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1 Introduction

In this master’s project we study the properties of time until the first occurrence
of a cylinder of positive measure in measure-preserving dynamical systems.

In a measure-preserving dynamical system for any set of positive measure
holds that almost every element of this set returns in this set infinitely many
times by Poincare recurrence theorem. This is only a qualitative result. There
is interest in studying their statistical properties to model physical phenomena
like metastability or intermittency. Other applications are in biology(gene oc-
currence in DNA), linguistics(the rhythm of language) or computer science(data
compression algorithms).

We focus on the limiting distribution of normalized hitting time p(A,)74, to
a cylinder A,, of length n. To this subject was presented many papers (some
references can be found in [2]). In [10] was proved for Markov chains that
1(Ay)Ta, converges in distribution to a random variable with exponential distri-
bution, more precisely with the distribution function E(t) = max{0, 1 —exp(—t)}.
In recent papers was proved that the limit distribution of the rescaled hitting
time A(A,)u(A,)Ta, is exponential for different strong-mixing systems (¢-mixing
summable in [5], ¢-mixing or a-mixing summable in [1], a-mixing in [2]).

The master’s thesis focused on special case of skew-products, so-called random
walks in random scenery. We show that the limit distribution of normalized hit-
ting time (A, )74, is exponential in the skew-product of two Bernoulli schemes.
However the title of the thesis suggest only finite-state processes, the result is
proved in slightly more general form where countable-state processes are taken
into account. Since the work on this result had appeared to be quite extensive, we
have resigned of treating another types of skew-products. In particular, despite
the title, standard products of random processes are not considered in the thesis.

We consider the skew-product of two Bernoulli schemes as a model for ran-
dom movement of a reading device along a sequence of countable- or finite- valued
random variables indexed by integers. This work builds on my bachelor’s project
where was shown limit distribution of p(A,,)74, in the model of random movement
along a sequence of random variables which does not allow backward movement.

Unlike bachelor’s thesis we consider a more nature definition of cylinders (with



respect to other papers) and we admit the more general movement. We show
that the limit distribution of (A, )74, for suitable cylinders A, is exponential
for a model with movement generated by process of independent identically dis-
tributed random variables with a finite variance and a positive expectation along
countable- or finite- valued random variables and for a model with movement gen-
erated by process of independent identically distributed random variables with a
finite variance and with a zero expectation along finite-valued random variables
(Main theorem [I]).

Structure of the master’s thesis is following. In Section 2] we formulate some
general properties of probability space. In Section [3 we define the skew-product
resp. the skew-product of two Bernoulli schemes and its basic characteristic. At
the end of this section we formulate Main theorem [Il The proof takes Sections [4]
and[@l The proof is based on relations of the distribution function of normalized
hitting time and the distribution function of normalized return time (Definition
B). These relations are formulated in Section @l For verifying of assumptions of
these lemmas we distinguished the model with movement with positive expecta-
tion (Section [l) and the model with movement with zero expectation (Section
).

In the proof we do not use the mixing properties, but we use properties of
product measure. In the last Section [l we provide some mixing properties for
specific skew-products. We clarify that some of skew-products in this paper
satisfying assumptions of |2, Theorem 1]. We show that the skew-product is not
¢-mixing in general. It is not easy to verify that the skew-product presented
in this paper is at least a-mixing in general and it is not clear if it fulfills the

assumptions of [2, Theorem 1].



2 Extrema and Sums of i.i.d. variables
Lemma 1. Let Zy, Z>, ... be independent identically distributed random variables
on probability space (0, A, P) such that EZ? < oo. Then

ZZk_EZk —>0 a.s.
]

Proof. [8, Theorem 5.16]
are independent identically distributed ran-

Corollary 1. Especially, if Z1, Zs, ..
dom wvariables such that EZy > 0 and EZ? < oo, then

Z nEZl ) — 1.

Proof. Take 0 < € < 1EZ;, then the convergence almost surely assures

P(|Z,— EZ| > €) — 0,

resp.

P(Zn c [EZl — €, EZ; + E]) — 1,

where we denote by Z,, the sample mean i.e

> Zk
7 k=l
" n
Since (@) and € < LEZ;, we get
P> Zp > 22N > (Y. Z > n(EZy — €))
k=1 k=1
P(Z [EZl — €, EZl + 6]) — 1.

O

be a martingale or non-negative submartingale on prob-

Lemma 2. Let Z, Zs, . ..
abilistic space (2, F, P). Then for every p > 1

P( max |Z| > a) < a PE|Z,|P.

.....

Proof. |8, Theorem 11.2]



Corollary 2. Let Zy,7Z; ... be independent identically distributed random vari-

n

ables such that E|Z,| < co. Define S,, = > (Z; — EZy) forn € N. Then {S,} is

7=1
a martingale.
Corollary 3. Let Zy,7Z; ... be independent identically distributed random vari-
ables such that E|Z,| < co. Define S, = En: Z;j —nEZy forn € N and Sy = 0.
j=1
Then for each p > 1,
E\|S, P
P(max {S;} — min {S;} > a) < QPQ.

0<j<n 0<j<n ar

Proof. Since Orgjaél{Sj} >0 and o%ign{sj} <0,

Dax {S;} — min {S;} > a

implies

2 max {|S;]} > a.

Since {S;}32, is martingale, {|5;[}32, is submartingale and Lemma [ concludes

the proof. O
Lemma 3. For non-trivial random walk S,, = ‘i1 Z; such that E|Z;| < oo,
=
a) EZy > 0 implies S,, — o0 a.s.
b) EZ; <0 implies S, — —o0 a.s.
c) EZy =0 implies —oo = liminf,,_,, S, < limsup,,_,. S, = o0 a.s.
Proof. |1, Proposition 8.14] O

Lemma 4. Let Zy,Z, ... be independent identically distributed random variables
on probability space (Q, A, P) with EZ; = p and var(Z;) = o2 € (0,00) and such
that P(Z, € Z) = 1. Define S,, = En: (Z; — ), then

1

1=

1 T —nuy
P(S, =) —
Vsup|P(Sy =) = e

where @ is a density of standard normal distribution. FEspecially, if EZ; = 0,

)| =0,

then

sup P(S, =) <
TEL

(2)

Bk



Proof. The first part is version of the local limit theorem and can be found in [9,
Chapter VII, Theorem 1].
Especially, for EZ; = 0, we know from previous that there exists ny such that

for every n > ngy and for every x € Z,

1 x 1 1

(

P(S, = ) RN =) € (_—n’%)'

It follows that

B 1+ 1o(:%)
P(S,=x) < —

and since ¢ is bounded, we have

c
P =z)< —
(Sn=2) < NG
for each z € Z. O



3 Basic definitions and main result

3.1 Measure-preserving dynamical system
Definition 1. Let (0, A, u,T) be such that

1. Q is a set,

2. A is a o-algebra of subsets of €2,

3. pu: A —10,1] is a probability measure,

4. T: Q — Q is a measurable mapping such that each A € A satisfies
W(T7HA)) = u(A).

then (Q, A, u,T) is a measure-preserving dynamical system.

Definition 2. Let (Q, A, u,T) be a measure-preserving dynamical system and

A € A. Then the hitting time to A is defined by
Ta(w) = inf{k > 1| T"(w) € A},
where w € ).

