣ13

ḣ33 − ḣ11

=
sin 2θ13

cos 2θ13 − 2EV
∆m2(1−as212)

(4.19)

the 1-3 element from Eq. (4.17) vanishes and the Hamiltonian in |ν̈〉 basis can be written as

Ḧ ≡ ∆m2

2E

ḧ11 ḧ12 0

ḧ21 ḧ22 ḧ23

0 ḧ32 ḧ33

 =
∆m2

2E

ḧ11 as12c12 cos(Θ13 − θ13) 0
◦ ac2

12 as12c12 sin(Θ13 − θ13)

0 ◦ ḧ33

 ,

(4.20)

1) Italic numbers denote the plane of rotation, e.g. 23 rotation is a rotation in a plane of the second and
the third coordinate.
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where

ḧ11 = ḣ11 cos2 Θ13 + ḣ33 sin2 Θ13 − ḣ13 sin 2Θ13 =

= sin2(Θ13 + θ13) + as2
12 cos2(Θ13 + θ13) +

2EV

∆m2
cos2 Θ13, (4.21)

ḧ33 = ḣ11 sin2 Θ13 + ḣ33 cos2 Θ13 + ḣ13 sin 2Θ13 =

= sin2(Θ13 − θ13) + as2
12 cos2(Θ13 − θ13) +

2EV

∆m2
cos2 Θ13. (4.22)

Either 1-2, or 2-3 element of Ḧ in Eq. (4.20) is very small comparing to differences between

diagonal elements (ḧii − ḧjj)2), depending on the size of Θ13 (
V E→0−−−−→ θ13 or

V E→∞−−−−−→ π/2 or
V E→−∞−−−−−−→ 0). Suppose for the moment, that ḧ23 = as12c12 sin(Θ13 − θ13) can be neglected
and ḧ33 effectively decouples from 12 submatrix. Then the following 12 rotation

Ḧ = U12(Θ12)
...
HU12(Θ12)† (4.23)

over the angle

tan 2Θ12 =
2ḧ12

ḧ22 − ḧ11

=
a sin 2θ12 cos(Θ13 − θ13)

a[c2
12 − s2

12 cos2(Θ13 + θ13)]− sin2(Θ13 + θ13)− 2EV
∆m2 cos2 Θ13

,

(4.24)
makes the 1-2 element of Ḧ vanish. Exploiting previous denotation of matrix elements

...
h 11 = ḧ11 cos2 Θ12 + ḧ22 sin2 Θ12 − ḧ12 sin 2Θ12, (4.25)
...
h 22 = ḧ11 sin2 Θ12 + ḧ22 cos2 Θ12 + ḧ12 sin 2Θ12, (4.26)

with ḧij determined by Eqs. (4.20), (4.21).
If this is not the case and ḧ23 = as12c12 sin(Θ13 − θ13) cannot be neglected, i.e. Θ13 is

significantly larger than θ13, then Θ12 in Eq. (4.24) comes to π/2 (0 with V < 0, antineutri-
nos), see Fig. 4.2, and the 12 rotation in Eq. (4.23) does not effectively change the absolute
values of elements in Ḧ, but can only mix up their position in the matrix nullifying the 1-2
element, which is now negligible, at the same time.

Either way, the remaining 2-3 element disappears after another 23 rotation [14]

...
H = U23(θ̃23)HmU23(θ̃23)† (4.27)

with an angle

tan 2θ̃23 =
2ḧ23

ḧ33 − ḧ22

=
a sin 2θ12 sin(Θ13 − θ13)

2EV
∆m2 cos2 Θ13 + sin2(Θ13 − θ13)− a[c2

12 − s2
12 cos2(Θ13 − θ13)]

,

(4.28)
which produces additional corrections of the next order of a [14].

4.3.1 Effective mixing matrix and angles in matter

According to the diagonalization of H described above, the mixing matrix between flavor
states |να〉 and effective mass eigenstates in media |Ni〉 is approximately [14, 26]

U ≈ U23(θ23)IδU13(Θ13)U12(Θ12)U23(θ̃23), (4.29)

where the last 23 rotation is small comparing to the first three, or, the effective 23-mixing
angle in matter ≈ θ23. Notice that elements of mixing matrix U are, contrary to vacuum,

2)Notice again, oscillations depend on relative phases, that means differences of eigenvalues of the Hamil-
tonian, not on their absolute scales.
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Figure 4.2: The dependence of effective matter mixing angles sin2 2Θij on the product of potential and neutrino
energy V E. Corresponding range of neutrino energy spectra (horizontal lines) and their peaks (vertical lines)
for NOνA (dashed), LBNF/DUNE (dotted) and T2K (full) marked out. All parameters as in Table 2.1,
θ23 = 45◦. Left semi-plane: For neutrinos. Right semi-plane: For antineutrinos. Upper semi-plane:
For normal hierarchy. Lower semi-plane: For inverted hierarchy.

functions of energy E and in density varying profiles also functions of L (U differs with spatial
variable).

In contrast to θ23, angles Θ13 determined by Eq. (4.19)

tan 2Θ13 =
sin 2θ13

cos 2θ13 − 2EV
∆m2(1−as212)

(4.30)

and Θ12 from Eq. (4.24)

tan 2Θ12 =
a sin 2θ12 cos(Θ13 − θ13)

a[c2
12 − s2

12 cos2(Θ13 + θ13)]− sin2(Θ13 + θ13)− 2EV
∆m2 cos2 Θ13

(4.31)

can be considerably distinct from their vacuum counterparts depending on the product V E.
Fig. 4.2 shows sin2 2Θ12 and sin2 2Θ13 with respect to V E in case of neutrinos/antineutrinos
and normal/inverted mass ordering. The 12-resonance occurs only for V E > 0 (neutrinos),
since ∆m2

21 > 0. Position of the 13-resonance is connected with the sign of ∆m2 and is not
known yet.

4.3.2 Effective neutrino masses in matter

The effective eigenvalues are the diagonal elements of Hm obtained via last 23 rotation
in Eq. (4.27) and they have been previously denoted (Eq. (4.10)) as M2

i /2E with effective
masses of neutrinos M2

i . The rotation over θ̃23 obviously does not affect 1-1 element of
...
H in

Eq. (4.23), hence from Eq. (4.25)

M2
1 ≈ ∆m2...

h 11 = ∆m2
(
ḧ11 cos2 Θ12 + ḧ22 sin2 Θ12 − ḧ12 sin 2Θ12

)
(4.32)
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Note that for V E → 0 ∆m2
21 and ∆m2 are recovered. Oscillation parameters as in Table 2.1, θ23 = 45◦. Left:

For normal hierarchy. Right: For inverted hierarchy. Denotation of the effective mass eigenstates (N1, N2, N3)
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3 in case of normal hierarchy and M2
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2

in case of inverted hierarchy. V E < 0 reflects the antineutrino case.

with ḧij from Eq. (4.20). Similarly 3-3 element is not affected by the last but one 12 rotation
in Eq. (4.23), i.e.

