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1 Introduction

In this master’s project we study the properties of time until the first occurrence

of a cylinder of positive measure in measure-preserving dynamical systems.

In a measure-preserving dynamical system for any set of positive measure

holds that almost every element of this set returns in this set infinitely many

times by Poincare recurrence theorem. This is only a qualitative result. There

is interest in studying their statistical properties to model physical phenomena

like metastability or intermittency. Other applications are in biology(gene oc-

currence in DNA), linguistics(the rhythm of language) or computer science(data

compression algorithms).

We focus on the limiting distribution of normalized hitting time µ(An)τAn
to

a cylinder An of length n. To this subject was presented many papers (some

references can be found in [2]). In [10] was proved for Markov chains that

µ(An)τAn
converges in distribution to a random variable with exponential distri-

bution, more precisely with the distribution function E(t) = max{0, 1−exp(−t)}.

In recent papers was proved that the limit distribution of the rescaled hitting

time λ(An)µ(An)τAn
is exponential for different strong-mixing systems (ψ-mixing

summable in [5], φ-mixing or α-mixing summable in [1], α-mixing in [2]).

The master’s thesis focused on special case of skew-products, so-called random

walks in random scenery. We show that the limit distribution of normalized hit-

ting time µ(An)τAn
is exponential in the skew-product of two Bernoulli schemes.

However the title of the thesis suggest only finite-state processes, the result is

proved in slightly more general form where countable-state processes are taken

into account. Since the work on this result had appeared to be quite extensive, we

have resigned of treating another types of skew-products. In particular, despite

the title, standard products of random processes are not considered in the thesis.

We consider the skew-product of two Bernoulli schemes as a model for ran-

dom movement of a reading device along a sequence of countable- or finite- valued

random variables indexed by integers. This work builds on my bachelor’s project

where was shown limit distribution of µ(An)τAn
in the model of random movement

along a sequence of random variables which does not allow backward movement.

Unlike bachelor’s thesis we consider a more nature definition of cylinders (with
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respect to other papers) and we admit the more general movement. We show

that the limit distribution of µ(An)τAn
for suitable cylinders An is exponential

for a model with movement generated by process of independent identically dis-

tributed random variables with a finite variance and a positive expectation along

countable- or finite- valued random variables and for a model with movement gen-

erated by process of independent identically distributed random variables with a

finite variance and with a zero expectation along finite-valued random variables

(Main theorem 1).

Structure of the master’s thesis is following. In Section 2 we formulate some

general properties of probability space. In Section 3 we define the skew-product

resp. the skew-product of two Bernoulli schemes and its basic characteristic. At

the end of this section we formulate Main theorem 1. The proof takes Sections 4,

5 and 6. The proof is based on relations of the distribution function of normalized

hitting time and the distribution function of normalized return time (Definition

3). These relations are formulated in Section 4. For verifying of assumptions of

these lemmas we distinguished the model with movement with positive expecta-

tion (Section 5) and the model with movement with zero expectation (Section

6).

In the proof we do not use the mixing properties, but we use properties of

product measure. In the last Section 7 we provide some mixing properties for

specific skew-products. We clarify that some of skew-products in this paper

satisfying assumptions of [2, Theorem 1]. We show that the skew-product is not

φ-mixing in general. It is not easy to verify that the skew-product presented

in this paper is at least α-mixing in general and it is not clear if it fulfills the

assumptions of [2, Theorem 1].
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2 Extrema and Sums of i.i.d. variables

Lemma 1. Let Z1, Z2, . . . be independent identically distributed random variables

on probability space (Ω, A, P ) such that EZ2
1 < ∞. Then

1
n

n∑

k=1

(Zk −EZk) → 0 a.s.

Proof. [8, Theorem 5.16]

Corollary 1. Especially, if Z1, Z2, . . . are independent identically distributed ran-

dom variables such that EZ1 > 0 and EZ2
1 < ∞, then

P (
n∑

k=1

Zk ≥ nEZ1

2
) → 1.

Proof. Take 0 < ǫ < 1
2
EZ1, then the convergence almost surely assures

P (|Zn − EZ1| > ǫ) → 0, (1)

resp.

P (Zn ∈ [EZ1 − ǫ, EZ1 + ǫ]) → 1,

where we denote by Zn the sample mean i.e.,

Zn =

n∑
k=1

Zk

n
.

Since (1) and ǫ < 1
2
EZ1, we get

P (
n∑

k=1

Zk ≥ nEZ1

2
) ≥ P (

n∑

k=1

Zk ≥ n(EZ1 − ǫ))

≥ P (Zn ∈ [EZ1 − ǫ, EZ1 + ǫ]) → 1.

Lemma 2. Let Z1, Z2, . . . be a martingale or non-negative submartingale on prob-

abilistic space (Ω, F , P ). Then for every p ≥ 1,

P ( max
k=1,...,n

|Zk| ≥ a) ≤ a−pE|Zn|p.

Proof. [8, Theorem 11.2]
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Corollary 2. Let Z1, Z2 . . . be independent identically distributed random vari-

ables such that E|Z1| < ∞. Define Sn =
n∑

j=1
(Zj −EZ1) for n ∈ N. Then {Sn} is

a martingale.

Corollary 3. Let Z1, Z2 . . . be independent identically distributed random vari-

ables such that E|Z1| < ∞. Define Sn =
n∑

j=1
Zj − nEZ1 for n ∈ N and S0 = 0.

Then for each p ≥ 1,

P ( max
0≤j≤n

{Sj} − min
0≤j≤n

{Sj} ≥ a) ≤ 2pE|Sn|p
ap

.

Proof. Since max
0≤j≤n

{Sj} ≥ 0 and min
0≤j≤n

{Sj} ≤ 0,

max
0≤j≤n

{Sj} − min
0≤j≤n

{Sj} ≥ a

implies

2 max
1≤j≤n

{|Sj|} ≥ a.

Since {Sj}∞
j=1 is martingale, {|Sj|}∞

j=1 is submartingale and Lemma 2 concludes

the proof.

Lemma 3. For non-trivial random walk Sn =
n∑

j=1
Zj such that E|Z1| < ∞,

a) EZ1 > 0 implies Sn → ∞ a.s.

b) EZ1 < 0 implies Sn → −∞ a.s.

c) EZ1 = 0 implies −∞ = lim infn→∞ Sn < lim supn→∞ Sn = ∞ a.s.

Proof. [7, Proposition 8.14]

Lemma 4. Let Z1, Z2 . . . be independent identically distributed random variables

on probability space (Ω, A, P ) with EZ1 = µ and var(Z1) = σ2 ∈ (0,∞) and such

that P (Zn ∈ Z) = 1. Define Sn =
n∑

i=1
(Zi − µ), then

√
n sup

x∈Z

|P (Sn = x) − 1
σ

√
n
ϕ(
x− nµ

σ
√
n

)| → 0,

where ϕ is a density of standard normal distribution. Especially, if EZ1 = 0,

then

sup
x∈Z

P (Sn = x) ≤ c√
n
. (2)
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Proof. The first part is version of the local limit theorem and can be found in [9,

Chapter VII, Theorem 1].

Especially, for EZ1 = 0, we know from previous that there exists n0 such that

for every n > n0 and for every x ∈ Z,

P (Sn = x) − 1
σ

√
n
ϕ(

x

σ
√
n

) ∈ (− 1√
n
,

1√
n

).

It follows that

P (Sn = x) ≤
1 + 1

σ
ϕ( x

σ
√

n
)

√
n

and since ϕ is bounded, we have

P (Sn = x) ≤ c√
n

for each x ∈ Z.

6



3 Basic definitions and main result

3.1 Measure-preserving dynamical system

Definition 1. Let (Ω, A, µ, T ) be such that

1. Ω is a set,

2. A is a σ-algebra of subsets of Ω,

3. µ: A → [0, 1] is a probability measure,

4. T : Ω → Ω is a measurable mapping such that each A ∈ A satisfies

µ(T−1(A)) = µ(A),

then (Ω, A, µ, T ) is a measure-preserving dynamical system.

Definition 2. Let (Ω, A, µ, T ) be a measure-preserving dynamical system and

A ∈ A. Then the hitting time to A is defined by

τA(ω) = inf{k ≥ 1 | T k(ω) ∈ A},

where ω ∈ Ω.

Definition 3. Let (Ω, A, µ, T ) be a measure-preserving dynamical system. For

A ∈ A let τA be the hitting time to A. The distribution function of nor-

malized hitting time to A is the function

FA(t) = µ(ω ∈ Ω | µ(A)τA(ω) ≤ t)

for t ∈ R. For A ∈ A, µ(A) > 0, we define the distribution function of

return time to A as the function

F̃A(t) =
1

µ(A)
µ(ω ∈ A | µ(A)τA(ω) ≤ t)

for t ∈ R.

3.2 Bernoulli scheme

Definition 4. Consider a measure-preserving dynamical system (EN0 , F , η, T )

such that E is an arbitrary countable or finite set and F is the product σ-algebra
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on EN0. Further, assume η is the measure on F and T is the shift i.e.,

T : EN0 → EN0 is a surjective mapping such that

(T (x))i = xi+1 for x ∈ EN0 and i ∈ N0.

The measure-preserving dynamical system (EN0, F , η, T ) is called the discrete-

time random process. If η is the product measure and

0 < η(x ∈ EN0 | x0 = e) < 1 for every e ∈ E,

then the measure-preserving dynamical system (EN0 , F , η, T ) is called the one-

sided Bernoulli scheme.

Definition 5. Consider a measure-preserving dynamical system (EZ, F , η, T )

such that E is an arbitrary countable or finite set and F is the product σ-algebra

on EZ. Further, assume η is the product measure on F and T is the shift i.e.,

T : EZ → EZ is a bijective mapping such that

(T (x))i = xi+1 for x ∈ EZ and i ∈ Z.