Definition 3. Let (2, A, u,T) be a measure-preserving dynamical system. For
A € A let T4 be the hitting time to A. The distribution function of nor-

malized hitting time to A is the function
Fyt) = plw € Q| p(A)7a(w) < 1)

fort € R. For A € A, u(A) > 0, we define the distribution function of

return time to A as the function

Falt) = @u(w € A p(A)raw) < 1)

forteR.

3.2 Bernoulli scheme

Definition 4. Consider a measure-preserving dynamical system (EYo, F.n,T)

such that E is an arbitrary countable or finite set and F is the product o-algebra

7



on ENo. Purther, assume 1 is the measure on F and T is the shift i.e.,

T : ENo — ENo s q surjective mapping such that
(T(x)); = xiy1 for x€ E™ and i€ Ny.

The measure-preserving dynamical system (EY0, F 0, T) is called the discrete-

time random process. If n is the product measure and
0<n(ze B |zg=¢e)<1 for every ec€ E,

then the measure-preserving dynamical system (EY, F n,T) is called the one-

sided Bernoulli scheme.

Definition 5. Consider a measure-preserving dynamical system (EZ, F.n,T)
such that E is an arbitrary countable or finite set and F is the product o-algebra
on EZ. Further, assume n is the product measure on F and T is the shift i.c.,

T : EZ — EZ is a bijective mapping such that
(T(z))i = xiy1 for v € E® and i€ Z.

If

0<n(ze E%|xg=¢e)<1 for every e € E,

then the measure-preserving dynamical system (E%, F,n,T) is called the two-

sided Bernoulli scheme.

3.3 Skew-product

Definition 6. Let (0, Ay, p1, Th) and (2, As, 9, T2) be two measure-preserving

dynamical systems. Suppose a measurable mapping
[ (2 x Qo A X Ag) — (4, Ay)
such that for every wy € (g, the mapping
Loyt —

Ly, (wl) = F(Wla WQ)

satisfies

sz oly=1Ty0 ng

8



and for every A € A,
(T, (A) = m(A).
Define
U:Q x Qg — Q) Xy
Uwr,w2) = (Fy (w1), Ta(w2)).
Then we say that (2 X Qo, Ay X Ao, 1 X o, U) is the skew-product with the
base (QQ, .AQ, [LQ,TQ).

Definition 7. Let M C 7Z be a non-empty subset of integers, (EZ, A,n,T) be a
two-sided Bernoulli scheme and (MY, G,v,T) be a one-sided Bernoulli scheme.

Let us take a skew-product (EZ? x MY F = A x G,u = n x v,U), where a

mapping
U:E”x MY — E" x M™

is defined as
U(( .., 1,0, %1, .. .), (yo, .. )) — (Tyo(. .., 1,0, L1, .. .), (yl, .. ))
Then (EZx Mo F u,U) is called the skew-product of two Bernoulli schemes.

Remark 1. Denote
[(z,y) = T" (),

then for every A € A,

I (A) = {(z,y) € EZ x MY | T%(z) € A}
=UT () x{yeM™ [yp=2}) e F

Z€Z

and
I'(Tz,y) =T"(T(z))
=TI (z)) =TI (z,y)).

Therefore the skew-product of two Bernoulli schemes is special case of skew-

product.

Remark 2. The skew-product of two Bernoulli schemes (EZ x MY F u,U) is

measure-preserving dynamical system.



Proof. We have

U A% B)) = p{(z,y) € E* x M™ | T*"(x) € A, T(y) € B}

— (U {(2.y) € E% x M" | T*(x) € A, T(y) € B,yo = =)

zeM

= u( U (T*(A) x (T7Y(B) N {y € MY | yo = 2})))

= > wT(A) x (TTH(B)N{y € M | yo = 2}))
=n(A) > w(TH(B)N{y € M™ | yo = z})

=n(A)v(B) = u(A x B).
We have shown that

UNAxB)= J(T A x (T(B)n{ye M |y =2})) € F

zeM

and

(U (A x B)) = u(A x B).

Since S ={Ax B| A€ A, B € G} generates F and since S is closed on finite

intersections, (EZ x MM F u,U) is measure-preserving dynamical system. [

Remark 3. Let (EZx MY F u,U) be a skew-product of two Bernoulli schemes.
Define Vo(x,y) = (z0,y0) and for k € N define Vi,(x,y) = Vo(U*(z,y)). Then the

random sequence {Vj, k > 0} is strictly stationary.

Proof. Let k € N, t1,...,tx,h € No, y1,...,yx € M and eq,...,e, € E be

arbitrary. Then

N(%l-i-h = (617 yl)a ‘/tg—i—h = (627 92)> cee ‘/tk-i-h = (eka ?/k))
U_h_tl‘/b_l(el, yl) N...N U_h_tk‘/o_l(ek, yk))

U MUV e, y) N nU Vo (er, yr)
UV e, y) 00UV Hew, yi))

‘/tl = (elvyl)av;b = (627y2)7 . V;k = (ek,yk))

and random sequence is strictly stationary. O

10



Remark 4. Because we do not use other skew-products except of skew-product
of two Bernoulli schemes we will write skew-product instead of skew-product of
two Bernoulli schemes. The model which is described by the skew-product of
two Bernoulli schemes is also known as a random walk in a random scenery
(see [4]). In our case, x € E” represents scenery and for y € MY a sequence

{T%(z), (T o T%)(x),...} represents a walk along the scenery x.

Remark 5. Let (EZ x MY, F u,U) be a skew-product. For n € 7 we define

mappings
X, : Bt x MM - E,
X2, y) = xn
and
X, E* S E,
X, () =z,

Further, for m € Ny, we define mappings
Y,, : EZ x MY — M,

Yo (2, y) = Ym

and
Yy o MY — M,

Yin(y) = Yum-
By definition, we have
Xa(,y) = Xa(2),
Yo(z,y) = Ya(y).

X ={X,,n € Z} resp. X = {)Tn,n € Z} are processes of independent iden-
tically distributed random wvariables on probability space (EZ x MY, F u) re-
sp. (B, A,n) and Y = {Y,,n € No} resp. Y = {Y,,n € Ny} are process-
es of independent identically distributed random wvariables on probability space

(EZ x MM F u) resp. (MY, G v). Finally, denote

¢ = max{u(Yy =m)}

11



and if E is finite, denote
p = min{u(Xy = e)}.

Remark 6. Forn € ZU{—oc}, m € ZU {co}, m > n, we denote
Al =o({X1iL,) € F

and forn € Ny , m € NyU{oo}, m>n
Gy = o({Y;}L) € F.

Remark 7. Let us take y € MM resp. process Y. For m > n > 0, denote

n—1 m—1
Sn(y) ="y Sty) =Dy
§=0 ‘

j=n
resp.
n—1 m—1
j=0 Jj=n

especially denote

So(y) =0 resp. S;(y) =0.

For m > n, the notation S, (y) resp. S"(y) make sense also for vectors

Yy = (Yo.Y1s-- Yn—1) € Z" resp. Y = (Yn, - Ym—1) € Z™". For (x,y) €

EZ x MM the n-th composition of the mapping U can be rewritten as
U(x,y) = (TWax, TMy).

Definition 8. Let (EZ x MM, F 1, U) be a skew-product. Denote a partition

V = {Vem}eermem, where

Ve = {Xo = e, Yo =m} = {(Xo = ¢) x (Yo = m)}.
A cylinder of length n is an event of the form

Dy =Vigyo VU (Vi) N NU=OD(, ),

where for each i € {0,...n —1} isx; € E and y; € M. We denote by C,, the set

of all cylinders of length n of nonzero probability.