...
h 33 = ḧ33, and consequently

M2
2 ≈ ∆m2

(...
h 22 cos2 θ̃23 + ḧ33 sin2 θ̃23 +O(a2)

)
, (4.33)

M2
3 ≈ ∆m2

(...
h 22 sin2 θ̃23 + ḧ33 cos2 θ̃23 +O(a2)

)
, (4.34)

where O(a2) emerges from sin 2θ̃23 and off-diagonal 2-3 element of
...
H. The values of M2

i

as functions of V E are in Fig. 4.3. Because the absolute scale of neutrino masses has
been unstrapped, M2

i do not represent actual masses and can be therefore negative. This
has no physical aftermaths concerning e.g. imaginary square roots of M2

i , since oscillation
probabilities will depend on differences of M2

i only. Effective squared-mass splittings similar
to Eq. (2.22) can be introduced:

∆M2
ij = M2

i −M2
j . (4.35)

4.3.3 Resonance conditions and total flavor transitions

The positions of resonances (level crossings), which were already spoken of and can be seen
in Figs. 4.2 and 4.3, are defined as a size of V for certain E, where the mixing in a given
ij-plane is maximal, or sin2 2Θij = 1,Θij = π/4 [14]. This mechanism leads to possible
total transitions between neutrino flavors and is called MSW effect, after Mikheev, Smirnov
and Wolfenstein [1, 2, 14]. There are two resonances in the case of 3ν-model: the high
13-resonance and the low 12-resonance.

1. The high-resonance is associated with ∆m2 and θ13. From Eq. (4.30) the mixing is
maximal at

V13 = cos 2θ13(1− as2
12)

∆m2

2E
. (4.36)
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2. The low-resonance is associated with ∆m2
21 and θ12. The simplest way to find its ap-

proximate location is to assume a 2ν-model [1, 7], or switch the rotations from Eq. (4.23)
and Eq. (4.18) and neglect the small parameter s2

13:

V12 ≈ cos 2θ12
∆m2

21

2E
. (4.37)

One could also use Eq. (4.24) and solve ḧ11 = ḧ22. Hamiltonian elements were expressed
only recursively with new effective rotation angles. But, according to Ref. [14] this will
lead to

V12 ≈ cos 2θ12
∆m2

21

2E

1

c2
13

, (4.38)

which is also approximative and differs from the prior term by a factor 1/c2
13 ≈ 2.5%.

Consider now, for simplicity, a 2ν-model (2 flavors α, β, 2 mass states |ν1〉, |ν2〉 and
2 matter mass states, see Refs. [1, 2]). The resonance condition (maximal mixing) means,
that a flavor content of one effective mass eigenstate |N1〉 is equal to |N2〉, i.e. they contain
the same amounts of |να〉 and |νβ〉. Also, the effective squared-mass splitting ∆M2

ij reaches
its minimum at resonance. If the resonance is crossed adiabatically (dΘij(x)/dx is small
in comparison to ∆M2

ij [1]), it can be understood as if the mass eigenstates swap the flavor
contents with each other, so neutrino of flavor α becomes β and β becomes α. This is
generally called an adiabatic flavor transition or total flavor transition, see Refs. [1, 2, 8].
It could be also explained in words of mass transition, when a mass eigenstate i becomes j
and j becomes i3). But, in this interpretation, transitions are not continuous, but a jump
of magnitude ∆M2

ij in M2
i occur as one can convince themself in Fig. 4.3 (the blue and green

lines would change their places, when V E > V13E and normal hierarchy, assuming only N2

and N3, for instance). However, in 3ν-model this keeps valid only for maximal 23-mixing,
i.e. sin2 2θ23 = 1. Otherwise, the parametrization in Eq. (2.8) leads to the same amount
of |νe〉 in |N1〉 and |N2〉 for sin2 2Θ12 = 1 and that |N3〉 is composed of 50% |νe〉 and 50%
mixture of |νµ〉, |ντ 〉 while sin2 2Θ13 = 1.

Reader can see in Figs. 4.2 and 4.3 that the oscillation parameters differ in case
of neutrinos (V > 0) and antineutrinos (V can be effectively taken < 0, δ → −δ), normal
and inverted mass ordering. This is caused by inherent CP-assymetry of matter (there is
a lot of electrons, but no positrons), which effectively increases the mass of νe, but lowers
that of ν̄e [14, 30]. The positions (in neutrino/antineutrino sector) of both of the resonances
depend on the sign of squared-mass splittings. Since the 12-resonance has been found
by the solar experiments in oscillations of νe from thermonuclear reactions in the Sun,
the 12-hierarchy ∆m2

21 > 0 is resolved. To explore the second resonance, much higher energies
of ν and/or matter densities are needed. The accelerator experiments with neutrinos at∼GeV
and sufficient length of baselines in oscillation maxima and minima are very good candidates
in this search. The expected neutrino spectra and their peaks of recent experiments T2K,
NOνA [12] and future LBNF/DUNE [15] are marked out in Fig. 4.2.

4.4 Oscillation probabilities in matter with constant density

Oscillations in media with constant and isotropic density profile are the least complicated
kind of oscillations to study while in matter. The potential V is then obviously also constant
with respect to spatial variable L and hence the flavor composition (mixing angles) and
eigenvalues ofH do not change with L and are constant too. The oscillation probabilities have
the same form as in vacuum in Eq. (2.21). To generalize it and get the matter probabilities
is quite straightforward [14]

3) Formally this is just a rotational rearrangement of the flavor or mass eigenstates basis to keep the other
one in the right order.
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P (να → νβ;L,E) = |Amp(να → νβ;L,E)|2 =

=

∣∣∣∣∣
3∑
i=1

U∗αiUβi exp

(
−i
M2
i

2E
L

)∣∣∣∣∣
2

=

=
3∑
i=1

3∑
j=1

U∗αiUαjUβiU∗βj exp

(
−i

∆M2
ij

2E
L

)
, (4.39)

where the elements of vacuum mixing matrix Uαi were traded for elements of effective matter
mixing matrix Uαi and vacuum squared masses m2

i for effective matter masses M2
i . Notice

again, that, unlike in vacuum, not only the argument of exp function is energy dependent.
So are the elements of U , thus the vacuum oscillatory pattern of neutrino flavor transition
will be distorted.