If

0 < η(x ∈ EZ | x0 = e) < 1 for every e ∈ E,

then the measure-preserving dynamical system (EZ, F , η, T ) is called the two-

sided Bernoulli scheme.

3.3 Skew-product

Definition 6. Let (Ω1, A1, µ1, T1) and (Ω2, A2, µ2, T2) be two measure-preserving

dynamical systems. Suppose a measurable mapping

Γ : (Ω1 × Ω2, A1 × A2) → (Ω1, A1)

such that for every ω2 ∈ Ω2, the mapping

Γω2 : Ω1 → Ω1,

Γω2(ω1) = Γ(ω1, ω2)

satisfies

Γω2 ◦ T1 = T1 ◦ Γω2
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and for every A ∈ A1

µ1(Γ−1
ω2

(A)) = µ1(A).

Define

U : Ω1 × Ω2 → Ω1 × Ω2

U(ω1, ω2) = (Γω2(ω1), T2(ω2)).

Then we say that (Ω1 × Ω2, A1 × A2, µ1 × µ2, U) is the skew-product with the

base (Ω2, A2, µ2, T2).

Definition 7. Let M ⊆ Z be a non-empty subset of integers, (EZ, A, η, T ) be a

two-sided Bernoulli scheme and (MN0 , G, ν, T ) be a one-sided Bernoulli scheme.

Let us take a skew-product (EZ × MN0 , F = A × G, µ = η × ν, U), where a

mapping

U : EZ ×MN0 → EZ ×MN0

is defined as

U((. . . , x−1, x0, x1, . . .), (y0, . . .)) → (T y0(. . . , x−1, x0, x1, . . .), (y1, . . .)).

Then (EZ×MN0 , F , µ, U) is called the skew-product of two Bernoulli schemes.

Remark 1. Denote

Γ(x, y) = T y0(x),

then for every A ∈ A,

Γ−1(A) = {(x, y) ∈ EZ ×MN0 | T y0(x) ∈ A}

=
⋃

z∈Z

(T−z(A) × {y ∈ MN0 | y0 = z}) ∈ F

and

Γ(Tx, y) = T y0(T (x))

= T (T y0(x)) = T (Γ(x, y)).

Therefore the skew-product of two Bernoulli schemes is special case of skew-

product.

Remark 2. The skew-product of two Bernoulli schemes (EZ ×MN0 , F , µ, U) is

measure-preserving dynamical system.
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Proof. We have

µ(U−1(A×B)) = µ{(x, y) ∈ EZ ×MN0 | T y0(x) ∈ A, T (y) ∈ B}

= µ(
⋃

z∈M

{(x, y) ∈ EZ ×MN0 | T z(x) ∈ A, T (y) ∈ B, y0 = z})

= µ(
⋃

z∈M

(T−z(A) × (T−1(B) ∩ {y ∈ MN0 | y0 = z})))

=
∑

z∈M

µ(T−z(A) × (T−1(B) ∩ {y ∈ MN0 | y0 = z}))

= η(A)
∑

z∈M

µ(T−1(B) ∩ {y ∈ MN0 | y0 = z})

= η(A)ν(B) = µ(A× B).

We have shown that

U−1(A ×B) =
⋃

z∈M

(T−z(A) × (T−1(B) ∩ {y ∈ MN0 | y0 = z})) ∈ F

and

µ(U−1(A ×B)) = µ(A× B).

Since S = {A× B | A ∈ A, B ∈ G} generates F and since S is closed on finite

intersections, (EZ ×MN0 , F , µ, U) is measure-preserving dynamical system.

Remark 3. Let (EZ×MN0 , F , µ, U) be a skew-product of two Bernoulli schemes.

Define V0(x, y) = (x0, y0) and for k ∈ N define Vk(x, y) = V0(Uk(x, y)). Then the

random sequence {Vk, k ≥ 0} is strictly stationary.

Proof. Let k ∈ N, t1, . . . , tk, h ∈ N0, y1, . . . , yk ∈ M and e1, . . . , ek ∈ E be

arbitrary. Then

µ(Vt1+h = (e1, y1), Vt2+h = (e2, y2), . . . Vtk+h = (ek, yk))

= µ(U−h−t1V −1
0 (e1, y1) ∩ . . . ∩ U−h−tkV −1

0 (ek, yk))

= µ(U−h(U−t1V −1
0 (e1, y1) ∩ . . . ∩ U−tkV −1

0 (ek, yk))

= µ(U−t1V −1
0 (e1, y1) ∩ . . . ∩ U−tkV −1

0 (ek, yk))

= µ(Vt1 = (e1, y1), Vt2 = (e2, y2), . . . Vtk
= (ek, yk))

and random sequence is strictly stationary.
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Remark 4. Because we do not use other skew-products except of skew-product

of two Bernoulli schemes we will write skew-product instead of skew-product of

two Bernoulli schemes. The model which is described by the skew-product of

two Bernoulli schemes is also known as a random walk in a random scenery

(see [4]). In our case, x ∈ EZ represents scenery and for y ∈ MN0 a sequence

{T y0(x), (T y1 ◦ T y0)(x), . . .} represents a walk along the scenery x.

Remark 5. Let (EZ × MN0 , F , µ, U) be a skew-product. For n ∈ Z we define

mappings

Xn : EZ ×MN0 → E,

Xn(x, y) = xn

and

X̃n : EZ → E,

X̃n(x) = xn.

Further, for m ∈ N0, we define mappings

Ym : EZ ×MN0 → M,

Ym(x, y) = ym

and

Ỹm : MN0 → M,

Ỹm(y) = ym.

By definition, we have

Xn(x, y) = X̃n(x),

Yn(x, y) = Ỹn(y).

X = {Xn, n ∈ Z} resp. X̃ = {X̃n, n ∈ Z} are processes of independent iden-

tically distributed random variables on probability space (EZ × MN0 , F , µ) re-

sp. (EZ, A, η) and Y = {Yn, n ∈ N0} resp. Ỹ = {Ỹn, n ∈ N0} are process-

es of independent identically distributed random variables on probability space

(EZ ×MN0 , F , µ) resp. (MN0 , G, ν). Finally, denote

q = max
m∈M

{µ(Y1 = m)}
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and if E is finite, denote

p = min
e∈E

{µ(X1 = e)}.

Remark 6. For n ∈ Z ∪ {−∞}, m ∈ Z ∪ {∞}, m ≥ n, we denote

Am
n = σ({Xj}m

j=n) ⊆ F

and for n ∈ N0 , m ∈ N0 ∪ {∞}, m ≥ n

Gm
n = σ({Yj}m

j=n) ⊆ F .

Remark 7. Let us take y ∈ MN0 resp. process Y . For m ≥ n ≥ 0, denote

Sn(y) =
n−1∑

j=0

yj, S
m
n (y) =

m−1∑

j=n

yj

resp.

Sn = Sn(Y ) =
n−1∑

j=0

Yj, S
m
n = Sm

n (Y ) =
m−1∑

j=n

Yj,

especially denote

S0(y) = 0 resp. Sn
n(y) = 0.

For m ≥ n, the notation Sn(y) resp. Sm
n (y) make sense also for vectors

y = (y0, y1, . . . , yn−1) ∈ Z
n resp. y = (yn, . . . , ym−1) ∈ Z

m−n. For (x, y) ∈
EZ ×MN0 the n-th composition of the mapping U can be rewritten as

Un(x, y) = (T Sn(y)x, T ny).

Definition 8. Let (EZ × MN0 , F , µ, U) be a skew-product. Denote a partition

V = {Ve,m}e∈E,m∈M , where

Ve,m = {X0 = e, Y0 = m} = {(X̃0 = e) × (Ỹ0 = m)}.

A cylinder of length n is an event of the form

Dn = Vx0,y0 ∩ U−1(Vx1,y1) ∩ . . . ∩ U−(n−1)(Vxn−1,yn−1),

where for each i ∈ {0, . . . n− 1} is xi ∈ E and yi ∈ M . We denote by Cn the set

of all cylinders of length n of nonzero probability.
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Example 1. Consider x0, x1 ∈ E, x0 6= x1, y0 = 0 and arbitrary y1 ∈ M , then

the event

D2 = Vx0,y0 ∩ U−1(Vx1,y1)

= {X0 = x0, XY0 = x1, Y0 = 0, Y1 = y1}

= {X0 = x0, X0 = x1, Y0 = 0, Y1 = y1} = ∅

is the zero probability event and D2 6∈ C2.

Remark 8. Let

Dn = {Vx0,y0 ∩ U−1(Vx1,y1) ∩ . . . ∩ U−(n−1)(Vxn−1,yn−1)}

be a cylinder of length n. Denote y = (y0, . . . , yn−1), clearly

Dn = {Yk = yk, XSk(y) = xk; 0 ≤ k ≤ n− 1}.

Define

Emin(y) = min
0≤j≤n−1

{Sj(y)} and Emax(y) = max
0≤j≤n−1

{Sj(y)}

Assume that µ(Dn) > 0, then there exist 0 < m ≤ n − 1, a sequence of indexes

i0 = Emin(y) < i1 < . . . < im = Emax(y), where ij ∈ {Sk(y)}n−1
k=0 and a vector

(xi0 , xi1 , . . . , xim
) ∈ Em such that the cylinder Dn can be written as

Dn = A′
n ×B′

n,

where

A′
n = {X̃i0 = xi0 , . . . , X̃im

= xm} ∈ A

B′
n = {Ỹ0 = y0, . . . , Ỹn−1 = yn−1} ∈ G.