12



Example 1. Consider xo,x1 € E,xq # x1,y0 = 0 and arbitrary y; € M, then

the event

Dy = ‘/;ﬂo,yo N U71<%1,y1>
:{X(]:.TO,XYO :x17%:07}/1 :yl}

={Xo=20,Xo=21,Y0=0,Y1 =0} =0
is the zero probability event and Dy & C5.

Remark 8. Let
Dy = {Vigyo NU (Vi) N oo .MU (V0 )
be a cylinder of length n. Denote y = (yo, ..., Yn—1), clearly
Dy, ={Yy =y, Xs,) = 21,0 < k <n— 1}
Define

Epin(y) = min {S;(y)} and Ene(y) = max {S;(y)}

0<j<n—1 0<j<n—1

Assume that u(D,,) > 0, then there exist 0 < m < n — 1, a sequence of indexes
i = Epmin(y) < i1 < ... < im = Emaa(y), where i; € {Sp(y)}iZy and a vector

(Tigs Tiyy -, Ty, ) € E™ such that the cylinder D,, can be written as
D, = Al x B,

where
A;:{)A(:Z-O :xio,...,)?l-m =zn} € A

B;:{%:yOa"an—l :yn—l} S g

We will usually use the representation
D, =A,NB,,

where

An:{XZ‘OZIL'Q,...,XZ‘m:l’m}G .F,

Bn:{Yb:yOa---aYn—lzyn—l}E F.

13



Further, we consider a shift T' on the skew-product, which is defined as

T:E%x M* — E* x M”

T(z,y) = (Tz,Ty),
and we can write the events

X =21,..., X0 = T}

resp.

{le+k =Y, Yk = Yn}
as

T'Xs, =21,....X;, =2m)
resp.

Tﬁk<}/}l = yl, e

Remark 9. Consider n € N, r € (0,00) and sets D; for j € N. For simplicity,

we use notation

,i
<3
[

yDj: D;

j=n j=n

<
Il

forr>mn and

C =
O
I
=

W.
3

forr <mn.

3.4 Main result

Main theorem 1. Let (EZx MY F, 1, U) be a skew-product such that EY? < oo.

If one of the following conditions is satisfied:
(A) EY; >0,
(B) E is finite and EY, = 0,

then there exists a sequence of sets C,, C C,, such that the following two conditions

hold:

e tim u( U D) =0,
nree Dnéan

14



o for all sequences {D,}>,, where D,, € C, \ C,, and for all t € [0, 0),

lim Fp, (t)=1—¢"

n—oo

Proof is based on several lemmas and propositions introduced later. In Section
4 we show some properties which do not depend on conditions (A) and (B). In
Section [f] we continue with properties of skew-product under condition (A) resp.
in Section [ with properties under condition (B). The proof of Main theorem

follows now.

Proof. First assume that the condition (A) holds. Take the sequence of sets C,,

from Lemma [I0, then by this Lemma

lim p( | )=0.

n—00 .
DneC,

We shall verify assumptions of Proposition [ for every sequence of cylinders { D, },

where D,, € C), \ C.. By definition of C,,,
w(Dy) >0 and wu(D,) < q¢" — 0.

We verify assumptions of Lemma [0 for events Wp from Definition [[I], where we

denote Wp, (t) = Wp, for arbitrary t > 0. By Lemma [T, Wp, (¢) is independent

u(Dn) .
of D,and U U™ (D,)NWp,(t) is independent of D,,. By Lemma 2, we have

j=n

lim p(Wp, (t)) = lim p(Wp, ) = 0.

n—oo

Furthermore, by Lemma [, we get lim |Fp, (t) — Fp, (t)| = 0 for every t > 0 and
Proposition d] concludes the proof. Now we provide the proof of Main theorem
M under condition (B). Let us take sequence of sets C,, from Lemma I3} then by

this Lemma

lim p( | )=0.

n—00 .
DneC,

Again we verify assumptions of Proposition M for every sequence of cylinders

{D,}, where D, € C,, \ C,. By definition of C,,,

w(Dy) >0 and JgrgOM(Dn) = 0.

15



t

D)

By Lemma [[4, Wp, (t) is independent of D,, and ' U U(D,)NWp,(t) is inde-
j=n

pendent of D,,. Furthermore, by Lemma [6] we obtain

lim (W5, (5)) = 0

n—oo
for every t > 0. Then the assumptions of Lemma [J are satisfied and therefore

lim |Fp, (t) — Fp, ()| = 0. Proposition A concludes the proof. O

n—oo

16



4 Properties of skew-products

Definition 9. Let (EZ x MY, F u,U) be a skew-product and D, € C, be a
cylinder of length n with the representation A, N B,,. For each k € Ny, we define

a random variable Tg, (k) on the probability space (EZ x MM, F. u) recursively
by
(78,(0))(z,y) = n,

(75, (k) (2, y) = inf{j > 75, (k = 1)(z,y) | (v,y) € T/(B,)}.

Lemma 5. For every k € N is 75, (k) G, -measurable and for any 1 > 0

lim u(7, (k) <n')=0

n— o0

and for everyn € N

w(7e, (k) < o0) = 1.
Proof. 7p, (k) is G, -measurable by the definition. Clearly,
(7, (k) < n') < p(Ba)n' < ¢"n'.
Define (A(0))(z,y) =0 and for k € N

(A(K))(z,y) = inf{j > (A(k = D)(,) | (v.y) € T"(By)},

then A(1) have the geometric distribution with parameter u(B,,) > 0 and therefore
A(k) is finite almost surely. Finally, 75, (k) < nA(k). O

4.1 Properties of cylinders

Definition 10. Let (EZ x MY, F u,U) be a skew-product and X\ be a constant
such that A € (0,1). We say that a cylinder D,, of length n is A-self-repelling,

if

(B, NT™™B,))=0 for ke{l,...,[\n]}.
We denote by D,, the set of all \-self-repelling cylinders of length n and by 5;
the set of all cylinders of length n, which are not \-self-repelling.

17



Lemma 6. Let 5; be the set of all cylinders of length n, which are not \-self-

repelling. Then
lim pu( |J D) =0.

n—00 .
DneDg
Proof. For k € {1,...,|An]}, we denote
DF ={D, € C, | u(B,NT*B,)) > 0}

and [ = |Z] — 1+ (n mod k). Then for every cylinder D, € DF resp. for its

representation A, N B,,, we get
By={Yo=wo,- Va1 =Ye-1,Ye = Yo, - -+, Yo 1 = Yr—1,- - Yn1 = Ui}

and thus

w(Bn) < (Yo = yo, .- Yier = ye-1)q" ™"
For z = (20,...,2,-1) € Z", we denote by

Ciz)={D,€C,|B,={Yo=120,...,Yn1=2n1}}.
the system of all cylinders with fixed B,,. Further, we define
0:7F - 7"

O((y07y17 v 7?/k—1)) = (y07 s Ye—1,Y05 - -5 Yk—1, - - yl)

Then for y = (yo, Y1, ..., Yp_1) € ZF

DneC(o(y)) (T1,eesTm )EE™

S qnik:u(}/b = Yo, - -- 7Yk*1 = yk*l)’

and hence
DyeDk Y=o, yr—1)EME  Dn€C(o(y))
<g"* > 1(Yo = Yo, - -+ Y1 = yr—1)

Y=o, yk—1)EM*

< qn—k'
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Finally,

[An]
U Du)=u(lU U D)
DneDE k=1 p,eDk
[An]
< Z qn—k < an(l—)\).
k=1

O

Lemma 7. Let {D,}> | be a sequence of A-self-repelling cylinders of length n.