For the needs of this text, it is not necessary to bring out additional solvable examples
of neutrino propagation in matter like adiabatic conversions, small matter effects, propagation
in multilayer medium, high energy neutrinos etc. Reader can consult Ref. [1, 14] to get more
information on these phenomena.
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5. Hierarchy determination,
CP violation and νµ→ νe channel

This chapter examines the possibility of determining neutrino mass hierachy employing
matter effects delineated in Chapter 4. Section 5.1 explains the importance of possible
resonances in mass hierarchy resolution and introduces so-called “extrinsic” CP violation
in neutrino oscillations, see also Refs. [1, 2, 5, 14, 30]. Section 5.2 presents the formula
for νe appearance probability in νµ at atmospheric scales, often used in long-baseline neu-
trino experiments. Refs. [3, 14, 26, 27] can offer more details. Sections 5.3, 5.4 and 5.5 aim
at the question of degenerate solutions of the mass hierarchy problem in νµ → νe channel
according to experimental uncertainties in CP phase δ, mixing angle θ13 and θ23-octant
respectively. Similar considerations are taken into account in experimental sensitivity studies
such as in Refs. [15, 31, 32, 33].

5.1 Mass hierarchy determination using matter resonances

Suppose you are about to determine the mass hierachy of neutrino mass states. How would
you do that? There is a simple way, that uses matter effects described in the last chapter.
As it was mentioned and can be seen in Eqs. (4.36) and (4.37), the position of the resonance
depends on ∆m2

ij including its sign, or

Vij ≷ 0⇔ ∆m2
ij ≷ 0 (5.1)

with Vij being one of the resonance potentials. The V E resonance proximity influences
the oscillations either of neutrinos (V > 0), or of antineutrinos (V < 0), not both of them
at the same time. If a resonance takes place, corresponding mixing angle gets effectively
larger up to π/4, where the mixing is maximal sin2 2Θij = 1, and with further density V E
growth goes to π/2, see Fig. 4.2. If resonance does not take place (and is located in CP
mirror sector), mixing angle gets effectively smaller going to 0. In appropriate channel of
oscillations (e.g. να → να and να → νβ) this enlarges P (να → νβ) and lowers P (να → να)
comparing to vacuum while at resonance, but lowers P (να → νβ) and enlarges P (να → να)
while in sector without resonance. Notice, that the alternation of effective matter masses M2

i ,
Fig. 4.3, do not affect this phenomenon, as their splittings ∆M2

ij only change the L/E scale,
where the oscillation minima/maxima lie, i.e. where the probability modification would be
most significant.

For instance, νe disappearance at the solar scales (Eq. (2.28)) is governed by sin2 2θ12

(using Eq. (2.33)). Since a deficit of solar νe has been observed regarding SSM and oscillations
[1, 2, 4, 10], the 12-resonance must be located in neutrino sector (V12 > 0) and the consequent
12-hierarchy ∆m2

21 > 0. This is, of course, much simpler than reality, because solar neutrinos
propagate through varying density profile (corresponding Θ12 is therefore spatial dependent,
solar density profile covers values of V from high above the resonance V � V12 to vacuum
V = 0, neutrino crosses the resonance and total flavor transitions take place) from inside the
Sun and then travel a vast distance in space vacuum towards the Earth (see Ref. [1] or [10] if
interested). But, the main principle stay valid. Notice, that the conclusion would be identical
even if it were antineutrinos, which are born in the Sun and detected in solar experiments.
If so, there would be no resonance and Θ12 would get smaller than θ12 enhancing thus the
total ν̄e flux. Ergo, again ∆m2

21 has to be positive.
By the same token, the 13(23)-hierarchy could be resolved. The promising channel

would be νµ → νe transitions, since they are controlled by the combination sin2 2θ13 sin2 θ23
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from Eq. (2.31) at the atmospheric scales (Eq. (2.27)). To observe effective amplification or
attenuation of oscillation probabilities, much greater densities or neutrino energies (V E) are
needed than in solar case. Also, with V E in the resonance area, typical oscillation length
in Eq. (2.25) gets longer as M2

1 (IH) or M2
2 (NH) goes to M2

3 . Provided terrestrial ambience
(Earth’s matter density and distances), high energy neutrino beams (∼ GeV) with long
oscillation baselines (∼ 100 − 1000 km) can offer such conditions. Although, one can see
in Fig. 4.2, that recent experiments do not reach the resonance, only slight increase/decrease
in Θ13. Unfortunately, these relatively small matter effects can be misidentified with measured
experimental uncertainties of some of the oscillation parameters, usually called δ-, θ13- and
θ23 octant-degeneracy [31, 32, 33]. They will be described in the very next paragraphs.

5.1.1 Matter induced extrinsic CP assymetry in neutrino oscillations

As already stated, the distinguish behavior of neutrino and antineutrino oscillations in media
is caused by the inner composition of matter (no positrons) and is known as “extrinsic” or
fake CP violation [30]. It is completely dissimilar to CP violation described in Section 2.3,
which is ruled by the value of the CP phase δ. T mirror probabilities in matter cannot be
generally expressed in terms of Eq. (2.35), moreover, symmetric density profiles do not cause
any fake T violation at all, affecting P (νµ → νe) and P (νe → νµ) in the same manner [16].
Even in assymetric Earth profiles matter induced T violation is expected to be very small, if
any.

5.2 νµ → νe appearance probability in matter

Besides Eq. (4.39), which could be instantly used to get νe appearance probabilities in νµ
beam with all effective matter parameters retrieved during the diagonalization of matter
Hamiltonian in Section 4.3, the P (νµ → νe) can be expressed explicitly with respect to vacuum
parameters up to the second order in θ13 and a = ∆m2

21/∆m
2, see Refs. [3, 26],

P (νµ → νe) = sin2 2θ13 sin2 θ23

sin2
[(

V
2 −

∆m2

4E

)
L
]

(
2EV
∆m2 − 1

)2 +

+ a cos θ13 sin 2θ13 sin 2θ12 sin 2θ23 cos

(
∆m2

4E
L− δ

) sin
(
V
2 L
)

2EV
∆m2

sin
[(

V
2 −

∆m2

4E

)
L
]

1− 2EV
∆m2

+ a2 sin2 2θ12 cos2 θ13 cos2 θ23
sin2 V

2 L(
2EV
∆m2

)2 (5.2)

with V from Eq. (4.5) and formal exchange V → −V , δ → −δ in the case of antineu-
trinos. According to the recent status of measured parameters (Table 2.1), the first term
∝ sin2 2θ13 ≈ 0.09 is much greater than the second one ∝ a sin 2θ13 ≈ 0.009 and the last term
∝ a2 ≈ 0.0009 is completely negligible. Results obtained via this explicit formula or stepwise
diagonalization of Hf from Eq. (4.12) are in general congruence at atmospheric scales and
applicable for the purposes of the long-baseline experiments [14, 26, 27].