We will usually use the representation

Dn = An ∩ Bn,

where

An = {Xi0 = x0, . . . , Xim
= xm} ∈ F ,

Bn = {Y0 = y0, . . . , Yn−1 = yn−1} ∈ F .
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Further, we consider a shift T on the skew-product, which is defined as

T : EZ ×MZ → EZ ×MZ

T (x, y) = (Tx, Ty),

and we can write the events

{Xi1+l = x1, . . . , Xim+l = xm}

resp.

{Yj1+k = y1, . . . , Yjn+k = yn}

as

T−l(Xi1 = x1, . . . , Xim
= xm)

resp.

T−k(Yj1 = y1, . . . , Yjn
= yn).

Remark 9. Consider n ∈ N, r ∈ (0,∞) and sets Dj for j ∈ N. For simplicity,

we use notation
r⋃

j=n

Dj =
⌊r⌋⋃

j=n

Dj

for r ≥ n and
r⋃

j=n

Dj = ∅

for r < n.

3.4 Main result

Main theorem 1. Let (EZ×MN0 , F , µ, U) be a skew-product such that EY 2
1 < ∞.

If one of the following conditions is satisfied:

(A) EY1 > 0,

(B) E is finite and EY1 = 0,

then there exists a sequence of sets C̃n ⊆ Cn such that the following two conditions

hold:

• lim
n→∞

µ(
⋃

Dn∈C̃n

Dn) = 0,

14



• for all sequences {Dn}∞
n=1, where Dn ∈ Cn \ C̃n and for all t ∈ [0,∞),

lim
n→∞

FDn
(t) = 1 − e−t.

Proof is based on several lemmas and propositions introduced later. In Section

4 we show some properties which do not depend on conditions (A) and (B). In

Section 5 we continue with properties of skew-product under condition (A) resp.

in Section 6 with properties under condition (B). The proof of Main theorem

follows now.

Proof. First assume that the condition (A) holds. Take the sequence of sets C̃n

from Lemma 10, then by this Lemma

lim
n→∞

µ(
⋃

Dn∈C̃n

) = 0.

We shall verify assumptions of Proposition 4 for every sequence of cylinders {Dn},

where Dn ∈ Cn \ C̃n. By definition of Cn,

µ(Dn) > 0 and µ(Dn) ≤ qn → 0.

We verify assumptions of Lemma 9 for events WDn
from Definition 11, where we

denote WDn
(t) = WDn

for arbitrary t > 0. By Lemma 11, WDn
(t) is independent

of Dn and
t

µ(Dn)⋃
j=n

U−j(Dn) ∩WDn
(t) is independent of Dn. By Lemma 12, we have

lim
n→∞

µ(W c
Dn

(t)) = lim
n→∞

µ(W c
Dn

) = 0.

Furthermore, by Lemma 9, we get lim
n→∞

|FDn
(t) − F̃Dn

(t)| = 0 for every t > 0 and

Proposition 4 concludes the proof. Now we provide the proof of Main theorem

1 under condition (B). Let us take sequence of sets C̃n from Lemma 13, then by

this Lemma

lim
n→∞

µ(
⋃

Dn∈C̃n

) = 0.

Again we verify assumptions of Proposition 4 for every sequence of cylinders

{Dn}, where Dn ∈ Cn \ C̃n. By definition of Cn,

µ(Dn) > 0 and lim
n→∞

µ(Dn) = 0.
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By Lemma 14, WDn
(t) is independent of Dn and

t
µ(Dn)⋃
j=n

U−j(Dn) ∩WDn
(t) is inde-

pendent of Dn. Furthermore, by Lemma 6, we obtain

lim
n→∞

µ(W c
Dn

(s)) = 0

for every t > 0. Then the assumptions of Lemma 9 are satisfied and therefore

lim
n→∞

|FDn
(t) − F̃Dn

(t)| = 0. Proposition 4 concludes the proof.
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4 Properties of skew-products

Definition 9. Let (EZ × MN0 , F , µ, U) be a skew-product and Dn ∈ Cn be a

cylinder of length n with the representation An ∩Bn. For each k ∈ N0, we define

a random variable τ̃Bn
(k) on the probability space (EZ × MN0 , F , µ) recursively

by

(τ̃Bn
(0))(x, y) = n,

(τ̃Bn
(k))(x, y) = inf{j > τ̃Bn

(k − 1)(x, y) | (x, y) ∈ T−j(Bn)}.

Lemma 5. For every k ∈ N is τ̃Bn
(k) G∞

n -measurable and for any l > 0

lim
n→∞

µ(τ̃Bn
(k) ≤ nl) = 0

and for every n ∈ N

µ(τ̃Bn
(k) < ∞) = 1.

Proof. τ̃Bn
(k) is G∞

n -measurable by the definition. Clearly,

µ(τ̃Bn
(k) ≤ nl) ≤ µ(Bn)nl ≤ qnnl.

Define (λ(0))(x, y) = 0 and for k ∈ N

(λ(k))(x, y) = inf{j > (λ(k − 1))(x, y) | (x, y) ∈ T−nj(Bn)},

then λ(1) have the geometric distribution with parameter µ(Bn) > 0 and therefore

λ(k) is finite almost surely. Finally, τ̃Bn
(k) ≤ nλ(k).

4.1 Properties of cylinders

Definition 10. Let (EZ × MN0 , F , µ, U) be a skew-product and λ be a constant

such that λ ∈ (0, 1). We say that a cylinder Dn of length n is λ-self-repelling,

if

µ(Bn ∩ T−k(Bn)) = 0 for k ∈ {1, . . . , ⌊λn⌋}.

We denote by D̃n the set of all λ-self-repelling cylinders of length n and by D̃c
n

the set of all cylinders of length n, which are not λ-self-repelling.
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Lemma 6. Let D̃c
n be the set of all cylinders of length n, which are not λ-self-

repelling. Then

lim
n→∞

µ(
⋃

Dn∈D̃c
n

Dn) = 0.

Proof. For k ∈ {1, . . . , ⌊λn⌋}, we denote

D̃k
n = {Dn ∈ Cn | µ(Bn ∩ T−k(Bn)) > 0}

and l = ⌊n
k
⌋ − 1 + (n mod k). Then for every cylinder Dn ∈ D̃k

n resp. for its

representation An ∩Bn, we get

Bn = {Y0 = y0, . . . Yk−1 = yk−1, Yk = y0, . . . , Y2k−1 = yk−1, . . . Yn−1 = yl}

and thus

µ(Bn) ≤ µ(Y0 = y0, . . . Yk−1 = yk−1)qn−k.

For z = (z0, . . . , zn−1) ∈ Z
n, we denote by

C(z) = {Dn ∈ Cn | Bn = {Y0 = z0, . . . , Yn−1 = zn−1}}.

the system of all cylinders with fixed Bn. Further, we define

o : Zk → Z
n

o((y0, y1, . . . , yk−1)) = (y0, . . . , yk−1, y0, . . . , yk−1, . . . yl).

Then for y = (y0, y1, . . . , yk−1) ∈ Z
k

µ(
⋃

Dn∈C(o(y))

Dn) =
∑

(x1,...,xm)∈Em

µ(Xi1 = x1, . . . , Xim
= xm)µ(Bn)

≤ qn−kµ(Y0 = y0, . . . , Yk−1 = yk−1),

and hence

µ(
⋃

Dn∈D̃k
n

Dk) =
∑

y=(y0,...,yk−1)∈Mk

µ(
⋃

Dn∈C(o(y))

Dn)

≤ qn−k
∑

y=(y0,...,yk−1)∈Mk

µ(Y0 = y0, . . . , Yk−1 = yk−1)

≤ qn−k.
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Finally,

µ(
⋃

Dn∈D̃c
n

Dn) = µ(
⌊λn⌋⋃

k=1

⋃

Dn∈D̃k
n

Dn)

≤
⌊λn⌋∑

k=1

qn−k ≤ cqn(1−λ).

Lemma 7. Let {Dn}∞
n=1 be a sequence of λ-self-repelling cylinders of length n.

Then there exists a constant c > 0 such that

n∑

j=1

µ(Dn ∩ U−j(Dn))
µ(Dn)

≤ cqλn.

Proof. Since

U−k(Dn) ⊆ T−k(Bn)

for every Dn ∈ D̃n, we have

n∑

j=1

µ(Dn ∩ U−j(Dn))
µ(Dn)

≤
n∑

j=1

µ(An ∩Bn ∩ T−j(Bn))
µ(An)µ(Bn)

≤
n∑

j=⌊λn⌋+1

µ(Bn ∩ T−j(Bn))
µ(Bn)

≤
n∑

j=⌊λn⌋+1

µ(
n−1⋂
i=0

(Yi = Yi+j = yi))

µ(Y0 = y0, . . . Yn−1 = yn−1)

≤
n∑

j=⌊λn⌋+1

µ(Yn = yn−j+1, . . . , Yn+j−1 = yn−1)

≤
n∑

j=⌊λn⌋+1

qj

= q⌊λn⌋+1 1 − qn−⌊λn⌋

1 − q
≤ cqλn.

4.2 Relations between distribution functions

Lemma 8. Let (Ω, A, µ, T ) be a measure-preserving dynamical system, A ∈ A,

µ(A) > 0, τA be the hitting time to A, F̃A(t) be the distribution function of nor-

malized return time and FA(t) be the distribution function of normalized hitting

time. Then

0 ≤
∫ t

0
(1 − F̃A(s))ds− FA(t) ≤ µ(A)
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for all t ≥ 0.

Proof. The proof can be find in [6].

Lemma 9. Let {Dn}∞
n=1 be sequence of λ-self-repelling cylinders of length n.

Suppose that for every t ∈ (0,∞) and n ∈ N, there are events WDn
(t) in

(EZ ×MN0 , F , µ) such that the following conditions hold:

•
t

µ(Dn)⋃
j=n

U−j(Dn) ∩WDn
(t) is independent of Dn,

• WDn
(t) is independent of Dn,

• lim
n→∞

µ(WDn
(t)) = 1.