Then there exists a constant ¢ > 0 such that

Zanngngwm

Proof. Since

U(D,) C T7*(B,)
for every D,, € En, we have

U~ (D))

Z 1(Dy N - Z”: w(A, N B, NT™(B,))
p(Dn) .

|
HM

< Z 7 io

j= \_)\nj-l-l H

S Z M(Y = Yn—j+15- -+ Yn+j—1 = yn_l)

)\nJ-‘rl
S Z ¢
=[An]+1
_ o]
_ qL)\nJJrll 4 < e
l—gq

4.2 Relations between distribution functions

Lemma 8. Let (2, A, 1, T) be a measure-preserving dynamical system, A € A,
((A) > 0, 74 be the hitting time to A, Fa(t) be the distribution function of nor-
malized return time and Fa(t) be the distribution function of normalized hitting

time. Then

0= (1= Ea(s)ds — Fa(t) < u(4)
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for allt > 0.
Proof. The proof can be find in [6]. O

Lemma 9. Let {D,}5°, be sequence of A\-self-repelling cylinders of length n.
Suppose that for every t € (0,00) and n € N, there are events Wp, (t) in
(EZ x MM F u) such that the following conditions hold:

o W U=(D,) N Wp, (t) is independent of D,,

j=n

o Wp, (t) is independent of D,,

o lim pu(Wp,(t)) = 1.

n—oo

Then for every t > 0
lim |Fp, (t) — Fp, (t)] = 0.

n—oo
Proof. Let t > 0 and {D,,}>° | be given. For simplicity, we denote F,, (t) = Fp, (t)
and F,(t) = Fp,(t). For n big enough, t > nu(D,) and we write

[Fult) = Fu(t)] < Ky () + Ko (t) + Ko (t) + Ko () + KQ(2),

where
) B t u(gn) i
K)\(t) = |u(mp, < u(Dn)) 11( jL:Jn U™ (D)),
w(Dn) u(én)
120 = 1o U U700) = (U U7(D) 0 W, (1)
- p("U" U= (D)0 Dy 0 W (1)
0 = U U (00) 0 Wi, (1) - B ]
4 u(T U3(D,) N Dy N W, (1)) mT U-3(D,) N D)
=] #(D) T wmy "
p(U vsw)nn,)
K3(t) = | B —B)

We find an upper bound for K (t) for each i € {1,...,5}. For K{!(t), we obtain
K (1) = p(rp, <n)
< nu(Dy)

n

<ng".
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By definition of K (t),

w(Dn)
K = u( U U7(D2)0 (W, (1))

g
Events U U7(D,)NWp,(t) and D, are independent and therefore

Jj=n

K®(t) = 0.

Since Wp, (t) is independent of D,,, we get for K% (t)

p("U” U(D,) 0 D O (W, (1))
K0 = —= #(Dy)
p(D0 0 (Wi, (1))
w(Dy)

= 1(Wp, (1))%)-

<

For K{®(t), by Lemma [T, we obtain

KO)\(t) = M<{TDRM?D71}) N D,)

= N(Dn N U_j<Dn))
= ]21 1(Dy)

S Cq)\n.
By assumptions on Wp, (t),

|[Fu(t) = Fu(6)] < ng" + g + 2p((Wp, (1)) — 0.

Previous two lemmas lead us to the key proposition.

Proposition 4. Let (2, A, u, T) be a measure-preserving dynamical system. Let

{D,}>2, C A be a sequence of events such that u(D,) > 0 for every n € N and

lim p(D,) =0.

n—oo

Further, assume that for every t > 0

lim |Fp, (t) — Fp, (t)] = 0.

n—oo
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Then for every r > 0

lim Fp (r)= lim Fp (r)=1—e"".

n— oo n— oo

Proof. For simplicity, denote F,,(t) = Fp, (t), Fn(t) = F’Dn(t) and f,(t) = F’n(t) —
F,(t) for every t > 0. Then by assumption

lim [ fn(t)] =0

n—oo

and if
lim Fp, (t)=1—e",

n—oo
then also

lim Fp, (t)=1—e"".

n—oo

Let r > 0 and {D,}°, be given. For every ¢t > 0, by Lemma [8] we have
t ~
| (= Fu(e))ds = Bu(t) + g.(0) 3)
where |g,(t)| < pu(D,,). Substitute f,(s) 4+ F,(s) for F,(s) in (3) to obtain

[ 0= Eafs) = fuls)ds = Fu(t) + gnl0). 4)

We multiply equation by e and integrate from 0 to r, we get

// (1= Fo(s) — fuls ))dsdt:/Oret(Fn(t)+gn(t))dt.

By Fubini’s theorem,
/ / (1= Fo(s) = fuls ))dtds:/TetFn(t)dtJr/retgn(t)dt
0 0

J) (0= Fuls) = JulN(& = e)ds = [ e Fultydt + [ oty

e [ = Fuls) = fuls))ds = [ e (1= Fuls) = fuls)ds =

/r e'F,(t)dt + / et gn(t)dt.
0 0

We substitute from (@),

C(Fr) +g0) = (€ = 1)+ [ efuls)ds = [ egals)ds
2
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Expressing F,,(r) from the equation, we get

F.r)y=1—¢e"—gu(r) — e"(/or e’ fn(s)ds — /OT e*gn(s)ds).

Further, we know

= gu(r) = e [ e ule)ds + e [ etgu(s)ds] <

w(Dy) + e /Or e’ fu(s)ds| + |e™" /OT e*gn(s)ds|.

We estimate the third part with

|e*”/0 e’gn(s)ds| < e*"/o e’lgn(s)|ds

Since |f,(s)| < 2, for every s € [0, 7], and by dominated convergence theorem, we

obtain
le” /Or e’ fu(s)ds| <e™" /Or e’| fu(s)|ds — 0.
Define
Kulr) = [ elfuls)lds.
then

F.(r)ye[l—e" —2u(D,) — K,(r),1 —e " +2u(D,) + K,(r)].
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5 Non-symmetrical motion

In this section we will consider the skew-product which satisfied assumptions of
Main theorem with condition (A). For this section, we denote by B this skew-

product.

5.1 Construction of a suitable subset of cylinders

Lemma 10. Let B be a skew-product. Let D, be set of all \-self-repelling cylin-
ders of length n. Denote

D, = {D, € C, | ¥(x,y) € D, : max |Si(y) — iEYi| > g}

<i<n

and C, = D¢ U D!,. Then

lim u( |J D) =0.

n—00 -
DnpeChp

Proof. By Lemma 2 for D',

(U Da) < plmax{1S(Y) —iBYi[} = 3)

- 0<i<n
DneD’y

E(S, — nEY;)?
C
< =
EY?

=c— — 0. (5)

By Lemma [0l and (), we obtain

lim u( |J D,)=0.

n—00 .
DneCp

Corollary 5. Define systems of cylinders

D} = {Da € Cy | ¥(a,y) € Do+ guax {Si(y)} — gmin {Si(w)} = n(1+ EY1)}

0<i<n

and

DY = {Dy € Gy | ¥(a,y) € Dy £ |Su(y)] = n(l + EY))}.