Figs. 5.1, 5.2 and 5.3 show the dependence of P (νµ → νe) on energy E for three ex-
perimental layouts: NOνA (810 km), T2K (295 km) and future LBNF/DUNE (1300 km)
respectively, with uniform density parameter GFNe√

2
= 1

3500 km [22] and maximal 23-mixing

θ23 = 45◦. Despite the global fit from Ref. [3] in Table 2.1 favors δ ∈ [π, 2π], the full [0, 2π]
interval is being probed (so will be later on in the text). Variation of δ leads to the dotted
regions in the plots.
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Figure 5.1: Appearance probability of νe for initial νµ in matter as a function of energy E at NOνA:
L = 810 km, GFNe√

2
= 1

3500 km
, θ23 = 45◦, δ ∈ [0; 2π], other parameters from Table 2.1. Left: For neutrinos

νµ → νe. Right: For antineutrinos ν̄µ → ν̄e.
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Figure 5.2: Appearance probability of νe for initial νµ in matter as a function of energy E at T2K: L = 295 km,
GFNe√
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, θ23 = 45◦, δ ∈ [0; 2π], other parameters from Table 2.1. Left: For neutrinos νµ → νe. Right:

For antineutrinos ν̄µ → ν̄e.

5.3 Intrinsic CP violation and δ degeneracy

The second term in Eq. (5.2) or Iδ in Eq. (4.29) carrying δ are responsible for possible CP
violation. This one is called “intrinsic” CP violation as it is caused by the nature of neutrino
oscillations itself and not by the presence of media. The magnitude of CPV effects depends
on the size of δ, being maximal at δ = π and minimal at δ = 0, 2π. Hence, intrinsic CPV is
different from matter induced CPV, which relies on the formal sign and value of the potential
V . Working together they can amplify their impact on the transition probabilities making
them larger/smaller or go against each other and cancel mutually.

The possible arrangements allowed by the odds - normal hierarchy (NH), inverted hierar-
chy (IH), upper hyper-plane (UHP) δ ∈ [0◦, 180◦], lower hyper-plane (LHP) δ ∈ [−180◦, 0◦] -
are:

1. NH-UHP: ν - the first term in Eq. (5.2) is increased (effective enhancement of θ13

in matter to eff. Θ13) and this is compensated by the second term, which lowers
the overall P (νµ → νe) due to the value of δ; ν̄ - the whole consideration is re-
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Figure 5.3: Appearance probability of νe for initial νµ in matter as a function of energy E at LBNF/DUNE:
L = 1300 km, GFNe√

2
= 1

3500 km
, θ23 = 45◦, δ ∈ [0; 2π], other parameters from Table 2.1. Left: For neutrinos

νµ → νe. Right: For antineutrinos ν̄µ → ν̄e.

versed: the first term in P (ν̄µ → ν̄e) would be lowered, but the second one is enlarged.
Oscillations mimic no CPV (intrinsic and extrinsic) at all in this case (as if they were
in vacuum with δ = 0).

2. NH-LHP: ν - θ13 is effectively larger, intrinsic CPV effects enlarges P (νµ → νe);
ν̄ - θ13 gets effectively smaller, intrinsic CPV effects lowers P (ν̄µ → ν̄e). Oscillations
suffer from maximal CPV and are significantly different from vacuum case.

3. IH-UHP: ν - θ13 is effectively smaller, intrinsic CPV effects lowers P (νµ → νe);
ν̄ - θ13 is effectively larger, intrinsic CPV effects enlarges P (ν̄µ → ν̄e). Oscillations
suffer from maximal CPV and are significantly different from vacuum case.

4. IH-LHP: ν - θ13 is effectively smaller, but intrinsic CPV effects enlarges P (νµ → νe);
ν̄ - θ13 is effectively larger, but intrinsic CPV effects lowers P (ν̄µ → ν̄e). Oscillations
mimic no CPV (intrinsic and extrinsic) at all in this case.

In order to determine the mass hierarchy P (νµ → νe) and P (ν̄µ → ν̄e) are measured and
compared with expected values in cases of NH and IH. In Figs. 5.1 and 5.2 one can recognize
areas, where the points belonging to NH can be misidentified with those from IH. This
happens when unfavorable conditions NH-UHP or IH-LHP take place and would be usually
designated as a region of δ-degeneracy. LBNF/DUNE sits (will sit) ahead of the second
oscillation maximum (1300 km), where the degeneracy regions separates from one another,
see Fig. 5.3.

Fig. 5.4 is a typical biprobability plot for NOνA: L = 810 km and E = 2.0 GeV.
Certain oscillation parameters and L,E pinpoint two ellipses in such a plot for normal and for
inverted hierachy along which the CP phase δ varies. All the points near the P (νµ → νe) =
P (ν̄µ → ν̄e) axis are unfavorable for the intents of mass hierarchy determination and
correspond to the regions of δ-degeneracy NH-UHP, IH-LHP. In case of NH-LHP and IH-
UHP the mass hierarchy determination is possible at NOνA, in case of NH-UHP or IH-LHP
NOνA has no hierarchy sensitivity. The figure also illustrates 1σ (dashed) and 2σ (full)
intervals for measured probabilities with 3 years ν and 3 years ν̄ run. The same kind of
biprobability plots for T2K and LBNF/DUNE at their peaks of expected νe/ν̄e spectrum are
in Fig. 5.5.
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5.4 θ13 degeneracy

Another considerable degeneracy in mass hierarchy determination that can limit the ex-
perimental sensitivity is the θ13 uncertainity. For example, matter enhancement (decrease)
of vacuum θ13 to effective Θ13 can be cancelled by choosing lower (higher) initial value of
θ13 within the interval allowed by the experimental fits. But, the crucial observation is, that
a combination of ν and ν̄ data on oscillation probabilities do not sustain this disadvantage [31].
As long as P (νµ → νe, θ13,NH) ≈ P (νµ → νe, θ̂13, IH), where θ13 6= θ̂13, P (ν̄µ → ν̄e, θ13,NH)

would be significantly smaller than P (ν̄µ → ν̄e, θ̂13, IH). Thus, it is vital to measure in both ν
and ν̄ modes to resolve the θ13-degeneracy and the mass hierarchy problem. Fig. 5.6 shows,
how the position of the ellipses in the biprobability plot changes with θ13.