Then for every t > 0

lim
n→∞ |FDn

(t) − F̃Dn
(t)| = 0.

Proof. Let t > 0 and {Dn}∞
n=1 be given. For simplicity, we denote Fn(t) = FDn

(t)

and F̃n(t) = F̃Dn
(t). For n big enough, t > nµ(Dn) and we write

|Fn(t) − F̃n(t)| ≤ K1
n(t) +K2

n(t) +K3
n(t) +K4

n(t) +K5
n(t),

where

K1
n(t) = |µ(τDn

≤ t

µ(Dn)
) − µ(

t
µ(Dn)⋃

j=n

U−j(Dn))|,

K2
n(t) = |µ(

t
µ(Dn)⋃

j=n

U−j(Dn)) − µ(

t
µ(Dn)⋃

j=n

U−j(Dn) ∩WDn
(t))|,

K3
n(t) = |µ(

t
µ(Dn)⋃

j=n

U−j(Dn) ∩WDn
(t)) −

µ(
t

µ(Dn)⋃
j=n

U−j(Dn) ∩Dn ∩WDn
(t))

µ(Dn)
|,

K4
n(t) = |

µ(
t

µ(Dn)⋃
j=n

U−j(Dn) ∩Dn ∩WDn
(t))

µ(Dn)
−
µ(

t
µ(Dn)⋃
j=n

U−j(Dn) ∩Dn)

µ(Dn)
|,

K5
n(t) = |

µ(
t

µ(Dn)⋃
j=n

U−j(Dn) ∩Dn)

µ(Dn)
− F̃n(t)|.

We find an upper bound for K(i)
n (t) for each i ∈ {1, . . . , 5}. For K(1)

n (t), we obtain

K(1)
n (t) = µ(τDn

≤ n)

≤ nµ(Dn)

≤ nqn.
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By definition of K(2)
n (t),

K(2)
n (t) = µ(

t
µ(Dn)⋃

j=n

U−j(Dn) ∩ (WDn
(t))c)

≤ µ((WDn
(t))c).

Events
t

µ(Dn)⋃
j=n

U−j(Dn) ∩WDn
(t) and Dn are independent and therefore

K(3)
n (t) = 0.

Since WDn
(t) is independent of Dn, we get for K(4)

n (t)

K(4)
n (t) =

µ(
t

µ(Dn)⋃
j=n

U−j(Dn) ∩Dn ∩ (WDn
(t))c)

µ(Dn)

≤ µ(Dn ∩ (WDn
(t))c)

µ(Dn)

= µ((WDn
(t))c).

For K(5)
n (t), by Lemma 7, we obtain

K(5)
n (t) =

µ({τDn
≤ n} ∩Dn)
µ(Dn)

≤
n∑

j=1

µ(Dn ∩ U−j(Dn))
µ(Dn)

≤ cqλn.

By assumptions on WDn
(t),

|Fn(t) − F̃n(t)| ≤ nqn + cqλn + 2µ((WDn
(t))c) → 0.

Previous two lemmas lead us to the key proposition.

Proposition 4. Let (Ω, A, µ, T ) be a measure-preserving dynamical system. Let

{Dn}∞
n=1 ⊆ A be a sequence of events such that µ(Dn) > 0 for every n ∈ N and

lim
n→∞

µ(Dn) = 0.

Further, assume that for every t > 0

lim
n→∞

|FDn
(t) − F̃Dn

(t)| = 0.
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Then for every r > 0

lim
n→∞

FDn
(r) = lim

n→∞
F̃Dn

(r) = 1 − e−r.

Proof. For simplicity, denote Fn(t) = FDn
(t), F̃n(t) = F̃Dn

(t) and fn(t) = F̃n(t)−
Fn(t) for every t > 0. Then by assumption

lim
n→∞ |fn(t)| = 0

and if

lim
n→∞

FDn
(t) = 1 − e−t,

then also

lim
n→∞

F̃Dn
(t) = 1 − e−t.

Let r > 0 and {Dn}∞
n=1 be given. For every t ≥ 0, by Lemma 8, we have

∫ t

0
(1 − F̃n(s))ds = Fn(t) + gn(t), (3)

where |gn(t)| ≤ µ(Dn). Substitute fn(s) + Fn(s) for F̃n(s) in (3) to obtain

∫ t

0
(1 − Fn(s) − fn(s))ds = Fn(t) + gn(t). (4)

We multiply equation by et and integrate from 0 to r, we get

∫ r

0

∫ t

0
et(1 − Fn(s) − fn(s))dsdt =

∫ r

0
et(Fn(t) + gn(t))dt.

By Fubini’s theorem,

∫ r

0

∫ r

s
et(1 − Fn(s) − fn(s))dtds =

∫ r

0
etFn(t)dt+

∫ r

0
etgn(t)dt

∫ r

0
(1 − Fn(s) − fn(s))(er − es)ds =

∫ r

0
etFn(t)dt+

∫ r

0
etgn(t)dt

er
∫ r

0
(1 − Fn(s) − fn(s))ds−

∫ r

0
es(1 − Fn(s) − fn(s))ds =

∫ r

0
etFn(t)dt+

∫ r

0
etgn(t)dt.

We substitute from (4),

er(Fn(r) + gn(r)) − (er − 1) +
∫ r

0
esfn(s)ds =

∫ r

0
esgn(s)ds.
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Expressing Fn(r) from the equation, we get

Fn(r) = 1 − e−r − gn(r) − e−r(
∫ r

0
esfn(s)ds−

∫ r

0
esgn(s)ds).

Further, we know

| − gn(r) − e−r
∫ r

0
esfn(s)ds+ e−r

∫ r

0
esgn(s)ds| ≤

µ(Dn) + |e−r
∫ r

0
esfn(s)ds| + |e−r

∫ r

0
esgn(s)ds|.

We estimate the third part with

|e−r
∫ r

0
esgn(s)ds| ≤ e−r

∫ r

0
es|gn(s)|ds

≤ e−r
∫ r

0
esµ(Dn)ds

≤ µ(Dn).

Since |fn(s)| ≤ 2, for every s ∈ [0, r], and by dominated convergence theorem, we

obtain

|er
∫ r

0
esfn(s)ds| ≤ e−r

∫ r

0
es|fn(s)|ds → 0.

Define

Kn(r) = e−r
∫ r

0
es|fn(s)|ds,

then

Fn(r) ∈ [1 − e−r − 2µ(Dn) −Kn(r), 1 − e−r + 2µ(Dn) +Kn(r)].
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5 Non-symmetrical motion

In this section we will consider the skew-product which satisfied assumptions of

Main theorem with condition (A). For this section, we denote by B this skew-

product.

5.1 Construction of a suitable subset of cylinders

Lemma 10. Let B be a skew-product. Let D̃n be set of all λ-self-repelling cylin-

ders of length n. Denote

D̃′
n = {Dn ∈ Cn | ∀(x, y) ∈ Dn : max

0≤i≤n
|Si(y) − iEY1| ≥ n

2
}

and C̃n = D̃c
n ∪ D̃′

n. Then

lim
n→∞

µ(
⋃

Dn∈C̃n

Dn) = 0.

Proof. By Lemma 2, for D̃′
n,

µ(
⋃

Dn∈D̃′
n

Dn) ≤ µ( max
0≤i≤n

{|Si(Y ) − iEY1|} ≥ n

2
)

≤ c
E(Sn − nEY1)2

n2

= c
EY 2

1

n
→ 0. (5)

By Lemma 6 and (5), we obtain

lim
n→∞µ(

⋃

Dn∈C̃n

Dn) = 0.

Corollary 5. Define systems of cylinders

D̃′′
n = {Dn ∈ Cn | ∀(x, y) ∈ Dn : max

0≤i≤n
{Si(y)} − min

0≤i≤n
{Si(y)} ≥ n(1 + EY1)}

and

D̃′′′
n = {Dn ∈ Cn | ∀(x, y) ∈ Dn : |Sn(y)| ≥ n(1 + EY1)}.

Then

D̃′′
n ∪ D̃′′′

n ⊆ C̃n.
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Proof. We have

max
0≤i≤n

{Si} − nEY1 − min
0≤i≤n

{Si}

≤ max
0≤i≤n

{Si − iEY1} − min
0≤i≤n

{Si − iEY1}

≤ 2 max
0≤i≤n

{|Si − iEY1|}

and therefore D̃′′
n ⊆ D̃′

n. Similarly, we have

|Sn| − nEY1 = |Sn| − |nEY1|

≤ ||Sn| − |nEY1||

≤ |Sn − nEY1|

≤ max
0≤i≤n

{|Si − iEY1|}

and therefore D̃′′′
n ⊆ D̃′

n.

5.2 Construction of WDn

Definition 11. Let B be a skew-product and let Dn be a cylinder of length n.

Define

WDn
=

∞⋂

k=1

(S τ̃Bn (k)
n > 4n(1 + EY1)),

where τ̃Bn
(k) is from Definition 9.

Property of independence for events WDn

Lemma 11. Let C̃n be from Lemma 10, Dn ∈ Cn \ C̃n, WDn
be events from the

previous definition and t > 0. Then the following two conditions are satisfied:

• WDn
is independent of Dn,

•
t

µ(Dn)⋃
j=n

S−j(Dn) ∩WDn
is independent of Dn.

Proof. Since Bn ∈ Gn−1
0 , An ∈ A and

∞⋂

k=1

(S τ̃Bn (k)
n > 4n(1 + EY1)) ∈ G∞

n ,

we get

µ(WDn
∩Dn) = µ(An ∩ Bn ∩

∞⋂

k=1

(S τ̃Bn (k)
n > 4n(1 + EY1)))

= µ(Dn)µ(WDn
).
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Denote c = ⌈(1+EY1)⌉ and u = ⌊ t
µ(Dn)

⌋. Since Dn ∈ Cn \ C̃n and by Corollary 5,

we obtain

max
0≤i≤n

{Si(Y )} − min
0≤i≤n

{Si(Y )} ≤ cn on Dn

and

An ∈ Acn
−cn.