Then
5// U D’/// C é )
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Proof. We have

maX{S} —nEY; — Jnin {S}

0<i<n
< max {S; — zEYl} - mln {S —iEY 1}
< 2 max {[5; — zEYll}
and therefore D C D', Similarly, we have

S, = nEY; =[S, - [nEYi|

< |15.] - [nEYi)|
< max {15, — iBYil}
and therefore D" C D! . O

5.2 Construction of Wp_

Definition 11. Let B be a skew-product and let D, be a cylinder of length n.
Define

o0

Wp, = (STBn > 4n(1 + EYY)),

k=1
where Tg, (k) is from Definition[9.

Property of independence for events W,

Lemma 11. Let C~’n be from Lemmalll, D, € C, \ C~’n, Wp, be events from the

previous definition and t > 0. Then the following two conditions are satisfied:

o Wp, is independent of D,

el
o U S(D,)NWp, isindependent of D,.

j=n

Proof. Since B, € G¢~', A, € A and

N (S22 ®) > dn(1+ EY,)) € G,
k=1

we get

1W(Wp, 0 Dy) = (A, 0 B, 0 () (57 ™) > dn(1 + EY;)))

k=1

= 1(Dn)(Wp,)-
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Denote ¢ = [(14+EY;)] and u = | —4~]. Since D,, € C,,\ C,, and by Corollary Bl

M(Dn)
we obtain
S?%ﬁ{si(y)} — Orgilgnn{Si(Y)} <cn on D,
and

A, € AT,

—cn”®

Further, let us take [ € N, then

T(4,) € A%, ..
If we take [ > 2nc, we get

T7'(A,) € A2,

and it follows that u(A,NTY(A,)) = u(A,)u(T(A,)). The statement of lemma
is clearly true for u < n. Suppose u > n, then Wp, € G>° and for u > j > n
clearly T-9(B,) € G=. Since D,, € C, \ C,, and by Corollary [, we have

|Sy| < nc on B,
and by definition of Wp,
S >4nc on T (B,)NWp,.
Together, we get
S; =S8, +8,>5 —|S,| >3nc on T (B,)NWp, N B,. (6)

Further D, is fixed and therefore B, is fixed. Suppose z = (2o, ..., 2,-1) such
that
Bn = {Yb = 205 - - 'aYn—l = Zn—l}-

Define
H=Wp,NJT7(B,),

j=n

0= {(yTM cee ayu—l—n—l) e M* | {Yn =Yny--- aYu-‘rn—l - yu—l—n—l} NnH 7& ®}

and for y € (2, define

P<y) = WDn N {Yn =Yny---, Yu+n71 = yu+n71}7

L(y) = U T(B,) 0 T (4,)) 0 B, 1 P(y)

Jj=n
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Then by (6)), we get L(y) € o(G U A3, ) for every y € Q. Hence also

U ﬁWDnt —UL Ea<gUA2nc>

j=n yeN

But (G U A3.) is independent of A", and therefore

u(OU (D) N W, N D) = u( | L(y)
= N(UQL(?/))M(A

For y € €2, define

)= (@ 9(B,) N T-5H0-5)(4,)) 1 P(y).

] n

Since L'(y) € o(G* U A) and L(y) = L'(y) N B,,, we obtain

n(UJ L)u(An) = n(U L'(y) N By)u(Ay)

yeQ yeQ

= p(U L'()i(Ba)i(An).-

yeQ

The last step is to show that

p(J Z) = u(J U0 N W),

yeN j=n
For y € €2, denote by

Np,(y) = card{n <i<u|y;=20,...,Ynti-1 = Zn—1},

the number of hitting times to B, in y and by (7(j))(y) the j-th hitting time to
B, in y. For 2/ € M™, define

Q) ={Yo=2,....Ya1 =2}

Then
N, (y)

W s (4
Ly = |J 7% "W5E4,)nPy)
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and

Nen (4) (N @)
u(L'(y)) = p(Py))p( |J 775 W=5E(4,))
j=1
Nen () () ®)
= p(Py))w(T (Y 75 W(A4,)
7=1
Nen®)  cinw
—u(P) U 10 4,))
7j=1
’ NBn(y) —S(T(j))<y)(y)—sn(zl)
= > wPy)NQE))u( J T (Ay))
z'eMm™ Jj=1
N
_ B”(y)T ST g8,y ( 4
=u( U Py)nQEN Y (4n))).
z'eMn j=1
Finally, we get
N
T — P B"(y)T ST )-8y 2
w(ULy)=nU U Pyne)n U (A4n)))
yeQ yeQzeMn j=1

UU (D) N Wp,).

Limit of measure of Wp_

Lemma 12. Let B be a skew-product and C,, \ C,, from Lemma (Il Then, for
any sequence {D,}, where D, € C,, \ C,,

lim u(Wp5 ) = 0.

n—oo

Proof. Let {D,,} be given. We denote

EY;
—4(1+ EY)), ¢ = 71 and 7p, = 7p,(1).

By Corollary [I] we have

n?+n n?
Hm p( 2 Yi 2 ) = lim (3 ) =L
j=n Jj=0

n2

We denote k() = u( Y Y; < ¢n?). Further, we define k2 = (n? + 2n)q", then
=0

clearly

1w(7s, <n?+2n) <k? =0
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and

We have

p(W5, ) < u(Wg 0 {7g, >n®+2n} N {87+ > ¢n?})
+ (7, <n?+2n) + p(SEH" < dn?)

< p(Wg, 0 {7, >n+ 20} N {S¥H > n?}) + kY 4+ k2.
Hence, it is enough to show that

nll_{go/,c U {STBn(k <enyN{7p, > n>+2n} N {7 > n?}) = 0.

It is easy to see that for

V(z,y) € [J{S7W < en}y N {75, > n® + 20} N {ST+" > ¢n?}
k=1

there exists [ € N such that

Sn2+2n+l (y) <0.

n2+4n
We have

kf_jl{San(k) <eny N {7, >n® 420} N{S"" > n?} C {%gg{S” +2"+l} <0}
and therefore
wu( [j (S5 < en} N {Fp, > n®+ 20} N {7 > n?})
k=1
n2+4n

: n2 n
< p(inf{S 2"} < 0)

= p(inf {5} <0).

By Lemma
lim ,u(mf{SnH} <0)=0.

n—oo
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6 Symmetrical motion

In this section we will consider the skew-product which satisfied assumptions
of Main theorem with the condition (B). For this section, we denote by B this

skew-product.

6.1 Construction of a suitable subset of cylinders

Lemma 13. Let B be a skew-product and D,, be sets of all \-self-repelling cylin-

ders. For arbitrary X' € (3,1), denote

D, ={Dn € Co | ¥(x,y) € Dy : (max {Siy)} — min {Si(y)}) > n*}

0<i<n
and C, = D¢ U D!,. Then

lim u( |J D,) =0.

n—00 ~
DpeChp

Proof. By Corollary 3] we get

n—1
E(ZOY]‘)2
R _ Y 2N J=
p(ax {5i} — min {Si} 2 n”) <2 poY
&
< T (7)

By (@) and by Lemma [6 we obtain

lim p( |J (D)) =0.

n—00 '
DpeChp

6.2 Construction of Wp_

Definition 12. Let B be a skew-product and let D, be a cylinder of length n.
Fort € (0,00), define

W, (t) = ;fj ({15771 > 30} U {7, (k) > (D)
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Property of independence for events W,

Lemma 14. Let C,, be from Lemma (I3, D, € Cy, \ C,, t > 0 and W, (t) from

the previous definition. Then the following two conditions are satisfied:

o Wp, (t) is independent of D,
o U U(D,)NWp,(t) is independent of D,,.
j=n
Proof. Let t > 0 and D,, be fixed. Since B, € G§ ', A, € A, Wp, (1) € G, we
get
#Wp, (t) NV Dy) = p(Wp, (t)) 1(Dn).-

Since D,, € C,, \ C,, N <1 and by Lemma [I3] we obtain

. J— 1 . Al
012%);{5@} 0%1%1”{52} <n" on D,

and
)\/
A, e A" v C A”,.