5.5 Octant θ23 degeneracy

MINOS experiment [18] has measured a no maximal mixing in 23-sector sin2 2θ23 < 1. This
means there could be two degenerate solutions in lower octant (LO) sin2 θ23 < 0.5 and
in higher octant (HO) sin2 θ23 > 0.5. Eq. (2.41) gives 90% C.L. interval for sin2 θ23 ∈
[0.36, 0.65] (it is convenient to take a symmetric interval [0.35, 0.65]). With combinations
from Section 5.3 this results in eight possible situations: NH-UHP-HO, NH-UHP-LO,
NH-LHP-HO, NH-LHP-LO, IH-UHP-HO, IH-UHP-LO, IH-LHP-HO, IH-LHP-
HO. Generally, θ23 from higher octant enhances the overall transition probability in Eq. (5.2),
while θ23 from lower octant suppresses it in comparison to θ23 = 45◦. As a consequence,
P (νµ → νe, NH-x-LO) ≈ P (νµ → νe, IH-x-HO) could be a degenerate solution of the mass
hierarchy problem. However, similarly to previous section, this can be sorted out by additional
information from ν̄µ → ν̄e oscillations, since the degeneracy would not be present in antineu-
trinos oscillations. On the other hand, NH-LHP-HO and IH-UHP-LO cases could have a good
hierarchy sensitivity even with pure ν data (provided no θ13-degeneracy).

Moreover, Fig. 5.7 shows, that with θ23 being from HO, ellipses in the biprobability plot
do not intersect each other any more and leave the δ-degeneracy region. Hence, with growing
θ23 the mass hierarchy determination would be much easier. As an illustration, one can see
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given in % at which an experiment detects the appearance probability of νe and ν̄e and thus determines its
ability to distinguish between points of opposite hierarchies for particular δ. Left: sin2 θ23 = 0.44 (NH),
0.46 (IH). Right: sin2 θ23 = 0.56 (NH), 0.54 (IH).

in Fig. 5.8 the minimal distance of a point on an ellipse from the points of counter-hypothesis
(opposite hierarchy) as a function of δ at NOνA. The scale on the “minimal distance” axis
is chosen to correlate with an experimental resolution at which an experiment can possibly
measure the combined νe, ν̄e appearance probability, i.e. at which it can fix the position
of a biprobability point in the P (νµ → νe) vs. P (ν̄µ → ν̄e) plane.

At last, and shall not be left out, ν + ν̄ data has a relatively strong ability to resolve
the question of θ23 octant itself specifying thus whether θ23 > or < 45◦.
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5.6 Summary of possibly realized scenarios

In conclusion, there are eight possible scenarios of oscillation parameters, which can be divided
into two groups of favorable and unfavorable situations depending on the size of δ [31].
The unfavorable (hierarchy cannot be determined by recently active long-baseline experiments
and will be more difficult even with future LBNF/DUNE or others) ones are:

1. NH-UHP-LO or -HO,
2. IH-LHP-LO or -LO.

The favorable (hierarchy can be determined by recently active long-baseline experiments
at ca 2σ and with future improvement far over 5σ using LBNF/DUNE or others) ones are:

1. NH-LHP-HO: could be perchance resolved from ν data only.
2. NH-LHP-LO: could be perchance resolved from ν̄ data only.
3. IH-UHP-HO: could be perchance resolved from ν̄ data only.
4. IH-UHP-LO: could be perchance resolved from ν data only.
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6. GLoBES

Chapter 6 introduces the simulation software GLoBES and its utilization in long-baseline
experiments. Section 6.1 presents a brief note on the concept of GLoBES, much more to be
seen in Refs. [34, 35, 36]. The basics of obtaining high-level information on experiment
are in Section 6.2 and more tangibly in Refs. [34, 36]. The last Section 6.3 gives elementary
comprehension of results retrieved by GLoBES necessary for further interpretation,
see Refs. [34, 35, 36] and for statistics Refs. [37, 38, 39, 40].

6.1 Introduction and concept of GLoBES

GLoBES (General Long Baseline Experiment Simulator) [34, 35] is a software tool to simulate
and analyze neutrino oscillation short- and long-baseline experiments in a complete 3ν-model.
It allows to define an experiment at an abstract level with AEDL (Abstract Experiment
Definition Language) specifying its parameters, i.e. baseline, fiducial mass, duration, energy
resolution, neutrino energy window, neutrino flux power, density profile, energy dependent
efficiencies and interpolation technique, channel definitions and rules (which dis/appearance
channels of neutrino oscillations are measured). GLoBES simulates a stationary point source
of neutrinos and, unfortunately, geometrical effects of a source distribution, such as in the Sun
or the atmosphere, are not described. Also, sources with a physically significant time depen-
dence (supernovae), cannot be studied [34]. In the systematics, energy normalization and
calibration errors can be simulated. With GLoBES version 3.0 or higher almost all features
can be user defined in order to provide more variability and adaptibility [36].

Typical input needed by a GLoBES script is a set of an experiment definition and detec-
tor properties, neutrino cross sections and oscillation parameters. The output will be energy
binned event rates observed. Following analysis consists of finding the possible oscillation
parameters (θij , ∆m2

ij , δ) that could be in a good agreement with the data. This procedure
allows to locate the degenerate solutions of particular neutrino oscillation problems and
to estimate the experiment sensitivity to its resolution. The main advantage of GLoBES
is handling multiple experiments at once, hence, combined sensitivities and global fits can be
investigated.

Besides that, GLoBES offers also low-level information, e.g. oscillation probabilities,
concrete event rates, fluxes, etc.

6.2 High-level experimental information with GLoBES

Given a vector of oscillation parameters, i.e. mixing angles, mass splittings, CP phase and
a matter density profile and an experiment definition (all as true values), GLoBES simulates
a vector of event rates, associated to each oscillation channel and rule, observed in a detector
n ≡ (n1, . . . , nN ) [34] arranged in an energy histogram

true values of osc. parameters
simulation−−−−−−→ observed event rates (n). (6.1)

Poisson distribution of ni in every bin is assumed [34]. To test a certain hypothesis of test
values (λ,a) expected rates ν ≡ (ν1, . . . , νN ) are computed

estimated test values (λ,a) −→ expected event rates (ν) (6.2)

and the value of χ2(λ,a) (explained in the very next section) is found [36]

χ2(λ,a) = 2
∑
exps

∑
rules

∑
bins

[
νi(λ,a)− ni + ni ln

ni
νi(λ,a)

]
+ χ2

prior(λ) + χ2
pull(a), (6.3)
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where the vectors λ,a contain oscillation parameters and systematical biases respectively.
χ2

prior(λ) represents the treatment of previously determined parameters as Gaussian priors,

χ2
pull(a) implements external input on a with pull method [34, 36]. The sum is over all

experiments, their rules and energy bins active in analysis.
GLoBES provides several built-in χ2 functions to support different systematics, parameter

correlations etc. A number of minimization procedures can be used including χ2 projections
in oscillation parameter space. It allows also for arbitrary, user-defined χ2 functions and
projections [34, 35, 36].