Further, let us take l ∈ N, then

T−l(An) ∈ A∞
−cn+l.

If we take l > 2nc, we get

T−l(An) ∈ A∞
cn+1

and it follows that µ(An ∩T−l(An)) = µ(An)µ(T−l(An)). The statement of lemma

is clearly true for u < n. Suppose u ≥ n, then WDn
∈ G∞

n and for u ≥ j ≥ n

clearly T−j(Bn) ∈ G∞
n . Since Dn ∈ Cn \ C̃n and by Corollary 5, we have

|Sn| ≤ nc on Bn

and by definition of WDn

Sj
n ≥ 4nc on T−j(Bn) ∩WDn

.

Together, we get

Sj = Sj
n + Sn ≥ Sj

n − |Sn| ≥ 3nc on T−j(Bn) ∩WDn
∩Bn. (6)

Further Dn is fixed and therefore Bn is fixed. Suppose z = (z0, . . . , zn−1) such

that

Bn = {Y0 = z0, . . . , Yn−1 = zn−1}.

Define

H = WDn
∩

u⋃

j=n

T−j(Bn),

Ω = {(yn, . . . , yu+n−1) ∈ Mu | {Yn = yn, . . . , Yu+n−1 = yu+n−1} ∩H 6= ∅}

and for y ∈ Ω, define

P (y) = WDn
∩ {Yn = yn, . . . , Yu+n−1 = yu+n−1},

L(y) =
u⋃

j=n

(T−j(Bn) ∩ T−S
j
n(y)−Sn(z)(An)) ∩Bn ∩ P (y).
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Then by (6), we get L(y) ∈ σ( G ∪ A∞
2nc) for every y ∈ Ω. Hence also

u⋃

j=n

U−j(Dn) ∩WDn
∩ Bn =

⋃

y∈Ω

L(y) ∈ σ( G ∪ A∞
2nc).

But σ( G ∪ A∞
2nc) is independent of Acn

−cn and therefore

µ(
u⋃

j=n

U−j(Dn) ∩WDn
∩Dn) = µ(

⋃

y∈Ω

L(y) ∩ An)

= µ(
⋃

y∈Ω

L(y))µ(An).

For y ∈ Ω, define

L′(y) =
u⋃

j=n

(T−j(Bn) ∩ T−S
j
n(y)−Sn(z)(An)) ∩ P (y).

Since L′(y) ∈ σ( G∞
n ∪ A) and L(y) = L′(y) ∩ Bn, we obtain

µ(
⋃

y∈Ω

L(y))µ(An) = µ(
⋃

y∈Ω

L′(y) ∩Bn)µ(An)

= µ(
⋃

y∈Ω

L′(y))µ(Bn)µ(An).

The last step is to show that

µ(
⋃

y∈Ω

L′(y)) = µ(
u⋃

j=n

U−j(Dn) ∩WDn
).

For y ∈ Ω, denote by

NBn
(y) = card{n ≤ i ≤ u | yi = z0, . . . , yn+i−1 = zn−1},

the number of hitting times to Bn in y and by (τ(j))(y) the j-th hitting time to

Bn in y. For z′ ∈ Mn, define

Q(z′) = {Y0 = z′
0, . . . , Yn−1 = z′

n−1}.

Then

L′(y) =
NBn (y)⋃

j=1

T−S
(τ(j))(y)
n (y)−Sn(z)(An) ∩ P (y)
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and

µ(L′(y)) = µ(P (y))µ(
NBn(y)⋃

j=1

T−S
(τ(j))(y)
n (y)−Sn(z)(An))

= µ(P (y))µ(T−Sn(z)(
NBn (y)⋃

j=1

T−S
(τ(j))(y)
n (y)(An)))

= µ(P (y))µ(
NBn(y)⋃

j=1

T−S
(τ(j))(y)
n (y)(An))

=
∑

z′∈Mn

µ(P (y) ∩Q(z′))µ(
NBn(y)⋃

j=1

T−S
(τ(j))(y)
n (y)−Sn(z′)(An))

= µ(
⋃

z′∈Mn

(P (y) ∩Q(z′) ∩
NBn (y)⋃

j=1

T−S
(τ(j))(y)
n (y)−Sn(z′)(An))).

Finally, we get

µ(
⋃

y∈Ω

L′(y)) = µ(
⋃

y∈Ω

⋃

z′∈Mn

(P (y) ∩Q(z′) ∩
NBn (y)⋃

j=1

T−S
(τ(j))(y)
n (y)−Sn(z′)(An)))

= µ(
u⋃

j=n

U−j(Dn) ∩WDn
).

Limit of measure of WDn

Lemma 12. Let B be a skew-product and Cn \ C̃n from Lemma 10. Then, for

any sequence {Dn}, where Dn ∈ Cn \ C̃n,

lim
n→∞

µ(W c
Dn

) = 0.

Proof. Let {Dn} be given. We denote

c = 4(1 + EY1) , c′ =
EY1

2
and τ̃Bn

= τ̃Bn
(1).

By Corollary 1 we have

lim
n→∞

µ(
n2+n∑

j=n

Yj ≥ c′n2) = lim
n→∞

µ(
n2∑

j=0

Yj ≥ c′n2) = 1.

We denote k(1)
n = µ(

n2∑
j=0

Yj < c′n2). Further, we define k(2)
n = (n2 + 2n)qn, then

clearly

µ(τ̃Bn
< n2 + 2n) ≤ k(2)

n → 0

28



and

k(1)
n → 0.

We have

µ(W c
Dn

) ≤ µ(W c
Dn

∩ {τ̃Bn
≥ n2 + 2n} ∩ {Sn2+n

n ≥ c′n2})

+ µ(τ̃Bn
< n2 + 2n) + µ(Sn2+n

n < c′n2)

≤ µ(W c
Dn

∩ {τ̃Bn
≥ n2 + 2n} ∩ {Sn2+n

n ≥ c′n2}) + k(1)
n + k(2)

n .

Hence, it is enough to show that

lim
n→∞

µ(
∞⋃

k=1

{S τ̃Bn(k)
n ≤ cn} ∩ {τ̃Bn

≥ n2 + 2n} ∩ {Sn2+n
n ≥ c′n2}) = 0.

It is easy to see that for

∀(x, y) ∈
∞⋃

k=1

{S τ̃Bn (k)
n ≤ cn} ∩ {τ̃Bn

≥ n2 + 2n} ∩ {Sn2+n
n ≥ c′n2}

there exists l ∈ N such that

Sn2+2n+l
n2+n (y) ≤ 0.

We have

∞⋃

k=1

{S τ̃Bn (k)
n ≤ cn} ∩ {τ̃Bn

≥ n2 + 2n} ∩ {Sn2+n
n ≥ c′n2} ⊆ {inf

l∈N

{Sn2+2n+l
n2+n } ≤ 0}

and therefore

µ(
∞⋃

k=1

{S τ̃Bn (k)
n ≤ cn} ∩ {τ̃Bn

≥ n2 + 2n} ∩ {Sn2+n
n ≥ c′n2})

≤ µ(inf
l∈N

{Sn2+2n+l
n2+n } ≤ 0)

= µ(inf
l∈N

{Sn+l} ≤ 0).

By Lemma 3

lim
n→∞

µ(inf
l∈N

{Sn+l} ≤ 0) = 0.
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6 Symmetrical motion

In this section we will consider the skew-product which satisfied assumptions

of Main theorem with the condition (B). For this section, we denote by B this

skew-product.

6.1 Construction of a suitable subset of cylinders

Lemma 13. Let B be a skew-product and D̃n be sets of all λ-self-repelling cylin-

ders. For arbitrary λ′ ∈ (1
2
, 1), denote

D̃′
n = {Dn ∈ Cn | ∀(x, y) ∈ Dn : ( max

0≤i≤n
{Si(y)} − min

0≤i≤n
{Si(y)}) ≥ nλ′}

and C̃n = D̃c
n ∪ D̃′

n. Then

lim
n→∞µ(

⋃

Dn∈C̃n

Dn) = 0.

Proof. By Corollary 3, we get

µ( max
0≤i≤n

{Si} − min
0≤i≤n

{Si} ≥ nλ′

) ≤ 22λ′

E(
n−1∑
j=0

Yj)2

n2λ′

≤ c

n2λ′−1
. (7)

By (7) and by Lemma 6, we obtain

lim
n→∞

µ(
⋃

Dn∈C̃n

(Dn)) = 0.

6.2 Construction of WDn

Definition 12. Let B be a skew-product and let Dn be a cylinder of length n.

For t ∈ (0,∞), define

WDn
(t) =

∞⋂

k=1

({|S τ̃Bn(k)
n | > 3n} ∪ {τ̃Bn

(k) > ⌊ t

µ(Dn)
⌋}).
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Property of independence for events WDn

Lemma 14. Let C̃n be from Lemma 13, Dn ∈ Cn \ C̃n, t > 0 and WDn
(t) from

the previous definition. Then the following two conditions are satisfied:

• WDn
(t) is independent of Dn,

•
t

µ(Dn)⋃
j=n

U−j(Dn) ∩WDn
(t) is independent of Dn.

Proof. Let t > 0 and Dn be fixed. Since Bn ∈ Gn−1
0 , An ∈ A, WDn

(t) ∈ G∞
n , we

get

µ(WDn
(t) ∩Dn) = µ(WDn

(t))µ(Dn).

Since Dn ∈ Cn \ C̃n, λ′ < 1 and by Lemma 13, we obtain

max
0≤i≤n

{Si} − min
0≤i≤n

{Si} ≤ nλ′

on Dn

and

An ∈ Anλ′

−nλ′ ⊆ An
−n.