Consider [ € Z, |I| > 2n, we have T7'(A,) € Ay, for | > 2n (resp. T7'(4,) €
A" for I < 2n) and (A, NT7YA,)) = u(A,)? Denote u = |~ |. We show

M(Dn)

that

u u

p(J U (Da) "W, (t) N Dy) = u(|J U™ (Dy) N W, ()1 Dn).

j=n j=n
The equality clearly holds for u < n. Suppose u > n, since D,, € C,, \ én,
|5, < onglflg}fm{si} — o%?n{si} <n" <n on B,.
Further, take n < j < u, then
1S9 >3n on T7(B,)NWp,(t)
and
1S;| =52 + S| >2n on T7/(B,)NWp,(t) N B,. (8)

Suppose z = (2, ..., 2,—1) such that

Bn = {}/0 = 205 - - 'aYn—l = Zn—l}-
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Define
H=Wp,t)n|JT7(B,),
j=n
0= {(yna cee ayu+n71) € M" | {Yn = Yny+ s Yugn-1 = yu+nfl} NH # @}

and for y € (2, define

P( ) = WDn<t> N {Y =Yn,--- aYqunfl = qurnfl}a

U )N TS5 (4,)) N B, N P(y).

Then by (§), we have L(y) € o(GU A%, U AZ%") for every y € Q. Hence also

LUJ W) NWp, ()N B, = |J L(y) €0(GU A, U AT,

yeN

But o(GU A, U AZ% ") is independent of A", and therefore

u

u(J U (D.) N Wi, (1) u(U L)
j=n ye
= (U Ly)n(A
yeQ
The rest of the proof may be obtained in the same way as in Lemma [Tl O

Limit of measure of Wp

Proposition 6. Let B be a skew-product and Wp, (t) be from Definition[IZ. Then
for allt € (0,00) and {D,}>,, where D, € Cy, \ C,,

n=1

lim u(Wp, (t)) = 0.

n—oo

Proof. Let {D,}22, be sequence of cylinders such that D, € C, \ C,, and t > 0.
For simplicity, denote 7,,(k) = 7, (k). Consider only n € N such that ¢ > ng".

We denote B
/ thg / 617.4
¢, = , cn = |C,], d(n, k) =3n°k",
i) o)
t
Qn: ,uBn Tn\Cn S
(Bl € 55)
and
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The event ()¢ and the constant ¢, control number of hitting times to B,, until
the time ﬁ and the event R¢ assures that there is enough space between two

hitting times. Since ¢/, > tq™,

lim ¢/, =00 and lim ¢, = .
n—oo

Further,
< ¢ = 3 7 (k) n T t T.(c t
Wp, () NQy, kL:Jl({|5n | < 3n} N {7(k) < Lu(Dn)J}) N{7u(cn) > u(Dn)}
Cn :;:n _ t
- kL:Jl({ISn W < 3n} N {Fu(cn) > u(Dn)})’
and hence

pWh, (1)) < u(Wp, (£) N Qn) + p(Wh, (1)) N Q7)

< (@) + (S ®) < 30} 1 Q2)

k=1

< 1(Qu) + u(B) +u(UHISEO] < 3nbnQun R (9
k=1

In the first step we prove that nh_)ngo w(R,) = 0. For every D,, € C}, \ C~'n,

N(Bn) <q"

and since F is finite, we have

p= Erél]gl{u(Xo =e)} >0
and
n(An) = p™ .

Easy calculation shows that
p(Ry) = p(UJ (Fa(k) = Tk = 1) < d(n, k)))

k=1

< kz H(Fa(k) = 7k — 1) < d(n, k))
< z d(n, k)u(By)
= i 3n6k4ﬂ(3n)

k=1

< 3n°c, " u(Bn)
6 t%(]—%")

(1(An))°
< 3n6t5q(77n)q"p’5”kl — 0. (10)

= 3n 1(Br)
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Now we show that lim x(Q,) = 0. We distinguish two cases. The first case
is that there exist ¢, occurrences of B,, such that they do not overlap each other.
And the second case is that there exists at least two occurrences of B, that

overlap. In other words, we can write u(Q,) as follows,

ﬂ {Ta(k) = Tu(k = 1) > n} U U {Fu(k) — Tu(k — 1) < n})). (11)
k=2
The cylinder D,, is A-self-repelling and therefore
THB,)NT*(B,) =0

for every k € Nand j € {1,...[An]}. We obtain

Cn

(@ N ij (Fa(k) = Fu(k = 1)) < n) < p(J (Fu(k) = 7k — 1)) < n)

k 2

<MU U T™H(B, NT™(B,)))

k=2j=[An|+1

< Z Z N(Bn N Tﬁj(Bn))

k=2 j= L)\nJJrl

<Y g

k=2 j=[An|+1
/ n
< ceng

tg" en
/N(A )q <tdq"'p™" (12)

=C

where ¢, ¢ are suitable positive constants. There are less then (“(cél")) combina-
tions how to place B, on set {n,..., u(D } cp-times. In the case they do not
overlap, each ¢, placements of B, results in probability smaller than p(B,,)°. We
get

t

1(@a ﬂ (Fulk) =l — 1)) > ) < (W) (u(B.))".

Cn

In general for [ > k, we have

()= =

-1 (l—k+1)
N k!

lk

— kD
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By Stirling’s approximation,
Kre " Vk2m < k!

and therefore

I* Ik
k! = kke—k\/k2m
For | = -t~ and k = ¢,, we get

w(Dn)

(767 ) iy < T

Cn

Since lim ¢, = oo,
n—o0

The last step is to prove

lim p(J{157®] < 3n} N Qs N ER;) =0.

n—00
k=1

Easy calculation shows that

w1579 < 303 1 Q5 N Re) < u(|J{1S7®)] < 3n} N )

k=1 k=1

<> u({ISp®] < 3n}n RY).

k=1

For k € {1,...,¢,} denote
T = {7a(k) — To(k — 1) > d(n, k)}.