6.3 Remarks on simulation analysis

The value of χ2(λ,a) computed by GLoBES is a measure of how well the observed event
rates n would be described by the parameters λ,a. One can see, neglecting systematics,
that χ2(λ) = 0 with λ = true values. To test a hypothesized value of parameters profile
likelihood ratio is commonly employed, see Refs. [37, 38]. In the next paragraphs ϑ̂ denotes
the maximum likelihood estimator of ϑ.

6.3.1 Poissonian data set

Consider a histogram of data n ≡ (ni, . . . , nN ) with N bins, where ni are independent and
Poisson distributed. The joint probability for n is

P (n;ν) =

N∏
i=1

νnii
ni!

exp(−νi). (6.4)

Regarding each mean value νi as adjustable, the maximum likelihood estimators of them
would be ν̂i = ni [37]. Suppose the tested hypothesis ν can be determined through M
parameters ϑ̂ ≡ (ϑ̂1, . . . , ϑ̂M ). Using log-likelihood ratio, it is convenient to define a statistic

tν = −2 ln
L(ν(ϑ̂))

L(ν̂)
= 2

N∑
i=1

[
νi(ϑ̂)− ni + ni ln

ni

νi(ϑ̂)

]
, (6.5)

where L(·) is the likelihood function of Poisson distribution from Eq. (6.4) and ν̂ = n.
From the Wilks’ theorem, tν in Eq. (6.5) follows asymptotically χ2

(N−M) distribution

with (N −M) degrees of freedom [37, 38]. In a model with normalized histograms (N − 1)
free parameters are in effect, since the total number of event rates, or the histogram area is
fixed. Hence, there are (N −N + 1) = 1 degree of freedom.

The basic problem of maximizing the likelihood function in order to find ϑ̂ is equivalent
to finding a minimum of a quantity

χ2(ϑ) = 2

N∑
i=1

[
νi(ϑ)− ni + ni ln

ni
νi(ϑ)

]
, ∆χ2 = min

ϑ
χ2(ϑ) (6.6)

with respect to ϑ and the same estimators ϑ̂ will result [37]. As an added bonus, the value of
χ2(ϑ) can be directly used to test the goodness of fit and, if the Wilks’ theorem is satisfied,
its sampling distribution is χ2

(N−M) (χ2
(1) in a histogram model).
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7. Study of mass hierarchy
determination at NOνA

Chapter 7 revisits the study done in Ref. [31] probing the advantage of an early antineutrino
run of NOνA. Section 7.1 explains the intents and motivation to study expected sensitivity
to mass hierarchy at NOνA. Details of simulations done by GLoBES are listed in Section 7.2.
Achieved results and their discussion can be found in Section 7.3.

7.1 Object, intents and motivation

As was explained in Chapter 5, the way to resolve the mass hierarchy is to measure
P (νµ → νe), P (ν̄µ → ν̄e) or both, and it strongly depends on the precise values of θ13, θ23

and, mainly, CP phase δ, whether this will lead to a final answer or degenerate solutions
only (e.g. statement like “the hierarchy is either normal and δ ∈ [0, 180◦], or inverted and
δ ∈ [−180◦, 0]”). Recently, only NOνA and T2K search for νe appearance in νµ beams (also
MINOS, see Ref. [18]), LBNF/DUNE is planned as a next future long-baseline experiment to
start in 2020 or later [15]. T2K began its ν̄ period this year (2015) after 5 years of ν data tak-
ing, see Ref. [19]. NOνA is designed to run for 3 years in ν mode and 3 years in ν̄ [22]. There
have been a number of studies of expected sensitivities to the mass hierarchy problem for both
experiments and their combined analysis or with other types of experiments, e.g. atmospheric,
see the proposals Refs. [20, 41] and Refs. [12, 32, 33, 42, 43, 44, 45, etc.]. All lead to similar
conclusions, that NOνA alone can reject the wrong hierarchy hypothesis for ca 45% (NH-LHP,
IH-UHP) of the possible δ interval [0, 2π] at 90% C.L. with a slight improvement including
T2K data (T2K alone has practically no hierarchy sensitivity [33, 45]).

As also already discussed, it is important to measure both ν and ν̄ oscillations
to withdraw the imminent parameter degeneracies in θ13 and θ32, to which pure ν data
is subjected, whereas ν + ν̄ data is not. The object of the following sections is to show,
that considerable results upon the question of the mass hierarchy can be achieved sooner
than scheduled, after 3 years of NOνA running (instead of 6), provided an earlier switch
to antineutrino mode. In order to do so, GLoBES was used to simulate NOνA experiment
and the expected sensitivity to the mass ordering was computed.

7.2 Simulation details

GLoBES 3.0.11 and NOνA experiment definition in 0709-nova.glb file1) with slight changes
(close details in Table 7.1) were used in simulations, neutrino cross sections were taken
from Ref. [46].

Six scenarios of true values of oscillation parameters (imagined as representatives being
realized in nature) were considered (compare Table 2.1):

1. NH, sin2 θ23 = 0.5, sin2 θ13 = 0.023, δ ∈ [−180◦, 180◦] (Fig. 7.1),
2. NH-HO, sin2 θ23 = 0.56, sin2 θ13 = 0.023, δ ∈ [−180◦, 180◦] (Fig. 7.2),
3. NH-LO, sin2 θ23 = 0.44, sin2 θ13 = 0.023, δ ∈ [−180◦, 180◦] (Fig. 7.3),
4. IH, sin2 θ23 = 0.5, sin2 θ13 = 0.024, δ ∈ [−180◦, 180◦] (Fig. 7.1),
5. IH-HO, sin2 θ23 = 0.54, sin2 θ13 = 0.024, δ ∈ [−180◦, 180◦] (Fig. 7.2),
6. IH-LO, sin2 θ23 = 0.46, sin2 θ13 = 0.024, δ ∈ [−180◦, 180◦] (Fig. 7.3)

with |∆m2| = 2.4× 10−3 eV2 and solar parameters sin2 θ12 = 0.31, ∆m2
21 = 7.5× 10−5 eV2.