Consider l ∈ Z, |l| > 2n, we have T−l(An) ∈ A∞
n+1 for l > 2n (resp. T−l(An) ∈

A−n−1
−∞ for l < 2n) and µ(An ∩T−l(An)) = µ(An)2. Denote u = ⌊ t

µ(Dn)
⌋. We show

that

µ(
u⋃

j=n

U−j(Dn) ∩WDn
(t) ∩Dn) = µ(

u⋃

j=n

U−j(Dn) ∩WDn
(t))µ(Dn).

The equality clearly holds for u < n. Suppose u ≥ n, since Dn ∈ Cn \ C̃n,

|Sn| ≤ max
0≤i≤n

{Si} − min
0≤i≤n

{Si} ≤ nλ′ ≤ n on Bn.

Further, take n ≤ j ≤ u, then

|Sj
n| > 3n on T−j(Bn) ∩WDn

(t)

and

|Sj | = |Sj
n + Sn| > 2n on T−j(Bn) ∩WDn

(t) ∩Bn. (8)

Suppose z = (z0, . . . , zn−1) such that

Bn = {Y0 = z0, . . . , Yn−1 = zn−1}.
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Define

H = WDn
(t) ∩

u⋃

j=n

T−j(Bn),

Ω = {(yn, . . . , yu+n−1) ∈ Mu | {Yn = yn, . . . , Yu+n−1 = yu+n−1} ∩H 6= ∅}

and for y ∈ Ω, define

P (y) = WDn
(t) ∩ {Yn = yn, . . . , Yu+n−1 = yu+n−1},

L(y) =
u⋃

j=n

(T−j(Bn) ∩ T−S
j
n(y)−Sn(z)(An)) ∩Bn ∩ P (y).

Then by (8), we have L(y) ∈ σ( G ∪ A∞
n+1 ∪ A−n−1

−∞ ) for every y ∈ Ω. Hence also

u⋃

j=n

U−j(Dn) ∩WDn
(t) ∩ Bn =

⋃

y∈Ω

L(y) ∈ σ( G ∪ A∞
n+1 ∪ A−n−1

−∞ ).

But σ( G ∪ A∞
n+1 ∪ A−n−1

−∞ ) is independent of An
−n and therefore

µ(
u⋃

j=n

U−j(Dn) ∩WDn
(t) ∩Dn) = µ(

⋃

y∈Ω

L(y) ∩An)

= µ(
⋃

y∈Ω

L(y))µ(An).

The rest of the proof may be obtained in the same way as in Lemma 11.

Limit of measure of WDn

Proposition 6. Let B be a skew-product and WDn
(t) be from Definition 12. Then

for all t ∈ (0,∞) and {Dn}∞
n=1, where Dn ∈ Cn \ C̃n,

lim
n→∞

µ(W c
Dn

(t)) = 0.

Proof. Let {Dn}∞
n=1 be sequence of cylinders such that Dn ∈ Cn \ C̃n and t > 0.

For simplicity, denote τ̃n(k) = τ̃Bn
(k). Consider only n ∈ N such that t ≥ nqn.

We denote

c′
n =

tq
−n
10

µ(An)
, cn = ⌊c′

n⌋, d(n, k) = 3n6k4,

Qn = {µ(Bn)τ̃n(cn) ≤ t

µ(An)
}

and

Rn =
cn⋃

k=1

{τ̃n(k) − τ̃n(k − 1) ≤ d(n, k)}.
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The event Qc
n and the constant cn control number of hitting times to Bn until

the time t
µ(Dn)

and the event Rc
n assures that there is enough space between two

hitting times. Since c′
n ≥ tq

−n
10 ,

lim
n→∞

c′
n = ∞ and lim

n→∞
cn = ∞.

Further,

W c
Dn

(t) ∩Qc
n =

∞⋃

k=1

({|S τ̃n(k)
n | ≤ 3n} ∩ {τ̃n(k) ≤ ⌊ t

µ(Dn)
⌋}) ∩ {τ̃n(cn) >

t

µ(Dn)
}

⊆
cn⋃

k=1

({|S τ̃n(k)
n | ≤ 3n} ∩ {τ̃n(cn) >

t

µ(Dn)
}),

and hence

µ(W c
Dn

(t)) ≤ µ(W c
Dn

(t) ∩Qn) + µ(W c
Dn

(t)) ∩Qc
n)

≤ µ(Qn) + µ(
cn⋃

k=1

{|S τ̃n(k)
n | ≤ 3n} ∩Qc

n)

≤ µ(Qn) + µ(Rn) + µ(
cn⋃

k=1

{|S τ̃n(k)
n | ≤ 3n} ∩Qc

n ∩Rc
n). (9)

In the first step we prove that lim
n→∞µ(Rn) = 0. For every Dn ∈ Cn \ C̃n,

µ(Bn) ≤ qn

and since E is finite, we have

p = min
e∈E

{µ(X0 = e)} > 0

and

µ(An) ≥ pnλ′

.

Easy calculation shows that

µ(Rn) = µ(
cn⋃

k=1

(τ̃n(k) − τ̃n(k − 1) ≤ d(n, k)))

≤
cn∑

k=1

µ(τ̃n(k) − τ̃n(k − 1) ≤ d(n, k))

≤
cn∑

k=1

d(n, k)µ(Bn)

=
cn∑

k=1

3n6k4µ(Bn)

≤ 3n6c4+1
n µ(Bn)

= 3n6 t
5q( −5n

10
)

(µ(An))5
µ(Bn)

≤ 3n6t5q( −n
2

)qnp−5nλ′

→ 0. (10)
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Now we show that lim
n→∞µ(Qn) = 0. We distinguish two cases. The first case

is that there exist cn occurrences of Bn such that they do not overlap each other.

And the second case is that there exists at least two occurrences of Bn that

overlap. In other words, we can write µ(Qn) as follows,

µ(Qn ∩ (
cn⋂

k=2

{τ̃n(k) − τ̃n(k − 1) > n} ∪
cn⋃

k=2

{τ̃n(k) − τ̃n(k − 1) ≤ n})). (11)

The cylinder Dn is λ-self-repelling and therefore

T−k(Bn) ∩ T−k−j(Bn) = ∅

for every k ∈ N and j ∈ {1, . . . ⌊λn⌋}. We obtain

µ(Qn ∩
cn⋃

k=2

(τ̃n(k) − τ̃n(k − 1)) ≤ n) ≤ µ(
cn⋃

k=2

(τ̃n(k) − τ̃n(k − 1)) ≤ n)

≤ µ(
cn⋃

k=2

n⋃

j=⌊λn⌋+1

T−k(Bn ∩ T−j(Bn)))

≤
cn∑

k=2

n∑

j=⌊λn⌋+1

µ(Bn ∩ T−j(Bn))

≤
cn∑

k=2

n∑

j=⌊λn⌋+1

qn+j

≤ c′cnq
n

= c′ tq
− n

10

µ(An)
qn ≤ tc′qcnp−nλ′

(12)

where c, c′ are suitable positive constants. There are less then
(

t
µ(Dn)

cn

)
combina-

tions how to place Bn on set {n, . . . , t
µ(Dn)

} cn-times. In the case they do not

overlap, each cn placements of Bn results in probability smaller than µ(Bn)cn. We

get

µ(Qn ∩
cn⋂

k=2

(τ̃n(k) − τ̃n(k − 1)) > n) ≤
(

t
µ(Dn)

cn

)
(µ(Bn))cn.

In general for l ≥ k, we have
(
l

k

)
=

l!
(l − k)!k!

=
l(l − 1) . . . (l − k + 1)

k!

≤ lk

k!
.
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By Stirling’s approximation,

kke−k
√
k2π ≤ k!

and therefore

lk

k!
≤ lk

kke−k
√
k2π

.

For l = t
µ(Dn)

and k = cn, we get

(
t

µ(Dn)

cn

)
(µ(Bn))cn ≤

( t
µ(Dn)

)cn

cn!
(µ(Bn))cn

≤
( t

µ(An)
)cn

√
2cnπ( cn

e
)cn

≤ (eq
n
10 )cn

√
2πcn

.

Since lim
n→∞

cn = ∞,

µ(Qn) ≤ (eq
n
10 )cn

√
2πcn

+ tc′qcnp−nλ′

→ 0. (13)

The last step is to prove

lim
n→∞µ(

cn⋃

k=1

{|S τ̃n(k)
n | ≤ 3n} ∩Qc

n ∩ Rc
n) = 0.

Easy calculation shows that

µ(
cn⋃

k=1

{|S τ̃n(k)
n | ≤ 3n} ∩Qc

n ∩ Rc
n) ≤ µ(

cn⋃

k=1

{|S τ̃n(k)
n | ≤ 3n} ∩ Rc

n)

≤
cn∑

k=1

µ({|S τ̃n(k)
n | ≤ 3n} ∩ Rc

n). (14)

For k ∈ {1, . . . , cn} denote

Tk = {τ̃n(k) − τ̃n(k − 1) ≥ d(n, k)}.

By definition of Rn, we obtain

Rc
n =

cn⋂

j=1

{τ̃n(j) − τ̃n(j − 1) > d(n, j)}

⊆ {τ̃n(k) − τ̃n(k − 1) ≥ d(n, k)}

= Tk
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and therefore

µ({|S τ̃n

n (k)| ≤ 3n} ∩ Rc
n) ≤ µ({τ̃n(k) ≥ d(n, k)} ∩ Tk ∩ {|S τ̃n(k)

n | ≤ 3n})

=
∞∑

j=d(n,k)

µ({τ̃n(k) = j} ∩ Tk ∩ {|Sj
n| ≤ 3n})

=
∞∑

j=d(n,k)

3n∑

l=−3n

µ({τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l}). (15)

Now we find an upper bound for probability of the event

{τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l},

(see Figure 1).

y ∈ Ω

l

n τ̃n(k − 1) zj zj + n j = τ̃n(k) j + n − 1

S
zj
n (y)

S
zj
n (y) + Sj

zj
(y)

Bn

Figure 1: Realization of {τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l}

Define

zj = j − d(n, k)
3

Ij = {zj − n, . . . , zj}.