By definition of R,,, we obtain

Cn

R = ({7() = 7uli — 1) > d(n, j)}

C{Fu(k) = Tu(k — 1) > d(n, k)}
=T,
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and therefore
u({|S7 (k)] < 3n} N RS) < ({7 (k) > d(n, k)} N T, N {]S7®)] < 3n})

= S (R = ) TN {189 < 3n})
Jj=d(n;k)

=Y Y wRM =T (S =1, (15)

j=d(n,k)l=—3n

Now we find an upper bound for probability of the event
{Falk) =5} NTe N {S] =1},
(see Figure [I]).

y e

n Folk —1) Zj zj+mn j=Tu(k) 7+n—1
Figure 1: Realization of {7,(k) = j} NT, N{S =1}

Define

[]:{zj—n,,zj}

We show that

H({FF) = 3} N T (8] = 1)) < i) € Lo M),
where
(i) = iléIZJM(Si =)
Clearly

{(Fa(k) =3NTn{s) =1} € gt
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and we can this write event as
U Yo =vn, - Y1 = yj+n71}

for suitable set Q C MJ. Take (yn,...,Yjin-1) €  and assume that
Bn={Yo=9p - Yoor =yp 1}

By definition of Q (resp. the event {7,,(k) = j}),

(yj7 cee 7yj+n71) = (y(/h cee 7y;z—1)'

Define permutation = on M7 such that 7 take last n coordinates and put them

between coordinates z; — 1 and z; i.e.,

T(y) = Wns - -- y Y= Y5 Yjtls - - o5 Yjdn—15 Yz - - - ,Yj—1)
(see Figure 2)). Further, denote
O =7(Q).

Since (Y,...,Y,4;-1) is vector of independent identically distributed random

variables, for every y € €, we get

(Yoo Yient) = 9) = p((Yaso oo Vi) = 7(y).

For y € ), by the definition of 7, we know that k-hitting time into B,, in vector
7(y) happens no later than z; and by event T} not earlier than z; — n. Further,

since SJ(y) = 1, we get Si’ (7(y)) + Sgﬁn(ﬂ(y)) = [. We denote
Vi = [78.(k) € I].
It follows from the previous that

p{7o =33 nTen{S] =1}) = u(UA{(Ya, - Yisn-1) = y})

yeQ

=pu( U AV, Y1) =9'})

y' e

< p(V; N {83 + S5, = 1)),
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y =

n Tk —1) Zj zj+mn J Jjt+n—1

Figure 2: Realization after m-transformation

Furthermore,

(VA {S7 + S50 = 1) = > u(V;n{Sy =m}n{SI, =1 —m})

= X uV;n{Si =mhu(SL, =1—m)

< X0 wVin{Sy = mb)sup (ST = )
d(n, k

< n(1)o( 10

Therefore M(%)(b(d(’;’k)) is the upper bound for

p({7u(k) = 7} N TN {S) = 1}),

which does not depend on [. For V; we obtain

S 0o n—1
PNNOEEDY w(Tu(k) =z —n+1+1)
j=d(n,k) j=d(n,k) i=0
e d(n, k
= Y. u(Talk)=j— @ )—n+1+i)§n.
i=0 j=d(n,k) 3

We continue with (I3])

IS STCCENUERICENENS WS STIAEE L
Syt j=d(nk) I=—3n
< > et
j=d(n,k)
< Tn’¢ (T;’ o) (16)
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And now back to (I4)). From previous and by inequality in (2), we have

ST HST < 3ny 0 ) < 3 ano 1)
k=1 =1

2 ¢
<7 kz::l d(n,k)

3
< 7n22

C

k1 Vnbkt

1
< 7n2—3c — 0.
n

From (I7), (I3)), (I0) and (@), we finally obtain

lim u((Wp,(s))") = 0.

n—o0
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7 Mixing measure-preserving dynamical systems

Definition 13. Suppose (2, F,u) is probability space and A, B C F are o-

algebras. Define the following measures of dependence:

a( A, B) = sup sup |u(AN B) — u(A)u(B)],

Ae ABeB
(b( “47 B) = sup sup |M<B|A) - M(B>|7
Ae A;u(A)>0 BeB
ANB
WAB= sp  sp (240D,

Ae A;u(A)>0 Be B;u(B)>0 ,U(A),U(B)

Remark 10. Let (2, A, p) be a probability space and A, B be o-algebras. Then

20( A, B) < ¢( A, B) < =( A, B).

1
2
Proof. [3, Theorem 3.11] O

Definition 14. Suppose V- = {Vj, k > 0} is a sequence of random variables on
(Q, F,p). For 0 <n <m < oo, define the o-algebra H,' = o(Vi,n < k < m).

For each positive integer n, define the following dependence coefficients:

a(n) = a(n,V) = sup a(?—lé, HiL),
JEN

¢(n) = ¢(n, V) = sup p( H), H33,.),

JEN
U(n) =¥(n, V) =supb(Hp, H3,)-

JjeN

The random sequence V is said to be
a) strongly mixing or a-mixing if 11113010 a(n) =0,
b) ¢p-mixing if dim o(n) =0,
c) P-mizing if Jim (n) = 0.

Lemma 15. Let (EZ x MY F u,U) be a skew-product. Denote by Co the
smallest o-algebra containing all cylinders. For n € N, denote by C,, the small-

est o-algebra containing all cylinders of length n. Further, define a sequence of

random variables {Vi, k > 0} on (EZ x MY, F u,U), where Vo(z,y) = (20, o)
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and Vi(z,y) = Vo(U*(z,y)). Then

a(l,V) =sup sup sup |u(ANU"(B)) - u(A)u(B)],

n>1 AeCy BECso

¢(1,V)=sup sup  sup = |u(U"(B)|A) - u(B)|,

n>1 A€ Cpipu(A)>0 BECoo

ANnU™ Y4B
Y(l,V)=sup  sup sup = |'LL< (B)) _ 1].
n>1 A€ Cripu(A)>0 BE Coo;iu(B)>0 u(A)pu(B)
IfV is aresp. ¢, ¥ )-mizing we say (EZx MY, F, u, U) is aresp. ¢, ¥ )-mizing.

Proof. We provide proof only for a(l,V). Since C, = Hg, resp. Coo = H',
for every k € N and B € H°, we get U*(B) € HY. Therefore for every
I,bneNAeC,,

sup [u(ANUT"(B)) — w(A)u(B)| = sup |u(ANB) — p(A)u(B)|.

BeCso Be F>®

Remark 11. Let G be o-algebra with finitely or countable many atoms. Denote

G, G, . .. the atoms of G. Further, let A be an arbitrary o-algebra, then

¢(G, A) = sup sup |u(A|G;) — p(A)].

ieN Ae A

Proof. The proof can be found in |3, Proposition 3.21]. O

7.1 Mixing in skew-products

Example 2. Let (EZ x {0,1}, F, u,U) be a skew-product, such that for all
n € N there exists © € E such that p(Xo = x) < L. Then (E*x{0,1}°, F, 1, U)

is ¢-mizring, but is not -mizring.
Proof. First we take two cylinders of length 1,
Ay = {Xo =0, Yo = v}, B1 = {Xo = ao, Yo = bo}.

Obviously,
U NB)) ={Xy, =ap, Y1 = by}
and for k € N
U '"M(By) = {Xs,,, = a0, Yir1 = bo}-
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We will distinguish three possibilities. First take yo = 0 and xy # ag, then
U Y BN A = {0}

and

U Y(B)NA N{Sy1 =0} = {0}
For yo = 1, we have
UM (B)NA ={Xo=10,X1=0a9,Yy=1,Y, = by}

and therefore
p(UH(B1) N Ay) = p(An)u(B).

By the same argument, for £ € N, we obtain

p(UM(B) N Ay) = p(Xo = 20, X i1 = 0, Yo = 1, Yiy = bo)

= (A1) u(Br).

Finally, for yo = 0 and xq = ay,

N(U_l(Bl) N Al) = N(Yo =0,Y) = by, Xo = ao)

_ 1(B)
- M(Al)M(XO _ ao)
and
—1-k k+1 _ _ 1(B) k
p(U™ 7 (By) N AN {57 =0}) = M(Al)m(l — EYy)".