For each of these parameter sets (δ varying in [−180◦, 180◦]) the experimental event rates were

1) Downloadable at: http://www.mpi-hd.mpg.de/personalhomes/globes/glb/0709-nova.html
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Table 7.1: Parameters used in simulations, taken from Ref. [34].

Experimental parameter Value

Baseline 812 km
Expected fiducial mass 14 kt
Source power 0.7 MW
Duration [years] 3ν (1.5ν+1.5ν̄)

Electron energy resolution 10%
√
E

Muon energy resolution 5%
√
E

simulated (neutrino energy spectrum in detectors) and ∆χ2, the minimum of χ2, (Eq. (6.3))
assuming opposite hierarchy was found, i.e. the maximum likelihood estimators of oscillation
parameters in the reverse half of parametric space (∆m2 = −∆m2

true). For the purpose of this
procedure solar parameters θ12 and ∆m2

21 are being kept fixed, since their uncertainties are
expected to have a minimal impact. Both θ13 and |∆m2| were treated with Gaussian priors
taking (1σ Gaussian errors) σ(∆m2)/|∆m2| = 6% and σ(θ13)/θ13 = 10% and central values
∆m2 = ±2.4× 10−3 eV2 (NH/IH) and sin2 θ13 = 0.023 (NH), 0.024 (IH) accordingly to their
global fits and 2σ errors. The last two oscillation parameters θ23 and δ were marginalized
over with no priors added using 90% C.L. interval given by MINOS for sin2 θ23 ∈ [0.35, 0.65]
(taken symmetric) and full range of δ ∈ [−180◦, 180◦].

Figs. 7.1, 7.2 and 7.3 depict the value of ∆χ2 as a function of the true δ for both assumed
true hierarchies in the case of maximal 23 mixing (θ23 = 45◦), HO (θ23 > 45◦) and LO
(θ23 < 45◦) respectively.

7.3 Results

The value of χ2 represents the agreement of the hypothesis of oscillation parameters
with simulated data, the larger χ2 is, the worse is the congruence of the hypothesis and
data (see Section 6.3), or equivalently, the minor is the chance that the hypothesis will be
correct, even though it is rejected [38]. This probability is determined by a distribution
quantile α corresponding to the value of χ2, concretely, the probability is (1 − α). In this
case, when comparing two normalized histograms of event rates, the quantity χ2 follows χ2

(1)

distribution, hence, χ2 = 1 matches the 68% quantile and probability 32%, χ2 = 2.71 quantile
90% and probability 10%, χ2 = 4 quantile 95.5% and probability 4.5%, etc.

Summarizing, finding minimal value ∆χ2 over a set of oscillation parameters, provided
an appropriate mass hierarchy hypothesis, will result in a maximum probability at which
the hierarchy hypothesis is valid although it is rejected. Simulated data was always compared
with a hypothesis of hierarchy opposite to the true one. Therefore, ∆χ2 ≥ 2.71 means there
is 10% or less chance that the tested hierarchy hypothesis is correct (i.e. it can not explain
the observed data well). As the hierarchy can be only normal or inverted, this could be
naturally identified as a 90% C.L. for the true hierarchy determination in studies of expected
sensitivity to the neutrino mass ordering.

Figs. 7.1, 7.2 and 7.3 show the estimated hierarchy sensitivity at NOνA with 1.5 years
of ν and 1.5 years ν̄ data (full lines) and 3 years of ν data only (dashed lines). The favorable
NH-LHP-x, IH-UHP-x and unfavorable NH-UHP-x, IH-LHP-x sets of oscillation parameters
(see Section 5.6) can be clearly recognized at the first sight and also the fact, that combined
ν + ν̄ data prones to resolve the hierarchy better than ν data only, because it does not suffer
from θ13 and/or θ23 degeneracies.

If NH-LHP and maximal 23-mixing, θ23 = 45◦, the hierarchy could be resolved at 90% C.L.
for δ ∈ [−142◦,−40◦], i.e. for ca 28% of possible δ, see Fig. 7.1. If IH-UHP and θ23 = 45◦,
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Figure 7.1: ∆χ2 (minimal χ2) for expected hierarchy resolution at NOνA with 3 years ν run (dashed) and
1.5 years ν + 1.5 years ν̄ (full) for true sin2 θ23 = 0.5 assuming 10% uncertainty in θ13, 6% in ∆m2 with central
values sin2 θ13 = 0.023 (NH), 0.024 (IH) and ∆m2 = 2.4 × 10−3 eV2. Marginalized over 90% C.L. interval
of sin2 θ23 ∈ [0.35, 0.65] and δ ∈ [−180◦, 180◦].
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Figure 7.2: ∆χ2 (minimal χ2) for expected hierarchy resolution at NOνA with 3 years ν run (dashed) and
1.5 years ν + 1.5 years ν̄ (full) for true sin2 θ23 = 0.56 (NH), 0.54 (IH) assuming 10% uncertainty in θ13,
6% in ∆m2 with central values sin2 θ13 = 0.023 (NH), 0.024 (IH) and ∆m2 = 2.4× 10−3 eV2. Marginalized
over 90% C.L. interval of sin2 θ23 ∈ [0.35, 0.65] and δ ∈ [−180◦, 180◦].
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Figure 7.3: ∆χ2 (minimal χ2) for expected hierarchy resolution at NOνA with 3 years ν run (dashed) and
1.5 years ν + 1.5 years ν̄ (full) for true sin2 θ23 = 0.44 (NH), 0.46 (IH) assuming 10% uncertainty in θ13,
6% in ∆m2 with central values sin2 θ13 = 0.023 (NH), 0.024 (IH) and ∆m2 = 2.4× 10−3 eV2. Marginalized
over 90% C.L. interval of sin2 θ23 ∈ [0.35, 0.65] and δ ∈ [−180◦, 180◦].

the hierarchy could be resolved for δ ∈ [45◦, 150◦], i.e. for ca 29% of possible δ, also in Fig. 7.1.
From Fig. 7.2 the 1.5ν + 1.5ν̄ sensitivities would get improved for θ23 > 45◦, ca 34% of δ
with NH-LHP-HO and ca 33% with IH-UHP-HO. Also, the overall values of ∆χ2 are larger
in HO, as was predicted. On the other hand, in the case of θ23 < 45◦, hierarchy could be
resolved for ca 24% of possible δ with NH-LHP-LO and ca 28% with IH-UHP-LO, the values
of ∆χ2 gets smaller, see Fig. 7.3. However, taking pure ν data, ∆χ2 ≥ 2.71 only
with NH-LHP-HO for ca 12% of δ (Fig. 7.2).