We show that

µ({τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l}) ≤ µ(τ̃n(k) ∈ Ij)φ(

d(n, k)
3

),

where

φ(i) = sup
x∈Z

µ(Si = x).

Clearly

{τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l} ∈ Gj+n−1

n
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and we can this write event as

⋃

(yn,...,yj+n−1)∈Ω

{Yn = yn, . . . Yj+n−1 = yj+n−1}

for suitable set Ω ⊂ M j . Take (yn, . . . , yj+n−1) ∈ Ω and assume that

Bn = {Y0 = y′
0, . . . , Yn−1 = y′

n−1}.

By definition of Ω (resp. the event {τ̃n(k) = j}),

(yj, . . . , yj+n−1) = (y′
0, . . . , y

′
n−1).

Define permutation π on M j such that π take last n coordinates and put them

between coordinates zj − 1 and zj i.e.,

π(y) = (yn, . . . , yzj−1, yj, yj+1, . . . , yj+n−1, yzj
, . . . , yj−1)

(see Figure 2). Further, denote

Ω′ = π(Ω).

Since (Yn, . . . , Yn+j−1) is vector of independent identically distributed random

variables, for every y ∈ Ω, we get

µ((Yn, . . . , Yj+n−1) = y) = µ((Yn, . . . , Yj+n−1) = π(y)).

For y ∈ Ω, by the definition of π, we know that k-hitting time into Bn in vector

π(y) happens no later than zj and by event Tk not earlier than zj − n. Further,

since Sj
n(y) = l, we get Szj

n (π(y)) + S
j
zj+n(π(y)) = l. We denote

Vj = [τ̃Bn
(k) ∈ Ij ].

It follows from the previous that

µ({τ̃n = j} ∩ Tk ∩ {Sj
n = l}) = µ(

⋃

y∈Ω

{(Yn, . . . Yj+n−1) = y})

= µ(
⋃

y′∈Ω′

{(Yn, . . . Yj+n−1) = y′})

≤ µ(Vj ∩ {Szj
n + S

j+n
zj+n = l}).
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y′ = π(y) ∈ Ω′

l

n τ̃n(k − 1) zj zj + n j j + n− 1

S
zj
n (y)

Bn

S
zj
n (y) + S

j+n
zj+n(y)

Figure 2: Realization after π-transformation

Furthermore,

µ(Vj ∩ {Szj
n + S

j+n
zj+n = l}) =

∞∑

m=−∞
µ(Vj ∩ {Szj

n = m} ∩ {Sj+n
zj+n = l −m})

=
∞∑

m=−∞
µ(Vj ∩ {Szj

n = m})µ(Sj+n
zj+n = l −m)

≤
∞∑

m=−∞
µ(Vj ∩ {Szj

n = m}) sup
x∈Z

µ(Sj+n
zj+n = x)

≤ µ(Vj)φ(
d(n, k)

3
).

Therefore µ(Vj)φ(d(n,k)
3

) is the upper bound for

µ({τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l}),

which does not depend on l. For Vj we obtain

∞∑

j=d(n,k)

µ(Vj) ≤
∞∑

j=d(n,k)

n−1∑

i=0

µ(τ̃n(k) = zj − n+ 1 + i)

=
n−1∑

i=0

∞∑

j=d(n,k)

µ(τ̃n(k) = j − d(n, k)
3

− n+ 1 + i) ≤ n.

We continue with (15)

∞∑

j=d(n,k)

3n∑

l=−3n

µ({τ̃n(k) = j} ∩ Tk ∩ {Sj
n = l}) ≤

∞∑

j=d(n,k)

3n∑

l=−3n

µ(Vj)φ(
d(n, k)

3
)

≤
∞∑

j=d(n,k)

7nµ(Vj)φ(
d(n, k)

3
)

≤ 7n2φ(
d(n, k)

3
). (16)
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And now back to (14). From previous and by inequality in (2), we have

cn∑

k=1

µ({S τ̃n(k)
n ≤ 3n} ∩ Rc

n) ≤
cn∑

k=1

4n2φ(
d(n, k)

3
)

≤ 7n2
∞∑

k=1

c√
d(n,k)

3

≤ 7n2
∞∑

k=1

c√
n6k4

≤ 7n2 1
n3
c → 0. (17)

From (17), (13), (10) and (9), we finally obtain

lim
n→∞µ((WDn

(s))c) = 0.
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7 Mixing measure-preserving dynamical systems

Definition 13. Suppose (Ω, F , µ) is probability space and A, B ⊆ F are σ-

algebras. Define the following measures of dependence:

α( A, B) = sup
A∈ A

sup
B∈ B

|µ(A ∩ B) − µ(A)µ(B)|,

φ( A, B) = sup
A∈ A;µ(A)>0

sup
B∈ B

|µ(B|A) − µ(B)|,

ψ( A, B) = sup
A∈ A;µ(A)>0

sup
B∈ B;µ(B)>0

| µ(A ∩B)
µ(A)µ(B)

− 1|.

Remark 10. Let (Ω, A, µ) be a probability space and A, B be σ-algebras. Then

2α( A, B) ≤ φ( A, B) ≤ 1
2
ψ( A, B).

Proof. [3, Theorem 3.11]

Definition 14. Suppose V = {Vk, k ≥ 0} is a sequence of random variables on

(Ω, F , µ). For 0 ≤ n ≤ m ≤ ∞, define the σ-algebra Hm
n = σ(Vk, n ≤ k ≤ m).

For each positive integer n, define the following dependence coefficients:

α(n) = α(n, V ) = sup
j∈N

α( Hj
0, H∞

j+n),

φ(n) = φ(n, V ) = sup
j∈N

φ( Hj
0, H∞

j+n),

ψ(n) = ψ(n, V ) = sup
j∈N

ψ( Hj
0, H∞

j+n).

The random sequence V is said to be

a) strongly mixing or α-mixing if lim
n→∞

α(n) = 0,

b) φ-mixing if lim
n→∞

φ(n) = 0,

c) ψ-mixing if lim
n→∞

ψ(n) = 0.

Lemma 15. Let (EZ × MN0 , F , µ, U) be a skew-product. Denote by C∞ the

smallest σ-algebra containing all cylinders. For n ∈ N, denote by Cn the small-

est σ-algebra containing all cylinders of length n. Further, define a sequence of

random variables {Vk, k ≥ 0} on (EZ × MN0 , F , µ, U), where V0(x, y) = (x0, y0)
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and Vk(x, y) = V0(Uk(x, y)). Then

α(l, V ) = sup
n≥1

sup
A∈ Cn

sup
B∈ C∞

|µ(A ∩ U−n−l(B)) − µ(A)µ(B)|,

φ(l, V ) = sup
n≥1

sup
A∈ Cn;µ(A)>0

sup
B∈ C∞

= |µ(U−n−l(B)|A) − µ(B)|,

ψ(l, V ) = sup
n≥1

sup
A∈ Cn;µ(A)>0

sup
B∈ C∞;µ(B)>0

= |µ(A ∩ U−n−l(B))
µ(A)µ(B)

− 1|.

If V is α(resp. φ, ψ)-mixing we say (EZ×MN0 , F , µ, U) is α(resp. φ, ψ)-mixing.

Proof. We provide proof only for α(l, V ). Since Cn = Hn
0 , resp. C∞ = H∞

0 ,

for every k ∈ N and B ∈ H∞
0 , we get U−k(B) ∈ H∞

k . Therefore for every

l, n ∈ N, A ∈ Cn,

sup
B∈ C∞

|µ(A ∩ U−n−l(B)) − µ(A)µ(B)| = sup
B∈ F∞

n+l

|µ(A ∩ B) − µ(A)µ(B)|.

Remark 11. Let G be σ-algebra with finitely or countable many atoms. Denote

G1, G2, . . . the atoms of G. Further, let A be an arbitrary σ-algebra, then

φ( G, A) = sup
i∈N

sup
A∈ A

|µ(A|Gi) − µ(A)|.

Proof. The proof can be found in [3, Proposition 3.21].

7.1 Mixing in skew-products

Example 2. Let (EZ × {0, 1}N0, F , µ, U) be a skew-product, such that for all

n ∈ N there exists x ∈ E such that µ(X0 = x) < 1
n
. Then (EZ×{0, 1}N0, F , µ, U)

is φ-mixing, but is not ψ-mixing.

Proof. First we take two cylinders of length 1,

A1 = {X0 = x0, Y0 = y0}, B1 = {X0 = a0, Y0 = b0}.

Obviously,

U−1(B1) = {XY0 = a0, Y1 = b0}

and for k ∈ N

U−1−k(B1) = {XSk+1
= a0, Yk+1 = b0}.
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We will distinguish three possibilities. First take y0 = 0 and x0 6= a0, then

U−1(B1) ∩ A1 = {∅}

and

U−k−1(B1) ∩A1 ∩ {Sk+1 = 0} = {∅}.

For y0 = 1, we have

U−1(B1) ∩ A1 = {X0 = x0, X1 = a0, Y0 = 1, Y1 = b0}

and therefore

µ(U−1(B1) ∩ A1) = µ(A1)µ(B1).

By the same argument, for k ∈ N, we obtain

µ(U−1−k(B1) ∩A1) = µ(X0 = x0, X1+Sk+1
1

= a0, Y0 = 1, Y1+k = b0)

= µ(A1)µ(B1).