Furthermore, for all yy and x(, we get
p(UTH(B) N A N ST > 0}) = p(A)p(B)u(ST > 0).

Now we can show that skew-product is not ¢-mixing. For £ € N we take previous

cylinders A; and B; such that yo = 0 and xy = ag, then

p(U~M(B1) N A)

ey
_ |M(U_1_k(31) NA NS =0 +pU " FB)NAN{ST >0}) 1
a (A1) p(Bi)
(1 - EYy)"

F (1= (1 EYy)) — 1.

1(Xo = o)
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By assumption, for every k£ € N, we can find zy € E such that
(1 - EYy)*
1(Xo = o)

and therefore skew-product is not ¥-mixing. Now we prove that skew-product is

> 5

¢-mixing. Cylinders of length n are atoms in C,, therefore by Remark [I1], it is

sufficient to show that there exists a sequence {a;}72, such that
lim a; = 0.
k—o0

and

(U™ (A) | D) = w(A)] < ay

for every n € N, D,, cylinder of length n and A € C.,. Easy calculation shows
that

p(UTH(A) N Dy NS = 0}) < p(Dn N {S3H = 0})
= u(Dy)(1 = EYp)". (18)

Consider y € {0, 1}" such that for D,, resp. for its representation A, N B,, holds
B, = {}/E] =%Yo---, Y, = ynfl}-
Since Co C o( AU G), we have
U™ "(A) € o( AT U Goin)
and for every ¥ = (yl,, .-, Yhip_1) € {0,1}* such that S"H(y’) > 0,
BN {Yo =1 Yosr1 =Yhu 1 NU T F(A) € a( R gs),
(Yo =Yoo Yokt = Yoo} VU™ H(A) € 0 AF U G)
and since A4, € A7"Y we obtain

pUTHA) N Dy NS > 0}) = p(Du)u(A)(1 = (1 = EYp)Y).  (19)

By (I9), we get
p(UH(4) N D)
#(Dy) -
_ pUTMA) N Dy 0 {SEHE > 0}) + w(U"*(A) N D, N {Sp*F = 0})
‘ B
—n— ntk _
A - (1 gy B A e 5 0
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and hence by (I8]),

U *A)n D,
() - D)) gm0 By
1(Dy)
<2(1 - EYp)*.
We define a;, = 2(1 — EY;)* and skew-product is ¢-mixing. O

Example 3. (EZ x {—1,1} F 1, U) is not ¢g-mizing.

Proof. Let us take
B ={Xo=w0,Y =y} € Cc.

For every | € N, we show that
o(1) > u(B).

Consider x; # x9 and cylinder A of length 3/ such that for its representation

C N D holds

C:{szl,...Ym,1Il,YQl:—l,...,nglflz—l}

and
D = {XO :l‘l,...,XQl :IL'l},
Hence
Sy =1 on C,

Sy €10,2l] on C
and also

Xs, =x1 on C.
Therefore

(AN U_?’H(B)) =0.

and skew-product is not ¢-mixing. O
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7.2 Skew-product represented by a random process

Let (EZ x MM F u,U) be a skew-product and let J be an arbitrary countable

alphabet such that there is a bijective mapping f : Ex M — J. Define a mapping
o : E?x MY — J

gO(l‘,y) :j 'Lf (XO(xay)aif()(xvy)) = f_l(j)

For n € Ny define projections 7, on JYo

T (Jo, J1s -+ -) = Jn
and a mapping ¢
Yoo+ BT x MM — Mo
Tn(Poo(, ) = P(U™(2,9)).
Let J be a product o-algebra on JY and

o JYo — JNo

a((j(]ujlu .. )) = (.j17.j27 s )
be the shift on JY°. For n,m € Nyg,n > m and j,,, ..., j, € J we naturally define

cylinder of rank (m,n) in (JY°, J,0) as a measurable set

[jma .- ]n] = 777711(]771) N 7T;z}',-l(jm—f—l) n...N erl(]n)

:O'_m(Jj )ﬂO'_m_l(Jj )ﬂ...ﬂd_n(Jjn),

m—+1

where J;, = 7' (ji;). Clearly, J is the smallest o-algebra containing all cylinders.
Let
D, = ‘/eoyo N U_l(‘/EhZh) N U_n+1(‘/en71,yn_1)

be a cylinder of length n in (EZ x MY, F, u,U) and jo,...,jn—1 € J be such
that j; = f((e;, y:)). Obviously,

ot (0 ¥y -y Jun]) = U (D) € F (20)

for every k € Np. Since set of all cylinders in (JY°, J,0) is closed on finite

intersections and

{Be J|y.(B) e F}
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is Dynkin system, ¢, is (F, J)-measurable. We define probability measure v
on (JY 7) as

for B € J. Further, by (20)

(e o, n1]) = nles (07 o - 1))
(UH(Dy))
(D)
(

v []07---7]n 1])

and hence (JY°, J,v, ) is measure-preserving dynamical system. Furthermore,
ol (B) € C, for B € Jy, where Jy is the smallest o-algebra containing all

cylinders of rank (0,7n). Once again, for every n € Ny, k € Ny,
{A €eJ | JA" € F such that gpgol(o'_k_nA) — U—n—kA/}

is Dynkin system which contains all cylinders. Therefore, for every k,n € Ny and

A€ J, there exist A’ € F such that
P (07FA) = UTTH(A).

Hence

V(BN o™ 4) = p(psl (B) N U H(A)).

It follows that if (EZ x MM F u,U) is a-mixing, then (JY°, 7, v, ) is a-mixing
and for every n € N is a(n) in (EZ x MM, F u,U) greater or equal then a(n)
in (JY, 7,v,0).

7.3 Discussion

We proved some mixing properties for particular skew-products, now we would
like to discuss the relation of our work with some known results. We will show
relation between our result and [2, Theorem 1]. First, [2, Theorem 1] in is for-
mulated for the dynamical systems with shift. As we have seen in previous, this
is not significant restriction. Further, [2, Theorem 1] assume that dynamical sys-

tem is a-mixing. It is not easy to see that skew-product is at least a-mixing in
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general. Therefore we can not use it for general skew-product. Further, our proof
of the limit distribution follows different approach, therefore we do not get the

exactly same result.

Example 4. We continue with FExample[2. By Main theorem [, for everyt > 0
and for a sequence of cylinders {D,}2 | such that D, € C,, \ C,,

lim u(rp, > ———

We can find similar result in [2]. More precisely consider (JY°, J,v, o) construct-
ed in previous section for skew-product defined in Example[2. Since

(EZ x {0,1}No, F pu,U) is ¢p-mixing, it is also a-mizing by Remark[I0 and there-
fore (JNo T v, 0) is a-mizing. By [4, Theorem 1], for (JY°, J v, o), the follow-
ing result holds:

For any sequence {A,}°2, such that A, € A", v(A,) >0 and

Jim v(Ta, <n)=0,

there exist normalizing constants A\(A,,) such that

lim sup [V(A(An)v(An)Ta, > 1) —exp(—t)| =0

n—00 >0

and limsup A(4,) < 1.

As we see from previous example we only provide a pointwise convergence of
distribution functions while the convergence in [2, Theorem 1] is uniform. On the

other hand, we do not need a rescaling constant A(A,).
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