Reader can see, that ∆χ2 and the ν only sensitivity is quite reduced for IH-UHP-HO
and NH-LHP-LO as a whole compared to θ23 = 45◦, while NH-LHP-HO and IH-UHP-LO
is enhanced. This was discussed in Section 5.5 and is caused by the unknown size of θ23,
whether and how much it differs from 45◦. Generally, θ23 being farther from 45◦ and θ13 large
enough makes the ν only hierarchy sensitivities such better, that they can be almost as good
as 1.5ν + 1.5ν̄ or even better, see Ref. [31]. Nevertheless, this holds only for NH-LHP-HO
and IH-UHP-LO with ν data, IH-UHP-HO and NH-LHP-LO are still considerably reduced.
The situation would be reversed for ν̄ data: IH-UHP-HO and NH-LHP-LO improved, while
NH-LHP-HO and IH-UHP-LO reduced.

The only degeneracy not to be removed by acquiring ν̄ information on oscillations is
the one caused by unfavorable values of δ. More precise knowledge of θ13 and θ23, provided
θ13 is large enough, and consequent narrowing of oscillation parametric space leads
to a weakening of the parameters correlations and generally better resolution to the mass
hierarchy, but significantly for pure ν/ν̄ data. Unfortunately, this is possible only in NH-
LHP-HO and IH-UHP-LO (ν data), or IH-UHP-HO and NH-LHP-LO (ν̄ data) scenarios.
Reader shall note, that NOνA itself (and, obviously, in a cooperation with other oscillation
experiments) has an ability to further specify all the parameters θ13, θ23, δ and ∆m2 and
put tighter limits on their experimental errors. Therefore, the final sensitivity could sustain
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appreciable improvement (in the sense it cannot get worse, provided no measurements
in a strong disagreement with recent parameter estimates occur). An earlier NOνA ν̄ run can
bring the first results upon the mass hierarchy problem sooner and thereby can set the future
aims and could help to optimize NOνA and planned experiments (LBNF/DUNE mainly)
in order to use them more effectively and efficiently in neutrino mass hierarchy (and CP
violation) search.
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8. Conclusion

The standard formalism and three neutrinos model of neutrino oscillations including
vaccum propagation and oscillation probabilities were introduced. Experimental foundations
in oscillation parameters search were discussed and recent status of these parameters was
presented.

The NOνA long-baseline neutrino oscillation experiment and its main features, i.e. NuMI
beamline, off-axis concept and detectors, were described.

The effects of matter in neutrino oscillations were studied. Effective scattering potentials
and matter Hamiltonian were derived. An approximative diagonalization of the matter
Hamiltonian was performed, using consecutive rotations, resulting in new effective oscillation
parameters in matter. Because of their later utilization in mass hierarchy determination,
the so-called matter resonances were especially focused at:

1. There is a substantive difference between ν and ν̄ oscillations in a medium due to its
inherent CP assymetry, i.e. extrinsic CP violation of neutrino oscillations.

2. The resonance behavior of ν/ν̄ oscillations depends on the sign(s) of ∆m2
ij . The position

of 13-resonance (in ν or ν̄ sector) is connected to the realized normal or inverted mass
hierarchy of neutrinos in particular.

3. The presence or absence of the matter resonance effectively enhances or attenuates
the oscillation probabilities in corresponding oscillation appearance and disappearance
channels compared to the vacuum case.

Aiming at νµ → νe channel the main principle of determining the neutrino mass hierarchy,
i.e. the sign of ∆m2, with long-baseline accelerator experiments was explained. By computing
P (νµ → νe) and/or P (ν̄µ → ν̄e) several issues were deduced:

1. Currently active long-baseline experiments are able to resolve the mass hierarchy
depending on the true value of δ only in favorable scenarios: NH-LHP and IH-UHP.

2. There are 3 considerable degeneracies in the mass hierarchy problem allowed by recent
estimates of oscillation parameters: θ13, θ23 and δ.

3. δ degeneracy is always present due to the unknown (not precise enough) size of δ.
4. A combination of ν + ν̄ data can withdraw the θ13 and θ23 degeneracies. Hence, it is

vital to investigate both νµ → νe and ν̄µ → ν̄e oscillations.

With an aid of GLoBES software the possibility of mass hierarchy determination at NOνA
was analyzed, the advantage of an early ν̄ run in detail:

1. An earlier ν̄ run of NOνA could bring noticeable results in the mass hierarchy question
much sooner than 3 years ν + 3 years ν̄ initially scheduled.

2. 1.5 years ν + 1.5 years ν̄ of data taking can reject the wrong hierarchy at 90% C.L.
for estimated 24− 34% of possible δ depending on the sizes of θ13 and θ23.
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Notation
ν, ν̄ neutrino and antineutrino
p, n proton and neutron, observed nucleons
e, µ, τ electron, muon and tauon, observed charged leptons
νe, νµ, ντ electron, muon and tauon neutrino, observed neutral leptons
i, j, k . . . denotation of mass eigenstates
α, β, γ . . . denotation of flavor eigenstates
|να〉 flavor eigenstate of neutrino
|νi〉 mass eigenstate of neutrino
|Ni〉 effective mass eigenstate of neutrino in matter
νf neutrino vector in the flavor representation, coordinates in |να〉 basis
νm neutrino vector in the mass representation, coordinates in |νi〉 basis
mi mass of neutrino mass eigenstate
Mi effective mass of neutrino mass eigenstate in matter
∆m2

ij = m2
i −m2

j squared-mass splittings

θij mixing angles
Θij effective mixing angles in matter
δ the Dirac phase
δij Kronecker symbol
a, b Majorana phases
U mixing matrix
Uαi elements of mixing matrix
U effective mixing matrix in matter
H free or vacuum Hamiltonian
H effective matter Hamiltonian
E energy
p momentum
t time
x space coordinate, position
L baseline or travelling distance
Amp(·) amplitude of a particular process
P (να → νβ) oscillation probability from a flavor α to β,

appearance probability of νβ for initial να
〈·|·〉 inner product
V interaction potential
GF Fermi coupling constant
Ne, Nn electron and nucleon density
<e,=m real and imaginary part of a complex number
∗ complex conjugate
† hermitian conjugate
T transposition
L(·) likelihood function
χ2

(N) chi-square distribution with N degrees of freedom
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