Finally, for y0 = 0 and x0 = a0,

µ(U−1(B1) ∩ A1) = µ(Y0 = 0, Y1 = b0, X0 = a0)

= µ(A1)
µ(B1)

µ(X0 = a0)

and

µ(U−1−k(B1) ∩A1 ∩ {Sk+1
1 = 0}) = µ(A1)

µ(B1)
µ(X0 = a0)

(1 − EY0)k.

Furthermore, for all y0 and x0, we get

µ(U−1−k(B1) ∩A1 ∩ {Sk+1
1 > 0}) = µ(A1)µ(B1)µ(Sk+1

1 > 0).

Now we can show that skew-product is not ψ-mixing. For k ∈ N we take previous

cylinders A1 and B1 such that y0 = 0 and x0 = a0, then

ψ(k) ≥ |µ(U−1−k(B1) ∩ A1)
µ(A1)µ(B1)

− 1|

= |µ(U−1−k(B1) ∩A1 ∩ {Sk+1
1 = 0}) + µ(U−1−k(B1) ∩ A1 ∩ {Sk+1

1 > 0})
µ(A1)µ(B1)

− 1|

= | (1 − EY0)k

µ(X0 = x0)
+ (1 − (1 −EY0)k) − 1|.
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By assumption, for every k ∈ N, we can find x0 ∈ E such that

(1 − EY0)k

µ(X0 = x0)
> 5

and therefore skew-product is not ψ-mixing. Now we prove that skew-product is

φ-mixing. Cylinders of length n are atoms in Cn, therefore by Remark 11, it is

sufficient to show that there exists a sequence {ak}∞
k=1 such that

lim
k→∞

ak = 0.

and

|µ(U−n−k(A)|Dn) − µ(A)| ≤ ak

for every n ∈ N, Dn cylinder of length n and A ∈ C∞. Easy calculation shows

that

µ(U−n−k(A) ∩Dn ∩ {Sn+k
n = 0}) ≤ µ(Dn ∩ {Sn+k

n = 0})

= µ(Dn)(1 − EY0)k. (18)

Consider y ∈ {0, 1}n such that for Dn resp. for its representation An ∩Bn holds

Bn = {Y0 = y0, . . . , Yn−1 = yn−1}.

Since C∞ ⊆ σ( A∞
0 ∪ G), we have

U−k−n(A) ∈ σ( A∞
0 ∪ G∞

k+n)

and for every y′ = (y′
n, . . . , y

′
n+k−1) ∈ {0, 1}k such that Sn+k

n (y′) > 0,

Bn ∩ {Yn = y′
n, . . . , Yn+k−1 = y′

n+k−1} ∩ U−n−k(A) ∈ σ( A∞
Sn(y)+Sn+k

n (y′)
∪ G∞

0 ),

{Yn = y′
n, . . . , Yn+k−1 = y′

n+k−1} ∩ U−n−k(A) ∈ σ( A∞
0 ∪ G∞

n )

and since An ∈ ASn(y)
0 , we obtain

µ(U−n−k(A) ∩Dn ∩ {Sk+n
n > 0}) = µ(Dn)µ(A)(1 − (1 − EY0)k). (19)

By (19), we get

µ(U−n−k(A) ∩Dn)
µ(Dn)

=

=
µ(U−n−k(A) ∩Dn ∩ {Sn+k

n > 0}) + µ(U−n−k(A) ∩Dn ∩ {Sn+k
n = 0})

µ(Dn)

= µ(A)(1 − (1 − EY0)k) +
µ(U−n−k(A) ∩Dn ∩ {Sn+k

n = 0})
µ(Dn)
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and hence by (18),

|µ(A) − µ(U−n−k(A) ∩Dn)
µ(Dn)

| ≤ µ(A)(1 − EY0)k + (1 −EY0)k

≤ 2(1 − EY0)k.

We define ak = 2(1 −EY0)k and skew-product is φ-mixing.

Example 3. (EZ × {−1, 1}N0, F , µ, U) is not φ-mixing.

Proof. Let us take

B = {X0 = x0, Y0 = y0} ∈ C∞.

For every l ∈ N, we show that

φ(l) ≥ µ(B).

Consider x1 6= x0 and cylinder A of length 3l such that for its representation

C ∩D holds

C = {Y0 = 1, . . . Y2l−1 = 1, Y2l = −1, . . . , Y3l−1 = −1}

and

D = {X0 = x1, . . . , X2l = x1},

Hence

S3l = l on C,

S4l ∈ [0, 2l] on C

and also

XS4l
= x1 on C.

Therefore

µ(A ∩ U−3l−l(B)) = 0.

and skew-product is not φ-mixing.
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7.2 Skew-product represented by a random process

Let (EZ ×MN0 , F , µ, U) be a skew-product and let J be an arbitrary countable

alphabet such that there is a bijective mapping f : E×M → J . Define a mapping

ϕ : EZ ×MN0 → J

ϕ(x, y) = j if (X0(x, y), Y0(x, y)) = f−1(j).

For n ∈ N0 define projections πn on JN0

πn(j0, j1, . . .) = jn

and a mapping ϕ∞

ϕ∞ : EZ ×MN0 → JN0

πn(ϕ∞(x, y)) = ϕ(Un(x, y)).

Let J be a product σ-algebra on JN0 and

σ : JN0 → JN0

σ((j0, j1, . . .)) = (j1, j2, . . .)

be the shift on JN0 . For n,m ∈ N0, n ≥ m and jm, . . . , jn ∈ J we naturally define

cylinder of rank (m,n) in (JN0 , J , σ) as a measurable set

[jm, . . . jn] = π−1
m (jm) ∩ π−1

m+1(jm+1) ∩ . . . ∩ π−1
n (jn)

= σ−m(Jjm
) ∩ σ−m−1(Jjm+1) ∩ . . . ∩ σ−n(Jjn

),

where Jji
= π−1

0 (ji). Clearly, J is the smallest σ-algebra containing all cylinders.

Let

Dn = Ve0,y0 ∩ U−1(Ve1,y1) ∩ U−n+1(Ven−1,yn−1
)

be a cylinder of length n in (EZ × MN0 , F , µ, U) and j0, . . . , jn−1 ∈ J be such

that ji = f((ei, yi)). Obviously,

ϕ−1
∞ (σ−k[j0, . . . , jn−1]) = U−k(Dn) ∈ F (20)

for every k ∈ N0. Since set of all cylinders in (JN0 , J , σ) is closed on finite

intersections and

{B ∈ J | ϕ−1
∞ (B) ∈ F}

45



is Dynkin system, ϕ∞ is ( F , J )-measurable. We define probability measure ν

on (JN0 , J ) as

ν(B) = µ(ϕ−1
∞ (B))

for B ∈ J . Further, by (20)

ν(σ−1[j0, . . . , jn−1]) = µ(ϕ−1
∞ (σ−1[j0 . . . , jn−1]))

= µ(U−1(Dn))

= µ(Dn)

= ν([j0, . . . , jn−1])

and hence (JN0 , J , ν, σ) is measure-preserving dynamical system. Furthermore,

ϕ−1
∞ (B) ∈ Cn for B ∈ J n

0 , where J n
0 is the smallest σ-algebra containing all

cylinders of rank (0, n). Once again, for every n ∈ N0, k ∈ N0,

{A ∈ J | ∃A′ ∈ F such that ϕ−1
∞ (σ−k−nA) = U−n−kA′}

is Dynkin system which contains all cylinders. Therefore, for every k, n ∈ N0 and

A ∈ J , there exist A′ ∈ F such that

ϕ−1
∞ (σ−k−nA) = U−n−k(A′).

Hence

ν(B ∩ σ−k−nA) = µ(ϕ−1
∞ (B) ∩ U−n−k(A′)).

It follows that if (EZ ×MN0 , F , µ, U) is α-mixing, then (JN0 , J , ν, σ) is α-mixing

and for every n ∈ N is α(n) in (EZ × MN0 , F , µ, U) greater or equal then α(n)

in (JN0 , J , ν, σ).

7.3 Discussion

We proved some mixing properties for particular skew-products, now we would

like to discuss the relation of our work with some known results. We will show

relation between our result and [2, Theorem 1]. First, [2, Theorem 1] in is for-

mulated for the dynamical systems with shift. As we have seen in previous, this

is not significant restriction. Further, [2, Theorem 1] assume that dynamical sys-

tem is α-mixing. It is not easy to see that skew-product is at least α-mixing in
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general. Therefore we can not use it for general skew-product. Further, our proof

of the limit distribution follows different approach, therefore we do not get the

exactly same result.

Example 4. We continue with Example 2. By Main theorem 1, for every t > 0

and for a sequence of cylinders {Dn}∞
n=1 such that Dn ∈ Cn \ C̃n,

lim
n→∞

µ(τDn
>

t

µ(Dn)
) = e−t.

We can find similar result in [2]. More precisely consider (JN0 , J , ν, σ) construct-

ed in previous section for skew-product defined in Example 2. Since

(EZ × {0, 1}N0, F , µ, U) is φ-mixing, it is also α-mixing by Remark 10 and there-

fore (JN0 , J , ν, σ) is α-mixing. By [2, Theorem 1], for (JN0, J , ν, σ), the follow-

ing result holds:

For any sequence {An}∞
n=1 such that An ∈ An−1

0 , ν(An) > 0 and

lim
n→∞

ν(τAn
≤ n) = 0,

there exist normalizing constants λ(An) such that

lim
n→∞

sup
t≥0

|ν(λ(An)ν(An)τAn
> t) − exp(−t)| = 0

and lim sup λ(An) ≤ 1.

As we see from previous example we only provide a pointwise convergence of

distribution functions while the convergence in [2, Theorem 1] is uniform. On the

other hand, we do not need a rescaling constant λ(An).
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